Control 2, MA46B 2006/2 Prof. Salomé Martínez Prof. Aux. Gonzalo Dávila Tiempo: 4 hrs.

- 1. a) Sea $f_k = 1_{[-k,k]} * 1_{[-1,1]}$. Calcule f_k explícitamente y pruebe que $||f_k||_{\infty} = 2$.
 - b) Pruebe que

$$\overline{\mathcal{F}}(f_k)(x) = \frac{4}{\sqrt{2\pi}} \frac{\sin kx \sin x}{x^2}$$

y que

$$||\overline{\mathcal{F}}(f_k)||_{L^1(\mathbb{R})} \to \infty,$$

cuando $k \to \infty$. Hint.: Para calcular $\overline{\mathcal{F}}(f_k)$ use la formula de la convolución.

- c) Demuestre que $\mathcal{F}(L^1(\mathbb{R}))$ es un subespacio propio de $C_0(\mathbb{R})$. Hint.: Demuestre que $\mathcal{F}: L^1(\mathbb{R}) \to C_0(\mathbb{R})$ es continua (recuerde que $C_0(\mathbb{R})$ es un espacio de Banach con la norma $||\cdot||_{\infty}$). Concluya el resultado usando el Teorema de la aplicación abierta: Sean X,Y espacios de Banach $y : X \to Y$ lineal, continua y sobreyectiva, entonces $\forall U \subset X$ abierto L(U) es abierto.
- 2. Sea

$$P = \sum_{|\alpha| \le m} c_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}$$

un operador diferencial a coeficientes constantes en \mathbb{R}^N . Sea $E \in \mathcal{D}'(\mathbb{R}^N)$ una solución fundamental de P la cual es $C^{\infty}(\mathbb{R}^N \setminus \{0\})$.

a) Sea φ una función en $\mathcal{D}(\mathbb{R}^N)$ no negativa tal que $\varphi \equiv 1$ en B(0,1). Pruebe que $\psi = P(\varphi E) - \delta$ es $C^{\infty}(\mathbb{R}^N)$. Hint.: Utilice la regla de Leibnitz

$$\frac{\partial^{\alpha}(fg)}{\partial x^{\alpha}} = \sum_{\beta < \alpha} a_{\alpha\beta} \frac{\partial^{\alpha - \beta}g}{\partial x^{\alpha - \beta}} \frac{\partial^{\beta}f}{\partial x^{\beta}}$$

donde $\beta \leq \alpha$ ssi $\beta_i \leq \alpha_i$ para todo i = 1, ..., N, y $a_{\alpha\beta}$ son constantes.

- b) Pruebe que si $u \in \mathcal{D}'(\mathbb{R}^N)$ es una solución de Pu = f con $f \in C^{\infty}(\mathbb{R}^N)$ entonces u es C^{∞} . Hint.: Pruebe que $u = f * (\varphi E) u * \psi$ y utilice la parte anterior.
- 3. a) Pruebe que existe $k \in \mathbb{N}$ y C > 0 tal que

$$\sup_{x \in \mathbb{R}^N} |v(x)| \le C \left(\sum_{|\alpha| \le k} \left| \left| \frac{\partial^{\alpha} v}{\partial x^{\alpha}} \right| \right| \right)^{1/2}$$

para todo $v \in S(\mathbb{R}^N)$.

b) Sea $L = \sum_{|\alpha| \leq m} c_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}$ un operador a coeficientes constantes de orden m, es decir $c_{\alpha} \neq 0$ para algún $|\alpha| = m$, tal que para constantes M, R > 0 se tiene que $L(\xi) \geq M|\xi|^m$ para todo $|\xi| > R$, donde $L(\xi) = \sum_{|\alpha| \leq m} c_{\alpha} \xi^{\alpha}$. Demuestre que existe una constante $C_1 > 0$ tal que para toda $v \in S(\mathbb{R}^N)$ se tiene que

$$||v||_{H^m(\mathbb{R}^N)} \le C_1 \left(||Lu||_{L^2(\Omega)} + ||v||_{L^2(\Omega)} \right)^{1/2}.$$

a) Diremos que una distribución $T \in \mathcal{D}'(\mathbb{R}^N)$ es homogenea de grado λ si

$$\langle T, \varphi_t \rangle = t^{-N+\lambda} \langle T, \varphi \rangle \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^N), \quad t > 0,$$

donde $\varphi_t(x) = \varphi(tx)$. Demuestre que la transformada de Fourier de una distribución temperada homogénea de grado λ es homogénea de grado $-N-\lambda$.

- b) Considere $f(x) = |x|^{\lambda}$ en \mathbb{R} con $-1 < \lambda < -1/2$.
 - 1) Pruebe que $\mathcal{F}(f)$ es una función. Hint.: Sea $u(x) = |x|^{\lambda} 1_{[-1,1]}$ y $v(x) = |x|^{\lambda} 1_{\mathbb{R} \setminus [-1,1]}$ entonces $\mathcal{F}(f) = \mathcal{F}(u) + \mathcal{F}(v)$. Pruebe que $\mathcal{F}(v) \in L^2(\mathbb{R})$ y $\mathcal{F}(u) \in C_0(\mathbb{R})$. 2) Pruebe que $\mathcal{F}(f)(\xi) = C|\xi|^{-(\lambda+1)}$ con C constante. Hint.: Note que f es homogenea de grado λ