TEORÍA DE LA MEDIDA - CONTROL 2

JAIME SAN MARTÍN, ANDRÉS FIELBAUM, CRISTÓBAL GUZMÁN 30 DE OCTUBRE 2009

- **P1.** Sea (X, \mathcal{B}, μ) espacio de medida σ -finito. Sea $p \in (1, \infty)$, sea $(f_n)_{n \in \mathcal{N}}$ una sucesión de funciones en L^p tal que $f_n \to f$ ctp y sup $||f||_{L^p} < \infty$. Probaremos que f_n converge débilemente a f en L^p , es decir para todo ℓ funcional lineal continuo sobre L^p se tiene $\ell(f_n) \to \ell(f)$. Para probar esto se pide:
 - (a) Muestre que $f \in L^p$
 - (b) Sea $g \in L^q$ (con q el Holder-conjugado de p), $\varepsilon > 0$. Pruebe que:
 - (I) $\exists \delta > 0$ tal que $\forall A \in \mathcal{B}, \mu(A) < \delta \Rightarrow \int_A |g|^q d\mu < \varepsilon$
 - (II) $\exists B \in \mathcal{B}$ de medida finita tal que $\int_{B^c} |g|^q d\mu < \varepsilon$
 - (III) $\exists D \subseteq B$ medible tal que $\mu(B \setminus D) < \delta$ y $f_n \to f$ uniformemente en D
 - (c) Concluya el resultado
 - (d) Muestre que lo anterior no es válido para p=1. Hint: Busque el contraejemplo en \mathbb{R} con la medida de Lebesgue.
- **P2.** (a) Decimos que $x \in \mathbb{R}$ es un punto de densidad de $A \in \mathcal{L}$ si el siguiente limite existe y es 1

$$\lim_{r\downarrow 0} \frac{\mu(A\cap (x-r,x+r))}{2r} = 1$$

Pruebe que para todo $A \in \mathcal{L}$ y para casi todo $x \in A$, x es un punto de densidad de A. Ind. Si A es acotado considere $F(x) = \int_{-\infty}^{x} \mathbf{1}_{A}(z) dz$.

En lo que sigue consideremos $f:[0,1]\to\mathbb{R}$.

(b) Si f es absolutamente continua entonces satisface la propiedad $\mathcal N$ es decir: para todo $N\in\mathcal L$

$$\mu(N) = 0 \Rightarrow [f(N) \in \mathcal{L} \ y \ \mu(f(N)) = 0].$$

- (c) ENTREGAR SI LO DESEA COMO TAREA. Suponga que f es continua y creciente. Si f satisface la propiedad \mathcal{N} entonces probar que f es absolutamente continua.
- **P3.** (a) Sean F y G funciones de variación acotada, continuas por la derecha y tales que $F(-\infty) = G(-\infty) = 0$. Pruebe que si al menos una de ellas es continua, entonces para $-\infty < a < b < \infty$,

$$\int_{(a,b]} F(x) dG(x) + \int_{(a,b]} G(x) dF(x) = F(b)G(b) - F(a)G(a).$$

Indicación: Piense en el Teorema de Fubini. Además si quiere pruebe el resultado: dada H una función acotada y continua por la derecha, que tiene limite por la izquierda y F de v.a. continua, entonces $\int_{(a,b]} H(y-)dF(y) = \int_{(a,b]} H(y)dF(y)$.

(b) Consideremos $\mathcal{M}(\mathbb{R})$ el espacio de las medidas con signo finitas sobre \mathbb{R} . Para cada medida con signo $\nu \in \mathcal{M}(\mathbb{R})$ definimos su función de distribución $F_{\nu}(x) = \nu((-\infty, x])$.

Consideremos ahora $\mu,\mu_n\in\mathcal{M}(\mathbb{R})$. Se dice que $(\mu_n)_n$ converge vagamente a μ si

$$\int f \, d\mu_n \to \int f \, d\mu \quad \forall f \in \mathcal{C}_0(\mathbb{R}).$$

Esta convergencia se denota por $\mu_n \rightharpoonup \mu$. Denotamos por $F_n = F_{\mu_n}$ y $F = F_{\mu}$. Pruebe que si las variaciones de $(\mu_n)_n$ son uniformemente acotadas es decir

$$\sup_{n\in\mathbb{N}}|\mu_n|(\mathbb{R})<\infty,$$

y $F_n(x) \to F(x)$ para todo punto x de continuidad para F, entonces $\mu_n \rightharpoonup \mu$. Ind. Considere primero $f \in \mathcal{C}_0^{\infty}$ y use la parte (a).

TIEMPO 3 hrs.