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Abstract-There is a growing trend to outsource maintenance where equipment failures are recti- 

fied by an external agent under a service contract. The agent’s profit is influenced by many factors- 
the terms of the contract, equipment reliability, and the number of customers being serviced. The 
paper develops a stochastic model to study the impact of these on the agent’s expected profit and 
the agent’s optimal strategies using a game theoretic formulation. @ 2000 Elsevier Science Ltd. All 
rights reserved. 
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1. INTRODUCTION 

Complex equipment requires specialist tools and personnel to carry out repairs when equipment 

fails. Often it is uneconomical for the owner of the equipment to have such specialist tyols 

and personnel in house. In such situations, it is more economical to outsource the maintenance 

(preventive and failure) of such equipment. We consider the case where the repair is done by 

an external agent, who provides the repair service. In this case, the owner can be viewed as a 

customer of the agent for such repair service. Henceforth, we shall use the terms “agent? and 

‘kustomer” to denote the service provider and the owner of the equipment. 

The equipment generates revenue to the customer, over the life of the equipment, when it is 

in working state, and no revenue when it is in failed state. Hence, the duration for which the 

equipment. is in failed state is critical for the customer. The options offered by the agent have 

an impact on the customer’s decision whether to buy the equipment and the type of contract for 

repair, should the customer decide on buying the equipment for revenue generation purposes. 

Murthy and Ashgarizadeh [l] developed a game theoretic model to characterise the optimal 

strategies for the customer and the agent. The model deals with a single customer and a single 

agent. The failure times and repair times are assumed to be exponentially distributed. The 

service agent offers two options: 

(i) to rectify all failures, offer the life of the equipment for a fixed price (P) along with a 

penalty should the repair be not completed within the specified time, and 

(ii) to rectify each failure at a fixed price (Cs), but with no penalty terms included. 

The customer chooses the optimal decision to maximise an expected utility function, and as a 

result, the optimal decision is a function of P and C,. The decision variables of the agent are P 
and C,, and this is selected so as to maximise the expected profit taking into account the optimal 

decision of the customer. In other words, the optimal decisions are obtained using a Stakelberg 
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game formulation with the agent as the leader and the customer as the follower. Murthy and 

Ashgarizadeh [l] give a complete analytical characterisation of the optimal decisions for both the 

customer and the agent. 

In this paper, we extend the model to include multiple customers. This implies that when 

equipment fails, its repair cannot commence immediately if there are one or more failed pieces 

of equipment needing repair. This has an impact on the revenue generation for customers and 

the agent’s profit. The agent must choose the optimal number of customers he should service 

and the optimal pricing strategy. Similarly, each customer must choose between service contract 

or no service contract with the purchase of equipment. If the total expected revenue is negative, 

the optimal choice for the customer is not to purchase the equipment. We examine the optimal 

strategies for customers as well as the agent in a game theoretic setting similar to our earlier 

paper. 

The outline of the paper is as follows. In Section 2, we give the details of the model formulation. 

Section 3 deals with the model analysis to charcterise the optimal strategies and illustrates it 

with a numerical example. Finally, in Section 4, we conclude with some comments and briefly 

discuss some extensions to the model studied in this paper. 

2. MODEL FORMULATION 

In this section, we give the details of the model formulation. 

2.1. Equipment Failures and Repairs 

The equipment failure times are given by an exponential distribution with failure rate X. Failed 

equipment is minimally repaired so that repaired equipment failure times are also exponentially 

distributed with failure rate X. The time to repair is also exponentially distributed with repair 

rate ~1 (or equivalently, mean time for a repair is l/p). When the equipment is in working state, 

it generates a revenue R per unit time and no revenue when it is in failed state. The useful life 

of the equipment is L and the purchase price of a unit is Cb. 

2.2. Repair Options 

The agent offers the following two options to each customer. 

OPTION AI. (Service contract.) For a fixed price of P, the agent agrees to repair all failures over 

[0, L) at no additional cost. If a failed unit is not returned in operational mode within a period T 

subsequent to the failure, the agent incurs a penalty. Let Y (a random variable) denote the time 

to return a failed unit back to operational state. The penalty incurred is o(Y - r) if Y > r and 

zero, otherwise. 

OPTION AZ. (No service contract.) In this case, whenever the unit fails, the customer gets it 

repaired at a cost of C,. There is no penalty regarding the time taken to rectify the failed unit. 

Under this option, the total cost of repair over the life period L is a random variable. 

Let M denote the number of customers serviced by the agent. 

2.3. Customer’s Decision Problem 

Each customer has to choose between options AI and A2 with the purchase of the equipment. 

The third option Ao is simply not to purchase the equipment. AO is the optimal option if P 

and C, are so large that the expected returns to the customer are negative rather than positive. 

We assume that all M customers are identical in their attitude to risk and that their optimal 

choice is based on maximising an expected utility function. We use the following utility function: 
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where U(w) is the utility associated with a wealth of w. The advantage of this utility function 
is that the initial wealth is of no importance. (See [2] for further discussion.) Note that j3 = 0 
corresponds to the risk neutral case with U(w) = w. 

For customer j (1 5 j 5 M), let the number of failures over 10, L) be Nj. Let Xji denote the 

time to ith (0 <_ i <_ Nj) failure after (i - l)th repair. Let zJ denote the time for which the unit 
was in operational state at the end of its useful life subsequent to being restored to operational 
state after the last repair. Note, that it is zero if the unit is in failed state when it reaches the 

end of its useful life. Let Yji (0 < i 5 Nj) denote the time taken to make the unit, operational 
after the ith failure. This time includes the waiting time and the time to repair. Then, under the 
three options (Al, Aa, and Ao, respectively), the returns (denote by w(Ak), 0 2 k 2 2) to the 
jth customer are as follows: 

(3) 

and finally, w(Ao) = 0. Note that w(Al) and w(A 2 are random variables as failures occur in an ) 
uncertain manner. 

Since all the customers are similar in their attitude to risk and since all units are statistically 
similar, the expected utility under action Ak (0 5 Ic 5 2) is the same for all M customers. Let 
U(Ak; P, C,, M) denote the expected utility to a customer when action Al, (0 5 k < 2) is selected. 
This is obtained using (1) with the appropriate w(Ak) and carrying out the expectation. The 
optimal action A * [= A * (P, C,, M)] is selected from the set {Ao, Al, AZ} to yield the maximum 
expected utility. Note that it is a function of P, C,, and M, the agent’s decision variables. 

2.4. Agent’s Decision Problem 

The agent is assumed to be risk neutral. The profits derived from customer j depends on the 
actions of the customers. Since all the customers are similar, they choose the same action. Let 
the agent’s profit under action Ak: by the customer be denoted by r( P, C,, M; Ak), (0 < k 5 2). 
It is easily seen that 

r(P, Cs, M; AZ) = e[Cs - Cr]Nj, 
j=l 

(4) 

(5) 

and n(P, C,, M; Ao) = 0, where C, is the cost of each repair. 
The agent’s optimal choice of P, C,, and M are obtained by maximising the expected profits, 

taking into account the optimal action A * (== A * (P, C,, M)) of the customers. In other words, 
the optimal actions are given by the solution of a Stackelberg game formulation with the agent 
being the leader and customers being the followers. 

3. MODEL ANALYSIS 

We make some simplifying assumptions so that the analysis is tractable. These are as follows. 

(i) Failed units are repaired on a first-come, first-repair basis. 
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(ii) 

(iii) 

(iv) 
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We use the steady state distribution for Yji in our analysis. This is a valid assumption if 

L is sufficiently large. 

E(Yji) << (l/X). This implies that the mean total (waiting + repair) time is very small in 

relation to mean time to failure. This is a valid assumption for well-designed equipment 

(so that mean time to repair is small) and the number of customers M is not too large (so 

that the mean waiting time is small). As a result, the total down time of equipment for 

each customer is negligible and can be ignored. 

Both the agent and the customers have more complete information regarding the model 

parameters. 

Note, in the last section, we discuss extensions which relax some of these assumptions. 

3.1. Steady State Distribution for Yji 

Note, that the formulation is identical to a Markovian queue with finite population (Al) with 

a single server and first-come, first-served rule. When there are K failed units, then the arrival 

rate of failed units is XI, = (M - K)X for 0 5 K 5 M and = 0 for K > M. The service (repair) 

rate is p since there is only one server. We assume that MA < p. If not, the queue builds up 

with time, and as a result the total time each failed equipment is in the system waiting to be 

repaired increases. We assume that the queue reaches steady state in a relatively short time so 

that one can use the steady state results. Let F(y) and f(y) d enote the steady state distribution 

and density functions, respectively, for the random variable Yj,. Expressions for these can be 

obtained using results from queueing theory. From Gross and Harris [3] or White et al. [4], we 

have 
M-l 

f(y) = c @,+6?$$-, (6) 

k=O 

where & (0 < k 5 M - 1) are given by 

a= (M-k)9 
M-l 

c (M-k)i 
k=O 

(7) 

with 
pk = (JVP)~{M!I(M - W 

M-l 
C (G4kWV(M - 9) ’ 

(8) 

k=O 

The expected value of Yji is given by 

3.2. Customer’s Optimal Strategy 

Because of Assumption (iii), we have 

(9) 

and Nj is a renewal process with intensity function X. In other words, Nj is Poisson distributed 

with parameter X. 

For customer j, let Nj denote the number of times the agent incurs penalty. The expectation 

EKJ(&; P, C,, M)l needs to be evaluated over Nj, Nj, and the Yjis. We do this using a three 
stage conditional approach. 
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Let EIU(A1; P, C,, M 1 fij, Nj)] denote the expectation over random variables Yjis conditional 

on %j and Nj. It is given by 

E[U(Al;P,Cs,M 1 fij,Nj)] = (i) [lbe-“(HL-CL-P)] X (/Tm’O(Ywi) [s] d?i)l. 
T 

Note, that Nj conditional on Nj is a binomially distributed random variable with parameter F(T). 

Using this in the unconditioning process, we have 

E[U(A,; P, C,, M 1 Nj)] = ( j) - $ (s” e-pa(Y-r)f(y) kv + F(T)JN’ , 
T 

where $ = (l/p)e-fi(RL-Cb-P). Fr om Assumption (iii), Nj is Poisson distributed with parame- 

ter X. Using this in the final unconditioning, we have 

W-WI; P, c,, M)] = 1 _ e-PWCd’)+X~[j-T-= e-““‘“-T’f(y)dy+F(T)_l] (10) 

Using a similar approach, we have 

E[U(&; p, C,, M)] = 0 $ { 1 - e--P(RL--cb)-hL(l-eA”d)} . (11) 

Finally, note that E[U(Ao; P, C,, M)] = 0. 

For a given (P, C,, M), a comparison between the three expected utilities will indicate which 

action is the optimal one. For a fixed M, the optimal customer strategy is characterised by 

three regions (Ri, 0 I i 5 2), in the (P, CS) plane as shown in Figure 1. In Rc, A* = Ao; in 

Rr, A* = Al, and in 02, A* = AZ. The curve (I’) separating Ri and Rs is given by 

and P(M) and CS( M) are given by 

p(M) =RL-Cb - 

(13) 

X 

(14) 

As M increases, the curve l? moves upwards. P(M) increases, as M increases but CS( M) does 

not change with M. 
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Figure 1. Charxterization of customer’s optimal actions for a given M. 

3.3. Agent’s Optimal Strategy 

We derive the agent’s optimal strategy as follows. Let P * (M) and C, * (M) denote the 

optimal P and C, which maximizes the agent’s expected profit for a given M. Once this is 

done, M*, the optimal M is obtained by varying M. Note that M is constrained to the set of 

positive integers less than p/X. The optimal P and C, are given by P * (Me) and C, * (M*). 

For notational convenience, we omit the argument M so that P * (M) and C, * (M) will be 

simply referred to as P* and C,*. 

It can be shown that for a given M, the agent must select either P > p and C, = CS or P = p 

and C, > C, to maximise the expected profit when customers choose the optimal strategy to 

maximise their utility function. In this case, the expected agent’s profit is given by 

E[r(P, C,, M; A*)] = 

{ 

M (P - XL [CT + s,” a(y - ~)f(y) dy]) , when C, > C,, P = p’, 

MXL [6s - CT] , when C, = CS,, P > P, (15) 

0, whenC,>C,, P>1”. 

When P > p and C, = CS( M), the customer’s optimal choice A* is AZ; when P = P(M) and 

C, > CS( M), then A* is AI, and finally, when P > P(M) and C, > es(M), then Ar is Ao. 
In the first two cases, the customer’s expected utility is zero and there is no consumer surplus. 

This implies that the agent, as a monopolist, extracts the maximum amount from the customer. 

Charging any more, i.e., P > P(M) and C, > C,(M), results in customers choosing A0 instead 

of AI or AZ. 

As a result, for a given M, the agent’s optimal action is the choice between 

(1) P* > P(M) and C,* = c8(M), and 

(2) P* = P(M) and C,* > es(M). 

The one which yields a higher expected profit is the optimal choice. The optimal M is determined 

by varying M from 1 to the largest integer s [p/X]. This can be obtained using an enumerative 
method. 

3.4. Sensitivity Analysis 

The two important model parameters are p (the risk parameter) and X (the failure rate of the 

equipment). We discuss the effect of the variations of these parameters on the optimal solution. 
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Figure 2. Effect of ,8 on the customer’s optimal actions for a given M. 

EFFECT OF 0 VARIATIONS. It can be easily shown that w < 0 and v < 0. This 

implies that both P(M) and CS((M) decrease as P increases. Also, the curve l7 moves upward 

as p increases. As a result, with /3 increasing, the horizontal line (corresponding to P = p(M)) 
moves down and the vertical line (corresponding to C, = CS(M)) moves to the left. Figure 2 

shows the plots for two values of ,8 with ,$ > ,Br. 

Let pi(M) and CSi(M) denote the fj(M) and C,(M) for Pi, 1 I i < 2. For 0 < C, < CSs(M), 

we see that for a fixed C,, a more risk averse customer is willing to pay a higher price for service 

contract relative to a low risk customer. Similarly, for a fixed P(> PI(M)), a low risk customer is 

willing to buy the equipment and get each failure repaired individually as long as C, < CSr(M), 

whereas a high risk customer will opt for A0 when C, > CSz(M). These results are as to be 

expected and agree intuitively with the anticipated behaviour of customers with increasing risk 

aversion. 

When p = 0 corresponds to both customers and agent being risk neutral, the agent’s optimal 

profit (for a given M) under options Al and A2 are the same and is given by 

E[r(P*, Cs*, M; A* = Al)] = E[r(P*, Cs*, M; A* = AZ)] = M(RL - C, - UC,). 

The waiting time to repair does not have any impact on the agent’s profit. The reason for this 

is that the agent recovers the penalty costs through a higher value for P*, and the customers do 

not mind this as they get compensation through the penalty payments made by the agent. The 

optimal profit is a linear function of M and 0 < M 5 [p/A]. 

EFFECT OF X VARIATIONS. It can be easily shown that w > 0 and w < 0. This implies 

that p(M) increases and CS((M) decreases as X increases. Also, the curve r moves upward as X 

increases. As a result, with X increasing, the horizontal line (corresponding to P = P(M)) moves 

up and the vertical line (corresponding to C, = CS(M)) moves to the left. The consequence of 

this is that the region Rr increases and f& shrinks as X increases. 

Also as X increases, the maximum number of customers that the agent can service decreases 

as M < [p/X]. This makes intuitive sense as the number of times an equipment fails increases 

(in a probabilistic sense) as X increases. 
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M 

Figure 3. Plot of p(M) vs. M. 

_- ll( P’, Cs’, M ; At) 

rl( P’, Cs’. M ; AZ) 

Figure 4. E[A(P*, Cs*, M; Ai vs. M for i = 1,2)]. 

3.5. Numerical Example 

Consider the following nominal values for the model parameters: X = 0.0008 (per hour), 

p = 0.02 (per hour), (I( = 0.06 ((10)3$ per hour), ,B = 0.1, r = 70 (hours), Cb = 300((10)3$), 

L = 40,000 (hours), CT = 5(10)3$, and R = 0.015((10)3$ per hour). These values imply that 

M < 25[= p/X]. 

As mentioned earlier, ca((M) does not depend on A4 and is 6.6139((10)3$). In contrast, P(M) 

depends on M. Figure 3 shows a plot of P(M) versus M with M varying from 1 to 25. Note that 

p(M) increases with M. The reason for this is as follows. M increasing results in longer waiting 
time for repair, and hence, greater expected penalty cost. As a result, the service contract price 

must increase. 

Figure 4 shows the plot of E[r(P*, CS*, M; A*)] as a function of M. For each value of M, we 
consider P* and C,* combinations which result in A* being Al or AZ. For 1 < M < 21, the agent 
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Table 1. P(M) vs. M for /3 = 0.1 and 0.2. 

19 

M 
P 

1 5 10 15 20 25 

0.1 318.210 325.171 338.197 358.732 390.959 439.190 

0.2 314.795 320.006 329.346 343.204 363.294 390.362 

Table 2. A*, M*, and E[n(P*, Cs*, M*; A*)] vs. p. 

P 

0.0 0.05 0.10 0.15 0.20 

A* A1 or A2 
Al(M 521) Al(M 5 21) Al(M 5 22) Al(M < 22) 

Az(M > 21) Az(hl > 21) A2(M > 22) Az(M > 22) 

Me 24 19 17 16 15 

3360.000 1976.808 1650.205 
EK 

1484.578 1383.599 

(103) PO31 (103) PO31 PO31 

Table 3. A*, M*, and E[n(P*, C,*, M*; A*)] vs. X. 

x 
0.0002 0.0004 0.0008 0.0010 

A* 
Al (M 5 106) Al(M 5 50) Al(M 5 21) AI(M < 16) 

Az(M > 106) A2(hP > 50) Az(M > 21) A2(M > 16) 

M* 85 40 17 12 

%I 18385.251 6834.655 1650.205 761.349 

(103) P03) (103) PO31 

must choose P* and C,* so that the customers optimal actions are Al. As can be seen from the 

figure, M*, the optimal M, is 17. The optimal pricing structure is given by C,* > 6.6139((10)3) 
and P* = 369.948((10)3). The optimal expected profits to the agent is $1650.205((10)3). 

EFFECT OF p VARIATIONS. When @ increases to 0.2, CS(M) decreases to 5.2802 and @V) 
values (for different M) are shown in Table 1. P(M) decreases as ,0 increases, as to be expected. 

The optimal customer’s choice A* (in response to the optimal pricing) and M* and the optimal 
expected profit E[r(P*, CS*, M*, A*)] (denoted by E[r] in the table) for the agent for different 
values of p are shown in Table 2. 

As can be seen, M* and the optimal expected profit E[r(P*, Cs*,M*; A*)] decrease as /3 
increases. This implies that as customers become more risk averse, the optimal strategy for the 

agent is to reduce the number of customers in order to maximize the expected profit. Note that 

the optimal pricing results in customers always choosing option Al. 

EFFECT OF X VARIATIONS. The optimal customer’s choice A* (in response to the optimal pric- 

ing) and M* and the optimal expected profit E[r(P*, Cs*, hl*; A*)] for the agent for different 

values of X are shown in Table 3. 

As can be seen, M* and the optimal expected profit E[TT(P*,C,*,M*;A*)] decrease as X 
increases. This implies that as the product becomes more unreliable, the optimal strategy for 
the agent is again to reduce the number of customers in order to maximize the expected profit. 
Again, the optimal pricing results in customers always choosing option Al. 

4. COMMENTS AND SOME EXTENSIONS 

In the model studied in this paper, as M increases, the mean waiting time for failed items also 
increases. For large M, Assumption (iii) is no longer valid. In this case, 
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and Nj is an alternating renewal process with Xji exponentially distributed and Yji distributed 

according to F(y). (The steady state distribution for F(y) was given in Section 3.1 and is valid 

only for large L.) This implies that the analysis is more complex and analytically intractable. 

The model assumes that the failure rate is constant. This allowed the use of well-known results 

from queueing theory in the analysis. When the equipment has an increasing failure rate, the 

analysis becomes analytically intractable, and one would need to use simulation approaches to 

determine the optimal strategies. In this case, the failures over the life are influenced by other 

factors such as preventive maintenance and the type of corrective maintenance used. 

The model can be extended in several ways. We list a few of these. 

6) 

(ii) 

(iii) 

(iv) 

(v) 

The agent can repair more than one piece of failed equipment at any given time (i.e., the 

agent employs more than one repairman). 

There is more than one type of service contract and these differ in their price and penalty 

clause. 

The customers are not identical-in other words, the customer population is heterogeneous 

as opposed to being homogeneous and differ in their attitude to risk. 

The customers do not know the true failure rate of the equipment. In this case, some 

might view the equipment as more reliable and others as less reliable. 

The case of two or more agents so that competition between agents becomes an important 

variable. 

Some of these extensions are currently being investigated by the authors. 
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