MA3801 Teoría de la Medida. Semestre 2009-02

Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán

Clase auxiliar 2

10 de Agosto de 2009

Definición 0.1. Sea $(\Omega, \mathcal{F}, \mathbb{P})$ espacio de probabilidad. Dos clases C_1 , C_2 se dicen independientes si $\forall \in C_1$ y $B \in C_2$ se tiene

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Ésto se denotará $C_1 \perp \!\!\! \perp C_2$.

Si ahora $(\mathcal{F}_{\lambda})_{\lambda \in \Lambda} \subseteq \mathcal{F}$ es una familia arbitraria de partes de Ω , se dirá que las colecciones son independientes si para todo $I \subseteq \Lambda$, I finito, $A_i \in \mathcal{F}_i$ $i \in I$, se tiene que

$$\mathbb{P}\left(\bigcap_{i\in I}A_i\right)=\prod_{i\in I}\mathbb{P}(A_i)$$

P1.- Pruebe que si C_1 y C_2 son clases independientes, y además son cerradas para la intersección, entonces $\sigma(C_1)$ y $\sigma(C_2)$ son σ -álgebras independientes.

<u>Hint</u>: Use el π - λ teorema (páginas 7 y 8 del apunte).

P2.- (Lema de Borel-Cantelli)

Sea (X, \mathcal{B}, μ) un espacio de probabilidad.

a) Pruebe el Lema de Borel-Cantelli:

Lema 0.1. (Borel-Cantelli)

Sea $(A_n)_{n\in\mathbb{N}}$ una colección numerable de conjuntos medibles. Entonces

$$\sum_{n} \mu(A_n) < +\infty \quad \Rightarrow \quad \mu(\limsup_{n} A_n) = 0$$

b) Ahora se busca una suerte de recíproca, bajo la hipótesis adicional

Las clases $A_n = \{A_n\}$ $n \ge 1$ son independientes.

Para ésto pruebe que:

(I) Las clases $\mathcal{B}_n = \{A_n, A_n^c\}$, con $n \in \mathbb{N}$ son independientes.

(II) Pruebe la implicancia

$$\sum_{n} \mu(A_n) = +\infty \quad \Rightarrow \quad \mu(\limsup_{n} A_n) = 1$$

 $\underline{\mathrm{Hint}}$ Pruebe que $\mu(\liminf_n A_n^c)=0,$ para lo cual puede ser útil la siguiente desigualdad:

Para una familia finita de números $0 \le x_i \le 1, i = 1, ..., n$ se tiene que $\prod_{i=1}^{n} (1 - x_i) \le e^{-\sum_{i=1}^{n} x_i}$.

P3.- (*Ley 0-1 de Kolmogorov*)

Sea $(\Omega, \mathcal{B}, \mathbb{P})$ esp. de probb. y $\mathcal{B}_n \subseteq \mathcal{B}$ σ -álgebras independientes. Sea $\mathcal{A}_{\infty} = \bigcap_{n \in \mathbb{N}} \sigma\left(\bigcup_{k \geq n} \mathcal{B}_k\right)$. El objetivo es probar que

$$\forall A \in \mathcal{A}_{\infty} \quad \mathbb{P}(A) = 0 \lor \mathbb{P}(A) = 1.$$

Para esto se pide

- a) Probar que $\mathcal{S}=\{\bigcap_{j\in\mathcal{J}}A_j:J\subset\mathbb{N}$ finito, $A_j\in\mathcal{B}_j\}$ es semiálgebra.
- b) Probar que $\sigma\left(\bigcup_{n\in\mathbb{N}}\mathcal{B}_n\right)=\sigma(\mathcal{S}).$
- c) Si se definen $\Sigma_n^{\infty} = \sigma\left(\bigcup_{k \geq n} \mathcal{B}_k\right)$ y $\Sigma_0^n = \sigma\left(\bigcup_{k < n} \mathcal{B}_k\right)$. Pruebe que $\Sigma_n^{\infty} \perp \!\!\! \perp \Sigma_0^n$.
- d) Pruebe que $\mathcal{A}_{\infty} \perp \!\!\!\perp \bigcup_{n \in \mathbb{N}} \Sigma_0^n$ y que $\mathcal{A}_{\infty} \perp \!\!\!\perp \sigma \left(\bigcup_{n \in \mathbb{N}} \Sigma_0^n \right)$.
- e) Pruebe que $\mathcal{A}_{\infty} \perp \!\!\!\perp \mathcal{A}_{\infty}$ y concluya.