CHAPTER 3

Sub and super solutions

3.1 Simple monotone iterations

In this Chapter we describe an often used procedure for solving second order elliptic boundary
value problems. It is an iterative method involving monotone iterations. We begin with a very
simple problem:

{ —Au = f(z,u) in Q,

1
(1) u=¢ on 969Q.

Here Q is a bounded domain in R™ with smooth boundary, f(z,u) is a smooth function from Q x R

into R and ¢ € C?+#(8Q), 0 < p < 1.

The main assumption is the existence of a subsolution U € C%(Q) and a supersolution U ¢
C*(Q),ie.,

\ {Ag+ fzU)>0  inQ,
(2) U<y on 91},
3) { AT + f(z,U) <0 in Q,

U>e on 89,
such that

(4) U<T.

The main result is the following:

THEOREM 1. Under the assumptions (2), (3) and (4), problem (1) has a least solution u and a
greatest solution U in the “interval” [U,U]. (Of course u and & may coincide.)

Proof. Without loss of generality we may suppose that ¢ = 0 on 00 : it suffices to subtract ¢
(extended inside 2) from u, U and U.

Fix a constant k£ > 0 such that
k+ fu(z,u) >0 Vue[U(z),U(z)], Veel.
Rewrite problem (1) in the form
~Au + ku = f(z,u) + ku = g(z,u).

Note that the function u — g(z,u) is nondecreasing in the interval [U(z), U(z)).
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Starting the iteration with U we will construct the least solution u of (1) in the interval [U,U]. If
we start the same iteration with U instead of U we will obtain the greatest solution @. Let u; be
the solution of the (linear) problem.

{ —Au; +kuy =g(z,U) in £,
u; =0 on 09.

By (2) we have

and thus

~A(wy —~ U)+ k(v — U )

wy —U=-U

It follows from the maximum principle (see Appendix XXX) that u; > U.

On the other hand we have .
9(=,U) < g(=,0)

and therefore

—Aul + ku1 S —Aﬁ-}- kﬁ in
w—-U=-U<0 on 0.

Using again the maximum principle we see that u; < U.

Next, construct iteratively u,4, as the solution of

{ —Aujpy + kujyy = g(z,u;) in Q,
ujy1 =0 on 012.

()

One finds inductively, as above, that
uj <ujpy < U in ).

The right-hand side of (5) is uniformly bounded and thus we have the estimate (see Appendix
XXX)
luj+1lC, < C independent of j.

Consequently
|uj+1|c,+u < C independent of j.

Hence a subsequence of the u; converges uniformly. Since the sequence (u;) is monotone, the whole
sequence converges uniformly to some limit u € C2+#(Q). It follows then that |u; — u|, — 0 and
s0 u is the least solution of (1) in the interval [U, U).

Indeed, suppose i is any solution of (1) in the interval [U, U]. The sequence (u;) constructed above
satisfies u; < @ for all j (since we could use i as a supersolution instead of U). Passing to the limit
as j — oo we see that u < 4.
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Remark 1. The proof of Theorem 1 requires only that f(z,u) be locally Lipschitz with respect to
u.

Remark 2. Note that if U is a subsolution and U is a supersolution, they do not necessarily
satisfy the inequality U < U—it may even happen that U < U (construct such an example). In
Theorem 1 it is essential to assume that U < U—otherwise the conclusion may fail (construct such
an example).

The least and greatest solutions u and u obtained above have some “stability” properties as
described in the following result:

THEOREM 2. Let U< U be sub and supersolutions as above. Assume U is not a solution of (1).
Then the first eigenvalue (with Dirichlet boundary condition) of the linearized problem at u satisfies

(6) AL(=A — fu(z,u)) > 0.
Similarly if U is not a solution, then
(7) A1 (A — fu(z, %)) > 0.

Moreover, if f is concave (resp. convez) then (6) (resp. (7)) holds with strict inequality.

Proof. We will only treat (6). Let ¢; > 0 be an eigenfunction associated with A;. Suppose (6)
does not hold. We claim that for 0 < ¢ sufficiently small v = u — £y; is a supersolution and v > U
in Q. But then there would be a solution of (1) between v and U, contradicting the fact that u is
the least solution between U and U.

To see that v is a supersolution first check that
Av+ f(z,v) = Au+ Aepy + f(2,u) + o(e)pr = (Ae+ o(e)) g1 < 0O

for € small.

On the other hand since U is not a solution, it follows from the maximum principle and the Hopf
Lemma (see Appendix XXX) that u > U in  and the outward normal derivative (u — U), < 0 at
any point on Q) where U = 0. So for ¢ smallu — ep; > Uin Q.

If f is concave in u and if A; = 0, then
Av + f(z,v) < Au— el + f(z,u) + efu(z, u)pr = 0.
As before v > U and we obtain a contradiction. 0O

Remark 3. Property (6) (or (7)) suggests that the solution u may be a local minimizer of the
corresponding energy

E(u) = %/|Vu|——/F(:c,u)

where F(z,u) = [’ f(z,s)ds. This assertion would hold if one knew that A;(...) > 0, which need
not be the case (see Remark 4). In fact, in Part IV we will prove that there is a local minimum of

E between U and U.



3.1 Simple monotone iterations 45

Remark 4. In Theorem 2 suppose neither U nor U is a solution of (1). One may wonder whether
(6) (or (7)) holds with a strict inequality—or whether there is a solution u of (1) between U and U
for which Ay (—A — fu(z,u)) > 0. This would imply that u is strongly stable in the following sense:
solutions of the evolution equation

(8) { vy = Av + f(z,v) in Q x (0, 00)

v=0 on 99 x (0, 00)
with an initial value at ¢t = 0 close to u converge to u as t — oco. In general such a solution u, with
A1(-A — fu(z,u)) > 0 need not exist.

Here is a simple example. Let u; be the first eigenvalue of —A with Dirichlet boundary condition
on O and let f(z,u) = pu — u®. Clearly U = ~K and U = K with K large are sub and
supersolutions (and not solutions). We claim that u = 0 is the only solution of (1). For if u is a
solution then

Au-{—,ulu—u3 =0.

Multiplying by u and integrating we find
uI/uz:/qu|2+/u4Zy1/u2+/u4.
So u = 0.

On the other hand A, (—A - £,(0)) = 0.

In case U < U are not solutions of (1), H. Matano [1],[2] and M. Crandall, P. Fife and
L. A. Peletier [1] have proved that there is some solution wu strictly between U and U which is
stable in the sense that solutions of (8) with initial values close to u remain close to u for all time
(see also Appendix XXX).

Sup of a family of subsolutions is a subsolution

We consider a more general notion of subsolution u,
Au+ g(z,u) > 0,

with g continuous on @ x R for simplicity. Namely we assume that u € L{Z. and that
9) [uac+aeuczo  vezocecE@.
o

The main result is

THEOREM 3. Consider a general family F = (uy) of continuous subsolutions which is bounded
in L2, i.e., for every compact set K C 2, there is a constant Cx such that

u, < Cg in K.

Then
u(z) = Supuqy(z)

is a subsolution.

The proof makes use of several lemmas.
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LEMMA 1. A subsolution as defined above belongs to HJ ..

Proof: The function
f(z) = g(z,u)
is in L . Let j. be a family of mollifiers (see e.g. XXX XXX) and consider the convolutions

loc*
Ue = Jexu, fo=jex ],

in a compact subset K of 2. Then for small ¢,
(10) Au.+ fc >0 on K.

Let K' be a compact set in the interior of K and let 1 > { > 0, be a function in C§°(K),( =1 on
K'.

On K, |u.] < some constant A independent of e—because u € L. Multiplying (10) by
¢%(u. + A), and integrating, we find

[t <2 [aveiu. + aivud +c
with C independent of €. It follows easily that
/42|Vu€|2 < Constant independent of €.

Letting ¢ — 0 we obtain the desired conclusion.

In view of Lemma 1 one has: if u is a subsolution as above then

(11) / —Vu-V¢+g(z,u) >0V >0,¢ in H' with compact support.

LEMMA 2. If uy,uy are subsolutions in Li;, then
u(z) = Maz (u1(z), u2(2))

is a subsolution.
Problem 10. Prove Lemma 2.

[Hint: Let jix(t) be a sequence of nondecreasing functions such that ji(t) = 0 for ¢ < 0 and
Jx(t) = 1for t > 1/k. Let { € C§°(2), with ¢ > 0. Use (jx(u1 — uz) and {(1 — jr(ws — uz)) as test
functions in (11).]

As a consequence of Lemma 2 we see that the sup of a finite number of subsolutions is again
a subsolution.
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LeMMA 3. Suppose (u;) is a sequence of subsolutions in L{;. such that for every compact set
K cQ,
u; < Cg on K Vj.

Then
u(z) = sup u;(z)
is a subsolution.
Proof. For j = 1,2,... the functions
v; = sup ux
1<k<s

are subsolutions. The sequence v; is nondecreasing, and
u = limv;.
The conclusion then follows easily from (9) (for the functions v;) by passing to the limit, using

dominated convergence.

The main observation now is a reduction of the case of a general family (u,) to a countable
subset.

Proof of Theorem 3. In 2 x R we consider the closed sets (relative to 2 X R):
epi vy = {(z,2) € A X R;z > uys(2)}.

(The sets are closed because of the continuity of the u,; in fact, lower semicontinuity would suffice.)

Clearly,

epi u = Nepi u,.
[23
The set
Uy ={(2,2) € 2 XR; 2 < uy(z)}
is open in R™ X R and
U = (epi u)® = UU,.

CLaM. Any union U of open sets U, is the union of a countable subfamily.

This is well known but we include a
Proof of Claim. U may be written as the union of an increasing sequence of compact subsets

Ky C K, C ---. Each K; is covered by a finite number of the U,.

K;= U U,, A;isafinite set.

a€A;

Then

U= LC:'AU“ where A = UA; is countable.
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Returning to our situation, we may write

epiu= N  epi Uy,
countable

i.e., u is the sup of a countable subfamily of the u,. We deduce from Lemma 3 that u is a

subsolution.
]

3.2 Applications
Example 1. Consider the problem

{ —Au = f(z,u) + g(z) in Q,

1
(1) u=¢ on 09,

where
f(z,u)signu<alu/|+C VzeQ, VueR

for some constants a < A;—the first eigenvalue of —A under zero Dirichlet condition—and C > 0.

THEOREM 4. For every g € C*(Q) and every ¢ € C?*T#(6R) there exists at least one solution
of (1). More precisely, there is a least solution u and a greatest solution @ of (1).

Proof. Without loss of generality we may suppose that g = 0 in  and that ¢ = 0 on 9. We
shall construct a subsolution U and a supersolution U for (1) such that U < U and such that every
solution u of (1) satisfies U < u < U. The claim then follows from Theorem 1. Let U be the
solution of the problem

AU + aU = -C in Q,

=0 on 6%.

SRS

By the maximum principle of Appendix XXX, U > 0. Clearly U is a supersolution since
AU + f(z,0)= -C —aU + f(z,T) <0 in Q.

Moreover if u is any solution of (1) we have u < T; indeed in the domain Q = {z € Q;u(z) > 0}

we have
Au> —au-C

and hence
in Q,

on 89Q.

Au-T)+a(u-T)>0
-U <0

It follows again from the maximum principle that u < T in Q and thus u < U in Q. Here we use
the fact that the first eigenvalue for Q is > A; > a. Similarly U = —U is a subsolution such that
every solution u of (1) satisfies u > U. O
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Remark 5. Consider the problem

—Au = f(z,u) in 2,
(2) { u=20 on 09,

where f(z,u): 2 x [0,00) — R is a smooth function satisfying
(3) f(z,u) <au+C Veefl, Vu>20 witha<X\

and
f(=,0) > 0.

Then, there is a least nonnegative solution u and a greatest nonnegative solution % of (2). Indeed,
one may use U = 0 as a subsolution and U as defined above as a supersolution. As before, any
solution u of (2) satisfies u < U. Of course, if f(z,0) = 0 then u = 0, but otherwise if f(z,0) is not
identically zero, then u > 0 in by the strong maximum principle (see Appendix XXX). When
f(z,0) = 0, it may well happen that @ = 0 (for instance if f(z,u) = 0); in the next two examples
we shall discuss simple assumptions which guarantee that @ > 0 in Q.

Example 2. Consider the problem

—Au = f(u in Q,
(4) { u= g( ) on 01,
where f:[0,00) — R is a smooth function with f(0) = 0 satisfying
(5) —00 < I:‘Iilitg@ <A\
and
(6) £1(0) > Ay

THEOREM 5. There ezists a greatest positive solution & of (4).

Proof. From (5) we deduce that (3) holds. Applying Remark 5 we obtain a greatest nonnegative
solution % as a limit of a monotone sequence starting with the supersolution U described in Example
1. Therefore it suffices to find a subsolution U such that 0 < U < U in ©. One may take U = e¢,
with € > 0 small enough and ¢; > 0 being the eigenfunction corresponding to A;. Note that
f(ep1) > €Ay for € > 0 small enough, by (6). Also observe that e@; < U for € > 0 small since
oU

ER 0 on 0% (see Appendix XXX). O

Remark 6. If the function f(u)/u is nonincreasing on (0, co)—this happens for example if f is
concave and f(0) = 0—then positive solutions of (4) are unique, unless f(u) = Aju in some positive
neighbourhood of 0. If f is concave with f(0) = 0 and satisfies assumptions (5) and (6) then the
(unique) positive solution of (4) satisfies A;(—A — f'(u)) > 0. If the function f(u)/u is strictly
decreasing on (0, 00) then the assumptions (5) and (6) are also necessary for the existence of a
positive solution of (4). See Problem 15.
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Special Case: f(u) = au —u? with p > 1 and a € R. Then (4) has a unique positive solution for

every a > A; and no positive solution for a < A;.

Remark 7. Let u be a positive solution of (4) with f:[0,00) — R smooth and f(0) = 0. Then
(7) A(=A - f(u)/u) =0.

MUA.,L,,
Indeed, let p; be the first eigenfunetion of —A — f(u)/u and let ¢; > 0 be a corresponding
eigenfunction. Then we have

f(u)

u

(8) —Apy - P1 = p1p1-

Multiplying (8) by u and (4) by ¢, and taking the difference, we see, on integrating, that p; [ up; =
0 and thus y; = 0.

Note that if the function f(t)/t is strictly decreasing, then (7) is stronger than, and implies
(9) A (—A - fi(w) > 0.

as can be seen by an argument similar to the preceding one. For the special case above, (7) asserts
that

/|Vv|2 _(a—uwY?>0 Vue H
while (9) just says that for some § > 0,

/|Vv|2 —(a—puP~)? > 6/'02 Vv € H}.

Note also that if the function f(t)/t is strictly increasing, then (7) implies that
(10) M (-A - fl(w)) <.

This applies for example to the case where f(u) = u? with 1 < p. Under suitable conditions on p
we will show in Part IV, Chapter 1, that problem (4) has a positive solution. Because of (10) and
(6)—(7) of Section 3.1 we deduce that a solution cannot be obtained via sub and super solutions.
Indeed, in Part IV the solution is obtained by variational arguments.

Example 3. Consider the problem
{ —Au = Af(u) in ,

(11) u=20 on 0%,

where ) is a positive constant and f : [0,00) — R is a smooth function with f(0) = 0 satisfying
one of the following assumptions:

either
(a) There is a constant 0 < a < oo such that f > 0 on (0,a) and f < 0 on (a, +00),

or

(b) f(u) >0, Vu>0and lim f(—u)—=0

u—+oo U

[for instance f(u) = u? — uP with p > ¢ > 1 satisfies (a)].
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THEOREM 6. Assume either (a) or (b). Then, there is a constant 0 < A* < oo such that:
(i) for every A > A* there exists a greatest positive solution Uy of (11) (with Uy < a in case (a))
(ii) for A < X* there ezxists no positive solution of (11).

Moreover G, > @y in  for p > A > A*.

Proof. We shall only present the proof in case (a) since the argument in case (b) is very similar. For every A > 0
the function u + A f(u) satisfies the assumption of Remark 5 in Example 1 and hence there is a greatest nonnegative
solution %, of (11) for every A > 0. At a maximum point zo of &) we have f(%x(zo)) > 0 and therefore ) (z¢) < a.
In particular, ¥y < a on 01 and Af(E)) = —AT), so that T, is a subsolution for the u-problem. Since a is a
supersolution of the p-problem there exists a solution of the p-problem in the interval [%y,a). Thus T, > %,.

Next, we claim that %, > 0 in 2 for A large enough. Fix any smooth function % > 0 with compact support in 1,4
not identically zero. Let ¢ be the solution of the problem

—-Ap=1 in 0,
=0 on 811,

so that ¢ > 0 in Q (see Appendix XXX) and by choosing 1 small enough we may assume that max ¢ < a. Clearly
o
sup ¥/ f(p) < oo, and therefore, for ) large enough, we have —Ap < Af(¢), i-e., ¢ is a subsolution for (11). Hence
2
%) > ¢ > 0in (1 for A large enough.

We claim that T, = 0 for A > 0 small enough. With A; the principal eigenvalue for —A under Dirichlet condition,
fix XA > 0 small enough so that Af(u) < A%, Vu > 0. Let 1 > 0 be the eigenfunction of —A corresponding to A;.
We have 0 = [(ATy + Af(Ta))p1 = [ (= 1Tx + Af(Tr)) p1 which implies that &) = 0.

We deduce from the claims above that there is a constant 0 < A* < oo such that @y > 0for A > A* and ) =0
for A < A*. Furthermore, by the strong maximum principle we have 7, > u, in 1 for p > A > A*.

Problem 10. Prove Theorem 6 in case (b).

Remark 8. When A = A* it may happen that %)+ = 0; this is the case for example if f/(0) > 0 and
the function u — f(u)/u is strictly decreasing on (0, c0) (see Remark 6 in Example 2). However, if
in addition to the assumptions of Theorem 6 we also assume that f'(0) = 0 then @)« > 0; moreover
we shall prove in Part II, using degree theory, (and in Part IV, using variational methods) that for
every A > A* there exists another positive solution of (11), which is different from %,.

Example 4. This is Example 5 of Chapter 1, Section 2 revisited. Consider the problem

(12) u=0 on 01},

{ —Au = Af(z,u) in Q,

where f(z,u):Q x R — R is a smooth function such that

f(z,u) > 0, fu(z,u) 20, fuu(z,u) >0 Vz €, Vu>0,with f(z,0) and f,(z,0) both not
identically zero. Recall that problem (12) has a smooth curve u()) of solutions such that u(0) = 0,
defined on a maximal open interval [0, \*) with A* < co and that u(A) > 0 in Q for all A € (0,A%).

THEOREM 7. u(]) is the least positive solution of (12) for every

X € (0,X*). Moreover u(}) is the limit of the monotone iteration scheme

{ ~Aujyy = Af(z,u;) in Q,

1
(13) Ujpr =0 on 0,
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starting with ug = 0.
Proof. Suppose v > 0 is any solution of (12). Since f is convex with respect to u we have

~Av = A(2,0) 2 Mz, u(A) + Malz, u(W))(o - u(N))
= —Au(A) + Afu(z, u(A))(v — u(A))

and thus
(14) —A(v — u(A)) = Afu(z, u(A))(v—u(A)) > 0.

Recall that A (—A — Afu(z,u(A))) >0 VA€ [0,1*). It follows from the maximum principle (see
Appendix XXX) that v — u(A) > 0 and so u(A) is the least positive solution of (12).

Since U = 0 is a subsolution and U = u(A) is a supersolution the sequence (u;) given by (13) is
nondecreasing and converges to a solution u of (12) with u < u(A)—thus u = u(A). O

Example 5. Consider the problem

{ —Au = f(u) + g(z) in Q,

1
(15) u=20 on 09,

where f : R — R is a C! convex function satisfying

(16) “oo< lim I <y

u——00 U

(by convexity the limit exists).

Set
K = {g € C*(Q) such that a solution of (15) exists}

and

P={heC*Q);h>0inQ}.

THEOREM 8. K is a convez set and K — P C K. For every g € K there is a least solution u of
(15) and 1t satisfies

(17) A(=A = fu(u)) > 0.
More precisely, we have

(18) { M(-A - fu(w) >0 & gechtk,

M(-A - fu(w) =0 ©geK\IntK.
If, in addition, f satisfies

(19) M < lim fu) < 4o

u—+o00 U
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and g > p =a large positive constant, then (15) has no solution (here f need not be convez).
Special case: f(u) = |u|?, 1 < p < 0.

Proof. To prove that K is convex, let g;,9, € K with corresponding solutions u;,u;. Let
g=tg + (1 —t)gs, t € [0,1]. then, for this g,

U= tuy + (1 - t)uz
is a supersolution of (15) since
—AU = tf(u) + (1 - )f(w2) + 9 2 f(U) +g.

In view of Theorem 1 it suffices to construct a subsolution U of (15) such that U < U. Fix a < )\
. f(u)
such that lim ——* < a.

L7 San ade o] u

We have, for some positive constant C,
f(u)>au-C VYu<0.

Let 3 be the solution of
{ AYy+ayp =1 in Q,
Pv=0 on 91,

so that, by the maximum principle, ¥ < 0 in Q and by the Hopf Lemma %%) > 0 on 0N (see
Appendix XXX).

We claim that U = ki, with k& > 0 large enough, is a subsolution such that U < U. We have
AU=k-aU=(k-C)+(C-al)>k—-C - f(U) > —g — f(U) provided (k- C) > |g], .-
Furthermore, for k large enough, U < U. Thus K is convex.

Next we prove that K — P C K. Let g € K and let u be solution of (15). For any h € P we
have —Au > f(u)+ g — h and therefore u is a supersolution for the problem corresponding to g — h.
Since we may always construct a subsolution U < u (as above) we conclude that g — h € K.

We now prove that for every g € K there is a least solution u of (15) and it satisfies (17). Since
g € K we have some solution v of (15). As above, for k large, U = k4 is a subsolution (not a
solution) and U < v. By Theorem 1 and 2 there is a least solution u of (15) in the interval [U , v]
and it satisfies (17).

Note that every solution u of (15) satisfies u > U (the argument is the same as in the proof
of Theorem 4). Therefore the iteration (described in the proof of Theorem 1) starting with U
converges to u which satisfies u < u. This means that u is the least among all solutions of (15).

We now prove (18). Clearly if A;(—A — fu(z)) > 0, then g € Int K by the Inverse Function
Theorem. On the other hand, if
A1(—A = fu(u)) = 0 we claim that g + ¢ ¢ K for any € > 0 and therefore g € K\Int K.

Suppose not, that for some £ > 0 there exists a solution u. of the problem

—Au, = f(u)+g+e in Q
u. =0 on 0f).



54 3. Sub and super solutions

We have
f(ue) - f(y_) > fu("_‘.)(ue - 3&)
and thus
(20) —A(ue — u) - fu(u)(ue —u) > e
Multiplying (20) through by ¢; > 0 satisfying
{ —~Apr — fu(u)pr =0 in Q,
Y1 = 0 on 6(2,

we find a contradiction. This proves (18) in view of (17).

Finally, we prove that, under assumption (19) problem (15) has no solution when g > pu —a large
positive constant. By (19) there exist constants § > A; and C such that

(21) f(u)>pu-C Vu > 0.
Combining this with (16) we have
f(u) > au—-C Vu € R with a < Ay
If u is a solution of (15) with ¢ > u we have
—Au> au-~C+ pu.

Thus if p > C we find on applying the maximum principle, that u > 0. It follows (by (21)) that

—Au>pu—C+p in Q.
Multiplying by ¢ and integrating over 2 we obtain a contradiction. O

Remark 9. Further properties of the solutions of (15) are discussend in Problem 17. In particular
u is the only “stable” solution of (15) in the sense that any other solution u # u of (15) satisfies

A1(—A — fu(u)) <0 (resp. < 0if f is strictly convex).

Also, if g € K\Int K and f is strictly convex there is exactly one solution of (15). Under some
additional assumptions we shall prove later, in Part IV, that for every g € Int K problem (15) has

at least two solutions.
Example 6. (Problems at resonance) Consider the problem
Au+ Mu=g(z,u in Q,
- wt M = g(z,0)
u=20 on 91,

where g(z,u): 2 Xx R — R is a smooth function such that
gu(z,u) >0 Vz € Q, Vu € R. Set
g+(z) = ugrﬁoog(:c,u) (possibly +o0).

As usual )\; denotes the first eigenvalue of —A with zero Dirichlet condition and ¢; > 0 denotes
the corresponding eigenfunction normalized by [ ¢; = 1.
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THEOREM 9. Assume

(23) /g-<p1 <0< /y+sol.

Then, there ezists a solution of (22).

Proof. Fix a constant k large enough so that

/g(m,ktpl) 1 > 0.

Solve the problem

Av+ Mo = g(z, k1) — [ g(z, ko1 )1 in Q,
v=20 on 81.

We claim that U = v + p¢; is supersolution of (22) for u large enough.

Indeed
AU + MU — g(z,0) = g(z, k1) — /g(z,k(pl Jp1 — g(z,ﬁ)
<g(z kor) —g(z,U) <0
provided
(24) kpy <T,

and we may always choose u large enough so that (24) holds. Similarly one can construct a subsolution U < U. The
conclusion then follows from Theorem 1. O

Remark 10. Theorem 9 still holds if instead of (23) one makes the weaker assumption:

(25)

there exists a smooth function ug such that
ug = 0 on 811 and [ g(=z,u0)p1 = 0.

Clearly, then, (25) is a necessary and sufficient condition for the existence of a solution of (22). Note that (23) is
also a necessary and sufficient condition if g, > 0.

Remark 11. It is clear that in place of A one may consider a second order elliptic operator with
variable coefficients. Furthermore, more general boundary conditions may be considered. In fact 2
might be a domain with compact closure (possibly without boundary) on a manifold. In particular,
Theorem 9 applies to the following equation

(26) Aju—K(z)=€e™ on M

where M is any compact 2-dimensional Riemannian manifold, without boundary, with metric g.
A, is the corresponding Laplace-Beltrami operator. Theorem 9 implies that for any function K
such that [ K < 0 there is a unique solution of (26). A geometric consequence is that any such
manifold M with metric ¢ and Euler characteristic ¥ > 2 has a metric, § = e*g, conformal to g
with Gauss curvature identically —1.

3.3 Equations nonlinear in Du
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We shall now present a more elaborate equation to which the method of monotone iteration
applies in case one has sub and supersolutions. Consider the Dirichlet problem

(1) { —Au = f(z,u, Du) in Q,

u= on 9.
Here 2 is a bounded domain in R™ with smooth boundary, f is a smooth function of its arguments

and ¢ € C*t#(99). We assume the existence of sub and supersolutions U < U in C%(Q)
satisfying namely

2) {Aﬂ-i-f(z,Q,DE)ZO in £,
U<y on 81,

and

) { AT + f(2,U,DU) < 0 in
U>e¢p on Of).

Let M = max(|U|,..,|U|,.) and assume that f(z,u,£) satisfies

(4) |f(z,u, )l < K(1 + [€]*) for U(z) < u(z) < U(z), z € Q, £ €R™

THEOREM 10. Under these conditions, problem (1) has a least solution u and a greatest solution
U in the interval [U, U].

We may subtract ¢ (extended inside ) from u, U and U and thus suppose that u = 0 on 6.
In doing this we obtain of course a new function f but it continues to satisfy (4) with a different
constant K.

The theorem will be proved by applying the method of monotone iterations to a suitably modified
problem. We seek solutions u in U < u < U. Consider smooth mappings h : R™ — R" satisfying
|h(€)| < 2|€|. For any such h, if we have a smooth solution v in U < u < U of

()

{ —Au = f(z,u, h(Du)) in Q,
u=0 on 09,

then it satisfies
—Au+u = a(2)(1+ |Dul?)

where
f(z,u,h(Du))+ u

1+ |Dul?

a(z) =

Thus, if U< u < U we see from (4) that
la(z)] <4K + M

with M independent of h. According to Theorem 10 in Chapter 1 we have the estimate, taking
p>mn,

tlgn < Cllulya, <T
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independent of our function h. We now fix a function A with the properties described and satisfying
in addition, h is bounded in R™ and h(§) = ¢ for || < max(_C-'—,_lDMLoo, |DU|p~). (5) is the

modified problem which we will solve. It is clear that if U < u < U is a solution of it in C?T#(Q2),
then it is also a solution of the original problem (1).

Since f is smooth and h is bounded we see that for some k
|fulz,u, (E)) <k if |u] < max(|Uze, [Ulr~), £ € R™
Consequently, if U< s <t < U then
(6) f(z,t,h(£)) - f(=,8,h(£)) + k(t — 5) 2 0.
Rewrite the problem (5) in the form

{ —Au+ ku = f(z,u,h(Du))+ ku  in Q,

7
(7) u=0 on I91.

Our iteration method is based on
LEMMA 4. Let v € C*(Q) be a function satisfying U< v < U.
The problem

(8) { ~Au + ku = f(z,v, h(Du)) + kv in Q,

u=0 on 012,

has a unique solution u = T'(v) satisfying

(9) U<u<T.
~ Furthermore
(10) U<Lv < <U = T(n) < T(va).

Proof. The uniqueness of a solution of (8) follows with the aid of the maximum principle. Existence
may be proved using the continuity method (see Example 8 of Chapter 1, Section 2) for the problem:
find u = u(t) in C**t#(Q) satisfying

{ —Au + ku = f(z,v,th(Du)) + kv, inQ,0<t<1,
u=20 on 91.

The Implicit Function Theorem yields the openness of the set of ¢'s with a solution. One needs only
establish an a priori estimate for |u(t)|c2++. This is easy. For any v under consideration the right
hand side is bounded and hence ||u(t)||wz> < C, 1 < p < oo. It follows that |u(t)|c1+« < C (with
a different constant C'). Inserting this in the right hand side and using the Schauder estimates we
obtain the desired estimate |u(t)ca2+s < C.
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To prove (9) observe that

- A(u—-U) +k(u—-U) > f(z,v,h(Du)) — f(z,U,DU) + k(v - U)

= f(z,v, h(Du)) — f(z, U, h(Du)) + f(z, U, h(Du)) — f(z,U, D)

+ k(v —U) > f(2, U, h(Du)) — f(z,U,h(DU)) by (6)

=Y aj(z)(u - D),
by the Integral Theorem of the Mean.
Hence, by the maximum principle u — U > 0. Similarly one finds u« — U < 0 and (9) is proved.

The proof of (10) is similar: if T(vy) = uy, T'(v2) = ua, then
(—A + k)(u1 — u2) = f(z,v1, h(Dur)) — f(z,v2, A(Duz)) + k(v1 — v2)
<Y () (m — uz);

by (6) and it follows that u; — u; < 0. Lemma 4 is proved. O

PrcE)f of Theorem 10. Starting our iteration with U we will construct the least solution u in
(U, U]. If we start with U we will obtain the greatest solution %. Let u, be the solution (given by
Lemma 4) of (8) with v = U. By the Lemma we see that

U<sw <T
and that if u is any solution of (1) in [U, U] then
ay < u.

Next, construct iteratively u;;; as the solution of (8) with
v=1u; j=1,2.... One finds inductively, as in the earlier case of monotone iterations that

U<y <uy<---<T

and u; < u for any solution u of (1) in [U, U).

We have
(-A+ k)uj+1 = f(a:,uj,h(Duj+1)) + kuj, j=12....

The right hand sides are uniformly bounded. We have as before,
|u1'+1|01 < C”"J'HHWZ-:' < C independent of j =1,2....
Consequently
|41 gasn < C ji=1,2....

Thus a subsequence of the u; converges uniformly. Since they form a monotone sequence the whole
sequence converges uniformly to some function u in C**#(Q). It follows that |u; — u] c2 — 0 and
so u is a solution of (1), and it is the least solution between U and U.
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Problem 11. Consider the Dirichlet problem

{ —Au = a(z)u — v + g(z,u, Du) in Q,
u=290 on 05}

where 2 is a bounded domain in R™ with smooth boundary. Here p > 1, a and g are smooth in
their arguments and satisfy

the first eigenvalue of (—~A — a) is negative

and, for u > 0,
lg(z,u,€)| < C(1+u? + ]Elz) for some q¢ < p

and

l9(2,u,6)| < C(u* +[¢]*) for (u + [€]) small
Prove that the problem has a solution u > 0 in Q.

[Hint: Use as subsolution e, + £3/2¢p? where ¢, is an eigenfunction of —A — a.



