Auxiliar 1: Optimización

Profesor : Alejandro Jofré Auxiliares : Nicolás Hernández & Emilio Vilches 6 de Agosto

1. Problemas

Problema 1.

Dados $v \in \mathbb{R}^3, v \neq 0$ y $\epsilon > 0$, se llama Cono de Bishop-Phelps al conjunto $K(v, \epsilon)$ definido por:

$$K(v, \epsilon) = \{x \in \mathbb{R}^3 : \epsilon ||v|| ||x|| \le (v, x)\}$$

Dados $a, b \in \mathbb{R}^2$ y $\gamma \in [0, 1]$ se llama Pétalo de Penot al conjunto $P_{\gamma}(a, b)$ definido por:

$$P_{\gamma}(a,b) = \{x \in \mathbb{R}^2 : \gamma ||a - x|| + ||x - b|| \le ||b - a|| \}$$

Demostrar que ambos conjuntos son convexos.

Problema 2.

Sea $g: \mathbb{R}^n \to \mathbb{R}$ convexa. Se define $f(x) = e^{g(x)}$. Muestre que f es convexa.

Problema 3.

Sea $S \subseteq \mathbb{R}^n$ convexo no vacío, $f: S \to \mathbb{R}$ y consideremos el problema:

$$(P) \quad \min_{x \in S} f(x)$$

Sea x^* la solución local del problema (P). Demuestre que:

- 1. Si f es convexa, entonces x^* es mínimo global.
- 2. Si f es estrictamente convexa, entonces x^* es el único mínimo global.

Problema 4 (Problema de la Mochila (o Knapsack)).

Se intenta llenar una mochila de volumen fijo V con n ítems cada uno de volumen v_i y donde a cada ítem se le asocia un factor de necesidad a_i , es decir, si $a_i > a_j$ significa que el ítem i-ésimo es más necesario que el j-ésimo. Plantee el problema para maximizar la cantidad de ítems necesarios (pueden haber uno o más ítems del mismo tipo y no pueden haber trozos de algún ítem).

Problema 5 (Embarcación de Cobre).

Se desean embarcar 40 mil toneladas de cobre desde los puertos de Antofagasta y San Antonio (20 mil toneladas desde cada puerto), con destino a las ciudades de Hong Kong, New York y Tokio. Estas ciudades demandan 15 mil, 15 mil y 10 mil toneladas del mineral, respectivamente. Supongamos que las rutas entre los puertos y las ciudades destino son fijas y conocidas, y que los costos asociados a transportar mil toneladas (medido en millones de pesos) son estimados de la siguiente manera: Desde Antofagasta a Hong Kong, New York y Tokio, los costos son 10, 11 y 20 respectivamente mientras que desde San Antonio a Hong Kong, New York y Tokio, los costos son 6, 9 y 8 respectivamente. Plantee el problema como uno de programación lineal cuya solución es la cantidad de cobre que se transporta en cada ruta de manera de minimizar los costos asociados.