MEDIDA E INTEGRACIÓN – CONTROL 1

JAIME SAN MARTÍN, ANDRÉS FIELBAUM, CRISTÓBAL GUZMÁN 28 DE SEPTIEMBRE 2009

P1. Sea (X, \mathcal{B}, μ) espacio de medida, $f: X \to \mathbb{R}$, medible, estrictamente positiva e integrable. Sea a > 0. Pruebe que

$$\lim_{n \to \infty} \int n \log \left[1 + \left(\frac{f}{n} \right)^a \right] d\mu = \begin{cases} \infty & \text{si } a \in (0, 1) \\ \int f d\mu & \text{si } a = 1 \\ 0 & \text{si } a > 1 \end{cases}$$

Hint: Puede servirle probar que si $a \ge 1, x > 0$, entonces $\log(1 + x^a) \le ax$. También puede servirle probar que si $0 \le z \le 1$ entonces $z - z^2 \le \log(1 + z) \le z$.

P2. Sea (X, \mathcal{B}, μ) espacio de medida finito, y sea \mathcal{A} un conjunto de funciones $f: X \to \mathbb{R}$ medibles y finitas. Suponga que existe $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ medible cumpliendo $\lim_{t \to \infty} \frac{\varphi(t)}{t} = \infty$, y tal que $\sup_{f \in \mathcal{A}} \int \varphi(|f|) d\mu = c < \infty$. Pruebe que \mathcal{A} es un subconjunto acotado de $L^1(X, \mathcal{B}, \mu)$ y que es uniformemente integrable, es decir

$$\lim_{a \to \infty} \sup_{f \in \mathcal{A}} \int_{|f| > a} |f| \, d\mu = 0.$$

Concluya que todo subconjunto acotado de $L^p(X, \mathcal{B}, \mu), p > 1$, es uniformemente integrable.

P3. Consideremos (X, \mathcal{T}, μ) un espacio de medida finita. Diremos que $\mathcal{A} = \{A_1, ..., A_n\}$ es una partición finita si \mathcal{A} es una partición de X, los conjuntos A_i , i = 1, ..., n son medibles y de medida positiva. Para una partición finita \mathcal{A} considere

$$T_{\mathcal{A}}f = \sum_{i=1}^{n} \left(\frac{1}{\mu(A_i)} \int_{A_i} f(x) \ d\mu(x) \right) \mathbf{1}_{A_i}.$$

(i) Pruebe que si $f \in L^1$ entonces $T_{\mathcal{A}} f \in L^1$, que $T_{\mathcal{A}}$ es lineal y que en L^1 tiene norma menor o igual a 1.

Dadas dos particiones finitas \mathcal{A} y \mathcal{B} se dice que \mathcal{B} es más fina que \mathcal{A} si todo elemento de \mathcal{B} esta contenido en uno de \mathcal{A} y los elementos de \mathcal{A} son uniones de elementos de \mathcal{B} . La notación que usaremos es $\mathcal{A} \leq \mathcal{B}$.

(ii) Pruebe que para $f \in L^1$ se tiene el resultado siguiente: dado $\epsilon > 0$ existe $\mathcal A$ partición finita tal que

$$\forall \mathcal{B}$$
 partición finita $\mathcal{A} \leq \mathcal{B} \Rightarrow ||T_{\mathcal{B}}f - f||_p \leq \epsilon$.

Hint: Puede servirle probar este resultado primero para f función simple.

TIEMPO 3 hrs.