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Miscellaneous Problems

The Crazy Passenger Problem

The following is known as the “crazy passenger problem” and is stated as follows. A line of
100 airline passengers is waiting to board the plane. They each hold a ticket to one of the 100
seats on that flight. (For convenience, let’s say that the k-th passenger in line has a ticket
for the seat number k.) Unfortunately, the first person in line is crazy, and will ignore the
seat number on their ticket, picking a random seat to occupy. All the other passengers are
quite normal, and will go to their proper seat unless it is already occupied. If it is occupied,
they will then find a free seat to sit in, at random. What is the probability that the last
(100th) person to board the plane will sit in their proper seat (#100)?

If one tries to solve this problem with conditional probability it becomes very difficult. We
begin by considering the following cases if the first passenger sits in seat number 1, then all
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the remaining passengers will be in their correct seats and certainly the #100’th will also.
If he sits in the last seat #100, then certainly the last passenger cannot sit there (in fact he
will end up in seat #1). If he sits in any of the 98 seats between seats #1 and #100, say seat
k, then all the passengers with seat numbers 2, 3, . . . , k−1 will have empty seats and be able
to sit in their respective seats. When the passenger with seat number k enters he will have
as possible seating choices seat #1, one of the seats k + 1, k + 2, . . . , 99, or seat #100. Thus
the options available to this passenger are the same options available to the first passenger.
That is if he sits in seat #1 the remaining passengers with seat labels k+1, k+2, . . . , 100 can
sit in their assigned seats and passenger #100 can sit in his seat, or he can sit in seat #100
in which case the passenger #100 is blocked, or finally he can sit in one of the seats between
seat k and seat #99. The only difference is that this k-th passenger has fewer choices for
the “middle” seats. This k passenger effectively becomes a new “crazy” passenger.

From this argument we begin to see a recursive structure. To fully specify this recursive
structure lets generalize this problem a bit an assume that there are N total seats (rather
than just 100). Thus at each stage of placing a k-th crazy passenger we can choose from

• seat #1 and the last or N -th passenger will then be able to sit in their assigned seat,
since all intermediate passenger’s seats are unoccupied.

• seat # N and the last or N -th passenger will be unable to sit in their assigned seat.

• any seat before the N -th and after the k-th. Where the k-th passenger’s seat is taken
by a crazy passenger from the previous step. In this case there are N−1−(k+1)+1 =
N − k − 1 “middle” seat choices.

If we let p(n, 1) be the probability that given one crazy passenger and n total seats to select
from that the last passenger sits in his seat. From the argument above we have a recursive
structure give by

p(N, 1) =
1

N
(1) +

1

N
(0) +

1

N

N−1
∑

k=2

p(N − k, 1)

=
1

N
+

1

N

N−1
∑

k=2

p(N − k, 1) .

where the first term is where the first passenger picks the first seat (where the N will sit
correctly with probability one), the second term is when the first passenger sits in the N -th
seat (where the N will sit correctly with probability zero), and the remaining terms represent
the first passenger sitting at position k, which will then require repeating this problem with
the k-th passenger choosing among N − k + 1 seats.

To solve this recursion relation we consider some special cases and then apply the principle
of mathematical induction to prove it. Lets take N = 2. Then there are only two possible
arraignments of passengers (1, 2) and (2, 1) of which one (the first) corresponds to the second
passenger sitting in his assigned seat. This gives

p(2, 1) =
1

2
.



If N = 3, then from the 3! = 6 possible choices for seating arraignments

(1, 2, 3) (1, 3, 2) (2, 3, 1) (2, 1, 3) (3, 1, 2) (3, 2, 1)

Only
(1, 2, 3) (2, 1, 3) (3, 2, 1)

correspond to admissible seating arraignments for this problem so we see that

p(3, 1) =
3

6
=

1

2
.

If we hypothesis that p(N, 1) = 1
2

for all N , placing this assumption into the recursive
formulation above gives

p(N, 1) =
1

N
+

1

N

N−1
∑

k=2

1

2
=

1

2
.

Verifying that indeed this constant value satisfies our recursion relationship.



Chapter 1 (Combinatorial Analysis)

Chapter 1: Problems

Problem 1 (counting license plates)

Part (a): In each of the first two places we can put any of the 26 letters giving 262 possible
letter combinations for the first two characters. Since the five other characters in the license
plate must be numbers, we have 105 possible five digit letters their specification giving a
total of

262 · 105 = 67600000 ,

total license plates.

Part (b): If we can’t repeat a letter or a number in the specification of a license plate then
the number of license plates becomes

26 · 25 · 10 · 9 · 8 = 468000 ,

total license plates.

Problem 2 (counting die rolls)

We have six possible outcomes for each of the die rolls giving 64 = 1296 possible total
outcomes for all four rolls.

Problem 3 (assigning workers to jobs)

Since each job is different and each worker is unique we have 20! different pairings.

Problem 4 (creating a band)

If each boy can play each instrument we can have 4! = 24 ordering. If Jay and Jack can
play only two instruments then we will assign the instruments they play first with 2! possible
orderings. The other two boys can be assigned the remaining instruments in 2! ways and
thus we have

2! · 2! = 4 ,

possible unique band assignments.



Problem 5 (counting telephone area codes)

In the first specification of this problem we can have 9 − 2 + 1 = 8 possible choices for the
first digit in an area code. For the second digit there are two possible choices. For the third
digit there are 9 possible choices. So in total we have

8 · 2 · 9 = 144 ,

possible area codes. In the second specification of this problem, if we must start our area
codes with the digit “four” we will only have 2 · 9 = 18 area codes.

Problem 6 (counting kittens)

The traveler would meet 74 = 2401 kittens.

Problem 7 (arranging boys and girls)

Part (a): Since we assume that each person is unique, the total number of ordering is given
by 6! = 720.

Part (b): We have 3! orderings of each group of the three boys and girls. Since we can put
these groups of boys and girls in 2! different ways (either the boys first or the girls first) we
have

(2!) · (3!) · (3!) = 2 · 6 · 6 = 72 ,

possible orderings.

Part (c): If the boys must sit together we have 3! = 6 ways to arrange the block of boys.
This block of boys can be placed either at the ends or in between any of the individual 3!
orderings of the girls. This gives four locations where our block of boys can be placed we
have

4 · (3!) · (3!) = 144 ,

possible orderings.

Part (d): The only way that no two people of the same sex can sit together is to have the
two groups interleaved. Now there are 3! ways to arrange each group of girls and boys, and
to interleave we have two different choices for interleaving. For example with three boys and
girls we could have

g1b1g2b2g3b3 vs. b1g1b2g2b3g3 ,

thus we have
2 · 3! · 3! = 2 · 62 = 72 ,

possible arrangements.



Problem 8 (counting arrangements of letters)

Part (a): Since “Fluke” has five unique letters we have 5! = 120 possible arrangements.

Part (b): Since “Propose” has seven letters of which four (the “o”’s and the “p”’s) repeat
we have

7!

2! · 2!
= 1260 ,

arrangements.

Part (c): Now “Mississippi” has eleven characters with the “i” repeated four times, the “s”
repeated four times and the “p” repeated two times, so we have

11!

4! · 4! · 2!
= 34650 ,

possible rearranges.

Part (d): “Arrange” has seven characters with two repeated so it has

7!

2!
= 2520 ,

different arrangements.

Problem 9 (counting colored blocks)

Assuming each block is unique we have 12! arrangements, but since the six black and the
four red blocks are not distinguishable we have

12!

6! · 4!
= 27720 ,

possible arrangements.

Problem 10 (seating people in a row)

Part (a): We have 8! = 40320 possible seating arrangements.

Part (b): We have 6! ways to place the people (not including A and B). We have 2! ways
to order A and B. Once the pair of A and B is determined, they can be placed in between
any ordering of the other six. For example, any of the “x”’s in the expression below could
be replaced with the A B pair

xP1 xP2 xP3 xP4 xP5xP6 x .



Giving seven possible locations for the A,B pair. Thus the total number of orderings is given
by

2! · 6! · 7 = 10800 .

Part (c): To place the men and women according to the given rules, the men and women
must be interleaved. We have 4! ways to arrange the men and 4! ways to arrange the
women. We can start our sequence of eight people with a woman or a man (giving two
possible choices). We thus have

2 · 4! · 4! = 1152 ,

possible arrangements.

Part (d): Since the five men must sit next to each other their ordering can be specified in
5! = 120 ways. This block of men can be placed in between any of the three women, or at
the end of the block of women, who can be ordered in 3! ways. Since there are four positions
we can place the block of men we have

5! · 4 · 3! = 2880 ,

possible arrangements.

Part (e): The four couple have 2! orderings within each pair, and then 4! orderings of the
pairs giving a total of

(2!)4 · 4! = 384 ,

total orderings.

Problem 11 (counting arrangements of books)

Part (a): We have (3 + 2 + 1)! = 6! = 720 arrangements.

Part (b): The mathematics books can be arranged in 2! ways and the novels in 3! ways.
Then the block ordering of mathematics, novels, and chemistry books can be arranged in 3!
ways resulting in

(3!) · (2!) · (3!) = 72 ,

possible arrangements.

Part (c): The number of ways to arrange the novels is given by 3! = 6 and the other three
books can be arranged in 3! ways with the blocks of novels in any of the four positions in
between giving

4 · (3!) · (3!) = 144 ,

possible arrangements.



Problem 12 (counting awards)

Part (a): We have 30 students to choose from for the first award, and 30 students to choose
from for the second award, etc. So the total number of different outcomes is given by

305 = 24300000

Part (b): We have 30 students to choose from for the first award, 29 students to choose
from for the second award, etc. So the total number of different outcomes is given by

30 · 29 · 28 · 27 · 26 = 17100720

Problem 13 (counting handshakes)

With 20 people the number of pairs is given by

(

20
2

)

= 190 .

Problem 14 (counting poker hands)

A deck of cards has four suits with thirteen cards each giving in total 52 cards. From these
52 cards we need to select five to form a poker hand thus we have

(

52
5

)

= 2598960 ,

unique poker hands.

Problem 15 (pairings in dancing)

We must first choose five women from ten in

(

10
5

)

possible ways, and five men from 12

in

(

12
5

)

ways. Once these groups are chosen then we have 5! pairings of the men and

women. Thus in total we will have
(

10
5

) (

12
5

)

5! = 252 · 792 · 120 = 23950080 ,

possible pairings.



Problem 16 (forced selling of books)

Part (a): We have to select a subject from three choices. If we choose math we have
(

6
2

)

= 15 choices of books to sell. If we choose science we have

(

7
2

)

= 21 choices of

books to sell. If we choose economics we have

(

4
2

)

= 6 choices of books to sell. Since each

choice is mutually exclusive in total we have 15 + 21 + 6 = 42, possible choices.

Part (b): We must pick two subjects from

(

3
2

)

= 3 choices. If we denote the letter “M”

for the choice math the letter “S” for the choice science, and the letter “E” for the choice
economics then the three choices are

(M, S) (M, E) (S, E) .

For each of the choices above we have 6 · 7 + 6 · 4 + 7 · 4 = 94 total choices.

Problem 17 (distributing gifts)

We can choose seven children to give gifts to in

(

10
7

)

ways. Once we have chosen the

seven children, the gifts can be distributed in 7! ways. This gives a total of

(

10
7

)

· 7! = 604800 ,

possible gift distributions.

Problem 18 (selecting political parties)

We can choose two Republicans from the five total in

(

5
2

)

ways, we can choose two

Democrats from the six in

(

6
2

)

ways, and finally we can choose three Independents from

the four in

(

4
3

)

ways. In total, we will have

(

5
2

)

·
(

6
2

)

·
(

4
3

)

= 600 ,

different committees.



Problem 19 (counting committee’s with constraints)

Part (a): We select three men from six in

(

6
3

)

, but since two men won’t serve together

we need to compute the number of these pairings of three men that have the two that won’t
serve together. The number of committees we can form (with these two together) is given
by

(

2
2

)

·
(

4
1

)

= 4 .

So we have
(

6
3

)

− 4 = 16 ,

possible groups of three men. Since we can choose

(

8
3

)

= 56 different groups of women,

we have in total 16 · 56 = 896 possible committees.

Part (b): If two women refuse to serve together, then we will have

(

2
2

)

·
(

6
1

)

groups

with these two women in them from the

(

8
3

)

ways to draw three women from eight. Thus

we have
(

8
3

)

−
(

2
2

)

·
(

6
1

)

= 56 − 6 = 50 ,

possible groupings of woman. We can select three men from six in

(

6
3

)

= 20 ways. In

total then we have 50 · 20 = 1000 committees.

Part (c): We have

(

8
3

)

·
(

6
3

)

total committees, and

(

1
1

)

·
(

7
2

)

·
(

1
1

)

·
(

5
2

)

= 210 ,

committees containing the man and women who refuse to serve together. So we have

(

8
3

)

·
(

6
3

)

−
(

1
1

)

·
(

7
2

)

·
(

1
1

)

·
(

5
2

)

= 1120 − 210 = 910 ,

total committees.



Problem 20 (counting the number of possible parties)

Part (a): There are a total of

(

8
5

)

possible groups of friends that could attend (assuming

no feuds). We have

(

2
2

)

·
(

6
3

)

sets with our two feuding friends in them, giving

(

8
5

)

−
(

2
2

)

·
(

6
3

)

= 36

possible groups of friends

Part (b): If two fiends must attend together we have that

(

2
2

)(

6
3

)

if the do attend

the party together and

(

6
5

)

if they don’t attend at all, giving a total of

(

2
2

)(

6
3

)

+

(

6
5

)

= 26 .

Problem 21 (number of paths on a grid)

From the hint given that we must take four steps to the right and three steps up, we can
think of any possible path as an arraignment of the letters ”U” for up and “R” for right.
For example the string

U U U R R R R ,

would first step up three times and then right four times. Thus our problem becomes one of
counting the number of unique arraignments of three “U”’s and four “R”’s, which is given
by

7!

4! · 3!
= 35 .

Problem 22 (paths on a grid through a specific point)

One can think of the problem of going through a specific point (say P ) as counting the
number of paths from the start A to P and then counting the number of paths from P to
the end B. To go from A to P (where P occupies the (2, 2) position in our grid) we are
looking for the number of possible unique arraignments of two “U”’s and two “R”’s, which
is given by

4!

2! · 2!
= 6 ,

possible paths. The number of paths from the point P to the point B is equivalent to the
number of different arraignments of two “R”’s and one “U” which is given by

3!

2! · 1!
= 3 .



From the basic principle of counting then we have 6 · 3 = 18 total paths.

Problem 23 (assignments to beds)

Assuming that twins sleeping in different bed in the same room counts as a different arraign-
ment, we have (2!) · (2!) · (2!) = 8 possible assignments of each set of twins to a room. Since
there are 3! ways to assign the pair of twins to individual rooms we have 6 · 8 = 48 possible
assignments.

Problem 24 (practice with the binomial expansion)

This is given by

(3x2 + y)5 =

5
∑

k=0

(

5
k

)

(3x2)ky5−k .

Problem 25 (bridge hands)

We have 52! unique permutations, but since the different arraignments of cards within a
given hand do not matter we have

52!

(13!)4
,

possible bridge hands.

Problem 26 (practice with the multinomial expansion)

This is given by the multinomial expansion

(x1 + 2x2 + 3x3)
4 =

∑

n1+n2+n3=4

(

4
n1 , n2 , n3

)

xn1
1 (2x2)

n2(3x3)
n3

The number of terms in the above summation is given by

(

4 + 3 − 1
3 − 1

)

=

(

6
2

)

=
6 · 5
2

= 15 .



Problem 27 (counting committees)

This is given by the multinomial coefficient
(

12
3 , 4 , 5

)

= 27720

Problem 28 (divisions of teachers)

If we decide to send n1 teachers to school one and n2 teachers to school two, etc. then the
total number of unique assignments of (n1, n2, n3, n4) number of teachers to the four schools
is given by

(

8
n1 , n2 , n3 , n4

)

.

Since we want the total number of divisions, we must sum this result for all possible combi-
nations of ni, or

∑

n1+n2+n3+n4=8

(

8
n1 , n2 , n3 , n4

)

= (1 + 1 + 1 + 1)8 = 65536 ,

possible divisions.

If each school must receive two in each school, then we are looking for
(

8
2 , 2 , 2 , 2

)

=
8!

(2!)4
= 2520 ,

orderings.

Problem 29 (dividing weight lifters)

We have 10! possible permutations of all weight lifters but the permutations of individual
countries (contained within this number) are irrelevant. Thus we can have

10!

3! · 4! · 2! · 1!
=

(

10
3 , 4 , 2 , 1

)

= 12600 ,

possible divisions. If the united states has one competitor in the top three and two in

the bottom three. We have

(

3
1

)

possible positions for the US member in the first three

positions and

(

3
2

)

possible positions for the two US members in the bottom three positions,

giving a total of
(

3
1

)(

3
2

)

= 3 · 3 = 9 ,



combinations of US members in the positions specified. We also have to place the other coun-

tries participants in the remaining 10 − 3 = 7 positions. This can be done in

(

7
4 , 2 , 1

)

=

7!
4!·2!·1! = 105 ways. So in total then we have 9 · 105 = 945 ways to position the participants.

Problem 30 (seating delegates in a row)

If the French and English delegates are to be seated next to each other, they can be can be
placed in 2! ways. Then this pair constitutes a new “object” which we can place anywhere
among the remaining eight people, i.e. there are 9! arraignments of the eight remaining
people and the French and English pair. Thus we have 2 ·9! = 725760 possible combinations.
Since in some of these the Russian and US delegates are next to each other, this number
over counts the true number we are looking for by 2 · 28! = 161280 (the first two is for the
number of arrangements of the French and English pair). Combining these two criterion we
have

2 · (9!) − 4 · (8!) = 564480 .

Problem 31 (distributing blackboards)

Let xi be the number of black boards given to school i, where i = 1, 2, 3, 4. Then we must
have

∑

i xi = 8, with xi ≥ 0. The number of solutions to an equation like this is given by
(

8 + 4 − 1
4 − 1

)

=

(

11
3

)

= 165 .

If each school must have at least one blackboard then the constraints change to xi ≥ 1 and
the number of such equations is give by

(

8 − 1
4 − 1

)

=

(

7
3

)

= 35 .

Problem 32 (distributing people)

Assuming that the elevator operator can only tell the number of people getting off at each
floor, we let xi equal the number of people getting off at floor i, where i = 1, 2, 3, 4, 5, 6.
Then the constraint that all people are off at the sixth floor means that

∑

i xi = 8, with
xi ≥ 0. This has

(

n + r − 1
r − 1

)

=

(

8 + 6 − 1
6 − 1

)

=

(

13
5

)

= 1287 ,

possible distribution people. If we have five men and three women, let mi and wi be the
number of men and women that get off at floor i. We can solve this problem as the combi-
nation of two problems. That of tracking the men that get off on floor i and that of tracking



the women that get off on floor i. Thus we must have

6
∑

i=1

mi = 5 mi ≥ 0

6
∑

i=1

wi = 3 wi ≥ 0 .

The number of solutions to the first equation is given by

(

5 + 6 − 1
6 − 1

)

=

(

10
5

)

= 252 ,

while the number of solutions to the second equation is given by

(

3 + 6 − 1
6 − 1

)

=

(

8
5

)

= 56 .

So in total then (since each number is exclusive) we have 252 · 56 = 14114 possible elevator
situations.

Problem 33 (possible investment strategies)

Let xi be the number of investments made in opportunity i. Then we must have

4
∑

i=1

xi = 20

with constraints that x1 ≥ 2, x2 ≥ 2, x3 ≥ 3, x4 ≥ 4. Writing this equation as

x1 + x2 + x3 + x4 = 20

we can subtract the lower bound of each variable to get

(x1 − 2) + (x2 − 2) + (x3 − 3) + (x4 − 4) = 20 − 2 − 2 − 3 − 4 = 9 .

Then defining v1 = x1 − 2, v2 = x2 − 2, v3 = x3 − 3, and v4 = x4 − 4, then our equation
becomes v1 + v2 + v3 + v4 = 9, with the constraint that vi ≥ 0. The number of solutions to
equations such as these is given by

(

9 + 4 − 1
4 − 1

)

=

(

12
3

)

= 220 .

Part (b): First we pick the three investments from the four possible in

(

4
3

)

= 4 possible

ways. The four choices are denoted in table 1, where a one denotes that we invest in that
option. Then investment choice number one requires the equation v2+v3+v4 = 20−2−3−4 =



choice v1 = x1 − 2 ≥ 0 v2 = x2 − 2 ≥ 0 v3 = x3 − 3 ≥ 0 v4 = x4 − 4 ≥ 0
1 0 1 1 1
2 1 0 1 1
3 1 1 0 1
4 1 1 1 0

Table 1: All possible choices of three investments.

11, and has

(

11 + 3 − 1
3 − 1

)

=

(

13
2

)

= 78 possible solutions. Investment choice number

two requires the equation v1 +v3 +v4 = 20−2−3−4 = 11, and again has

(

11 + 3 − 1
3 − 1

)

=
(

13
2

)

= 78 possible solutions. Investment choice number three requires the equation

v1 +v2 +v4 = 20−2−2−4 = 12, and has

(

12 + 3 − 1
3 − 1

)

=

(

14
2

)

= 91 possible solutions.

Finally, investment choice number four requires the equation v1+v2+v3 = 20−2−2−3 = 13,

and has

(

13 + 3 − 1
3 − 1

)

=

(

15
2

)

= 105 possible solutions. Of course we could also invest

in all four opportunities which has the same number of possibilities as in part (a) or 220.
Then in total since we can do any of these choices we have 220 + 105 + 91 + 78 + 78 = 572
choices.

Chapter 1: Theoretical Exercises

Problem 1 (the generalized counting principle)

This can be proved by recursively applying the basic principle of counting.

Problem 2 (counting dependent experimental outcomes)

We have m choices for the outcome of the first experiment. If the first experiment returns
i as an outcome, then there are ni possible outcomes for the second experiment. Thus if
the experiment returns “one” we have n1 possible outcomes, if it returns “two” we have
n2 possible outcomes, etc. To count the number of possible experimental outcomes we can
envision a tree like structure representing the totality of possible outcomes, where we have m
branches leaving the root node indicating the m possible outcomes from the first experiment.
From the first of these branches we have n1 additional branches representing the outcome
of the second experiment when the first experimental outcome was a one. From the second
branch we have n2 additional branches representing the outcome of the second experiment
when the first experimental outcome was a two. We can continue this process, with the
m-th branch from the root node having nm leaves representing the outcome of the second
experiment when the first experimental outcome was a m. Counting all of these outcomes



we have
n1 n2 n3 · · ·nm

total experimental outcomes.

Problem 3 (selecting r objects from n)

To select r objects from n, we will have n choices for the first object, n − 1 choices for the
second object, n − 2 choices for the third object, etc. Continuing we will have n − r + 1
choices for the selection of the r-th object. Giving a total of n(n − 1)(n − 2) · · · (n − r + 1)
total choices if the order of selection matters. If it does not then we must divide by the
number of ways to rearrange the r selected objects i.e. r! giving

n(n − 1)(n − 2) · · · (n − r + 1)

r!
,

possible ways to select r objects from n when the order of selection of the r object does not
matter.

Problem 4 (combinatorial explanation of

(

n
k

)

)

If all balls are distinguishable then there are n! ways to arrange all the balls. With in
this arrangement there are r! ways to uniquely arrange the black balls and (n − r)! ways
to uniquely arranging the white balls. These arraignments don’t represent new patterns
since the balls with the same color are in fact indistinguishable. Dividing by these repeated
patterns gives

n!

r!(n − r)!
,

gives the unique number of permutations.

Problem 5 (the number of binary vectors who’s sum is greater than k )

To have the sum evaluate to exactly k, we must select at k components from the vector x
to have the value one. Since there are n components in the vector x, this can be done in
(

n
k

)

ways. To have the sum exactly equal k + 1 we must select k + 1 components from x

to have a value one. This can be done in

(

n
k + 1

)

ways. Continuing this pattern we see

that the number of binary vectors x that satisfy

n
∑

i=1

xi ≥ k



is given by

n
∑

l=k

(

n
l

)

=

(

n
n

)

+

(

n
n − 1

)

+

(

n
n − 2

)

+ . . . +

(

n
k + 1

)

+

(

n
k

)

.

Problem 6 (counting the number of increasing vectors)

If the first component x1 were to equal n, then there is no possible vector that satisfies the
inequality x1 < x2 < x3 < . . . < xk constraint. If the first component x1 equals n − 1
then again there are no vectors that satisfy the constraint. The first largest value that
the component x1 can take on and still result in a complete vector satisfying the inequality
constraints is when x1 = n−k+1 For that value of x1, the other components are determined
and are given by x2 = n − k + 2, x3 = n − k + 3, up to the value for xk where xk = n.
This assignment provides one vector that satisfies the constraints. If x1 = n − k, then we
can construct an inequality satisfying vector x by assigning the k − 1 other components
x2, x3, up to xk by assigning the integers n − k + 1 , n − k + 2 , . . . n − 1 , n to the k − 1

components. This can be done in

(

k
1

)

ways. Continuing if x1 = n − k − 1, then we can

obtain a valid vector x by assign the integers n − k , n − k + 1 , . . . n − 1 , n to the k − 1
other components of x. This can be seen as an equivalent problem to that of specifying two

blanks from n − (n − k) + 1 = k + 1 spots and can be done in

(

k + 1
2

)

ways. Continuing

to decrease the value of the x1 component, we finally come to the case where we have n
locations open for assignment with k assignments to be made (or equivalently n − k blanks

to be assigned) since this can be done in

(

n
n − k

)

ways. Thus the total number of vectors

is given by

1 +

(

k
1

)

+

(

k + 1
2

)

+

(

k + 2
3

)

+ . . . +

(

n − 1
n − k − 1

)

+

(

n
n − k

)

.

Problem 7 (choosing r from n by drawing subsets of size r − 1)

Equation 4.1 from the book is given by

(

n
r

)

=

(

n − 1
r − 1

)

+

(

n − 1
r

)

.



Considering the right hand side of this expression, we have
(

n − 1
r − 1

)

+

(

n − 1
r

)

=
(n − 1)!

(n − 1 − r + 1)!(r − 1)!
+

(n − 1)!

(n − 1 − r)!r!

=
(n − 1)!

(n − r)!(r − 1)!
+

(n − 1)!

(n − 1 − r)!r!

=
n!

(n − r)!r!

(

r

n
+

n − r

n

)

=

(

n
r

)

,

and the result is proven.

Problem 8 (selecting r people from from n men and m women)

We desire to prove
(

n + m
r

)

=

(

n
0

)(

m
r

)

+

(

n
1

)(

m
r − 1

)

+ . . . +

(

n
r

)(

m
0

)

.

We can do this in a combinatorial way by considering subgroups of size r from a group of
n men and m women. The left hand side of the above represents one way of obtaining this
identity. Another way to count the number of subsets of size r is to consider the number
of possible groups can be found by considering a subproblem of how many men chosen to
be included in the subset of size r. This number can range from zero men to r men. When
we have a subset of size r with zero men we must have all women. This can be done in
(

n
0

)(

m
r

)

ways. If we select one man and r−1 women the number of subsets that meet

this criterion is given by

(

n
1

)(

m
r − 1

)

. Continuing this logic for all possible subset of

the men we have the right hand side of the above expression.

Problem 9 (selecting n from 2n)

From problem 8 we have that when m = n and r = n that
(

2n
n

)

=

(

n
0

)(

n
n

)

+

(

n
1

)(

n
n − 1

)

+ . . . +

(

n
n

)(

n
0

)

.

Using the fact that

(

n
k

)

=

(

n
n − k

)

the above is becomes

(

2n
n

)

=

(

n
0

)2

+

(

n
1

)2

+ . . . +

(

n
n

)2

,

which is the desired result.



Problem 10 (committee’s with a chair)

Part (a): We can select a committee with k members in

(

n
k

)

ways. Selecting a chairper-

son from the k committee members gives

k

(

n
k

)

possible choices.

Part (b): If we choose the non chairperson members first this can be done in

(

n
k − 1

)

ways. We then choose the chairperson based on the remaining n− k + 1 people. Combining
these two we have

(n − k + 1)

(

n
k − 1

)

possible choices.

Part (c): We can first pick the chair of our committee in n ways and then pick k − 1

committee members in

(

n − 1
k − 1

)

. Combining the two we have

n

(

n − 1
k − 1

)

,

possible choices.

Part (d): Since all expressions count the same thing they must be equal and we have

k

(

n
k

)

= (n − k + 1)

(

n
k − 1

)

= n

(

n − 1
k − 1

)

.

Part (e): We have

k

(

n
k

)

= k
n!

(n − k)!k!

=
n!

(n − k)!(k − 1)!

=
n!(n − k + 1)

(n − k + 1)!(k − 1)!

= (n − k + 1)

(

n
k − 1

)



Factoring out n instead we have

k

(

n
k

)

= k
n!

(n − k)!k!

= n
(n − 1)!

(n − 1 − (k − 1))!(k − 1)!

= n

(

n − 1
k − 1

)

Problem 11 (Fermat’s combinatorial identity)

We desire to prove the so called Fermat’s combinatorial identity
(

n
k

)

=

n
∑

i=k

(

i − 1
k − 1

)

=

(

k − 1
k − 1

)

+

(

k
k − 1

)

+ · · ·+
(

n − 2
k − 1

)

+

(

n − 1
k − 1

)

.

Following the hint, consider the integers 1, 2, · · · , n. Then consider subsets of size k from n
elements as a sum over i where we consider i to be the largest entry in all the given subsets

of size k. The smallest i can be is k of which there are

(

k − 1
k − 1

)

subsets where when we

add the element k we get a complete subset of size k. The next subset would have k + 1

as the largest element of which there are

(

k
k − 1

)

of these. There are

(

k + 1
k − 1

)

subsets

with k+2 as the largest element etc. Finally, we will have

(

n − 1
k − 1

)

sets with n the largest

element. Summing all of these subsets up gives

(

n
k

)

.

Problem 12 (moments of the binomial coefficients)

Part (a): Consider n people from which we want to count the total number of committees

of any size with a chairman. For a committee of size k = 1 we have 1 ·
(

n
1

)

= n possible

choices. For a committee of size k = 2 we have

(

n
2

)

subsets of two people and two choices

for the person who is the chair. This gives 2

(

n
2

)

possible choices. For a committee of size

k = 3 we have 3

(

n
3

)

, etc. Summing all of these possible choices we find that the total

number of committees with a chair is
n
∑

k=1

k

(

n
k

)

.



Another way to count the total number of all committees with a chair, is to consider first
selecting the chairperson from which we have n choices and then considering all possible
subsets of size n − 1 (which is 2n−1) from which to construct the remaining committee
members. The product then gives n2n−1.

Part (b): Consider again n people where now we want to count the total number of com-
mittees of size k with a chairperson and a secretary. We can select all subsets of size k in
(

n
k

)

ways. Given a subset of size k, there are k choices for the chairperson and k choices

for the secretary giving k2

(

n
k

)

committees of size k with a chair and a secretary. The

total number of these is then given by summing this result or

n
∑

k=1

k2

(

n
k

)

.

Now consider first selecting the chair which can be done in n ways. Then selecting the
secretary which can either be the chair or one of the n−1 other people. If we select the chair
and the secretary to be the same person we have n−1 people to choose from to represent the
committee. All possible subsets from as set of n−1 elements is given by 2n−1, giving in total
n2n−1 possible committees with the chair and the secretary the same person. If we select a
different person for the secretary this chair/secretary selection can be done in n(n− 1) ways
and then we look for all subsets of a set with n − 2 elements (i.e. 2n−2) so in total we have
n(n − 1)2n−2. Combining these we obtain

n2n−1 + n(n − 1)2n−2 = n2n−2(2 + n − 1) = n(n + 1)2n−2 .

Equating the two we have
n
∑

k=1

(

n
k

)

k2 = 2n−2n(n + 1) .

Part (c): Consider now selecting all committees with a chair a secretary and a stenographer,
where each can be the same person. Then following the results of Part (b) this total number

is given by
∑n

k=1

(

n
k

)

k3. Now consider the following situations and a count of how many

cases they provide.

• If the same person is the chair, the secretary, and the stenographer, then this combi-
nation gives n2n−1 total committees.

• If the same person is the chair and the secretary, but not the stenographer, then this
combination gives n(n − 1)2n−2 total committees.

• If the same person is the chair and the stenographer, but not the secretary, then this
combination gives n(n − 1)2n−2 total committees.

• If the same person is the secretary and the stenographer, but not the chair, then this
combination gives n(n − 1)2n−2 total committees.



• Finally, if no person has more than one job, then this combination gives n(n − 1)(n −
2)2n−3 total committees.

Adding all of these possible combinations up we find that

n(n − 1)(n − 2)2n−3 + 3n(n − 1)2n−2 + n2n−1 = n2(n + 3)2n−3 .

Problem 13 (an alternating series of binomial coefficients)

From the binomial theorem we have

(x + y)n =

n
∑

k=0

(

n
k

)

xkyn−k .

If we select x = −1 and y = 1 then x + y = 0 and the sum above becomes

0 =

n
∑

k=0

(

n
k

)

(−1)k ,

as we were asked to prove.

Problem 14 (committees and subcommittees)

Part (a): Pick the committee of size j in

(

n
j

)

ways. The subcommittee of size i from

these j can be selected in

(

j
i

)

ways, giving a total of

(

j
i

)(

n
j

)

committees and

subcommittee. Now assume that we pick the subcommittee first. This can be done in

(

n
i

)

ways. We then pick the committee in

(

n − i
j − i

)

ways resulting in a total

(

n
i

)(

n − i
j − i

)

.

Part (b): I think that the lower index on this sum should start at i (the smallest subcom-
mittee size). If so then we have

n
∑

j=i

(

n
j

)(

j
i

)

=
n
∑

j=i

(

n
i

)(

n − i
j − i

)

=

(

n
i

) n
∑

j=i

(

n − i
j − i

)

=

(

n
i

) n−i
∑

j=0

(

n − i
j

)

=

(

n
i

)

2n−i .



Part (c): Consider the following manipulations of a binomial like sum

n
∑

j=i

(

n
j

)(

j
i

)

xj−iyn−i−(j−i) =

n
∑

j=i

(

n
i

)(

n − i
j − i

)

xj−iyn−j

=

(

n
i

) n
∑

j=i

(

n − i
j − i

)

xj−iyn−j

=

(

n
i

) n−i
∑

j=0

(

n − i
j

)

xjyn−(j+i)

=

(

n
i

) n−i
∑

j=0

(

n − i
j

)

xjyn−i−j

=

(

n
i

)

(x + y)n−i .

In summary we have shown that

n
∑

j=i

(

n
j

)(

j
i

)

xj−iyn−j =

(

n
i

)

(x + y)n−i for i ≤ n

Now let x = 1 and y = −1 so that x + y = 0 and using these values in the above we have

n
∑

j=i

(

n
j

)(

j
i

)

(−1)n−j = 0 for i ≤ n .

Problem 15 (the number of ordered vectors)

As stated in the problem we will let Hk(n) be the number of vectors with components
x1, x2, · · · , xk for which each xi is a positive integer such that 1 ≤ xi ≤ n and the xi are
ordered i.e. x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn

Part (a): Now H1(n) is the number of vectors with one component (with the restriction on
its value of 1 ≤ x1 ≤ n). Thus there are n choices for x1 so H1(n) = n.

We can compute Hk(n) by considering how many vectors there can be when the last compo-
nent i.e. xk has value of j. This would be the expression Hk−1(j), since we know the value
of the k-th component. Since j can range from 1 to n the total number of vectors with k
components (i.e. Hk(n)) is given by the sum of all the previous Hk−1(j). That is

Hk(n) =
n
∑

j=1

Hk−1(j) .

Part (b): We desire to compute H3(5). To do so we first note that from the formula above
the points at level k (the subscript) depends on the values of H at level k − 1. To evaluate



this expression when n = 5, we need to evaluate Hk(n) for k = 1 and k = 2. We have that

H1(n) = n

H2(n) =
n
∑

j=1

H1(j) =
n
∑

j=1

j =
n(n + 1)

2

H3(n) =

n
∑

j=1

H2(j) =

n
∑

j=1

j(j + 1)

2
.

Thus we can compute the first few values of H2(·) as

H2(1) = 1

H2(2) = 3

H2(3) = 6

H2(4) = 10

H2(5) = 15 .

So that we find that

H3(5) = H2(1) + H2(2) + H2(3) + H2(4) + H2(5)

= 1 + 3 + 6 + 10 + 15 = 35 .

Problem 16 (the number of tied tournaments)

Part (a): See Table 2 for the enumerations used in computing N(3). We have denoted A,
B, and C by the people all in the first place.

Part (b): To argue the given sum, we consider how many outcomes there are when i-players
tie for last place. To determine this we have to choose the i players from n that will tie (which

can be done in

(

n
i

)

ways). We then have to distributed the remaining n − i players in

winning combinations (with ties allowed). This can be done recursively in N(n − i) ways.
Summing up all of these terms we find that

N(n) =
n
∑

i=1

(

n
i

)

N(n − i) .

Part (c): In the above expression let j = n − i, then our limits on the sum above change
as follows

i = 1 → j = n − 1 and

i = n → j = 0 ,

so that the above sum for N(n) becomes

N(n) =

n−1
∑

j=0

(

n
j

)

N(j) .



First Place Second Place Third Place
A,B,C
A,B C
A,C B
C,B A
A B,C
B C,A
C A,B
A B C
B C A
C A B
A C B
...

...
...

B A C
C B A

Table 2: Here we have enumerated many of the possible ties that can happen with three
people. The first row corresponds to all three in first place. The next three rows corresponds
to two people in first place and the other in second place. The third row corresponds to two
people in second place and one in first. The remaining rows correspond to one person in

each position. The ellipses (
...) denotes thirteen possible outcomes.

Part (d): For the specific case of N(3) we find that

N(3) =

2
∑

j=0

(

3
j

)

N(j)

=

(

3
0

)

N(0) +

(

3
1

)

N(1) +

(

3
2

)

N(2)

= N(0) + 3N(1) + 3N(2) = 1 + 3(1) + 3(3) = 13 .

We also find for N(4) that

N(4) =
3
∑

j=0

(

4
j

)

N(j)

=

(

4
0

)

N(0) +

(

4
1

)

N(1) +

(

4
2

)

N(2) +

(

4
3

)

N(3)

= N(0) + 4N(1) +
3 · 4
2

N(2) + 4N(3) = 1 + 4(1) + 6(3) + 4(13) = 75 .

Problem 17 (why the binomial equals the multinomial)

The expression

(

n
r

)

is the number of ways to choose r objects from n, leaving another

group of n− r objects. The expression

(

n
r, n − r

)

is the number of divisions of n distinct



objects into two groups of size r and of size n − r respectively. As these are the same thing
the numbers are equivalent.

Problem 18 (a decomposition of the multinomial coefficient)

To compute

(

n
n1, n2, n3, · · · , nr

)

we consider fixing one particular object from the n. Then

this object can end up in any of the r individual groups. If it appears in the first one then we

have

(

n − 1
n1 − 1, n2, n3, · · · , nr

)

, possible arrangements for the other objects. If it appears in

the second group then the remaining objects can be distributed in

(

n − 1
n1, n2 − 1, n3, · · · , nr

)

ways, etc. Repeating this argument for all of the r groups we see that the original multinomial
coefficient can be written as sums of these individual multinomial terms as

(

n
n1, n2, n3, · · · , nr

)

=

(

n − 1
n1 − 1, n2, n3, · · · , nr

)

+

(

n − 1
n1, n2 − 1, n3, · · · , nr

)

+ · · ·
+

(

n − 1
n1, n2, n3, · · · , nr − 1

)

.

Problem 19 (the multinomial theorem)

The multinomial therm is

(x1 + x2 + · · ·+ xr)
n =

∑

n1+n2+···+nr=n

(

n
n1, n2, · · · , nr

)

xn1
1 xn2

2 · · ·xnr

r ,

which can be proved by recognizing that the product of (x1 + x2 + · · · + xr)
n will contain

products of the type xn1
1 xn2

2 · · ·xnr
r , and recognizing that the number of such terms, i.e. the

coefficient in front of this term is a count of the number of times we can select n1 of the
variable x1’s, and n2 of the variable x2, etc from the n variable choices. Since this number
equals the multinomial coefficient we have proven the multinomial theorem.

Problem 20 (the number of ways to fill bounded urns)

Let xi be the number of balls in the ith urn. We must have xi ≥ mi and we are distributing
the n balls so that

∑r
i=1 xi = n. To solve this problem lets shift our variables so that each

must be greater than or equal to zero. Our constraint then becomes (by subtracting the



lower bound on xi)
r
∑

i=1

(xi − mi) = n −
r
∑

i=1

mi .

This expression motivates us to define vi = xi − mi. Then vi ≥ 0 so we are looking for the
number of solutions to the equation

r
∑

i=1

vi = n −
r
∑

i=1

mi ,

where vi must be greater than or equal to zero. This number is given by
(

n −∑r
i=1 mi + r − 1
r − 1

)

.

Problem 21 (k zeros in an integer equation )

To find the number of solutions to

x1 + x2 + · · ·+ xr = n ,

where exactly k of the xr’s are zero, we can select k of the xi’s to be zero in

(

r
k

)

ways and

then count the number of solutions with positive (greater than or equal to one solutions)
for the remaining r − k variables. The number of solutions to the remaining equation is
(

n − 1
r − k − 1

)

ways so that the total number is the product of the two or

(

r
k

)(

n − 1
r − k − 1

)

.

Problem 22 (the number of partial derivatives)

Let ni be the number of derivatives taken of the xith variable. Then a total order of n
derivatives requires that these componentwise derivatives satisfy

∑n
i=1 ni = n, with ni ≥ 0.

The number of such is given by
(

n + n − 1
n − 1

)

=

(

2n − 1
n − 1

)

.

Problem 23 (counting discrete wedges)

We require that xi ≥ 1 and that they sum to a value less than k, i.e.

n
∑

i=1

xi ≤ k .



To count the number of solutions to this equation consider the number of equations with
xi ≥ 1 and

∑n
i=1 xi = k̂, which is

(

k̂ − 1
n − 1

)

so to calculate the number of equations to the requested problem we add these up for all
k̂ < k. The number of solutions is given by

k
∑

k̂=n

(

k̂ − 1
n − 1

)

with k > n .

Chapter 1: Self-Test Problems and Exercises

Problem 1 (counting arrangements of letters)

Part (a): Consider the pair of A with B as one object. Now there are two orderings of this
“fused” object i.e. AB and BA. The remaining letters can be placed in 4! orderings and
once an ordering is specified the fused A/B block can be in any of the five locations around
the permutation of the letters CDEF . Thus we have 2 · 4! · 5 = 240 total orderings.

Part (b): We want to enforce that A must be before B. Lets begin to construct a valid
sequence of characters by first placing the other letters CDEF , which can be done in 4! = 24
possible ways. Now consider an arbitrary permutation of CDEF such as DFCE. Then if we
place A in the left most position (such as as in ADFCE), we see that there are five possible
locations for the letter B. For example we can have ABDFCE, ADBFCE, ADFBCE,
ADFCBE, or ADFCEB. If A is located in the second position from the left (as in DAFCE)
then there are four possible locations for B. Continuing this logic we see that we have a total
of 5+ 4 +3 + 2+ 1 = 5(5+1)

2
= 15 possible ways to place A and B such that they are ordered

with A before B in each permutation. Thus in total we have 15 · 4! = 360 total orderings.

Part (c): Lets solve this problem by placing A, then placing B and then placing C. Now
we can place these characters at any of the six possible character locations. To explicitly
specify their locations lets let the integer variables n0, n1, n2, and n3 denote the number of
blanks (from our total of six) that are before the A, between the A and the B, between the
B and the C, and after the C. By construction we must have each ni satisfy

ni ≥ 0 for i = 0, 1, 2, 3 .

In addition the sum of the ni’s plus the three spaces occupied by A, B, and C must add to
six or

n0 + n1 + n2 + n3 + 3 = 6 ,

or equivalently
n0 + n1 + n2 + n3 = 3 .



The number of solutions to such integer equalities is discussed in the book. Specifically,
there are

(

3 + 4 − 1
4 − 1

)

=

(

6
3

)

= 20 ,

such solutions. For each of these solutions, we have 3! = 6 ways to place the three other
letters giving a total of 6 · 20 = 120 arraignments.

Part (d): For this problem A must be before B and C must be before D. Let begin to
construct a valid ordering by placing the letters E and F first. This can be done in two ways
EF or FE. Next lets place the letters A and B, which if A is located at the left most position
as in AEF , then B has three possible choices. As in Part (b) from this problem there are
a total of 3 + 2 + 1 = 6 ways to place A and B such that A comes before B. Following the
same logic as in Part (b) above when we place C and D there are 5 + 4 + 3 + 2 + 1 = 15
possible placements. In total then we have 15 · 6 · 2 = 180 possible orderings.

Part (e): There are 2! ways of arranging A and B, 2! ways of arranging C and D, and 2!
ways of arranging the remaining letters E and F . Lets us first place the blocks of letters
consisting of the pair A and B which can be placed in any of the positions around E and F .
There are three such positions. Next lets us place the block of letters consisting of C and
D which can be placed in any of the four positions (between the E, F individual letters, or
the A and B block). This gives a total number of arrangements of

2! · 2! · 2! · 3 · 4 = 96 .

Part (f): E can be placed in any of five choices, first, second, third, fourth or fifth. Then
the remaining blocks can be placed in 5! ways to get in total 5(5!) = 600 arrangement’s.

Problem 2 (counting seatings of people)

We have 4! arrangements of the Americans, 3! arrangements of the French, and 3! arrange-
ments of the Britch and then 3! arrangements of these groups giving

4! · 3! · 3! · 3! ,

possible arringments.

Problem 3 (counting presidents)

Part (a): With no restrictions we must select three people from ten. This can be done in
(

10
3

)

ways. Then with these three people there are 3! ways to specify which person is the

president, the treasurer, etc. Thus in total we have
(

10
3

)

· 3! =
10!

7!
= 720 ,



possible choices.

Part (b): If A and B will not searve together we can construct the total number of choices
by considering clubs consisting of instances with A included but no B, B included by no A,
and finally neither A or B included. This can be represented as

1 ·
(

8
2

)

+ 1 ·
(

8
2

)

+ ·
(

8
3

)

= 112 .

This result needs to again be multipled by 3! as in Part (a) of this problem. When we do so
we find we obtain 672.

Part (c): In the same way as in Part (b) of this problem lets count first the number of clubs
with C and D in them and second the number of clubs without C and D in them. This
number is

(

8
1

)

+

(

8
3

)

= 64 .

Again multiplying by 3! we find a total number of 3! · 64 = 384 clubs.

Part (d): For E to be an officer means that E must be selected as a club member. The

number of other members that can be selected is given by

(

9
2

)

= 36. Again multiplying

this by 3! gives a total of 216 clubs.

Part (e): If for F to serve F must be a president we have two cases. The first is where F
serves and is the president and the second where F does not serve. When F is the president
we have two permutations for the jobs of the other two selected members. When F does not
serve, we have 3! = 6 possible permutions in assigning titles amoung the selected people. In
total then we have

2

(

9
2

)

+ 6

(

9
3

)

= 576 ,

possible clubs.

Problem 4 (anwsering questions)

She must select seven questions from ten, which can be done in

(

10
7

)

= 120 ways. If she

must select at least three from the first five then she can choose to anwser three, four or all
five of the questions. Counting each of these choices in tern, we find that she has

(

5
3

)(

5
4

)

+

(

5
4

)(

5
3

)

+

(

5
5

)(

5
2

)

= 110 .

possible ways.



Problem 5 (dividing gifts)

We have

(

7
3

)

ways to select three gifts for the first child, then

(

4
2

)

ways to select two

gifts for the second, and finally

(

2
2

)

for the third child. Giving a total of

(

7
3

)

·
(

4
2

)

·
(

2
2

)

= 210 ,

arrangements.

Problem 6 (license plates)

We can pick the location of the three letters in

(

7
3

)

ways. Once these positions are selected

we have 263 different combinations of letters that can be placed in the three spots. From
the four remaining slots we can place 104 different digits giving in total

(

7
3

)

· 263 · 104 ,

possible seven place license plates.

Problem 7 (a simple combinatorial argument)

Remember that the expression

(

n
r

)

counts the number of ways we can select r items from

n. Notice that once we have specified a particular selection of r items, by construction we
have also specified a particular selection of n − r items, i.e. the remaining ones that are
unselected. Since for each specification of r items we have an equivalent selection of n − r

items, the number of both i.e.

(

n
r

)

and

(

n
n − r

)

must be equal.

Problem 8 (counting n-digit numbers)

Part (a): To have no to consecutive digits equal, we can select the first digit in one of ten
possible ways. The next digit in one of nine possible ways (we can’t use the digit we selected
for the first position). For the third digit we have three possible choices, etc. Thus in total
we have

10 · 9 · 9 · · · 9 = 10 · 9n−1 ,

possible digits.



Part (b): We now want to count the number of n-digit numbers where the digit 0 appears i

times. Lets pick the locations where we want to place the zeros. This can be done in

(

n
i

)

ways. We then have nine choices for the other digits to place in the other n − i locations.
This gives 9n−i possible enoumerations for non-zero digits. In total then we have

(

n
i

)

9n−i ,

n digit numbers with i zeros in them.

Problem 9 (selecting three students from three classes)

Part (a): To choose three students from 3n total students can be done in

(

3n
3

)

ways.

Part (b): To pick three students from the same class we must first pick the class to draw

the student from. This can be done in

(

3
1

)

= 3 ways. Once the class has been picked we

have to pick the three students in from the n in that class. This can be done in

(

n
3

)

ways.

Thus in total we have

3

(

n
3

)

,

possible selections of three students all from one class.

Part (c): To get two students in the same class and another in a different class, we must

first pick the class from which to draw the two students from. This can be done in

(

3
1

)

= 3

ways. Next we pick the other class from which to draw the singleton student from. Since
there are two possible classes to select this student from this can be done in two ways. Once
both of these classes are selected we pick the individual two and one students from their

respective classes in

(

n
2

)

and

(

n
1

)

ways respectively. Thus in total we have

3 · 2 ·
(

n
2

)(

n
1

)

= 6n
n(n − 1)

2
= 3n2(n − 1) ,

ways.

Part (d): Three students (all from a different class) can be picked in

(

n
1

)3

= n3 ways.

Part (e): As an identity we have then that

(

3n
3

)

= 3

(

n
3

)

+ 3n2(n − 1) + n3 .



We can check that this expression is correct by expanding each side. Expanding the left
hand side we find that

(

3n
3

)

=
3n!

3!(3n − 3)!
=

3n(3n − 1)(3n − 2)

6
=

9n3

2
− 9n2

2
+ n .

While expanding the right hand side we find that

3

(

n
3

)

+ 3n2(n − 1) + n3 = 3
n!

3!(n − 3)!
+ 3n3 − 3n2 + n3

=
n(n − 1)(n − 2)

2
+ 4n3 − 3n2

=
n(n2 − 3n + 2)

2
+ 4n3 − 3n2

=
n3

2
− 3n2

2
+ n + 4n3 − 3n2

=
9n3

2
− 9n2

2
+ n ,

which is the same, showing the equivalence.

Problem 10 (counting five digit numbers with no triple counts)

Lets first enumerate the number of five digit numbers that can be constructed with no
repeated digits. Since we have nine choices for the first digit, eight choices for the second
digit, seven choices for the third digit etc. We find the number of five digit numbers with no
repeated digits given by 9 · 8 · 7 · 6 · 5 = 9!

4!
= 15120.

Now lets count the number of five digit numbers where one of the digits 1, 2, 3, · · · , 9 repeats.
We can pick the digit that will repeat in nine ways and select its position in the five digits

in

(

5
2

)

ways. To fill the remaining three digit location can be done in 8 · 7 · 6 ways. This

gives in total

9 ·
(

5
2

)

· 8 · 7 · 6 = 30240 .

Lets now count the number five digit numbers with two repeated digits. To compute this

we might argue as follows. We can select the first digit and its location in 9 ·
(

5
2

)

ways.

We can select the second repeated digit and its location in 8 ·
(

3
2

)

ways. The final digit

can be selected in seven ways, giving in total

9

(

5
2

)

· 8
(

3
2

)

· 7 = 15120 .

We note, however, that this analysis (as it stands) double counts the true number of five
digits numbers with two repeated digits. This is because in first selecting the first digit from



nine classes and then selecting the second digit from eight choices the total two digits chosen
can actually be selected in the opposite order but placed in same spots from among our five
digits. Thus we have to divide the above number by two giving

15120

2
= 7560 .

So in total we have by summing up all these mutually exclusive events we find that the total
number of five digit numbers allowing repeated digits is given by

9 · 8 · 7 · 6 · 5 + 9

(

5
2

)

· 8 · 7 · 6 +
1

2
· 9 ·

(

5
2

)

8

(

3
2

)

· 7 = 52920 .

Problem 11 (counting first round winners)

Lets consider a simple case first and then generalize this result. Consider some symbolic
players denoted by A, B, C, D, E, F . Then we can construct a pairing of players by first
selecting three players and then ordering the remaining three players with respect to the
first chosen three. For example, lets first select the players B, E, and F . Then if we want A
to play E, C to play F , and D to play B we can represent this graphically by the following

B E F

D A C ,

where the players in a given fixed column play each other. From this we can select three
different winners by selecting who wins each match. This can be done in 23 total ways.
Since we have two possible choices for the winner of the first match, two possible choices for
the winner of the second match, and finally two possible choices for the winner of the third
match. Thus two generalize this procedure to 2n people we must first select n players from

the 2n to for the “template” first row. This can be done in

(

2n
n

)

ways. We then must

select one of the n! orderings of the remaining n players to form matches with. Finally, we
must select winners of each match in 2n ways. In total we would then conclude that we have

(

2n
n

)

· n! · 2n =
(2n)!

n!
· 2n ,

total first round results. The problem with this is that it will double count the total number
of pairings. It will count the pairs AB and BA as distinct. To remove this over counting we
need to divide by the total number of ordered n pairs. This number is 2n. When we divide
by this we find that the total number of first round results is given by

(2n)!

n!
.

Problem 12 (selecting committees)

Since we must select a total of six people consisting of at least three women and two men,
we could select a committee with four women and two mean or a committee with three



woman and three men. The number of ways of selecting this first type of committee is given

by

(

8
4

)(

7
2

)

. The number of ways to select the second type of committee is given by
(

8
3

)(

7
3

)

. So the total number of ways to select a committee of six people is

(

8
4

)(

7
2

)

+

(

8
3

)(

7
3

)

Problem 13 (the number of different art sales)

Let Di be the number of Dalis collected/bought by the i-th collector, Gi be the number of
van Goghs collected by the i-th collector, and finally Pi the number of Picassos’ collected by
the i-th collector when i = 1, 2, 3, 4, 5. Then since all paintings are sold we have the following
constraints on Di, Gi, and Pi,

5
∑

i=1

Di = 4 ,
5
∑

i=1

Gi = 5 ,
5
∑

i=1

Pi = 6 .

Along with the requirements that Di ≥ 0, Gi ≥ 0, and Pi ≥ 0. Remembering that the
number of solutions to an equation like

x1 + x2 + · + xr = n ,

when xi ≥ 0 is given by

(

n + r − 1
r − 1

)

. Thus the number of solutions to the first equation

above is given by

(

4 + 5 − 1
5 − 1

)

=

(

8
4

)

= 70, the number of solutions to the second

equation is given by

(

5 + 5 − 1
5 − 1

)

=

(

9
4

)

= 126, and finally the number of solutions to

the third equation is given by

(

6 + 5 − 1
5 − 1

)

=

(

10
4

)

= 210. Thus the total number of

solutions is given by the product of these three numbers. We find that

(

8
4

)(

9
4

)(

10
4

)

= 1852200 ,

See the Matlab file chap 1 st 13.m for these calculations.

Problem 14 (counting vectors that sum to less than k)

We want to evaluate the number of solutions to
∑n

i=1 xi ≤ k for k ≥ n, and xi a positive
integer. Now since the smallest value that

∑n
i=1 xi can be under these conditions is given

when xi = 1 for all i and gives a resulting sum of n. Now we note that for this problem the
sum

∑n
i=1 xi take on any value greater than n up to and including k. Consider the number



of solutions to
∑n

i=1 xi = j when j is fixed such that n ≤ j ≤ k. This number is given by
(

j − 1
n − 1

)

. So the total number of solutions is given by summing this expression over j for

j ranging from n to k. We then find the total number of vectors (x1, x2, · · · , xn) such that
each xi is a positive integer and

∑n
i=1 xi ≤ k is given by

k
∑

j=n

(

j − 1
n − 1

)

.

Problem 15 (all possible passing students)

With n total students, lets assume that k people pass the test. These k students can be

selected in

(

n
k

)

ways. All possible orderings or rankings of these k people is given by k!

so that the we have
(

n
k

)

k! ,

different possible orderings when k people pass the test. Then the total number of possible
test postings is given by

n
∑

k=0

(

n
k

)

k! .

Problem 16 (subsets that contain at least one number)

There are

(

20
4

)

subsets of size four. The number of subsets that contain at least one of

the elements 1, 2, 3, 4, 5 is the complement of the number of subsets that don’t contain any of

the elements 1, 2, 3, 4, 5. This number is

(

15
4

)

, so the total number of subsets that contain

at least one of 1, 2, 3, 4, 5 is given by

(

20
4

)

−
(

15
4

)

= 4845 − 1365 = 3480 .

Problem 17 (a simple combinatorial identity)

To show that
(

n
2

)

=

(

k
2

)

+ k(n − k) +

(

n − k
2

)

for 1 ≤ k ≤ n ,



is true, begin by expanding the right hand side (RHS) of this expression. Using the definition
of the binomial coefficients we obtain

RHS =
k!

2!(k − 2)!
+ k(n − k) +

(n − k)!

2!(n − k − 2)!

=
k(k − 1)

2
+ k(n − k) +

(n − k)(n − k − 1)

2

=
1

2

(

k2 − k + kn − k2 + n2 − nk − n − kn + k2 + k
)

=
1

2

(

n2 − n
)

.

Which we can recognize as equivalent to

(

n
2

)

since from its definition we have that

(

n
2

)

=
n!

2!(n − 2)!
=

n(n − 1)

2
.

proving the desired equivalence. A combinatorial argument for this expression can be given

in the following way. The left hand side

(

n
2

)

represents the number of ways to select

two items from n. Now for any k (with 1 ≤ k ≤ n) we can think about the entire set of n
items as being divided into two parts. The first part will have k items and the second part
will have the remaining n − k items. Then by considering all possible halves the two items
selected could come from will yield the decomposition shown on the right hand side of the

above. For example, we can draw our two items from the initial k in the first half in

(

k
2

)

ways, from the second half (which has n−k elements) in

(

n − k
2

)

ways, or by drawing one

element from the set with k elements and another element from the set with n− k elements,
in k(n − k) ways. Summing all of these terms together gives

(

k
2

)

+ k(n − k) +

(

n − k
2

)

for 1 ≤ k ≤ n ,

as an equivalent expression for

(

n
2

)

.



Chapter 2 (Axioms of Probability)

Chapter 2: Problems

Problem 1 (the sample space)

The sample space consists of the possible experimental outcomes, which in this case is given
by

{(R, R), (R, G), (R, B), (G, R), (G, G), (G, B), (B, R), (B, G), (B, B)} .

If the first marble is not replaced then our sample space loses all “paired” terms in the above
(i.e. terms like (R, R)) and it becomes

{(R, G), (R, B), (G, R), (G, B), (B, R), (B, G)} .

Problem 2 (the sample space of continually rolling a die)

The sample space consists of all possible die rolls to obtain a six. For example we have

{(6), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (1, 1, 6), (1, 2, 6), · · · , (2, 1, 6), (2, 2, 6) · · ·}

The points in En are all sequences of rolls with n elements in them, so that ∪∞
1 En is all

possible sequences ending with a six. Since a six must happen eventually, we have (∪∞
1 En)c =

φ.

Problem 8 (mutually exclusive events)

Since A and B are mutually exclusive then P (A ∪ B) = P (A) + P (B).

Part (a): To calculate the probability that either A or B occurs we evaluate P (A ∪ B) =
P (A) + P (B) = 0.3 + 0.5 = 0.8

Part (b): To calculate the probability that A occurs but B does not we want to evaluate
P (A\B). This can be done by considering

P (A ∪ B) = P (B ∪ (A\B)) = P (B) + P (A\B) ,

where the last equality is due to the fact that B and A\B are mutually independent. Using
what we found from part (a) P (A ∪ B) = P (A) + P (B), the above gives

P (A\B) = P (A) + P (B) − P (B) = P (A) = 0.3 .



Part (c): To calculate the probability that both A and B occurs we want to evaluate
P (A ∩ B), which can be found by using

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) .

Using what we know in the above we have that

P (A ∩ B) = P (A) + P (B) − P (A ∪ B) = 0.8 − 0.3 − 0.5 = 0 ,

Problem 9 (accepting credit cards)

Let A be the event that a person carries the American Express card and B be the event that
a person carries the VISA card. Then we want to evaluate P (∪B), the probability that a
person carries the American Express card or the person carries the VISA card. This can be
calculated as

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 0.24 + 0.64 − 0.11 = 0.77 .

Problem 10 (wearing rings and necklaces)

Let P (A) be the probability that a student wears a ring. Let P (B) be the probability that
a student wears a necklace. Then from the information given we have that

P (A) = 0.2

P (B) = 0.3

P ((A ∪ B)c) = 0.3 .

Part (a): We desire to calculate for this subproblem P (A ∪ B), which is given by

P (A ∪ B) = 1 − P ((A ∪ B)c) = 1 − 0.6 = 0.4 ,

Part (b): We desire to calculate for this subproblem P (AB), which can be calculated by
using the inclusion/exclusion identity for two sets which is

P (A ∪ B) = P (A) + P (B) − P (AB) .

so solving for P (AB) in the above we find that

P (AB) = P (A) + P (B) − P (A ∪ B) = 0.2 + 0.3 − 0.4 = 0.1 .

Problem 11 (smoking cigarettes v.s cigars)

Let A be the event that a male smokes cigarettes and let B be the event that a male smokes
cigars. Then the data given is that P (A) = 0.28, P (B) = 0.07, and P (AB) = 0.05.



Part (a): We desire to calculate for this subproblem P ((A∪B)c), which is given by (using
the inclusion/exclusion identity for two sets)

P ((A ∪ B)c) = 1 − P (A ∪ B)

= 1 − (P (A) + P (B) − P (AB))

= 1 − 0.28 − 0.07 + 0.05 = 0.7 .

Part (b): We desire to calculate for this subproblem P (B ∩Ac) We will compute this from
the identity

P (B) = P ((B ∩ Ac) ∪ (B ∩ A)) = P (B ∩ Ac) + P (B ∩ A) ,

since the events B ∩ Ac and B ∩ A are mutually exclusive. With this identity we see that
the event that we desire the probability of (B ∩ Ac) is given by

P (B ∩ Ac) = P (B) − P (A ∩ B) = 0.07 − 0.05 = 0.02 .

Problem 12 (language probabilities)

Let S be the event that a student is in a Spanish class, let F be the event that a student is
in a French class and let G be the event that a student is in a German class. From the data
given we have that

P (S) = 0.28 , P (F ) = 0.26 , P (G) = 0.16

P (S ∩ F ) = 0.12 , P (S ∩ G) = 0.04 , P (F ∩ G) = 0.06

P (S ∩ F ∩ G) = 0.02 .

Part (a): We desire to compute

P (¬(S ∪ F ∪ G)) = 1 − P (S ∪ F ∪ G) .

Define the event A to be A = S ∪ F ∪ G, then we will use the inclusion/exclusion identity
for three sets which expresses P (A) = P (S ∪ F ∪ G) in terms of set intersections as

P (A) = P (S) + P (F ) + P (G) − P (S ∩ F ) − P (S ∩ G) − P (F ∩ G) + P (S ∩ F ∩ G)

= 0.28 + 0.26 + 0.16 − 0.12 − 0.04 − 0.06 + 0.02 = 0.5 .

So that we have that P (¬(S ∪ F ∪ G)) = 1 − 0.5 = 0.5.

Part (b): Using the definitions of the events above for this subproblem we want to compute

P (S ∩ (¬F ) ∩ (¬G)) , P ((¬S) ∩ F ∩ (¬G)) , P ((¬S) ∩ (¬F ) ∩ G) .

As these are all of the same form, lets first consider P (S ∩ (¬F ) ∩ (¬G)), which equals
P (S∩(¬(F ∪G))). Now decomposing S into two disjoint sets S∩(¬(F ∪G)) and S∩(F ∪G)
we see that P (S) can be written as

P (S) = P (S ∩ (¬(F ∪ G))) + P (S ∩ (F ∪ G)) .



Now since we know P (S) if we knew P (S∩ (F ∪G)) we can compute the desired probability.
Distributing the intersection in S ∩ (F ∪ G), we see that we can write this set as

S ∩ (F ∪ G) = (S ∩ F ) ∪ (S ∩ G) .

So that P (S ∩ (F ∪ G)) can be computed (using the inclusion/exclusion identity) as

P (S ∩ (F ∪ G)) = P ((S ∩ F ) ∪ (S ∩ G))

= P (S ∩ F ) + P (S ∩ G) − P ((S ∩ F ) ∩ (S ∩ G))

= P (S ∩ F ) + P (S ∩ G) − P (S ∩ F ∩ G)

= 0.12 + 0.04 − 0.02 = 0.14 .

Thus

P (S ∩ (¬(F ∪ G))) = P (S) − P (S ∩ (F ∪ G))

= 0.28 − 0.14 = 0.14 .

In the same way we find that

P ((¬S) ∩ F ∩ (¬G)) = P (F ) − P (F ∩ (S ∪ G))

= P (F ) − (P (F ∩ S) + P (F ∩ G) − P (F ∩ S ∩ G)

= 0.26 − 0.12 − 0.06 + 0.02 = 0.1 .

and that

P ((¬S) ∩ (¬F ) ∩ G) = P (G) − P (G ∩ (S ∪ F ))

= P (G) − (P (G ∩ S) + P (G ∩ F ) − P (S ∩ F ∩ G)

= 0.16 − 0.04 − 0.06 + 0.02 = 0.08 .

With all of these intermediate results we can compute that the probability that a student is
taking exactly one language class is given by the sum of the probabilities of the three events
introduced at the start of this subproblem. We find that this sum is given by

0.14 + 0.1 + 0.08 = 0.32 .

Part (c): If two students are chosen randomly the probability that at least one of them is
taking a language class is the complement of the probability that neither is taking a language
class. From part a of this problem we know that fifty students are not taking a language
class, from the one hundred students at the school. Therefore the probability that we select
two students both not in a language class is given by

(

50
2

)

(

100
2

) =
1225

4950
=

49

198
,

thus the probability of drawing two students at least one of which is in a language class is
given by

1 − 49

198
=

149

198
.



Problem 13 (the number of paper readers)

Before we begin to solve this problem lets take the given probabilities of intersections of
events and convert them into probabilities of unions of events. Then if we need these values
later in the problem we will have them. This can be done with the inclusion-exclusion
identity. For two general sets A and B the inclusion-exclusion identity is

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) .

Using this we can evaluate the probabilities of union of events.

P (II ∪ III) = P (II) + P (III) − P (II ∩ III) = 0.3 + 0.05 − 0.04 = 0.31

P (I ∪ II) = P (I) + P (II) − P (I ∩ II) = 0.1 + 0.3 − 0.08 = 0.32

P (I ∪ III) = P (I) + P (III) − P (I ∩ III) = 0.1 + 0.05 − 0.02 = 0.13

P (I ∪ II ∪ III) = P (I) + P (II) + P (III) − P (I ∩ II) − P (I ∩ III)

− P (II ∩ III) + P (I ∩ II ∩ III)

= 0.1 + 0.3 + 0.05 − 0.08 − 0.02 − 0.04 + 0.01 = 0.32 .

We will now use these results in the following whereever needed.

Part (a): The requested proportion of people who read only one paper can be represented
from three disjoint probabilities/proportions:

1. P (I ∩ ¬II ∩ ¬III) which represents the proportion of people who only read paper I.

2. P (¬I ∩ II ∩ ¬III) which represents the proportion of people who only read paper II.

3. P (¬I ∩ ¬II ∩ III) which represents the proportion of people who only read paper III.

The sum of these three probabilities will be the total number of people who read only one
newspaper. To compute the first probability (P (I ∩ ¬II ∩ ¬III)) we begin by noting that

P (I ∩ ¬II ∩ ¬III) + P (I ∩ ¬(¬II ∩ ¬III)) = P (I) ,

which is true since we can obtain the event I by intersecting it with two sets that union to
the entire sample space i.e. ¬II∩¬III, and its negation ¬(¬II∩¬III). With this expression
we can evaluate our desired probability P (I∩¬II∩¬III) using the above. Simple subtraction
gives

P (I ∩ ¬II ∩ ¬III) = P (I) − P (I ∩ ¬(¬II ∩ ¬III))

= P (I) − P (I ∩ (II ∪ III))

= P (I) − P ((I ∩ II) ∪ (I ∩ III)) .

Where the last two equations follows from the first by some simple set theory. Since the
problem statement gives the probabilities of the events I ∩ II and I ∩ III, to be able to
further evaluate the right hand side of the expression above requires the ability to compute



probabilities of unions of such sets. This can be done with the inclusion-exclusion identity
which for two general sets A and B is given by P (A∪B) = P (A)+P (B)−P (A∩B). Thus
the above desired probability then becomes

P (I ∩ ¬II ∩ ¬III) = P (I) − P (I ∩ II) − P (I ∩ III) + P ((I ∩ II) ∩ (I ∩ III))

= P (I) − P (I ∩ II) − P (I ∩ III) + P (I ∩ II ∩ III)

= 0.1 − 0.08 − 0.02 + 0.01 = 0.01 ,

using the numbers provided. For the probability P (¬I ∩ II ∩ ¬III) of we can use the work
earlier with the substitutions

I → II

II → I .

Since in the first probability we computed the event not negated is event I, while in the
second probability this is event II. This substitution gives

P (¬I ∩ II ∩ ¬III) = P (II) − P (II ∩ I) − P (II ∩ III) + P (II ∩ I ∩ III)

= 0.3 − 0.08 − 0.04 + 0.01 = 0.19 ,

For the probability P (¬I ∩ ¬II ∩ III) of we can use the work earlier with the substitutions

I → III

III → I .

To give

P (¬I ∩ ¬II ∩ III) = P (III) − P (III ∩ II) − P (III ∩ I) + P (I ∩ II ∩ III)

= 0.05 − 0.04 − 0.02 + 0.01 = 0.00 .

Finally the number of people who read only one newspaper is given by

0.01 + 0.19 + 0.00 = 0.2 ,

so the number of people who read only one newspaper is given by 0.2 × 105 = 20, 000.

Part (b): The requested proportion of people who read at least two newspapers can be
represented from three disjoint probabilities/proportions:

1. P (I ∩ II ∩ ¬III)

2. P (I ∩ ¬II ∩ III)

3. P (¬I ∩ II ∩ III)

4. P (I ∩ II ∩ III)



We can compute each in the following ways. For the first probability we note that

P (¬I ∩ II ∩ III) + P (I ∩ II ∩ III) = P (II ∩ III)

= P (II) + P (III) − P (II ∪ III)

= 0.3 + 0.5 − 0.31 = 0.04 .

So that P (¬I∩ II∩ III) = 0.04−P (I∩ II∩ III) = 0.04− 0.01 = 0.03. Using this we find that

P (I ∩ ¬II ∩ III) = P (I ∩ III) − P (I ∩ II ∩ III)

= P (I) + P (III) − P (I ∪ III) − P (I ∩ II ∩ III)

= 0.1 + 0.5 − 0.13 − 0.01 = 0.01 ,

and that

P (I ∩ II ∩ ¬III) = P (I ∩ II) − P (I ∩ II ∩ III)

= P (I) + P (II) − P (I ∪ II) − P (I ∩ II ∩ III)

= 0.1 + 0.3 − 0.32 − 0.01 = 0.07 .

We also have P (I ∩ II ∩ III) = 0.01, from the problem statement. Combining all of this
information the total percentage of people that read at least two newspapers is given by

0.03 + 0.01 + 0.07 + 0.01 = 0.12 ,

so the total number of people is given by 0.12 × 105 = 12000.

Part (c): For this part we to compute P ((I ∩ II) ∪ (III ∩ II)), which gives

P ((I ∩ II) ∪ (III ∩ II)) = P (I ∩ II) + P (III ∩ II) − P (I ∩ II ∩ III)

= 0.08 + 0.04 − 0.01 = 0.11 ,

so the number of people read at least one morning paper and one evening paper is 0.11×105 =
11000.

Part (d): To not read any newspaper we are looking for

1 − P (I ∪ II ∪ III) = 1 − 0.32 = 0.68 ,

so the number of people is 68000.

Part (e): To read only one morning paper and one evening paper is expressed as

P (I ∪ II ∪ ¬III) + P (¬I ∩ II ∩ III) .

The first expression has been calculated as 0.01, while the second expansion has been calcu-
lated as 0.03 giving a total 0.04 giving a total of 40000 people who read I as their morning
paper and II as their evening paper or who read III as their morning paper and II as their
evening paper. This number excludes the number who read all three papers.



Problem 14 (an inconsistent study)

Following the hint given in the book, we let M denote the set of people who are married,
W the set of people who are working professionals, and G the set of people who are college
graduates. If we choose a random person and ask what the probability that he/she is either
married or working or a graduate we are looking to compute P (M ∪ W ∪ G). By the
inclusion/exclusion theorem we have that the probability of this event is given by

P (M ∪ W ∪ G) = P (M) + P (W ) + P (G)

− P (M ∩ W ) − P (M ∩ G) − P (W ∩ G)

+ P (M ∩ W ∩ G) .

From the given data each individual event probability can be estimated as

P (M) =
470

1000
, P (G) =

525

1000
, P (W ) =

312

1000

and each pairwise event probability can be estimated as

P (M ∩ G) =
147

1000
, P (M ∩ W ) =

86

1000
, P (W ∩ G) =

42

1000

Finally the three-way event probability can be estimated as

P (M ∩ W ∩ G) =
25

1000
.

Using these numbers in the inclusion/exclusion formula above we find that

P (M ∪ W ∪ G) = 0.47 + 0.525 + 0.312 − 0.147 − 0.086 − 0.042 + 0.025

= 1.057 > 1 ,

in contradiction to the rules of probability.

Problem 15 (probabilities of various poker hands)

Part (a): We must count the number of ways to obtain five cards of the same suit. We can

first pick the suit in

(

4
1

)

= 4 ways afterwhich we must pick five cards in

(

13
5

)

ways.

So in total we have

4

(

13
5

)

= 5148 ,

ways to pick cards in a flush giving a probability of

4

(

13
5

)

(

52
5

) = 0.00198 .



Part (b): We can select the first denomination “a” in thirteen ways with

(

4
2

)

ways to

obtain the faces for these two cards. We can select the second denomination “b” in twelve

ways with

(

4
1

)

possible faces, the third denomination in eleven ways with four faces, the

fourth denomination in ten ways again with four possible faces. The selection of the cards
“b”, “c”, and “d” can be permuted in any of the 3! ways and the same hand results. Thus
we have in total for the number of paired hands the following count

13

(

4
2

)

· 12

(

4
1

)

· 11

(

4
1

)

· 10

(

4
1

)

3!
= 1098240 .

Giving a probability of 0.42256.

Part (c): To calculate the number of hands with two pairs we have

(

13
1

)(

4
2

)

ways to

select the “a” pair. Then

(

12
1

)(

4
2

)

ways to select the “b” pair. Since first selecting the

“a” pair and then the “b” pair results in the same hand as selecting the “b” pair and then
the “a” pair this direct product over counts the total number of “a” and “b” pairs by 2! = 2.

Finally, we have

(

11
1

)(

4
1

)

ways to pick the last card in the hand. Thus we have

(

13
1

)(

4
2

)

·
(

12
1

)(

4
2

)

2!
·
(

11
1

)(

4
1

)

= 123552 ,

total number of hands. Giving a probability of 0.04754.

Part (d): We have

(

13
1

)(

4
3

)

ways to pick the “a” triplet. We can then pick “b” in
(

12
1

)

·4 and pick “c” in

(

11
1

)

·4. This combination over counts by two so that the total

number of three of a kind hands is given by

(

13
1

)

·
(

4
3

)

(

12
1

)

· 4
(

11
1

)

· 4

2!
= 54912 ,

giving a probability of 0.021128.

Part (e): We have 13 ·
(

4
4

)

ways to pick the “a” denomination and twelve ways to pick

the second card with a possible four faces, giving in total 13 · 12 · 4 = 624 possible hands.
This gives a probability of 0.00024.



Problem 16 (poker dice probabilities)

Part (a): Using the results from parts (b)-(g) for this problem our probability of interest is

1 − Pb − Pc − Pd − Pe − Pf − Pg ,

where Pi is the probability computed during part “i” of this problem. Using the values
provided in the problem we can evaluate the above to 0.0925.

Part (b): So solve this problem we will think of the die’s outcome as being a numerical
specifications (one through six) of five “slots”. In this specification there are 65 total out-
comes for a trial with the five dice. To determine the number of one pair “hands”, we note
that we can pick the number in the pair in six ways and their locations from the five bins in
(

5
2

)

ways. Another number in the hand can be chosen from the five remaining numbers

and placed in any of the remaining bins in

(

3
1

)

ways. Continuing this line of reasoning

for the values and placements of the remaining two die, we have

6 ·
(

5
2

)

· 5
(

3
1

)

· 4
(

2
1

)

· 3
(

1
1

)

,

as the number of ordered placements of our four distinct numbers. Since the ordered place-
ment of the three different singleton numbers does not matter we must divide this result by
3!, which results in a value of 3600. Then the probability of one pair is given by

3600

65
= 0.4629 .

Part (c): A roll consisting of two pairs can be obtained by first selecting the numerical value
for the first pair. This can be done in six ways. The numerical value for the second pair can
be selected in five ways and the numerical value of the third die in four ways. We can place

the first pair in bins in

(

6
2

)

different ways, the second pair in bins in

(

4
2

)

ways, and

the remaining singleton number in bins in

(

1
1

)

ways. Giving a product representing the

number of orderings of two pairs as
(

6 ·
(

6
2

))(

5 ·
(

4
2

))(

4 ·
(

1
1

))

= 10800 .

This number represents an ordered sequence of three blocks of items. To compute the un-
ordered sequence of three items we need to divide this number by 3!, giving 1800. Combined
this gives a probability of obtaining two pair of

1800

65
= 0.2315 .

Part (c): We can pick the number for the digit that is repeated three times in six ways,
another digit in five ways and the final digit in four ways. The number of ways we can



place the three die with the same numeric value is given by

(

5
3

)

ways. So the number of

permutations of these three numbers is given by

6 · 5 · 4 ·
(

5
3

)

= 1200 .

This gives a probability of 1200
65 = 0.154.

Part (e): Assuming that a full house is five die, three and two of which the same numeric
value. The we can choose the two numbers represented on the die in six ways for the first
and in five ways for the second. In this case however that the order of the two numbers
chosen does matter, since if we change the order of the two numbers the number on the
triple changes the number on the double changes. Thus the probability of a full houses is
given by

6 · 5
65

= 0.00386 .

Part (f): To get four die with the same numeric value we must pick one special number

out of six in

(

6
1

)

ways representing the four common die. We then pick one more number

from the remaining five in

(

5
1

)

ways representing the number on the lone die. Thus we

have

(

6
1

)

·
(

5
1

)

ways to pick the two numbers to use in the selection of this hand. Since

the order of the two chosen numbers does not matter we need to divide that number by 2!
so the count of the number of arraignments is given by

(

6
1

)

·
(

5
1

)

2
= 15 .

This gives a requested probability of 15
65 = 0.001929.

Part (g): If all five die are the same then there are one of six possibilities (the six numbers
on a die). The total number of possible die throws is 65 = 7776 giving a probability to throw
this hand of

6

65
=

1

64
= 0.0007716 .

Problem 17 (randomly placing rooks)

A possible placement of a rook on the chess board can be obtained by specifying the row and
column at which we will locate our rook. Since there are eight rows and eight columns there
are 82 = 64 possible placements for a given rook. After we place each rook we obviously have
one less position where we can place the additional rooks. So the total number of possible
locations where we can place eight rooks is given by

64 · 63 · 62 · 61 · 60 · 59 · 58 · 57 ,



since the order of placement does not matter we must divide this number by 8! to get

64!

8!(64 − 8)!
=

(

64
8

)

= 4426165368 .

The number of locations where eight rooks can be placed who won’t be able to capture any
of the other is given by

82 · 72 · 62 · 52 · 42 · 32 · 22 · 12 ,

Which can be reasoned as follows. The first rook can be placed in 64 different places. Once
this rook is located we cannot place the next rook in the same row or column that the first
rook holds. This leaves seven choices for a row and seven choices for a column giving a total
of 72 = 49 possible choices. Since the order of these choices does not matter we will need to
divide this product by 8! giving a total probability of

8!2

8!
(

64
8

) = 9.109 10−6 ,

in agreement with the book.

Problem 18 (randomly drawing blackjack)

The total number of possible two card hands is given by

(

52
2

)

. We can draw an ace in

one of four possible ways i.e. in

(

4
1

)

ways. For blackjack the other card must be a ten or

a jack or a queen or a king (of any suite) and can be drawn in

(

4 + 4 + 4 + 4
1

)

=

(

16
1

)

possible ways. Thus the number of possible ways to draw blackjack is given by

(

4
1

)(

16
1

)

(

52
2

) = 0.048265 .

Problem 19 (symmetric dice)

We can solve this problem by considering the disjoint events that both die land on colors
given by red, black, yellow, or white. For the first die to land on red will happen with
probability 2/6, the same for the second die. Thus the probability that both die land on red
is given by

(

2

6

)2

.



Summing up all the probabilities for all the possible colors, we have a total probability of
obtaining the same color on both die given by

(

2

6

)(

2

6

)

+

(

2

6

)(

2

6

)

+

(

1

6

)(

1

6

)

+

(

1

6

)(

1

6

)

=
5

18
.

Problem 21 (the number of children)

Part (a): Let Pi be the probability that the family chosen has i children. Then we see from
the numbers provided that P1 = 4

20
= 1

5
, P2 = 8

20
= 2

5
, P3 = 5

20
= 1

4
, and P4 = 1

20
, assuming

a uniform probability of selecting any given family.

Part (b): We have

4(1) + 8(2) + 5(3) + 2(4) + 1(5) = 4 + 16 + 15 + 8 + 5 = 48 ,

total children. Then the probability a random child comes from a family with i children is
given by (and denoted by Pi) is P1 = 4

48
, P2 = 16

48
, P3 = 15

48
, P4 = 8

48
, and P5 = 5

48
.

Problem 22 (shuffling a deck of cards)

To have the ordering exactly the same we must have k tails in a row followed by n−k heads
in a row, where k = 0 to k = n. The probability of getting k tails followed by n− k heads is

(

1

2

)k (
1

2

)n−k

=

(

1

2

)n

Now since each of these outcomes is mutually exclusive to compute the total probability we
can sum this result for k = 0 to k = n to get

n
∑

k=0

(

1

2

)n

=
n + 1

2n
.

Problem 23 (a larger roll than the first)

We begin by constructing the sample space of possible outcomes. These numbers are com-
puted in table 3, where the row corresponds to the outcome of the first die through and
the column corresponds to the outcome of the second die through. In each square we have
placed a one if the number on the second die is strictly larger than the first. Since each
element of our sample space has a probability of 1/36, by enumeration we find that

15

36
=

5

12
,

is our desired probability.



1 2 3 4 5 6
1 0 1 1 1 1 1
2 0 0 1 1 1 1
3 0 0 0 1 1 1
4 0 0 0 0 1 1
5 0 0 0 0 0 1
6 0 0 0 0 0 0

Table 3: The elements of the sample space where the second die is strictly larger in value
than the first.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Table 4: The possible values for the sum of the values when two die are rolled.

Problem 24 (the probability the sum of the die is i)

As in Problem 23 we can explicitly enumerate these probabilities by counting the number
of times each occurrence happens, in Table 4 we have placed the sum of the two die in the
center of each square. Then by counting the number of squares where are sum equals each
number from two to twelve, we have

P2 =
1

36
, P7 =

6

36
=

1

6

P3 =
2

36
=

1

18
, P8 =

5

36

P4 =
3

36
=

1

12
, P9 =

4

36
=

1

9

P5 =
4

36
=

1

9
, P10 =

3

36
=

1

12

P6 =
5

36
, P11 =

2

36
=

1

18
, P12 =

1

36
.

Problem 25 (rolling a five before a seven)

A sum of five has a probability of P5 = 2
18

= 1
9

of occurring. A sum of seven has a
probability of P7 = 1

6
of occurring, so the probability that neither a five or a seven is

given by 1− 1
9
− 1

6
= 13

18
. Following the hint we let En be the event that a five occurs on the



n-th roll and no five or seven occurs on the n − 1-th rolls up to that point. Then

P (En) =

(

13

18

)n−1
1

9
,

since we want the probability that a five comes first, this can happen at roll number one
(n = 1), at roll number two (n = 2) or any subsequent roll. Thus the probability that a five
comes first is given by

∞
∑

n=1

(

13

18

)n−1
1

9
=

1

9

∞
∑

n=0

(

13

18

)n

=
1

9

1
(

1 − 13
18

) =
2

5
= 0.4 .

Problem 26 (winning at craps)

From Problem 24 we have computed the individual probabilities for various sum of two
random die. Following the hint, let Ei be the event that the initial die sum to i and that
the player wins. We can compute some of these probabilities immediately P (E2) = P (E3) =
P (E12) = 0, and P (E7) = P (E11) = 1. We now need to compute P (Ei) for i = 4, 5, 6, 8, 9, 10.
Again following the hint define Ei,n to be the event that the player initial sum is i and wins
on the n-th subsequent roll. Then

P (Ei) =
∞
∑

n=1

P (Ei,n) ,

since if we win, it must be either on the first, or second, or third, etc roll after the initial

roll. We now need to calculate the P (Ei,n) probabilities for each n. As an example of this
calculation first lets compute P (E4,n) which means that we initially roll a sum of four and
the player wins on the n-th subsequent roll. We will win if we roll a sum of a four or loose
if we roll a sum of a seven, while if roll anything else we continue, so to win when n = 1 we
see that

P (E4,1) =
1 + 1 + 1

36
=

1

12
,

since to get a sum of four we can roll pairs consisting of (1, 3), (2, 2), and (3, 1).

To compute P (E4,2) the rules of craps state that we will win if a sum of four comes up (with
probability 1

12
) and loose if a sum of a seven comes up (with probability 6

36
= 1

6
) and continue

playing if anything else is rolled. This last event (continued play) happens with probability

1 − 1

12
− 1

6
=

3

4
.

Thus P (E4,2) =
(

3
4

)

1
12

= 1
16

. Here the first 3
4

is the probability we don’t roll a four or a
seven on the n = 1 roll and the second 1

12
comes from rolling a sum of a four on the second

roll (where n = 2). In the same way we have for P (E4,3) the following

P (E4,3) =

(

3

4

)2
1

12
.



Here the first two factors of 3
4

are from the two rolls that “keep us in the game”, and the
factor of 1

12
, is the roll that allows us to win. Continuing in this in this manner we see that

P (E4,4) =

(

3

4

)3
1

12
,

and in general we find that

P (E4,n) =

(

3

4

)n−1
1

12
for n ≥ 1 .

To compute P (Ei,n) for other i, the derivations just performed, only change in the probabil-
ities required to roll the initial sum. We thus find that for other initial rolls (heavily using
the results of Problem 24) that

P (E5,n) =
1

9

(

1 − 1

9
− 1

6

)n−1

=
1

9

(

13

18

)n−1

P (E6,n) =
5

36

(

1 − 5

36
− 1

6

)n−1

=
5

36

(

25

36

)n−1

P (E8,n) =
5

36

(

1 − 5

36
− 1

6

)n−1

=
5

36

(

25

36

)n−1

P (E9,n) =
1

9

(

1 − 1

9
− 1

6

)n−1

=
1

9

(

13

18

)n−1

P (E10,n) =
1

12

(

1 − 1

12
− 1

6

)n−1

=
1

12

(

3

4

)n−1

.

To compute P (E4) we need to sum the results above. We have that

P (E4) =
1

12

∑

n≥1

(

3

4

)n−1

=
1

12

∑

n≥0

(

3

4

)n

=
1

12

1
(

1 − 3
4

) =
1

3
.

Note that this also gives the probability for P (E10). For P (E5) we find P (E5) = 2
5
, which

also equals P (E9). For P (E6) we find that P (E6) = 5
11

, which also equals P (E8). Then our
probability of winning craps is given by summing all of the above probabilities weighted by
the associated priors of rolling the given initial roll. We find by defining Ii to be the event
that the initial roll is i and W the event that we win at craps that

P (W ) = 0 P (I2) + 0 P (I3) +
1

3
P (I4) +

4

9
P (I5) +

5

9
P (I6)

+ 1 P (I7) +
5

9
P (I8) +

4

9
P (I9) +

1

3
P (I10) + 1 P (I11) + 0 P (I12) .

Using the results of Exercise 25 to evaluate P (Ii) for each i we find that the above summation
gives

P (W ) =
244

495
= 0.49292 .

These calculations are performed in the Matlab file chap 2 prob 26.m.



Problem 27 (drawing the first red ball)

We want the probability that A selects the first red ball. Since A draws first he will select
a red ball on the first draw with probability 3

10
. If he does not select a red ball B will draw

next and he must not draw a red ball (or the game will stop). The probability that A draws
a red ball on the third total draw is then

P3 =

(

1 − 3

10

)(

1 − 3

9

)(

3

8

)

.

Continuing this pattern we see that for A to draw a ball on the fifth total draw will happen
with probability

P5 =

(

1 − 3

10

)(

1 − 3

9

)(

1 − 3

8

)(

1 − 3

7

)(

3

6

)

,

and finally on the seventh total draw with probability

P7 =

(

1 − 3

10

)(

1 − 3

9

)(

1 − 3

8

)(

1 − 3

7

)(

1 − 3

6

)(

1 − 3

5

)(

3

4

)

.

If player A does not get a red ball after seven draws he will not draw a red ball before
player B. The total probability that player A draws a red ball first is given by the sum
of all these individual probabilities of these mutually exclusive events. In the Matlab code
chap 2 prob 27.m we evaluate this sum and find the probability that A wins given by

P (A) =
7

12
.

So the corresponding probability that B wins is 1− 7
12

= 5
12

showing the benefit to being the
first “player” in a game like this.

Problem 28 (sampling colored balls from an urn)

Part (a): We want the probability that each ball will be of the same color. This is given by

(

5
3

)

+

(

6
3

)

+

(

8
3

)

(

5 + 6 + 8
3

) = 0.8875 .

Part (b): The probability that all three balls are of different colors is given by

(

5
1

)(

6
1

)(

8
1

)

(

19
3

) = 0.247 .



If we replace the ball after drawing it, then the probabilities that each ball is the same color
is now given by

(

5

19

)3

+

(

6

19

)3

+

(

8

19

)3

= 0.124 .

while if we want three balls of different colors, then this happens with probability given by

(

5

19

)(

6

19

)(

8

19

)

= 0.3499 .

Problem 30 (the chess club)

Part (a): For Rebecca and Elise to be paired they must first be selected onto their respected
schools chess teams and then be paired in the tournament. Thus if S is the event that the
sisters play each other then

P (S) = P (R)P (E)P (Paired|R, E) ,

where R is the event that that Rebecca is selected for her schools chess team and E is the
event that Elise is selected for her schools team and Paired is the event that the two sisters
play each other. Computing these probabilities we have

P (R) =

(

1
1

)(

7
3

)

(

8
4

) =
1

2
,

and

P (E) =

(

1
1

)(

8
3

)

(

9
4

) =
4

9
,

and finally

P (Paired) =
1 · 3!

4!
=

1

4
.

so that P (S) = 1
2
· 4

9
· 1

4
= 1

18
.

Part (b): The event that Rebecca and Elise are chosen and then do not play each other
will occur with a probability of

P (R)P (E)P (Pairedc|R, E) =
1

2
· 4

9

(

1 − 1

4

)

=
1

6
.

Part (c): For this part we can have either (and these events are mutually exclusive) Rebecca
picked to represent her school or Elise picked to represent her school but not both and not

neither. Since

(

1
1

)(

7
3

)

is the number of ways to choose the team A with Rebecca as



a member and

(

8
4

)

are the number of ways to choose team B without having Elise as a

member, their product is the number of ways of choosing the first option above. This given
a probability of

(

1
1

)(

7
3

)

(

8
4

) ·

(

8
4

)

(

9
4

) =
5

18
.

In the same way the other probability is given by
(

7
4

)

(

8
4

) ·

(

1
1

)(

8
3

)

(

9
4

) =
2

9
.

Thus the probability we are after is the sum of the two probabilities above and is given by
9
18

= 1
2
.

Problem 31 (selecting basketball teams)

Part (a): On the first draw we will certainly get one of the team members. Then on the
second draw we must get any team member but the one that we just drew. This happens
with probability 2

3
. Finally, we must get the team member we have not drawn in the first

two draws. This happens with probability 1
3
. In total then, the probability to draw an entire

team is given by

1 · 2

3
· 1

3
=

2

9
.

Part (b): The probability the second player plays the same position as the first drawn
player is given by 1

3
, while the probability that the third player plays the same position as

the first two is given by 1
3
. Thus this event has a probability of

1

3
· 1

3
=

1

9
.

Problem 32 (a girl in the i-th position)

We can compute all permutations of the b + g people that have a girl in the i-th spot as
follows. We have g choices for the specific girl we place in the i-th spot. Once this girl is
selected we have b + g − 1 other people to place in the b + g − 1 slots around this i-th spot.
This can be done in (b+ g−1)! ways. So the total number of ways to place a girl at position
i is g(b + g − 1)!. Thus the probability of finding a girl in the i-th spot is given by

g(b + g − 1)!

(b + g)!
=

g

b + g
.



Problem 33 (a forest of elk)

Warning: for some reason I get a different answer than the result given in the back of the
book. Thus if someone finds something wrong with the logic below would they please let me
know.

After tagging the initial elk, the proportion of tagged elk is given by p = 5
20

= 1
4
. If N is

the random variable representing the number of previously tagged elk. Then after capturing
four more elk the probability that N = k of these elk have been tagged before is given by
the binomial probability density with parameters (n, p) = (4, 1

4
). Thus the probability that

two of the recently caught four have already been tagged is given by

P{N = 2} =

(

4
2

)(

1

4

)2(
3

4

)4−2

=
27

128
.

Problem 34 (the probability of a Yarborough)

We must not have a ten, a jack, a queen, or a king in our hand of thirteen cards. The
number of ways to select a hand that does not have any of these cards is equivalent to
selecting thirteen cards from among a set that does not contain any of the cards mentioned
above. Specifically this number is

(

52 − 4 − 4 − 4 − 4
13

)

(

52
13

) =

(

36
13

)

(

52
13

) = 0.0036 ,

a relatively small probability.

Problem 35 (selecting psychiatrists for a conference)

The probability that at least one psychologist is choose is given by considering all selections
of sets of psychologists that contain at least one

(

30
2

)(

24
1

)

+

(

30
1

)(

24
2

)

+

(

30
0

)(

24
3

)

(

54
3

) = 0.8363 .

Where in the numerator we have enumerated all possible selections of three people such that
at least one psychologist is chosen.



Problem 36 (choosing two identical cards)

Part (a): We have

(

52
2

)

possible ways to draw two cards from the 52 total. For us to

draw two aces, this can be done in

(

4
2

)

ways. Thus our probability is given by

(

4
2

)

(

52
2

) = 0.00452 .

Part (b): For the two cards to have the same value we can pick the value to represent in

thirteen ways and the two cards in

(

4
2

)

ways. Thus our probability is given by

13

(

4
2

)

(

52
2

) = 0.0588 .

Problem 37 (solving enough problems on an exam)

Part (a): The student has a probability of 7
10

= 0.7 of answering any question correctly.
Then from five questions the probability that she answers k questions correctly is given by
a binomial distribution with parameters (n, p) = (5, 0.7) or

P{X = k} =

(

5
k

)

pk(1 − p)5−k .

So to answer all five correctly will happen with probability of

P{X = 5} =

(

5
5

)

(0.7)5(0.3)0 = (0.7)5 = 0.168 .

Part (b): To answer at least four of the questions correctly will happen with probability

P{X = 4} + P{X = 5} =

(

5
4

)

(0.7)4(0.3)1 + 0.168 = 0.3601 + 0.168 = 0.5281 .

Problem 38 (two red socks)

We are told that three of the socks are red so that n − 3 are not red. When we select two
socks, the probability that they are both red is given by

3

n
· 2

n − 1
.



If we want this to be equal to 1
2

we must solve for n in the following expression

3

n
· 2

n − 1
=

1

2
⇒ n2 − n = 12 .

Using the quadratic formula this has a solution given by

n =
1 ±

√

1 + 4(1)(12)

2(1)
=

1 ± 7

2
.

Taking the positive solution we have that n = 4.

Problem 39 (five different hotels)

When the first person checks into the hotel, the next person will check into a different hotel
with probability 4

5
. The next person will check into a different hotel with probability 3

5
.

Thus the probability that we check into three different hotels is given by

4

5
· 3

5
=

12

25
= 0.48 .

Problem 41 (obtaining a six at least once)

This is the complement of the probability that a six never appears or

1 −
(

5

6

)4

= 0.5177 .

Problem 42 (double sixes)

The probability that a double six appear at least once is the complement of the probability
that a double six never appears. The probability of not seeing a double six is given by
1 − 1

36
= 35

36
, so the probability that a double six appears at least once in n throws is given

by

1 −
(

35

36

)n

.

To make this probability at least 1/2 we need to have

1 −
(

35

36

)n

≥ 1

2
.

which gives when we solve for n

n ≥ ln(1
2
)

ln(35
36

)
≈ 24.6 ,

so we should take n = 25.



Problem 43 (the probability you are next to me)

Part (a): The number of ways to arrange N people is N !. To count the number of permu-
tation of the other people and the “pair” A and B consider A and B as fused together as
one unit (say AB) to be taken with the other N − 2 people. So in total we have N − 2 + 1
things to order. This can be done in (N − 1)! ways. Note that for every permutation we
also have two orderings of A and B i.e. AB and BA so we have 2(N − 1)! orderings where
A and B are fused together. The the probability we have A and B fused together is given
by 2(N−1)!

N !
= 2

N
.

Part (b): If the people are arraigned in a circle there are (N−1)! unique arraignments of the
total people. The number of arrangement as in part (a) is given by 2(N−2+1−1)! = 2(N−2)!
so our probability is given by

2(N − 2)!

(N − 1)!
=

2

N − 1
.

Problem 44 (people between A and B)

Note that we have 5! orderings of the five individual people.

Part (a): The number of permutations that have one person between A and B can be
determined as follows. First pick the person to put between A and B from our three choices
C, D, and E. Then pick the ordering of A and B i.e AB or BA. Then considering this AB
object as one object we have to place it with two other people in 3! ways. Thus the number
of orderings with one person between A and B is givne by 3 · 2 · 3!, giving a probability of
this event of

3 · 2 · 3!

5!
= 0.3 .

Part (b): Following Part (a) we can pick the two people from the three remaining in
(

3
2

)

= 3 (ignoring order) ways. Since the people can be ordered in two different ways and

A and B on the outside can be ordered in two different ways, we have 3 · 2 · 2 = 12 ways
to create the four person “object” with A and B on the outside. This can ordered with the
remaining single person in two ways. Thus our probability is given by

2 · 12

5!
=

1

5
.

Part (c): To have three people between A and B, A and B must be on the ends with 3! = 6
possible ordering of the remaining people. Thus with two orderings of A and B we have a
probability of

2 · 6
5!

=
1

10
.



Problem 45 (trying keys at random)

Part (a): If unsuccessful keys are removed as we try them, then the probability that the
k-th attempt opens the door can be computed by recognizing that all attempts up to (but
not including) the k-th have resulted in failures. Specifically, if we let N be the random
variable denoting the attempt that opens the door we see that

P{N = 1} =
1

n

P{N = 2} =

(

1 − 1

n

)

1

n − 1

P{N = 3} =

(

1 − 1

n

)(

1 − 1

n − 1

)

1

n − 2
...

P{N = k} =

(

1 − 1

n

)(

1 − 1

n − 1

)

· · ·
(

1 − 1

n − (k − 2)

)

1

n − (k − 1)
.

We can check that this result is a valid expression to represent a probability by selecting a
value for n and verifying that when we sum the above over k for 1 ≤ k ≤ n we sum to one.
A verification of this can be found in the Matlab file chap 2 prob 45.m, along with explicit
calculations of the mean and variance of N .

Part (b): If unsuccessful keys are not removed then the probability that the correct key is
selected at draw k is a geometric random with parameter p = 1/n. Thus our probabilities
are given by P{N = k} = (1 − p)k−1p, and we have an expectation and a variance given by

E[N ] =
1

p
= n

Var(N) =
1 − p

p2
= n(n − 1) .

Chapter 2: Theoretical Exercises

Problem 1 (set identities)

To prove this let x ∈ E ∩ F then by definition x ∈ E and therefore x ∈ E ∪ F . Thus
E ∩ F ⊂ E ∪ F .

Problem 2 (more set identities)

If E ⊂ F then x ∈ E implies that x ∈ F . If y ∈ F c, then this implies that y /∈ F which
implies that y ∈ E, for if y was in E then it would have to be in F which we know it is not.



Problem 3 (more set identities)

We want to prove that F = (F ∩ E) ∪ (F ∩ Ec). We will do this using the standard proof
where we show that each set in the above is a subset of the other. We begin with x ∈ F .
Then if x ∈ E, x will certainly be in F ∩ E, while if x /∈ E then x will be in F ∩ Ec. Thus
in either case (x ∈ E or x /∈ E) x will be in the set (F ∩ E) ∪ (F ∩ Ec).

If x ∈ (F ∩ E) ∪ (F ∩ Ec) then x is in either F ∩ E, F ∩ Ec, or both by the definition of
the union operation. Now x cannot be in both sets or else it would simultaneously be in E
and Ec, so x must be in one of the two sets only. Being in either set means that x ∈ F and
we have that the set (F ∩ E) ∪ (F ∩ Ec) is a subset of F . Since each side is a subset of the
other we have shown set equality.

To prove that E∪F = E∪ (Ec∩F ), we will begin by letting x ∈ E∪F , thus x is an element
of E or an element of F or of both. If x is in E at all then it is in the set E ∪ (Ec ∩ F ). If
x /∈ E then it must be in F to be in E ∪ F and it will therefore be in Ec ∩ F . Again both
sides are subsets of the other and we have shown set equality.

Problem 6 (set expressions for various events)

Part (a): This would be given by the set E ∩ F c ∩ Gc.

Part (b): This would be given by the set E ∩ G ∩ F c.

Part (c): This would be given by the set E ∪ F ∪ G.

Part (d): This would be given by the set

((E ∩ F ) ∩ Gc) ∪ ((E ∩ G) ∩ F c) ∪ ((F ∩ G) ∩ Ec) ∪ (E ∩ F ∩ G) .

This expresses the fact that satisfy this criterion by being inside two other events or by being
inside three events.

Part (e): This would be given by the set E ∩ F ∩ G.

Part (f): This would be given by the set (E ∪ F ∪ G)c.

Part (g): This would be given by the set

(E ∩ F c ∩ Gc) ∪ (Ec ∩ F ∩ Gc) ∪ (Ec ∩ F c ∩ G)

Part (h): At most two occur is the complement of all three taking place, so this would be
given by the set (E ∩F ∩G)c. Note that this includes the possibility that none of the events
happen.



Part (i): This is a subset of the sets in Part (d) (i.e. without the set E ∩ F ∩ G) and is
given by the set

((E ∩ F ) ∩ Gc) ∪ ((E ∩ G) ∩ F c) ∪ ((F ∩ G) ∩ Ec) .

Part (j): At most three of them occur must be the entire samples space since we only have
three events total.

Problem 7 (set simplifications)

Part (a): We have that (E ∪ F ) ∩ (E ∪ F c) = E.

Part (b): For the set
(E ∩ F ) ∩ (Ec ∪ F ) ∩ (E ∪ F c)

We begin with the set

(E ∩ F ) ∩ (Ec ∪ F ) = ((E ∩ F ) ∩ Ec) ∪ (E ∩ F ∩ F )

= ∅ ∪ (E ∩ F )

= E ∩ F .

So the above becomes

(E ∩ F ) ∩ (E ∪ F c) = ((E ∩ F ) ∩ E) ∪ ((E ∩ F ) ∩ F c)

= (E ∩ F ) ∪ ∅
= E ∩ F .

Part (c): We find that

(E ∪ F ) ∩ (F ∪ G) = ((E ∪ F ) ∩ F ) ∪ ((E ∪ F ) ∩ G)

= F ∪ ((E ∩ G) ∪ (F ∩ G))

= (F ∪ (E ∩ G)) ∪ (F ∪ (F ∩ G))

= (F ∪ (E ∩ G)) ∪ F

= F ∪ (E ∩ G) .

Problem 8 (counting partitions)

Part (b): Following the hint this result can be derived as follows. We select one of the
n + 1 items in our set of n + 1 items to be denoted as special. With this item held out we
partition the remaining n items into two sets a set of size k and its complement a set of size
n − k (we can take k values from {0, 1, 2, . . . , n}). Each of these partitions has n or fewer
elements. Specifically, the set of size k has Tk partitions. Lumping our special item with the



set of size n − k we obtain a set of size n − k + 1. Grouped with the set of size k we have
a partition of our original set of size n + 1. Since the number of k subset elements can be

chosen in

(

n
k

)

ways we have

1 +

n
∑

k=1

(

n
k

)

Tk ,

possible partitions of the set {1, 2, . . . , n, n+1}. Note that the one in the above formulation
represents the k = 0 set and corresponds to the relatively trivial partition consisting of the
entire set itself.

Problem 10

From the inclusion/exclusion principle we have

P (E ∪ F ∪ G) = P (E) + P (F ) + P (G) − P (E ∩ F ) − P (E ∩ G) − P (F ∩ G)

+ P (E ∩ F ∩ G)

Now consider the following decompositions of sets into mutually exclusive components

E ∩ F = (E ∩ F ∩ Gc) ∪ (E ∩ F ∩ G)

E ∩ G = (E ∩ G ∩ F c) ∪ (E ∩ G ∩ F )

F ∩ G = (F ∩ G ∩ Ec) ∪ (F ∩ G ∩ E) .

Since each set above is mutually exclusive we have that

P (E ∩ F ) = P (E ∩ F ∩ Gc) + P (E ∩ F ∩ G)

P (E ∩ G) = P (E ∩ G ∩ F c) + P (E ∩ G ∩ F )

P (F ∩ G) = P (F ∩ G ∩ Ec) + P (F ∩ G ∩ E) .

Adding these three sets we have that

P (E∩F )+P (E∩G)+P (F∩G) = P (E∩F∩Gc)+P (E∩F∩F c)+P (F∩G∩Ec)+3P (E∩F∩G) ,

which when put into the inclusion/exclusion identity above gives the desired result.

Problem 11 (Bonferroni’s inequality)

From the inclusion/exclusion identity for two sets we have

P (E ∪ F ) = P (E) + P (F ) − P (EF ) .

Since P (E ∪ F ) ≤ 1, the above becomes

P (E) + P (F ) − P (EF ) ≤ 1 .

or
P (EF ) ≥ P (E) + P (F ) − 1 ,

which is known as Bonferroni’s inequality. From the numbers given we find that

P (EF ) ≥ 0.9 + 0.8 − 1 = 0.7 .



Problem 12 (exactly one of E or F occurs)

Exactly one of the events E or F occurs is given by the probability of the set

(EF c) ∪ (EcF ) .

Since the two sets above are mutually exclusive the probability of this set is given by

P (EF c) + P (EcF ) .

Since E = (EF c) ∪ (EF ), we then have that P (E) can be expressed as

P (E) = P (EF c) + P (EF ) .

In the same way we have for P (F ) the following

P (F ) = P (EcF ) + P (EF ) .

so the above expression for our desired event (exactly one of E or F occurring) using these
two expressions for P (E) and P (F ) is given by

P (EF c) + P (EcF ) = P (E) − P (EF ) + P (F ) − P (EF )

= P (E) + P (F ) − 2P (EF ) ,

as requested.

Problem 13 (E and not F )

Since E = EF ∪ EF c, and both sets on the right hand side of this equation are mutually
exclusive we find that

P (E) = P (EF ) + P (EF c) ,

or solving for P (EF c) we find

P (EF c) = P (E) − P (EF ) ,

as expected.

Problem 15 (drawing k white balls from r total)

This is given by

Pk =

(

M
k

)(

N
r − k

)

(

M + N
r

) for k ≤ r .



Problem 16 (more Bonferroni)

From Bonferroni’s inequality for two sets P (EF ) ≥ P (E) + P (F ) − 1, when we apply this
identity recursivly we see that

P (E1E2E3 · · ·En) ≥ P (E1) + P (E2E3 · · ·En) − 1

≥ P (E1) + P (E2) + P (E3E4 · · ·En) − 2

≥ P (E1) + P (E2) + P (E3) + P (E4 · · ·En) − 3

≥ · · ·
≥ P (E1) + P (E2) + · · · + P (En) − (n − 1) .

That the final term is n − 1 can be verified to be correct by evaluating this expression for
n = 2 which yeilds the original Bonferroni inequality.

Problem 19

k-balls will be with drawn if there are r − 1 red balls in the first k − 1 draws and the kth
draw is the rth red ball. This happens with probability

P =

(

n
r − 1

)(

m
k − 1 − (r − 1)

)

(

n + m
k − 1

) ·

(

n − (r − 1)
1

)

(

n + m − (k − 1)
1

)

=

(

n
r − 1

)(

m
k − 1 − (r − 1)

)

(

n + m
k − 1

) ·
(

n − (r − 1)

n + m − (k − 1)

)

.

Here the first probability is that required to obtain r−1 red balls from n and k−1−(r−1) =
k− r blue balls from m. The next probability is the one requested to obtain the last kth red
ball.

Problem 21 (counting total runs)

Following the example from 5o if we assume that we have an even number of total runs i.e.
say 2k, then we have two cases for the distribution of the win and loss runs. The wins and
losses runs must be interleaved since we have the same number of each i.e. k, so we can start
with a loosing block and end with a winning block or start with a winning block and end
with a loosing block as in the following diagram

L L . . . L , W W . . .W , L . . . L , W W . . .W

W W . . .W , L L . . . L , W . . .W , L L . . . L .



In either case, the number of wins including all winning streaks i must sum to the total
number of wins n and the number of losses in all loosing streaks i must sum to the total
number of losses. In equations, using xi to denote the number of wins in the i-th winning
streak and yi to denote the number of losses in the i-th loosing streak we have that

x1 + x2 + . . . + xk = n

y1 + y2 + . . . + yk = m .

Under the constraint that xi ≥ 1 and yi ≥ 1 since we are told that we have exactly k wins
and losses (and therefore can’t remove any of the unknowns. The number of solutions to the
first and second equation above are given by

(

n − 1
k − 1

)

and

(

m − 1
k − 1

)

.

Giving a total count on the number of possible situations where we have k winning streaks
and k loosing streaks of

2 ·
(

n − 1
k − 1

)

·
(

m − 1
k − 1

)

Note that the “two” in the above formulation accounts for the two possibilities, i.e. we begin
with a winning or loosing streak. Combined this give a probability of

2 ·
(

n − 1
k − 1

)

·
(

m − 1
k − 1

)

(

n + m
n

) .

If instead we are told that we have a total of 2k+1 runs as an outcome we could have one more
winning streak than loosing streak or corresponding one more loosing streak than winning
streak. Assuming that we have one more winning streak than loosing our distribution of
wins and looses looks schematically like the following

W W . . .W , L L . . . L , W W . . .W , L . . . L , W W . . .W

Then counting the total number of wins and losses with our xi and yi variables we must have
in this case

x1 + x2 + . . . + xk + xk+1 = n

y1 + y2 + . . . + yk = m .

The first equation has

(

n − 1
k + 1 − 1

)

=

(

n − 1
k

)

solutions and the second has

(

m − 1
k − 1

)

.

If instead we have one more loosing streak than winning our distribution of wins and looses
looks schematically like the following

L L . . . L , W W . . .W , L L . . . L , W . . .W , L L . . . L

Then counting the total number of wins and losses with our xi and yi variables we must have
in this case

x1 + x2 + . . . + xk = n

y1 + y2 + . . . + yk + yk+1 = m .



The first equation has

(

n − 1
k − 1

)

solutions and the second has

(

m − 1
k + 1 − 1

)

=

(

m − 1
k

)

.

Since either of these two mutually exclusive cases can occur the total number is given by
(

n − 1
k

)

·
(

m − 1
k − 1

)

+

(

n − 1
k − 1

)

·
(

m − 1
k

)

.

Giving a probability of
(

n − 1
k

)

·
(

m − 1
k − 1

)

+

(

n − 1
k − 1

)

·
(

m − 1
k

)

(

n + m
n

) .

as expected.

Chapter 2: Self-Test Problems and Exercises

Problem 1 (a cafeteria sample space)

Part (a): We have two choices for the entree, three choices for the starch, and four choices
for the dessert giving 2 · 3 · 4 = 24 total outcomes in the sample space.

Part (b): Now we have two choices for the entrees, and three choices for the starch giving
six total outcomes.

Part (c): Now we have three choices for the starch and four choices for the desert giving
12 total choices.

Part (d): The event A∩B means that we pick chicken for the entree and ice cream for the
desert, so the three possible outcomes correspond to the three possible starches.

Part (e): We have two choices for an entree and four for a desert giving eight possible
choices.

Part (f): This event is a dinner of chicken, rice, and ice cream.

Problem 2 (purchasing suits and ties)

Let Su, Sh , and T be the events that a person purchases a suit, a shirt, and a tie respectively.
Then the problem gives the information that

P (Su) = 0.22 P (Sh) = 0.3 P (T ) = 0.28
P (Su ∩ Sh) = 0.11 P (Su ∩ T ) = 0.14 P (Sh ∩ T ) = 0.1



and P (Su ∩ Sh ∩ T ) = 0.06.

Part (a): This is the event P ((Su ∪ Sh ∪ T )c), which we see is given by

P ((Su ∪ Sh ∪ T )c) = 1 − P (Su ∪ Sh ∪ T )

= 1 − P (Su) − P (Sh) − P (T ) + P (Su ∩ Sh) + P (Su ∩ T )

+ P (Sh ∩ T ) − P (Su ∩ Sh ∩ T )

= 1 − 0.22 − 0.3 − 0.28 + 0.11 + 0.14 + 0.1 − 0.06 = 0.49 .

Part (b): Exactly one item means that we want to evaluate each of the following three
mutually exclusive events

P (Su ∩ Sc
h ∩ T c) and P (Sc

u ∩ Sh ∩ T c) and P (Sc
u ∩ Sc

h ∩ T )

and add the resulting probabilities up. We note that problem thirteen from this chapter
was solved in this same way. To compute this probability we will begin by computing the
probability that two or more items were purchased. This is the event

(Su ∩ Sh) ∪ (Su ∩ T ) ∪ (Sh ∩ T ) ,

which we denote by E2 for shorthand. Using the inclusion/exclusion identity we have that
the probability of the event E2 is given by

P (E2) = P (Su ∩ Sh) + P (Su ∩ T ) + P (Sh ∩ T )

− P (Su ∩ Sh ∩ Su ∩ T ) − P (Su ∩ Sh ∩ Sh ∩ T ) − P (Su ∩ T ∩ Sh ∩ T )

+ P (Su ∩ Sh ∩ Su ∩ T ∩ Sh ∩ T )

= P (Su ∩ Sh) + P (Su ∩ T ) + P (Sh ∩ T )

− P (Su ∩ Sh ∩ T ) − P (Su ∩ Sh ∩ T ) − P (Su ∩ Sh ∩ T ) + P (Su ∩ Sh ∩ T )

= P (Su ∩ Sh) + P (Su ∩ T ) + P (Sh ∩ T ) − 2P (Su ∩ Sh ∩ T )

= 0.11 + 0.14 + 0.1 − 2(0.06) = 0.23 .

If we let E0 and E1 be the events that we purchase no items or one item, then the probability
that we purchase exactly one item must satisfy

1 = P (E0) + P (E1) + P (E2) ,

which we can solve for P (E1). We find that

P (E1) = 1 − P (E0) − P (E2) = 1 − 0.49 − 0.23 = 0.28 .

Problem 3 (the fourteenth card is an ace)

Since the probability that any one specific card is the fourteenth is 1/52 and we have four
ways of getting an ace in the fourteenth spot we have a probability given by

4

52
=

1

13
.



Another way to solve this problem is to recognized that we have 52! ways of ordering the
52 cards in the deck. Then the number of ways that the fourteenth card can be an ace is
given by the fact that we have four choices for the ace in the fourteenth position and then
the requirement that we need to place 52 − 1 = 51 other cards in 51! ways so we have a
probability of

4(51!)

52!
=

4

52
=

1

13
.

To have the first ace occurs in the fourteenth spot we have to pick thirteen cards to place in
the thirteen slots in front of this ace (from the 52 − 4 = 48 “non” ace cards). This can be
done in

48 · 47 · 46 · · · (48 − 13 + 1) = 48 · 47 · 46 · · ·36 ,

ways. Then we have four choices for the ace to pick in the fourteenth spot, then finally we
have to place the remaining 52−14 = 38 cards in 38! ways. Thus our probability is given by

(48 · 47 · 46 · · ·36) · 4 · (38!)

52!
= 0.03116 .

Problem 4 (temperatures)

Let A = {tLA = 70} be the event that the temperature in LA is 70. Let B = {tNY = 70}
be the event that the temperature in NY is 70. Let C = {max(tLA, tNY ) = 70} be the event
that the max of the two temperatures is 70. Let D = {min(tLA, tNY ) = 70} be the event
that the min of the two temperatures is 70. We note that C∩D = A∩B and C∪D = A∪B.
Then we want to compute P (D). Since

P (C ∪ D) = P (C) + P (D) − P (C ∩ D) ,

by the inclusion/exclusion identity for two sets. We also have

P (C ∪ D) = P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

= P (A) + P (B) − P (C ∪ D)

By the relationship C ∪ D = A ∪ B and the inclusion/exclusion identity for A and B. We
can equate these two expressions to obtain

P (A) + P (B) − P (C ∩ D) = P (C) + P (D) − P (C ∩ D) ,

or
P (D) = P (A) + P (B) − P (C) = 0.3 + 0.4 − 0.2 = 0.5 .

Problem 5 (the top four cards)

Part (a): There are 52! arraignments of the cards. Then we have 52 choices for the first
card, 52− 4 = 48 choices for the second card, 52− 4− 4 = 42 choices for the third card etc.
This gives a probability of

52 · 48 · 42 · 38(52 − 4)!

52!
= 0.613 .



Part (b): For different suits we have 52! total arraignments and to impose that constraint
that the top four all have different suits we have 52 choices for the first and then 52−13 = 39
choices for the second card, 39−13 = 26 choices for the third card etc. This gives a probability
of

52 · 39 · 26 · (52 − 4)!

52!
= 0.1055 .

Problem 6 (balls of the same color)

We have this probability given by

(

3
1

)(

4
1

)

(

6
1

)(

10
1

) +

(

3
1

)(

6
1

)

(

6
1

)(

10
1

) =
1

2
.

Where the first term is the probability that the first ball drawn is red and the second term
is the probability that the second ball is drawn is black.

Problem 9 (number of elements in various sets)

Both of these claims follow directly from the inclusion-exclusion identity if we assume that
every element in our finite universal set S (with n elements) is equally likely and has prob-
ability 1/n.

Problem 14 (Boole’s inequality)

We begin by decomposing the countable union of sets Ai

A1 ∪ A2 ∪ A3 . . .

into a countable union of disjoint sets Cj. Define these disjoint sets as

C1 = A1

C2 = A2\A1

C3 = A3\(A1 ∪ A2)

C4 = A4\(A1 ∪ A2 ∪ A3)
...

Cj = Aj\(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Aj−1)

Then by construction
A1 ∪ A2 ∪ A3 · · · = C1 ∪ C2 ∪ C3 · · · ,



and the Cj’s are disjoint, so that we have

Pr(A1 ∪ A2 ∪ A3 ∪ · · · ) = Pr(C1 ∪ C2 ∪ C3 ∪ · · · ) =
∑

j

Pr(Cj) .

Since Pr(Cj) ≤ Pr(Aj), for each j, this sum is bounded above by

∑

j

Pr(Aj) ,



Chapter 3 (Conditional Probability and Independence)

Chapter 3: Problems

Problem 3 (hands of bridge)

Warning: For some reason I get a different answer than the result given in the back of the
book. Thus if someone finds something wrong with the logic below would they please let me
know.

Equation 2.1 in the book is

p(E|F ) =
p(EF )

p(F )
.

Let E be the event that east-west has the three of spades and F be the event that north-south
has eight spades. Then

P (F ) =

(

13
8

)(

39
18

)

(

52
26

) .

This can be reasoned as follows. We have thirteen total spades from which we should pick
eight to the give the north-south pair (the rest will go to the east-west pair). We then have
39 other cards (non-spades) from which to pick 18 to make a total of 26 for the north-south
pair. This is divided the number of ways to select 26 cards from the 52 total cards. For
P (EF ) we find that

P (EF ) =

(

12
8

)(

39
18

)

(

51
26

) .

This can be reasoned as follows. Because we must first place the three of spades at the
east position once this is done we have 12 other spades to pick 8 from, to distributed to the
north-south pair. The other four will go to the east-west pair. Then we have 39 = 52 − 13
remaining cards to place, from which 18 need to go to the north-south position. Since the
three of spades is held by the east player, we are selecting 26 cards to go to north-south from
a total of 51. With these two results we see that

p(E|F ) =
p(EF )

p(F )
=

(

12
8

)(

39
18

)

(

51
26

) ·

(

52
26

)

(

13
8

)(

39
18

)

=
5 · 25 · 52

13 · 26 · 51
= 0.377 .



Problem 4 (at least one six)

This is solved in the same way as in problem number 2. In solving we will let E be the event
that at least one of the pair of die lands on a 6 and “X = i” be shorthand for the event the
sum of the two die is i. Then we desire to compute

p(E|X = i) =
P (E, X = i)

p(X = i)
.

We begin by computing p(X = i) for i = 2, 3, 4, · · · , 12. We find that

p(X = 2) =
1

36
, p(X = 8) =

5

36

p(X = 3) =
2

36
, p(X = 9) =

4

36

p(X = 4) =
3

36
, p(X = 10) =

3

36

p(X = 5) =
4

36
, p(X = 11) =

2

36

p(X = 6) =
5

36
, p(X = 12) =

1

36

p(X = 7) =
6

36
.

We next compute p(E, X = i) for i = 2, 3, 4, · · · , 12 we find that

p(E, X = 2) = 0 , p(E, X = 8) =
2

36

p(E, X = 3) = 0 , p(E, X = 9) =
2

36

p(E, X = 4) = 0 , p(E, X = 10) =
2

36

p(E, X = 5) = 0 , p(E, X = 11) =
2

36

p(E, X = 6) = 0 , p(E, X = 12) =
1

36

p(E, X = 7) =
2

36
.

Finally computing our conditional probabilities we find that

P (E|X = 2) = p(E|X = 3) = p(E|X = 4) = p(E|X = 5) = p(E|X = 6) = 0 .

and

p(E|X = 7) =
1

3
, p(E|X = 10) =

2

3

p(E|X = 8) =
2

5
, p(E|X = 11) =

2

2
= 1

p(E|X = 9) =
1

2
, p(E|X = 12) =

1

1
= 1 .



Problem 5 (the first two selected are white)

We have that

P =

(

6
2

)(

9
2

)

(

15
4

)

is the probability of drawing two white balls and two black balls independently of the order
of the draws. Since we are concerned with the probability of an ordered sequence of draws
we should enumerate these. Let W by the event that the first two balls are white and B
the event that the second two balls are black. Then we desire the probability P (W ∩ B) =
P (W ) P (B|W ). Now

P (W ) =

(

6
2

)

(

15
2

) =
15

105
≈ 0.152

and

P (B|W ) =

(

9
2

)

(

13
2

) =
36

78
≈ 0.461

so that P (W ∩ B) = 0.0659 = 6
91

.

Problem 6 (exactly three white balls)

Let F be the event that the first and third drawn balls are white and let E be the event that
the sample contains exactly three white balls. Then we desire to compute P (F |E) = P (F∩E)

P (E)
.

Working the without replacement we have that

P (E) =

(

8
3

)

·
(

4
1

)

(

12
4

) =
224

495
.

and P (F ∩E) is the probability that our sample has three white balls and the first and third
balls are white. To calculate this we can explicitly enumerate the possibilities in F ∩ E as
{(W, W, W, B), (W, B, W, W )}, showing that

P (F ∩ E) =
2

(

12
4

) .

Given these two results we then have that

P (F |E) =
2

(

8
3

)

·
(

4
1

) =
1

112
.



To work the problem with replacement we have that

P (E) =

(

4
3

)(

2

3

)3(
1

3

)

=
25

34
.

As before we can enumerate the sample in E ∩F . This set is {(W, W, W, B), (W, B, W, W )},
and has probabilities given by

(

2

3

)3
1

3
+

(

2

3

)3
1

3
=

24

34
.

so the probabilities we are after is
24

34

25

34

=
1

2
.

Problem 7 (the king’s sister)

The two possible children have a sample space given by

{(M, M), (M, F ), (F, M), (F, F )} ,

each with probability 1/4. Then if we let E be the event that one child is a male and F be
the event that one child is a female and one child is a male, the probability that we want to
compute is given by

P (F |E) =
P (FE)

P (E)
.

Now

P (E) =
1

4
+

1

4
+

1

4
=

3

4
.

and FE consists of the set {(M, F ), (F, M)} so

P (FE) =
1

2
,

so that

P (F |E) =
1/2

3/4
=

2

3
.

Problem 8 (two girls)

Let F be the event that both children are girls and E the event that the eldest child is a
girl. Now P (E) = 1

4
+ 1

4
= 1

2
and the event EF has probability 1

4
. Then

P (F |E) =
P (FE)

P (E)
=

1/4

1/2
=

1

2
.



Problem 9 (a white ball from urn A)

Let F be the event that the ball chosen from urn A was white. Let E be the event that
two while balls were chosen. Then the desired probability is P (F |E) = P (FE)

P (E)
. Lets first

calculate P (E) or the probability that two white balls were chosen. This event can happen
in the following mutually exclusive draws

(W, W, R) , (W, R, W ) , (R, W, W ) .

We can calculate the probabilities of each of these events

• The first draw will happen with probability
(

2
6

) (

8
12

) (

3
4

)

= 1
6

• The second draw will happen with probability
(

1
3

) (

4
12

) (

1
4

)

= 1
36

• The third draw will happen with probability
(

4
6

) (

8
12

) (

1
4

)

= 1
9

so that

P (E) =
1

6
+

1

36
+

1

9
=

11

36
.

Now FE consists of only the events {(W, W, R), (W, R, W )} since now the first draw must
be white. The event FE has probability given by 1

6
+ 1

36
= 7

36
, so that we find

P (F |E) =
7/36

11/36
=

7

11
= 0.636 .

Problem 10 (three spades given that we draw two others)

Let F be the event that the first card selected is a spade and E the event that the second
and third cards are spades. Then we desire to compute P (F |E) = P (FE)

P (E)
. Now P (E) is the

probability that the second and third cards are spades, which equals the union of two events.
The first is event that the first, second, and third cards are spades and the second is the
event that the first card is not a spade while the second and third cards are spades. Note
that this first event is also FE above. Thus we have

P (FE) =
13 · 12 · 11

52 · 51 · 50

Letting G be the event that the first card is not a spade while the second and third cards
are spades, we have that

P (G) =
(52 − 13) · 13 · 12

52 · 51 · 50
=

39 · 13 · 12

52 · 51 · 50
,

so

P (E) =
39 · 13 · 12

52 · 51 · 50
+

13 · 12 · 11

52 · 51 · 50
=

11

39 + 11
=

11

50
= 0.22 .



Problem 11 (probabilities on two cards )

We are told to let B be the event that both cards are aces, As the event that the ace of
spades is chosen and A the event that at least one ace is chosen.

Part (a): We are asked to compute P (B|As). Using the definition of conditional probabil-
ities we have that

P (B|As) =
P (BAs)

P (As)
.

The event BAs is the event that both cards are aces and one is the ace of spades. This event
can be represented by the sample space

{(AD, AS), (AH, AS), (AC, AS)} .

where D, S, H , and C stand for diamonds, spades, hearts, and clubs respectively and the
order of these elements in the set above does not matter. So we see that

P (BAs) =
3

(

52
2

) .

The event As is given by the set {AS, ∗} where ∗ is a wild-card denoting any of the possible
fifty-one other cards besides the ace of spades. Thus we see that

P (As) =
51

(

52
2

) .

These together give that

P (B|As) =
3

51
=

1

17
.

Part (b): We are asked to compute P (B|A). Using the definition of conditional probabilities
we have that

P (B|A) =
P (BA)

P (A)
=

P (B)

P (A)
.

The event B are the hand {(AD, AS), (AD, AH), (AD, · · · )} and has

(

4
2

)

elements i.e.

from the four total aces select two. So that

P (B) =

(

4
2

)

(

52
2

) .

The set A is the event that at least one ace is chosen. This is the complement of the set that

no ace is chosen. No ace can be chosen in

(

48
2

)

ways so that

P (A) = 1 −

(

48
2

)

(

52
2

) =

(

52
2

)

−
(

48
2

)

(

52
2

) .



This gives for P (B|A) the following

P (B|A) =

(

4
2

)

(

52
2

)

−
(

48
2

) =
6

198
=

1

33
.

Problem 12 (passing the actuarial exams)

We let Ei be the event that the ith actuarial exam is passed. Then the given probabilities
can be expressed as

P (E1) = 0.9 , P (E2|E1) = 0.8 , P (E3|E1, E2) = 0.7 .

Part (a): The desired probability is given by P (E1E2E3) or conditioning we have

P (E1E2E3) = P (E1)P (E2|E1)P (E3|E1E2) = 0.9 · 0.8 · 0.7 = 0.504 .

Part (b): The desired probability is given by P (Ec
2|(E1E2E3)

c) and can be expressed using
the set identity

(E1E2E3)
c = E1 ∪ (E1E

c
2) ∪ (E1E2E

c
3) ,

are the only ways that one can not pass all three tests i.e. one must fail one of the first three
tests. Note that these sets are mutually independent. Now

P (Ec
2|(E1E2E3)

c) =
P (Ec

2 (E1E2E3)
c)

P ((E1E2E3)c)
.

We know how to compute P ((E1E2E3)
c) because it is equal to 1 − P (E1E2E3) and we can

compute P (E1E2E3). From the above set identity the event Ec
2 (E1E2E3)

c is composed of
only one set, namely E1E

c
2, since if we don’t pass the second test we don’t take the third

test. We now need to evaluate the probability of this event. We find

P (E1E
c
2) = P (Ec

2|E1)P (E1)

= (1 − P (E2|E1))P (E1)

= (1 − 0.8)(0.9) = 0.18 .

With this the conditional probability sought is given by 0.18
1−0.504

= 0.3629

Problem 13

Define p by p ≡ P (E1E2E3E4). Then by conditioning on the events E1, E1E2, and E1E2E3

we see that p is given by

p = P (E1E2E3E4)

= P (E1)P (E2E3E4|E1)

= P (E1)P (E2|E1)P (E3E4|E1E2)

= P (E1)P (E2|E1)P (E3|E1E2)P (E4|E1E2E3) .



So we need to compute each probability in this product. We have

P (E1) =

(

4
1

)(

48
12

)

(

52
13

)

P (E2|E1) =

(

3
1

)(

36
12

)

(

39
13

)

P (E3|E1E2) =

(

2
1

)(

24
12

)

(

26
13

)

P (E4|E1E2E3) =

(

1
1

)(

12
12

)

(

13
13

) = 1 .

so this probability is then given by (when we multiply each of the above expressions)

p = 0.1055 .

See the Matlab file chap 3 prob 13.m for these calculations.

Problem 14

Part (a): We will compute this as a conditional probability since the number of each colored
balls depend on the results from the previous draws. Let Bi be the event that a black ball
is selected on the ith draw and Wi the event that a white ball is selected on the ith draw.
Then the probability we are looking for is given by

P (B1B2W3W4) = P (B1)P (B2|B1)P (W3|B1B2)P (W4|B1B2W3)

=

(

7

5 + 7

)(

9

5 + 9

)(

5

5 + 11

)(

7

7 + 11

)

= 0.0455 .

See the Matlab file chap 3 prob 14.m for these calculations.

Part (b): The set discussed is given by the

(

4
2

)

= 6 sets given by

(B1, B2, W3, W4) , (B1, W2, B3, W4) , (B1, W2, W3, B4)

(W1, B2, B3, B4) , (W1, B2, W3, B4) , (W1, W2, B3, B4) .

The probabilities of each of these events can be computed as in Part (a) of this problem.
The probability requested is then the sum of the probabilities of all these mutually exclusive
events.



Problem 15

Let S be the event a woman is a smoker and E the event that a woman has an entopic
pregnancy. Then our given information is that P (E|S) = 2P (E|Sc), P (S) = 0.32, P (Sc) =
0.68, and we want to calculate P (S|E). We have using Bayes’ rule that

P (S|E) =
P (E|S)P (S)

P (E|S)P (S) + P (E|Sc)P (Sc)

=
P (E|S)(0.32)

P (E|S)(0.32) + 2P (E|S)(0.68)

=
0.32

(0.32) + 2(0.68)
= 0.19048 .

Problem 16

Let C be the event of a Cesarean section birth, let S be the event that the baby survives.
The facts given in the problem are that

P (S) = 0.98 , P (Sc) = 0.02 , P (C) = 0.15 , P (Cc) = 0.85 , P (S|C) = 0.96 .

We want to calculate P (S|Cc). From P (S) we can compute P (S|Cc) by conditioning on C
as

P (S) = P (S|C)P (C) + P (S|Cc)P (Cc) .

Using the information given in the problem into the above we find that

0.98 = 0.96(0.15) + P (S|Cc)(0.85) ,

or that P (S|Cc) = 0.983.

Problem 17

Let D be the event a family owns a dog, and C the event that a family owns a cat. Then
from the numbers given in the problem we have that P (D) = 0.36, P (C) = 0.3, and
P (C|D) = 0.22.

Part (a): We are asked to compute P (CD) = P (C|D)P (D) = 0.22 · 0.36 = 0.0792.

Part (b): We are asked to compute

P (D|C) =
P (C|D)P (D)

P (C)
=

0.22 · (0.36)

0.3
= 0.264 .



Problem 18

Let I, L, and C be the event that a random person is an independent, liberal, or a conser-
vative respectfully. Let V be the event that a person voted. Then from the problem we are
given that

P (I) = 0.46 , P (L) = 0.3 , P (C) = 0.24

and
P (V |I) = 0.35 , P (V |L) = 0.62 , P (V |C) = 0.58 .

We want to compute P (I|V ), P (L|V ), and P (C|V ) which by Bayes’ rule are given by (for
P (I|V ) for example)

P (I|V ) =
P (V |I)P (I)

P (V )
=

P (V |I)P (I)

P (V |I)P (I) + P (V |L)P (L) + P (V |C)P (C)
.

All desired probabilities will need to calculate P (V ) which we do (as above) by conditioning
on the various types of voters. We find that it is given by

P (V ) = P (V |I)P (I) + P (V |L)P (L) + P (V |C)P (C)

= 0.35(0.46) + 0.62(0.3) + 0.58(0.24) = 0.4862 .

Then the requested conditional probabilities are given by

P (I|V ) =
0.35(0.46)

0.48
= 0.3311

P (L|V ) =
P (V |L)P (L)

P (V )
=

0.62(0.3)

0.48
= 0.3875

P (C|V ) =
P (V |C)P (C)

P (V )
=

0.58(0.24)

0.48
= 0.29 .

Part (d): This is P (V ) which from Part (c) we know to be equal to 0.48.

Problem 19

Let M be the event a person who attends the party is male, W the event a person who
attends the party is female, and E the event that a person was smoke free for a year. The
problem gives

P (E|M) = 0.37 , P (M) = 0.62 , P (E|W ) = 0.48 , P (W ) = 1 − P (M) = 0.38 .

Part (a): We are asked to compute P (W |E) which by Bayes’ rule is given by

P (W |E) =
P (E|W )P (W )

P (E)

=
P (E|W )P (W )

P (E|W )P (W ) + P (E|M)P (M)

=
0.48(0.38)

0.48(0.38) + 0.37(0.62)
= 0.442 .



Part (b): For this part we want to compute P (E) which by conditioning on the sex of the
person equals P (E) = P (E|W )P (W ) + P (E|M)P (M) = 0.4118.

Problem 20

Let F be the event that a student is female. Let C be the event that a student is majoring
in computer science. Then we are told that P (F ) = 0.52, P (C) = 0.05, and P (FC) = 0.02.

Part (a): We are asked to compute P (F |C) = P (FC)
P (C)

= 0.02
0.05

= 0.4.

Part (b): We are asked to compute P (C|F ) = P (FC)
P (F )

= 0.02
0.52

= 0.3846.

Problem 21

We are given the following joint probabilities

P (W<, H<) =
212

500
= 0.424

P (W<, H>) =
198

500
= 0.396

P (W>, H<) =
36

500
= 0.072

P (W>, H>) =
54

500
= 0.108 .

Where the notation W< is the event that the wife makes less than 25, 000, W> is the event
that the wife makes more than 25, 000, H< and H> are the events that the husband makes
less than or more than 25, 000 respectively.

Part (a): We desire to compute P (H<), which we can do by considering all possible situa-
tions involving the wife. We have

P (H<) = P (H<, W<) + P (H<, W>) =
212

500
+

36

500
= 0.496 .

Part (b): We desire to compute P (W>|H>) which we do by remembering the definition

of conditional probability. We have P (W>|H>) = P (W>,H>)
P (H>)

. Since P (H>) = 1 − P (H<) =

1 − 0.496 = 0.504 using the above we find that P (W>|H>) = 0.2142 = 3
14

.

Part (c): We have

P (W>|H<) =
P (W>, H<)

P (H<)
=

0.072

0.496
= 0.145 =

9

62
.



Problem 22

Part (a): The probability that no two die land on the same number means that each die
must land on a unique number. To count the number of such possible combinations we see
that there are six choices for the red die, five choices for the blue die, and then four choices for
the yellow die yielding a total of 6 ·5 ·4 = 120 choices where each die has a different number.
There are a total of 63 total combinations of all possible die through giving a probability of

120

63
=

5

9

Part (b): We are asked to compute P (B < Y < R|E) where E is the event that no two die
lands on the same number. From Part (a) above we know that the count of the number of
rolls that satisfy event E is 120. Now the number of rolls that satisfy the event B < Y < R
can be counted in a manner like Problem 6 from Chapter 1. For example, if R shows a roll
of three then the only possible valid rolls where B < Y < R for B and Y are B = 1 and

Y = 2. If R shows a four then we have

(

3
2

)

= 3 possible choices i.e. either

(B = 1, Y = 2) , (B = 1, Y = 3) , (B = 2, Y = 3) .

for the possible assignments to the two values for the B and Y die. If R = 5 we have
(

4
2

)

= 6 possible assignments to B and Y . Finally, if R = 6 we have

(

5
2

)

= 10 possible

assignments to B and Y . Thus we find that

P (B < Y < R|E) =
1 + 3 + 6 + 10

120
=

1

6

Part (c): We see that

P (B < Y < R) = P (B < Y < R|E)P (E) + P (B < Y < R|Ec)P (Ec) ,

Since P (B < Y < R|Ec) = 0 from the above we have that

P (B < Y < R) =

(

1

6

)(

5

9

)

=
5

54
.

Problem 23

Part (a): Let W be the event that the ball chosen from urn II is white. Then we should
solve this problem by conditioning on the color of the ball drawn from first urn. Specifically

P (W ) = P (W |BI = w)P (BI = w) + P (W |BI = r)P (BI = r) .



Here BI = w is the event that the ball drawn from the first urn is white and BI = r is
the event that the the drawn ball is red. We know that P (BI = w) = 1

3
, P (BI = r) = 2

3
,

P (W |BI = w) = 2
3
, and P (W |BI = r) = 1

3
. We then have

P (W ) =
2

3
· 1

3
+

1

3
· 2

3
=

2 + 2

9
=

4

9

Part (b): Now we are looking for

P (BI = w|W ) =
P (W |BI = w)P (BI = w)

P (W )
.

Since everything is known in the above we can compute this as

P (BI = w|W ) =

(

2
3

) (

1
3

)

4
9

=
1

2
.

Problem 24

Part (a): Let E be the event that both balls are gold and F the event that at least one
ball is gold. The probability we desire to compute is then P (E|F ). Using the definition of
conditional probability we have that

P (E|F ) =
P (EF )

P (F )
=

P ({G, G})
P ({G, G}, {G, B}, {B, G}) =

1/4

1/4 + 1/4 + 1/4
=

1

3

Part (b): Since now the balls are mixed together in the urn, the difference between the pair
{G, B} and {B, G} is no longer present. Thus we really have two cases to consider.

• Either both balls are gold or

• One ball is gold and the other is black.

Thus to have a second ball be gold will occur once out of these two choices and our probability
is then 1/2.

Problem 25

Let p be the proportion of the people who are over fifty and the number we desire to estimate.
Let α1 denote the proportion of the time a person under fifty spends on the streets and α2

the same proportion for people over fifty. Then we claim that the method suggested would
measure

α2

α1 + α2
.



This can be seen as follows. Since by looking around during the day one would measure
approximately Nα2 people over the age of fifty and approximately Nα1 people under the
age of fifty where N is the number of people out during the day. The proportion measured
would then be

Nα2

Nα1 + Nα2
=

α2

α1 + α2
.

This will approximately equal p if α1 and α2 adequately represent the population percentages.
These two numbers most certainly wouldn’t represent population percentages since many
people over fifty might not be out on the streets. Because of this α2 will be an underestimate
of the true population percentage.

Problem 26

From the problem, assuming that CB represents the event that a person is colorblind, we
are told that

P (CB|M) = 0.05 , and P (CB|W ) = 0.0025 .

We are asked to compute P (M |CB), which we will do by using the Bayes’ rule. We find

P (M |CB) =
P (CB|M)P (M)

P (CB)
.

We will begin by computing P (CB) by conditioning on the sex of the person. We have

P (CB) = P (CB|M)P (M) + P (CB|F )P (F )

= 0.05(0.5) + 0.0025(0.5) = 0.02625 .

Then using Bayes’ rule we find that

P (M |CB) =
0.05(0.5)

0.02625
= 0.9523 =

20

21
.

If the population consisted of twice as many males as females we would then have P (M) =
2P (F ) giving P (M) = 2

3
and P (F ) = 1

3
and our calculation becomes

P (CB) = 0.05

(

2

3

)

+ 0.0025

(

1

3

)

= 0.03416 .

so that

P (M |CB) =
0.05(2/3)

0.03416
= 0.9756 =

40

41
.

Problem 27 (counting the number of people in each car)

Since we desire to estimate the number of people in a given car, if we choose the first method
we will place too much emphasis on cars that carry a large number of people. For example
if we imagine that a large bus of people arrives then on average we will select more people



from this bus than from cars that only carry one person. This is the same effect as in the
discussion in the book about the number of students counted on various numbers of buses
and would not provide an unbiased estimate. The second method suggested would provide
an unbiased estimate and would be the preferred method.

Problem 29 (used tennis balls)

Let E0, E1, E2, E3 be the event that we select 0, 1, 2, or 3 used tennis balls during our
first draw consisting of three balls. Then let A be the event that when we draw three balls
the second time none of the selected balls have been used. The problem asks us to compute
P (A), which we can compute P (A) by conditioning on the mutually exclusive events Ei for
i = 0, 1, 2, 3 as

P (A) =

3
∑

i=0

P (A|Ei)P (Ei) .

Now we can compute the prior probabilities P (Ei) as follows

P (E0) =

(

6
0

)(

9
3

)

(

15
3

) , P (E1) =

(

6
1

)(

9
2

)

(

15
3

)

P (E2) =

(

6
2

)(

9
1

)

(

15
3

) , P (E3) =

(

6
3

)(

9
0

)

(

15
3

) .

Where the random variable representing the number of selected used tennis balls is a hy-
pergeometric random variable and we have explicitly enumerated these probabilities above.
We can now compute P (A|Ei) for each i. Beginning with P (A|E0) which we recognize as
the probability of event A under the situation where in the first draw of three balls we draw
no used balls initially i.e. we draw all new balls. Since event E0 is assumed to happen with
certainty when we go to draw the second of three balls we have 6 new balls and 9 used balls.
This gives the probability of event A as

P (A|E0) =

(

9
0

)(

6
3

)

(

15
3

) .

In the same way we can compute the other probabilities. We find that

P (A|E1) =

(

8
0

)(

7
3

)

(

15
3

) , P (A|E2) =

(

7
0

)(

8
3

)

(

15
3

) , P (A|E3) =

(

6
0

)(

9
3

)

(

15
3

) .

With these results we can calculate P (A). This is done in the Matlab file chap 3 prob 29.m

where we find that P (A) ≈ 0.0893.



Problem 30 (boxes with marbles)

Let B be the event that the drawn ball is black and let X1 (X2) be the event that we select
the first (second) box. Then to calculate P (B) we will condition on the box drawn from as

P (B) = P (B|X1)P (X1) + P (B|X2)P (X2) .

Now P (B|X1) = 1/2, P (B|X2) = 2/3, P (X1) = P (X2) = 1/2 so

P (B) =
1

2

(

1

2

)

+
1

2

(

2

3

)

=
7

12
.

If we see that the ball is white (i.e. it is not black i.e event Bc has happened) we now want
to compute that it was drawn from the first box i.e.

P (X1|Bc) =
P (Bc|X1)P (X1)

P (Bc|X1)P (X1) + P (Bc|X2)P (X2)
=

3

5
.

Problem 31 (Ms. Aquina’s holiday)

After Ms. Aquina’s tests are completed and the doctor has the results he will flip a coin. If
it lands heads and the results of the tests are good he will call with the good news. If the
results of the test are bad he will not call. If the coin flip lands tails he will not call regardless
of the tests outcome. Lets let B denote the event that Ms. Aquina has cancer and the and
the doctor has bad news. Let G be the event that Ms. Aquina does not have cancer and
the results of the test are good. Finally let C be the event that the doctor calls the house
during the holiday.

Part (a): Now the event that the doctor does not call (i.e. Cc) will add support to the
hypothesis that Ms. Aquina has cancer (or event B) if and only if it is more likely that
the doctor will not call given that she does have cancer. This is the event Cc will cause
β ≡ P (B|Cc) to be greater than α ≡ P (B) if and only if

P (Cc|B) ≥ P (Cc|Bc) = P (Cc|G) .

From a consideration of all possible outcomes we have that

P (Cc|B) = 1 ,

since if the results of the tests come back negative (and Ms. Aquina has cancer), the doctor
will not call regardless of the coin flip. We also have that

P (Cc|G) =
1

2
,

since if the results of the test are good, the doctor will only call if the coin flip lands heads
and not call otherwise. Thus the fact that the doctor does not call adds evidence to the



belief that Ms. Aquina has cancer. Logic similar to this is discussed in the book after the
example of the bridge championship controversy.

Part (b): We want to explicitly find β = P (B|Cc) using Bayes’ rule. We find that

β =
P (Cc|B)P (B)

P (Cc)
=

1(α)

(3/4)
=

4

3
α > α .

Which explicitly verifies the intuition obtained in Part (a).

Problem 32 (the number of children)

Let C1, C2, C3, C4 be the events that the family has 1, 2, 3, 4 children respectively. Let E be
the evidence that the chosen child is the eldest in the family.

Part (a): We want to compute

P (C1|E) =
P (E|C1)P (C1)

P (E)
.

We will begin by computing P (E). We find that

P (E) =
4
∑

i=1

P (E|Ci)P (Ci) = 1(0.1) +
1

2
(0.25) +

1

3
(0.35) +

1

4
(0.3) = 0.4167 ,

so that P (C1|E) = 1(0.1)/0.4167 = 0.24.

Part (b): We want to compute

P (C4|E) =
P (E|C4)P (C4)

P (E)
=

(0.25)(0.3)

0.4167
= 0.18 .

These calculations are done in the file chap 3 prob 32.m.

Problem 33 (English v.s. American)

Let E (A) be the event that this man is English (American). Also let L be the evidence
found on the letter. Then we want to compute P (E|L) which we will do with Bayes’ rule.
We find (counting the number of vowels in each word) that

P (E|L) =
P (L|E)P (E)

P (L|E)P (E) + P (L|Ec)P (Ec)

=
(3/6)(0.4)

(3/6)(0.4) + (2/5)(0.6)
=

5

11
.



Problem 34 (some new interpretation of the evidence)

From Example 3f in the book we had that

P (G|C) =
P (GC)

P (C)
=

P (C|G)P (G)

P (C|G)P (G) + P (C|Gc)P (Gc)
.

But now we are told P (C|G) = 0.9, since we are assuming that if we are guilty we will have
the given characteristic with 90% certaintly. Thus we now would compute for P (G|C) the
following

P (G|C) =
0.9(0.6)

0.9(0.6) + 0.2(0.4)
=

27

31
.

Problem 37 (gambling with a fair coin)

Let F denote the event that the gambler is observing results from a fair coin. Also let O1,
O2, and O3 denote the three observations made during our experiment. We will assume that
before any observations are made the probability that we have selected the fair coin is 1/2.

Part (a): We desire to compute P (F |O1) or the probability we are looking at a fair coin
given the first observation. This can be computed using Bayes’ theorem. We have

P (F |O1) =
P (O1|F )P (F )

P (O1|F )P (F ) + P (O1|F c)P (F c)

=
1
2

(

1
2

)

1
2

(

1
2

)

+ 1
(

1
2

) =
1

3
.

Part (b): With the second observation and using the “posteriori’s become priors” during a
recursive update we now have

P (F |O2, O1) =
P (O2|F, O1)P (F |O1)

P (O2|F, O1)P (F |O1) + P (O2|F c, O1)P (F c|O1)

=
1
2

(

1
3

)

1
2

(

1
3

)

+ 1
(

2
3

) =
1

5
.

Part (c): In this case because the two-headed coin cannot land tails we can immediately
conclude that we have selected the fair coin. This result can also be obtained using Bayes’
theorem as we have in the other two parts of this problem. Specifically we have

P (F |O3, O2, O1) =
P (O3|F, O2, O1)P (F |O2, O1)

P (O3|F, O2, O1)P (F |O2, O1) + P (O3|F c, O2, O1)P (F c|O2, O1)

=
1
2

(

1
5

)

1
2

(

1
5

)

+ 0
= 1 .

Verifying what we know must be true.



Problem 42 (special cakes)

Let R be the event that the special cake will rise correctly. Then from the problem statement
we are told that P (R|A) = 0.98, P (R|B) = 0.97, and P (R|C) = 0.95, with the prior
information of P (A) = 0.5, P (B) = 0.3, and P (C) = 0.2. Then this problem asks for
P (A|Rc). Using Bayes’ rule we have

P (A|Rc) =
P (Rc|A)P (A)

P (Rc)
,

where P (Rc) is given by conditioning on A, B, or C as

P (Rc) = P (Rc|A)P (A) + P (Rc|B)P (B) + P (Rc|C)P (C)

= 0.02(0.5) + 0.03(0.3) + 0.05(0.2) = 0.029 ,

so that P (A|Rc) is given by

P (A|Rc) =
0.02(0.5)

0.029
= 0.344 .

Problem 43 (three coins in a box)

Let C1, C2, C3 be the event that the first, second, and third coin is chosen and flipped.
Then let H be the event that the flipped coin showed heads. Then we would like to evaluate
P (C1|H). Using Bayes’ rule we have

P (C1|H) =
P (H|C1)P (C1)

P (H)
.

We compute P (H) first. We find conditioning on the the coin selected that

P (H) =

3
∑

i=1

P (H|Ci)P (Ci) =
1

3

3
∑

i=1

P (H|Ci)

=
1

3

(

1 +
1

2
+

1

3

)

=
3

4
.

Then P (C1|H) is given by

P (C1|H) =
1(1/3)

(3/4)
=

4

9
.

Problem 44 (a prisoners’ dilemma)

I will argue that the jailers reasoning is sound. Before asking his question the probability of
event A (A is executed) is P (A) = 1/3. If prisoner A is told that B (or C) is to be set free



then we need to compute P (A|Bc). Where A, B, and C are the events that prisoner A, B,
or C is to be executed respectively. Now from Bayes’ rule

P (A|Bc) =
P (Bc|A)P (A)

P (Bc)
.

We have that P (Bc) is given by

P (Bc) = P (Bc|A)P (A) + P (Bc|B)P (B) + P (Bc|C)P (C) =
1

3
+ 0 +

1

3
=

2

3
.

So the above probability then becomes

P (A|Bc) =
1(1/3)

2/3
=

1

2
>

1

3
.

Thus the probability that prisoner A will be executed has increased as claimed by the jailer.

Problem 45 (is it the fifth coin?)

Let Ci be the event that the ith coin was selected to be flipped. Since any coin is equally
likely we have P (Ci) = 1

10
for all i. Let H be the event that the flipped coin shows heads,

then we want to compute P (C5|H). From Bayes’ rule we have

P (C5|H) =
P (H|C5)P (C5)

P (H)
.

We compute P (H) by conditioning on the selected coin Ci we have

P (H) =

10
∑

i=1

P (H|Ci)P (Ci)

=
10
∑

i=1

i

10

(

1

10

)

=
1

100

10
∑

i=1

i

=
1

100

(

10(10 + 1)

2

)

=
11

20
.

So that

P (C5|H) =
(5/10)(1/10)

(11/20)
=

1

11
.

Problem 46 (one accident means its more likely that you will have another)

Consider the expression P (A2|A1). By the definition of conditional probability this can be
expressed as

P (A2|A1) =
P (A1, A2)

P (A1)
,



so the desired expression to show is then equivalent to the following

P (A1, A2)

P (A1)
> P (A1) ,

or P (A1, A2) > P (A1)
2. Considering first the expression P (A1) by conditioning on the sex

of the policy holder we have

P (A1) = P (A1|M)P (M) + P (A1|W )P (W ) = pmα + pf(1 − α) .

where M is the event the policy holder is male and W is the event that the policy holder is
female. In the same way we have for the joint probability P (A1, A2) that

P (A1, A2) = P (A1, A2|M)P (M) + P (A1, A2|W )P (W ) .

Assuming that A1 and A2 are independent given the specification of the policy holders sex
we have that

P (A1, A2|M) = P (A1|M)P (A2|M) ,

the same expression holds for the event W . Using this in the expression for P (A1, A2) above
we obtain

P (A1, A2) = P (A1|M)P (A2|M)P (M) + P (A1|W )P (A2|W )P (W )

= p2
mα + p2

f(1 − α) .

We now look to see if P (A1, A2) > P (A1)
2. Computing the expression P (A1, A2) − P (A1)

2,
(which we hope to be able to show is always positive) we have that

P (A1, A2) − P (A1)
2 = p2

mα + p2
f(1 − α) − (pmα + pf (1 − α))2

= p2
mα + p2

f(1 − α) − p2
mα2 − 2pmpfα(1 − α) − p2

f(1 − α)2

= p2
mα(1 − α) + p2

f(1 − α)α − 2pmpfα(1 − α)

= α(1 − α)(p2
m + p2

f − 2pmpf )

= α(1 − α)(pm − pf)
2 .

Note that this is always positive. Thus we have shown that P (A1|A2) > P (A1). In words,
this means that given that we have an accident in the first year this information will increase
the probability that we will have an accident in the second year to a value greater than we
would have without the knowledge of the accident during year one (A1).

Problem 47 (the probability on which die was rolled)

Let X be the the random variable that specifies the number on the die roll i.e. the integer
1, 2, 3, · · · , 6. Let W be the event that all the balls drawn are white. Then we want to
evaluate P (W ), which can be computed by conditioning on the value of X. Thus we have

P (W ) =

6
∑

i=1

P{W |X = i}P (X = i)



Since P{X = i} = 1/6 for every i, we need only to compute P{W |X = i}. We have that

P{W |X = 1} =
5

15
≈ 0.33

P{W |X = 2} =

(

5

15

)(

4

14

)

≈ 0.095

P{W |X = 3} =

(

5

15

)(

4

14

)(

3

13

)

≈ 0.022

P{W |X = 4} =

(

5

15

)(

4

14

)(

3

13

)(

2

12

)

≈ 0.0036

P{W |X = 5} =

(

5

15

)(

4

14

)(

3

13

)(

2

12

)(

1

11

)

≈ 0.0003

P{W |X = 6} = 0

Then we have

P (W ) =
1

6
(0.33 + 0.95 + 0.022 + 0.0036 + 0.0003) = 0.0756 .

If all the balls selected are white then the probability our die showed a three was

P{X = 3|W} =
P{W |X = 3}P (X = 3)

P (W )
= 0.048 .

Problem 48 (which cabinet did we select)

This question is the same as asking what is the probability we select cabinet A given that a
silver coin is seen on our draw. Then we want to compute P (A|S) = P (S|A)P (A)

P (S)
. Now

P (S) = P (S|A)P (A) + P (S|B)P (B) = 1

(

1

2

)

+

(

1

2

)(

1

2

)

=
3

4

Thus

P (A|S) =
1(1/2)

(3/4)
=

2

3
.

Problem 49 (prostate cancer)

Let C be the event that man has cancer and A (for androgen) the event of taking an elevated
PSA measurement. Then in the problem we are given

P (A|Cc) = 0.135

P (A|C) = 0.268 ,

and in addition we have P (C) = 0.7.



Part (a): We want to evaluate P (C|A) or

P (C|A) =
P (A|C)P (C)

P (A)

=
P (A|C)P (C)

P (A|C)P (C) + P (A|Cc)P (Cc)

=
(0.268)(0.7)

(0.268)(0.7) + (0.135)(0.3)
= 0.822 .

Part (b): We want to evaluate P (C|Ac) or

P (C|Ac) =
P (Ac|C)P (C)

P (Ac)

=
(1 − 0.268)(0.7)

1 − 0.228
= 0.633 .

If the prior probability of cancer changes (i.e. P (C) = 0.3) then the above formulas yield

P (C|A) = 0.459

P (C|Ac) = 0.266 .

Problem 50 (assigning probabilities of risk)

Let G, A, B be the events that a person is of good risk, an average risk, or a bad risk
respectively. Then in the problem we are told that (if E denotes the event that an accident
occurs)

P (E|G) = 0.05

P (E|A) = 0.15

P (E|B) = 0.3

In addition the a priori assumptions on the proportion of people that are good, average and
bad risks are given by P (G) = 0.2, P (A) = 0.5, and P (B) = 0.3. Then in this problem we
are asked to compute P (E) or the probability that an accident will happen. This can be
computed by conditioning on the probability of a person having an accident from among the
three types, i.e.

P (E) = P (E|G)P (G) + P (E|A)P (A) + P (E|B)P (B)

= 0.05(0.2) + (0.15)(0.5) + (0.3)(0.3) = 0.175 .

If a person had no accident in a given year we want to compute P (G|Ec) or

P (G|Ec) =
P (Ec|G)P (G)

P (Ec)
=

(1 − P (E|G))P (G)

1 − P (E)

=
(1 − 0.05)(0.2)

1 − 0.175
=

38

165



also to compute P (A|Ec) we have

P (A|Ec) =
P (Ec|A)P (A)

P (Ec)
=

(1 − P (E|A))P (A)

1 − P (E)

=
(1 − 0.15)(0.5)

1 − 0.175
=

17

33

Problem 51 (letters of recommendation)

Let Rs, Rm, and Rw be the event that our worker receives a strong, moderate, or weak
recommendation respectively. Let J be the event that our applicant gets the job. Then the
problem specifies

P (J |Rs) = 0.8

P (J |Rm) = 0.4

P (J |Rw) = 0.1 ,

with priors on the type of recommendation given by

P (Rs) = 0.7

P (Rm) = 0.2

P (Rw) = 0.1 ,

Part (a): We are asked to compute P (J) which by conditioning on the type of recommen-
dation received is

P (J) = P (J |Rs)P (Rs) + P (J |Rm)P (Rm) + P (J |Rw)P (Rw)

= 0.8(0.7) + (0.4)(0.2) + (0.1)(0.1) = 0.65 =
13

20
.

Part (b): Given the event J is held true then we are asked to compute the following

P (Rs|J) =
P (J |Rs)P (Rs)

P (J)
=

(0.8)(0.7)

(0.65)
=

56

65

P (Rm|J) =
P (J |Rm)P (Rm)

P (J)
=

(0.4)(0.2)

(0.65)
=

8

65

P (Rw|J) =
P (J |Rw)P (Rw)

P (J)
=

(0.1)(0.1)

(0.65)
=

1

65

Note that this last probability can also be calculated as P (Rw|J) = 1−P (Rw|J)−P (Rw|J).



Part (c): For this we are asked to compute

P (Rs|Jc) =
P (Jc|Rs)P (Rs)

P (Jc)
=

(1 − 0.8)(0.7)

(0.35)
=

2

5

P (Rm|Jc) =
P (Jc|Rm)P (Rm)

P (Jc)
=

(1 − 0.4)(0.2)

(0.35)
=

12

35

P (Rw|Jc) =
P (Jc|Rw)P (Rw)

P (Jc)
=

(1 − 0.1)(0.1)

(0.35)
=

9

35
.

Problem 52 (college acceptance)

Let M , T , W , R, F , and S correspond to the events that mail comes on Monday, Tuesday,
Wednesday, Thursday, Friday, or Saturday (or later) respectively. Let A be the event that
our student is accepted.

Part (a): To compute P (M) we can condition on whether or not the student is accepted as

P (M) = P (M |A)P (A) + P (M |Ac)P (Ac) = 0.15(0.6) + 0.05(0.4) = 0.11 .

Part (b): We desire to compute P (T |M c). Using the definition of conditional probability
we find that (again conditioning P (T ) on whether she is accepted or not)

P (T |M c) =
P (T, M c)

P (M c)
=

P (T )

1 − P (M)

=
P (T |A)P (A) + P (T |Ac)P (Ac)

1 − P (M)

=
0.2(0.6) + 0.1(0.4)

1 − 0.11
=

16

89
.

Part (c): We want to calculate P (A|M c, T c, W c). Again using the definition of conditional
probability (twice) we have that

P (A|M c, T c, W c) =
P (A, M c, T c, W c)

P (M c, T c, W c)
=

P (M c, T c, W c|A)P (A)

P (M c, T c, W c)
.

To evaluate terms like P (M c, T c, W c|A), and P (M c, T c, W c|Ac), lets compute the probability
that mail will come on Saturday or later given that she is accepted or not. Using the fact
that P (·|A) and P (·|Ac) are both probability densities and must sum to one over their first
argument we calculate that

P (S|A) = 1 − 0.15 − 0.2 − 0.25 − 0.15 − 0.1 = 0.15

P (S|Ac) = 1 − 0.05 − 0.1 − 0.1 − 0.15 − 0.2 = 0.4 .

With this result we can calculate that

P (M c, T c, W c|A) = P (R|A) + P (F |A) + P (S|A) = 0.15 + 0.1 + 0.15 = 0.4

P (M c, T c, W c|Ac) = P (R|Ac) + P (F |Ac) + P (S|Ac) = 0.15 + 0.2 + 0.4 = 0.75 .



Also we can compute P (M c, T c, W c) by conditioning on whether she is accepted or not. We
find

P (M c, T c, W c) = P (M c, T c, W c|A)P (A) + P (M c, T c, W c|Ac)P (Ac)

= 0.4(0.6) + 0.75(0.4) = 0.54 .

Now we finally have all of the components we need to compute what we were asked to. We
find that

P (A|M c, T c, W c) =
P (M c, T c, W c|A)P (A)

P (M c, T c, W c)
=

0.4(0.6)

0.54
=

4

9
.

Part (d): We are asked to compute P (A|R) which using Bayes’ rule gives

P (A|R) =
P (R|A)P (A)

P (R)
.

To compute this lets begin by computing P (R) again obtained by conditioning on whether
our student is accepted or not. We find

P (R) = P (R|A)P (A) + P (R|Ac)P (Ac) = 0.15(0.6) + 0.15(0.4) = 0.15 .

So that our desired probability is given by

P (A|R) =
0.15(0.6)

0.15
=

3

5
.

Part (e): We want to calculate P (A|S). Using Bayes’ rule gives

P (A|S) =
P (S|A)P (A)

P (S)
.

To compute this, lets begin by computing P (S) again obtained by conditioning on whether
our student is accepted or not. We find

P (S) = P (S|A)P (A) + P (S|Ac)P (Ac) = 0.15(0.6) + 0.4(0.4) = 0.25 .

So that our desired probability is given by

P (A|S) =
0.15(0.6)

0.25
=

9

25
.

Problem 53 (the functioning of a parallel system)

With n components a parallel system will be working if at least one component is working.
Let Hi be the event that the component i for i = 1, 2, 3, · · · , n is working. Let F be the
event that the entire system is functioning. We want to compute P (H1|F ). We have

P (H1|F ) =
P (F |H1)P (H1)

P (F )
.



Now P (F |H1) = 1 since if the first component is working the system is functioning. In
addition, P (F ) = 1−

(

1
2

)n
since to be not functioning all components must not be working.

Finally P (H1) = 1/2. Thus our probability is

P (H1|F ) =
1/2

1 − (1/2)n .

Problem 54 (independence of E and F )

Part (a): These two events would be independent. The fact that one person has blue eyes
and another unrelated person has blue eyes are in no way related.

Part (b): These two events seem unrelated to each other and would be modeled as inde-
pendent.

Part (c): As height and weigh are related, I would think that these two events are not
independent.

Part (d): Since the United States is in the western hemisphere these two two events are
related and they are not independent.

Part (e): Since rain one day would change the probability of rain on other days I would
say that these events are related and therefore not independent.

Problem 55 (independence in class)

Let S be a random variable denoting the sex of the randomly selected person. The S can
take on the values m for male and f for female. Let C be a random variable representing
denoting the class of the chosen student. The C can take on the values f for freshman and
s for sophomore. We want to select the number of sophomore girls such that the random
variables S and C are independent. Let n denote the number of sophomore girls. Then
counting up the number of students that satisfy each requirement we have

P (S = m) =
10

16 + n

P (S = f) =
6 + n

16 + n

P (C = f) =
10

16 + n

P (C = s) =
6 + n

16 + n
.



The joint density can also be computed and are given by

P (S = m, C = f) =
4

16 + n

P (S = m, C = s) =
6

16 + n

P (S = f, C = f) =
6

16 + n

P (S = f, C = s) =
n

16 + n
.

Then to be independent we must have P (C, S) = P (S)P (C) for all possible C and S values.
Considering the point case where (S = m, C = f) we have that n must satisfy

P (S = m, C = f) = P (S = m)P (C = f)

4

16 + n
=

(

10

16 + n

)(

10

16 + n

)

which when we solve for n gives n = 9. Now one should check that this value of n works for
all other equalities that must be true, for example one needs to check that when n = 9 the
following are true

P (S = m, C = s) = P (S = m)P (C = s)

P (S = f, C = f) = P (S = f)P (C = f)

P (S = f, C = s) = P (S = f)P (C = s) .

As these can be shown to be true, n = 9 is the correct answer.

Problem 58 (generating fair flips with a biased coin)

Part (a): Consider pairs of flips. Let E be the event that a pair of flips returns (H, T )
and let F be the event that the pair of flips returns (T, H). From the discussion on Page 93
Example 4h the event E will occur first with probability

P (E)

P (E) + P (F )
.

Now P (E) = p(1 − p) and P (F ) = (1 − p)p, so the probability of obtaining event E and
declaring tails before the event F would be

p(1 − p)

2p(1 − p)
=

1

2
.

In the same way we will have event F before event E with probability 1
2
.



Problem 59 (the first four outcomes)

Part (a): This probability would be p4.

Part (b): This probability would be (1 − p)p3.

Part (c): Given two mutually exclusive events E and F the probability that E occurs before
F is given by

P (E)

P (E) + P (F )
.

Denoting E by the event that we obtain a T, H, H, H pattern and F the event that we obtain
a H, H, H, H pattern the above becomes

p3(1 − p)

p4 + p3(1 − p)
=

1 − p

p + (1 − p)
= 1 − p .

Problem 60 (the color of your eyes)

Since Smith’s sister has blue eyes and this is a recessive trait, both of Smith’s parents must
have the gene for blue eyes. Let R denote the gene for brown eyes and L denote the gene
for blue eyes (these are the second letters in the words brown and blue respectively). Then
Smith will have a gene makeup possibly given by (R, R), (R, L), (L, R), where the left gene
is the one received from his mother and the right gene is the one received from his father.

Part (a): With the gene makeup given above we see that in two cases from three total
Smith will have a blue gene. Thus this probability is 2/3.

Part (b): Since Smith’s wife has blue eyes, Smith’s child will receive a L gene from his
mother. The probability Smith’s first child will have blue eyes is then dependent on what
gene they receive from Smith. Letting B be the event that Smith’s first child has blue eyes
(and conditioning on the possible genes Smith could give his child) we have

P (B) = 0

(

1

3

)

+
1

2

(

1

3

)

+
1

2

(

1

3

)

=
1

3
.

As stated above, this result is obtained by conditioning on the possible gene makeups of
Smith. For example let (X, Y ) be the notation for the “event” that Smith has a gene make
up given by (X, Y ) then the above can be written symbolically (in terms of events) as

P (B) = P (B|(R, R))P (R, R) + P (B|(R, L))P (R, L) + P (B|(L, R))P (L, R) .

Evaluating each of the above probabilities gives the result already stated.

Part (c): The fact that the first child has brown eyes makes it more likely that Smith has
a genotype, given by (R, R). We compute the probability of this genotype given the event



E (the event that the first child has brown eyes using Bayes’ rule as)

P ((R, R)|E) =
P (E|(R, R))P (R, R)

P (E|(R, R))P (R, R) + P (E|(R, L))P (R, L) + P (E|(L, R))P (L, R)

=
1
(

1
3

)

1
(

1
3

)

+ 1
2

(

1
3

)

+ 1
2

(

1
3

)

=
1

2
.

In the same way we have for the other possible genotypes that

P ((R, L)|E) =
1
2

(

1
3

)

2
3

=
1

4
= P ((L, R)|E) .

Thus the same calculation as in Part (b), but now conditioning on the fact that the first
child has brown eyes (event E) gives for a probability of the event B2 (that the second child
we have blue eyes)

P (B2|E) = P (B2|(R, R), E)P ((R, R)|E) + P (B2|(R, L), E)P ((R, L)|E) + P (B2|(L, R), E)P ((L, R)|E)

= 0

(

1

2

)

+
1

2

(

1

4

)

+
1

2

(

1

4

)

=
1

4
.

This means that the probability that the second child has brown eyes is then

1 − P (B2|E) =
3

4
.

Problem 61 (more recessive traits)

From the information that the two parents are normal but that they produced an albino
child we know that both parents must be carriers of albinoism. Their non-albino child can
have any of three possible genotypes each with probability 1/3 given by (A, A), (A, a), (a, A).
Lets denote this parent by P1 and the event that this parent is a carrier for albinoism as
C1. Note that P (C1) = 2/3 and P (Cc

1) = 1/3. We are told that the spouse of this person
(denoted P2) is a carrier for albinoism.

Part (a): The probability their first offspring is an albino depends on how likely our first
parent is a carrier of albinoism. We have (with E1 the event that their first child is an albino)
that

P (E1) = P (E1|C1)P (C1) + P (E1|Cc
1)P (Cc

1) .

Now P (E1|C1) = 1
2

(

1
2

)

= 1
4
, since both parents must contribute their albino gene, and

P (E1|Cc
1) = 0 so we have that

P (E1) =
1

4

(

2

3

)

=
1

6
.



Part (b): The fact that the first newborn is not an albino changes the probability that the
first parent is a carrier or the value of P (C1). To calculate this we will use Bayes’ rule

P (C1|Ec
1) =

P (Ec
1|C1)P (C1)

P (Ec
1|C1)P (C1) + P (Ec

1|Cc
1)P (Cc

1)

=
3
4

(

2
3

)

3
4

(

2
3

)

+ 1
(

1
3

)

=
3

5
.

so we have that P (Cc
1|Ec

1) = 2
5
, and following the steps in Part (a) we have (with E2 the

event that the couples second child is an albino)

P (E2|Ec
1) = P (E2|Ec

1, C1)P (C1|Ec
1) + P (E2|Ec

1, C
c
1)P (Cc

1|Ec
1)

=
1

4

(

3

5

)

=
3

20
.

Problem 62 (target shooting with Barbara and Dianne)

Let H be the event that the duck is “hit”, by either Barbra or Dianne’s shot. Let B and
D be the events that Barbra (respectively Dianne) hit the target. Then the outcome of the
experiment where both Dianne and Barbra fire at the target (assuming that their shots work
independently is)

P (Bc, Dc) = (1 − p1)(1 − p2)

P (Bc, D) = (1 − p1)p2

P (B, Dc) = p1(1 − p2)

P (B, D) = p1p2 .

Part (a): We desire to compute P (B, D|H) which equals

P (B, D|H) =
P (B, D, H)

P (H)
=

P (B, D)

P (H)

Now P (H) = (1 − p1)p2 + p1(1 − p2) + p1p2 so the above probability becomes

p1p2

(1 − p1)p2 + p1(1 − p2) + p1p2
=

p1p2

p1 + p2 − p1p2
.

Part (b): We desire to compute P (B|H) which equals

P (B|H) = P (B, D|H) + P (B, Dc|H) .

Since the first term P (B, D|H) has already been computed we only need to compute P (B, Dc|H).
As before we find it to be

P (B, Dc|H) =
p1(1 − p2)

(1 − p1)p2 + p1(1 − p2) + p1p2
.



So the total result becomes

P (B|H) =
p1p2 + p1(1 − p2)

(1 − p1)p2 + p1(1 − p2) + p1p2
=

p1

p1 + p2 − p1p2
.

Problem 63 (dueling)

For a given trial while dueling we have the following possible outcomes (events) and their
associated probabilities

• Event I: A is hit and B is not hit. This happens with probability pB(1 − pA).

• Event II: A is not hit and B is hit. This happens with probability pA(1 − pB).

• Event III: A is hit and B is hit. This happens with probability pApB.

• Event IV : A is not hit and B is not hit. This happens with probability (1−pA)(1−pB).

With these definitions we can compute the probabilities of various other events.

Part (a): To solve this we recognize that A is hit if events I and III happen and the
dueling continues if event IV happens. We can compute p(A) (the probability that A is hit)
by conditioning on the outcome of the first duel. We have

p(A) = p(A|I)p(I) + p(A|II)p(II) + p(A|III)p(III) + p(A|IV )p(IV ) .

Now in the case of event IV the dual continues afresh and we see that p(A|IV ) = p(A).
Using this fact and the definitions of events I-IV we have that the above becomes

p(A) = 1 · pB(1 − pA) + 0 · pA(1 − pB) + 1 · pApB + p(A) · (1 − pA)(1 − pB) .

Now solving for p(A) in the above we find that

p(A) =
pB

(1 − (1 − pA)(1 − pB))
.

Part (b): Let D be the event that both duelists are hit. Then to compute this, we can
condition on the outcome of the first dual. Using the same arguments as above we find

p(D) = p(D|I)p(I) + p(D|II)p(II) + p(D|III)p(III) + p(D|IV )p(IV )

= 0 + 0 + 1 · pApB + p(D) · (1 − pA)(1 − pB) .

On solving for P (D) we have

p(D) =
pApB

1 − (1 − pA)(1 − pB)
.



Part (c): Lets begin by computing the probability that the dual ends after one dual. Let G1

be the event that the game ends with more than (or after) one dual. We have, conditioning
on the events I-IV that

p(G1) = 0 + 0 + 0 + 1 · (1 − pA)(1 − pB) = (1 − pA)(1 − pB) .

Now let G2 be the event that the game ends with more than (or after) two duals. Then

p(G2) = (1 − pA)(1 − pB)p(G1) = (1 − pA)2(1 − pB)2 .

Generalizing this result we have for the probability that the games ends after n duels is

p(Gn) = (1 − pA)n(1 − pB)n .

Part (d): Let G1 be the event that the game ends with more than one dual and let A be
the event that A is hit. Then to compute p(G1|Ac) by conditioning on the first experiment
we have

p(G1|Ac) = p(G1, I|Ac)p(I) + p(G1, II|Ac)p(II)

+ p(G1, III|Ac)p(III) + p(G1, IV |Ac)p(IV )

= 0 + 0 + 0 + p(G1, IV |Ac)(1 − pA)(1 − pB) .

So now we need to evaluate p(G1, IV |Ac), which we do using the definition of conditional
probability. We find

p(G1, IV |Ac) =
p(G1, IV, Ac)

p(Ac)
=

1

p(Ac)
.

Where p(Ac) is the probability that A is not hit on the first experiment. This can be
computed as

p(A) = pB(1 − pA) + pApB = pB so

p(Ac) = 1 − pB ,

and the above is then given by

p(G1|Ac) =
(1 − pA)(1 − pB)

1 − pB

= 1 − pA .

In the same way as before this would generalize to the following (for the event Gn)

p(Gn) = (1 − pA)n(1 − pB)n−1

Part (e): Let AB be the event that both duelists are hit. Then in the same way as Part (d)
above we see that

p(G1, IV |AB) =
p(G1, IV, AB)

p(AB)
=

1

p(AB)
.

Here p(AB) is the probability that A and B are hit on any given experiment so p(AB) =
pApB, and

p(G1|AB) =
(1 − pA)(1 − pB)

pApB

and in general

p(Gn|AB) =
(1 − pA)n(1 − pB)n

pApB

.



Woman answers correctly Woman answers incorrectly
Man answers correctly p2 p(1 − p)

Man answers incorrectly (1 − p)p (1 − p)2

Table 5: The possible probabilities of agreement for the couple in Problem 64, Chapter 3.
When asked a question four possible outcomes can occur, corresponding to the correctness
of the mans (woman’s) answer. The first row corresponds to the times when the husband
answers the question correctly, the second row to the times when the husband answers the
question incorrectly. In the same way, the first column corresponds to the times when the
wife is correct and second column to the times when the wife is incorrect.

Problem 64 (game show strategies)

Part (a): Since each person has probability p of getting the correct answer, either one
selected to represent the couple will answer correctly with probability p.

Part (b): To compute the probability that the couple answers correctly under this strategy
we will condition our probability on the “agreement” matrix in Table 5, i.e. the possible
combinations of outcomes the couple may encounter when asked a question that they both
answer. Lets define E be the event that the couple answers correctly, and let Cm (Cw) be
the events that the man (women) answers the question correctly. We find that

P (E) = P (E|Cm, Cw)P (Cm, Cw) + P (E|Cm, Cc
w)P (Cm, Cc

w)

+ P (E|Cc
m, Cw)P (Cc

m, Cw) + P (E|Cc
m, Cc

w)P (Cc
m, Cc

w) .

Now P (E|Cc
m, Cc

w) = 0 since both the man and the woman agree but they both answer
the question incorrectly. In that case the couple would return the incorrect answer to the
question. In the same way we have that P (E|Cm, Cw) = 1. Following the strategy of flipping
a coin when the couple answers disagree we note that P (E|Cm, Cc

w) = P (E|Cc
m, Cw) = 1/2,

so that the above probability when using this strategy becomes

P (E) = 1 · p2 +
1

2
p(1 − p) +

1

2
(1 − p)p = p ,

where in computing this result we have used the joint probabilities found in Table 5 to
evaluate terms like P (Cm, Cc

w). Note that this result is the same as in Part (a) of this
problem showing that there is no benefit to using this strategy.

Problem 65 (how accurate are we when we agree/disagree)

Part (a): We want to compute (using the notation from the previous problem)

P (E|(Cm, Cw) ∪ (Cc
m, Cc

w)) .

Defining the event A to be equal to (Cm, Cw) ∪ (Cc
m, Cc

w). We see that this is equal to

P (E|(Cm, Cw) ∪ (Cc
m, Cc

w)) =
P (E, A)

P (A)
=

p2

p2 + (1 − p)2
=

0.36

0.36 + 0.16
=

9

13
.



Part (b): We want to compute P (E|(Cc
m, Cw)∪(Cm, Cc

w)), but in the second strategy above
if the couple disagrees they flip a fair coin to decide. Thus this probability is equal to 1/2.

Problem 70 (hemophilia and the queen)

Let C be the event that the queen is a carrier of the gene for hemophilia. We are told that
P (C) = 0.5. Let Hi be the event that the i-th prince has hemophilia. The we observe the
event Hc

1H
c
2H

c
3 and we want to compute P (C|Hc

1H
c
2H

c
3). Using Bayes’ rule we have that

P (C|Hc
1H

c
2H

c
3) =

P (Hc
1H

c
2H

c
3|C)P (C)

P (Hc
1H

c
2H

c
3|C)P (C) + P (Hc

1H
c
2H

c
3|Cc)P (Cc)

.

Now
P (Hc

1H
c
2H

c
3|C) = P (Hc

1|C)P (Hc
2|C)P (Hc

3|C) .

By the independence of the birth of the princes. Now P (Hc
i |C) = 0.5 so that the above is

given by

P (Hc
1H

c
2H

c
3|C) = (0.5)3 =

1

8
.

Also P (Hc
1H

c
2H

c
3|Cc) = 1 so the above probability becomes

P (C|Hc
1H

c
2H

c
3) =

(0.5)3(0.5)

(0.5)3(0.5) + 1(0.5)
=

1

9
.

In the next part of this problem (below) we will need the complement of this probability or

P (Cc|Hc
1H

c
2H

c
3) = 1 − P (C|Hc

1H
c
2H

c
3) =

8

9
.

If the queen has a fourth prince, then we want to compute P (H4|Hc
1H

c
2H

c
3). Let A be the

event Hc
1H

c
2H

c
3 (so that we don’t have to keep writing this) then conditioning on whether

the queen is a carrier, we see that the probability we seek is given by

P (H4|A) = P (H4|C, A)P (C|A) + P (H4|Cc, A)P (Cc|A)

= P (H4|C)P (C|A) + P (H4|Cc)P (Cc|A)

=
1

2

(

1

9

)

=
1

18
.

Problem 71 (winning the western division)

We are asked to compute the probabilities that each of the given team wins the western
division. We will assume that the team with the largest total number of wins will be the
division winner. We are also told that each team is equally likely to win each game it plays.
We can take this information to mean that each team wins each game it plays with probability
1/2. We begin to solve this problem, by considering the three games that the Atlanta Braves
play against the San Diego Padres. In Table 6 we enumerate all of the possible outcomes,



Probability Win Loss Total Wins Total Losses
(

1
2

)3
= 1

8
0 3 87 75

3
(

1
2

)3
= 3

8
1 2 88 74

3
(

1
2

)3
= 3

8
2 1 89 73

(

1
2

)3
= 1

8
3 0 90 72

Table 6: The win/loss record for the Atlanta Braves each of the four total possible outcomes
when they play the San Diego Padres.

S.F.G. Total Wins S.F.G. Total Losses L.A.D. Total Wins L.A.D. Total Losses
86 76 89 73
87 75 88 74
88 74 87 75
89 73 86 76

Table 7: The total win/loss record for both the San Francisco Giants (S.F.G) and the Los
Angeles Dodgers (L.A.D.). The first row corresponds to the San Francisco Giants winning
no games while the Los Angeles Dodgers win three games. The number of wins going to the
San Francisco Giants increases as we move down the rows of the table, until we reach the
third row where the Giants have won three games and the Dodgers none.

i.e. the total number of wins or losses that can occur to the Atlanta Braves during these
three games, along with the probability that each occurs.

We can construct the same type of a table for the San Francisco Giants when they play the
Los Angeles Dodgers. In Table 7 we list all of the possible total win/loss records for both
the San Francisco Giants and the Los Angeles Dogers. Since the probabilities are the same
as listed in Table 6 the table does not explicitly enumerate these probabilities.

From these results (and assuming that the the team with the most wins will win the division)
we can construct a table which represents for each of the possible wins/losses combination
above, which team will be the division winner. Define the events B, G, and D to be the
events that the Braves, Giants, and Los Angles Dodgers win the western division. Then in
Table 8 we summarize the results of the two tables above where for the first row assumes
that the Atlanta Braves win none of their games and the last row assumes that the Atlanta
Braves win all of their games. In the same way the first column corresponds to the case
when the San Francisco Giants win none of their games and the last column corresponds to
the case when they win all of their games.

In anytime that two teams tie each team has a 1/2 of a chance of winning the tie-breaking
game that they play next. Using this result and the probabilities derived above we can



1/8 3/8 3/8 1/8
1/8 D D G G
3/8 D B/D B/G G
3/8 B/D B B B/G
1/8 B B B B

Table 8: The possible division winners depending on the outcome of the three games that
each team must play. The rows (from top to bottom) correspond to the Atlanta Braves
winning more and more games (from the three that they play). The columns (from left to
right) correspond to the San Francisco Giants winning more and more games (from the three
they play). Note that as the Giants win more games the Dogers must loose more games.
Ties are determined by the presence of two symbols at a given location.

evaluate the individual probabilities that each team wins. We find that

P (D) =
1

8

(

1

8
+

3

8

)

+
3

8

(

1

8
+

1

2
· 3

8

)

+
3

8

(

1

2
· 1

8

)

=
13

64

P (G) =
1

8

(

3

8
+

1

8

)

+
3

8

(

1

2
· 3

8
+

1

8

)

+
3

8

(

1

2
· 1

8

)

=
13

64

P (B) =
3

8

(

1

2
· 3

8
+

1

2
· 3

8

)

+
3

8

(

1

2
· 1

8
+

3

8
+

3

8
+

1

2
· 1

8

)

+
1

8
(1) =

19

32

Note that these probabilities to add to one as they should. The calculations for this problems
are chap 3 prob 71.m.

Problem 76

If E and F are mutually exclusive events in an experiment, then P (E ∪F ) = P (E) + P (F ).
We desire to compute the probability that E occurs before F , which we will denote by p. To
compute p we condition on the three mutually exclusive events E, F , or (E ∪F )c. This last
event are all the outcomes not in E or F . Letting the event A be the event that E occurs
before F , we have that

p = P (A|E)P (E) + P (A|F )P (F ) + P (A|(E ∪ F )c)P ((E ∪ F )c) .

Now

P (A|E) = 1

P (A|F ) = 0

P (A|(E ∪ F )c) = p ,

since if neither E or F happen the next experiment will have E before F (and thus event A
with probability p). Thus we have that

p = P (E) + pP ((E ∪ F )c)

= P (E) + p(1 − P (E ∪ F ))

= P (E) + p(1 − P (E) − P (F )) .



Solving for p gives

p =
P (E)

P (E) + P (F )
,

as we were to show.

Chapter 3: Theoretical Exercises

Problem 1 (conditioning on more information)

We have

P (A ∩ B|A) =
P (A ∩ B ∩ A)

P (A)
=

P (A ∩ B)

P (A)
.

and

P (A ∩ B|A ∪ B) =
P ((A ∩ B) ∩ (A ∪ B))

P (A ∪ B)
=

P (A ∩ B)

P (A ∪ B)
.

But since A ∪ B ⊃ A, the probabilities P (A ∪ B) ≥ P (A), so

P (A ∩ B)

P (A)
≥ P (A ∩ B)

P (A ∪ B)

giving
P (A ∩ B|A) ≥ P (A ∩ B|A ∪ B) ,

the desired result.

Problem 2 (a school community)

Using the definition of conditional probability we can compute

P (A|B) =
P (A ∩ B)

P (B)
=

P (A)

P (B)
.

since A ⊂ B. In words P (A|B) is the amount of A in B. For P (A|¬B) we have

P (A|¬B) =
P (A ∩ ¬B)

P (¬B)
=

P (φ)

P (¬B)
= 0 .

Since if A ⊂ B then A ∩ ¬B is empty or in words given that ¬B occurred and A ⊂ B, A
cannot have occurred and therefore has zero probability. For P (B|A) we have

P (B|A) =
P (A ∩ B)

P (A)
=

P (A)

P (A)
= 1 ,

or in words since A occurs and B contains A, B must have occurred giving probability one.
For P (B|¬A) we have

P (B|¬A) =
P (B ∩ ¬A)

P (¬A)
,

which cannot be simplified further.



Problem 3 (biased selection of the first born)

We define n1 to be the number of families with one child, n2 the number of families with two
children, and in general nk to be the number of families with k children. In this problem
we want to compare two different methods for selecting children. In the first method, M1,
we pick one of the m families and then randomly choose a child from that family. In the
second method, M2, we directly pick one of the

∑k
i=1 ini children randomly. Let E be the

event that a first born child is chosen. Then the question seeks to prove that

P (E|M1) > P (E|M2) .

We will solve this problem by conditioning no the number of families with i children. For
example under M1 we have (dropping the conditioning on M1 for notational simplicity) that

P (E) =
k
∑

i=1

P (E|Fi)P (Fi) ,

where Fi is the event that the chosen family has i children. This later probability is given
by

P (Fi) =
ni

m
,

for we have ni families with i children from m total families. Also

P (E|Fi) =
1

i
,

since the event Fi means that our chosen family has i children and the event E means that
we select the first born, which can be done in 1

i
ways. In total then we have under M1 the

following for P (E)

P (E) =
k
∑

i=1

P (E|Fi)P (Fi) =
k
∑

i=1

1

i

(ni

m

)

=
1

m

k
∑

i=1

ni

i
.

Now under the second method again P (E) =
∑k

i=1 P (E|Fi)P (Fi) but under the second
method P (Fi) is the probability we have selected a family with i children and is given by

ini
∑k

i=1 ini

,

since ini is are the number of children from families with i children and the denominator is
the total number of children. Now P (E|Fi) is still the probability of having selected a family
with ith children we select the first born child. This is

ni

ini
=

1

i
,

since we have ini total children from the families with i children and ni of them are first
born. Thus under the second method we have

P (E) =
k
∑

i=1

(

1

i

)

(

ini
∑k

l=1 lnl

)

=
1

(

∑k
l=1 lnl

)

k
∑

i=1

ni .



Then our claim that P (E|M1) > P (E|M2) is equivalent to the statement that

1

m

k
∑

i=1

ni

i
≥
∑k

i=1 ni
∑k

i=1 ini

or remembering that m =
∑k

i=1 ni that

(

k
∑

i=1

ini

)(

k
∑

j=1

nj

j

)

≥
(

k
∑

i=1

ni

)(

k
∑

j=1

nj

)

.

Problem 7 (extinct fish)

Part (a): We desire to compute Pw the probability that the last ball drawn is white. This
probability will be

Pw =
n

n + m
,

because we have n white balls that can be selected from n+m total balls that can be placed
in the last spot.

Part (b): Let R be the event that the red fish species are the first species to become extinct.
Then following the hint we write P (R) as

P (R) = P (R|Gl)P (Gl) + P (R|Bl)P (Bl) .

Here Gl is the event that the green fish species are the last fish species to become extinct
and Bl the event that the blue fish species are the last fish species to become extinct. Now
we conclude that

P (Gl) =
g

r + b + g
,

and

P (Bl) =
b

r + b + g
.

We can see these by considering the blue fish as an example. If the blue fish are the last ones
extinct then we have b possible blue fish to select from the r + b + g total number of fish to
be the last fish. Now we need to compute the conditional probabilities P (R|Gl). This can
be thought of as the event that the red fish go extinct and then the blue fish. This is the
same type of experiment as in Part (a) of this problem in that we must have a blue fish go
extinct (i.e. a draw with a blue fish last). This can happen with probability

b

r + b + g − 1
,

where the denominator is one less than r + b + g since the last fish drawn must be a green
fish by the required conditioning. In the same way we have that

P (R|Bl) =
g

r + b + g − 1
.



So that the total probability P (R) is then given by

P (R) =

(

b

r + b + g − 1

)(

g

r + b + g

)

+

(

g

r + b + g − 1

)(

b

r + b + g

)

=
2bg

(r + b + g − 1)(r + b + g)
.

Problem 8 (some inequalities)

Part (a): If P (A|C) > P (B|C) and P (A|Cc) > P (B|Cc), then consider P (A) which by
conditioning on C and Cc becomes

P (A) = P (A|C)P (C) + P (A|Cc)P (Cc)

> P (B|C)P (C) + P (B|Cc)P (Cc) = P (B) .

Where the second line follows from the given inequalities.

Part (b): Following the hint, let C be the event that the sum of the pair of die is 10, A
the event that the first die lands on a 6 and B the event that the second die lands a 6.
Then P (A|C) = 1

3
, and P (A|Cc) = 5

36−3
= 5

33
. So that P (A|C) > P (A|Cc) as expected.

Now P (B|C) and P (B|Cc) will have the same probabilities as for A. Finally, we see that
P (A ∩ B|C) = 0, while P (A ∩ B|Cc) = 1

33
> 0. So we have found an example where

P (A ∩ B|C) < P (A ∩ B|Cc) and a counter example has been found.

Problem 10 (pairwise independence does not imply independence)

Let Ai,j be the event that person i and j have the same birthday. We desire to show that
these events are pairwise independent. That is the two events Ai,j and Ar,s are independent

but the totality of all

(

n
2

)

events are not independent. Now

P (Ai,j) = P (Ar,s) =
1

365
,

since for the specification of either one persons birthday the probability that the other person
will have that birthday is 1/365. Now

P (Ai,j ∩ Ar,s) = P (Ai,j|Ar,s)P (Ar,s) =

(

1

365

)(

1

365

)

=
1

3652
.

This is because P (Ai,j|Ar,s) = P (Ai,j) i.e. the fact that people r and s have the same
birthday has no effect on whether the event Ai,j is true. This is true even if one of the people
in the pairs (i, j) and (r, s) is the same. When we consider the intersection of all the sets
Ai,j, the situation changes. This is because the event ∩(i,j)Ai,j (where the intersection is



over all pairs (i, j)) is the event that every pair of people have the same birthday, i.e. that
everyone has the same birthday. This will happen with probability

(

1

365

)n−1

,

while if the events Ai,j were independent the required probability would be

∏

(i,j)

P (Ai,j) =

(

1

365

)

0

@

n
2

1

A

=

(

1

365

)

n(n−1)
2

.

Since

(

n
2

)

6= n − 1, these two results are not equal and the totality of events Ai,j are not

independent.

Problem 12 (an infinite sequence of flips)

Let ai be the probability that the ith coin lands heads. The consider the random variable
N , specifying the location where the first head occurs. This problem then is like a geometric
random variable where we want to determine the first time a success occurs. Then we have
for a distribution of P{N} the following

P{N = n} = an

n−1
∏

i=1

(1 − ai) .

This states that the first n − 1 flips must land tails and the last flip (the nth) then lands
heads. Then when we add this probability up for n = 1, 2, 3, · · · ,∞ i.e.

∞
∑

n=1

[

an

n−1
∏

i=1

(1 − ai)

]

,

is the probability that a head occurs somewhere in the infinite sequence of flips. The other
possibility would be for a head to never appear. This will happen with a probability of

∞
∏

i=1

(1 − ai) .

Together these two expressions consist of all possible outcomes and therefore must sum to
one. Thus we have proven the identity

∞
∑

n=1

[

an

n−1
∏

i=1

(1 − ai)

]

+

∞
∏

i=1

(1 − ai) = 1 ,

or the desired result.



Problem 13 (winning by flipping)

Let Pn,m be the probability that A who starts the game accumulates n head before B
accumulates m heads. We can evaluate this probability by conditioning on the outcome of
the first flip made by A. If this flip lands heads, then A has to get n−1 more flips before B’s
obtains m. If this flip lands tails then B obtains control of the coin and will receive m flips
before A receives n with probability Pm,n by the implicit symmetry in the problem. Thus A
will accumulate the correct number of heads with probability 1 − Pm,n. Putting these two
outcomes together (since they are the mutually exclusive and exhaustive) we have

Pn,m = pPn−1,m + (1 − p)(1 − Pm,n) ,

or the desired result.

Problem 14 (gambling against the rich)

Let Pi be the probability you eventually go broke when your initial fortune is i. Then
conditioning on the result of the first wager we see that Pi satisfies the following difference
equation

Pi = pPi+1 + (1 − p)Pi−1 .

This simply states that the probability you go broke when you have a fortune of i is p times
Pi+1 if you win the first wager (since if you win the first wager you now have i + 1 as your
fortune) plus 1 − p times Pi−1 if you loose the first wager (since if you loose the first wager
you will have i − 1 as your fortune). To solve this difference equation we recognize that its
solution must be given in terms of a constant raised to the ith power i.e. αi. Using the
anzats that Pi = αi and inserting this into the above equation we find that α must satisfy
the following

pα2 − α + (1 − p) = 0 .

Using the quadratic equation to solve this equation for α we find α given by

α =
1 ±

√

1 − 4p(1 − p)

2p

=
1 ±

√

(2p − 1)2

2p

=
1 ± (2p − 1)

2p
.

Taking the plus sign gives α+ = 1, while taking the minus sign in the above gives α− = q
p
.

Now the general solution to this difference equation is then given by

Pi = C1 + C2

(

q

p

)i

for i ≥ 0 .



Problem 16 (the probability of an even number of successes)

Let Pn be the probability that n Bernoulli trials result in an even number of successes. Then
the given difference equation can be obtained by conditioning on the result of the first trial
as follows. If the first trial is a success then we have n− 1 trials to go and to obtain an even
total number of tosses we want the number of successes in this n − 1 trials to be odd This
occurs with probability 1−Pn−1. If the first trial is a failure then we have n− 1 trials to go
and to obtain an even total number of tosses we want the number of successes in this n − 1
trials to be even This occurs with probability Pn−1. Thus we find that

Pn = p(1 − Pn−1) + (1 − p)Pn−1 for n ≥ 1 .

Some special point cases are easily computed. We have by assumption that P0 = 1, and
P1 = q since with only one trial, this trial must be a failure to get a total even number of
successes. Given this difference equation and a potential solution we can verify that this
solution satisfies our equation and therefore know that it is a solution. One can easily check
that the given Pn satisfies P0 = 1 and P1 = q. In addition, for the given assumed solution
we have that

Pn−1 =
1 + (1 − 2p)n−1

2
,

From which we find (using this expression in the right hand side of the difference equation
above)

p(1 − Pn−1) + (1 − p)Pn−1 = p + (1 − 2p)Pn−1

= p + (1 − 2p)

(

1 + (1 − 2p)n−1

2

)

= p +
1 − 2p

2
+

(1 − 2p)n

2

=
1

2
+

(1 − 2p)n

2
= Pn .

Showing that Pn is a solution the given difference equation.

Problem 24 (round robin tournaments)

In this problem we specify an integer k and then ask whether it is possible for every set of k
players to have there exist a member from the other n − k players that beat these k players
when competing against these k. To show that this is possible if the given inequality is true,

we follow the hint. In the hint we enumerate the

(

n
k

)

sets of k players and let Bi be the

event that no of the other n − k contestant beats every one of the k players in the i set of
k. Then P (∪iBi) is the probability that at least one of the subsets of size k has no external
player that beats everyone. Then 1 − P (∪iBi) is the probability that every subset of size k
has an external player that beats everyone. Since this is the event we want to be possible
we desire that

1 − P (∪iBi) > 0 ,



or equivalently
P (∪iBi) < 1 .

Now Boole’s inequality states that P (∪iBi) ≤ ∑

i P (Bi), so if we pick our k such that
∑

i P (Bi) < 1, we will necessarily have P (∪iBi) < 1 possible. Thus we will focus on ensuring
that

∑

i P (Bi) < 1.

Lets now focus on evaluating P (Bi). Since this is the probability that no contestant from
outside the ith cluster beats all players inside, we can evaluate it by considering a particular
player outside the k member set. Denote the other player by X. Then X would beat all k

members with probability
(

1
2

)k
, and thus with probability 1−

(

1
2

)k
does not beat all players

in this set. As the set Bi, requires that all n − k players not beat the k players in this ith
set, each of the n − k exterior players must fail at beating the k players and we have

P (Bi) =

(

1 −
(

1

2

)k
)n−k

.

Now P (Bi) is in fact independent of i (there is no reason it should depend on the particular
subset of players) we can factor this result out of the sum above and simply multiply by the

number of terms in the sum which is

(

n
k

)

giving the requirement for possibility of

(

n
k

)

(

1 −
(

1

2

)k
)n−k

< 1 ,

as was desired to be shown.

Chapter 3: Self-Test Problems and Exercises

Problem 25

Now following the hint we have

P (E|E ∪ F ) = P (E|E ∪ F, F )P (F ) + P (E|E ∪ F,¬F )P (¬F ) .

But P (E|E ∪F, F ) = P (E|F ), since E ∪F ⊃ F , and P (E|E ∪F,¬F ) = P (E|E ∩¬F ) = 1,
so the above becomes

P (E|E ∪ F ) = P (E|F )P (F ) + (1 − P (F )) .

Dividing by P (E|F ) we have

P (E|E ∪ F )

P (E|F )
= P (F ) +

1 − P (F )

P (E|F )
.

Since P (E|F ) ≤ 1 we have that 1−P (F )
P (E|F )

≥ 1 − P (F ) and the above then becomes

P (E|E ∪ F )

P (E|F )
≥ P (F ) + (1 − P (F )) = 1



giving the desired result of P (E|E ∪ F ) ≥ P (E|F ). In words this says that the probability
that E occurs given E or F occurs must be larger than if we just know that only F occurs.



1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

Table 9: The possible values for the product of two die when two die are rolled.

Chapter 4 (Random Variables)

Chapter 4: Problems

Problem 2 (the product of two die)

We begin by constructing the sample space of possible outcomes. These numbers are com-
puted in table 9, where the row corresponds to the first die and the column corresponds to
the second die. In each square we have placed the product of the two die. Each pair has
probability of 1/36, so by enumeration we find that

P{X = 1} =
1

36
, P{X = 2} =

2

36

P{X = 3} =
2

36
, P{X = 4} =

3

36

P{X = 5} =
2

36
, P{X = 6} =

2

36

P{X = 8} =
2

36
, P{X = 9} =

1

36

P{X = 10} =
2

36
, P{X = 12} =

4

36

P{X = 15} =
2

36
, P{X = 16} =

1

36

P{X = 18} =
2

36
, P{X = 20} =

1

36

P{X = 24} =
2

36
, P{X = 25} =

1

36

P{X = 30} =
2

36
, P{X = 36} =

1

36
,

with any other integer having zero probability.



1 2 3 4 5 6
1 (1,1,2,0) (2,1,3,-1) (3,1,4,-2) (4,1,5,-3) (5,1,6,-4) (6,1,7,-5)
2 (2,1,3,1) (2,2,4,0) (3,2,5,-1) (4,2,6,-2) (5,2,7,-3) (6,2,8,-4)
3 (3,1,4,2) (3,2,5,1) (3,3,6,0) (4,3,7,-1) (5,3,8,-2) (6,3,9,-3)
4 (4,1,5,3) (4,2,6,2) (4,3,7,1) (4,4,8,0) (5,4,9,-1) (6,4,10,-2)
5 (5,1,6,4) (5,2,7,3) (5,3,8,2) (5,4,9,1) (5,5,10,0) (6,5,11,-1)
6 (6,1,7,5) (6,2,8,4) (6,3,9,3) (6,4,10,2) (6,5,11,1) (6,6,12,0)

Table 10: The possible values for the maximum, minimum, sum, and first minus second die
observed when two die are rolled.

Problem 7 (the functions of two die)

In table 10 we construct a table of all possible outcomes associated with the two die rolls.
In that table the row corresponds to the first die and the column corresponds to the second
die. Then for each part of the problem we find that

Part (a): X ∈ {1, 2, 3, 4, 5, 6}.

Part (b): X ∈ {1, 2, 3, 4, 5, 6}.

Part (c): X ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Part (d): X ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}.

Problem 8 (probabilities on die)

The solution to this problem involves counting up the number of times that X equals the
given value and then dividing by 62 = 36. For each part we have the following

Part (a): From table 10, for this part we find that

P{X = 1} =
1

36
, P{X = 2} =

3

12
, P{X = 3} =

5

36
,

P{X = 4} =
7

36
, P{X = 5} =

1

4
, P{X = 6} =

11

36

Part (b): From table 10, for this part we find that

P{X = 1} =
11

36
, P{X = 2} =

1

4
, P{X = 3} =

7

36
,

P{X = 4} =
1

12
, P{X = 5} =

7

36
, P{X = 6} =

1

36



Part (c): From table 10, for this part we find that

P{X = 2} =
1

36
, P{X = 3} =

1

18
, P{X = 4} =

1

12
,

P{X = 5} =
1

9
, P{X = 6} =

5

36
, P{X = 7} =

1

6
,

P{X = 8} =
5

36
, P{X = 9} =

1

9
, P{X = 10} =

1

12
,

P{X = 11} =
1

18
P{X = 12} =

1

36
.

Part (d): From table 10, for this part we find that

P{X = −5} =
1

36
, P{X = −4} =

1

18
, P{X = −3} =

1

9
,

P{X = −2} =
1

9
, P{X = −1} =

5

36
, P{X = 0} =

1

6
,

P{X = 1} =
5

36
, P{X = 2} =

1

9
, P{X = 3} =

1

12
,

P{X = 4} =
1

18
, P{X = 5} =

1

36
.

Problem 25 (events registered with probability p)

We can solve this problem by conditioning on the number of true events (from the original
Poisson random variable N) that occur. We begin by letting M be the number of events
counted by our “filtered” Poisson random variable. Then we want to show that M is another
Poisson random variable with parameter λp. To do so consider the probability that M has
counted j “filtered events”, by conditioning on the number of observed events from the
original Poisson random variable. We find

P{M = j} =

∞
∑

n=0

P{M = j|N = n}
(

e−λλn

n!

)

The conditional probability in this sum can be computed using the acceptance rule defined
above. For if we have n original events the number of derived events is a binomial random
variable with parameters (n, p). Specifically then we have

P{M = j|N = n} =







(

n
j

)

pj(1 − p)n−j j ≤ n

0 j > n .

Putting this result into the original expression for P{M = j} we find that

P{M = j} =

∞
∑

n=j

(

n
j

)

pj(1 − p)n−j

(

e−λλn

n!

)



To evaluate this we note that

(

n
j

)

1
n!

= 1
j!(n−j)!

, so that the above simplifies as following

P{M = j} =
e−λpj

j!

∞
∑

n=j

1

(n − j)!
(1 − p)n−jλn

=
e−λpj

j!

∞
∑

n=j

1

(n − j)!
(1 − p)n−j(λ)jλn−j

=
e−λ(pλ)j

j!

∞
∑

n=j

((1 − p)λ)n−j

(n − j)!

=
e−λ(pλ)j

j!

∞
∑

n=0

((1 − p)λ)n

n!

=
e−λ(pλ)j

j!
e(1−p)λ = e−pλ (pλ)j

j!
,

from which we can see M is a Poisson random variable with parameter λp as claimed.

Problem 29 (a machine that breaks down)

Under the first strategy we would check the first possibility and if needed check the second
possibility. This has an expected cost of

C1 + R1 ,

if the first possibility is true (which happens with probability p) and

C1 + C2 + R2 ,

if the second possibility is true (which happens with probability 1− p). Here I am explicitly
assuming that if the first check is a failure we must then check the second possibility (at a
cost C2) before repair (at a cost of R2). Another assumption would be that if the first check
is a failure then we know that the second cause is the real one and we don’t have to check
for it. This results in a cost of C1 + R2 rather than C1 + C2 + R2. The first assumption
seems more consistent with the problem formulation and will be the one used. Thus under
the first strategy we have an expected cost of

p(C1 + R1) + (1 − p)(C1 + C2 + R2) ,

so our expected cost becomes

C1 + pR1 + (1 − p)(C2 + R2) = C1 + C2 + R2 + p(R1 − C2 − R2) .

Now under the second strategy we would first check the second possibility and if needed
check the first possibility. This first action has an expected cost of

C2 + R2 ,



if the second possibility is true cause (this happens with probability 1 − p) and

C2 + C1 + R1 ,

if the first possibility is true (which happens with probability p). This gives an expected
cost when using the second strategy of

(1 − p)(C2 + R2) + p(C2 + C1 + R1) = C2 + R2 + p(C1 + R1 − R2) .

The expected cost under strategy number one will be less than the expected cost under
strategy number if

C1 + C2 + R2 + p(R1 − C2 − R2) < C2 + R2 + p(C1 + R1 − R2) .

When we solve for p the above simplifies to

p >
C1

C1 + C2

.

As the threshold value to use for the different strategies. This result has the intuitive
understanding in that if p is “significantly” large (meaning the break is more likely to be
caused by the first possibility) we should check the first possibility first. While if p is not
significantly large we should check the second possibility first.

Problem 30 (the St. Petersburg paradox)

The probability that the first tail appears on the nth flip means that the n − 1 heads must
first appear and then a tail. This gives a probability of

(

1

2

)(

1

2

)n−1

=

(

1

2

)n

.

Then the expected value of our winnings is given by

∞
∑

n=1

2n

(

1

2

)n

=
∞
∑

n=1

1 = +∞ .

Part (a): If a person payed 106 to play this game he would only “win” if the first tail

appeared on toss greater than or equal to n∗ where n∗ ≥ log2(106) = 6 log2(10) = 6 ln(10)
ln(2)

=
19.931, or n∗ = 20. In that case this event would occur with probability

∞
∑

k=n∗

(

1

2

)k

=

(

1

2

)n∗ ∞
∑

k=0

(

1

2

)k

=

(

1

2

)n∗−1

,

since
∑∞

k=0

(

1
2

)k
= 2. With n∗ = 20 we see that this probability is given by 9.5367 × 10−7 a

rather small number. Thus many would not be willing to play under these conditions.



Part (b): In this case, if we play k games then we will definitely “win” if the first tail
appears on a flip n∗ (or greater) where n∗ solves

−k 106 + 2n∗

> 0 ,

or
n∗ > 6 log2(10) + log2(k) = 19.931 + log2(k) .

Since this target n∗ grows logarithmically with k one would expect that enough random
experiments were ran that eventually a very high paying result would appear. Thus many
would be willing to pay this game.

Problem 31 (scoring your guess)

Since the meterologist truly believes that it will rain with probability p∗ if he quotes a
probability p, then the expected score he will recieve is given by

E[S; p] = p∗(1 − (1 − p)2) + (1 − p∗)(1 − p2) .

We want to pick a value of p such that we maximize this expression. To do so, consider the
derivative of this expression set equal to zero and solve for the value of p. We find that

dE[S; p]

dp
= p∗(2(1 − p)) + (1 − p∗)(−2p) = 0 .

solving for p we find that p = p∗. Taking the second derivative of this expression we find
that

d2E[S; p]

dp2
= −2p∗ − 2(1 − p∗) = −2 < 0 ,

showing that p = p∗ is a maximum. This is a nice reason for using this metric, since it
behoves the meteriologist to quote the probability of rain that he truly believes is true.

Problem 32 (testing diseased people)

We have one hundred people which we break up into ten groups of ten for the purposes of
testing for a disease. For each group we will test the entire group of people with one test.
This test will be “positive” (meaning at least one person has the disease) with probability
1 − (0.9)10. Since 0.910 is the probability that all people are normal and the complement of
this probability is the probability that at least one person has the disease. Then the expected
number of tests for each group of ten is then

1 + 0((0.9)10) + 10(1 − (0.9)10) = 11 − 10(0.9)10 = 7.51 .

Where the first 1 is because we will certainly test the pooled people and the remaining to
expressions represent the case where the entire pooled test result comes back negative (no
more tests needed) and the case where the entire pooled test result comes back positive
(meaning we have ten individual tests to then do).



Problem 33 (the number of papers to purchase)

Let b be the variable denoting the number of papers bought and N the random variable de-
noting the number of papers demanded. Finally, let the random variable P be the newsboys’
profits. Then with these definitions the newsboys’ profits is given by

P = −10b + 15 min(N, b) for b ≥ 1 ,

This is because if we only buy b papers we can only sell a maximum of b papers independent
of what the demand N is. Then to calculate the expected profit we have that

E[P ] = −10b + 15E[min(N, b)]

= −10b + 15

10
∑

n=0

min(n, b)

(

10
n

)(

1

3

)n(
2

3

)10−n

.

To evaluate the optimal number of papers to buy we can plot this as a function of b for
1 ≤ b ≤ 15. In the Matlab file chap 3 prob 33.m, where this function is computed and
plotted. See Figure ??, for a figure of the produced plot. There one can see that the
maximum expected profit occurs when we order b = 3 newspapers. The expected profit in
that case is given by 8.36.

Problem 35 (a game with marbles)

Part (a): Define W to be the random variable expression the winnings obtained when one
plays the proposed game. The expected value of W is then given by

E[W ] = 1.1Psc − 1.0Pdc

where the notation “sc” means that the two drawn marbles are of the same color and the
notation “dc” means that the two drawn marbles are of different colors. Now to calculate
each of these probabilities we introduce the four possible events that can happen when we
draw to marbles: RR, BB, RB, and BR. As an example the notation RB denotes the event
that we first draw a red marble and then second draw a black marble. With this notation
we see that Psc is given by

Psc = P{RR} + P{BB}

=
5

10

(

4

9

)

+
5

10

(

4

9

)

=
4

9
.

while Pdc is given by

Pdc = P{RB} + P{BR}

=
5

10

(

5

9

)

+
5

10

(

5

9

)

=
5

9
.

With these two results the expected profit is then given by

1.1

(

4

9

)

− 1.0

(

5

9

)

= − 1

15
.



Part (b): The variance of the amount one wins can be computed by the standard expression
for variance in term of expectations. Specifically we have

Var(W ) = E[W 2] − E[W ]2 .

Now using the results from Part (a) above we see that

E[W 2] =
4

9
(1.1)2 +

5

9
(−1.0)2 =

82

75
.

so that

Var(W ) =
82

75
−
(

1

15

)2

=
49

45
≈ 1.08 .

Problem 38 (evaluating expectations and variances)

Part (a): We find, expanding the quadratic and using the linearity property of expectations
that

E[(2 + X)2] = E[4 + 4X + X2] = 4 + 4E[X] + E[X2] .

In terms of the variance, E[X2] is given by E[X2] = Var(X) + E[X]2, both terms of which
we know from the problem statement. Using this the above becomes

E[(2 + X)2] = 4 + 4(1) + (5 + 12) = 14 .

Part (b): We find, using properties of the variance that

Var(4 + 3X) = Var(3X) = 9Var(X) = 9 · 5 = 45 .

Exercise 39 (drawing two white balls in four draws)

The probability of drawing a white ball is 3/6 = 1/2. Thus if we consider event that we
draw a white ball a success, the probability requested is that in four trials, two are found
to be successes. This is equal to a binomial distribution with n = 4 and p = 1/2, thus our
desired probability is given by

(

4
2

)(

1

2

)2(
1

2

)4−2

=
6

4 · 4 =
3

8
.

Problem 40 (guessing on a multiple choice exam)

With three possible answers possible for each question we have a 1/3 chance of guessing any
specific question correctly. Then the probability that the student gets four or more correct
by guessing would be the required sum of a binomial distribution. Specifically we have

(

5
4

)(

1

3

)4(
2

3

)1

+

(

5
5

)(

1

3

)5(
2

3

)0

=
11

243
.



Where the first term is the probability the student guess four questions (from five) correctly
and the second term is the probability that the student guesses all five questions correctly.

Problem 41 (proof of extrasensory perception)

Randomly guessing the man would get seven correct answers (out of ten) with probability

(

10
7

)(

1

2

)7(
1

2

)3

= 0.11718 .

Problem 48 (defective disks)

For this problem lets take the gaurrentee that the company provides to mean that a package
will be considered “defective” if it has more than one defective disk. The probability that
more than one disk in a pack is defective (Pd) is given by

Pd = 1 −
(

10
0

)

(0.01)0(0.99)10 −
(

10
1

)

(0.01)1(0.99)9 ≈ 0.0042 ,

since

(

10
0

)

(0.01)0(0.99)10 is the probability that no disks are defective in the package of

ten disks, and

(

10
1

)

(0.01)1(0.99)9 is the probability that one of the ten disks is defective.

If a customer buys three packs of disks the probability that he returns exactly one pack is the
probability that from his three packs one package is defective. This is given by a binomial
distribution with parameters n = 3 and p = 0.0042. We find this to be

(

3
1

)

(0.0042)1(1 − 0.0042)2 = 0.0126 .

Problem 49 (flipping coins)

We are told in the problem statement that the event the first coin C1, lands heads happens
with probability 0.4, while the event that the second coin C2 lands heads happens with
probability 0.7.

Part (a): Let E be the event that exactly seven of the ten flips land on heads then condi-
tioning on the initially drawn coin (either C1 or C2) we have

P (E) = P (E|C1)P (C1) + P (E|C2)P (C2) .



Now we can evaluate each of these conditional probabilities as

P (E|C1) =

(

10
7

)

(0.4)7(0.6)3 = 0.0424

P (E|C2) =

(

10
7

)

(0.7)7(0.3)3 = 0.2668 .

So P (E) is given by (assuming uniform probabilities on the coin we initially select)

P (E) = 0.5 · 0.0424 + 0.5 · 0.2668 = 0.1546 .

Part (b): If we are told that the first three of the ten flips are heads then we desire to
compute what is the conditional probability that exactly seven of the ten flips land on
heads. To compute this let A be the event that the first three flips are heads. Then we want
to compute P (E|A), which we can do by conditioning on the initial coin selected, i.e.

P (E|A) = P (E|A, C1)P (C1) + P (E|A, C2)P (C2) .

Now as before we find that

P (E|A, C1) =

(

7
4

)

(0.4)4(0.6)3 = 0.1935

P (E|A, C2) =

(

7
4

)

(0.7)4(0.3)3 = 0.2268 .

So the above probability is given by

P (E|A) = 0.5 · 0.1935 + 0.5 · 0.2668 = 0.2102 .

Problem 62 (the probability that no wife sits next to her husband)

From Problem 66, the probability that couple i is selected next to each other is given by
2

2n−1
= 1

n−1/2
. Then we can approximate the probability that the total number of couples

sitting together is a Poisson distribution with parameter λ = n 1
n−1/2

= 2n
2n−1

. Thus the
probability that no wife sits next to her husband is given by evaluating a Poisson distribution
with count equal to zero and λ = 2n

2n−1
or

exp {− 2n

2n − 1
} .

When n = 10 this expression is exp {−20
19
} ≈ 0.349. The exact formula is computed in

example 5n from Chapter 2, where the exact probability is given as 0.3395 showing that our
approximation is rather close.



Problem 65 (the diseased)

Part (a): Since the probability that the number of soldiers with the given disease is a bino-
mial distribution with parameters (n, p) = (500, 1

103 ), we can approximate this distribution
with a Poisson distribution with rate λ = 500 1

103 = 0.5. Then the required probability is
given by

P{N ≥ 1} = 1 − P{N = 0} = 1 − e−0.5 ≈ 0.3934 .

Part (b): We are now looking for

P{N ≥ 2|N > 0} =
P{N ≥ 2 , N > 0}

P{N > 0}

=
1 − P{N < 0}

P{N > 0}

≈ 1 − e−0.5(1 + 0.5)

0.3934
= 0.2293 .

Part (c): If Jones knows that he has the disease then the news that the test result comes
back positive is not informative to him. Therefore he believes that the distribution of the
number of men with the disease is binomial with parameters (n, p) = (499, 1

103 ). As such,
it can be approximated with a Poisson distribution with parameter λ = np = 499

103 = 0.499.
Then to him the probability that more than one person has the disease is given by

P{N ≥ 2|N > 0} = 1 − P{N < 1} = 1 − e−0.499 ≈ 0.3928 .

Part (d): We desire to compute the probability that any of the 500 − i remaining people
have the disease that is (with the number N the total number of people with the disease)
let E be the event that the people 1, 2, 3, · · · i − 1 do not have the disease while i does the
probability we desire is then

P{N ≥ 2|E} =
P{N ≥ 2 , E}

P{E} .

Now the probability P{E} = (1 − p)ip, since E is a geometric random variable. Now
P{N ≥ 2 , E} is the probability that since person i has the disease that at least one more
person has the disease in the M − i additional people (here M = 500) and is given by

M−i
∑

k=1

(

M − i
k

)

pk(1 − p)M−i−k

so this probability (the entire conditional probability) is then

P{N ≥ 2|E} =

∑M−i
k=1

(

M − i
k

)

pk(1 − p)M−i−k

(1 − p)ip
,



which becomes (when we put the numbers for this problem in the expression above) the
following

P{N ≥ 2|E} =

∑500−i
k=1

(

500 − i
k

)

(

1
103

)k (
1 − 1

103

)500−i−k

(

1 − 1
103

)i ( 1
103

)

.

Problem 66 (seating couples next to each other)

Part (a): There are (2n− 1)! different possible seating orders around a circular table when
each person is considered unique. For couple i to be seated next to each other, consider this
couple as one unit, then we have in total now

2n − 2 + 1 = 2n − 1 ,

unique “items” to place around our table. Here an item can be an individual person or
the ith couple considered as one unit. Specifically we have taken the total 2n people and
subtracted the specific ith couple (of two people) and put back the couple considered as one
unit (the plus one). Thus there are (2n − 1 − 1)! = (2n − 2)! rotational orderings of the
remaining 2n − 2 people and the “fused” couple. Since there are an additional ordering of
the individual people in the pair, we have a total of 2(2n − 2)! orderings where couple i is
together. Thus our probability is given by

P (Ci) =
2(2n − 2)!

(2n − 1)!
=

2

2n − 1
.

Part (b): To compute P (Cj|Ci) when j 6= i we note that it is equal to

P (Cj, Ci)

P (Ci)
.

Here P (Cj, Ci) is the joint probability where both couple i and couple j are together. Since
we have evaluated P (Ci) in Part a of this problem we will now evaluate P (Cj, Ci) in the same
way as earlier. With couple i and j considered as individual units, the number of “items”
we have to distribute around our table is given by

2n − 2 + 1 − 2 + 1 = 2n − 2 .

Here as before we subtract the individual people in the couple and then add back in a
“fused” couple considered as one unit. Thus the number of unique permutations of these
items around our table is given by 4(2n − 2 − 1)! = 4(2n − 3)!. The factor of four is for the
different orderings of the husband and wife in each fused pair. Thus our our joint probability
is then given by

P (Cj, Ci) =
4(2n − 3)!

(2n − 1)!
=

2

(2n − 1)(n − 1)
,

so that our conditional probability P (Cj|Ci) is given by

P (Cj|Ci) =
2/(2n − 1)(n − 1)

2/(2n − 1)
=

1

n − 1
.



Part (c): When n is large we want to approximate 1−P (C1∪C2 ∪ . . .∪Cn), which is given
by

1 − P (C1 ∪ C2 ∪ . . . ∪ Cn) = 1 −
(

n
∑

i=1

P (Ci) −
∑

i<j

P (Ci, Cj) + · · ·
)

= 1 −
(

2n

2n − 1
−
∑

i<j

P (Cj|Ci)P (Ci) + · · ·
)

= 1 −
(

2n

2n − 1
−
(

n
2

)

2

(2n − 1)(n − 1)
+ · · ·

)

But since P (Cj|Ci) = 1
n−1

≈ 1
n−1/2

= P (Cj), when n is very large. Thus while the events
Ci and Cj are not independent, their dependence is weak for large n. Thus by the Poisson
paradigm we can expect the number of couples sitting together to have a Poisson approxi-
mation with rate λ = n

(

2
2n−1

)

≈ 1. Thus the probability that no married couple sits next
to each other is P{N = 0} = e−1.

Chapter 4: Theoretical Exercises

Problem 10 (an expectation with a binomial random variable)

If X is a binomial random variable with parameters (n, p) then

E

[

1

X + 1

]

=
n
∑

k=0

(

1

k + 1

)

P{X = k}

=

n
∑

k=0

(

1

k + 1

)(

n
k

)

pk(1 − p)n−k .

Factoring out 1/(n + 1) we obtain

E

[

1

X + 1

]

=
1

n + 1

n
∑

k=0

(

n + 1

k + 1

)(

n
k

)

pk(1 − p)n−k .

This result is beneficial since if we now consider the fraction and the n choose k term we see
that

(

n + 1

k + 1

)(

n
k

)

=

(

n + 1

k + 1

)

n!

k!(n − k)!
=

(n + 1)!

(k + 1)!(n − k)!
=

(

n + 1
k + 1

)

.

This substitution turns our summation into the following

E

[

1

X + 1

]

=
1

n + 1

n
∑

k=0

(

n + 1
k + 1

)

pk(1 − p)n−k .



the following manipulations allow us to evaluate this summation. We have

E

[

1

X + 1

]

=
1

p(n + 1)

n
∑

k=0

(

n + 1
k + 1

)

pk+1(1 − p)n+1−(k+1)

=
1

p(n + 1)

n+1
∑

k=1

(

n + 1
k

)

pk(1 − p)n+1−k

=
1

p(n + 1)

[

n+1
∑

k=0

(

n + 1
k

)

pk(1 − p)n+1−k − (1 − p)n+1

]

=
1

p(n + 1)
(1 − (1 − p)n+1)

=
1 − (1 − p)n+1

p(n + 1)
,

as we were to show.

Problem 11 (each sequence of k successes is equally likely)

Each specific instance of k success and n − k failures has probability pk(1 − p)n−k. Since
each success occurs with probability p each failure occurs with probability 1 − p. As each
arraignment has the same number of p’s and 1 − p’s each has the same probability.

Problem 13 (maximum likelihood estimation with a binomial random variable)

Since X is a binomial random variable with parameters (n, p) we have that

P{X = k} =

(

n
k

)

pk(1 − p)n−k .

Then the p that maximizes this expression is given by taking the derivative of the above
(with respect to p) setting the resulting expression equal to zero and solving for p. We find
that this derivative is given by

d

dp
P{X = k} =

(

n
k

)

kpk−1(1 − p)n−k +

(

n
k

)

pk(1 − p)n−k−1(n − k)(−1) .

Which when set equal to zero and solve for p we find that p = k
n
, or the empirical counting

estimate of the probability of success.

Problem 16 (the location of the maximum of the Poisson distribution)

Since X is a Poisson random variable the probability mass function for X is given by

P{X = i} =
e−λλi

i!
.



Following the hint we compute the requested fraction. We find that

P{X = i}
P{X = i − 1} =

(

e−λλi

i!

)(

(i − 1)!

e−λλi−1

)

=
λ

i
.

Now from the above expression if i < λ then the “lambda” fraction λ
i

> 1, meaning that the
probabilities satisfy P{X = i} > P{X = i−1} which implies that P{X = i} is increasing for
these values of i. On the other hand if i > λ then λ

i
< 1 we P{X = i} < P{X = i− 1} and

P{X = i} is decreasing for these values of i. Thus when i < λ, our probability P{X = i} is
increasing, while when i > λ, our probability P{X = i} is decreasing. From this we see that
the maximum of P{X = i} is then when i is the largest integer still less than or equal to λ.

Problem 17 (the probability of an even Poisson sample)

Since X is a Poisson random variable the probability mass function for X is given by

P{X = i} =
e−λλi

i!
.

To help solve this problem it is helpful to recall that a binomial random variable with
parameters (n, p) can be approximated by a Poisson random variable with λ = np, and that
this approximation improves as n → ∞. To begin then, let E denote the event that X is
even. Then to evaluate the expression P{E} we will use the fact that a binomial random
variable can be approximated by a Poisson random variable. When we consider X to be a
binomial random variable we have from theoretical Exercise 15 in this chapter that

P{E} =
1

2
(1 + (q − p)n) .

Using the Poisson approximation to the binomial we will have that p = λ/n and q = 1−p =
1 − λ/n, so the above expression becomes

P{E} =
1

2

(

1 +

(

1 − 2λ

n

)n)

.

Taking n to infinity (as required to make the binomial approximation by the Poisson distri-
bution exact) and remembering that

lim
n→∞

(

1 +
x

n

)n

= ex ,

the probability P{E} above goes to

P{E} =
1

2

(

1 + e−2λ
)

,

as we were to show.



Part (b): To directly evaluate this probability consider the summation representation of
the requested probability, i.e.

P{E} =
∞
∑

i=0,2,4,···

e−λλi

i!

= e−λ

∞
∑

i=0

λ2i

(2i)!
.

When we look at this it looks like the Taylor expansion of cos(λ) but without the required
alternating (−1)i factor. This observation might trigger the recollection that the above series
is in fact the Taylor expansion of the cosh(λ) function. This can be seen from the definition
of the cosh function which is

cosh(λ) =
eλ + e−λ

2
,

when one Taylor expands the exponentials on the right hand side of the above expression.
Thus the above probability for P{E} is given by

e−λ

(

1

2
(eλ + e−λ)

)

=
1

2
(1 + e−2λ) ,

as claimed.

Problem 26 (an integral expression for the CDF of a Poisson random variable)

We will begin by evaluating
∫∞

λ
e−xxndx. To perform repeated integration by parts we

remember the integration by parts “formula” udv = uv − vdu, and in the following we will
let u be the polynomial in x and dv the exponential. To start this translates into letting
u = xn and dv = e−x, and we have

∫ ∞

λ

e−xxndx = −xne−x
∣

∣

∞
λ

+

∫ ∞

λ

nxn−1e−xdx

= λne−λ + n

∫ ∞

λ

xn−1e−xdx

= λne−λ + n

[

−xn−1e−x
∣

∣

∞
λ

+

∫ ∞

λ

(n − 1)xn−2e−xdx

]

= λne−λ + nλn−1e−λ + n(n − 1)

∫ ∞

λ

xn−2e−xdx .

Continuing to perform one more integration by parts (so that we can fully see the pattern)
we have that this last integral given by

∫ ∞

λ

xn−2e−xdx = −xn−2e−x
∣

∣

∞
λ

+

∫ ∞

λ

(n − 2)xn−3e−xdx

= λn−2e−λ + (n − 2)

∫ ∞

λ

xn−3e−xdx .



Then we have for our total integral the following

∫ ∞

λ

e−xxndx = λne−λ + nλn−1e−λ + n(n − 1)λn−2e−λ

+ n(n − 1)(n − 2)

∫ ∞

λ

xn−3e−xdx .

Using mathematical induction the total pattern can be seen as

∫ ∞

λ

e−xxndx = λne−λ + nλn−1e−λ + n(n − 1)λn−2e−λ + · · ·

+ n(n − 1)(n − 2) · · · (n − k)

∫ ∞

λ

xn−ke−xdx

= λne−λ + nλn−1e−λ + n(n − 1)λn−2e−λ + · · ·+ n!

∫ ∞

λ

e−xdx

= λne−λ + nλn−1e−λ + n(n − 1)λn−2e−λ + · · ·+ n!e−x .

When we divide this sum by n! we find it is given by

λn

n!
e−λ +

λn−1

(n − 1)!
e−λ +

λn−2

(n − 2)!
e−λ + · · ·+ λe−λ + e−λ

or the left hand side of the expression given in the problem statement i.e.

n
∑

i=0

e−λλi

i!
,

as we were to show.

Problem 29 (ratios of hypergeometric probabilities)

For a Hypergeometric random variable we have

P (i) =

(

m
i

)(

N − m
n − i

)

(

N
n

) for i = 0, 1, · · · , m .



So that the requested ratio is given by

P (k + 1)

P (k)
=

(

m
k + 1

)(

N − m
n − k − 1

)

(

N
n

) ·

(

N
n

)

(

m
k

)(

N − m
n − k

)

=

(

m
k + 1

)

(

m
k

)

(

N − m
n − k − 1

)

(

N − m
n − k

)

=

m!
(k+1)!(m−k−1)!

· (N−m)!
(n−k−1)!(N−m−n+k+1)!

m!
k!(m−k)!

· (N−m)!
(n−k)!(N−m−n+k)!

=
k!(m − k)!

(k + 1)!(m − k − 1)!
· (n − k)!(N − m − n + k)!

(n − k − 1)!(N − m − n + k + 1)!

=
(m − k)(n − k)

(k + 1)(N − m − n + k + 1)
.



Chapter 5 (Continuous Random Variables)

Chapter 5: Problems

Problem 1 (normalizing a continuous random variable)

Part (a): The integral of the f must evaluate to one, which requires

∫ 1

−1

c(1 − x2)dx = 2c

∫ 1

0

(1 − x2)dx

= 2c

(

x − x3

3

∣

∣

∣

∣

1

0

= 2c

(

1 − 1

3

)

=
4c

3
.

For this to equal one, we must have c = 3
4
.

Part (b): The cumulative distribution is given by

F (x) =

∫ x

−1

3

4
(1 − ξ2)dξ

=
3

4

(

ξ − ξ3

3

∣

∣

∣

∣

x

−1

=
3

4

(

x − x3

3

)

+
1

2
for − 1 ≤ x ≤ 1 .

Problem 2 (how long can our system function?)

We must first evalaute the constant in our distribution function. Specifically to be a proba-
bility density we must have

∫ ∞

0

cxe−x/2dx = 1 .

Integrating by parts we find that

∫ ∞

0

cxe−x/2dx = c

[

xe−x/2

(−1/2)

∣

∣

∣

∣

∞

0

− 1

(−1/2)

∫ ∞

0

e−x/2dx

]

= c

[

2

∫ ∞

0

e−x/2dx

]

= 2c
e−x/2

(−1/2)

∣

∣

∣

∣

∞

0

= −4c(0 − 1) = 4c .



So for this to equal one we must have c = 1/4. Then the probability that our system last at
least five months is given by

∫ ∞

5

1

4
xe−x/2dx =

1

4

[

xe−x/2

(−1/2)

∣

∣

∣

∣

∞

5

−
∫ ∞

5

e−x/2

(−1/2)
dx

]

=
1

4

[

0 + 10e−5/2 + 2

∫ ∞

5

e−x/2dx

]

= · · · =
7

2
e−5/2 .

Problem 3 (possible density functions)

Even with a value of C specified a problem with this function f is that it is negative for some
values of x. Specifically f will be zero when x(2 − x2) = 0, which happens when x = 0 or
x = ±

√
2 = ±1.4142. With these zeros found we see that if x is less than

√
2 then x(2−x2)

is positive, however if x is greater than
√

2 (but still less than 5/2) the expression x(2−x2) is
negative. Thus whatever the sign of c, f(x) will be negative for some region of the interval.
Since f cannot be negative this functional form cannot be a probability density function.

For the second function this f is zero when x(2 − x) = 0, which happens when x = 0 and
x = 2. Since 2 < 5/2 = 2.5. This f will also change signs regardless of the constant C as x
crosses the value 2. Since f takes on both positive and negative signed values it can’t be a
distribution function.

Problem 4 (the lifetime of electronics)

Part (a): The requested probability is given by

P{X > 20} =

∫ ∞

20

10

x2
dx =

1

2
.

Part (b): The requested cumulative distribution function is given by

F (x) =

∫ ∞

10

10

ξ2
dξ =

10ξ−1

(−1)

∣

∣

∣

∣

x

10

= 1 − 10

x
for 10 ≤ x .

Part (c): To function for at least fifteen hours will happen with probability 1 − F (15) =
1− (1− 10

15
) = 2

3
. To have three of six such devices function for at least fifteen hours is given

by sums of binomial probability density functions. Specifically we have this probability given
by

6
∑

k=3

(

6
k

)(

2

3

)k (
1

3

)6−k

,



which we recognized as the “complement” of the binomial cumulative distribution function.
To evaluate this we can use the Matlab command binocdf(2,6,2/3). See the Matlab
file chap 5 prob 4.m for these calculations and we find that the above equals 0.8999. In
performing this analysis we are assuming independence of the devices.

Problem 11 (picking a point on a line)

An interpretation of this statement is that a point is picked randomly on a line segment
of length L would be that the point “X” is selected from a uniform distribution over the
interval [0, L]. Then the question asks us to find

P

{

min(X, L − X)

max(X, L − X)
<

1

4

}

.

This probability can be evaluated by integrating over the appropriate region. Formally we
have the above equal to

∫

E

p(x)dx

where p(x) is the uniform probability density for our problem, i.e. 1
L

and the set “E” is
x ∈ [0, L] and satisfying the inequality above, i.e.

min(x, L − x) ≤ 1

4
max(x, L − x) .

Plotting the functions max(x, L−x), and min(x, L−x) in Figure 1, we see that the regions of
X where we should compute the integral above are restricted to the two ends of the segment.
Specifically, the integral above becomes,

∫ l1

0

p(x)dx +

∫ L

l2

p(x)dx .

since the region min(x, L − x) < 1
4
max(x, L − x) in satisfied in the region [0, l1] and [l2, L]

only. Here l1 is the solution to

min(x, L − x) =
1

4
max(x, L − x) when x < L − x ,

i.e. we need to solve

x =
1

4
(L − x)

which has as its solution x = L
5
. For l2 we must solve

min(x, L − x) =
1

4
max(x, L − x) when L − x < x ,

i.e. we need to solve

L − x =
1

4
x ,

which has as its solution x = 4
5
L. With these two limits we have for our probability

∫ L
5

0

1

L
dx +

∫ L

4
5
L

1

L
dx =

1

5
+

1

5
=

2

5
.
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Figure 1: A graphical view of the region of x’s over which the integral for this problem
should be computed.

Problem 17 (the expected number of points scored)

We desire to calculate E[P (D)], where P (D) is the points scored when the distance to the
target is D. This becomes

E[P (D)] =

∫ 10

0

P (D)f(D)dD

=
1

10

∫ 10

0

P (D)dD

=
1

10

(
∫ 1

0

10dD +

∫ 3

1

5dD +

∫ 5

3

3dD +

∫ 10

5

0dD

)

=
1

10
(10 + 5(2) + 3(2)) =

26

10
= 2.6 .

Problem 18 (variable limits on a normal random variable)

Since X is a normal random variable we can evaluate the given probability P{X > 9} as

P{X > 9} = P{X − 5

σ
>

9 − 5

σ
}

= P

{

Z >
4

σ

}

= 1 − P

{

Z <
4

σ

}

= 1 − Φ(
4

σ
) = 0.2 ,

so solving for Φ(4/σ) we have that Φ(4/σ) = 0.8, which can be inverted by using the Matlab
command norminv and we calculate that

4

σ
= Φ−1(0.8) = 0.8416 .



which then implies that σ = 4.7527, so Var(X) = σ2 ≈ 22.58.

Problem 19 (more limits on normal random variables)

Since X is a normal random variable we can evaluate the given probability P{X > c} as

P{X > c} = P{X − 12

2
>

c − 12

2
}

= P

{

Z >
c − 12

2

}

= 1 − P

{

Z <
c − 12

2

}

= 1 − Φ(
c − 12

2
) = 0.1 ,

so solving for Φ( c−12
2

we have that Φ( c−12
2

) = 0.9, which can be inverted by using the Matlab
command norminv and we calculate that

c − 12

2
= Φ−1(0.9) = 1.28 ,

which then implies that c = 30.757.

Problem 20 (the expected number of people in favor of a proposition)

Now the number of people who favor the proposed rise in taxes is a binomial random variable
with parameters (n, p) = (100, 0.65). Using the normal approximation to the binomial, we
have a normal with a mean of np = 100(0.65) = 65, and a variance of σ2 = np(1 − p) =
100(0.65)(0.35) = 22.75, so the probabilities desired are given as

Part (a):

P{N ≥ 50} = P{N > 49.5}

= P

{

N − 65√
22.75

>
49.5 − 65

4.76

}

= P {Z > −3.249}
= 1 − Φ(−3.249) .

Where in the first equality we have used the “continuity approximation”. Using the Matlab
command normcdf(x) to evaluate the function Φ(x) we have the above equal to ≈ 0.9994.



Part (b):

P{60 ≤ N ≤ 70} = P{59.5 < N < 70.5}

= P

{

59.5 − 65√
22.75

< Z <
70.5 − 65√

22.75

}

= P {−1.155 < Z < 1.155}
= Φ(1.155) − Φ(−1.155) ≈ 0.7519 .

Part (c):

P{N < 75} = P{N < 74.5}

= P

{

Z <
74.5 − 65

4.76

}

= P {Z < 1.99}
= Φ(1.99) ≈ 0.9767 .

Problem 21 (percentage of men with height greater than six feet two inches)

We desire to compute P{X > 6 · 12 + 2}, where X is the random variable expressing height
(measured in inches) of a 25-year old man. This probability can be computed by converting
to the standard normal in the usual way. We have

P{X > 6 · 12 + 2} = P

{

X − 71√
6.25

>
3√
6.25

}

= P

{

Z >
3√
6.25

}

= 1 − P

{

Z <
3√
6.25

}

= 1 − Φ(1.2) ≈ 0.1151 .

For the second part of this problem we are looking for

P{X > 6 · 12 + 5|X > 6 · 12} .

Again this can be computed by converting to a standard normal, after first considering the
joint density. We have

P{X > 6 · 12 + 5|X > 6 · 12} =
P {X > 77, X > 72}

P{X > 72}

=
P {X > 77}
P{X > 72}

=
1 − P

{

Z < 6√
6.25

}

1 − P
{

Z < 1√
6.25

}

=
1 − Φ( 6√

6.25
)

1 − Φ( 1√
6.25

)
≈ 0.0238 .



Some of the calculations for this problem can be found in the file chap 5 prob 21.m.

Problem 22 (number of defective products)

Part (a): Lets calculate the percentage that are acceptable if we let the variable X be the
width of our normally distributed slot this percentage is given by

P{0.895 < X < 0.905} = P{X < 0.905} − P{X < 0.895} .

Each of these individual cumulative probabilities can be calculated by transforming to the
standard normal, in the usual way. We have that the above is equal to (since the population
mean is 0.9 and the population standard deviation is 0.003)

P

{

X − 0.9

0.003
<

0.905 − 0.9

0.003

}

− P

{

X − 0.9

0.003
<

0.895 − 0.9

0.003

}

= Φ (1.667) − Φ (−1.667) = 0.904 .

So that the probability (or percentage) of defective forgings is one minus this number (times
100 to convert to percentages). This is 0.095 × 100 = 9.5.

Part (b): This question is asking to find the value of σ such that

P{0.895 < X < 0.905} =
99

100
.

Since these limits on X are symmetric about X = 0.9 we can simplify this probability by
using

P{0.895 < X < 0.905} = 1 − 2P{X < 0.895} = 1 − 2P

{

X − 0.9

σ
<

0.905 − 0.9

σ

}

We thus have to solve for σ in

1 − 2Φ(
−0.005

σ
) = 0.99

or inverting the Φ function and solving for σ we have

σ =
−0.005

Φ−1(0.005)
.

Using the Matlab command norminv to evaluate the above we have σ = 0.0019. See the
Matlab file chap 5 prob 22.m for these calculations.

Problem 23 (probabilities on the number of 5’s to appear)

The probability that one six occurs is p = 1/6 so the total number of sixes rolled is a
binomial random variable. We can approximate this density as a Gaussian with a mean



given by np = 1000
6

≈ 166.6 and a variance of σ2 = np(1 − p) = 138.8. Then the desired
probabilities are

P{150 ≤ N ≤ 200} = P{149.5 < N < 200.5}
= P {−1.45 < Z < 2.877}
= Φ(2.87) − Φ(−1.45) ≈ 0.9253 .

If we are told that a six appears two hundred times then the probability that a five will appear
on the other rolls is 1/5 and it must appear on one of the 1000−200 = 800 other rolls. Thus
we can approximate the binomial random variable (with parameters (n, p) = (800, 1/5)) with
a normal with mean np = 800

5
= 160 and variance σ2 = np(1 − p) = 128. So the requested

probability is

P{N < 500} = P{N < 149.5}

= P

{

Z <
149.5 − 160√

128

}

= P {Z < −0.928}
= Φ(−0.928) ≈ 0.1767 .

Problem 24 (probability of enough long living batteries)

If each chips lifetime is denoted by the random variable X (assumed Gaussian with the
given mean and variance), then each chip will have a lifetime less than 1.8 106 hours with
probability given by

P{X < 1.8 106} = P

{

X − 1.4 106

3 105
<

(1.8 − 1.4) 106

3 105

}

= P

{

Z <
4

3

}

= Φ(4/3) ≈ 0.9088 .

With this probability, the number N , in a batch of 100 that will have a lifetime less than
1.8 106 is a binomial random variable with parameters (n, p) = (100, 0.9088). Therefore, the
probability that a batch will contain at least 20 is given by

P{N ≥ 20} =

100
∑

n=20

(

100
n

)

(0.908)n(1 − 0.908)100−n .

Rather than evaluate this exactly we can approximate this binomial random variable N
with a Gaussian random variable with a mean given by µ = np = 100(0.908) = 90.87, and a
variance given by σ2 = np(1 − p) = 8.28 (equivalently σ = 2.87). Then the probability that



a given batch of 100 has at least 20 that have lifetime less than 1.8 106 hours is given by

P{N ≥ 20} = P{N ≥ 19.5}

= P

{

N − 90.87

2.87
≥ 19.5 − 90.87

2.87

}

≈ P {Z ≥ −24.9}
= 1 − P {Z ≤ −24.9}
= 1 − Φ(−24.9) ≈ 1 .

Where in the first line above we have used the continuity correction required when we
approximate a discrete density by a continuous one, and in the third line above we use our
Gaussian approximation to the binomial distribution.

Problem 25 (the probability of enough acceptable items)

The number N of acceptable items is a binomial random variable so we can approximate it
with a Gaussian with mean µ = pn = 150(0.95) = 142.5, and a variance of σ2 = np(1− p) =
7.125. From the variance we have a standard deviation of σ ≈ 2.669. Thus the desired
probability is given by

P{N ≥ 140} = P{N ≥ 139.5}

= P

{

N − 142.5

2.669
≥ 139.5 − 142.5

2.669

}

≈ P {Z ≥ −1.127}
= 1 − P {Z ≤ −1.127}
= 1 − Φ(−1.127) ≈ 0.8701 .

Where in the first line above we have used the continuity correction required when we
approximate a discrete density by a continuous one, and in the third line above we use our
Gaussian approximation to the binomial distribution. We note that we solved this problem in
terms of the number of items that are acceptable. An equivalent formulation could easily be
done in terms of the number that are unacceptable by using the complementary probability
q ≡ 1 − p = 1 − 0.95 = 0.05.

Problem 26 (calculating the probability of error)

Let N be the random variable that represents the number of heads that result when we flip
our coin 1000 times. Then N is distributed as binomial random variable with a probability
of success p that depends on whether we are considering the biased or unbiased (fair) coin.
It the coin is actually fair we will make an error in our assessment of its type if N is greater
than 525 according to the statement of this problem. Thus the probability that we reach a
false conclusion is given by

P{N ≥ 525} .



To compute this probability we will use the normal approximation to the binomial distribu-
tion. In this case the normal to use to approximate this binomial distribution has a mean
given by µ = np = 1000(0.5) = 500 and a variance given by σ2 = np(1 − p) = 250 since we
know we are looking at the fair coin where p = 0.5. To evaluate this probability we have

P{N ≥ 525} = P{N ≥ 524.5}

= P

{

N − 500√
250

≥ 524.5 − 500√
250

}

≈ P {Z ≥ 1.54}
= 1 − P {Z ≤ 1.54}
= 1 − Φ(1.54) ≈ 0.0606 .

Where in the first line above we have used the continuity correction required when we
approximate a discrete density by a continuous one, and in the third line above we use
our Gaussian approximation to the binomial distribution. In the case where the coin is
actually biased our probability of obtaining a head becomes p = 0.55 and we will reach a
false conclusion in this case when

P{N < 525} .

To compute this probability we will use the normal approximation to the binomial distribu-
tion. In this case the normal to use to approximate this binomial distribution has a mean
given by µ = np = 1000(0.55) = 550 and a variance given by σ2 = np(1 − p) = 247.5. To
evaluate this probability we have

P{N < 525} = P{N < 524.5}

= P

{

N − 550√
247.5

<
524.5 − 550√

247.5

}

≈ P {Z < −1.62}
= Φ(−1.62) ≈ 0.0525 .

Where in the first line above we have used the continuity correction required when we
approximate a discrete density by a continuous one, and in the third line above we use our
Gaussian approximation to the binomial distribution.

Problem 28 (the number of left handed students)

The number of students that are left handed (denoted by N) is a Binomial random variable
with parameters (n, p) = (200, 0.12). From the normal approximation to the binomial we
can approximate this distribution with a Gaussian with mean µ = pn = 200(0.12) = 24, and
a variance of σ2 = np(1 − p) = 21.120. From the variance we have a standard deviation of



σ ≈ 4.59. Thus the desired probability is given by

P{N > 20} = P{N > 19.5}

= P

{

N − 24

4.59
>

19.5 − 24

4.59

}

≈ P {Z > −0.9792}
= 1 − P {Z ≤ −0.9792}
= 1 − Φ(−0.9792) ≈ 0.8363 .

Where in the second line above we have used the continuity correction that improves our
accuracy when we approximate a discrete density by a continuous one, and in the third line
above we use our Gaussian approximation to the binomial distribution. These calculations
can be find in the file chap 5 prob 28.m.

Problem 29 (a simple model of stock movement)

If we count each time the stock rises in value as a “success”, we see that the movement of the
stock for one timestep is a Bernoulli random variable with parameter p. So after n timesteps
the number of rises is a binomial random variable with parameters (n, p). The price of the
security after n timesteps where we have k “successes” will then be given by sukdn−k. The
probability we are looking for then is given by

P{sukdn−k ≥ 1.3 s} = P{ukdn−k ≥ 1.3}

= P

{

(u

d

)k

≥ 1.3

dn

}

= P

{

k ≥ ln(1.3
dn )

ln(u
d
)

}

= P

{

k ≥ ln(1.3) − n ln(d)

ln(u) − ln(d)

}

.

Using the numbers given in the problem i.e. d = 0.99 u = 1.012, and n = 1000, we have that

ln(1.3) − n ln(d)

ln(u) − ln(d)
≈ 469.2 .

To approximate the above probability we can use the Gaussian approximation to the binomial
distribution, which would have a mean given by np = 0.52(1000) = 520 and a variance given
by np(1 − p) = 249.6, so using this approximation the above probability then becomes

P{k ≥ 469.2} = P{k ≥ 470}
= P{k > 469.5}
= P{Z >

469.5 − 520

15.7
}

= P{Z > −3.21}
= 1 − P{Z < −3.21}
= 1 − Φ(−3.23) ≈ 0.9994 .



Problem 30 (priors on the type of region)

Let E be the event that we make an error in our classification of the given pixel. Then we
can make an error in two symmetric ways. The first is that we classify the pixel as black
when it should be classified as white. The second is where we classify the pixel as white
when it should be black. Thus we can compute P (E) by conditioning on the true type of
the pixel i.e. whether it is B (for black) or W (for white). We have

P (E) = P (E|B)P (B) + P (E|W )P (W ) .

Since we are told that the prior probability that the pixel is black is given by α, the prior
probability that the pixel is W is then given by 1 − α and the above becomes

P (E) = P (E|B)α + P (E|W )(1− α) .

The problem then asks for the value of α such that the error in making each type of error is
the same, we desire to pick α such that

P (E|B)α = P (E|W )(1 − α) ,

or upon solving for α we find that

α =
P (E|W )

P (E|W ) + P (E|B)
.

We now need to evaluate P (E|W ) and P (E|B). Now P (E|W ) is the probability that we
classify this pixel as black given that it is white. If we classify the pixel with a value of 5 as
black, then all points with pixel value greater than 5 would also be classified as black and
P (E|W ) is then given by

P (E|W ) =

∫ ∞

5

N (x; 4, 4)dx =

∫ ∞

(5−4)/2

N (z; 0, 1)dz = 1 − Φ(1/2) = 0.3085 .

Where N (x; µ, σ2) is an expression for the normal probability density function with mean µ
and variance σ2. In the same way we have that

P (E|B) =

∫ 5

−∞
N (x; 6, 9)dx =

∫ (5−6)/3

−∞
N (z; 0, 1)dz = Φ(−1/3) = 0.3694 .

Thus with these two expressions α becomes

α =
1 − Φ(1/2)

(1 − Φ(1/2)) + Φ(−1/3)
= 0.4551 .

Problem 31 (the optimal location of a fire station)

Part (a): If x (the location of the fire) is uniformly distributed in [0, A) then we would like
to select a (the location of the fire station) such that

F (a) ≡ E[ |X − a| ] ,



is a minimum. We will compute this by breaking the integral involved in the definition of
the expectation into regions where x − a is negative and positive. We find that

E[ |X − a| ] =

∫ A

0

|x − a| 1
A

dx

= − 1

A

∫ a

0

(x − a)dx +
1

A

∫ A

a

(x − a)dx

= − 1

A

(x − a)2

2

∣

∣

∣

∣

a

0

+
1

A

(x − a)2

2

∣

∣

∣

∣

A

a

= − 1

A

(

0 − a2

2

)

+
1

A

(

(A − a)2

2
− 0

)

=
a2

2A
+

(A − a)2

2A
.

To find the a that minimizes this we compute F ′(a) and set this equal to zero. Taking the
derivative and setting this equal to zero we find that

F ′(a) =
a

A
+

2(A − a)(−1)

2A
= 0 .

Which gives a solution a∗ given by a∗ = A
2
. A second derivative of our function F shows

that F ′′(a) = 2
A

> 0 showing that the point a∗ = A/2 is indeed a minimum.

Part (b): The problem formulation is the same as in part (a) but since the distribution of
the location of fires is now an exponential we now want to minimize

F (a) ≡ E[ |X − a| ] =

∫ ∞

0

|x − a|λe−λxdx .

We will compute this by breaking the integral involved in the definition of the expectation
into regions where x − a is negative and positive. We find that

E[ |X − a| ] =

∫ ∞

0

|x − a|λe−λxdx

= −
∫ a

0

(x − a)λe−λxdx +

∫ ∞

a

(x − a)λe−λxdx

= −λ

(

(x − a)

−λ
e−λx

∣

∣

∣

∣

a

0

+
1

λ

∫ a

0

e−λxdx

)

+λ

(

(x − a)

−λ
e−λx

∣

∣

∣

∣

∞

a

+
1

λ

∫ ∞

a

e−λxdx

)

= −λ

(−a

λ
− 1

λ2
e−λx

∣

∣

∣

∣

a

0

)

+ λ

(

0 − 1

λ2
e−λx

∣

∣

∣

∣

∞

a

)

= a +
1

λ
(e−λa − 1) − 1

λ
(−e−λa)

= a +
1 + 2e−λa

λ
.

To find the a that minimizes this we compute F ′(a) and set this equal to zero. Taking the
derivative we find that

F ′(a) = 1 − 2e−λa = 0 .



Which gives a solution a∗ given by a∗ = ln(2)
λ

. A second derivative of our function F shows

that F ′′(a) = 2λe−λa > 0 showing that the point a∗ = ln(2)
λ

is indeed a minimum.

Problem 32 (probability of repair times)

Part (a): We desire to compute P{T > 2} which is given by

P{T > 2} =

∫ ∞

2

1

2
e−1/2 tdt .

To evaluate this let v = t
2
, giving dv = dt

2
, from which the above becomes

P{T > 2} =

∫ ∞

1

e−vdv = −e−v
∣

∣

∞
1

= e−1 .

Part (b): The probability we are after is given by P{T > 10|T > 9} which equals P{T >
10 − 9} = P{T > 1} by the memoryless property of the exponential distribution. This is
given by

P{T > 1} = 1 − P{T < 1} = 1 − (1 − e−1/2) = e−1/2 .

Chapter 5: Theoretical Exercises

Problem 10 (points of inflection of the Gaussian

We are told that f(x) = 1√
2πσ

exp
{

−1
2

(x−µ)2

σ2

}

. And points of inflection are given by f ′′(x) =

0. To calculate f ′′(x) we need f ′(x). We find

f ′(x) ≈ −
(

x − µ

σ2

)

exp

{

−1

2

(x − µ)2

σ2

}

.

So that the second derivative is given by

f ′′(x) ≈ − 1

σ2
exp

{

−1

2

(x − µ)2

σ2

}

+

(

(x − µ)2

σ2

)

exp

{

−1

2

(x − µ)2

σ2

}

.

Setting f ′′(x) equal to zero we find that this requires x satisfy

exp{−1

2

(x − µ)2

σ2
}
[

−1 +
(x − µ)2

σ2

]

= 0, .

or (x − µ)2 = σ2. Which has as solutions x = µ ± σ.



Problem 11 (E[X2] of an exponential random variable)

Theoretical Exercise number 5 states that

E[Xn] =

∫ ∞

0

nxn−1P{X > x}dx .

For an exponential random variable we have our cumulative distribution function given by

P{X ≤ x} = 1 − e−λx .

so that P{X > x} = e−λx, and thus our expectation becomes

E[Xn] =

∫ ∞

0

nxn−1e−λxdx

Now if n = 2 we find that this expression becomes in this case

E[X2] =

∫ ∞

0

2xe−λxdx

= 2

∫ ∞

0

xe−λxdx

= 2

[

xe−λx

−λ

∣

∣

∣

∣

∞

0

+
1

λ

∫ ∞

0

e−λxdx

]

=
2

λ

[

e−λx

−λ

∣

∣

∣

∣

∞

0

]

=
2

λ2
,

as expected.

Problem 12 (the median of a continuous random variable)

Part (a): When X is uniformly distributed over (a, b) the median is the value m that solves
∫ m

a

dx

b − a
=

∫ b

m

dx

b − a
.

Integrating both sides gives that m − a = b − m, which has a solution of m = a+b
2

.

Part (b): When X is a normal random variable with parameters (µ, σ2) we find that m
must satisfy

∫ m

−∞

1√
2πσ

exp{−1

2

(x − µ)2

σ2
}dx =

∫ ∞

m

1√
2πσ

exp{−1

2

(x − µ)2

σ2
}dx .

To evaluate the integral on both sides of this expression we let v = x−µ
σ

, so that dv = dx
σ

and
each integral becomes

∫
m−µ

σ

−∞

1√
2π

exp{−v2

2
}dv =

∫ ∞

m−µ

σ

1√
2π

exp{−v2

2
}dv

= 1 −
∫

m−µ

σ

−∞

1√
2π

exp{−v2

2
}dv .



Remembering the definition of the cumulative distribution function Φ(·) as

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy ,

we see that the above can be written as Φ(m−µ
σ

) = 1 − Φ(m−µ
σ

), so that

2Φ(
m − µ

σ
) = 1 or Φ(

m − µ

σ
) =

1

2

Thus we have m = µ + σΦ−1(1/2), since we can compute Φ−1 using the Matlab function
norminv, we find that Φ−1(1/2) = 0, which intern implys that m = µ.

Part (c): If X is an exponential random variable with rate λ then m must satisfy

∫ m

0

λe−λxdx =

∫ ∞

m

λe−λxdx = 1 −
∫ m

0

λe−λxdx .

Introducing the cumulative distribution function for the exponential distribution (given by
F (x) =

∫ m

0
λe−λxdx) the above equation can be seen to be F (m) = 1 − F (m) or F (m) = 1

2
.

So in general the median m is given by m = F−1(1/2) where F is the cumulative distribution
function. For the exponential random variable this expression gives

1 − e−λm =
1

2
or m =

ln(2)

λ
.

Problem 14 (if X is an exponential random variable then cX is)

If X is an exponential random variable with parameter λ, then defining Y = cX the distri-
bution function for Y is given by

FY (a) = P{Y ≤ a}
= P{cX ≤ a}
= P

{

X ≤ a

c

}

= FX(
a

c
) .

So, taking the derivative of the above expression, to obtain the density function for Y we
see that

fY (a) =
dFY

da

=
d

da
FX(

a

c
)

= F ′
X(

a

c
)
1

c

=
1

c
fX(

a

c
)



But since X is an exponential random variable with parameters λ we have that

fX(x) =

{

λe−λx x ≥ 0
0 x < 0

so that we have for fY (y) the following

fY (y) =
1

c

{

λe−λ y

c
y
c
≥ 0

0 y
c

< 0

or

fY (y) =

{

λ
c
e−

λ
c
y y ≥ 0

0 y < 0

showing that Y is another exponential random variable with parameter λ
c
.

Problem 18 (the expectation of Xk when X is exponential)

If X is exponential with mean 1/λ then f(x) = λe−λx so that

E[Xk] =

∫ ∞

0

λxke−λxdx = λ

∫ ∞

0

xke−λxdx .

To transform to the gamma integral, let v = λx, so that dv = λdx and the above integral
becomes

λ

∫ ∞

0

vk

λk
e−v dv

λ
= λ−k

∫ ∞

0

vke−vdv .

Remembering the definition of the Γ function as
∫∞
0

vke−vdv ≡ Γ(k + 1) and that when k is
an integer Γ(k + 1) = k!, we see that the above integral is equal to k! and we have that

E[Xk] =
k!

λk
,

as required.

Problem 19 (the variance of a gamma random variable)

If X is a gamma random variable then

f(x) =
λe−λx(λx)α−1

Γ(α)
,

when x ≥ 0 and is zero otherwise. To compute the variance we require E[X2] which is given
by

E[X2] =

∫ ∞

0

x2f(x)dx

=

∫ ∞

0

x2 λe−λx(λx)α−1

Γ(α)
dx

=
λα

Γ(α)

∫ ∞

0

xα+1e−λxdx .



To evaluate the above integral, let v = λx so that dv = λdx then the above becomes

λα

Γ(α)

∫ ∞

0

vα+1

λα+1
e−v dv

λ
=

λα

λα+2Γ(α)

∫ ∞

0

vα+1e−vdv =
Γ(α + 2)

λ2Γ(α)
.

Where we have used the definition of the gamma function in the above. If we “factor” the
gamma function as

Γ(α + 2) = (α + 1)Γ(α + 1) = (α + 1)αΓ(α) ,

we see that

E[X2] =
α(α + 1)

λ2
,

when X is a gamma random variable with parameters (α, λ). Since E[X] = α
λ

we can
compute Var(X) = E[X2] − E[X]2 as

Var(X) =
α(α + 1)

λ2
− α2

λ2
=

α

λ2
,

as claimed.

Problem 20 (the gamma function at 1/2)

We want to consider Γ(1/2) which is defined as

Γ(1/2) =

∫ ∞

0

x−1/2e−xdx .

Since the argument of the exponential is the square of the term x1/2 this observation might
motivate the substitution y =

√
x. Following the hint let y =

√
2x, so that

dy =
1√
2x

dx .

So that with this substitution Γ(1/2) becomes

Γ(1/2) =

∫ ∞

0

√
2 dy e−y2/2 =

√
2

∫ ∞

0

e−y2/2dy .

Now from the normalization of the standard Gaussian we know that
∫ ∞

−∞

1√
2π

exp{−y2

2
}dy = 1 ,

which easily transforms (by integrating only over the positive real numbers) into

2

∫ ∞

0

1√
2π

exp{−y2

2
}dy = 1 .

Finally manipulating this into the specific integral required to evaluate Γ(1/2) we find that

√
2

∫ ∞

0

exp{−y2

2
}dy =

√
π ,

which shows that Γ(1/2) =
√

π as requested.



Problem 21 (the hazard rate function for the gamma random variable)

The hazard rate function for a random variable T that has a density function f(t) and
distribution function F (t) is given by

λ(t) =
f(t)

1 − F (t)
.

For a gamma distribution with parameters (α, λ) we know our f(t) is given by

f(t) =

{

λe−λt(λt)α−1

Γ(α)
t ≥ 0

0 t < 0 .

Lets begin by calculating the cumulative density function for a gamma random variable with
parameters (α, λ). We find that

F (t) =

∫ t

0

f(ξ)dξ =

∫ t

0

λe−λξ(λξ)α−1

Γ(α)
dξ ,

which cannot be simplified further. We then have that

1 − F (t) =

∫ ∞

0

f(ξ)dξ −
∫ t

0

f(ξ)dξ

=

∫ ∞

t

f(ξ)dξ

=

∫ ∞

t

λe−λξ(λξ)α−1

Γ(α)
dξ ,

which also cannot be simplified further. Thus our hazard rate is given by

λ(t) =

λe−λt(λt)α−1

Γ(α)
∫∞

t
λe−λξ(λξ)α−1

Γ(α)
dξ

=
tα−1e−λt

∫∞
t

ξα−1e−λξdξ

=
1

∫∞
t

(

ξ
t

)α−1
e−λ(ξ−t)dξ .

To try and simplify this further let v = ξ
t

so that dv = dξ
t
, and the above becomes

λ(t) =
1

∫∞
1

vα−1e−λt(v−1)tdv
=

1

teλt
∫∞
1

vα−1e−λtvdv
.

Which is one expression for the hazard rate for a gamma random variable. We can try and
reduce the integral in the bottom of the above fraction to that of the “upper incomplete
gamma function” by making the substitution y = λtv so that dy = λtdv and obtaining

λ(t) =
1

teλt
∫∞

λt
yα−1

(λt)α−1 e−y dy
λt

=
(λt)α

teλt

1
∫∞

λt
yα−1e−ydy

=
(λt)α

teλt

1

Γ(α, λt)
.



Where we have introduced the upper incomplete gamma function whos definition is
given by

Γ(a, x) =

∫ ∞

x

ta−1e−tdt .

Problem 27 (modality of the beta distribution)

The beta distribution with parameters (a, b) has a probability density function given by

f(x) =
1

B(a, b)
xa−1(1 − x)b−1 for 0 ≤ x ≤ 1 .

Part (a): Our mode of this distribution will equal either the endpoints of our interval i.e.
x = 0 or x = 1 or the location where the first derivative of f(x) vanishes. Computing this
derivative the expression df

dx
= 0 implies

df

dx
(x) = (a − 1)xa−2(1 − x)b−1 + (b − 1)xa−1(1 − x)b−2(−1) = 0

⇒ xa−2(1 − x)b−2 [(2 − a − b)x + (a − 1)] = 0 ,

which can be solved for the x∗ that makes this an equality and gives

x∗ =
a − 1

a + b − 2
assuming a + b − 2 6= 0 .

In this case to guarantee that this is a maximum we should check that the second derivative
of f at the value of a−1

a+b−2
is indeed negative. This second derivative is computed in the

Mathematica file chap 5 te 27.nb where it is shown to be negative for the given domains of
a and b. To guarantee that this value is interior to the interval (0, 1) we should verify that

0 <
a − 1

a + b − 2
< 1

which since a + b − 2 > 0 is equivalent to

0 < a − 1 < a + b − 2 .

or from the first inequality we have that a > 1 and from the second inequality (a−1 < a+b−2)
we have that b > 1 verifying that our point x∗ is in the interior of this interval and our
distribution is unimodal as was asked.

Part (b): Now the case when a = b = 1 is covered below, so lets consider a = 1. From the
requirement a + b < 2 we must have b < 1 and our density function in this case is given by

f(x) =
(1 − x)b−1

B(1, b)
.

This has a derivative given by

f ′(x) =
(1 − b)(1 − x)b−2

B(1, b)
,



and is positive over the entire interval since b < 1. Because the derivative is positive over
the entire domain the distribution is unimodal and the single mode will occur at the right
most limit i.e. x = 1. Now if b = 1 in the same way we have a < 1 and our density function
is given by

f(x) =
xa−1

B(a, 1)
.

Which has a derivative given by

f ′(x) =
(a − 1)xa−2

B(a, 1)
,

and is negative because a < 1. Because the derivative is negative over the entire domain the
distribution is unimodal and the unique mode will occur at the left most limit of our domain
i.e. x = 0. Finally, we consider the case where a < 1, b < 1 and neither equal to one. In
this case from the derivative above our minimum or maximum is given by a−1

a+b−2
which for

the domain of a and b given here is positive implying that the point x∗ is a minimum. Thus
we have two local maximums at the endpoints x = 0 and x = 1. One can also show (in the
same way as above) that for this domain of a and b the point x∗ is in the interior of the
interval.

Part (c): If a = b = 1, then the density function for the beta distribution becomes (since
Beta(1, 1) ≡ B(1, 1) = 1) is

f(x) = 1 ,

and we have the density of the uniform distribution, which is “flat” and has all points modes.

Problem 28 (Y = F (X) is a uniform random variable)

If Y = F (X) then the distribution function of Y is given by

FY (a) = P{Y ≤ a}
= P{F (X) ≤ a}
= P{X ≤ F−1(a)}
= F (F−1(a)) = a .

Thus fY (a) = dFY

da
= 1, showing that Y is a uniform random variable.

Problem 29 (the probability density function for Y = aX + b)

We begin by computing the cumulative distribution function of the random variable Y as

FY (y) = P{Y ≤ y}
= P{aX + b ≤ y}

= P{X ≤ y − b

a
}

= FX(
y − b

a
) .



Taking the derivative to obtain the distribution function for Y we find that

fY (y) =
dFY

dy
= F ′

X(
y − b

a
)
1

a
=

1

a
fX(

y − b

a
) .

Problem 30 (the probability density function for the lognormal distribution)

We begin by computing the cumulative distribution function of the random variable Y as

FY (a) = P{Y ≤ a}
= P{eX ≤ a}
= P{X ≤ log(a)}
= FX(log(a)) .

Since X is a normal random variable with mean µ and variance σ2 it has a cumulative
distribution function given by

FX(a) = Φ

(

a − µ

σ

)

so that the cumulative distribution function for Y becomes

FY (a) = Φ

(

log(a) − µ

σ

)

.

The density function for the random variable Y is given by the derivative of the cumulative
distribution function thus we have

fY (a) =
FY (a)

da
= Φ′

(

log(a) − µ

σ

)(

1

σ

)(

1

a

)

.

Since Φ′(x) = 1√
2π

e−x2/2 we have for the probability density function for a lognormal random
variable given by

fY (a) =
1√

2πσa
exp

{

−1

2

(log(a) − µ)2

σ

}

.

Problem 31 (Legendre’s theorem on relatively primeness)

Part (a): If k is the greatest common divisor of both X and Y then k must divide the random
variable X and the random variable Y . In addition, X/k and Y/k must be relatively prime
i.e. have no common factors. Now to show the given probability we first argue that that
k will divide X with probability 1/k (approximately) and divide Y with probability 1/k
(approximately). This can be reasoned heuristically by considering the case where X and
Y are drawn from say 1, 2, . . . , 10. Then if k = 2 the numbers five numbers 2, 4, 6, 8, 10
are all divisible by 2 and so the probability 2 will divide a random number from this set is
5/10 = 1/2. If k = 3 then the three numbers 3, 6, 9 are all divisible by 3 and so the probability
3 will divide a random number from this set is 3/10 ≈ 1/3. In the same way when k = 4



the probability that 4 will divide one of the numbers in our set is 2/10 = 1/5 ≈ 1/4. These
approximations become exact as N goes to infinity. Finally, X/k and Y/k will be relatively
prime with probability Q1. Letting EX,k to be event that X is divisible by k, EY,k the event
that Y is divisible by k, and EX/k,Y/k the event that X/k and Y/k are relatively prime we
have that

Qk = P{D = k}
= P{EX,k}P{EY,k}P{EX/k,Y/k}

=

(

1

k

)(

1

k

)

Q1 .

which is the desired results.

Part (b): From above we have that Qk = Q1/(k2), so summing both sides for k = 1, 2, 3, · · ·
gives (since

∑

k Qk = 1, i.e. the greatest common divisor must be one of the numbers 1, 2, 3,
...)

1 = Q1

∞
∑

k=1

1

k2
,

which gives the desired result of

Q1 =
1

∑∞
k=1

1
k2

.

Since
∑∞

k=1 1/k2 = π2/6 the above expression for Q1 becomes

Q1 =
1
π2

6

=
6

π2
.

Part (c): Now Q1 is the probability that X and Y are relatively prime will be true if P1 = 2
is not a divisor of X and Y . The probability that P1 is not a divisor of X is 1/P1 and
the same for Y . So the probability that P1 is a divisor for both X and Y is (1/P1)

2. The
probability that P1 is not a divisor of both will happen with probability 1 − (1/P1)

2. The
same logic applies for P2 giving that the probability that X and Y don’t have P2 as a factor
is 1 − (1/P2)

2. Since for X and Y be be relatively prime they cannot have any Pi as a joint
factor, and thus we are looking for the conjunction of each of the individual probabilities.
This is that P1 is not a divisor, that P2 is not a divisor, etc. This requires the product of all
of these terms giving for Q1 that

Q1 =

∞
∏

i=1

(

1 − 1

P 2
i

)

=

∞
∏

i=1

(

P 2
i − 1

P 2
i

)

.

Problem 32 (the P.D.F. for Y = g(X), when g is decreasing)

Theorem 7.1 expresses how to obtain the probability density function for Y when Y = g(X)
and the probability density function for X is known. To prove this result in the case when



g(·) is decreasing lets compute the cumulative distribution function for Y i.e.

FY (y) = P{Y ≤ y}
= P{g(X) ≤ y}

By plotting a typical decreasing function g(x) we see that the set above is given by the set
of x values such that x ≥ g−1(y) and the above expression becomes

FY (y) =

∫ ∞

g−1(y)

f(x)dx .

Talking the derivative of this expression with respect to y we obtain

F ′
Y (y) = f(g−1(y))(−1)

dg−1(y)

dy
.

Since dg−1(y)
dy

is negative

(−1)
dg−1(y)

dy
=

∣

∣

∣

∣

dg−1(y)

dy

∣

∣

∣

∣

,

and using this in the above the theorem in this case is proven.

Chapter 5: Self-Test Problems and Exercises

Problem 1 (playing times for basketball)

Part (a): The probability that the players plays over fifteen minute is given by
∫ 40

15

f(x)dx =

∫ 20

15

0.025dx +

∫ 30

20

0.05dx +

∫ 40

30

0.025dx

= 0.025 · (5) + 0.05 · (10) + 0.025 · (10) = 0.875 .

Part (b): The probability that the players plays between 20 and 35 minute is given by
∫ 35

20

f(x)dx =

∫ 30

20

0.05dx +

∫ 35

30

0.025dx

= 0.05 · (10) + 0.025 · (5) = 0.625 .

Part (c): The probability that the players plays less than 30 minutes is given by
∫ 30

10

f(x)dx =

∫ 20

10

0.025dx +

∫ 30

20

0.05dx

= 0.025 · (10) + 0.05 · (10) = 0.75 .

Part (d): The probability that the players plays more than 36 minutes is given by
∫ 40

36

f(x)dx = 0.025 · (4) = 0.1 .



Problem 2 (a power law probability density)

Part (a): Our random variable must normalize so that
∫

f(x)dx = 1, or

∫ 1

0

cxndx = c
xn+1

n + 1

∣

∣

∣

∣

1

0

=
c

n + 1
.

so that from the above we see that c = n + 1. Our probability density function is then given
by

f(x) =

{

(n + 1)xn 0 < x < 1
0 otherwise

Part (b): This expression is then given by

P{X > x} =

∫ 1

x

(n + 1)ξndξ = ξn+1
∣

∣

1

x
= 1 − xn+1 for 0 < x < 1 .

Thus we have

P{X > x} =







1 x < 0
1 − xn+1 0 < x < 1

0 x > 1

Problem 5 (a discrete uniform random variable)

We want to prove that X = int(nU) + 1 is a uniform random variable. To prove this first
fix n, then X = i is true if and only if

Int(nU) + 1 = i for i = 1, 2, 3, · · · , n .

or
Int(nU) = i − 1 .

or
i − 1

n
≤ U <

i

n
for i = 1, 2, 3, · · · , n

Thus the probability that X = i is equal to

P{X = i} =

∫ i
n

i−1
n

1dξ =
i

n
− i − 1

n
=

1

n
for i = 1, 2, 3, · · · , n .

Problem 6 (bidding on a contract)

Assume we select a bid price b. Then our profit will be b − 100 if get the contract and zero
if we don’t get the contract. Thus our profit is a random variable that depends on the bid
received by the competing company u. Our profit is then given by (here P is for profit)

P (b) =

{

0 b > u
b − 100 b < u



Lets compute the expected profit

E[P (b)] =

∫ b

70

0 · 1

140 − 70
dξ +

∫ 140

b

(b − 100) · 1

140 − 70
dξ

=
(b − 100)(140 − b)

70
=

240b − b2 − 14000

70
.

Then to find the maximum of the expected profit we take the derivative of the above expres-
sion with respect to b, setting that expression equal to zero and solve for b. The derivative
set equal to zero is given by

dE[P (b)]

db
=

1

70
(240 − 2b) = 0 .

Which has b = 120 as a solution. Since d2E[P (b)]
db2

= − 2
70

< 0, this value of b is indeed
a maximum of the function P (b). Using this value of b our expected profit is given by
400
70

= 40
7
.

Problem 10 (the lifetime of automobile tires)

Part (a): We want to compute P{X ≥ 40000}, which we do by converting to a standard
normal. We find

P{X ≥ 40000} = P

{

X − 34000

4000
≥ 1.5

}

= 1 − P{Z < 1.5} = 1 − Φ(1.5) = 0.0668 .

Part (b): We want to compute P{30000 ≤ X ≤ 35000}, which we do by converting to a
standard normal. We find

P{30000 ≤ X ≤ 35000} = P

{

30000 − 34000

4000
≤ Z ≤ 35000 − 34000

4000

}

= P{−1 ≤ Z ≤ 0.25} ≈ 0.4401 .

Part (c): We want to compute

P{X ≥ 40000|X ≥ 30000} =
P{X ≥ 40000, X ≥ 30000}

P{X ≥ 30000} =
P{X ≥ 40000}
P{X ≥ 30000} .

We again do this by converting to a standard normal. We find

P{X ≥ 40000}
P{X ≥ 30000} =

P
{

Z ≥ 40000−34000
4000

}

P
{

Z ≥ 30000−34000
4000

}

=
1 − Φ(1.5)

1 − Φ(−1.0)
= 0.0794 .

All of these calculations can be found in the Matlab file chap 5 st 10.m.



Problem 11 (the annual rainfall in Cleveland)

Part (a): Let X be the random variable denting the anual rainfall in Cleveland. Then we
want to evaluate P{X ≥ 44}. Which we can do by converting to a standard normal. We
find that

P{X ≥ 44} = P

{

X − 40.2

8.4
≥ 44 − 40.2

8.4

}

= 1 − Φ(0.452) = 0.3255 .

Part (b): Following the assumptions stated for this problem lets begin by calculating P (Ai)
for i = 1, 2, . . . , 7. Assuming independence each is equal to the value calculated in part (a) of
this problem. Lets denote that common value by p. Then the random variable representing
the number of years where the rainfall exceeds 44 inches (in a seven year time frame) is a
Binomial random variable with parameters (n, p) = (7, 0.3255). Thus the probability that
three of the next seven years will have more than 44 inches of rain is given by

(

7
3

)

p3(1 − p)4 = 0.2498 .

These calculations are performed in the Matlab file chap 5 st 11.m.

Problem 14 (hazard rates)

Part (a): We have

P{X > 2} = 1 − P{X ≤ 2} = 1 − (1 − e−22

) = e−22

= e−4 .

Part (b): We find

P{1 < X < 3} = P{X ≤ 3} − P{X < 1}
= (1 − e−9) − (1 − e−1) = e−1 − e−9 .

Part (c): The hazard rate function is defined as

λ(x) =
f(x)

1 − F (x)
.

Where f is the density function and F is the distribution function. We find for this problem
that

f(t) =
dF

dx
=

d

dx
(1 − e−x2

) = 2xe−x2

.

so λ(x) is given by

λ(x) =
2xe−x2

1 − (1 − e−x2)
= 2x .



Part (d): The expectation is given by (using integration by parts to evaluate the first
integral)

E[X] =

∫ ∞

0

xf(x)dx =

∫ ∞

0

x(2xe−x2

)dx

= 2

(

xe−x2

−2

∣

∣

∣

∣

∣

∞

0

+
1

2

∫ ∞

0

e−x2

dx

)

=

∫ ∞

0

e−x2

dx .

From the unit normaliztaion of the standard Gaussian 1√
2π

∫∞
−∞ e−s2/2ds = 1 we can compute

the value of the above integral. Using this expression we find that
∫∞
0

e−x2
dx =

√
π/2 thus

E[X] =

√
π

2
.

Part (d): The variance is given by Var(X) = E[X2] −E[X]2 so first computing the expec-
tation of X2 we have that

E[X2] =

∫ ∞

0

x2f(x)dx =

∫ ∞

0

x2(2xe−x2

)dx

= 2

(

x2e−x2

−2

∣

∣

∣

∣

∣

∞

0

+
1

2

∫ ∞

0

2xe−x2

dx

)

= 2

∫ ∞

0

xe−x2

dx = 2

(

e−x2

−2

∣

∣

∣

∣

∣

∞

0

)

= 1 .

Thus

Var(X) = 1 − π

4
=

4 − π

4
.



Chapter 6 (Jointly Distributed Random Variables)

Chapter 6: Theoretical Exercises

Problem 33 (the P.D.F. of the ratio of normals is a Cauchy distribution)

As stated in the problem, let X1 and X2 be distributed as standard normal random variables
(i.e. they have mean 0 and variance 1). Then we want the distribution of the variable
X1/X2. To this end define the random variables U and V as U = X1/X2 and V = X2. The
distribution function of U is then what we are after. From the definition of U and V in terms
of X1 and X2 we see that X1 = UV and X2 = V . To solve this problem we will derive the
joint distribution function for U and V and then marginalize out V giving the distribution
function for U , alone. Now from Theorem 2 − 4 on page 45 of Schaums probability and
statistics outline the distribution of the joint random variable (U, V ), in term of the joint
random variable (X1, X2) is given by

g(u, v) = f(x1, x2)

∣

∣

∣

∣

∂(x1, x2)

∂(u, v)

∣

∣

∣

∣

.

Now
∣

∣

∣

∣

∂(x1, x2)

∂(u, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

v u
0 1

∣

∣

∣

∣

= |v| ,

so that
g(u, v) = f(x1, x2)|v| = p(x1) p(x2)|x2| ,

as f(x1, x2) = p(x1)p(x2) since X1 and X2 are assumed independent. Now using the fact
that the distribution of X1 and X2 are standard normals we get

g(u, v) =
1

2π
exp(−1

2
(u v)2) exp(−1

2
v2) |v| .

Marginalizing out the variable V we get

g(u) =

∫ ∞

−∞
g(u, v)dv =

1

π

∫ ∞

0

v e−
1
2
(1+u2)v2

dv

To evaluate this integral let η =
√

1+u2

2
v, and after performing the integration we then find

that

g(u) =
1

1 + u2
.

Which is the distribution function for a Cauchy random variable.



Chapter 7 (Properties of Expectations)

Chapter 7: Problems

Problem 1 (expected winnings with coins and dice)

If we roll a heads then we win twice the digits on the die roll. If we roll a tail then we win
1/2 the digit on the die. Now we have a 1/2 chance of getting a head (or a tail) and a 1/6
chance of getting any individual number on the die. Thus the expected winnings are given
by

1

2
· 1

6

(

1

2
· 1
)

+
1

2
· 1

6

(

1

2
· 2
)

+ · · · + 1

2
· 1

6
(2 · 1) +

1

2
· 1

6
(2 · 2) + · · ·

or factoring out the 1/2 and the 1/6 we obtain

1

2
· 1

6

(

1

2
+

2

2
+

3

2
+

4

2
+

5

2
+

6

2
+ 2 + 2 · 2 + 2 · 3 + 2 · 4 + 2 · 5 + 2 · 6

)

which equals
105

24
.

Problem 2

Part (a): We have six choices for a suspect, six choices for a weapon and nine choices for a
room giving in total 6 · 6 · 9 = 324 possible combinations.

Part (b): Now let the random variables S, W , and R be the number of suspects, weapons,
and rooms that the player receives and let X be the number of solutions possible after
observing S, W , and R. Then X is given by

X = (6 − S)(6 − W )(9 − R) .

Part (c): Now we must have

S + W + R = 3 with 0 ≤ S ≤ 3 , 0 ≤ W ≤ 3 , 0 ≤ R ≤ 3

Each specification of these three numbers (S, W, R) occurs with a uniform probability given
by

1
(

3 + 3 − 1
3 − 1

) =
1

(

5
2

) =
1

10
,



using the results given in Chapter 1. Thus the expectation of X is given by

E[X] =
1

10

∑

S

∑

W

∑

R

(6 − S)(6 − W )(9 − R)

=
1

10

3
∑

s=0

(6 − s)

3
∑

w=0

(6 − w)

3
∑

r=0

(9 − r)

=
1

10

[

6
∑

W+R=3

(6 − W )(9 − R) + 5
∑

W+R=2

(6 − W )(9 − R)

+ 4
∑

W+R=1

(6 − W )(9 − R) + 3
∑

W+R=0

(6 − W )(9 − R)

]

= 190.4 .

Problem 3

We have by definition

E[|X − Y |α] =

∫ ∫

|x − y|αfX,Y (x, y)dxdy

=

∫ ∫

|x − y|αdxdy .

Since the area of region of the x−y plane where y > x is equal to the area of the x−y plane
where y < x, we can compute the above integral by doubling the integration domain y < x
to give

2

∫ 1

x=0

∫ x

y=0

(x − y)αdydx = 2

∫ 1

x=0

(−1)
(x − y)α+1

α + 1
|x0dx

=
2

α + 1

∫ 1

x=0

xα+1dx

=
2

α + 1

xα+2

α + 2
|10

=
2

(α + 1)(α + 2)
.

Problem 18 (counting matched cards)

Let Ai be the event that when we turn over card i it matches the required cards face. For
example A1 is the event that turning over card one reveals an ace, A2 is the event that
turning over the second card reveals a duce etc. The the number of matched cards N is give
by the sum of these indicator random variable as

N =

52
∑

i=1

Ai .



Taking the expectation of this result and using linearity requires us to evaluate E[Ai] =
P (Ai). For card i the probability that when we turn it over it matches the expected face is
given by

P (Ai) =
4

52
,

since there are four suites that could match a given face. Thus we then have for the expected
number of matching cards that

E[N ] =
52
∑

i=1

E[Ai] =
52
∑

i=1

P (Ai) = 52 · 4

52
= 4 .

Problem 21 (more birthday problems)

Let Ai,j,k be an indicator random variable if persons i, j, and k have the same birthday and

no one else does. Then if we let N denote the random variable representing the number of
groups of three people all of whom have the same birthday we see that N is given by a sum
of these random variables as

N =
∑

i<j<k

Ai,j,k .

Then taking the expectation of the above expression we have

E[N ] =
∑

i<j<k

E[Ai,j,k] .

Now there are

(

100
3

)

terms in the above sum (since there are one hundred total people

and our sum involves all subsets of three people), and the probability of each event Ai,j,k

happening is given by

P (Ai,j,k) =
1

3652

(

1 − 1

365

)100−3

=
1

3652

(

364

365

)97

since person j and person k’s birthdays must match that of person i, and the remaining 97
people must have different birthdays (the problem explicitly states we are looking for the
expected number days that are the birthday of exactly three people and not more). Thus
the total expectation of the number of groups of three people that have the same birthday
is then given by

E[N ] =

(

100
3

)

1

3652

(

364

365

)97

= 0.93014 ,

in agreement with the back of the book.



Problem 22 (number of times to roll a fair die to get all six sides)

This is exactly like the coupon collecting problem where we have six coupons with a prob-
ability of obtaining any one of them given by 1/6. Then this problem is equivalent to
determining the expected number of coupons we need to collect before we get a complete
set. From Example 2i from the book we have the expected number of rolls X to be given by

E[X] = N

[

1 +
1

2
+ · · ·+ 1

N − 1
+

1

N

]

when N = 6 this becomes

E[X] = 6

[

1 +
1

2
+ · · ·+ 1

5
+

1

6

]

= 14.7 .

Problem 30 (a squared expectation)

We find, by expanding the quadratic and using independence, that

E[(X − Y )2] = E[X2 − 2XY + Y 2] = E[X2] − 2E[X]E[Y ] + E[Y 2] .

In terms of the variance E[X2] is given by E[X2] = Var(X) + E[X]2 so the above becomes

E[(X − Y )2] = Var(X) + E[X]2 − 2E[X]E[Y ] + Var(Y ) + E[Y ]2

= σ2 + µ2 − 2µ2 + σ2 + µ2 = 2σ2 .

Problem 33 (evaluating expectations and variances)

Part (a): We find, expanding the quadratic and using the linearity property of expectations
that

E[(2 + X)2] = E[4 + 4X + X2] = 4 + 4E[X] + E[X2] .

In terms of the variance, E[X2] is given by E[X2] = Var(X) + E[X]2, both terms of which
we know from the problem statement. Using this the above becomes

E[(2 + X)2] = 4 + 4(1) + (5 + 12) = 14 .

Part (b): We find, using properties of the variance that

Var(4 + 3X) = Var(3X) = 9Var(X) = 9 · 5 = 45 .

Problem 48 (conditional expectation of die rolling)

Part (a): The probability that the first six is rolled on the nth roll is given by a geometric
random variable with parameter p = 1/6. Thus the expected number of rolls to get a six is



given by

E[X] =
1

p
= 6 .

Part (b): We want to evaluate E[X|Y = 1]. Since in this expectation we are told that the
first roll of our dice results in a five we have that

E[X|Y = 1] = 1 + E[X] = 1 +
1

p
= 1 + 6 = 7 ,

since after the first roll we again have that the number of rolls to get the first six is a
geometric random variable with p = 1/6.

Part (c): We want to evaluate E[X|Y = 5], which means that the first five happens on the
fifth roll. Thus the rolls 1, 2, 3, 4 all have a probability of 1/5 to show a six. After the fifth
roll, there are again six possible outcomes of the die so the probability of obtaining a six is
given by 1/6. Defining the event A to be the event that we do not roll a six in any of the
first four rolls (and implicitly given that the first five happens on the fifth roll) we see that

P (A) =

(

4

5

)4

= 0.4096 ,

since with probability of 1/5 we will roll a six and with probability 4/5 we will not roll a six.
With this definition and using the definition of expectation we find that

E[X|Y = 5] = 1

(

1

5

)

+ 2

(

4

5

)

1

5
+ 3

(

4

5

)2
1

5
+ 4

(

4

5

)3
1

5

+

∞
∑

k=6

k

(

P (A)

(

5

6

)k−6
1

6

)

.

We will evaluate this last sum numerically. This is done in the Matlab file chap 7 prob 48.m,
where we find that

[X|Y = 5] = 5.8192 ,

in agreement with the book.

Problem 50 (compute E[X2|Y = y])

By definition, the requested expectation is given by

E[X2|Y = y] =

∫ ∞

0

x2f(x|Y = y)dx .

Lets begin by computing f(x|Y = y), using the definition of this density in terms of the
joint density

f(x|y) =
f(x, y)

f(y)
.



Since we are given f(x, y) we begin by first computing f(y). We find that

f(y) =

∫ ∞

0

f(x, y)dx =

∫ ∞

0

e−x/ye−y

y
dx

=
e−y

y

∫ ∞

0

e−x/ydx =
e−y

y
(−y) e−x/y

∣

∣

∞
0

= e−y .

So that f(x|y) is given by

f(x|y) =
e−x/ye−y

y
ey =

e−x/y

y
.

With this expression we can evaluate our expectation above. We have (using integration by
parts several times)

E[X2|Y = y] =

∫ ∞

0

x2 e−x/y

y
dx

=
1

y

∫ ∞

0

x2e−x/ydx

=
1

y

(

x2(−y)e−x/y
∣

∣

∞
0
−
∫ ∞

0

2x(−y)e−x/ydx

)

= 2

∫ ∞

0

xe−x/ydx

= 2

(

x(−y)e−x/y
∣

∣

∞
0
−
∫ ∞

0

(−y)e−x/ydx

)

= 2y

∫ ∞

0

e−x/ydx

= 2y(−y) e−x/y
∣

∣

∞
0

= 2y2 .

Problem 51 (compute E[X3|Y = y])

By definition, the requested expectation is given by

E[X3|Y = y] =

∫

x3f(x|Y = y)dx .

Lets begin by computing f(x|Y = y), using the definition of this density in terms of the
joint density

f(x|y) =
f(x, y)

f(y)
.

Since we are given f(x, y) we begin by first computing f(y). We find that

f(y) =

∫ y

0

f(x, y)dx =

∫ y

0

e−y

y
dx = e−y .

So that f(x|y) is given by

f(x|y) =
e−y

y
ey =

1

y
.



With this expression we can evaluate our expectation above. We have

E[X3|Y = y] =

∫ y

0

x3 1

y
dx =

1

y

x4

4

∣

∣

∣

∣

y

0

=
y3

4
.

Problem 52 (the average weight)

Let W denote the random variable representing the weight of a person selected from the
total population. Then we can compute E[W ] by conditioning on the subgroups. Letting
Gi denote the event we are drawing from subgroup i, we have

E[W ] =

r
∑

i=1

E[W |Gi]P [Gi] =

r
∑

i=1

wipi .

Problem 53 (the time to escape)

Let T be the random variable denoting the number of days until the prisoner reaches freedom.
We can evaluate E[T ] by conditioning on the door selected. If we denote Di be the event
the prisoner selects door i then we have

E[T ] = E[T |D1]P (D1) + E[T |D2]P (D2) + E[T |D3]P (D3) .

Each of the above expressions can be evaluated. For example if the prisoner selects the first
door then after two days he will be right back where he started and thus has in expectation
E[T ] more days left. Thus

E[T |D1] = 2 + E[T ] .

Using logic like this we see that E[T ] can be expressed as

E[T ] = E[T |D1]P (D1) + E[T |D2]P (D2) + E[T |D3]P (D3)

= (2 + E[T ])(0.5) + (4 + E[T ])(0.3) + (1)(0.2) .

Solving the above expression for E[T ] we find that E[T ] = 12.

Problem 58 (flipping a biased coin until a head and a tail appears)

Part (a): We reason as follows if the first flip lands heads then we will continue to flip
until a tail appears at which point we stop. If the first flip lands tails we will continue to
flip until a head appears. In both cases the number of flips required until we obtain our
desired outcome (a head and a tail) is a geometric random variable. Thus computing the
desired expectation is easy once we condition on the result of the first flip. Let H denote
the event that the first flip lands heads then with N denoting the random variable denoting
the number of flips until both a head and a tail occurs we have

E[N ] = E[N |H ]P{H}+ E[N |Hc]P{Hc} .



Since P{H} = p and P{Hc} = 1 − p the above becomes

E[N ] = pE[N |H ] + (1 − p)E[N |Hc] .

Now we can compute E[N |H ] and E[N |Hc]. Now E[N |H ] is one plus the expected number
of flips required to obtain a tail. The expected number of flips required to obtain a tail is
the expectation of a geometric random variable with probability of succuss 1 − p and thus
we have that

E[N |H ] = 1 +
1

1 − p
.

The addition of the one in the above expression is due to the fact that we were required to
performed one flip to determining what the first flip was. In the same way we have

E[N |Hc] = 1 +
1

p
.

With these two sub-results we have that E[N ] is given by

E[N ] = p +
p

1 − p
+ (1 − p) +

1 − p

p
= 1 +

p

1 − p
+

1 − p

p
.

Part (b): We can reason this probability as follows. Since once the outcome of the first coin
flip is observed we repeatedly flip our coin as many times as needed to obtain the opposite
face we see that we will end our experiment on a head only if the first coin flip is a tail.
Since this happens with probability 1− p this must also be the probability that the last flip
lands heads.

Chapter 7: Theoretical Exercises

Problem 6 (the integral of the complement of the distribution function)

We desire to prove that

E[X] =

∫ ∞

0

P{X > t}dt .

Following the hint in the book define the random variable X(t) as

X(t) =

{

1 if t < X
0 if t ≥ X

Then integrating the variable X(t) we see that

∫ ∞

0

X(t)dt =

∫ X

0

1dt = X .

Thus taking the expectation of both sides we have

E[X] = E

[
∫ ∞

0

X(t)dt

]

.



This allows us to use the assumed identity that we can pass the expectation inside the
integration as

E

[
∫ ∞

0

X(t)dt

]

=

∫ ∞

0

E[X(t)]dt ,

so applying this identity to the expression we have for E[X] above we see that E[X] =
∫∞
0

E[X(t)]dt. From the definition of X(t) we have that E[X(t)] = P{X > t} and we then
finally obtain the fact that

E[X] =

∫ ∞

0

P{X > t}dt ,

as we were asked to prove.

Problem 10 (the expectation of a sum of random variables)

We begin by defining R(k) to be

R(k) ≡ E

[

∑k
i=1 Xi

∑n
i=1 Xi

]

.

Then we see that R(k) satisfies a recursive expression given by

R(k) − R(k − 1) = E

[

Xk
∑n

i=1 Xi

]

for 2 ≤ k ≤ n .

To further simplify this we would like to evaluate the expectation on the right hand side
of the above. Now by the assumed independence of all Xi’s the expectation on the right
handside of the above is independent of k, and is a constant C. Thus it can be evaluated by
considering

1 = E

[∑n
k=1 Xk

∑n
i=1 Xi

]

=

n
∑

k=1

E

[

Xk
∑n

i=1 Xi

]

= nC .

Which when we solve for C gives C = 1/n or in terms of the original expectations

E

[

Xk
∑n

i=1 Xi

]

=
1

n
for 1 ≤ k ≤ n .

Thus using our recursive expression R(k) = R(k − 1) + 1/n, we see that since

R(1) = E

[

X1
∑n

i=1 Xi

]

=
1

n
,

that

R(2) =
1

n
+

1

n
=

2

n
.

Continuing our iterations in this way we find that

R(k) = E

[

∑k
i=1 Xi

∑n
i=1 Xi

]

=
k

n
for 1 ≤ k ≤ n .



Problem 13 (record values)

Part (a): Let Rj be an indicator random variable denoting whether or not the j-th random
variable (from n) is a record value. This is that Rj = 1 if and only if Xj is a record value i.e.
Xj ≥ Xi for all 1 ≤ i ≤ j, and Xj is zero otherwise. Then the number N of record values is
given by summing up these indicator

N =

n
∑

j=1

Rj .

Taking the expectation of this expression we find that

E[N ] =

n
∑

j=1

E[Rj ] =

n
∑

j=1

P{Rj} .

Now P{Rj} is the probability that Xj is the maximum from among all Xi samples where
1 ≤ i ≤ j. Since each Xi is equally likely to be the maximum we have that

P{Rj} = P{Xj = max1≤i≤j(Xi)} =
1

j
,

and the expected number of record values is given by

E[N ] =
n
∑

j=1

1

j
,

as claimed.

Part (b): From the discussion in the text if N is a random variable denoting the number
of record values that occur then we have

(

N
2

)

=
∑

i<j

RiRj .

Thus taking the expectation and expanding the expression

(

N
2

)

in the above we have

E[N2 − N ] = E

[

2
∑

i<j

RiRj

]

= 2
∑

i<j

P (Ri, Rj) .

Now P (Ri, Rj) is the probability that Xi and Xj are record values. Since there is no con-
straint on Rj if Ri is a record value this probability is given by

P (Ri, Rj) =
1

j

1

i
.

Thus we have that

E[N2] = E[N ] + 2

n−1
∑

i=1

n
∑

j=i+1

1

j

1

i

=

n
∑

j=1

1

j
+ 2

n−1
∑

i=1

1

i

n
∑

j=i+1

1

j
,



so that the variance is given by

Var(N) = E[N2] − E[N ]2

=

n
∑

j=1

1

j
+ 2

n−1
∑

i=1

1

i

n
∑

j=i+1

1

j
−
(

n
∑

j=1

1

j

)2

=
n
∑

j=1

1

j
+

(

2
n−1
∑

i=1

1

i

n
∑

j=i+1

1

j

)

−
n
∑

j=1

1

j2
−
(

2
n−1
∑

i=1

1

i

n
∑

j=i+1

1

j

)

=

n
∑

j=1

1

j
−

n
∑

j=1

1

j2
.

where we have used the fact that (
∑

i ai)
2 =

∑

i a
2
i + 2

∑

i<j aiaj , thus

Var(N) =

n
∑

j=1

1

j
− 1

j2
=

n
∑

j=1

j − 1

j2
,

as claimed.

Problem 15

Part (a): Define Xi to be an indicator random variable such that if trial i is a success
then Xi = 1 otherwise Xi = 0. Then if X is a random variable representing the number of
successes from all n trials we have that

X =
∑

i

Xi ,

taking the expectation of both sides we find that E[X] =
∑

i E[Xi] =
∑

i Pi. Thus an
expression for the mean µ is given by

µ =
∑

i

Pi .

Part (b): Using the result from the book we have that
(

X
2

)

=
∑

i<j

XiXj ,

so that taking the expectation of the above gives

E[

(

X
2

)

] =
1

2
E[X2 − X] =

∑

i<j

E[XiXj] .

But the expecation of XiXj is given by (using independence of the trials Xi and Xj)
E[XiXj ] = P{XiXj} = P{Xi}P{Xj}. Thus the above expecation becomes

E[X2] = E[X] + 2
∑

i<j

PiPj = µ + 2

n−1
∑

i=1

Pi

n
∑

j=i+1

Pj .



From which we can compute the variance of X as

Var(X) = E[X2] − E[X]2

= µ + 2

n−1
∑

i=1

Pi

n
∑

j=i+1

Pj −
(

n
∑

i=1

Pi

)2

= µ + 2
n−1
∑

i=1

Pi

n
∑

j=i+1

Pj −
n
∑

i=1

P 2
i − 2

n−1
∑

i=1

Pi

n
∑

j=i+1

Pj

=

n
∑

i=1

Pi(1 − Pi) .

To find the values of Pi that maximize this variance we use the method of Lagrange multi-
plers. Consider the following Lagrangian

L =
n
∑

i=1

Pi(1 − Pi) + λ

(

n
∑

i=1

Pi − 1

)

.

Taking the derivatives of this expression with respect to Pi and λ gives

∂L

∂Pi

= 1 − Pi − Pi + λ for 1 ≤ i ≤ n

∂L

∂λ
=

n
∑

i=1

Pi − 1 .

The first equation gives for Pi (in terms of λ) the expression that Pi = 1+λ
2

which when put
into the second constraint gives

λ =
2

n
− 1 =

2 − n

n
.

Which means that

Pi =
1

n
.

To determine if this maximizes or minimizes the functional Var(X) we need to consider the
second derivative of the Var(X) expression, i.e.

∂2Var(X)

∂Pi∂Pj
= −2δij ,

with δij the Kronecker delta. Thus the matrix of second derivatives is negative definite
implying that our solutions Pi = 1

n
will maximize the variance.

Part (c): To select a choice of Pi’s that minimizes this variance we note that Var(X) = 0
if Pi = 0 or Pi = 1 for every i. In this case the random variable X is a constant.



Chapter 8 (Limit Theorems)

Chapter 8: Problems

Problem 1 (bounding the probability we are between two numbers)

We are told that µ = 20 and σ2 = 20 so that

P{0 < X < 40} = P{−20 < X − 20 < 20} = 1 − P{|X − 20| > 20} .

Now by Chebyshev’s inequality

P{|X − µ| ≥ k} ≤ σ2

k2
,

we know that

P{|X − 20| > 20} ≤ 20

202
= 0.05 .

This implys that (negating both sides that)

−P{|X − 20| > 20} > −0.05 ,

so that 1−P{|X−20| > 20} > 0.95. In summary then we have that P{0 < X < 40} > 0.95.

Problem 2 (distribution of test scores)

We are told, that if X is the students score in taking this test then E[X] = 75.

Part (a): Then by Markov’s inequality we have

P{X ≥ 85} ≤ E[X]

85
=

75

85
=

15

17
.

If we also know the variance of X is given by VarX = 25, then we can use the one-sided
Markov inequality given by

P{X − µ ≥ a} ≤ σ2

σ2 + a2
.

With µ = 75, a = 10, σ2 = 25 this becomes

P{X ≥ 85} ≤ 25

25 + 102
=

1

5
.

Part (b): Using Chernoff’s inequality given by

P{|X − µ| ≥ kσ} ≤ 1

k2
,



we have (since we want 5k = 10 or k = 2) that

P{|X − 75| ≥ 2 × 5} ≤ 1

22
= 0.25 ,

Thus

P{|X − 75| ≤ 10} = 1 − P{|X − 75| ≥ 10} = 1 − 1

4
=

3

4
.

Part (c): We desire to compute

P{75 − 5 ≤ 1

n

n
∑

i=1

xi ≤ 75 + 5} = P{| 1
n

n
∑

i=1

xi − 75| ≤ 5}

Defining X =
∑n

i=1 Xi, we have that µ = E[X] = 75 and Var(X) = 1
n2 × nVar(X) = 25

n
. So

to use Chernoff’ inequality on this problem we desire a k such that k
(

5√
n

)

= 5 so k =
√

n

and then Chernoff’s bound gives

P{| 1
n

n
∑

i=1

xi − 75| > 5} ≤ 1

n
.

So to make P{| 1
n

∑n
i=1 xi − 75| > 5} ≤ 0.1 we must take

1

n
≤ 0.1 ⇒ n ≥ 10 .

Problem 3 (an example with the central limit theorem)

We want to compute n such that

P{
∣

∣

∣

∣

1
n

∑n
i=1 Xi − 75

5/
√

n

∣

∣

∣

∣

≤ 5

5/
√

n
} ≥ 0.9 .

Now by the central limit theorem the expression

1
n

∑n
i=1 Xi − 75

5/
√

n
,

we have that the above can be written (first removing the absolute values)

P{
∣

∣

∣

∣

1
n

∑n
i=1 Xi − 75

5/
√

n

∣

∣

∣

∣

≤ √
n} = 1 − 2P{

1
n

∑n
i=1 Xi − 75

5/
√

n
≤ √

n}

= 1 − 2Φ(−√
n) .

Setting this equal to 0.9 gives Φ(−√
n) = 0.05, or when we solve for n we obtain

n > (−Φ−1(0.05))2 = 2.7055 .

In the file chap 8 prob 3.m we use the Matlab command norminv to compute this value.
We see that we should take n ≥ 3.



Problem 4 (sums of Poisson random variables)

Part (a): The Markov inequality is P{X ≥ a} ≤ E[X]
a

, so if X =
∑20

i=1 Xi then E[X] =
∑20

i=1 E[Xi] = 20, and the Markov inequality becomes in this case

P{X ≥ 15} ≤ 20

15
=

4

3
.

Note that since all probabilities must be less than one, this bound is not informative.

Part (b): We desire to compute (using the central limit theorem) P{∑20
i=1 Xi > 15}. Thus

the desired probability is given by (since σ =
√

Var(Xi) = 1)

P{
∑20

i=1 Xi − 20√
20

>
15 − 20√

20
} = 1 − P{Z < − 5√

20
}

= 0.8682 .

This calculation can be found in chap 8 prob 4.m.

Problem 5 (rounding to integers)

Let R =
∑50

i=1 Ri be the approximate sum where each Ri is the rounded variable and let
X =

∑50
i=1 Xi be the exact sum. We desire to compute P{|X − R| > 3}, which can be

simplified to give

P{|X − R| > 3} = P

{
∣

∣

∣

∣

∣

50
∑

i=1

Xi −
50
∑

i=1

Ri

∣

∣

∣

∣

∣

> 3

}

= P

{
∣

∣

∣

∣

∣

50
∑

i=1

(Xi − Ri)

∣

∣

∣

∣

∣

> 3

}

.

Now Xi−Ri are independent uniform random variables between [−0.5, 0.5] so the above can
be evaluated using the central limit theorem. For this sum of random variables the mean of
the individual random variables Xi − Ri is zero while the standard deviation σ is given by

σ2 =
(0.5 − (−0.5))2

12
=

1

12
.

Thus by the central limit theorem we have that

P

{
∣

∣

∣

∣

∣

50
∑

i=1

(Xi − Ri)

∣

∣

∣

∣

∣

> 3

}

= P

{
∣

∣

∣

∣

∣

∑50
i=1(Xi − Ri)

50/
√

12

∣

∣

∣

∣

∣

>
3

50/
√

12

}

= 2P

{

∑50
i=1(Xi − Ri)

50/
√

12
<

−3

50/
√

12

}

= 2Φ(
−3

50/
√

12
) = 0.8353 .

This calculation can be found in chap 8 prob 5.m.



Problem 6 (rolling a die until our sum exceeds 800)

The sum of n die rolls is given by X =
∑n

i=1 Xi with Xi a random variable taking values
1, 2, 3, 4, 5, 6 all with probability of 1/6. Then

µ = E[

n
∑

i=1

E[Xi] = nE[Xi] =
n

6
(1 + 2 + 3 + 4 + 5 + 6) =

7

2
n

In addition, because of the independence of our Xi we have that Var(X) = nVar(Xi). For
the individual random variables Xi we have that Var(Xi) = E[X2

i ]−E[Xi]
2. For die we have

E[X2
i ] =

1

6
(1 + 4 + 9 + 16 + 25 + 36) =

91

6
.

so that our variance is given by

Var(Xi) =
91

6
−
(

7

2

)2

= 2.916 .

Now the probability we want to calculate is given by P{X > 300}, which we can maniuplate
into a form where we can apply the central limit theorm. We have

P

{

X − 7n
2√

2.916
√

n
>

300 − 7n
2√

2.916
√

n

}

Now if n = 80 we have the above given by

P

{

X − 7
2
· 80√

2.916
√

80
>

300 − 7
2
· 80√

2.916
√

80

}

= 1 − P{Z < 1.309} = 1 − Φ(1.309) = 0.0953 .

Problem 7 (working bulbs)

The total lifetime of all the bulbs is given by

T =
100
∑

i=1

Xi ,

where Xi is an exponential random variable with mean five hours. Then since the random
variable T is the sum of independent identically distributed random variables we can use the
central limit theorm to derive estimates about T . For example we know that

∑n
i=1 Xi − nµ

σ
√

n
,

is approximatly a standard normal. Thus to evaluate (since σ2 = 25) we have that

P{T > 525} = P

{

T − 100(5)

10(5)
>

525 − 500

50

}

= 1 − P{Z < 1/2}
= 1 − Φ(0.5) = 1 − 0.6915 = 0.3085 .



Problem 8 (working bulbs with replacement times)

Our expression for the total time that there is a working bulb in problem 7 without any
replacment time is given by

T =
100
∑

i=1

Xi .

If there is a random time required to replace each bulb then we our random variable T must
now include this randomness and becomes

T =
100
∑

i=1

Xi +
99
∑

i=1

Ui .

Again we desire to evaluate P{T ≤ 550}. To evaluate this let

T =
99
∑

i=1

(Xi + Ui) + X100 ,

which motivates us to define the random variables Vi as

Vi =

{

Xi + Ui i = 1, · · · , 99
X100 i = 100

Then T =
∑100

i=1 Vi and the Vi’s are all independent. Below we will introduce the variables
µi and σi to be the mean and the standard deviation respectivly of the random variable Vi.
Taking the expectation of T we find

E[T ] =

100
∑

i=1

E[Vi] =

99
∑

i=1

(E[Xi] + E[Ui]) + E[X100]

= 100 · 5 + 99

(

1

4

)

= 524.75 .

In the same way the variance of this summation is also given by

Var(T ) =
99
∑

i=1

(Var(Xi) + Var(Ui)) + Var(X100)

= 100 · 5 + 99 · 1

4

(

1

12

)

= 502.0625 .

By the central limit theorm we have that

P

{

100
∑

i=1

Vi ≤ 550

}

= P

{

∑100
i=1(Vi − µi)
√
∑n

i=1 σ2
i

≤ 550 −∑100
i=1 µi

√
∑n

i=1 σ2
i

}

.

Where the variables µi and σi the means and standard deviations of the variables Vi. Cal-
culating the expression on the right handside of the inequality above i.e.

550 −∑100
i=1 µi

√

∑n
i=1 σ2

i

,



we find it equal to 550−524.75√
502.0625

= 1.1269. Therefore we see that

P

{

100
∑

i=1

Vi ≤ 550

}

≈ Φ(1.1269) = 0.8701 ,

using the Matlab function normcdf.

Problem 9 (how large n needs to be)

Warning: This result does not match the back of the book. If anyone can find
anything incorrect with this problem please let me know.

A gamma random variable with parameters (n, 1) is equivalent to a sum of n exponential
random variables each with parameter λ = 1. i.e. X =

∑n
i=1 Xi, with each Xi an exponential

random variable with λ = 1. This result is discussed in Example 3b Page 282 Chapter 6 in
the book. Then the requested problem seems equivalent to computing n such that

P

{
∣

∣

∣

∣

∑n
i=1 Xi

n
− 1

∣

∣

∣

∣

> 0.01

}

< 0.01 .

which we will do by converting this into an expression that looks like the central limit theorem
and then evaluate. Recognizing that X is a sum of exponential with parameters λ = 1, we
have that

µ = E[X] = E[
n
∑

i=1

Xi] =
n
∑

i=1

E[Xi] =
n
∑

i=1

1

λ
= n .

In the same way since Var(Xi) = 1
λ2 = 1, we have that

σ2 = Var(X) =
n
∑

i=1

Var(Xi) = n .

Then the central limit theorem applied to the random variable X claims that as n → ∞, we
have

P

{
∣

∣

∣

∣

∑n
i=1 Xi − n√

n

∣

∣

∣

∣

< a

}

= Φ(a) − Φ(−a) .

or taking the requested probabilistic statement and converting it we find that

P

{
∣

∣

∣

∣

∑n
i=1 Xi

n
− 1

∣

∣

∣

∣

> 0.01

}

= 1 − P

{
∣

∣

∣

∣

∑n
i=1 Xi

n
− 1

∣

∣

∣

∣

≤ 0.01

}

= 1 − P

{
∣

∣

∣

∣

∑n
i=1 Xi − n

n

∣

∣

∣

∣

≤ 0.01

}

= 1 − P

{
∣

∣

∣

∣

∑n
i=1 Xi − n√

n

∣

∣

∣

∣

≤ 0.01
√

n

}

≈ 1 − (Φ(0.01
√

n) − Φ(−0.01
√

n)) .



From the following identity on the cumulative distribution of a normal random variable we
have that Φ(x) − Φ(−x) = 1 − 2Φ(−x), so that the above equals

1 − (1 − 2Φ(−0.01
√

n)) = 2Φ(−0.01
√

n) .

To have this be less that 0.01 requires a value of n such that

2Φ(−0.01
√

n) ≤ 0.01 .

Solving for n then gives n ≥ (−100Φ−1(0.005))2 = (257.58)2.

Problem 11 (a simple stock model)

Given the recurrence relationship Yn = Yn−1 + Xn for n ≥ 1, with Y0 = 100, we see that a
solution to this is given by

Yn =

n
∑

k=1

Xk + Y0 .

If we assume that the Xk’s are independent identically distributed random variables with
mean 0 and variance σ2, we are asked to evaluate

P{Y10 > 105} .

Which we will do by transforming this problem into something that looks like an application
of the central limit theorem. We find that

P{Y10 > 105} = P{
10
∑

k=1

Xk > 5}

= P

{

∑10
k=1 Xk − 10 · (0)√

10
>

5 − 10 · (0)√
10

}

= 1 − P

{

∑10
k=1 Xk − 10 · (0)√

10
<

5√
10

}

≈ 1 − Φ(
5√
10

) = 0.0569 .

Problem 19 (expectations of functions of random variables)

For each of the various parts we will apply Jensen’s inequality E[f(X)] ≥ f(E[X]) which
requires f(x) to be convex i.e. f ′′(x) ≥ 0. Now since we are told that E[X] = 25 we can
compute the following.

Part (a): For the function f(x) = x3, we have that f ′′(x) = 6x ≥ 0 since we are told that
X is a nonnegative random variable. Thus Jensen’s inequality gives

E[X3] ≥ 253 = 15625 .



Part (b): For the function f(x) =
√

x, we have that f ′(x) = 1
2
√

x
, and f ′′(x) = − 1

4
√

x
< 0.

Thus f(x) is not a convex function but −f(x) is. Applying Jensen’s inequality to −f(x)
gives E[−

√
X] ≥ −

√
25 = −5 or

E[
√

X] ≤ 5 .

Part (c): For the function f(x) = log(x), we have that f ′(x) = 1
x
, and f ′′(x) = − 1

x2 < 0.
Thus f(x) is not a convex function but −f(x) is. Applying Jensen’s inequality to −f(x)
gives E[− log(X)] ≥ − log(25) or

E[log(X)] ≤ log(25) .

Part (d): For the function f(x) = e−x, we have that f ′′(x) = e−x > 0. Thus f(x) is a
convex function. Applying Jensen’s inequality to f(x) gives

E[e−X ] ≥ eE[X] = e25 .

Chapter 8: Theoretical Exercises

Problem 1 (an alternate Chebyshev inequality)

Now the Chebyshev inequality is given by

P{|X − µ| ≥ k} ≤ σ2

k2
.

Defining k = σκ the above becomes

P{|X − µ| ≥ σκ} ≤ σ2

σ2κ2
=

1

κ2
,

which is the desired inequality.

Problem 12 (an upper bound on the complemetary error function)

From the definition of the normal density we have that

P{X > a} =

∫ ∞

a

1√
2π

e−x2/2dx ,



which we can simplify by the following change of variable. Let v = x − a (then dv = dx)
and the above becomes

P{X > a} =

∫ ∞

0

1√
2π

e−(v+a)2/2dv

=

∫ ∞

0

1√
2π

e−(v2+2va+a2)/2dv

=
e−

a2

2√
2π

∫ ∞

0

e−
v2

2 e−vadv

≤ e−
a2

2√
2π

∫ ∞

0

e−
v2

2 dv ,

since e−va ≤ 1 for all v ∈ [0,∞) and a > 0. Now because of the identity

∫ ∞

0

e−
v2

2 dv =

√

π

2
,

we see that the above becomes

P{X > a} ≤ 1

2
e−

a2

2 .

Problem 13 (a problem with expectations)

We are assuming that if E[X] < 0 and θ 6= 0 such that E[eθX ] = 1, and want to show that
θ > 0. To do this recall Jensen’s inequality which for a convex function f and an arbitrary
random variable Y is given by

E[f(Y )] ≥ f(E[Y ]) .

If we let the random variable Y = eθX and the function f(y) = − ln(y), then Jensen’s
inequality becomes (since this function f is convex)

−E[θX] ≥ − ln(E[eθX ]) ,

or using the information from the problem we have

θE[X] ≤ ln(1) = 0 .

Now since E[X] < 0 by dividing by this expression we have θ > 0 as was to be shown.



Chapter 9 (Additional Topics in Probability)

Chapter 9: Problems

Problem 2 (helping Al cross the highway)

At the point where Al wants to cross the highway the number of cars that cross is a Poisson
process with rate λ = 3, the probability that k cars appear in t time is given by

P{N = k} =
e−λt(λt)k

k!
.

Thus Al will have no problem in the case when no cars come during her crossing. If her
crossing time takes s second this will happen with probability

P{N = 0} = e−λs = e−3s .

Note that this is the density function for a Poisson random variable (or the cumulative
distribution function of a Poisson random variable with n = 0). This expression is tabulated
for s = 2, 5, 10, 20 seconds in chap 9 prob 2.m.

Problem 3 (helping a nimble Al cross the highway)

Following the results from Problem 2, Al will cross unhurt, with probability

P{N = 0} + P{N = 1} = e−λs + e−λs(λs) = e−3s + 3se−3s .

Note that this is the cumulative distribution function for a Poisson random variable. This
expression is tabulated for s = 5, 10, 20, 30 seconds in chap 9 prob 3.m.



Chapter 10 (Simulation)

Chapter 10: Problems

Problem 2 (simulating a specified random variable)

Assuming our random variable has a density given by

f(x) =

{

e2x −∞ < x < 0
e−2x 0 < x < ∞

Lets compute the cumulative distribution F (x) for this density function. This is needed if
we simulate from f using the inverse transformation method. We find that

F (x) =

∫ x

−∞
e2ξdξ for −∞ < x < 0

=
e2ξ

2

∣

∣

∣

∣

x

−∞
=

1

2
e2x .

and that

F (x) =
1

2
+

∫ x

0

e−2ξdξ for 0 < x < ∞

=
1

2
+

e−2ξ

(−2)

∣

∣

∣

∣

x

0

= 1 − 1

2
e−2x .

Then to simulate from the density f(·) we require the inverse of this cumulative probability
density function. Since our F is given in terms of two different domains we will compute
this inverse function in the same way. If 0 < y < 1

2
, then the equation we need to invert i.e.

y = F (x) is equivalent to

y =
1

2
e2x or x =

1

2
ln(2y) for 0 < y <

1

2

While if 1
2

< y < 1 then y = F (x) is equivalent to

y = 1 − 1

2
e−2x ,

or by solving for x we find that

x = −1

2
ln(2(1 − y)) for

1

2
< y < 1 .

Thus combining these two results we find that

F−1(y) =

{

1
2
ln(2y) 0 < y < 1

2

−1
2
ln(2(1 − y)) 1

2
< y < 1

Thus our simulation method would repeatedly generate uniform random variables U ∈ (0, 1)
and apply F−1(U) (defined above) to them computing the corresponding y’s. These y’s are
guaranteed to be derived from our density function f .


