MA2001 Cálculo en Varias Variables. Semestre 2009-03

Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla y Víctor Verdugo

Auxiliar 2

Miércoles 23 de Diciembre de 2009

P1. Conjuntos compactos en \mathbb{R}^n

- i) Sea $C \subset \mathbb{R}^n$. Pruebe que las tres proposiciones siguientes son equivalentes:
 - a) C es cerrado y acotado.
 - b) Todo recubrimiento de C admite un subrecubrimiento finito; esto es, si $\Theta = \{\theta_i : i \in I\}$ es una familia de conjuntos abiertos tal que $C \subset \bigcup_{i \in I} \theta_i$, entonces existen $\theta_{i_1}, \dots, \theta_{i_k} \in \Theta$ tales que $C \subset \bigcup_{j=1} \theta_{i_j}$.
 - c) Toda sucesión de puntos en C tiene alguna subsucesión convergente en C. Se dirá que $C \subset \mathbb{R}^n$ es compacto si verifica cualquiera de las condiciones anteriores.

ii) Sea $\{C_i\}_{i\in\mathbb{N}}$ una familia decreciente de compactos (ie, $C_{i+1}\subseteq C_i$), no vacíos, en \mathbb{R}^n . Pruebe que $\bigcap C_i\neq\emptyset$.

P2. Desigualdad de Holder

Sean $x, y \in \mathbb{R}^n$ y $p, q \in \mathbb{R}$ Holder-conjugados, es decir, que $p \in [1, +\infty)$ y $\frac{1}{p} + \frac{1}{q} = 1$ (cuando p = 1 considere $q=\infty$). Pruebe que

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$$

Para ello, puede serle útil probar primero que dados $a, b \ge 0$ y p, q Holder-conjugados, entonces

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

P3. Funciones de \mathbb{R}^n en \mathbb{R}

i) Determinar el dominio y recorrido de las funciones:

a)
$$f_1(x,y) = ln(4x + y - 5)$$

b)
$$f_2(x,y) = \sqrt{2x - 3y + 4}$$

b)
$$f_2(x,y) = \sqrt{2x - 3y + 4}$$

c) $f_3(x,y) = \frac{1}{\ln(1 - x^2 - y^2)}$

d)
$$f_4(x,y) = \arcsin(x+y)$$

ii) Determine y bosqueje las curvas de nivel de las funciones:

a)
$$g_1(x,y) = y^2 - x^2$$

b)
$$g_2(x,y) = x^2 + y^2$$

c)
$$g_3(x,y) = \sqrt{x^2 + y^2}$$

iii) Determine a cual de las funciones de la parte ii) corresponde cada una de las siguientes superficies:





