Control 1, MA46B 2005/2 Tiempo 4:00 hrs.

Prof. Salomé Martínez Prof. Aux. Manuel Larenas y Gustavo Navarro

- 1. Sea $u \in C^2([0,T] \times)$ es una solución del problema de valor inicial $u_t + uu_x = 0$, u(x,0) = g(x) con $g: \to \text{de clase } C^2$ decreciente. Sea $\gamma(t) = (t, x_0 + tg(x_0))$ la curva característica proyectada que pasa por $(0, x_0)$ y $p(t) = u_x(\gamma(t))$.
 - a) (5%) Demuestre que p(t) satisface la ecuación $p'(t) + p^2(t) = 0$.
 - b) (10%) Concluya que $T < -1/\inf_{x \in \mathcal{G}} g'(x)$.
- 2. Definimos el espacio

$$\mathcal{D}_{\infty}(^{N}) = \{ f \in C^{\infty}(^{N}) / \partial^{\alpha} f \in L^{\infty}(^{N}) \text{ para todo } \alpha \in \mathbb{N}^{N} \}$$

dotado de la topología inducida por la familia de seminormas

$$p_m(f) = \sup_{x \in \mathbb{N}} \sum_{|\alpha| < m} |\partial^{\alpha} f(x)| \text{ con } m \in \mathbb{N}.$$

- a) (15%) Demuestre que $\mathcal{D}_{\infty}(^{N})$ es un espacio de Frechet.
- b) (15%) Demuestre que $C_0^{\infty}(^{N})$ no es cerrado en $\mathcal{D}_{\infty}(^{N})$ y caracterice su clausura.
- 3. Considere $\Omega \subset {}^N$ un abierto. Sea $u:\Omega \to {}^N$ una función armónica, es decir satisface $\Delta u(x)=0$ para todo $x\in\Omega$.
 - a) (5%) Demuestre que si $B(x,r) \subset \Omega$ entonces

$$u(x) = \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) dy,$$

donde |B(x,r)| es el volumen de la bola. Ind. Recuerde que

$$u(x) = \frac{1}{r^{N-1}\omega_N} \int_{\partial B(x,r)} u(y) dS.$$

b) (15%) Demuestre que si $B(x,r) \subset \Omega$ entonces para todo i=1,...,N se tiene

$$\left| \frac{\partial u}{\partial x_i} \right| (x) \le \frac{C_N}{r} \sup_{y \in \partial B(x,r)} |u(y)|,$$

donde C_N es una constante que depende solo de N. Ind.: Observe que si u es armónica, entonces $\frac{\partial u}{\partial x_i}$ también es armónica.

c) (15%) Sea $\psi: B(0,\delta) \to \text{una función en } \mathcal{D}(^N) \text{ radial } (\psi(x) = \psi(|x|)).$ Pruebe que si $B(x,\delta) \subset \Omega$ entonces

$$\int_{B(x,\delta)} \psi(y+x)u(y)dy = C_{\psi}u(x),$$

con C_{ψ} solo dependiendo de ψ .

- d) (10%) Considere $\{u_n\}_{n\in\mathbb{N}}$ una secuencia de funciones armónicas, tal que para toda $\varphi\in\mathcal{D}(\Omega)$ se tiene que $< u_n, \varphi>$ converge cuando $n\to\infty$. Pruebe que para todo compacto $K\subset\Omega$ existe C>0 tal que $\sup_{x\in K}|u_n(x)|\leq C$, para todo $n\in\mathbb{N}$.
- e) (10%) Sea $\{u_n\}_{n\in\mathbb{N}}$ como en (d), demuestre que existe una función armónica $u:\Omega\to$ tal que $u_n\to u$ en $\mathcal{E}(\Omega)$.