Probabilidades y Estadística Clase Auxiliar

Profesor: Fernando Lema

Auxiliares: Víctor Carmi - Abelino Jiménez

Universidad de Chile

Indice General

- Contenidos
 - Muestras y Distribuciones muestrales
 - Estimación Puntual

Indice General

- Contenidos
 - Muestras y Distribuciones muestrales
 - Estimación Puntual

Advertencias y Recomendaciones

- Tener presente siempre de qué se está hablando.
- Distinguir entre variables aleatorias, números desconocidos y valores muestrales.
- Cuidado con la Notación.

Advertencias y Recomendaciones

- Tener presente siempre de qué se está hablando.
- Distinguir entre variables aleatorias, números desconocidos y valores muestrales.
- Cuidado con la Notación.

Advertencias y Recomendaciones

- Tener presente siempre de qué se está hablando.
- Distinguir entre variables aleatorias, números desconocidos y valores muestrales.
- Cuidado con la Notación.

Definición MUESTRA ALEATORIA

Sea X v.a. con cierta distribución de probabilidad. Sean $X_1,\ X_2,...,\ X_n$ n vs. as ind, cada una con la misma distribución de X. Se dice que $(X_1,\ X_2,...,\ X_n)$ una muestra aleatoria de X.

Definición ESTADISTICO

Sea $X_1,..., X_n$ una muestra aleatoria de una v.a. X y sean $x_1,..., x_n$ los valores tomados por la muestra. Sea H una función definida para $(x_1,...,x_n)$. Se dice que $Y=H(X_1,...,X_n)$ es un estadístico que toma el valor $y=H(x_1,...,x_n)$.

OBSERVACIONES

- Una muestra aleatoria se puede considerar como n mediciones de la variable X.

Definición MUESTRA ALEATORIA

Sea X v.a. con cierta distribución de probabilidad. Sean $X_1,\ X_2,...,\ X_n$ n vs. as ind, cada una con la misma distribución de X. Se dice que $(X_1,\ X_2,...,\ X_n)$ una muestra aleatoria de X.

Definición ESTADISTICO

Sea $X_1,..., X_n$ una muestra aleatoria de una v.a. X y sean $x_1,..., x_n$ los valores tomados por la muestra. Sea H una función definida para $(x_1,...,x_n)$. Se dice que $Y=H(X_1,...,X_n)$ es un estadístico que toma el valor $y=H(x_1,...,x_n)$.

OBSERVACIONES

- Una muestra aleatoria se puede considerar como n mediciones de la variable X.

Definición MUESTRA ALEATORIA

Sea X v.a. con cierta distribución de probabilidad. Sean $X_1,\ X_2,...,\ X_n$ n vs. as ind, cada una con la misma distribución de X. Se dice que $(X_1,\ X_2,...,\ X_n)$ una muestra aleatoria de X.

Definición ESTADISTICO

Sea $X_1,..., X_n$ una muestra aleatoria de una v.a. X y sean $x_1,..., x_n$ los valores tomados por la muestra. Sea H una función definida para $(x_1,...,x_n)$. Se dice que $Y=H(X_1,...,X_n)$ es un estadístico que toma el valor $y=H(x_1,...,x_n)$.

OBSERVACIONES:

- Una muestra aleatoria se puede considerar como n mediciones de la variable X.
- Un Estadístico es una variable aleatoria.

Definición MUESTRA ALEATORIA

Sea X v.a. con cierta distribución de probabilidad. Sean $X_1, X_2, ..., X_n$ n vs. as ind, cada una con la misma distribución de X. Se dice que $(X_1, X_2, ..., X_n)$ una muestra aleatoria de X.

Definición ESTADISTICO

Sea $X_1,..., X_n$ una muestra aleatoria de una v.a. X y sean $x_1,..., x_n$ los valores tomados por la muestra. Sea H una función definida para $(x_1,..., x_n)$. Se dice que $Y = H(X_1,..., X_n)$ es un estadístico que toma el valor $y = H(x_1,..., x_n)$.

OBSERVACIONES:

- Una muestra aleatoria se puede considerar como n mediciones de la variable X.
- Un Estadístico es una variable aleatoria.

Sean $(X_1,...,X_n)$ una muestra aleatoria de la v.a. X. Los siguientes estadísticos son de interés:

Promedio Muestral

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Varianza Muestral

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

Sean $(X_1, ..., X_n)$ una muestra aleatoria de la v.a. X. Los siguientes estadísticos son de interés:

Promedio Muestral

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Varianza Muestral

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

Sean $(X_1, ..., X_n)$ una muestra aleatoria de la v.a. X. Los siguientes estadísticos son de interés:

Promedio Muestral

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Varianza Muestral

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$$

Mínimo de la Muestra

$$K = min(X_1,..., X_n)$$

Máximo de la Muestra

$$M = max(X_1, ..., X_n)$$

Recorrido de la Muestra

$$R = M - m$$

Mínimo de la Muestra

$$K = min(X_1, ..., X_n)$$

Máximo de la Muestra

$$M = max(X_1, ..., X_n)$$

Recorrido de la Muestra

$$R = M - m$$

Mínimo de la Muestra

$$K = min(X_1, ..., X_n)$$

Máximo de la Muestra

$$M = max(X_1, ..., X_n)$$

Recorrido de la Muestra

$$R = M - m$$

Teorema

Sea X una v.a. con $E(X) = \mu$ y $Var(X) = \sigma^2$. Sea \overline{X} el promedio muestral de una muestra aleatoria simple de tamaño n. Entonces

- (a) $E(\overline{X}) = \mu$
- (b) $Var(\overline{X}) = \frac{\sigma^2}{n}$
- (c) Para n grande, $(\overline{X} \mu)/(\sigma/\sqrt{n})$ tiene aproximadamente la distribución N(0,1)

OBSERVACIÓN.

(c) se aplica para n grande. De lo contrario hay que encontrar la distribución de \overline{X}

Teorema

Sea X una v.a. con $E(X) = \mu$ y $Var(X) = \sigma^2$. Sea \overline{X} el promedio muestral de una muestra aleatoria simple de tamaño n. Entonces

- (a) $E(\overline{X}) = \mu$
- (b) $Var(\overline{X}) = \frac{\sigma^2}{n}$
- (c) Para n grande, $(\overline{X} \mu)/(\sigma/\sqrt{n})$ tiene aproximadamente la distribución N(0,1)

OBSERVACIÓN.

(c) se aplica para n grande. De lo contrario hay que encontrar la distribución de \overline{X} .

Teorema

Sea X una v.a. continua con fdp f y fda F. Sea $X_1, ..., X_n$ una muestra aleatoria de X y sean K y M el mínimo y el máximo de la muestra respectivamente. Luego:

- (a) La fdp de M está dada por $g(m) = n [F(m)]^{n-1} f(m)$
- (b) La fdp de K está dada por $h(k) = n [1 F(k)]^{n-1} f(k)$

EJERCICIO PARA REPASAR

Tomar el caso en que la distribución sea exponencial.

Teorema

Sea X una v.a. continua con fdp f y fda F. Sea $X_1, ..., X_n$ una muestra aleatoria de X y sean K y M el mínimo y el máximo de la muestra respectivamente. Luego:

- (a) La fdp de M está dada por $g(m) = n [F(m)]^{n-1} f(m)$
- (b) La fdp de K está dada por $h(k) = n [1 F(k)]^{n-1} f(k)$

EJERCICIO PARA REPASAR.

Tomar el caso en que la distribución sea exponencial.

Indice General

- Contenidos
 - Muestras y Distribuciones muestrales
 - Estimación Puntual

Definición ESTIMADOR

Sea X v.a. con cierta distribución de probabilidad dependiente de un parametro θ . Sea $X_1, X_2, ..., X_n$ una muestra de X y sean $x_1, ..., x_n$ los valores muestrales. Si $g(X_1, ..., X_n)$ es una función de la muestra que va a ser usada para estimar θ , nos referimos a g como un **estimador** de θ . Llamaremos a $\hat{\theta} = g(x_1, ..., x_n)$ estimación de θ .

OBSERVACION (ABUSO DE NOTACIÓN):

 $\hat{\theta}$ v/s θ

Para nosotros $\hat{\theta}$ es una v.a. y θ un número desconocido. hablaremos de $E(\hat{\theta})$ como $E(g(X_1,...,X_n))$

Definición ESTIMADOR

Sea X v.a. con cierta distribución de probabilidad dependiente de un parametro θ . Sea $X_1, X_2, ..., X_n$ una muestra de X y sean $x_1, ..., x_n$ los valores muestrales. Si $g(X_1, ..., X_n)$ es una función de la muestra que va a ser usada para estimar θ , nos referimos a g como un **estimador** de θ . Llamaremos a $\hat{\theta} = g(x_1, ..., x_n)$ estimación de θ .

OBSERVACION (ABUSO DE NOTACIÓN):

 $\hat{\theta}$ v/s θ

Para nosotros $\hat{\theta}$ es una v.a. y θ un número desconocido. hablaremos de $E(\hat{\theta})$ como $E(g(X_1,...,X_n))$

Definición ESTIMADOR INSESGADO

Sea $\hat{\theta}$ una estimación del parámetro desconocido θ asociado a la distribución de la v. a. X. Entonces $\hat{\theta}$ es un **estimador insesgado** para θ si $E(\hat{\theta}) = \theta$ para cualquier θ .

Definición ESTIMADOR DE VARIANZA MINIMA

Sea $\hat{\theta}$ una estimación insesgada de θ . Diremos que $\hat{\theta}$ es una **estimación de varianza mínima** de θ si para todas las estimaciones $\theta*$ tales que $E(\theta*)=\theta$, tenemos $Var(\hat{\theta})\leq Var(\theta*)$ para cualquie θ .

Es decir, entre todas las estimaciones insesgadas de θ , $\hat{\theta}$ tiene la varianza más pequeña.

Definición ESTIMADOR INSESGADO

Sea $\hat{\theta}$ una estimación del parámetro desconocido θ asociado a la distribución de la v. a. X. Entonces $\hat{\theta}$ es un **estimador insesgado** para θ si $E(\hat{\theta}) = \theta$ para cualquier θ .

Definición ESTIMADOR DE VARIANZA MINIMA

Sea $\hat{\theta}$ una estimación insesgada de θ . Diremos que $\hat{\theta}$ es una **estimación de varianza mínima** de θ si para todas las estimaciones $\theta*$ tales que $E(\theta*)=\theta$, tenemos $Var(\hat{\theta})\leq Var(\theta*)$ para cualquie θ .

Es decir, entre todas las estimaciones insesgadas de θ , $\hat{\theta}$ tiene la varianza más pequeña.

Definición ESTIMADOR CONVERGENTE

Sea $\hat{\theta}$ una estimación de θ . Se dice que $\hat{\theta}$ es una **estimación** convengente a θ si

$$\lim_{n\to\infty} P(\mid \hat{\theta} - \theta \mid > \varepsilon) = 0 \quad \forall \varepsilon > 0$$

o equivalentemente

$$\lim_{n\to\infty} P(\mid \hat{\theta} - \theta \mid \leq \varepsilon) = 1 \quad \forall \varepsilon > 0$$

OBSERVACION:

En general, decir a patir de la definición, si el estimador es consistente es algo difícil. Para facilitar las cosas se tiene el siguiente teorema.

Definición ESTIMADOR CONVERGENTE

Sea $\hat{\theta}$ una estimación de θ . Se dice que $\hat{\theta}$ es una **estimación** convengente a θ si

$$\lim_{n\to\infty} P(\mid \hat{\theta}-\theta\mid>\varepsilon)=0 \quad \forall \varepsilon>0$$

o equivalentemente

$$\lim_{n\to\infty} P(\mid \hat{\theta}-\theta\mid \leq \varepsilon) = 1 \quad \forall \varepsilon > 0$$

OBSERVACION:

En general, decir a patir de la definición, si el estimador es consistente es algo difícil. Para facilitar las cosas se tiene el siguiente teorema.

Teorema de Consistencia

TEOREMA

Sea $\hat{\theta}$ una estimación de θ . Si $\lim_{n\to\infty} E(\hat{\theta}) = \theta$ y si $\lim_{n\to\infty} Var(\hat{\theta}) = 0$, entonces $\hat{\theta}$ es una estimación convergente de θ .

DEMOSTRACION

Tenemos la Desigualdad de Chebyshev

$$P(\mid \hat{\theta} - \theta \mid \geq \varepsilon) \leq \frac{1}{\varepsilon^2} E\left[(\hat{\theta} - \theta)^2\right]$$

Con el teorema anterior, se tiene inmediatamente que

TEOREMA

Sea X v.a. con esperanza μ y varianza σ^2 . Sea \overline{X} el promedio muestral obtenido de una muestra de tamaño n. Entonces \overline{X} es un estimador insesgado y convergente a μ .

Teorema de Consistencia

TEOREMA

Sea $\hat{\theta}$ una estimación de θ . Si $\lim_{n\to\infty} E(\hat{\theta}) = \theta$ y si $\lim_{n\to\infty} Var(\hat{\theta}) = 0$, entonces $\hat{\theta}$ es una estimación convergente de θ .

DEMOSTRACION

Tenemos la Desigualdad de Chebyshev:

$$P(\mid \hat{\theta} - \theta \mid \geq \varepsilon) \leq \frac{1}{\varepsilon^2} E\left[(\hat{\theta} - \theta)^2\right]$$

Con el teorema anterior, se tiene inmediatamente que

TEOREMA

Sea X v.a. con esperanza μ y varianza σ^2 . Sea \overline{X} el promedio muestral obtenido de una muestra de tamaño n. Entonces \overline{X} es un estimador insesgado y convergente a μ .

Teorema de Consistencia

TEOREMA

Sea $\hat{\theta}$ una estimación de θ . Si $\lim_{n\to\infty} E(\hat{\theta}) = \theta$ y si $\lim_{n\to\infty} Var(\hat{\theta}) = 0$, entonces $\hat{\theta}$ es una estimación convergente de θ .

DEMOSTRACION

Tenemos la Desigualdad de Chebyshev:

$$P(\mid \hat{\theta} - \theta \mid \geq \varepsilon) \leq \frac{1}{\varepsilon^2} E\left[(\hat{\theta} - \theta)^2\right]$$

Con el teorema anterior, se tiene inmediatamente que

TEOREMA

Sea X v.a. con esperanza μ y varianza σ^2 . Sea \overline{X} el promedio muestral obtenido de una muestra de tamaño n. Entonces \overline{X} es un estimador insesgado y convergente a μ .

Error Cuadrático Medio

Definición ERROR CUADRATICO MEDIO

Se define al **error cuadrático medio** de un estimador $\hat{ heta}$ de heta como

$$ECM(\hat{\theta}) = E\left((\hat{\theta} - \theta)^2\right)$$

Notemos que

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + Sesgo^2$$

donde

$$Sesgo = E(\hat{\theta}) - \theta$$

Error Cuadrático Medio

Definición ERROR CUADRATICO MEDIO

Se define al **error cuadrático medio** de un estimador $\hat{ heta}$ de heta como

$$ECM(\hat{\theta}) = E\left((\hat{\theta} - \theta)^2\right)$$

Notemos que

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + Sesgo^2$$

donde

$$Sesgo = E(\hat{\theta}) - \theta$$

P1

Sea $X_1, X_2,..., X_n$ una muestra de X tal que $E(X) = \mu$ y $Var(X) = \sigma^2$

Mostrar que
$$E\left(\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right)=(n-1)\cdot\sigma^{2}$$

Esto genera que

$$\hat{\sigma}^2_{n-1} = \frac{1}{n-1} \left(\sum_{i=1}^n (X_i - \overline{X})^2 \right)$$

es un estimador insesgado de σ^2

Se denota

$$\hat{\sigma}^2_n = \frac{1}{n} \left(\sum_{i=1}^n (X_i - \overline{X})^2 \right)$$

P1

Sea $X_1, X_2,..., X_n$ una muestra de X tal que $E(X) = \mu$ y $Var(X) = \sigma^2$

Mostrar que
$$E\left(\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right)=(n-1)\cdot\sigma^{2}$$

Esto genera que

$$\hat{\sigma}_{n-1}^2 = \frac{1}{n-1} \left(\sum_{i=1}^n (X_i - \overline{X})^2 \right)$$

es un estimador insesgado de σ^2

Se denota

$$\hat{\sigma^2}_n = \frac{1}{n} \left(\sum_{i=1}^n (X_i - \overline{X})^2 \right)$$

P1

Sea $X_1, X_2,..., X_n$ una muestra de X tal que $E(X) = \mu$ y $Var(X) = \sigma^2$

Mostrar que
$$E\left(\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right)=(n-1)\cdot\sigma^{2}$$

Esto genera que

$$\hat{\sigma}_{n-1}^2 = \frac{1}{n-1} \left(\sum_{i=1}^n (X_i - \overline{X})^2 \right)$$

es un estimador insesgado de σ^2

Se denota

$$\hat{\sigma^2}_n = \frac{1}{n} \left(\sum_{i=1}^n (X_i - \overline{X})^2 \right)$$

P2

Si $X \sim N(\mu, \sigma^2)$, mostrar que

$$\frac{(n-1)\cdot\hat{\sigma^2}_{n-1}}{\sigma^2} = \frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

HINT

$$\sum \left(\frac{X_i - \mu}{\sigma}\right)^2 = \frac{nS_n^2}{\sigma^2} + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2$$

Se puede probar que si $X \sim N(\mu, \sigma^2)$, entonces \overline{X} y $\hat{\sigma}_{n-1}^2$ son independientes.

P2

Si $X \sim N(\mu, \sigma^2)$, mostrar que

$$\frac{(n-1)\cdot\hat{\sigma^2}_{n-1}}{\sigma^2} = \frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

HINT:

$$\sum \left(\frac{X_i - \mu}{\sigma}\right)^2 = \frac{nS_n^2}{\sigma^2} + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2$$

Se puede probar que si $X \sim N(\mu, \sigma^2)$, entonces \overline{X} y $\hat{\sigma}_{n-1}^2$ son independientes.

P2

Si $X \sim N(\mu, \sigma^2)$, mostrar que

$$\frac{(n-1)\cdot\hat{\sigma^2}_{n-1}}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

HINT:

$$\sum \left(\frac{X_i - \mu}{\sigma}\right)^2 = \frac{nS_n^2}{\sigma^2} + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2$$

Se puede probar que si $X \sim N(\mu, \sigma^2)$, entonces \overline{X} y $\hat{\sigma^2}_{n-1}$ son independientes.

P3

Si $X \sim N(\mu, \sigma^2)$, mostrar que

$$ECM(\hat{\sigma^2}_{n+1}) < ECM(\hat{\sigma^2}_n) < ECM(\hat{\sigma^2}_{n-1})$$

Métodos para encontrar Estimadores

Hasta ahora, tenemos algunas herramientas para determinar si un estimador dado cumple o no algunas "buenas" propiedades.

Necesitamos tener algunos métodos que nos permitan llegar a buenos estimadores.

Estimador de Máxima Verosimilitud

Definición ESTIMADOR DE MÁXIMA VEROSIMILITUD

El estimador de máxima verosimilitud de θ , llamado $\hat{\theta}$, basado en una muestra $X_1, X_2, ..., X_n$ es el valor de θ que maximiza a $L(X_1, X_2, ..., X_n; \theta)$ considerado como una función de θ para la muestra dada. L está definida como

$$L(X_1, X_2, ..., X_n; \theta) = f(X_1; \theta) \cdot f(X_2; \theta) \cdot ... \cdot f(X_n; \theta)$$

Dedemos maximizar. Para ello, lo más intuitivo es

$$\frac{\partial}{\partial \theta} = 0$$

Sin embargo, notemos que deberíamos derivar muchos productos!!! ¿Qué hacemos?

USAMOS In

$$\frac{\partial}{\partial \theta} \ln L(X_1, X_2, ..., X_n; \theta) = 0$$

Dedemos maximizar. Para ello, lo más intuitivo es

$$\frac{\partial}{\partial \theta} = 0$$

Sin embargo, notemos que deberíamos derivar muchos productos!!! ¿Qué hacemos?

USAMOS In

$$\frac{\partial}{\partial \theta} \ln L(X_1, X_2, ..., X_n; \theta) = 0$$

Dedemos maximizar. Para ello, lo más intuitivo es

$$\frac{\partial}{\partial \theta} = 0$$

Sin embargo, notemos que deberíamos derivar muchos productos!!! ¿Qué hacemos?

USAMOS In

$$\frac{\partial}{\partial \theta}$$
 In $L(X_1, X_2, ..., X_n; \theta) = 0$

Dedemos maximizar. Para ello, lo más intuitivo es

$$\frac{\partial}{\partial \theta} = 0$$

Sin embargo, notemos que deberíamos derivar muchos productos!!! ¿Qué hacemos?

USAMOS In

$$\frac{\partial}{\partial \theta}$$
 In $L(X_1, X_2, ..., X_n; \theta) = 0$

Propiedades del EMV

- El EMV puede ser sesgado.
- Propiedad de Invarianza Es decir si $\hat{\theta}$ es el EMV de θ , entonces $g(\hat{\theta})$ es el EMV de $g(\theta)$

¿Qué pasa si L (función de verosimilitud) depende de más de un parámetro?

$$L(X_1, X_2, ..., X_n; \alpha, \beta)$$

Simplemente tomamos ambas derivadas parciales y resolvemos un sistema

Propiedades del EMV

- El EMV puede ser sesgado.
- Propiedad de Invarianza Es decir si $\hat{\theta}$ es el EMV de θ , entonces $g(\hat{\theta})$ es el EMV de $g(\theta)$

¿Qué pasa si L (función de verosimilitud) depende de más de un parámetro?

$$L(X_1, X_2,..., X_n; \alpha, \beta)$$

Simplemente tomamos ambas derivadas parciales y resolvemos un sistema.

Propiedades del EMV

- El EMV puede ser sesgado.
- Propiedad de Invarianza Es decir si $\hat{\theta}$ es el EMV de θ , entonces $g(\hat{\theta})$ es el EMV de $g(\theta)$

¿Qué pasa si L (función de verosimilitud) depende de más de un parámetro?

$$L(X_1, X_2, ..., X_n; \alpha, \beta)$$

Simplemente tomamos ambas derivadas parciales y resolvemos un sistema.

P4

Sea $X \sim Gamma(r, \alpha)$, y $X_1, X_2, ..., X_n$ una muestra aleatoria.

- a) Encontrar el EMV de r y α .
- b) Asumiendo r conocido, encontrar el EMV de $\lambda = \frac{1}{\alpha}$. Estudiar insesgamiento y consistencia.
- c) ¿Cuál es la distribución muestral de $\hat{\lambda}$?

Distribución Gamma

• Gamma $G(r,\alpha)$ Sean $r, \alpha > 0$. Si $X \sim G(r,\alpha)$, se tiene

$$f_X(x) = \begin{cases} \frac{\alpha^r x^{r-1} \cdot e^{-\alpha x}}{\Gamma(r)} & x > 0\\ 0 & x \le 0 \end{cases}$$

P4

Sea $X \sim Gamma(r, \alpha)$, y $X_1, X_2, ..., X_n$ una muestra aleatoria.

- a) Encontrar el EMV de r y α .
- b) Asumiendo r conocido, encontrar el EMV de $\lambda = \frac{1}{\alpha}$. Estudiar insesgamiento y consistencia.
- c) ¿Cuál es la distribución muestral de $\hat{\lambda}$?

Distribución Gamma

• Gamma $G(r,\alpha)$ Sean $r, \alpha > 0$. Si $X \sim G(r,\alpha)$, se tiene

$$f_X(x) = \begin{cases} \frac{\alpha^r x^{r-1} \cdot e^{-\alpha x}}{\Gamma(r)} & x > 0\\ 0 & x \le 0 \end{cases}$$

P5

- a) Determinar el EMV de p de una Distribución Binomial.
- b) Mostrar que no existe estimador insesgado de

$$\theta = \frac{p}{1-p}$$

Bibliografía

Probabilidad y Aplicaciones Estadísticas.

W. Mendenhall.

Mathematical statistics with applications