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Preface

These notes started during the Spring of 2002. The contents are mostly discrete probability, suitable for students
who have mastered only elementary algebra. No calculus is needed, except perhaps in a very few optional exercises.

Since a great number of the audience of this course comprises future elementary school teachers, I have included a
great deal of preliminary ancillary material, especially in the areas of arithmetic and geometric sums and divisibility
criteria. It has been my experience that many of these future teachers do actually enjoy learning the fundamentals
of number theory and divisibility through probability problems. The response overall, has been positive.

I would appreciate any comments, suggestions, corrections, etc., which can be addressed at the email below.

David A. Santos
dsantos@ccp.edu

Things to do:� Weave functions into counting, à la twelfold way. . .� Write a chapter on expectation and include conditional expectation.� Write a chapter on Markov Chains.� Write a chapter on Games.� Make use of indicator random variables.� Write a section on the Pascal distribution.
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Legal Notice

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,
version 1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/
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THIS DOCUMENT MAY NOT BE SOLD FOR PROFIT OR INCORPORATED INTO COMMERCIAL DOC-
UMENTS WITHOUT EXPRESS PERMISSION FROM THE AUTHOR(S). THIS DOCUMENT MAY BE FREELY
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TO IT NOTED.
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To the Student
These notes are provided for your benefit as an attempt to organise the salient points of the course. They are a
very terse account of the main ideas of the course, and are to be used mostly to refer to central definitions and
theorems. The number of examples is minimal, and here you will find few exercises. The motivation or informal
ideas of looking at a certain topic, the ideas linking a topic with another, the worked-out examples, etc., are given
in class. Hence these notes are not a substitute to lectures: you must always attend to lectures. The order of
the notes may not necessarily be the order followed in the class.

There is a certain algebraic fluency that is necessary for a course at this level. These algebraic prerequisites
would be difficult to codify here, as they vary depending on class response and the topic lectured. If at any stage
you stumble in Algebra, seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoever tutors you may not be familiar with my conventions.
Again, I am here to help! On the same vein, other books may help, but the approach presented here is at times
unorthodox and finding alternative sources might be difficult.

Here are more recommendations:� Read a section before class discussion, in particular, read the definitions.� Class provides the informal discussion, and you will profit from the comments of your classmates, as well as
gain confidence by providing your insights and interpretations of a topic. Don’t be absent!� Once the lecture of a particular topic has been given, take a fresh look at the notes of the lecture topic.� Try to understand a single example well, rather than ill-digest multiple examples.� Start working on the distributed homework ahead of time.� Ask questions during the lecture. There are two main types of questions that you are likely to ask.

1. Questions of Correction: Is that a minus sign there? If you think that, for example, I have missed
out a minus sign or wrote P where it should have been Q,1 then by all means, ask. No one likes to carry
an error till line XLV because the audience failed to point out an error on line I. Don’t wait till the end
of the class to point out an error. Do it when there is still time to correct it!

2. Questions of Understanding: I don’t get it! Admitting that you do not understand something is an act
requiring utmost courage. But if you don’t, it is likely that many others in the audience also don’t. On
the same vein, if you feel you can explain a point to an inquiring classmate, I will allow you time in the
lecture to do so. The best way to ask a question is something like: “How did you get from the second
step to the third step?” or “What does it mean to complete the square?” Asseverations like “I don’t
understand” do not help me answer your queries. If I consider that you are asking the same questions
too many times, it may be that you need extra help, in which case we will settle what to do outside the
lecture.� Don’t fall behind! The sequence of topics is closely interrelated, with one topic leading to another.� The use of calculators is allowed, especially in the occasional lengthy calculations. However, when graphing, you

will need to provide algebraic/analytic/geometric support of your arguments. The questions on assignments
and exams will be posed in such a way that it will be of no advantage to have a graphing calculator.� Presentation is critical. Clearly outline your ideas. When writing solutions, outline major steps and write in
complete sentences. As a guide, you may try to emulate the style presented in the scant examples furnished
in these notes.

1My doctoral adviser used to say “I said A, I wrote B, I meant C and it should have been D!



Chapter 1
Preliminaries

1.1 Sets
1 Definition By a set we will understand any well-defined collection of objects. These objects are called the elements

of the set. A subset is a sub-collection of a set. We denote that the set B is a subset of A by the notation B ⊆ A.
If a belongs to the set A, then we write a ∈ A, read “a is an element of A.” If a does not belong to the set A, we
write a 6∈ A, read “a is not an element of A.”

Notation: We will normally denote sets by capital letters, say A, B, Ω, R, etc. Elements will be

denoted by lowercase letters, say a, b, ω, r, etc. The following sets will have the special symbols

below.

N = {0, 1, 2, 3, . . .} denotes the set of natural numbers.

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} denotes the set of integers.

R denotes the set of real numbers.

∅ denotes the empty set.

☞ Observe that ∅ ⊆ N ⊆ Z ⊆ R,and that the empty set is always a subset of any set.

2 Example There are various ways to allude to a set:� by a verbal description, as in “the set A of all integers whose absolute value is strictly less than 2.� by a mathematical description, as in A = {x ∈ Z : |x| < 2}. This is read “the set of x in Z such that |x| is
strictly less than 2.”� by listing the elements of the set, as in A = {−1, 0, 1}.

Notice that the set A is the same in all three instances above.

3 Definition Given a particular situation, the universe or universal set is the set containing all the points under
consideration. For any particular situation, its universe will be denoted by Ω unless otherwise noted.1

4 Example Let Ω = {1, 2, . . . , 20}, that is, the set of integers between 1 and 20 inclusive. A subset of Ω is
E = {2, 4, 6, . . . , 20}, the set of all even integers in Ω. Another subset of Ω is P = {2, 3, 5, 7, 11, 13, 17, 19}, the set
of primes in Ω. Observe that, for example, 4 ∈ E but 4 6∈ P.

1The capital Greek letter omega.

1



2 Chapter 1

5 Definition The cardinality of a set A, denoted by card (A) is the number of elements that it has. If the set X

has infinitely many elements, we write card (X) = ∞.

6 Example If A = {−1, 1} then card (A) = 2. Also, card (N) = ∞.

7 Definition The set of all subsets of a set A is the power set of A, denoted by 2A. In symbols

2A = {X : X ⊆ A}.2

8 Example Find all the subsets of {a, b, c}.

Solution: They are

S1 = ∅

S2 = {a}

S3 = {b}

S4 = {c}

S5 = {a, b}

S6 = {b, c}

S7 = {c, a}

S8 = {a, b, c}

9 Example Find all the subsets of {a, b, c, d}.

Solution: The idea is the following. We use the result of example 8. Now, a subset of {a, b, c, d} either contains
d or it does not. This means that {a, b, c, d} will have 2 × 8 = 16 subsets. Since the subsets of {a, b, c} do not
contain d, we simply list all the subsets of {a, b, c} and then to each one of them we add d. This gives

S1 = ∅

S2 = {a}

S3 = {b}

S4 = {c}

S5 = {a, b}

S6 = {b, c}

S7 = {c, a}

S8 = {a, b, c}

S9 = {d}

S10 = {a, d}

S11 = {b, d}

S12 = {c, d}

S13 = {a, b, d}

S14 = {b, c, d}

S15 = {c, a, d}

S16 = {a, b, c, d}

Reasoning inductively, as in the last two examples, we obtain the following theorem.

10 Theorem If card (A) = n < ∞, then card
�
2A
�

= 2n.

A different argument will be given in Theorem 86.

Homework

11 Problem Given the set A = {a, b}, find 2A and card
�
2A
�
.

12 Problem Let A be the set of all 3-element subsets of
{1, 2, 3, 4}. List all the elements of A and find card (A).

13 Problem List all the elements of the set

A = {x ∈ Z : x
2

< 6},

that is, the set of all integers whose squares are strictly less
than 6. Is the set A the same as the set

B = {t ∈ Z : t
2

< 9}?

14 Problem How many subsets does the set ∅ have? How
many subsets does a set with 10 elements have?

15 Problem Is there a difference between the sets ∅ and {∅}?

2This is read “the collection of X such that X is a subset of A.
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1.2 Sample Spaces and Events
16 Definition A situation depending on chance will be called an experiment.

17 Example Some experiments in our probability context are

➊ rolling a die,

➋ flipping a coin,

➌ choosing a card from a deck,

➍ selecting a domino piece.

➎ spinning a roulette.

➏ forming a committee from a given group of people.

18 Definition A set Ω 6= ∅ is called a sample space or outcome space. The elements of the sample space are called
outcomes. A subset A ⊆ Ω is called an event. In particular, ∅ ⊆ Ω is called the null or impossible event.

19 Example If the experiment is flipping a fair coin and recording whether heads H or tails T is obtained, then the
sample space is Ω = {H, T }.

20 Example If the experiment is rolling a fair die once and observing how many dots are displayed, then the sample
space is Ω = {1, 2, 3, 4, 5, 6} The event of observing an even number of dots is E = {2, 4, 6} and the event of observing
an odd number of dots is O = {1, 3, 5}. The event of observing a prime number score is P = {2, 3, 5}.

21 Example If the experiment consists of tossing two (distinguishable) dice (say one red, one blue), then the sample
space consists of the 36 ordered pairs

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6),

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6),

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6),

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6),

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6),

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6).

Here we record first the number on the red die and then the number on the blue die in the ordered pair (R, B). The
event S of obtaining a sum of 7 is the set of ordered pairs

S = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

22 Example An experiment consists of the following two stages: (1) first a fair die is rolled and the number of dots
recorded, (2) if the number of dots appearing is even, then a fair coin is tossed and its face recorded, and if the
number of dots appearing is odd, then the die is tossed again, and the number of dots recorded. The sample space
for this experiment is the set of 24 points

{ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, H), (2, T),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, H), (4, T),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, H), (6, T) }.
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23 Example An experiment consists of drawing one card from a standard (52-card) deck and recording the card.
The sample space is the set of 52 cards

{ A♣, 2♣, 3♣, 4♣, 5♣, 6♣, 7♣, 8♣, 9♣, 10♣, J♣, Q♣, K♣,

A♦, 2♦, 3♦, 4♦, 5♦, 6♦, 7♦, 8♦, 9♦, 10♦, J♦, Q♦, K♦,

A♥, 2♥, 3♥, 4♥, 5♥, 6♥, 7♥, 8♥, 9♥, 10♥, J♥, Q♥, K♥,

A♠, 2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠, Q♠, K♠ }.

Homework

24 Problem An experiment consists of flipping a fair coin
twice and recording each flip. Determine its sample space.

25 Problem In the experiment of tossing two distinguishable
dice in example 21, determine the event X of getting a prod-
uct of 6, the event T of getting a sum smaller than 5, and the
event U of getting a product which is a multiple of 7.

1.3 Combining Events
26 Definition The union of two events A and B is the set

A ∪ B = {x : x ∈ A or x ∈ B}.

Observe that this “or” is inclusive, that is, it allows the possibility of x being in A, or B, or possibly both A and B.
The intersection of two events A and B, is

A ∩ B = {x : x ∈ A and x ∈ B}.

The difference of events A set-minus B, is

A \ B = {x : x ∈ A and x 6∈ B}.

Figures 1.1 through 1.3 represent these concepts pictorially, through the use of Venn Diagrams.

A B

Figure 1.1: A ∪ B

A B

Figure 1.2: A ∩ B

A B

Figure 1.3: A \ B

Ac

A

Figure 1.4: Ac

27 Example Let A = {1, 2, 3, 4, 5, 6}, and B = {1, 3, 5, 7, 9}. Then

A ∪ B = {1, 2, 3, 4, 5, 6, 7, 9}, A ∩ B = {1, 3, 5}, A \ B = {2, 4, 6}, B \ A = {7, 9}.

28 Definition Two events A and B are disjoint or mutually exclusive if A ∩ B = ∅.

29 Definition Let A ⊆ Ω. The complement of A with respect to Ω is Ac = {ω ∈ Ω : ω 6∈ A} = Ω \ A. This is
sometimes written as ∁ΩA.
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Observe that Ac is all that which is outside A. The complement Ac represents the event that A does not occur.
We represent Ac pictorially as in figure 1.4.

A ∩ B

A ∩ Bc

Ac ∩ B

(A ∪ B)c

Figure 1.5: Two sets.

A ∩ Bc ∩ Cc

Ac ∩ B ∩ C

A ∩ B ∩ C

A ∩ Bc ∩ Cc

A ∩ Bc ∩ C

A ∩ B ∩ Cc
Ac ∩ B ∩ Cc

(A ∪ B ∪ C)c

Figure 1.6: Three sets.

The various intersecting regions for two and three sets can be seen in figures 1.5 and 1.6.

30 Example Let Ω = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be the universal set of the decimal digits and let A = {0, 2, 4, 6, 8} ⊆
Ω be the set of even digits. Then Ac = {1, 3, 5, 7, 9} is the set of odd digits.

Observe that
(Ac) ∩ A = ∅. (1.1)

The following equalities are known as the De Morgan Laws, and their truth can easily be illustrated via Venn
Diagrams.

(A ∪ B)c = Ac ∩ Bc, (1.2)

(A ∩ B)c = Ac ∪ Bc. (1.3)

31 Example Let A, B, C be events. Then, as a function of A, B, C,

➊ The event that only A happens is A ∩ Bc ∩ Cc .

➋ The event that only A and C happen, but not B is
A ∩ Bc ∩ C.

➌ The event that all three happen is A ∩ B ∩ C.

➍ The event that at least one of the three events occurs is
A ∪ B ∪ C.

➎ The event that none of the events occurs is

(A ∪ B ∪ C)
c

= A
c ∩ B

c ∩ C
c
,

where the equality comes from the De Morgan’s Laws.

➏ The event that exactly two of A, B, C occur is

(A ∩ B ∩ C
c
) ∪ (A ∩ B

c ∩ C) ∪ (A
c ∩ B ∩ C).

➐ The event that no more than two of A, B, C occur is
(A ∩ B ∩ C)c .

Homework
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32 Problem In how many ways can {1, 2, 3} be written as the
union of two or more non-empty and disjoint subsets?

33 Problem What is a simpler name for (Ac)c?

34 Problem What is a simpler name for (A ∪ B) ∩ B?

35 Problem What is a simpler name for (A ∪ Bc) ∩ B?

36 Problem Write (A ∪ B) as the union of two disjoint sets.

37 Problem Write (A ∪ B) as the union of three disjoint sets.

38 Problem Let A, B be events of some sample space Ω.
Write in symbols the event “exactly one of A or B occurs.”

39 Problem Let A, B, C be events of some sample space Ω.
Write in symbols

➊ the event that at least two of the three events occurs.

➋ the event that at most one of the three events occurs.

40 Problem Given sets X, Y, Z as follows.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},

Y = {2, 4, 6, 8, 10, 12, 14, 16},

Z = {2, 3, 5, 7, 11, 13, 17},

➊ Determine X \ Z.

➋ Determine Y \ Z.

➌ Determine (X \ Z) ∩ (Y \ Z).

1.4 Functions
41 Definition By a function f : Dom (f) → Target (f) we mean the collection of the following ingredients:

➊ a name for the function. Usually we use the letter f.

➋ a set of inputs called the domain of the function. The domain of f is denoted by Dom (f).

➌ an input parameter , also called independent variable or dummy variable. We usually denote a typical input
by the letter x.

➍ a set of possible outputs of the function, called the target set of the function. The target set of f is denoted
by Target (f).

➎ an assignment rule or formula, assigning to every input a unique output. This assignment rule for f is
usually denoted by x 7→ f(x). The output of x under f is also referred to as the image of x under f, and is
denoted by f(x).

domain

imagerule

target setb

b

b

b

b

b

b

b

Figure 1.7: The main ingredients of a function.

The notation3

f :
Dom (f) → Target (f)

x 7→ f(x)

read “the function f, with domain Dom (f), target set Target (f), and assignment rule f mapping x to f(x)” conveys
all the above ingredients. See figure 1.7.

3Notice the difference in the arrows. The straight arrow −→ is used to mean that a certain set is associated with another set, whereas
the arrow 7→ (read “maps to”) is used to denote that an input becomes a certain output.
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42 Definition The image Im (f) of a function f is its set of actual outputs. In other words,

Im (f) = {f(a) : a ∈ Dom (f)}.

Observe that we always have Im (f) ⊆ Target (f).

It must be emphasised that the uniqueness of the image of an element of the domain is crucial. For example, the
diagram in figure 1.8 does not represent a function. The element 1 in the domain is assigned to more than one
element of the target set. Also important in the definition of a function is the fact that all the elements of the
domain must be operated on. For example, the diagram in 1.9 does not represent a function. The element 3 in the
domain is not assigned to any element of the target set.

3 8
1 2
2 4

16

Figure 1.8: Not a function.

1
0

3

4

8

Figure 1.9: Not a function.

43 Example Consider the sets A = {1, 2, 3}, B = {1, 4, 9}, and the rule f given by f(x) = x2, which means that f

takes an input and squares it. Figures 1.10 through 1.11 give three ways of representing the function f : A → B.

f :
{1, 2, 3} → {1, 4, 9}

x 7→ x2

Figure 1.10: Example 43.

f :

0BB�1 2 3

1 4 9

1CCA
Figure 1.11: Example 43.

3 9

2 4

1 1

Figure 1.12: Example 43.

44 Example Find all functions with domain {a, b} and target set {c, d}.

Solution: There are 22 = 4 such functions, namely:

➊ f1 given by f1(a) = f1(b) = c. Observe that Im (f1) = {c}.

➋ f2 given by f2(a) = f2(b) = d. Observe that Im (f2) = {d}.

➌ f3 given by f3(a) = c, f3(b) = d. Observe that Im (f3) = {c, d}.

➍ f4 given by f4(a) = d, f4(b) = c. Observe that Im (f4) = {c, d}.

45 Definition A function is injective or one-to-one whenever two different values of its domain generate two different
values in its image. A function is surjective or onto if every element of its target set is hit, that is, the target set is
the same as the image of the function. A function is bijective if it is both injective and surjective.
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α
1 2
2 8
3 4

Figure 1.13: An injec-
tion.

β

2 2
1 4

3

Figure 1.14: Not an in-
jection

2
1

3
2
4

γ

Figure 1.15: A surjec-
tion

8

δ

2 2
1 4

Figure 1.16: Not a sur-
jection

46 Example The function α in the diagram 1.13 is an injective function. The function represented by the diagram
1.14, however is not injective, since β(3) = β(1) = 4, but 3 6= 1. The function γ represented by diagram 1.15 is
surjective. The function δ represented by diagram 1.16 is not surjective since 8 is part of the target set but not of
the image of the function.

47 Theorem Let f : A → B be a function, and let A and B be finite. If f is injective, then card (A) ≤ card (B).
If f is surjective then card (B) ≤ card (A). If f is bijective, then card (A) = card (B).

Proof: Put n = card (A), A = {x1, x2, . . . , xn} and m = card (B), B = {y1, y2, . . . , ym}.

If f were injective then f(x1), f(x2), . . . , f(xn) are all distinct, and among the yk. Hence n ≤ m.

If f were surjective then each yk is hit, and for each, there is an xi with f(xi) = yk. Thus there

are at least m different images, and so n ≥ m. ❑

48 Definition A permutation is a function from a finite set to itself which reorders the elements of the set.

☞ By necessity then, permutations are bijective.

49 Example The following are permutations of {a, b, c}:

f1 :

0BB�a b c

a b c

1CCA f2 :

0BB�a b c

b c a

1CCA .

The following are not permutations of {a, b, c}:

f3 :

0BB�a b c

a a c

1CCA f4 :

0BB�a b c

b b a

1CCA .

Homework

50 Problem Find all functions from {0, 1, 2} to {−1, 1}. How
many are injective? How many are surjective?

51 Problem Find all functions from {−1, 1} to {0, 1, 2}. How
many are injective? How many are surjective?

52 Problem List all the permutations of {1, 2} to itself.

53 Problem List all the permutations of {1, 2, 3} to itself.

Answers
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11 2A = {∅, {a}, {b}, A} so card

�
2A
�

= 4.

12 {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}, whence card (A) = 4.

13 A = {−2, −1, 0, 1, 2}. Yes.

14 20 = 1, namely itself. 210 = 1024.

15 Yes. The first is the empty set, and has 0 elements. The second is a set con-
taining the empty set, and hence it has 1 element.

24 {HH, HT, TH, TT}

25 We have

X = {(1, 6), (2, 3), (3, 2), (6, 1)}

T = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}

U = ∅

32 There are four ways:

➊ {1} ∪ {2, 3}

➋ {2} ∪ {1, 3}

➌ {3} ∪ {1, 2}

➍ {1} ∪ {2} ∪ {3}

33 A

34 B

35 ∅

36 One possible answer is A ∪ (B \ A). Another one is B ∪ (A \ B).

37 (A \ B) ∪ (B \ A) ∪ (A ∩ B)

38 (A ∩ Bc) ∪ (Ac ∩ B) = (A ∪ B) \ (A ∩ B).

39 We have

➊ (A ∩ B ∩ Cc) ∪ (A ∩ Bc ∩ C) ∪ (Ac ∩ B ∩ C) ∪ (A ∩ B ∩ C).

➋ (A ∩ Bc ∩ Cc) ∪ (Ac ∩ Bc ∩ C) ∪ (Ac ∩ Bc ∩ C) ∪ (Ac ∩ Bc ∩ Cc).

40 We have

➊ {1, 4, 6, 8, 9, 10, 12, 14, 15}

➋ {4, 6, 8, 10, 12, 14, 16}

➌ {4, 6, 8, 10, 12, 14}

50 There are 23 = 8 such functions:

➊ f1 given by f1(0) = f1(1) = f1(2) = −1

➋ f2 given by f2(0) = 1, f2(1) = f2(2) = −1

➌ f3 given by f3(0) = f3(1) = −1, f3(2) = 1

➍ f4 given by f4(0) = −1, f4(1) = 1, f4(2) = −1

➎ f5 given by f5(0) = f5(1) = f5(2) = 1

➏ f6 given by f6(0) = −1, f6(1) = f6(2) = 1

➐ f7 given by f7(0) = f7(1) = 1, f7(2) = −1

➑ f8 given by f8(0) = 1, f8(1) = −1, f8(2) = 1

Of these, 0 are injective, and 6, f2, f3, f4, f6, f7 and f8 are surjective.

51 There are 32 = 9 such functions:

➊ f1 given by f1(−1) = f1(1) = 0

➋ f2 given by f2(−1) = f2(1) = 1

➌ f3 given by f3(−1) = f3(1) = 2

➍ f4 given by f4(−1) = 0, f4(1) = 1

➎ f5 given by f5(−1) = 1, f5(1) = 0

➏ f6 given by f6(−1) = 0, f6(1) = 2

➐ f7 given by f7(−1) = 2, f7(1) = 0

➑ f8 given by f8(−1) = 1, f8(1) = 2

➒ f9 given by f9(−1) = 2, f6(1) = 1

Of these, 6, f4, f5, f6, f7, f8 and f9 are injective, and 0 are surjective.

52 There are two.

f1 :

�
1 2

1 2

�
f2 :

�
1 2

1 2

�
53 There are six.

f1 :

�
1 2 3

1 2 3

�
f2 :

�
1 2 3

1 3 2

�
f3 :

�
1 2 3

3 1 2

�
f4 :

�
1 2 3

3 2 1

�
f5 :

�
1 2 3

2 1 3

�
f6 :

�
1 2 3

2 3 1

�



Chapter 2
Counting

2.1 Inclusion-Exclusion
In this section we investigate a tool for counting unions of events. It is known as The Principle of Inclusion-

Exclusion or Sylvester-Poincaré Principle.

54 Theorem (Two set Inclusion-Exclusion)

card (A ∪ B) = card (A) + card (B) − card (A ∩ B)

Proof: We have

A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ B),

and this last expression is a union of disjoint sets. Hence

card (A ∪ B) = card (A \ B) + card (B \ A) + card (A ∩ B) .

But

A \ B = A \ (A ∩ B) =⇒ card (A \ B) = card (A) − card (A ∩ B) ,

B \ A = B \ (A ∩ B) =⇒ card (B \ A) = card (B) − card (A ∩ B) ,

from where we deduce the result. ❑

In the Venn diagram 2.1, we mark by R1 the number of elements which are simultaneously in both sets (i.e., in
A ∩ B), by R2 the number of elements which are in A but not in B (i.e., in A \ B), and by R3 the number of
elements which are B but not in A (i.e., in B \ A). We have R1 + R2 + R3 = card (A ∪ B), which illustrates the
theorem.

R1R2 R3

A B

Figure 2.1: Two-set Inclusion-Exclusion

1018 6

6

A B

Figure 2.2: Example 55.

10
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55 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also known that 10 both smoke and chew. How
many among the 40 neither smoke nor chew?

Solution: Let A denote the set of smokers and B the set of chewers. Then

card (A ∪ B) = card (A) + card (B) − card (A ∩ B) = 28 + 16 − 10 = 34,

meaning that there are 34 people that either smoke or chew (or possibly both). Therefore the number of people that
neither smoke nor chew is 40 − 34 = 6.

Aliter: We fill up the Venn diagram in figure 2.2 as follows. Since card (A ∩ B) = 10, we put a 10 in the intersection.
Then we put a 28 − 10 = 18 in the part that A does not overlap B and a 16 − 10 = 6 in the part of B that does
not overlap A. We have accounted for 10 + 18 + 6 = 34 people that are in at least one of the set. The remaining
40 − 34 = 6 are outside these sets.

56 Example How many integers between 1 and 1000 inclusive, do not share a common factor with 1000, that is,
are relatively prime to 1000?

Solution: Observe that 1000 = 2353, and thus from the 1000 integers we must weed out those that have a factor of
2 or of 5 in their prime factorisation. If A2 denotes the set of those integers divisible by 2 in the interval [1; 1000]

then clearly card (A2) = T
1000

2
U = 500. Similarly, if A5 denotes the set of those integers divisible by 5 then

card (A5) = T
1000

5
U = 200. Also card (A2 ∩ A5) = T

1000

10
U = 100. This means that there are card (A2 ∪ A5) =

500 + 200 − 100 = 600 integers in the interval [1; 1000] sharing at least a factor with 1000, thus there are
1000 − 600 = 400 integers in [1; 1000] that do not share a factor prime factor with 1000.

We now deduce a formula for counting the number of elements of a union of three events.

R1R2

R3

R4

R5

R6 R7

A B

C

Figure 2.3: Three-set Inclusion-Exclusion

57 Theorem (Three set Inclusion-Exclusion) Let A, B, C be events of the same sample space Ω. Then

card (A ∪ B ∪ C) = card (A) + card (B) + card (C)

−card (A ∩ B) − card (B ∩ C) − card (C ∩ A)

+card (A ∩ B ∩ C)
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Proof: Using the associativity and distributivity of unions of sets, we see that

card (A ∪ B ∪ C) = card (A ∪ (B ∪ C))

= card (A) + card (B ∪ C) − card (A ∩ (B ∪ C))

= card (A) + card (B ∪ C) − card ((A ∩ B) ∪ (A ∩ C))

= card (A) + card (B) + card (C) − card (B ∩ C)

−card (A ∩ B) − card (A ∩ C)

+card ((A ∩ B) ∩ (A ∩ C))

= card (A) + card (B) + card (C) − card (B ∩ C)

− (card (A ∩ B) + card (A ∩ C) − card (A ∩ B ∩ C))

= card (A) + card (B) + card (C)

−card (A ∩ B) − card (B ∩ C) − card (C ∩ A)

+card (A ∩ B ∩ C) .

This gives the Inclusion-Exclusion Formula for three sets. See also figure 2.3.

❑

☞ In the Venn diagram in figure 2.3 there are 8 disjoint regions: the 7 that form A ∪ B ∪ C and

the outside region, devoid of any element belonging to A ∪ B ∪ C.

58 Example How many integers between 1 and 600 inclusive are not divisible by neither 3, nor 5, nor 7?

Solution: Let Ak denote the numbers in [1; 600] which are divisible by k. Then

card (A3) = T600
3

U = 200,

card (A5) = T600
5

U = 120,

card (A7) = T600
7

U = 85,

card (A15) = T600
15

U = 40

card (A21) = T600
21

U = 28

card (A35) = T600
35

U = 17

card (A105) = T600
105

U = 5

By Inclusion-Exclusion there are 200 + 120 + 85 − 40 − 28 − 17 + 5 = 325 integers in [1; 600] divisible by at least
one of 3, 5, or 7. Those not divisible by these numbers are a total of 600 − 325 = 275.

59 Example In a group of 30 people, 8 speak English, 12 speak Spanish and 10 speak French. It is known that 5

speak English and Spanish, 5 Spanish and French, and 7 English and French. The number of people speaking all
three languages is 3. How many do not speak any of these languages?
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Solution: Let A be the set of all English speakers, B the set of Spanish speakers and C the set of French speakers
in our group. We fill-up the Venn diagram in figure 2.4 successively. In the intersection of all three we put 8. In
the region common to A and B which is not filled up we put 5 − 2 = 3. In the region common to A and C which
is not already filled up we put 5 − 3 = 2. In the region common to B and C which is not already filled up, we put
7−3 = 4. In the remaining part of A we put 8−2−3−2 = 1, in the remaining part of B we put 12−4−3−2 = 3,
and in the remaining part of C we put 10 − 2 − 3 − 4 = 1. Each of the mutually disjoint regions comprise a total
of 1 + 2 + 3 + 4 + 1 + 2 + 3 = 16 persons. Those outside these three sets are then 30 − 16 = 14.

31

3

1

2

2 4

A B

C

Figure 2.4: Example 59.

1520

x

u

y

z t

Movies Reading

Sports

Figure 2.5: Example 60.

60 Example A survey shews that 90% of high-schoolers in Philadelphia like at least one of the following activities:
going to the movies, playing sports, or reading. It is known that 45% like the movies, 48% like sports, and 35%

like reading. Also, it is known that 12% like both the movies and reading, 20% like only the movies, and 15% only
reading. What percent of high-schoolers like all three activities?

Solution: We make the Venn diagram in as in figure 2.5. From it we gather the following system of equations

x + y + z + 20 = 45

x + z + t + u = 48

x + y + t + 15 = 35

x + y = 12

x + y + z + t + u + 15 + 20 = 90

The solution of this system is seen to be x = 5, y = 7, z = 13, t = 8, u = 22. Thus the percent wanted is 5%.

Homework

61 Problem Consider the set

A = {2, 4, 6, . . . , 114}.

➊ How many elements are there in A?

➋ How many are divisible by 3?

➌ How many are divisible by 5?

➍ How many are divisible by 15?

➎ How many are divisible by either 3, 5 or both?

➏ How many are neither divisible by 3 nor 5?

➐ How many are divisible by exactly one of 3 or 5?

62 Problem Consider the set of the first 100 positive integers:

A = {1, 2, 3, . . . , 100}.

➊ How many are divisible by 2?

➋ How many are divisible by 3?

➌ How many are divisible by 7?

➍ How many are divisible by 6?

➎ How many are divisible by 14?

➏ How many are divisible by 21?

➐ How many are divisible by 42?
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➑ How many are relatively prime to 42?

➒ How many are divisible by 2 and 3 but not by 7?

➓ How many are divisible by exactly one of 2, 3 and 7?

63 Problem A survey of a group’s viewing habits over the last
year revealed the following information:

➊ 28% watched gymnastics

➋ 29% watched baseball

➌ 19% watched soccer

➍ 14% watched gymnastics and baseball

➎ 12% watched baseball and soccer

➏ 10% watched gymnastics and soccer

➐ 8% watched all three sports.

Calculate the percentage of the group that watched none of
the three sports during the last year.

64 Problem Out of 40 children, 30 can swim, 27 can play
chess, and only 5 can do neither. How many children can
swim and play chess?

65 Problem At Medieval High there are forty students.
Amongst them, fourteen like Mathematics, sixteen like theol-
ogy, and eleven like alchemy. It is also known that seven like
Mathematics and theology, eight like theology and alchemy
and five like Mathematics and alchemy. All three subjects are
favoured by four students. How many students like neither
Mathematics, nor theology, nor alchemy?

66 Problem How many strictly positive integers less than or
equal to 1000 are

➊ perfect squares?

➋ perfect cubes?

➌ perfect fifth powers?

➍ perfect sixth powers?

➎ perfect tenth powers?

➏ perfect fifteenth powers?

➐ perfect thirtieth powers?

➑ neither perfect squares, perfect cubes, perfect fifth pow-
ers?

67 Problem An auto insurance company has 10, 000 policy-
holders. Each policy holder is classified as� young or old,� male or female, and� married or single.

Of these policyholders, 3000 are young, 4600 are male, and
7000 are married. The policyholders can also be classified
as 1320 young males, 3010 married males, and 1400 young
married persons. Finally, 600 of the policyholders are young
married males. How many of the company’s policyholders are
young, female, and single?

68 Problem (AHSME 1988) X, Y , and Z are pairwise disjoint
sets of people. The average ages of people in the sets X, Y , Z,
X ∪ Y , X ∪ Y , and Y ∪ Z are given below:

Set X Y Z X ∪ Y X ∪ Z Y ∪ Z

Average Age 37 23 41 29 39.5 33

What is the average age of the people in the set X ∪ Y ∪ Z?

69 Problem Each of the students in the maths class twice at-
tended a concert. It is known that 25, 12, and 23 students
attended concerts A, B, and C respectively. How many stu-
dents are there in the maths class? How many of them went
to concerts A and B, B and C, or B and C?

70 Problem The films A, B, and C were shewn in the cinema
for a week. Out of 40 students (each of which saw either all
the three films, or one of them, 13 students saw film A, 16

students saw film B, and 19 students saw film C. How many
students saw all three films?

71 Problem Would you believe a market investigator that re-
ports that of 1000 people, 816 like candy, 723 like ice cream,
645 cake, while 562 like both candy and ice cream, 463 like
both candy and cake, 470 both ice cream and cake, while 310

like all three? State your reasons!

72 Problem (AHSME 1991) For a set S, let card
�
2S
�

denote
the number of subsets of S. If A, B, C, are sets for which

card
�
2

A
�

+ card
�
2

B
�

+ card
�
2

C
�

= card
�
2

A∪B∪C
�

and

card (A) = card (B) = 100,

then what is the minimum possible value of
card (A ∩ B ∩ C)?

73 Problem (Lewis Carroll in A Tangled Tale.) In a very hotly
fought battle, at least 70% of the combatants lost an eye, at
least 75% an ear, at least 80% an arm, and at least 85% a
leg. What can be said about the percentage who lost all four
members?

2.2 The Product Rule
74 Rule (Product Rule) Suppose that an experiment E can be performed in k stages: E1 first, E2 second, . . . , Ek

last. Suppose moreover that Ei can be done in ni different ways, and that the number of ways of performing Ei is
not influenced by any predecessors E1, E2, . . . , Ei−1. Then E1 and E2 and . . .and Ek can occur simultaneously in
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n1n2 · · · nk ways.

75 Example In a group of 8 men and 9 women we can pick one man and one woman in 8 · 9 = 72 ways. Notice
that we are choosing two persons.

76 Example A red die and a blue die are tossed. In how many ways can they land?

Solution: If we view the outcomes as an ordered pair (r, b) then by the multiplication principle we have the 6·6 = 36

possible outcomes

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

The red die can land in any of 6 ways,

6

and also, the blue die may land in any of 6 ways

6 6 .

77 Example A multiple-choice test consists of 20 questions, each one with 4 choices. There are 4 ways of answering
the first question, 4 ways of answering the second question, etc., hence there are 420 = 1099511627776 ways of
answering the exam.

78 Example There are 9 · 10 · 10 = 900 positive 3-digit integers:

100, 101, 102, . . . , 998, 999.

For, the leftmost integer cannot be 0 and so there are only 9 choices {1, 2, 3, 4, 5, 6, 7, 8, 9} for it,

9 .

There are 10 choices for the second digit

9 10 ,

and also 10 choices for the last digit

9 10 10 .

79 Example There are 9 · 10 · 5 = 450 even positive 3-digit integers:

100, 102, 104, . . . , 996, 998.
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For, the leftmost integer cannot be 0 and so there are only 9 choices {1, 2, 3, 4, 5, 6, 7, 8, 9} for it,

9 .

There are 10 choices for the second digit

9 10 .

Since the integer must be even, the last digit must be one of the 5 choices {0, 2, 4, 6, 8}

9 10 5 .

80 Definition A palindromic integer or palindrome is a positive integer whose decimal expansion is symmetric and
that is not divisible by 10. In other words, one reads the same integer backwards or forwards.1

81 Example The following integers are all palindromes:

1, 8, 11, 99, 101, 131, 999, 1234321, 9987899.

82 Example How many palindromes are there of 5 digits?
Solution: There are 9 ways of choosing the leftmost digit.

9 .

Once the leftmost digit is chosen, the last digit must be identical to it, so we have

9 1 .

There are 10 choices for the second digit from the left

9 10 1 .

Once this digit is chosen, the second digit from the right must be identical to it, so we have only 1 choice for it,

9 10 1 1 .

Finally, there are 10 choices for the third digit from the right,

9 10 10 1 1 ,

which give us 900 palindromes of 5-digits.

83 Example How many palindromes of 5 digits are even?

Solution: A five digit even palindrome has the form ABCBA, where A belongs to {2, 4, 6, 8}, and B, C belong to
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Thus there are 4 choices for the first digit, 10 for the second, and 10 for the third. Once
these digits are chosen, the palindrome is completely determined. Therefore, there are 4 × 10 × 10 = 400 even
palindromes of 5 digits.

1A palindrome in common parlance, is a word or phrase that reads the same backwards to forwards. The Philadelphia street name
Camac is a palindrome. So are the phrases (if we ignore punctuation) (a) “A man, a plan, a canal, Panama!” (b) “Sit on a potato pan!,
Otis.” (c) “Able was I ere I saw Elba.” This last one is attributed to Napoleon, though it is doubtful that he knew enough English to
form it.
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84 Example How many positive divisors does 300 have?

Solution: We have 300 = 3 · 2252. Thus every factor of 300 is of the form 3a2b5c, where 0 ≤ a ≤ 1, 0 ≤ b ≤ 2,

and 0 ≤ c ≤ 2. Thus there are 2 choices for a, 3 for b and 3 for c. This gives 2 · 3 · 3 = 18 positive divisors.

85 Example How many paths consisting of a sequence of horizontal and/or vertical line segments, each segment
connecting a pair of adjacent letters in figure 2.6 spell BIPOLAR?

B

B I B

B I P I B

B I P O P I B

B I P O L O P I B

B I P O L A L O P I B

B I P O L A R A L O P I B

Figure 2.6: Problem 85.

B

B I

B I P

B I P O

B I P O L

B I P O L A

B I P O L A R

Figure 2.7: Problem 85.

Solution: Split the diagram, as in figure 2.7. Since every required path must use the R, we count paths starting from
R and reaching up to a B. Since there are six more rows that we can travel to, and since at each stage we can go
either up or left, we have 26 = 64 paths. The other half of the figure will provide 64 more paths. Since the middle
column is shared by both halves, we have a total of 64 + 64 − 1 = 127 paths.

We now prove that if a set A has n elements, then it has 2n subsets. To motivate the proof, consider the set
{a, b, c}. To each element we attach a binary code of length 3. We write 0 if a particular element is not in the set
and 1 if it is. We then have the following associations:

∅ ↔ 000,

{a} ↔ 100,

{b} ↔ 010,

{c} ↔ 001,

{a, b} ↔ 110,

{a, c} ↔ 101,

{b, c} ↔ 011,

{a, b, c} ↔ 111.

Thus there is a one-to-one correspondence between the subsets of a finite set of 3 elements and binary sequences
of length 3.

86 Theorem (Cardinality of the Power Set) Let A be a finite set with card (A) = n. Then A has 2n subsets.

Proof: We attach a binary code to each element of the subset, 1 if the element is in the subset

and 0 if the element is not in the subset. The total number of subsets is the total number of such

binary codes, and there are 2n in number. ❑

87 Theorem Let A, B be finite sets with card (A) = n and card (B) = m. Then� the number of functions from A to B is mn.
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there are no injective functions from A to B.

Proof: Each of the n elements of A must be assigned an element of B, and hence there are

m · m · · · m︸ ︷︷ ︸
n factors

= mn possibilities, and thus mn functions.If a function from A to B is injective then

we must have n ≤ m in view of Theorem 47. If to different inputs we must assign different outputs

then to the first element of A we may assign any of the m elements of B, to the second any of

the m − 1 remaining ones, to the third any of the m − 2 remaining ones, etc., and so we have

m(m − 1) · · · (m − n + 1) injective functions. ❑

88 Example Let A = {a, b, c} and B = {1, 2, 3, 4}. Then according to Theorem 87, there are 43 = 64 functions from
A to B and of these, 4 · 3 · 2 = 24 are injective. Similarly, there are 34 = 81 functions from B to A, and none are
injective.

Homework

89 Problem A true or false exam has ten questions. How
many possible answer keys are there?

90 Problem Out of nine different pairs of shoes, in how many
ways could I choose a right shoe and a left shoe, which should
not form a pair?

91 Problem In how many ways can the following prizes be
given away to a class of twenty boys: first and second Clas-
sical, first and second Mathematical, first Science, and first
French?

92 Problem Under old hardware, a certain programme ac-
cepted passwords of the form

eell

where

e ∈ {0, 2, 4, 6, 8}, l ∈ {a, b, c, d, u, v, w, x, y, z}.

The hardware was changed and now the software accepts pass-
words of the form

eeelll.

How many more passwords of the latter kind are there than
of the former kind?

93 Problem A license plate is to be made according to the
following provision: it has four characters, the first two char-
acters can be any letter of the English alphabet and the last
two characters can be any digit. One is allowed to repeat
letters and digits. How many different license plates can be
made?

94 Problem In problem 93, how many different license plates
can you make if (i) you may repeat letters but not digits?, (ii)
you may repeat digits but not letters?, (iii) you may repeat
neither letters nor digits?

95 Problem An alphabet consists of the five consonants {p,
v, t, s, k} and the three vowels {a, e, o}. A license plate is
to be made using four letters of this alphabet.

➊ How many letters does this alphabet have?

➋ If a license plate is of the form CCVV where C denotes
a consonant and V denotes a vowel, how many possible
license plates are there, assuming that you may repeat
both consonants and vowels?

➌ If a license plate is of the form CCVV where C denotes
a consonant and V denotes a vowel, how many possible
license plates are there, assuming that you may repeat
consonants but not vowels?

➍ If a license plate is of the form CCVV where C denotes
a consonant and V denotes a vowel, how many possible
license plates are there, assuming that you may repeat
vowels but not consonants?

➎ If a license plate is of the form LLLL where L denotes
any letter of the alphabet, how many possible license
plates are there, assuming that you may not repeat let-
ters?

96 Problem A man lives within reach of three boys’ schools
and four girls’ schools. In how many ways can he send his
three sons and two daughters to school?

97 Problem How many distinct four-letter words can be made
with the letters of the set {c, i, k, t}

➊ if the letters are not to be repeated?

➋ if the letters can be repeated?

98 Problem How many distinct six-digit numbers that are
multiples of 5 can be formed from the list of digits
{1, 2, 3, 4, 5, 6} if we allow repetition?

99 Problem Telephone numbers in Land of the Flying

Camels have 7 digits, and the only digits available are
{0, 1, 2, 3, 4, 5, 7, 8}. No telephone number may begin in 0,
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1 or 5. Find the number of telephone numbers possible that
meet the following criteria:

➊ You may repeat all digits.

➋ You may not repeat any of the digits.

➌ You may repeat the digits, but the phone number must
be even.

➍ You may repeat the digits, but the phone number must
be odd.

➎ You may not repeat the digits and the phone numbers
must be odd.

100 Problem How many 5-lettered words can be made out of
26 letters, repetitions allowed, but not consecutive repetitions
(that is, a letter may not follow itself in the same word)?

101 Problem How many positive integers are there having
n ≥ 1 digits?

102 Problem How many n-digits integers (n ≥ 1) are there
which are even?

103 Problem How many n-digit nonnegative integers do not
contain the digit 5?

104 Problem How many n-digit numbers do not have the digit
0?

105 Problem There are m different roads from town A to town
B. In how many ways can Dwayne travel from town A to town
B and back if (a) he may come back the way he went?, (b) he
must use a different road of return?

106 Problem How many positive divisors does 283952 have?
What is the sum of these divisors?

107 Problem How many factors of 295 are larger than
1, 000, 000?

108 Problem How many positive divisors does 360 have? How
many are even? How many are odd? How many are perfect
squares?

109 Problem (AHSME 1988) At the end of a professional
bowling tournament, the top 5 bowlers have a play-off. First
# 5 bowls #4. The loser receives the 5th prize and the winner
bowls # 3 in another game. The loser of this game receives
the 4th prize and the winner bowls # 2. The loser of this
game receives the 3rd prize and the winner bowls # 1. The
loser of this game receives the 2nd prize and the winner the
1st prize. In how many orders can bowlers #1 through #5
receive the prizes?

110 Problem The number 3 can be expressed as a sum of one
or more positive integers in four ways, namely, as 3, 1 + 2,
2 + 1, and 1 + 1 + 1. Shew that any positive integer n can
be so expressed in 2n−1 ways.

111 Problem Let n = 231319 . How many positive integer di-
visors of n2 are less than n but do not divide n?

112 Problem Let n ≥ 3. Find the number of n-digit ternary
sequences that contain at least one 0, one 1 and one 2.

113 Problem In how many ways can one decompose the set

{1, 2, 3, . . . , 100}

into subsets A, B, C satisfying

A ∪ B ∪ C = {1, 2, 3, . . . , 100} and A ∩ B ∩ C = ∅

2.3 The Sum Rule
114 Rule (Sum Rule: Disjunctive Form) Let E1, E2, . . . , Ek, be pairwise mutually exclusive events. If Ei can occur
in ni ways, then either E1 or E2 or, . . . , or Ek can occur in

n1 + n2 + · · · nk

ways.

☞ Notice that the “or” here is exclusive.

115 Example In a group of 8 men and 9 women we can pick one man or one woman in 8 + 9 = 17 ways. Notice
that we are choosing one person.

116 Example There are five Golden retrievers, six Irish setters, and eight Poodles at the pound. In how many ways
can two dogs be chosen if they are not the same kind?

Solution: We choose: a Golden retriever and an Irish setter or a Golden retriever and a Poodle or an Irish setter
and a Poodle.
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One Golden retriever and one Irish setter can be chosen in 5 · 6 = 30 ways; one Golden retriever and one Poodle
can be chosen in 5 · 8 = 40 ways; one Irish setter and one Poodle can be chosen in 6 · 8 = 48 ways. By the sum rule,
there are 30 + 40 + 48 = 118 combinations.

117 Example To write a book 1890 digits were utilised. How many pages does the book have?

Solution: A total of
1 · 9 + 2 · 90 = 189

digits are used to write pages 1 to 99, inclusive. We have of 1890 − 189 = 1701 digits at our disposition which is
enough for 1701/3 = 567 extra pages (starting from page 100). The book has 99 + 567 = 666 pages.

118 Example The sequence of palindromes, starting with 1 is written in ascending order

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, . . .

Find the 1984-th positive palindrome.

Solution: It is easy to see that there are 9 palindromes of 1-digit, 9 palindromes with 2-digits, 90 with 3-digits, 90
with 4-digits, 900 with 5-digits and 900 with 6-digits. The last palindrome with 6 digits, 999999, constitutes the
9+9+90+90+900+900 = 1998th palindrome. Hence, the 1997th palindrome is 998899, the 1996th palindrome
is 997799, the 1995th palindrome is 996699, the 1994th is 995599, etc., until we find the 1984th palindrome to
be 985589.

119 Example Find the sum of all odd 5-digit palindromes.

Solution: By example 82 there are 900 5-digit palindromes, and by example 83, there are 4 × 10 × 10 = 400 even
palindromes of five digits. Thus there are 900 − 400 = 500 odd palindromes of five digits. Observe that each pair
below has the same sum

110000 = 10001 + 99999 = 10101 + 99899 = · · · .

Since there are 250 such pairs, the total sum is thus

110000 × 250 = 27500000.

120 Example The integers from 1 to 1000 are written in succession. Find the sum of all the digits.

Solution: When writing the integers from 000 to 999 (with three digits), 3 × 1000 = 3000 digits are used. Each
of the 10 digits is used an equal number of times, so each digit is used 300 times. The the sum of the digits in the
interval 000 to 999 is thus

(0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)(300) = 13500.

Therefore, the sum of the digits when writing the integers from 000 to 1000 is 13500 + 1 = 13501.

Aliter: Pair up the integers from 0 to 999 as

(0, 999), (1, 998), (2, 997), (3, 996), . . . , (499, 500).

Each pair has sum of digits 27 and there are 500 such pairs. Adding 1 for the sum of digits of 1000, the required
total is

27 · 500 + 1 = 13501.

121 Example How many 4-digit integers can be formed with the set of digits {0, 1, 2, 3, 4, 5} such that no digit is
repeated and the resulting integer is a multiple of 3?
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Solution: The integers desired have the form D1D2D3D4 with D1 6= 0. Under the stipulated constraints, we must
have

D1 + D2 + D3 + D4 ∈ {6, 9, 12}.

We thus consider three cases.

Case I: D1 + D2 + D3 + D4 = 6. Here we have {D1, D2, D3, D4} = {0, 1, 2, 3, 4}, D1 6= 0. There are then 3

choices for D1. After D1 is chosen, D2 can be chosen in 3 ways, D3 in 2 ways, and D1 in 1 way. There are thus
3 × 3 × 2 × 1 = 3 · 3! = 18 integers satisfying case I.

Case II: D1 + D2 + D3 + D4 = 9. Here we have {D1, D2, D3, D4} = {0, 2, 3, 4}, D1 6= 0 or
{D1, D2, D3, D4} = {0, 1, 3, 5}, D1 6= 0. Like before, there are 3 · 3! = 18 numbers in each possibility, thus we have
2 × 18 = 36 numbers in case II.

Case III: D1 + D2 + D3 + D4 = 12. Here we have {D1, D2, D3, D4} = {0, 3, 4, 5}, D1 6= 0 or
{D1, D2, D3, D4} = {1, 2, 4, 5}. In the first possibility there are 3 · 3! = 18 numbers, and in the second there are
4! = 24. Thus we have 18 + 24 = 42 numbers in case III.

The desired number is finally 18 + 36 + 42 = 96.

Homework

122 Problem How many different sums can be thrown with
two dice, the faces of each die being numbered
0, 1, 3, 7, 15, 31?

123 Problem How many different sums can be thrown with
three dice, the faces of each die being numbered
1, 4, 13, 40, 121, 364?

124 Problem How many two or three letter initials for
people are available if at least one of the letters must be a D
and one allows repetitions?

125 Problem How many strictly positive integers have all
their digits distinct?

126 Problem The Morse code consists of points and dashes.
How many letters can be in the Morse code if no letter
contains more than four signs, but all must have at least one?

127 Problem An n × n × n wooden cube is painted blue and
then cut into n3 1 × 1 × 1 cubes. How many cubes (a) are
painted on exactly three sides, (b) are painted in exactly two
sides, (c) are painted in exactly one side, (d) are not painted?

128 Problem (AIME 1993) How many even integers between
4000 and 7000 have four different digits?

129 Problem All the natural numbers, starting with 1, are
listed consecutively

123456789101112131415161718192021 . . .

Which digit occupies the 1002nd place?

130 Problem All the positive integers are written in
succession.

123456789101112131415161718192021222324 . . .

Which digit occupies the 206790th place?

131 Problem All the positive integers with initial digit 2 are
written in succession:

2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 200, 201, . . . ,

Find the 1978-th digit written.

132 Problem (AHSME 1998) Call a 7-digit telephone
number d1d2d3 − d4d5d6d7 memorable if the prefix
sequence d1d2d3 is exactly the same as either of the
sequences d4d5d6 or d5d6d7 or possibly both. Assuming
that each di can be any of the ten decimal digits
0, 1, 2, . . . , 9, find the number of different memorable
telephone numbers.

133 Problem Three-digit numbers are made using the digits
{1, 3, 7, 8, 9}.

➊ How many of these integers are there?

➋ How many are even?

➌ How many are palindromes?

➍ How many are divisible by 3?

134 Problem (AHSME 1989) Five people are sitting at a
round table. Let f ≥ 0 be the number of people sitting next
to at least one female, and let m ≥ 0 be the number of
people sitting next to at least one male. Find the number of
possible ordered pairs (f, m).

135 Problem How many integers less than 10000 can be
made with the eight digits 0, 1, 2, 3, 4, 5, 6, 7?
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136 Problem (ARML 1999) In how many ways can one
arrange the numbers 21, 31, 41, 51, 61, 71, and 81 such that
the sum of every four consecutive numbers is divisible by 3?

137 Problem Let S be the set of all natural numbers whose
digits are chosen from the set {1, 3, 5, 7} such that no digits
are repeated. Find the sum of the elements of S.

138 Problem Find the number of ways to choose a pair {a, b}

of distinct numbers from the set {1, 2, . . . , 50} such that

➊ |a − b| = 5

➋ |a − b| ≤ 5.

139 Problem (AIME 1994) Given a positive integer n, let
p(n) be the product of the non-zero digits of n. (If n has
only one digit, then p(n) is equal to that digit.) Let

S = p(1) + p(2) + · · · + p(999).

Find S.

2.4 Permutations without Repetitions
140 Definition We define the symbol ! (factorial), as follows: 0! = 1, and for integer n ≥ 1,

n! = 1 · 2 · 3 · · · n.

n! is read n factorial.

141 Example We have

1! = 1,

2! = 1 · 2 = 2,

3! = 1 · 2 · 3 = 6,

4! = 1 · 2 · 3 · 4 = 24,

5! = 1 · 2 · 3 · 4 · 5 = 120.

142 Example We have

7!

4!
=

7 · 6 · 5 · 4!

4!
= 210,

(n + 2)!

n!
=

(n + 2)(n + 1)n!

n!
= (n + 2)(n + 1),

(n − 2)!

(n + 1)!
=

(n − 2)!

(n + 1)(n)(n − 1)(n − 2)!
=

1

(n + 1)(n)(n − 1)
.

143 Definition Let x1, x2, . . . , xn be n distinct objects. A permutation of these objects is simply a rearrangement
of them.

144 Example There are 24 permutations of the letters in MATH, namely

MATH MAHT MTAH MTHA MHTA MHAT

AMTH AMHT ATMH ATHM AHTM AHMT

TAMH TAHM TMAH TMHA THMA THAM

HATM HAMT HTAM HTMA HMTA HMAT
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145 Theorem Let x1, x2, . . . , xn be n distinct objects. Then there are n! permutations of them.

Proof: The first position can be chosen in n ways, the second object in n − 1 ways, the third in

n − 2, etc. This gives

n(n − 1)(n − 2) · · · 2 · 1 = n!.

❑

146 Example The number of permutations of the letters of the word RETICULA is 8! = 40320.

147 Example A bookshelf contains 5 German books, 7 Spanish books and 8 French books. Each book is different
from one another.

➊ How many different arrangements can be done of these
books?

➋ How many different arrangements can be done of these
books if books of each language must be next to each
other?

➌ How many different arrangements can be done of these

books if all the French books must be next to each
other?

➍ How many different arrangements can be done of these
books if no two French books must be next to each
other?

Solution:

➊ We are permuting 5 + 7 + 8 = 20 objects. Thus the
number of arrangements sought is
20! = 2432902008176640000.

➋ “Glue” the books by language, this will assure that
books of the same language are together. We permute
the 3 languages in 3! ways. We permute the German
books in 5! ways, the Spanish books in 7! ways and
the French books in 8! ways. Hence the total number
of ways is 3!5!7!8! = 146313216000.

➌ Align the German books and the Spanish books first.
Putting these 5 + 7 = 12 books creates 12 + 1 = 13

spaces (we count the space before the first book, the
spaces between books and the space after the last
book). To assure that all the French books are next
each other, we “glue” them together and put them in
one of these spaces. Now, the French books can be
permuted in 8! ways and the non-French books can be
permuted in 12! ways. Thus the total number of

permutations is

(13)8!12! = 251073478656000.

➍ Align the German books and the Spanish books first.
Putting these 5 + 7 = 12 books creates 12 + 1 = 13

spaces (we count the space before the first book, the
spaces between books and the space after the last
book). To assure that no two French books are next to
each other, we put them into these spaces. The first
French book can be put into any of 13 spaces, the
second into any of 12, etc., the eighth French book can
be put into any 6 spaces. Now, the non-French books
can be permuted in 12! ways. Thus the total number
of permutations is

(13)(12)(11)(10)(9)(8)(7)(6)12!,

which is 24856274386944000.

Homework

148 Problem How many changes can be rung with a peal of
five bells?

149 Problem A bookshelf contains 3 Russian novels, 4

German novels, and 5 Spanish novels. In how many ways
may we align them if

➊ there are no constraints as to grouping?

➋ all the Spanish novels must be together?

➌ no two Spanish novels are next to one another?

150 Problem How many permutations of the word
IMPURE are there? How many permutations start with P

and end in U? How many permutations are there if the P

and the U must always be together in the order PU? How
many permutations are there in which no two vowels (I, U,

E) are adjacent?

151 Problem How many arrangements can be made of out of
the letters of the word DRAUGHT, the vowels never
separated?

152 Problem (AIME 1991) Given a rational number, write it
as a fraction in lowest terms and calculate the product of the
resulting numerator and denominator. For how many
rational numbers between 0 and 1 will 20! be the resulting
product?
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153 Problem (AMC12 2001) A spider has one sock and one
shoe for each of its eight legs. In how many different orders
can the spider put on its socks and shoes, assuming that, on
each leg, the sock must be put on before the shoe?

154 Problem How many trailing 0’s are there when 1000! is
multiplied out?

155 Problem In how many ways can 8 people be seated in a
row if

➊ there are no constraints as to their seating
arrangement?

➋ persons X and Y must sit next to one another?

➌ there are 4 women and 4 men and no 2 men or 2

women can sit next to each other?

➍ there are 4 married couples and each couple must sit
together?

➎ there are 4 men and they must sit next to each other?

2.5 Permutations with Repetitions
We now consider permutations with repeated objects.

156 Example In how many ways may the letters of the word

MASSACHUSETTS

be permuted?

Solution: We put subscripts on the repeats forming

MA1S1S2A2CHUS3ET1T2S4.

There are now 13 distinguishable objects, which can be permuted in 13! different ways by Theorem 145. For each
of these 13! permutations, A1A2 can be permuted in 2! ways, S1S2S3S4 can be permuted in 4! ways, and T1T2

can be permuted in 2! ways. Thus the over count 13! is corrected by the total actual count

13!

2!4!2!
= 64864800.

A reasoning analogous to the one of example 156, we may prove

157 Theorem Let there be k types of objects: n1 of type 1; n2 of type 2; etc. Then the number of ways in which
these n1 + n2 + · · · + nk objects can be rearranged is

(n1 + n2 + · · · + nk)!

n1!n2! · · · nk!
.

158 Example In how many ways may we permute the letters of the word MASSACHUSETTS in such a way that
MASS is always together, in this order?

Solution: The particle MASS can be considered as one block and the 9 letters A, C, H, U, S, E, T, T, S. In A, C,

H, U, S, E, T, T, S there are four S’s and two T ’s and so the total number of permutations sought is

10!

2!2!
= 907200.

159 Example In how many ways may we write the number 9 as the sum of three positive integer summands? Here
order counts, so, for example, 1 + 7 + 1 is to be regarded different from 7 + 1 + 1.

Solution: We first look for answers with

a + b + c = 9, 1 ≤ a ≤ b ≤ c ≤ 7
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and we find the permutations of each triplet. We have

(a, b, c) Number of permutations

(1, 1, 7)
3!

2!
= 3

(1, 2, 6) 3! = 6

(1, 3, 5) 3! = 6

(1, 4, 4)
3!

2!
= 3

(2, 2, 5)
3!

2!
= 3

(2, 3, 4) 3! = 6

(3, 3, 3)
3!

3!
= 1

Thus the number desired is
3 + 6 + 6 + 3 + 3 + 6 + 1 = 28.

160 Example In how many ways can the letters of the word MURMUR be arranged without letting two letters
which are alike come together?

Solution: If we started with, say , MU then the R could be arranged as follows:

M U R R ,

M U R R ,

M U R R .

In the first case there are 2! = 2 of putting the remaining M and U, in the second there are 2! = 2 and in the third
there is only 1!. Thus starting the word with MU gives 2 + 2 + 1 = 5 possible arrangements. In the general case,
we can choose the first letter of the word in 3 ways, and the second in 2 ways. Thus the number of ways sought is
3 · 2 · 5 = 30.

161 Example In how many ways can the letters of the word AFFECTION be arranged, keeping the vowels in
their natural order and not letting the two F’s come together?

Solution: There are
9!

2!
ways of permuting the letters of AFFECTION. The 4 vowels can be permuted in 4! ways,

and in only one of these will they be in their natural order. Thus there are
9!

2!4!
ways of permuting the letters of

AFFECTION in which their vowels keep their natural order.

Now, put the 7 letters of AFFECTION which are not the two F’s. This creates 8 spaces in between them where
we put the two F’s. This means that there are 8 · 7! permutations of AFFECTION that keep the two F’s

together. Hence there are
8 · 7!

4!
permutations of AFFECTION where the vowels occur in their natural order.

In conclusion, the number of permutations sought is

9!

2!4!
−

8 · 7!

4!
=

8!

4!

�
9

2
− 1

�
=

8 · 7 · 6 · 5 · 4!

4!
·

7

2
= 5880



26 Chapter 2

162 Example How many arrangements of five letters can be made of the letters of the word PALLMALL?

Solution: We consider the following cases:

➊ there are four L’s and a different letter. The different letter can be chosen in 3 ways, so there are
3 · 5!

4!
= 15

permutations in this case.

➋ there are three L’s and two A’s. There are
5!

3!2!
= 10 permutations in this case.

➌ there are three L’s and two different letters. The different letters can be chosen in 3 ways ( either P and A;

or P and M; or A and M), so there are
3 · 5!

3!
= 60 permutations in this case.

➍ there are two L’s, two A’s and a different letter from these two. The different letter can be chosen in 2 ways.

There are
2 · 5!

2!2!
= 60 permutations in this case.

➎ there are two L’s and three different letters. The different letters can be chosen in 1 way. There are
1 · 5!

2!
= 60 permutations in this case.

➏ there is one L. This forces having two A’s and two other different letters. The different letters can be chosen

in 1 way. There are
1 · 5!

2!
= 60 permutations in this case.

The total number of permutations is thus seen to be

15 + 10 + 60 + 60 + 60 + 60 = 265.

Homework

163 Problem In how many ways may one permute the letters
of the word MEPHISTOPHELES?

164 Problem How many arrangements of four letters can be
made out of the letters of KAFFEEKANNE without
letting the three E’s come together?

165 Problem How many numbers can be formed with the
digits

1, 2, 3, 4, 3, 2, 1

so that the odd digits occupy the odd places?

166 Problem The password of the anti-theft device of a car
is a four digit number, where one can use any digit in the set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

A. ➊ How many such passwords are possible?

➋ How many of the passwords have all their digits
distinct?

B. After an electrical failure, the owner must reintroduce
the password in order to deactivate the anti-theft
device. He knows that the four digits of the code are
2, 0, 0, 3 but does not recall the order.

➊ How many such passwords are possible using
only these digits?

➋ If the first attempt at the password fails, the
owner must wait two minutes before a second
attempt, if the second attempt fails he must wait
four minutes before a third attempt, if the third
attempt fails he must wait eight minutes before a
fourth attempt, etc. (the time doubles from one
attempt to the next). How many passwords can
the owner attempt in a period of 24 hours?

167 Problem In this problem you will determine how many
different signals, each consisting of 10 flags hung in a line,
can be made from a set of 4 white flags, 3 red flags, 2 blue
flags, and 1 orange flag, if flags of the same colour are
identical.

➊ How many are there if there are no constraints on the
order?

➋ How many are there if the orange flag must always be
first?

➌ How many are there if there must be a white flag at
the beginning and another white flag at the end?

168 Problem In how many ways may we write the number
10 as the sum of three positive integer summands? Here
order counts, so, for example, 1 + 8 + 1 is to be regarded
different from 8 + 1 + 1.
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169 Problem Three distinguishable dice are thrown. In how
many ways can they land and give a sum of 9?

170 Problem In how many ways can 15 different recruits be
divided into three equal groups? In how many ways can they
be drafted into three different regiments?

2.6 Combinations without Repetitions

171 Definition Let n, k be non-negative integers with 0 ≤ k ≤ n. The symbol

�
n

k

�
(read “n choose k”) is

defined and denoted by �
n

k

�
=

n!

k!(n − k)!
=

n · (n − 1) · (n − 2) · · · (n − k + 1)

1 · 2 · 3 · · · k
.

☞ Observe that in the last fraction, there are k factors in both the numerator and

denominator. Also, observe the boundary conditions�
n

0

�
=

�
n

n

�
= 1,

�
n

1

�
=

�
n

n − 1

�
= n.

172 Example We have �
6

3

�
= 6·5·4

1·2·3 = 20,�
11

2

�
= 11·10

1·2 = 55,�
12

7

�
= 12·11·10·9·8·7·6

1·2·3·4·5·6·7 = 792,�
110

109

�
= 110,�

110

0

�
= 1.

☞ Since n − (n − k) = k, we have for integer n, k, 0 ≤ k ≤ n, the symmetry identity�
n

k

�
=

n!

k!(n − k)!
=

n!

(n − k)!(n − (n − k))!
=

�
n

n − k

�
.

This can be interpreted as follows: if there are n different tickets in a hat, choosing k of them out

of the hat is the same as choosing n − k of them to remain in the hat.

173 Example �
11

9

�
=

�
11

2

�
= 55,�

12

5

�
=

�
12

7

�
= 792.

174 Definition Let there be n distinguishable objects. A k-combination is a selection of k, (0 ≤ k ≤ n) objects
from the n made without regards to order.

175 Example The 2-combinations from the list {X, Y, Z, W} are

XY, XZ, XW, YZ, YW, WZ.

176 Example The 3-combinations from the list {X, Y, Z, W} are

XYZ, XYW, XZW, YWZ.
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177 Theorem Let there be n distinguishable objects, and let k, 0 ≤ k ≤ n. Then the numbers of k-combinations

of these n objects is

�
n

k

�
.

Proof: Pick any of the k objects. They can be ordered in n(n − 1)(n − 2) · · · (n − k + 1), since

there are n ways of choosing the first, n − 1 ways of choosing the second, etc. This particular

choice of k objects can be permuted in k! ways. Hence the total number of k-combinations is

n(n − 1)(n − 2) · · · (n − k + 1)

k!
=

�
n

k

�
.

❑

178 Example From a group of 10 people, we may choose a committee of 4 in

�
10

4

�
= 210 ways.

179 Example In a group of 2 camels, 3 goats, and 10 sheep in how many ways may one choose 6 animals if

➊ there are no constraints in species?

➋ the two camels must be included?

➌ the two camels must be excluded?

➍ there must be at least 3 sheep?

➎ there must be at most 2 sheep?

➏ Joe Camel, Billy Goat and Samuel Sheep hate each
other and they will not work in the same group. How
many compatible committees are there?

Solution:

➊ There are 2 + 3 + 10 = 15 animals and we must
choose 6, whence

�
15

6

�
= 5005

➋ Since the 2 camels are included, we must choose
6 − 2 = 4 more animals from a list of 15 − 2 = 13

animals, so
�

13

4

�
= 715

➌ Since the 2 camels must be excluded, we must choose
6 animals from a list of 15 − 2 = 13, so

�
13

6

�
= 1716

➍ If k sheep are chosen from the 10 sheep, 6 − k animals

must be chosen from the remaining 5 animals, hence�
10

3

��
5

3

�
+

�
10

4

��
5

2

�
+

�
10

5

��
5

1

�
+

�
10

6

��
5

0

�
,

which simplifies to 4770.

➎
�

10

2

��
5

4

�
+
�

10

1

��
5

5

�
= 235

➏ A compatible group will either exclude all these three
animals—which can be done in

�
12

6

�
= 924 ways—or

include exactly one of them—which can be done in�
3

1

��
12

5

�
= 2376. Thus the total is 2376 + 924 = 3300.

A

B

Figure 2.8: Example 180.

b

A

O

B

Figure 2.9: Example 181.

95509550

14406

9550

14266

14266 14266

without a 7 without an 8

without a 9

Figure 2.10: Example 182.

180 Example To count the number of shortest routes from A to B in figure 2.8 observe that any shortest path
must consist of 6 horizontal moves and 3 vertical ones for a total of 6 + 3 = 9 moves. Of these 9 moves once we
choose the 6 horizontal ones the 3 vertical ones are determined. Thus there are

�
9

6

�
= 84 paths.
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181 Example To count the number of shortest routes from A to B in figure 2.9 that pass through point O we
count the number of paths from A to O (of which there are

�
5

3

�
= 20) and the number of paths from O to B (of

which there are
�
4

3

�
= 4). Thus the desired number of paths is

�
5

3

��
4

3

�
= (20)(4) = 80.

182 Example Consider the set of 5-digit positive integers written in decimal notation.

1. How many are there?

2. How many do not have a 9 in their decimal
representation?

3. How many have at least one 9 in their decimal
representation?

4. How many have exactly one 9?

5. How many have exactly two 9’s?

6. How many have exactly three 9’s?

7. How many have exactly four 9’s?

8. How many have exactly five 9’s?

9. How many have neither an 8 nor a 9 in their decimal
representation?

10. How many have neither a 7, nor an 8, nor a 9 in their
decimal representation?

11. How many have either a 7, an 8, or a 9 in their
decimal representation?

Solution:

1. There are 9 possible choices for the first digit and 10

possible choices for the remaining digits. The number
of choices is thus 9 · 104 = 90000.

2. There are 8 possible choices for the first digit and 9

possible choices for the remaining digits. The number
of choices is thus 8 · 94 = 52488.

3. The difference 90000 − 52488 = 37512.

4. We condition on the first digit. If the first digit is a 9

then the other four remaining digits must be different
from 9, giving 94 = 6561 such numbers. If the first
digit is not a 9, then there are 8 choices for this first
digit. Also, we have

�
4

1

�
= 4 ways of choosing were the

9 will be, and we have 93 ways of filling the 3

remaining spots. Thus in this case there are
8 · 4 · 93 = 23328 such numbers. In total there are
6561 + 23328 = 29889 five-digit positive integers with
exactly one 9 in their decimal representation.

5. We condition on the first digit. If the first digit is a 9

then one of the remaining four must be a 9, and the
choice of place can be accomplished in

�
4

1

�
= 4 ways.

The other three remaining digits must be different
from 9, giving 4 · 93 = 2916 such numbers. If the first
digit is not a 9, then there are 8 choices for this first
digit. Also, we have

�
4

2

�
= 6 ways of choosing were the

two 9’s will be, and we have 92 ways of filling the two
remaining spots. Thus in this case there are
8 · 6 · 92 = 3888 such numbers. Altogether there are
2916 + 3888 = 6804 five-digit positive integers with
exactly two 9’s in their decimal representation.

6. Again we condition on the first digit. If the first digit
is a 9 then two of the remaining four must be 9’s, and
the choice of place can be accomplished in

�
4

2

�
= 6

ways. The other two remaining digits must be

different from 9, giving 6 · 92 = 486 such numbers. If
the first digit is not a 9, then there are 8 choices for
this first digit. Also, we have

�
4

3

�
= 4 ways of choosing

were the three 9’s will be, and we have 9 ways of
filling the remaining spot. Thus in this case there are
8 · 4 · 9 = 288 such numbers. Altogether there are
486 + 288 = 774 five-digit positive integers with
exactly three 9’s in their decimal representation.

7. If the first digit is a 9 then three of the remaining four
must be 9’s, and the choice of place can be
accomplished in

�
4

3

�
= 4 ways. The other remaining

digit must be different from 9, giving 4 · 9 = 36 such
numbers. If the first digit is not a 9, then there are 8

choices for this first digit. Also, we have
�

4

4

�
= 4 ways

of choosing were the four 9’s will be, thus filling all the
spots. Thus in this case there are 8 · 1 = 8 such
numbers. Altogether there are 36 + 8 = 44 five-digit
positive integers with exactly three 9’s in their decimal
representation.

8. There is obviously only 1 such positive integer.

☞Observe that

37512 = 29889 + 6804 + 774 + 44 + 1.

9. We have 7 choices for the first digit and 8 choices for
the remaining 4 digits, giving 7 · 84 = 28672 such
integers.

10. We have 6 choices for the first digit and 7 choices for
the remaining 4 digits, giving 6 · 74 = 14406 such
integers.

11. We use inclusion-exclusion. From figure 2.10, the
numbers inside the circles add up to 85854. Thus the
desired number is 90000 − 85854 = 4146.

183 Example Find the number of surjections from A = {a, b, c, d} to B = {1, 2, 3}.

Solution: The trick here is that we know how to count the number of functions from one finite set to the other
(Theorem 87). What we do is over count the number of functions, and then sieve out those which are not
surjective by means of Inclusion-Exclusion. By Theorem 87, there are 34 = 81 functions from A to B. There are
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3

1

�
24 = 48 functions from A to B that miss one element from B. There are

�
3

2

�
14 = 3 functions from A to B that

miss two elements from B. There are
�
3

0

�
04 = 4 functions from A to B that miss three elements from B. By

Inclusion-Exclusion there are
81 − 48 + 3 = 36

surjective functions from A to B.

In analogy to example 183, we may prove the following theorem, which complements Theorem 87 by finding the
number of surjections from one set to another set.

184 Theorem Let A and B be two finite sets with card (A) = n and card (B) = m. If n < m then there are no
surjections from A to B. If n ≥ m then the number of surjective functions from A to B is

mn −

�
m

1

�
(m − 1)n +

�
m

2

�
(m − 2)n −

�
m

3

�
(m − 3)n + · · · + (−1)m−1

�
m

m − 1

�
(1)n.

Homework

185 Problem Verify the following.

➊
�

20

3

�
= 1140

➋
�

12

4

��
12

6

�
= 457380

➌

�
n

1

��
n

n−1

� = 1

➍
�

n

2

�
=

n(n − 1)

2

➎
�

6

1

�
+
�

6

3

�
+
�

6

5

�
= 25

➏
�

7

0

�
+
�

7

2

�
+
�

7

4

�
= 26 −

�
7

6

�
186 Problem A publisher proposes to issue a set of
dictionaries to translate from any one language to any other.
If he confines his system to seven languages, how many
dictionaries must be published?

187 Problem From a group of 12 people—7 of which are
men and 5 women—in how many ways may choose a
committee of 4 with 1 man and 3 women?

188 Problem N friends meet and shake hands with one
another. How many handshakes?

189 Problem How many 4-letter words can be made by
taking 4 letters of the word RETICULA and permuting
them?

190 Problem (AHSME 1989) Mr. and Mrs. Zeta want to
name baby Zeta so that its monogram (first, middle and last
initials) will be in alphabetical order with no letters
repeated. How many such monograms are possible?

191 Problem In how many ways can {1, 2, 3, 4} be written as
the union of two non-empty, disjoint subsets?

192 Problem How many lists of 3 elements taken from the
set {1, 2, 3, 4, 5, 6} list the elements in increasing order?

193 Problem How many times is the digit 3 listed in the
numbers 1 to 1000?

194 Problem How many subsets of the set {a, b, c, d, e}

have exactly 3 elements?

195 Problem How many subsets of the set {a, b, c, d, e}

have an odd number of elements?

196 Problem (AHSME 1994) Nine chairs in a row are to be
occupied by six students and Professors Alpha, Beta and
Gamma. These three professors arrive before the six
students and decide to choose their chairs so that each
professor will be between two students. In how many ways
can Professors Alpha, Beta and Gamma choose their chairs?

197 Problem There are E (different) English novels, F

(different) French novels, S (different) Spanish novels, and I

(different) Italian novels on a shelf. How many different
permutations are there if

➊ if there are no restrictions?

➋ if all books of the same language must be together?

➌ if all the Spanish novels must be together?

➍ if no two Spanish novels are adjacent?

➎ if all the Spanish novels must be together, and all the
English novels must be together, but no Spanish novel
is next to an English novel?

198 Problem How many committees of seven with a given
chairman can be selected from twenty people?

199 Problem How many committees of seven with a given
chairman and a given secretary can be selected from twenty
people? Assume the chairman and the secretary are different
persons.
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200 Problem (AHSME 1990) How many of the numbers

100, 101, . . . , 999,

have three different digits in increasing order or in
decreasing order?

201 Problem There are twenty students in a class. In how
many ways can the twenty students take five different tests if
four of the students are to take each test?

202 Problem In how many ways can a deck of playing cards
be arranged if no two hearts are adjacent?

203 Problem Given a positive integer n, find the number of
quadruples (a, b, c, d, ) such that
0 ≤ a ≤ b ≤ c ≤ d ≤ n.

204 Problem There are T books on Theology, L books on
Law and W books on Witchcraft on Dr. Faustus’ shelf. In
how many ways may one order the books

➊ there are no constraints in their order?

➋ all books of a subject must be together?

➌ no two books on Witchcraft are juxtaposed?

➍ all the books on Witchcraft must be together?

205 Problem From a group of 20 students, in how many
ways may a professor choose at least one in order to work on
a project?

206 Problem From a group of 20 students, in how many
ways may a professor choose an even number number of
them, but at least four in order to work on a project?

207 Problem How many permutations of the word

CHICHICUILOTE

are there

➊ if there are no restrictions?

➋ if the word must start in an I and end also in an I?

➌ if the word must start in an I and end in a C?

➍ if the two H’s are adjacent?

➎ if the two H’s are not adjacent?

➏ if the particle LOTE must appear, with the letters in
this order?

208 Problem There are M men and W women in a group.
A committee of C people will be chosen. In how many ways
may one do this if

➊ there are no constraints on the sex of the committee
members?

➋ there must be exactly T women?

➌ A committee must always include George and
Barbara?

➍ A committee must always exclude George and
Barbara?

Assume George and Barbara form part of the original set of
people.

209 Problem There are M men and W women in a group.
A committee of C people will be chosen. In how many ways
may one do this if George and Barbara are feuding and will
not work together in a committee? Assume George and
Barbara form part of the original set of people.

210 Problem Out of 30 consecutive integers, in how many
ways can three be selected so that their sum be even?

211 Problem In how many ways may we choose three
distinct integers from {1, 2, . . . , 100} so that one of them is
the average of the other two?

212 Problem How many vectors (a1, a2, . . . , ak) with
integral

ai ∈ {1, 2, . . . , n}

are there satisfying

1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n?

213 Problem A square chessboard has 16 squares (4 rows
and 4 columns). One puts 4 checkers in such a way that only
one checker can be put in a square. Determine the number
of ways of putting these checkers if

➊ there must be exactly one checker per row and column.

➋ there must be exactly one column without a checker.

➌ there must be at least one column without a checker.

214 Problem A box contains 4 red, 5 white, 6 blue, and 7

magenta balls. In how many of all possible samples of size 5,
chosen without replacement, will every colour be
represented?

215 Problem In how many ways can eight students be
divided into four indistinguishable teams of two each?

216 Problem How many ways can three boys share fifteen
different sized pears if the youngest gets seven pears and the
other two boys get four each?those in which the digit 1
occurs or those in which it does not occur?

217 Problem Four writers must write a book containing
seventeen chapters. The first and third writers must each
write five chapters, the second must write four chapters, and
the fourth must write three chapters. How many ways can
the book be divided between the authors? What if the first
and third had to write ten chapters combined, but it did not
matter which of them wrote how many (i.e. the first could
write ten and the third none, the first could write none and
the third one, etc.)?

218 Problem In how many ways can a woman choose three
lovers or more from seven eligible suitors?
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219 Problem (AIME 1988) One commercially available
ten-button lock may be opened by depressing—in any
order—the correct five buttons. Suppose that these locks are
redesigned so that sets of as many as nine buttons or as few
as one button could serve as combinations. How many
additional combinations would this allow?

220 Problem From a set of n ≥ 3 points on the plane, no
three collinear,

➊ how many straight lines are determined?

➋ how many straight lines pass through a particular
point?

➌ how many triangles are determined?

➍ how many triangles have a particular point as a
vertex?

221 Problem In how many ways can you pack twelve books
into four parcels if one parcel has one book, another has five
books, and another has two books, and another has four
books?

222 Problem In how many ways can a person invite three of
his six friends to lunch every day for twenty days if he has
the option of inviting the same or different friends from
previous days?

223 Problem A committee is to be chosen from a set of nine
women and five men. How many ways are there to form the
committee if the committee has three men and three women?

224 Problem At a dance there are b boys and g girls. In
how many ways can they form c couples consisting of
different sexes?

225 Problem From three Russians, four Americans, and two
Spaniards, how many selections of people can be made,
taking at least one of each kind?

226 Problem The positive integer r satisfies

1�
9

r

� −
1�
10

r

� =
11

6
�

11

r

� .

Find r.

227 Problem If 11
�

28

2r

�
= 225

�
24

2r−4

�
, find r.

228 Problem Compute the number of ten-digit numbers
which contain only the digits 1, 2, and 3 with the digit 2

appearing in each number exactly twice.

229 Problem Prove Pascal’s Identity:�
n

k

�
=

�
n − 1

k − 1

�
+

�
n − 1

k

�
,

for integers 1 ≤ k ≤ n.

230 Problem Give a combinatorial interpretation of
Newton’s Identity:�

n

r

��
r

k

�
=

�
n

k

��
n − k

r − k

�
(2.1)

for 0 ≤ k ≤ r ≤ n.

231 Problem Give a combinatorial proof that for integer
n ≥ 1, �

2n

n

�
=

n∑

k=0

�
n

k

�2

.

232 Problem In each of the 6-digit numbers

333333, 225522, 118818, 707099,

each digit in the number appears at least twice. Find the
number of such 6-digit natural numbers.

233 Problem In each of the 7-digit numbers

1001011, 5550000, 3838383, 7777777,

each digit in the number appears at least thrice. Find the
number of such 7-digit natural numbers.

234 Problem (AIME 1983) The numbers 1447, 1005 and
1231 have something in common: each is a four-digit
number beginning with 1 that has exactly two identical
digits. How many such numbers are there?

235 Problem If there are fifteen players on a baseball team,
how many ways can the coach choose nine players for the
starting lineup if it does not matter which position the
players play (i.e., no distinction is made between player A
playing shortstop, left field, or any other positions as long as
he is on the field)? How many ways are there if it does
matter which position the players play?

236 Problem (AHSME 1989) A child has a set of 96 distinct
blocks. Each block is one of two materials (plastic, wood),
three sizes (small, medium, large), four colours (blue, green,

red, yellow), and four shapes (circle, hexagon, square,

triangle). How many blocks in the set are different from the
“plastic medium red circle” in exactly two ways? (The
“wood medium red square” is such a block.)

237 Problem There are four different kinds of sweets at a
sweets store. I want to buy up to four sweets (I’m not sure if
I want none, one, two, three, or four sweets) and I refuse to
buy more than one of any kind of sweet. How many ways
can I do this?

238 Problem Suppose five people are in a lift. There are
eight floors that the lift stops at. How many distinct ways
can the people exit the lift if either one or zero people exit at
each stop?

239 Problem If the natural numbers from 1 to 222222222

are written down in succession, how many 0’s are written?
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240 Problem In how many ways can we distribute k identical
balls into n different boxes so that each box contains at most
one ball and no two consecutive boxes are empty?

241 Problem In a row of n seats in the doctor’s waiting-room
k patients sit down in a particular order from left to right.
They sit so that no two of them are in adjacent seats. In
how many ways could a suitable set of k seats be chosen?

2.7 Combinations with Repetitions
242 Theorem (De Moivre) Let n be a positive integer. The number of positive integer solutions to

x1 + x2 + · · · + xr = n

is �
n − 1

r − 1

�
.

Proof: Write n as

n = 1 + 1 + · · · + 1 + 1,

where there are n 1s and n − 1 +s. To decompose n in r summands we only need to choose r − 1

pluses from the n − 1, which proves the theorem. ❑

243 Example In how many ways may we write the number 9 as the sum of three positive integer summands? Here
order counts, so, for example, 1 + 7 + 1 is to be regarded different from 7 + 1 + 1.

Solution: Notice that this is example 159. We are seeking integral solutions to

a + b + c = 9, a > 0, b > 0, c > 0.

By Theorem 242 this is �
9 − 1

3 − 1

�
=

�
8

2

�
= 28.

244 Example In how many ways can 100 be written as the sum of four positive integer summands?

Solution: We want the number of positive integer solutions to

a + b + c + d = 100,

which by Theorem 242 is �
99

3

�
= 156849.

245 Corollary Let n be a positive integer. The number of non-negative integer solutions to

y1 + y2 + · · · + yr = n

is �
n + r − 1

r − 1

�
.

Proof: Put xr − 1 = yr. Then xr ≥ 1. The equation

x1 − 1 + x2 − 1 + · · · + xr − 1 = n

is equivalent to

x1 + x2 + · · · + xr = n + r,

which from Theorem 242, has �
n + r − 1

r − 1

�
solutions. ❑
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246 Example Find the number of quadruples (a, b, c, d) of integers satisfying

a + b + c + d = 100, a ≥ 30, b > 21, c ≥ 1, d ≥ 1.

Solution: Put a ′ + 29 = a, b ′ + 20 = b. Then we want the number of positive integer solutions to

a ′ + 29 + b ′ + 21 + c + d = 100,

or
a ′ + b ′ + c + d = 50.

By Theorem 242 this number is �
49

3

�
= 18424.

247 Example There are five people in a lift of a building having eight floors. In how many ways can they choose
their floor for exiting the lift?

Solution: Let xi be the number of people that floor i receives. We are looking for non-negative solutions of the
equation

x1 + x2 + · · · + x8 = 5.

Putting yi = xi + 1, then

x1 + x2 + · · · + x8 = 5 =⇒ (y1 − 1) + (y2 − 1) + · · · + (y8 − 1) = 5

=⇒ y1 + y2 + · · · + y8 = 13,

whence the number sought is the number of positive solutions to

y1 + y2 + · · · + y8 = 13

which is
�
12

7

�
= 792.

248 Example Find the number of quadruples (a, b, c, d) of non-negative integers which satisfy the inequality

a + b + c + d ≤ 2001.

Solution: The number of non-negative solutions to

a + b + c + d ≤ 2001

equals the number of solutions to
a + b + c + d + f = 2001

where f is a non-negative integer. This number is the same as the number of positive integer solutions to

a1 − 1 + b1 − 1 + c1 − 1 + d1 − 1 + f1 − 1 = 2001,

which is easily seen to be
�
2005

4

�
.

249 Example

How many integral solutions to the equation

a + b + c + d = 100,

are there given the following constraints:

1 ≤ a ≤ 10, b ≥ 0, c ≥ 2, 20 ≤ d ≤ 30?
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Solution: We use Inclusion-Exclusion. There are
�
80

3

�
= 82160 integral solutions to

a + b + c + d = 100, a ≥ 1, b ≥ 0, c ≥ 2, d ≥ 20.

Let A be the set of solutions with
a ≥ 11, b ≥ 0, c ≥ 2, d ≥ 20

and B be the set of solutions with
a ≥ 1, b ≥ 0, c ≥ 2, d ≥ 31.

Then card (A) =
�
70

3

�
, card (B) =

�
69

3

�
, card (A ∩ B) =

�
59

3

�
and so

card (A ∪ B) =

�
70

3

�
+

�
69

3

�
−

�
59

3

�
= 74625.

The total number of solutions to
a + b + c + d = 100

with
1 ≤ a ≤ 10, b ≥ 0, c ≥ 2, 20 ≤ d ≤ 30

is thus �
80

3

�
−

�
70

3

�
−

�
69

3

�
+

�
59

3

�
= 7535.

Homework

250 Problem How many positive integral solutions are there
to

a + b + c = 10?

251 Problem Three fair dice, one red, one white, and one
blue are thrown. In how many ways can they land so that
their sum be 10 ?

252 Problem Adena has twenty indistinguishable pieces of
sweet-meats that she wants to divide amongst her five
stepchildren. How many ways can she divide the
sweet-meats so that each stepchild gets at least two pieces of

sweet-meats?

253 Problem How many integral solutions are there to the
equation

x1 + x2 + · · · + x100 = n

subject to the constraints

x1 ≥ 1, x2 ≥ 2, x3 ≥ 3, . . . , x99 ≥ 99, x100 ≥ 100?

254 Problem (AIME 1998) Find the number of ordered
quadruplets (a, b, c, d) of positive odd integers satisfying
a + b + c + d = 98.

2.8 Binomial Theorem
255 Theorem (Binomial Theorem) For n ∈ Z, n ≥ 0,

(x + y)n =

n∑

k=0

�
n

k

�
xkyn−k.

Proof: Observe that expanding

(x + y)(x + y) · · · (x + y)
︸ ︷︷ ︸

n times

consists of adding up all the terms obtained from multiplying either an x or a y from the first set

of parentheses times either an x or a y from the second set of parentheses etc. To get xk, x must

be chosen from exactly k of the sets of parentheses. Thus the number of xk terms is
�
n

k

�
. It

follows that

(x + y)n =
�
n

0

�
x0yn +

�
n

1

�
xyn−1 +

�
n

2

�
x2yn−2 + · · · +

�
n

n

�
xny0

=
∑n

k=0

�
n

k

�
xkyn−k.

(2.2)
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❑

☞By setting x = y = 1 in 2.2 we obtain

2n =

�
n

0

�
+

�
n

1

�
+

�
n

2

�
+ · · · +

�
n

n − 1

�
+

�
n

n

�
,

256 Example Expand (2 − x)5.

Solution: By the Binomial Theorem

(2 − x)5 =

5∑

k=0

25−k(−x)k

�
5

k

�
= 32 − 80x + 80x2 − 40x3 + 10x4 − x5.

Here is another proof of Theorem 86.

257 Theorem Let n ∈ N. If A is a finite set with n elements, then the power set of A has 2n different elements,
i.e., A has 2n different subsets.

Proof: A has exactly 1 =
�
n

0

�
subset with 0 elements, exactly n =

�
n

1

�
subsets with 1

elements,. . . , and exactly 1 =
�
n

n

�
subset with n elements. By the Binomial Theorem,�

n

0

�
+

�
n

1

�
+

�
n

2

�
+ · · · +

�
n

n

�
= (1 + 1)n = 2n.

❑

258 Example (AIME 1989) Ten points are marked on a circle. How many distinct convex polygons of three or
more sides can be drawn using some (or all) of the ten points as vertices? (Polygons are distinct unless they have
exactly the same vertices.)

Solution: Choosing k points 3 ≤ k ≤ 10 points will determine a k-sided polygon, since the polygons are convex
and thus have no folds. The answer is thus

10∑

k=3

�
10

k

�
= 210 −

�
10

0

�
−

�
10

1

�
−

�
10

2

�
= 1024 − 1 − 10 − 45 = 968.

259 Example Simplify
10∑

k=1

2k

�
11

k

�
.

Solution: By the Binomial Theorem, the complete sum
∑11

k=0

�
11

k

�
2k = 311. The required sum lacks the zeroth

term,
�
11

0

�
20 = 1, and the eleventh term,

�
11

11

�
211 from this complete sum. The required sum is thus

311 − 211 − 1.

260 Example Find the coefficient of x12 in the expansion of

(x2 + 2x)10.

Solution: We have

(x2 + 2x)10 =

10∑

k=0

�
10

k

�
(x2)k(2x)10−k =

10∑

k=0

�
10

k

�
210−kxk+10.

To obtain x12 we need k = 2. Hence the coefficient sought is
�
10

2

�
28 = 11520

We will now derive some identities for later use.
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261 Lemma �
n

k

�
=

n

k

�
n − 1

k − 1

�
.

Proof: �
n

k

�
=

n!

k!(n − k)!
=

n

k
·

(n − 1)!

(k − 1)!(n − k)!
=

n

k

�
n − 1

k − 1

�
.

❑

262 Lemma �
n

k

�
=

n

k
·

n − 1

k − 1
·
�

n − 2

k − 2

�
.

Proof: �
n

k

�
=

n!

k!(n − k)!
=

n(n − 1)

k(k − 1)
·

(n − 2)!

(k − 2)!(n − k)!
=

n

k
·

n − 1

k − 1
·
�

n − 2

k − 2

�
.

❑

263 Theorem

n∑

k=1

k

�
n

k

�
pk(1 − p)n−k = np.

Proof: We use the identity k
�
n

k

�
= n
�
n−1

k−1

�
. Then

∑n

k=1 k
�
n

k

�
pk(1 − p)n−k =

∑n

k=1 n
�
n−1

k−1

�
pk(1 − p)n−k

=
∑n−1

k=0 n
�
n−1

k

�
pk+1(1 − p)n−1−k

= np
∑n−1

k=0

�
n−1

k

�
pk(1 − p)n−1−k

= np(p + 1 − p)n−1

= np.

❑

264 Lemma

n∑

k=2

k(k − 1)

�
n

k

�
pk(1 − p)n−k = n(n − 1)p2.

Proof: We use the identity

k(k − 1)

�
n

k

�
= n(n − 1)

�
n − 2

k − 2

�
.
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Then

∑n

k=2 k(k − 1)
�
n

k

�
pk(1 − p)n−k =

∑n

k=2 n(n − 1)
�
n−2

k−2

�
pk(1 − p)n−k

=
∑n−2

k=0 n(n − 1)
�
n−2

k

�
pk+2(1 − p)n−1−k

= n(n − 1)p2
∑n−2

k=0

�
n−1

k

�
pk(1 − p)n−2−k

= n(n − 1)p2(p + 1 − p)n−2

= n(n − 1)p2.

❑

265 Theorem
n∑

k=0

(k − np)2

�
n

k

�
pk(1 − p)n−k = np(1 − p).

Proof: We use the identity

(k − np)2 = k2 − 2knp + n2p2 = k(k − 1) + k(1 − 2np) + n2p2.

Then

∑n

k=0(k − np)2
�
n

k

�
pk(1 − p)n−k =

∑n

k=0(k(k − 1) + k(1 − 2np)

+n2p2)
�
n

k

�
pk(1 − p)n−k

=
∑n

k=0 k(k − 1)
�
n

k

�
pk(1 − p)n−k

+(1 − 2np)
∑n

k=0 k
�
n

k

�
pk(1 − p)n−k

+n2p2
∑n

k=0

�
n

k

�
pk(1 − p)n−k

= n(n − 1)p2 + np(1 − 2np) + n2p2

= np(1 − p).

❑

Homework

266 Problem Expand (a − 2b)5 .

267 Problem Expand (2a + 3b)4 .

268 Problem By alternately putting x = 1 and x = −1 in 2.2
and adding and subtracting the corresponding quantities,

deduce the identities

2
n−1

=

�
n

0

�
+

�
n

2

�
+

�
n

4

�
+ · · · ,

2
n−1

=

�
n

1

�
+

�
n

3

�
+

�
n

5

�
+ · · · ,

2.9 Miscellaneous Counting Problems
269 Example n equally spaced points 1, 2, . . . , n are marked on a circumference. If 15 directly opposite to 49,

how many points are there total?
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Solution: Points 16, 17, . . . , 48 are 33 in total and are on the same side of the diameter joining 15 to 49. For each
of these points there is a corresponding diametrically opposite point. There are thus a total of 2 · 33 + 2 = 68

points.

270 Example An urn has 900 chips, numbered 100 through 999. Chips are drawn at random and without
replacement from the urn, and the sum of their digits is noted. What is the smallest number of chips that must be
drawn in order to guarantee that at least three of these digital sums be equal?

Solution: There are 27 different sums. The sums 1 and 27 only appear once (in 100 and 999), each of the other 25

sums appears thrice. Thus if 27 + 25 + 1 = 53 are drawn, at least 3 chips will have the same sum.

271 Example Little Dwayne has 100 cards where the integers from 1 through 100 are written. He also has an
unlimited supply of cards with the signs + and =. How many true equalities can he make, if he uses each card no
more than once?

Solution: The shortest equality under the stated conditions must involve 3 numbers, and hence a maximum of 33

equalities can be achieved. The 33 equalities below shew that this maximum can be achieved.

1 + 75 = 76 23 + 64 = 87 45 + 53 = 98

3 + 74 = 77 25 + 63 = 88 47 + 52 = 99

5 + 73 = 78 27 + 62 = 89 49 + 51 = 100

7 + 72 = 79 29 + 61 = 90 24 + 26 = 50

9 + 71 = 80 31 + 60 = 91 20 + 28 = 48

11 + 70 = 81 33 + 59 = 92 16 + 30 = 46

13 + 69 = 82 35 + 58 = 93 12 + 32 = 44

15 + 68 = 83 37 + 57 = 94 8 + 34 = 42

17 + 67 = 84 39 + 56 = 95 2 + 38 = 40

19 + 66 = 85 41 + 55 = 96 4 + 6 = 10

21 + 65 = 86 43 + 54 = 97 14 + 22 = 36

272 Example (Derangements) Ten different letters are taken from their envelopes, read, and then randomly
replaced in the envelopes. In how many ways can this replacing be done so that none of the letters will be in the
correct envelope?

Solution: Let Ai be the property that the i-th letter is put back into the i-th envelope. We want

card
�
Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

10

�
.

Now, if we accommodate the i-th letter in its envelope, the remaining nine letters can be put in 9! different ways in
the nine remaining envelopes, thus card (Ai) = 9!. Similarly card (Ai ∩ Aj) = 8!, card (Ai ∩ Aj ∩ Ak) = 7!, etc.

for unequal i, j, k, . . .. Now, there are
�
10

1

�
ways of choosing i,

�
10

2

�
ways of choosing different pairs i, j, etc.. Since

card (A1 ∪ A2 ∪ · · · ∪ A10) + card
�
Ac

1 ∩ Ac
2 ∩ · · · + ∩Ac

10

�
= 10!,
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by the Inclusion-Exclusion Principle we gather that

card
�
Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

10

�
= 10! −

��
10

1

�
9! +

�
10

2

�
8! −

�
10

3

�
7! + · · · −

�
10

9

�
1! +

�
10

10

�
0!

�
.

273 Example (AIME 1993) How many ordered four-tuples of integers (a, b, c, d) with 0 < a < b < c < d < 500

satisfy satisfy a + d = b + c and bc − ad = 93?

Solution: Since a + d = b + c, we can write the four-tuple (a, b, c, d) as
(a, b, c, d) = (a, a + x, a + y, a + x + y), with integers x, y, 0 < x < y. Now,
93 = bc − ad = (a + x)(a + y) − a(a + x + y) = xy. Thus either (x, y) = (1, 93) or (x, y) = (3, 31). In the
first case

(a, b, c, d) = (a, a + 1, a + 93, a + 94)

is in the desired range for 1 ≤ a ≤ 405. In the second case,

(a, b, c, d) = (a, a + 3, a + 31, a + 34)

is in the desired range for 1 ≤ a ≤ 465. These two sets of four-tuples are disjoint, and so the sought number of
four-tuples is 870.

274 Example A is a set of one hundred distinct natural numbers such that any triplet a, b, c of A (repetitions
are allowed in a triplet) gives a non-obtuse triangle whose sides measure a, b, and c. Let S(A ) be the sum of the
perimeters obtained by adding all the triplets in A . Find the smallest value of S(A ). Note: we count repetitions
in the sum S(A ), thus all permutations of a triplet (a, b, c) appear in S(A ).

Solution: Let m be the largest member of the set and let n be its smallest member. Then m ≥ n + 99 since there
are 100 members in the set. If the triangle with sides n, n, m is non-obtuse then m2 ≤ 2n2 from where

(n + 99)2 ≤ 2n2 ⇐⇒ n2 − 198n − 992 ≥ 0 ⇐⇒ n ≥ 99(1 +
√

2) ⇐⇒ n ≥ 240.

If n < 240 the stated condition is not met since m2 ≥ (n + 99)2 ≥ 2n2 and the triangle with sides of length
n, n, m is not obtuse. Thus the set

A = {240, 241, 242, . . . , 339}

achieves the required minimum. There are 1003 = 1000000 triangles that can be formed with length in A and so
3000000 sides to be added. Of these 3000000/100 = 30000 are 240, 30000 are 241, etc. Thus the value required
is

30000(240 + 241 + · · · + 339) = (30000)

�
100(240 + 339)

2

�
= 868500000.

Homework

275 Problem Prove that the sum of the digits appearing in
the integers

1, 2, 3, . . . , 99 . . . 9︸ ︷︷ ︸
n 9 ′s

is
9n10n

2
.

276 Problem Give a combinatorial proof of Vandermonde’s

Convolution Identity:

n∑

k=0

�
r

k

��
s

n − k

�
=

�
r + s

n

�
for positive integers r, s ≥ n.

277 Problem (The Locker-room Problem) A locker room
contains n lockers, numbered 1 through n. Initially all doors
are open. Person number 1 enters and closes all the doors.
Person number 2 enters and opens all the doors whose
numbers are multiples of 2. Person number 3 enters and if a
door whose number is a multiple of 3 is open then he closes
it; otherwise he opens it. Person number 4 enters and
changes the status (from open to closed and viceversa) of all
doors whose numbers are multiples of 4, and so forth till
person number n enters and changes the status of door
number n. Which lockers are now closed?

278 Problem Four comrades are racing down a dusty
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staircase. Oli goes down two steps at a time, Gooh three,
Phree four, and Nyck five. If the only steps with all four’s
footprints are at the top and at the bottom, how many steps
have just one footprint?

279 Problem (AHSME 1992) For how many integers
between 1 and 100 does

x
2

+ x − n

factor into the product of two linear factors with integer
coefficients?

280 Problem How many triplets (a, b, c) with
a, b, c ∈ {1, 2, . . . , 101} simultaneously satisfy a < b and

a < c?

281 Problem (Putnam 1987) The sequence of digits

12345678910111213141516171819202122 . . .

is obtained by writing the positive integers in order. If the
10n digit of this sequence occurs in the part in which the
m-digit numbers are placed, define f : N → N by f(n) = m.
For example f(2) = 2, because the hundredth digit enters
the sequence in the placement of the two-digit integer 55.

Find, with proof, f(1987).

282 Problem Let E = {(x, y) : x ∈ Z, y ∈ Z, x2 + y2 ≤ 6}.
Find card (E) .

Answers

61 Let Ak ⊆ A be the set of those integers divisible by k.

➊ Notice that the elements are 2 = 2(1), 4 = 2(2), . . . , 114 = 2(57).
Thus card (A) = 57.

➋ There are T 57
3

U = 19 integers in A divisible by 3. They are

{6, 12, 18, . . . , 114}.

Notice that 114 = 6(19). Thus card

�
A3

�
= 19.

➌ There are T 57
5

U = 11 integers in A divisible by 5. They are

{10, 20, 30, . . . , 110}.

Notice that 110 = 10(11). Thus card

�
A5

�
= 11

➍ There are T 57
15

U = 3 integers in A divisible by 15. They are

{30, 60, 90}. Notice that 90 = 30(3). Thus card

�
A15

�
= 3, and

observe that by Theorem 517 we have card

�
A15

�
= card

�
A3 ∩ A5

�
.

➎ We want card

�
A3 ∪ A5

�
= 19 + 11 − 3 = 27.

➏ We want

card

�
A \ (A3 ∪ A5)

�
= card (A) − card

�
A3 ∪ A5

�
= 57 − 27

= 30.

➐ We want

card

�
(A3 ∪ A5) \ (A3 ∩ A5)

�
= card

�
(A3 ∪ A5)

�
−card

�
A3 ∩ A5

�
= 30 − 3

= 27.

62 We have

➊ T
100

2
U = 50

➋ T
100

3
U = 33

➌ T
100

7
U = 14

➍ T
100

6
U = 16

➎ T
100

14
U = 7

➏ T
100

21
U = 4

➐ T
100

42
U = 2

➑ 100 − 50 − 33 − 14 + 16 + 7 + 4 − 2 = 28

➒ 16 − 2 = 14

➓ 52

63 52%

64 22

65 Let A be the set of students liking Mathematics, B the set of students liking
theology, and C be the set of students liking alchemy. We are given that

card (A) = 14, card (B) = 16,

card (C) = 11, card (A ∩ B) = 7, card (B ∩ C) = 8, card (A ∩ C) = 5,

and

card (A ∩ B ∩ C) = 4.

By the Principle of Inclusion-Exclusion,

card

�
Ac ∩ Bc ∩ Cc

�
= 40 − card (A) − card (B) − card (C)

+card (A ∩ B) + card (A ∩ C) + card (B ∩ C)

−card (A ∩ B ∩ C) .

Substituting the numerical values of these cardinalities

40 − 14 − 16 − 11 + 7 + 5 + 8 − 4 = 15.

66 We have

➊ 31

➋ 10

➌ 3

➍ 3

➎ 1

➏ 1

➐ 1

➑ 960
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67 Let Y, F, S, M stand for young, female, single, male, respectively, and let H

stand for married.2 We have

card (Y ∩ F ∩ S) = card (Y ∩ F) − card (Y ∩ F ∩ H)

= card (Y) − card (Y ∩ M)

−(card (Y ∩ H) − card (Y ∩ H ∩ M))

= 3000 − 1320 − (1400 − 600)

= 880.

68 34

69 30; 7; 5; 18

70 4

71 Let C denote the set of people who like candy, I the set of people who like ice
cream, and K denote the set of people who like cake. We are given that
card (C) = 816, card (I) = 723, card (K) = 645, card (C ∩ I) = 562,
card (C ∩ K) = 463, card (I ∩ K) = 470, and card (C ∩ I ∩ K) = 310. By
Inclusion-Exclusion we have

card (C ∪ I ∪ K) = card (C) + card (I) + card (K)

−card (C ∩ I) − card (C ∩ K) − card (I ∩ C)

+card (C ∩ I ∩ K)

= 816 + 723 + 645 − 562 − 463 − 470 + 310

= 999.

The investigator miscounted, or probably did not report one person who may not
have liked any of the three things.

72 A set with k elements has 2k different subsets. We are given

2
100

+ 2
100

+ 2
card(C)

= 2
card(A∪B∪C)

.

This forces card (C) = 101, as 1 + 2card(C)−101 is larger than 1 and a power
of 2. Hence card (A ∪ B ∪ C) = 102. Using the Principle Inclusion-Exclusion,
since card (A) + card (B) + card (C) − card (A ∪ B ∪ C) = 199,

card (A ∩ B ∩ C) = card (A ∩ B) + card (A ∩ C) + card (B ∩ C) − 199

= (card (A) + card (B) − card (A ∪ B))

+(card (A) + card (C)

−card (A ∪ C)) + card (B) + card (C)

−card (B ∪ C) − 199

= 403 − card (A ∪ B) − card (A ∪ C) − card (B ∪ C) .

As A ∪ B, A ∪ C, B ∪ C ⊆ A ∪ B ∪ C, the cardinalities of all these sets are
≤ 102. Thus

card (A ∩ B ∩ C) = 403 − card (A ∪ B) − card (A ∪ C)

−card (B ∪ C) ≥ 403 − 3 · 102

= 97.

By letting
A = {1, 2, . . . , 100}, B = {3, 4, . . . , 102},

and
C = {1, 2, 3, 4, 5, 6, . . . , 101, 102}

we see that the bound card (A ∩ B ∩ C) = card ({4, 5, 6, . . . , 100}) = 97 is
achievable.

73 Let A denote the set of those who lost an eye, B denote those who lost an
ear, C denote those who lost an arm and D denote those losing a leg. Suppose
there are n combatants. Then

n ≥ card (A ∪ B)

= card (A) + card (B) − card (A ∩ B)

= .7n + .75n − card (A ∩ B) ,

n ≥ card (C ∪ D)

= card (C) + card (D) − card (C ∩ D)

= .8n + .85n − card (C ∩ D) .

This gives
card (A ∩ B) ≥ .45n,

card (C ∩ D) ≥ .65n.

This means that

n ≥ card ((A ∩ B) ∪ (C ∩ D))

= card (A ∩ B) + card (C ∩ D) − card (A ∩ B ∩ C ∩ D)

≥ .45n + .65n − card (A ∩ B ∩ C ∩ D) ,

whence
card (A ∩ B ∩ C ∩ D) ≥ .45 + .65n − n = .1n.

This means that at least 10% of the combatants lost all four members.

89 210 = 1024

90 I can choose a right shoe in any of nine ways, once this has been done, I can
choose a non-matching left shoe in eight ways, and thus I have 72 choices.
Aliter: I can choose any pair in 9 × 9 = 81 ways. Of these, 9 are matching pairs,
so the number of non-matching pairs is 81 − 9 = 72.

91 = (20)(19)(20)(19)(20)(20) = 57760000

92 10353 − 10252 = 122500

93 The number of different license plates is the number of different four-tuples
(Letter 1, Letter 2, Digit 1, Digit 2). The first letter can be chosen in 26 ways,
and so we have

26 .

The second letter can be chosen in any of 26 ways:

26 26 .

The first digit can be chosen in 10 ways:

26 26 10 .

Finally, the last digit can be chosen in 10 ways:

26 26 10 10 .

By the multiplication principle, the number of different four-tuples is
26 · 26 · 10 · 10 = 67600.

94 (i) In this case we have a grid like

26 26 10 9 ,

since after a digit has been used for the third position, it cannot be used again.
Thus this can be done in 26 · 26 · 10 · 9 = 60840 ways.
(ii) In this case we have a grid like

26 25 10 10 ,

since after a letter has been used for the first position, it cannot be used again.
Thus this can be done in 26 · 25 · 10 · 10 = 65000 ways.
(iii) After a similar reasoning, we obtain a grid like

26 25 10 9 .

Thus this can be done in 26 · 25 · 10 · 9 = 58500 ways.

95 [1] 8, [2] 5232 = 225, [3] 52 · 3 · 2 = 150, [4] 5 · 4 · 32 = 180, [5]
8 · 7 · 6 · 5 = 1680.

96 432

97 Solution:

➊ The first letter can be one of any 4. After choosing the first letter, we
have 3 choices for the second letter, etc.. The total number of words is
thus 4 · 3 · 2 · 1 = 24.

➋ The first letter can be one of any 4. Since we are allowed repetitions, the
second letter can also be one of any 4, etc.. The total number of words so

formed is thus 44 = 256.

98 The last digit must perforce be 5. The other five digits can be filled with any

of the six digits on the list: the total number is thus 65.

99 We have

➊ This is 5 · 86 = 1310720.

2Or H for hanged, if you prefer.
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➋ This is 5 · 7 · 6 · 5 · 4 · 3 · 2 = 25200.

➌ This is 5 · 85 · 4 = 655360.

➍ This is 5 · 85 · 4 = 655360.

➎ We condition on the last digit. If the last digit were 1 or 5 then we
would have 5 choices for the first digit, and so we would have

5 · 6 · 5 · 4 · 3 · 2 · 2 = 7200

phone numbers. If the last digit were either 3 or 7, then we would have 4

choices for the last digit and so we would have

4 · 6 · 5 · 4 · 3 · 2 · 2 = 5760

phone numbers. Thus the total number of phone numbers is

7200 + 5760 = 12960.

100 26 · 254 = 10156250

101 For the leftmost digit cannot be 0 and so we have only the nine choices

{1, 2, 3, 4, 5, 6, 7, 8, 9}

for this digit. The other n − 1 digits can be filled out in 10 ways, and so there
are

9 · 10 · · · 10︸ ︷︷ ︸
n−1 10 ′s

= 9 · 10
n−1

.

102 The leftmost digit cannot be 0 and so we have only the nine choices

{1, 2, 3, 4, 5, 6, 7, 8, 9}

for this digit. If the integer is going to be even, the last digit can be only one of
the five {0, 2, 4, 6, 8}. The other n − 2 digits can be filled out in 10 ways, and
so there are

9 · 10 · · · 10︸ ︷︷ ︸
n−2 10 ′s

·5 = 45 · 10
n−2

.

103 9 1-digit numbers and 8 · 9n−1 n-digit numbers n ≥ 2.

104 One can choose the last digit in 9 ways, one can choose the penultimate
digit in 9 ways, etc. and one can choose the second digit in 9 ways, and finally
one can choose the first digit in 9 ways. The total number of ways is thus 9n.

105 m2, m(m − 1)

106 We will assume that the positive integers may be factorised in a unique
manner as the product of primes. Expanding the product

(1 + 2 + 2
2

+ · · · + 2
8

)(1 + 3 + 3
2

+ · · · + 3
9

)(1 + 5 + 5
2

)

each factor of 283952 appears and only the factors of this number appear.
There are then, as many factors as terms in this product. This means that there
are (1 + 8)(1 + 9)(1 + 3) = 320 factors.

The sum of the divisors of this number may be obtained by adding up each
geometric series in parentheses. The desired sum is then

29 − 1

2 − 1
·

310 − 1

3 − 1
·

53 − 1

5 − 1
= 467689684.

☞A similar argument gives the following. Let p1, p2, . . . , pk be

different primes. Then the integer

n = p
a1
1

p
a2
2

· · · p
ak
k

has

d(n) = (a1 + 1)(a2 + 1) · · · (ak + 1)

positive divisors. Also, if σ(n) denotes the sum of all positive divisors of n, then

σ(n) =

p
a1+1

1
− 1

p1 − 1
·

p
a2+1

2
− 1

p2 − 1
· · ·

p
ak+1

k
− 1

pk − 1
.

107 The 96 factors of 295 are 1, 2, 22, . . . , 295. Observe that 210 = 1024

and so 220 = 1048576. Hence

2
19

= 524288 < 1000000 < 1048576 = 2
20

.

The factors greater than 1, 000, 000 are thus 220, 221, . . . 295. This makes
for 96 − 20 = 76 factors.

108 (1 + 3)(1 + 2)(1 + 1) = 24; 18; 6; 4.

109 16

110 n = 1 + 1 + · · · + 1︸ ︷︷ ︸
n−1 + ′s

. One either erases or keeps a plus sign.

111 There are 589 such values. The easiest way to see this is to observe that

there is a bijection between the divisors of n2 which are > n and those < n. For

if n2 = ab, with a > n, then b < n, because otherwise n2 = ab > n · n = n2, a

contradiction. Also, there is exactly one decomposition n2 = n · n. Thus the
desired number is

T
d(n2)

2
U + 1 − d(n) = T

(63)(39)

2
U + 1 − (32)(20) = 589.

112 The total number of sequences is 3n. There are 2n sequences that contain
no 0, 1 or 2. There is only one sequence that contains only 1’s, one that contains
only 2’s, and one that contains only 0’s. Obviously, there is no ternary sequence
that contains no 0’s or 1’s or 2’s. By the Principle of Inclusion-Exclusion, the
number required is

3
n

− (2
n

+ 2
n

+ 2
n

) + (1 + 1 + 1) = 3
n

− 3 · 2
n

+ 3.

113 The conditions of the problem stipulate that both the region outside the
circles in diagram 2.3 and R3 will be empty. We are thus left with 6 regions to
distribute 100 numbers. To each of the 100 numbers we may thus assign one of

6 labels. The number of sets thus required is 6100.

122 21

123 56

124 (262 − 252) + (263 − 253) = 2002

125

9 + 9 · 9

+9 · 9 · 8 + 9 · 9 · 8 · 7

+9 · 9 · 8 · 7 · 6 + 9 · 9 · 8 · 7 · 6 · 5

+9 · 9 · 8 · 7 · 6 · 5 · 4 + 9 · 9 · 8 · 7 · 6 · 5 · 4 · 3

+9 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2

+9 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

= 8877690

126 2 + 4 + 8 + 16 = 30.

127 8; 12(n − 2); 6(n − 2)2; (n − 2)3

Comment: This proves that n3 = (n − 2)3 + 6(n − 2)2 + 12(n − 2) + 8.

128 We condition on the first digit, which can be 4, 5, or 6. If the number starts
with 4, in order to satisfy the conditions of the problem, we must choose the last
digit from the set {0, 2, 6, 8}. Thus we have four choices for the last digit. Once
this last digit is chosen, we have 8 choices for the penultimate digit and 7 choices
for the antepenultimate digit. There are thus 4 × 8 × 7 = 224 even numbers
which have their digits distinct and start with a 4. Similarly, there are 224 even
numbers will all digits distinct and starting with a 6. When they start with a 5,
we have 5 choices for the last digit, 8 for the penultimate and 7 for the
antepenultimate. This gives 5 × 8 × 7 = 280 ways. The total number is thus
224 + 224 + 280 = 728.

129 When the number 99 is written down, we have used

1 · 9 + 2 · 90 = 189

digits. If we were able to write 999, we would have used

1 · 9 + 2 · 90 + 3 · 900 = 2889

digits, which is more than 1002 digits. The 1002nd digit must be among the
three-digit positive integers. We have 1002 − 189 = 813 digits at our disposal,

from which we can make ⌊ 813
3

⌋ = 271 three-digit integers, from 100 to 270.

When the 0 in 270 is written, we have used 189 + 3 · 271 = 1002 digits. The
1002nd digit is the 0 in 270.

130 4

131 There is 1 such number with 1 digit, 10 such numbers with 2 digits, 100

with three digits, 1000 with four digits, etc. Starting with 2 and finishing with
299 we have used 1 · 1 + 2 · 10 + 3 · 100 = 321 digits. We need
1978 − 321 = 1657 more digits from among the 4-digit integers starting with

2. Now T 1657
4

U = 414, so we look at the 414th 4-digit integer starting with 2,

namely, at 2413. Since the 3 in 2413 constitutes the 321 + 4 · 414 = 1977-th
digit used, the 1978-th digit must be the 2 starting 2414.

132 19990

133 [1] 125, [2] 25, [3] 25, [4] 5 + 2 · 3 + 3 · 6 = 29.

134 8

135 4095

136 144
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137 First observe that 1 + 7 = 3 + 5 = 8. The numbers formed have either one,
two, three or four digits. The sum of the numbers of 1 digit is clearly
1 + 7 + 3 + 5 = 16.

There are 4 × 3 = 12 numbers formed using 2 digits, and hence 6 pairs adding
to 8 in the units and the tens. The sum of the 2 digits formed is
6((8)(10) + 8) = 6 × 88 = 528.

There are 4 × 3 × 2 = 24 numbers formed using 3 digits, and hence 12 pairs
adding to 8 in the units, the tens, and the hundreds. The sum of the 3 digits
formed is 12(8(100) + (8)(10) + 8) = 12 × 888 = 10656.

There are 4 × 3 × 2 · 1 = 24 numbers formed using 4 digits, and hence 12 pairs
adding to 8 in the units, the tens the hundreds, and the thousands. The sum of
the 4 digits formed is
12(8(1000) + 8(100) + (8)(10) + 8) = 12 × 8888 = 106656.

The desired sum is finally

16 + 528 + 10656 + 106656 = 117856.

138 Observe that

➊ We find the pairs

{1, 6}, {2, 7}, {3, 8}, . . . , {45, 50},

so there are 45 in total. (Note: the pair {a, b} is indistinguishable from
the pair {b, a}.

➋ If |a − b| = 1, then we have

{1, 2}, {2, 3}, {3, 4}, . . . , {49, 50},

or 49 pairs. If |a − b| = 2, then we have

{1, 3}, {2, 4}, {3, 5}, . . . , {48, 50},

or 48 pairs. If |a − b| = 3, then we have

{1, 4}, {2, 5}, {3, 6}, . . . , {47, 50},

or 47 pairs. If |a − b| = 4, then we have

{1, 5}, {2, 6}, {3, 7}, . . . , {46, 50},

or 46 pairs. If |a − b| = 5, then we have

{1, 6}, {2, 7}, {3, 8}, . . . , {45, 50},

or 45 pairs.

The total required is thus

49 + 48 + 47 + 46 + 45 = 235.

139 If x = 0, put m(x) = 1, otherwise put m(x) = x. We use three digits to
label all the integers, from 000 to 999 If a, b, c are digits, then clearly
p(100a + 10b + c) = m(a)m(b)m(c). Thus

p(000) + · · · + p(999) = m(0)m(0)m(0) + · · · + m(9)m(9)m(9),

which in turn

= (m(0) + m(1) + · · · + m(9))3

= (1 + 1 + 2 + · · · + 9)3

= 463

= 97336.

Hence

S = p(001) + p(002) + · · · + p(999)

= 97336 − p(000)

= 97336 − m(0)m(0)m(0)

= 97335.

148 120

149 479001600; 4838400; 33868800

150 720; 24; 120; 144

151 1440

152 128

153 81729648000

154 249

155 We have

➊ This is 8!.

➋ Permute XY in 2! and put them in any of the 7 spaces created by the
remaining 6 people. Permute the remaining 6 people. This is 2! · 7 · 6!.

➌ In this case, we alternate between sexes. Either we start with a man or a
woman (giving 2 ways), and then we permute the men and the women.
This is 2 · 4!4!.

➍ Glue the couples into 4 separate blocks. Permute the blocks in 4! ways.

Then permute each of the 4 blocks in 2!. This is 4!(2!)4.

➎ Sit the women first, creating 5 spaces in between. Glue the men together
and put them in any of the 5 spaces. Permute the men in 4! ways and
the women in 4!. This is 5 · 4!4!.

163 1816214400

164 548

165 18

166 A. [1] 10000, [2] 5040, B. [1] 12 , [2] 10

167 We have

➊ This is
10!

4!3!2!

➋ This is
9!

4!3!2!

➌ This is
8!

2!3!2!

168 36

169 25

170 126126; 756756

186

�
7
2

�
= 21

187

�
7
1

��
5
3

�
= (7)(10) = 70

188

�
N
2

�
189

�
8
4

�
4! = 1680

190

�
25
2

�
= 300

191 Let the subsets be A and B. We have either card (A) = 1 or card (A) = 2.

If card (A) = 1 then there are

�
4
1

�
= 4 ways of choosing its elements and�

3
3

�
= 1 ways of choosing the elements of B. If card (A) = 2 then there are�

4
2

�
= 6 ways of choosing its elements and

�
2
2

�
= 1 ways of choosing the

elements of B. Altogether there are 4 + 6 = 10 ways.

192

�6

3

�
= 20

193 We count those numbers that have exactly once, twice and three times.
There is only one number that has it thrice (namely 333). Suppose the number
xyz is to have the digit 3 exactly twice. We can choose these two positions in�

3
2

�
ways. The third position can be filled with any of the remaining nine digits

(the digit 3 has already been used). Thus there are 9

�
3
2

�
numbers that the digit

3 exactly twice. Similarly, there are 92
�

3
2

�
numbers that have 3 exactly once.

The total required is hence 3 · 1 + 2 · 9 ·

�
3
2

�
+ 92

�
3
1

�
= 300.

194

�5

3

�
= 10

195

�
5
1

�
+

�
5
3

�
+

�
5
5

�
= 5 + 10 + 1 = 16.

196 10 × 3! = 60

197 We have

➊ (E + F + S + I)!

➋ 4! · E!F!S!I!



Answers 45

➌

�
E+F+I+1

1

�
S!(E + F + I)!

➍

�
E+F+I+1

S

�
S!(E + F + I)!

➎ 2!

�
F+I+1

2

�
S!E!(F + I)!

198 We can choose the seven people in

�
20
7

�
ways. Of the seven, the chairman

can be chosen in seven ways. The answer is thus

7

�20

7

�
= 542640.

Aliter: Choose the chairman first. This can be done in twenty ways. Out of the

nineteen remaining people, we just have to choose six, this can be done in

�
19
6

�
ways. The total number of ways is hence 20

�
19
6

�
= 542640.

199 We can choose the seven people in

�
20
7

�
ways. Of these seven people

chosen, we can choose the chairman in seven ways and the secretary in six ways.

The answer is thus 7 · 6

�
20
7

�
= 3255840.

Aliter: If one chooses the chairman first, then the secretary and finally the
remaining five people of the committee, this can be done in

20 · 19 ·

�
18
5

�
= 3255840 ways.

200 For a string of three-digit numbers to be decreasing, the digits must come

from {0, 1, . . . , 9} and so there are

�
10
3

�
= 120 three-digit numbers with all

its digits in decreasing order. If the string of three-digit numbers is increasing,

the digits have to come from {1, 2, . . . , 9}, thus there are

�
9
3

�
= 84 three-digit

numbers with all the digits increasing. The total asked is hence 120 + 84 = 204.

201 We can choose the four students who are going to take the first test in

�
20
4

�
ways. From the remaining ones, we can choose students in

�
16
4

�
ways to take the

second test. The third test can be taken in

�
12
4

�
ways. The fourth in

�
8
4

�
ways

and the fifth in

�
4
4

�
ways. The total number is thus�20

4

��16

4

��12

4

��8

4

��4

4

�
.

202 We align the thirty-nine cards which are not hearts first. There are
thirty-eight spaces between them and one at the beginning and one at the end

making a total of forty spaces where the hearts can go. Thus there are

�
40
13

�
ways of choosing the places where the hearts can go. Now, since we are interested
in arrangements, there are 39! different configurations of the non-hearts and 13!

different configurations of the hearts. The total number of arrangements is thus�
40
13

�
39!13!.

203 The equality signs cause us trouble, since allowing them would entail
allowing repetitions in our choices. To overcome that we establish a one-to-one
correspondence between the vectors (a, b, c, d), 0 ≤ a ≤ b ≤ c ≤ d ≤ n and

the vectors (a ′, b ′, c ′, d ′), 0 ≤ a ′ < b ′ < c ′ < d ′ ≤ n + 3. Let

(a ′, b ′, c ′, d ′) = (a, b + 1, c + 2, d + 3). Now we just have to pick four
different numbers from the set {0, 1, 2, 3, . . . , n, n + 1, n + 2, n + 3}. This

can be done in

�
n+4

4

�
ways.

204 We have

➊ (T + L + W)!

➋ 3!T!L!W! = 6T!L!W!

➌

�T + L + 1

W

�
(T + L)!W!

➍

�T + L + 1

1

�
(T + L)!W!

205 The required number is�20

1

�
+

�20

2

�
+ · · · +

�20

20

�
= 2

20
−

�20

0

�
= 1048576 − 1 = 1048575.

206 The required number is�20

4

�
+

�20

6

�
+· · ·+

�20

20

�
= 2

19
−

�20

0

�
−

�20

2

�
= 524288−1−190 = 524097.

207 We have

➊
13!

2!3!3!
= 86486400

➋
11!

2!3!
= 3326400

➌
11!

2!2!2!
= 4989600

➍

�
12
1

� 11!

3!3!
= 13305600

➎

�
12
2

� 11!

3!3!
= 73180800

➏

�
10
1

� 9!

3!3!2!
= 50400

208 We have

➊

�M + W

C

�
➋

� M

C − T

��W

T

�
➌

�
M+W−2

C−2

�
➍

�
M+W−2

C

�
209 �M + W

C

�
−

�M + W − 2

C − 2

�
= 2

�M + W − 2

C − 1

�
+

�M + W − 2

C

�
.

210 2030

211 2

�
50
2

�
212

�
n+k−1

k

�
213 [1] For the first column one can put any of 4 checkers, for the second one,
any of 3, etc. hence there are 4 · 3 · 2 · 1 = 24. [2] If there is a column without a
checker then there must be a column with 2 checkers. There are 3 choices for this

column. In this column we can put the two checkers in

�
4
2

�
= 6 ways. Thus there

are 4 · 3

�
4
2

�
4 · 4 = 1152 ways of putting the checkers. [3] The number of ways

of filling the board with no restrictions is

�
16
4

�
. The number of ways of of of

filling the board so that there is one checker per column is 44. Hence the total is�
16
4

�
− 44 = 1564.

214 7560.

215 1
4!

�
8
2

��
6
2

��
4
2

�
.

216

�
15
7

��
8
4

�
.

216 There are 6513215600 of former and 3486784400 of the latter.

217

�
17
5

��
12
5

��
7
4

��
3
3

�
;

�
17
3

��
14
4

�
210.

218

7∑

k=3

�7

k

�
= 99

219 210 − 1 − 1 −

�
10
5

�
= 1024 − 2 − 252 = 770

220

�
n
2

�
; n − 1;

�
n
3

�
;

�
n−1

2

�
221

�
12
1

��
11
5

��
6
2

��
4
4

�
222

�
6
3

�20
= 104857600000000000000000000

223

�
9
3

��
5
3

�
= 840

224

�
b
c

��
g
c

�
c!

225 (23 − 1)(24 − 1)(22 − 1) = 315

228

�
10
2

�
28
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229 We have�n − 1

k − 1

�
+

�n − 1

k

�
=

(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − k − 1)!

=
(n − 1)!

(n − k − 1)!(k − 1)!

�
1

n − k
+

1

k

�
=

(n − 1)!

(n − k − 1)!(k − 1)!

n

(n − k)k

=
n!

(n − k)!k!
.

=

�n

k

�
.

A combinatorial interpretation can be given as follows. Suppose we have a bag
with n red balls. The number of ways of choosing k balls is n. If we now paint
one of these balls blue, the number of ways of choosing k balls is the number of
ways of choosing balls if we always include the blue ball (and this can be done in�

n−1
k−1

�
) ways, plus the number of ways of choosing k balls if we always exclude

the blue ball (and this can be done in

�
n−1

k

�
ways).

230 The sinistral side counts the number of ways of selecting r elements from a
set of n, then selecting k elements from those r. The dextral side counts how
many ways to select the k elements first, then select the remaining r − k

elements to be chosen from the remaining n − k elements.

231 The dextral side sums�n

0

��n

0

�
+

�n

1

��n

1

�
+

�n

2

��n

2

�
+ · · · +

�n

n

��n

n

�
.

By the symmetry identity, this is equivalent to summing�n

0

��n

n

�
+

�n

1

�� n

n − 1

�
+

�n

2

�� n

n − 2

�
+ · · · +

�n

n

��n

0

�
.

Now consider a bag with 2n balls, n of them red and n of them blue. The above
sum is counting the number of ways of choosing 0 red balls and n blue balls, 1

red ball and n − 1 blue balls, 2 red balls and n − 2 blue balls, etc.. This is
clearly the number of ways of choosing n balls of either colour from the bag,

which is

�
2n
n

�
.

232 The numbers belong to the following categories: (I) all six digits are
identical; (II) there are exactly two different digits used, three of one kind, three
of the other; (III) there are exactly two different digits used, two of one kind, four
of the other; (IV) there are exactly three different digits used, two of each kind.

There are clearly 9 numbers belonging to category (I). To count the numbers in
the remaining categories, we must consider the cases when the digit 0 is used or

not. If 0 is not used, then there are

�
9
2

�
·

6!

3!3!
= 720 integers in category (II);�

9
1

��
8
1

�
·

6!

2!4!
= 1080 integers in category (III); and

�
9
3

�
·

6!

2!2!2!
= 7560

integers in category (IV). If 0 is used, then the integers may not start with 0.

There are

�
9
1

�
·

5!

2!3!
= 90 in category (II) ;

�
9
1

�
· (

5!

1!4!
+

5!

3!2!
) = 135 in

category (III) ; and

�
9
2

�
· 2 ·

5!

1!2!2!
= 3240 in category (IV). Thus there are

altogether

9 + 720 + 1080 + 7560 + 90 + 135 + 3240 = 12834

such integers.

233 The numbers belong to the following categories: (I) all seven digits are
identical; (II) there are exactly two different digits used, three of one kind, four
of the other.

There are clearly 9 numbers belonging to category (I). To count the numbers in
the remaining category (II), we must consider the cases when the digit 0 is used

or not. If 0 is not used, then there are

�
9
1

��
8
1

�
·

7!

3!4!
= 2520 integers in

category (II). If 0 is used, then the integers may not start with 0. There are�
9
1

�
·

6!

2!4!
+

�
9
1

�
·

6!

3!3!
= 315 in category (II). Thus there are altogether

2520 + 315 + 9 = 2844 such integers.

234 432

235

�
15
9

�
; 15!/6!

236 29.

237 24

238

�
8
5

�
5!

239 175308642

240 Hint: There are k occupied boxes and n − k empty boxes. Align the balls

first!

�
k+1
n−k

�
.

241 There are n − k empty seats. Sit the people in between those seats.�
n−k+1

k

�
.

250 36

251 From the preceding problem subtract those sums with 1 + 2 + 7 (3! = 6 of

them) and those with 1 + 1 + 8 (
3!

2!
= 3 of them). The required total is

36 − 9 = 27.

252

�
14
4

�
253 Put xk = yk + k − 1 with yk ≥ 1. Then

(y1 + 0) + (y2 + 1) + · · · + (y100 + 99) = n

implies that

y1 + y2 + · · · + y100 = n − 4950.

Hence there are

�
n−4951

99

�
solutions.

254 Put a = 2a ′ − 1 with a ′ ≥ 1, etc. Then

(2a
′

− 1) + · · · + (2d
′

− 1) = 98 =⇒ a
′

+ · · · + d
′

= 51.

Thus there are

�
50
3

�
= 19600 solutions.

275 Pair a with (10n − 1 − a.)

276 Consider choosing n balls from a bag of r yellow balls and s white balls.

277 Observe that person d changes the status of door n if and only if d divides

n. Each divisor d of n can be paired off with
n

d
, and unless d =

n

d
, n would

have an even number of divisors. Thus the doors closed are those for which n has
an odd number of divisors, i.e. d2 = n, or n is a square. Hence doors 1, 4, 9,

16, 25, 36, 49, 64, 81, and 100 are closed.

280 We condition on a, which can take any of the values a = 1, 2, . . . , 100.

Given a, b can be any of the 101 − a values in {a + 1, a + 2, . . . , 101}.
Similarly, c can be any of the 101 − a values in {a + 1, a + 2, . . . , 101}.

Given a then, b and c may be chosen in (101 − a)(101 − a) = (101 − a)2

ways. The number of triplets is therefore by formula (4.5),

∑
100
a=1

(101 − a)2 = 1002 + 992 + 982 + · · · + 12

=
100(100+1)(2(100)+1)

6

= 338350.

281 There are 9 · 10j−1 j-digit positive integers. The total number of digits in
numbers with at most r digits is the arithmetic-geometric sum

g(r) =

j∑

j=1

j · 9 · 10
j−1

= r10
r

−
10r − 1

9
.

As 0 <
10r − 1

9
< 10

r
, we get

(r − 1)10
r

< g(r) < r10
r

.

Thus g(1983) < 1983 · 101983 < 104101983 = 101987 and

g(1984) > 1983 · 101984 > 103101984 = 101987. Therefore
f(1987) = 1984.



Chapter 3
Discrete Probability

3.1 Probability Spaces
283 Definition A probability P (´) is a real valued rule defined on subsets of a sample space Ω and satisfying the
following axioms:

➊ 0 ≤ P (A) ≤ 1 for A ⊆ Ω,

➋ P (Ω) = 1,

➌ for a finite or infinite sequence A1, A2, . . . ⊆ Ω of disjoint events,

P (∪Ai) =
∑

i

P (Ai) .

The number P (A) is called the probability of event A.

284 Example Let S = {a, b, c, d} be a sample space with P (a) = 3P (b), P (b) = 3P (c), P (c) = 3P (d). Find
the numerical value of P (a), P (b), P (c) , and P (d).

Solution: The trick is to express all probabilities in terms of a single one. We will express P (a) , P (b) , P (c) , in
terms of P (d). We have

P (b) = 3P (c) = 3(3P (d)) = 9P (d) ,

P (a) = 3P (b) = 3(9P (d)) = 27P (d) .

Now

P (a) + P (b) + P (c) + P (d) = 1 =⇒ 27P (d) + 9P (d) + 3P (d) + P (d) = 1

=⇒ P (d) =
1

40
.

Whence

P (a) = 27P (d) =
27

40
,

P (b) = 9P (d) =
9

40
,

P (c) = 3P (d) =
3

40
.

285 Definition A random variable X is a rule that to each outcome point of the sample space (the inputs) assigns
a real number output. This output is not fixed, but assigned with a certain probability. The range or image of X

is the set of outputs assumed by X.

47
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286 Example A fair die is tossed. If the resulting number is even, you add 1 to your score and get that many
dollars. If the resulting number is odd, you add 2 to your score and get that many dollars. Let X be the random
variable counting your gain, in dollars. Then the range of X is {3, 5, 7}.

287 Example A hand of three cards is chosen from a standard deck of cards. You get $3 for each heart in your
hand. Let Z be the random variable measuring your gain. Then the range of Z is {0, 3, 6, 9}.

288 Example The six faces of a die are numbered 1, 2, 3, 4, 5, 6, but the die is loaded so that the the probability of
obtaining a given number is proportional to the number of the dots. If X is the random variable counting the
number of dots, find P (X = k) for k = 1, 2, . . . , 6.

Solution: Let P (X = k) = αk. Then

1 = P (X = 1) + · · · + P (X = 6) = α(1 + · · · + 6) = 21α

giving α =
1

21
and P (X = k) =

k

21
.

☞ Probabilities are numbers between 0 and 1. Attaching to an event a probability outside this

range is nonsensical.

We will now deduce some results that will facilitate the calculation of probabilities in the future.

289 Theorem Let Y ⊆ X. Then P (X \ Y) = P (X) − P (Y).

Proof: Clearly X = Y ∪ (X \ Y), and Y ∩ (X \ Y) = ∅. Thus

P (X) = P (Y) + P (X \ Y) =⇒ P (X) − P (Y) = P (X \ Y) .

❑

290 Corollary (Complementary Event Rule) Let A be an event. Then

P (Ac) = 1 − P (A) .

Proof: Since P (Ω) = 1, it is enough to take X = Ω, Y = A, X \ Y = Ac in the preceding

theorem. ❑

291 Corollary P (∅) = 0.

Proof: Take A = ∅, Ac = Ω in the preceding corollary. ❑

292 Theorem (Probabilistic two-set Inclusion-Exclusion) Let A, B be events. Then

P (A ∪ B) = P (A) + P (B) − P (A ∪ B) .

Proof: Observe that

A ∪ B = (A \ (A ∩ B)) ∪ (B \ (A ∩ B)) ∪ (A ∩ B),

is a decomposition of A ∪ B into disjoint sets. Thus

P (A ∪ B) = P (A \ (A ∩ B)) + P (B \ (A ∩ B)) + P (A ∩ B) .

Since by Theorem 289 we have P (A \ (A ∩ B)) = P (A) − P (A ∩ B) and

P (B \ (A ∩ B)) = P (B) − P (A ∩ B), we deduce that

P (A ∪ B) = P (A) − P (A ∩ B) + P (B) − P (A ∩ B) + P (A ∩ B) ,

from where the result follows. ❑
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293 Example Let P (A) = 0.8, P (B) = 0.5 and P (A ∩ B) = 0.4. Find P (Ac ∩ Bc) and P (Ac ∪ Bc).

Solution: By Theorem 292,
P (A ∪ B) = 0.8 + 0.5 − 0.4 = 0.9.

By Corollary 290 and the De Morgan Law’s,

P (Ac ∩ Bc) = P ((A ∪ B)c) = 1 − P (A ∪ B) = 1 − 0.9 = 0.1,

P (Ac ∪ Bc) = P ((A ∩ B)c) = 1 − P (A ∩ B) = 1 − 0.4 = 0.5.

294 Example Let P (A) = 0.9, P (B) = 0.6. Find the maximum and minimum possible values for P (A ∩ B).

Solution: The maximum is 0.6, it occurs when B ⊂ A. Now by Theorem 292 and using the fact that
P (A ∪ B) ≤ 1, we have

P (A ∩ B) = P (A) + P (B) − P (A ∪ B) ≥ 1.5 − 1 = 0.5,

whence the minimum value is 0.5.
In the manner of proving Theorem 57 we may prove

295 Theorem (Probabilistic three-set Inclusion-Exclusion)

P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3)

−P (A1 ∩ A2) − P (A2 ∩ A3) − P (A3 ∩ A1)

+P (A1 ∩ A2 ∩ A3) .

Homework

296 Problem Let S = {a, b, c, d} be a sample space.
Outcome a is 2 times as likely as outcome b; outcome b is 4

times as likely as outcome c; outcome c is 2 times as likely
as outcome d. Find

P (a) , P (b) , P (c) , P (d) .

297 Problem Let S = {a, b, c, d} be a sample space.
Outcome a is 5 times as likely as outcome b; outcome b it 5
times as likely as event c; outcome c it 5 times as likely as
event d. Find P (a), P (b), P (c), P (d).

298 Problem Let S = {a, b, c, d} be a probabilistic outcome
space. It is known that outcome d is twice as likely as
outcome c, outcome c is four times as likely as outcome b,
and outcome b is half as likely as outcome a. Find P (a),
P (b), P (c), P (d).

299 Problem The six faces of a die are numbered
1, 2, 3, 4, 5, 6, but the die is loaded so that the the
probability of obtaining a given number is proportional to
the square of the number of the dots. If X is the random
variable counting the number of dots, find P (X = k) for
k = 1, 2, . . . , 6.

300 Problem (AHSME 1983) It is known that P (A) =
3

4

and P (B) =
2

3
. Shew that

5

12
≤ P (A ∩ B) ≤ 2

3
.

301 Problem Three fair dice, a red, a white and a blue one
are thrown. The sum of the dots is given by the random
variable Y. What is the range of the random variable Y?

302 Problem Two fair dice, a red and a blue one are thrown.
The product of the dots is given by the random variable Y.
What is the range of the random variable Y?

303 Problem A fair die is tossed. If the resulting number is
either 2 or 3, you multiply your score by 2 and get that
many dollars. If the resulting number is either 1 or 4, you
add 1 to your score and get that many dollars. If the
resulting number is either 5 or 6, you get that many dollars.
Let X be the random variable counting your gain, in dollars.
Give the range of X.

304 Problem There are two telephone lines A and B. Let E1

be the event that line A is engaged and let E2 be the event
that line B is engaged. After a statistical study one finds
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that P (E1) = 0.5 and P (E2) = 0.6 and P (E1 ∩ E2) = 0.3.
Find the probability of the following events:

➊ F: “line A is free.”

➋ G: “at least one line is engaged.”

➌ H: “at most one line is free.”

305 Problem For events A and B you are given that
P (A) = 1

3
, P (B) = 1

5
, and P (A ∪ B) = 3

4
. Find P (Ac),

P (Bc), P (A ∩ B), P (Ac ∪ Bc), P (Ac ∩ Bc).

306 Problem Let P (A ∩ B) = 0.2, P (A) = 0.6,
P (B) = 0.5. Find P (Ac ∪ Bc).

3.2 Uniform Random Variables
Consider a non-empty finite set Ω with card (Ω) number of elements and let A, B be disjoint subsets of Ω. It is
clear that

➊ 0 ≤
card (A)

card (Ω)
≤ 1,

➋
card (Ω)

card (Ω)
= 1,

➌
card (A ∪ B)

card (Ω)
=

card (A)

card (Ω)
+

card (B)

card (Ω)
when A ∩ B = ∅.

Thus the quantity
card (A)

card (Ω)
on the subsets of Ω is a probability (satisfies definition 283), and we put

P (A) =
card (A)

card (Ω)
. (3.1)

Observe that in this model the probability of any single outcome is
1

card (Ω)
, that is, every outcome is equally

likely.

307 Definition Let

Ω = {x1, x2, . . . , xn}

be a finite sample space. A uniform discrete random variable X defined on Ω is a function that achieves the
distinct values xk with equal probability:

P (X = xk) =
1

card (Ω)
.

Since
n∑

k=1

P (X = xk) =

n∑

k=1

1

card (Ω)
=

card (Ω)

card (Ω)
= 1,

this is a bonafide random variable.

308 Example If the experiment is flipping a fair coin, then Ω = {H, T } is the sample space (H for heads, T for
tails) and E = {H} is the event of obtaining a head. Then

P (H) =
1

2
= P (T) .

309 Example If the experiment is rolling a red fair die and a blue fair die and then adding their scores, the sample
space consists of 6 · 6 = 36 possible outcomes. If S denotes the random variable of the sum obtained then
2 ≤ S ≤ 12. These sums are obtained in the following fashion:
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S (red, blue)

2 (1, 1)

3 (1, 2), (2, 1)

4 (1, 3), (3, 1), (2, 2)

5 (1, 4), (4, 1), (2, 3), (3, 2)

6 (1, 5), (5, 1), (2, 4), (4, 2), (3, 3)

7 (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)

8 (2, 6), (6, 2), (3, 5), (5, 3), (4, 4)

9 (3, 6), (6, 3), (4, 5), (5, 4)

10 (4, 6), (6, 4), (5, 5)

11 (5, 6), (6, 5)

12 (6, 6)

Therefore

P (S = 2) =
1

36
,

P (S = 3) =
2

36
=

1

18
,

P (S = 4) =
3

36
=

1

12
,

P (S = 5) =
4

36
=

1

9
,

P (S = 6) =
5

36
,

P (S = 7) =
6

36
=

1

6
,

P (S = 8) =
5

36
,

P (S = 9) =
4

36
=

1

9
,

P (S = 10) =
3

36
=

1

12
,

P (S = 11) =
2

36
=

1

18
,

P (S = 12) =
1

36
.

☞ In a fair die there are 7 − x dots on the face opposite x dots. Hence

P (S = x) = P (S = 14 − x).

310 Example A number X is chosen at random from the set {1, 2, . . . , 25}. Find the probability that when divided
by 6 it leaves remainder 1.

Solution: There are only 5 numbers in the set that leave remainder 1 upon division by 6, namely {1, 7, 13, 19, 25}.

The probability sought is thus
5

25
=

1

5
.

311 Example A number is chosen at random from the set

{1, 2, . . . , 1000}.

What is the probability that it is a palindrome?
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Solution: There are 9 palindromes with 1-digit, 9 with 2 digits and 90 with three digits. Thus the number of

palindromes in the set is 9 + 9 + 90 = 108. The probability sought is
108

1000
=

27

250
.

312 Example A fair die is rolled three times and the scores added. What is the probability that the sum of the
scores is 6?

Solution: Let A be the event of obtaining a sum of 6 in three rolls, and let Ω be the sample space created when
rolling a die thrice. The sample space has 63 = 216 elements, since the first roll can land in 6 different ways, as can
the second and third roll. To obtain a sum of 6 in three rolls, the die must have the following outcomes:

A = {(2, 2, 2), (4, 1, 1), (1, 4, 1), (1, 1, 4), (1, 2, 3),

(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}

and so card (A) = 10. Hence P (A) =
10

216
=

5

108
.

313 Example Consider a standard deck of cards. One card is drawn at random.

➊ Find the size of the sample space of this experiment.

➋ Find the probability P (K) of drawing a king.

➌ Find the probability P (J) of drawing a knave1.

➍ Find the probability P (R) of drawing a red card.

➎ Find the probability P (K ∩ R) of drawing a red king.

➏ Find the probability P (K ∪ R) of drawing either a
king or a red card.

➐ Find the probability P (K \ R) of drawing a king
which is not red.

➑ Find the probability P (R \ K) of drawing a red card
which is not a king.

➒ Find the probability P (K ∩ J) of drawing a king
which is also a knave.

Solution:

➊ The size of the sample space for this experiment is
card (S) =

�
52

1

�
= 52.

➋ Since there are 4 kings, card (K) = 4. Hence
P (K) = 4

52
= 1

13
.

➌ Since there are 4 knaves, card (J) = 4. Hence
P (J) = 4

52
= 1

13
.

➍ Since there are 26 red cards, card (R) = 26. Hence
P (R) = 26

52
= 1

2
.

➎ Since a card is both a king and red in only two
instances (when it is K♥ or K♦), we have
P (K ∩ R) = 2

52
= 1

26
.

➏ By Inclusion-Exclusion we find

P (K ∪ R) = P (K) + P (R) − P (K ∩ R) =
7

13
.

➐ Since of the 4 kings two are red we have
P (K \ R) = 2

52
= 1

26
.

➑ Since of the 26 red cards two are kings,
P (R \ K) = 24

52
= 6

13
.

➒ Since no card is simultaneously a king and a knave,
P (K ∩ J) = P (∅) = 0.

314 Example Phone numbers in a certain town are 7-digit numbers that do not start in 0, 1, or 9. What is the
probability of getting a phone number in this town that is divisible by 5?

Solution: The sample space consists of all possible phone numbers in this town: 7 · 106. A phone number will be
divisible by 5 if it ends in 0 or 5 and so there are 7 · 105 · 2 phone numbers that are divisible by 5. The probability
sought is

7 · 105 · 2

7 · 106
=

2

10
=

1

5
.

315 Example Consider a standard deck of cards. Four cards are chosen at random without regards to order and
without replacement. Then

1A knave is what refined people call a jack. Cf. Charles Dickens’ Great Expectations.
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➊ The sample space for this experiment has size�
52

4

�
= 270725.

➋ The probability of choosing the four kings is�
4

4

��
52

4

� =
1

270725
.

➌ The probability of choosing four cards of the same face
is �

13

1

��
4

4

��
52

4

� =
13

270725
=

1

20825
.

➍ The probability of choosing four cards of the same
colour is �

2

1

��
26

4

��
52

4

� =
(2)(14950)

270725
=

92

833
.

➎ The probability of choosing four cards of the same suit
is �

4

1

��
13

4

��
52

4

� =
(4)(715)

270725
=

44

4165
.

316 Example A hat contains 20 tickets, each with a different number from 1 to 20. If 4 tickets are drawn at
random, what is the probability that the largest number is 15 and the smallest number is 9?

Solution: For this to happen, we choose the ticket numbered 9, the one numbered 15 and the other two tickets
must be chosen from amongst the five tickets numbered 10, 11, 12, 13, 14. The probability sought is thus�

5

2

��
20

4

� =
10

4845
=

2

969
.

317 Example A box contains four $10 bills, six $5 bills, and two $1 bills. Two bills are taken at random from the
box without replacement. What is the probability that both bills will be of the same denomination?

Solution: There are 4 + 6 + 2 = 12 bills. The experiment can be performed in
�
12

2

�
= 66 ways. To be successful we

must choose either 2 tens (in
�
4

2

�
= 6 ways), or 2 fives (in

�
6

2

�
= 15 ways), or 2 ones (in

�
2

2

�
= 1 way). The

probability sought is thus �
4

2

�
+
�
6

2

�
+
�
2

2

��
12

2

� =
6 + 15 + 1

66
=

1

3
.

318 Example A number X is chosen at random from the series

2, 5, 8, 11 . . . , 299

and another number Y is chosen from the series

3, 7, 11, . . . , 399.

What is the probability P (X = Y)?

Solution: There are 100 terms in each of the arithmetic progressions. Hence we may choose X in 100 ways and Y

in 100 ways. The size of the sample space for this experiment is thus 100 · 100 = 10000. Now we note that 11 is
the smallest number that belongs to both progressions. Since the first progression has common difference 3 and the
second progression has common difference 4, and since the least common multiple of 3 and 14 is 12, the
progressions have in common numbers of the form

11 + 12k.

We need the largest integer k with
11 + 12k ≤ 299 =⇒ k = 24.

Therefore, the 25 numbers

11 = 11 + 12 · 0, 23 = 11 + 12 · 1, 35 = 11 + 12 · 2, . . . , 299 = 11 + 12 · 24

belong to both progressions and the probability sought is

25

10000
=

1

400
.



54 Chapter 3

319 Example A number N is chosen at random from {1, 2, . . . , 25}. Find the probability that N2 + 1 be divisible
by 10.

Solution: N2 + 1 is divisible by 10 if it ends in 0. For that N2 must end in 9. This happens when

N ∈ {3, 7, 13, 17, 23}. Thus the probability sought is
5

25
=

1

5
.

320 Example (Poker Hands) A poker hand consists of 5 cards from a standard deck of 52 cards, and so there are�
52

5

�
= 2598960 ways of selecting a poker hand. Various hands, and their numbers, are shewn below.

➊ 1 pair occurs when you have one pair of faces of any
suit, and none of the other faces match. For example,
A♣, A♦, 2♥, 4♣, 6♦ is a pair. The number of ways
of getting a pair is�

13

1

��
4

2

��
12

3

��
4

1

�3

= 1098240

and so the probability of getting a pair is
1098240

2598960
≈ 0.422569.

➋ 2 pairs occurs when you have 2 different pairs of
faces of any suit, and the remaining card of a different
face than the two pairs. For example,
A♣, A♦, 3♥, 3♦, 7♥ is a 2 pair. The number of ways

of getting two pairs is
�

13

2

��
4

2

�2�11

1

��
4

1

�
= 123552 and

so the probability of getting 2 pairs is
123552

2598960
≈ 0.047539.

➌ 3 of a kind occurs when you have three cards of the
same face and the other two cards are from a different
face. For example, A♣, A♦, A♠, 3♠, 7♦. The
number of ways of getting a 3 of a kind is�

13

1

��
4

3

��
12

2

��
4

1

�2
= 54912 and so the probability of

this event is
54912

2598960
≈ 0.021128.

➍ straight occurs when the faces are consecutive, but no
four cards belong to the same suit, as in
2♣, 3♥, 4♠, 5♠, 6♦. The number of ways of getting
a straight is 10(45 − 4) = 10200 and so the

probability of this event is
10200

2598960
≈ 0.003925.

➎ straight flush occurs when one gets five consecutive
cards of the same suit, as in 2♣, 3♣, 4♣, 5♣, 6♣.

The number of ways of getting this is
�

4

1

�
10 = 40, and

the probability of this event is
40

2598960
≈ 0.000015.

➏ royal flush occurs when you have the ace, king,
queen, knave, and 10 in the same suit. The number of
ways of obtaining a royal flush is

�
4

1

�
(1) = 4 and so the

probability of this event is
4

2598960
≈ 0.0000015390.

➐ flush occurs when you have five non-consecutive cards
of the same suit, but neither a royal nor a straight
flush, as in 2♣, 4♣, 7♣, 8♣, 10♣. The number of
ways of obtaining a flush is

�
4

1

��
13

5

�
− 40 = 5068 and

so the probability of this event is
5068

2598960
≈ 0.00195.

➑ full house occurs when 3 cards have the same face
and the other two cards have the same face (different
from the first three cards), as in 8♣, 8♠, 8♦, 7♥, 7♣.
The number of ways of getting this is�

13

1

��
4

3

��
12

1

��
4

2

�
= 3774

and so the probability of this event is
3774

2598960
≈ 0.001441 .

➒ 4 of a kind occurs when a face appears four times, as
in 8♣, 8♠, 8♦, 8♥, 7♣. The number of ways of
getting this is�

13

1

��
4

4

��
12

1

��
4

1

�
= 624,

and the probability for this event is
624

2598960
≈ 0.00024.

321 Example (The Birthday Problem) If there are n people in a classroom, what is the probability that no pair
of them celebrates their birthday on the same day of the year?

Solution: To simplify assumptions, let us discard 29 February as a possible birthday and let us assume that a year
has 365 days. There are 365n n-tuples, each slot being the possibility of a day of the year for each person. The
number of ways in which no two people have the same birthday is

365 · 364 · 363 · · · (365 − n + 1),

as the first person can have his birthday in 365 days, the second in 364 days, etc. Thus if A is the event that no
two people have the same birthday, then

P (A) =
365 · 364 · 363 · · · (365 − n + 1)

365n
.
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The probability sought is

P (Ac) = 1 − P (A) = 1 −
365 · 364 · 363 · · · (365 − n + 1)

365n
.

A numerical computation shews that for n = 23, P (A) < 1
2
, and so P (Ac) > 1

2
. This means that if there are 23

people in a room, the probability is better than 1
2

that two will have the same birthday.

322 Example Three fair dice, a red, a white, and a blue one are tossed, and their scores registered in the random
variables R, W, B respectively. What is the probability that R ≤ W ≤ B?

Solution: Each of the dice may land in 6 ways and hence the size of the sample space for this experiment is
63 = 216. Notice that there is a one to one correspondence between vectors

(R, W, B), 1 ≤ R ≤ W ≤ B ≤ 6

and vectors
(R ′, W ′, B ′), 1 ≤ R ′ < W ′ < B ′ ≤ 8.

This can be seen by putting R ′ = R, W ′ = W + 1, and B ′ = B + 2. Thus the number of vectors (R ′, W ′, B ′) with

1 ≤ R ′ < W ′ < B ′ ≤ 8 is
�
8

3

�
= 56. The probability sought is thus

56

216
=

7

27
.

323 Example A hat contains three tickets, numbered 1, 2 and 3. The tickets are drawn from the box one at a
time. Find the probability that the ordinal number of at least one ticket coincides with its own number.

Solution: Let Ak, k = 1, 2, 3 be the event that when drawn from the hat, ticket k is the k-th chosen. We want

P (A1 ∪ A2 ∪ A3) .

By inclusion-exclusion for three sets Theorem 295

P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3)

−P (A1 ∩ A2) − P (A2 ∩ A3) − P (A3 ∩ A1)

+P (A1 ∩ A2 ∩ A3)

By symmetry,

P (A1) = P (A2) = P (A3) =
2!

3!
=

1

3
,

P (A1 ∩ A2) = P (A2 ∩ A3) = P (A3 ∩ A1) = =
1!

3!
=

1

6
,

P (A1 ∩ A2 ∩ A3) =
1

3!
=

1

6
.

The probability sought is finally

P (A1 ∪ A2 ∪ A3) = 3 ·
1

3
− 3 ·

1

6
+

1

6
=

2

3
.

Homework
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324 Problem There are 100 cards: 10 of each
red—numbered 1 through 10; 20 white—numbered 1

through 20; 30 blue—numbered 1 through 30; and 40

magenta—numbered 1 through 40.

➊ Let R be the event of picking a red card. Find P (R) .

➋ Let B be the event of picking a blue card. Find P (B) .

➌ Let E be the event of picking a card with face value
11. Find P (E).

➍ Find P (B ∪ R) .

➎ Find P (E ∩ R) .

➏ Find P (E ∩ B) .

➐ Find P (E ∪ R) .

➑ Find P (E ∪ B) .

➒ Find P (E \ B) .

➓ Find P (B \ E) .

325 Problem Find the chance of throwing at least one ace in
a single throw of two dice.

326 Problem An urn has 3 white marbles, 4 red marbles,
and 5 blue marbles. Three marbles are drawn at once from
the urn, and their colour noted. What is the probability that
a marble of each colour is drawn?

327 Problem One card is drawn at random from a standard
deck. What is the probability that it is a queen?

328 Problem Two cards are drawn at random from a
standard deck. What is the probability that both are queens?

329 Problem Four cards are drawn at random from a
standard deck. What is the probability that two are red
queens and two are spades?

330 Problem Four cards are drawn at random from a
standard deck. What is the probability that there are no
hearts?

331 Problem A 3 × 3 × 3 wooden cube is painted red and
cut into 27 1 × 1 × 1 smaller cubes. These cubes are mixed
in a hat and one of them chosen at random. What is the
probability that it has exactly 2 of its sides painted red?

332 Problem From a group of A males and B females a
committee of C people will be chosen.

➊ What is the probability that there are exactly T

females?

➋ What is the probability that at least C − 2 males will
be chosen?

➌ What is the probability that at most 3 females will be
chosen?

➍ What is the probability that Mary and Peter will be
serving together in a committee?

➎ What is the probability that Mary and Peter will not
be serving together?

333 Problem A school has 7 men and 5 women on its
faculty. What is the probability that women will outnumber
men on a randomly selected five-member committee?

334 Problem Of the 120 students in a class, 30 speak
Chinese, 50 speak Spanish, 75 speak French, 12 speak
Spanish and Chinese, 30 speak Spanish and French, and 15

speak Chinese and French. Seven students speak all three
languages. What is the probability that a randomly chosen
student speaks none of these languages?

335 Problem A box contains 3 red balls, 4 white balls, and 3

blue balls. Balls are drawn from the box one at a time, at
random, without replacement. What is the probability that
all three red balls will be drawn before any white ball is
obtained?

336 Problem Three fair dice are thrown at random.

➊ Find the probability of getting no 5 on the faces.

➋ Find the probability of getting at least one 5 on the
faces.

➌ Find the probability of obtaining at least two faces
with the same number.

➍ Find the probability that the sum of the points on the
faces is even.

337 Problem Six cards are drawn without replacement from
a standard deck of cards. What is the probability that

➊ three are red and three are black?

➋ two are queens, two are aces, and two are kings?

➌ four have the same face (number or letter)?

➍ exactly four are from the same suit?

➎ there are no queens?

338 Problem An ordinary fair die and a die whose faces have
2, 3, 4, 6, 7, 9 dots but is otherwise balanced are tossed and
the total noted. What is the probability that the sum of the
dots shewing on the dice exceeds 9?

339 Problem (AHSME 1976) A point in the plane, both of
whose rectangular coordinates are integers with absolute
value less than or equal to four, is chosen at random, with all
such points having an equal probability of being chosen.
What is the probability that the distance from the point to
the origin is at most two units?

340 Problem What is the probability that three
randomly-selected people were born on different days of the
week? (Assume that the chance of someone being born on a
given day of the week is 1/7).

341 Problem Let k, N be positive integers. Find the
probability that an integer chosen at random from
{1, 2, . . . , N} be divisible by k.
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342 Problem What is the probability that a random integer
taken from {1, 2, 3, . . . , 100} has no factors in common with
100?

343 Problem A number N is chosen at random from
{1, 2, . . . , 25}. Find the probability that N2 − 1 be divisible
by 10.

344 Problem Three integers are drawn at random and
without replacement from the set of twenty integers
{1, 2, . . . , 20}. What is the probability that their sum be
divisible by 3?

345 Problem There are twenty guns in a row, and it is
known that exactly three will fire. A person fires the guns,
one after the other. What is the probability that he will have
to try exactly seventeen guns in order to know which three
will fire?

346 Problem Two different numbers X and Y are chosen
from {1, 2, . . . , 10}. Find the probability that X2 + Y2 ≤ 27.

347 Problem Ten different numbers are chosen at random
from the set of 30 integers {1, 2, . . . , 30}. Find the
probability that

➊ all the numbers are odd.

➋ exactly 5 numbers be divisible by 3.

➌ exactly 5 numbers are even, and exactly one of them is
divisible by 10.

348 Problem There are two winning tickets amongst ten
tickets available. Determine the probability that (a) one, (b)
both tickets will be among five tickets selected at random.

349 Problem Find the chance of throwing more that 15 in a
single throw of three dice.

350 Problem Little Edna is playing with the four letters of
her name, arranging them at random in a row. What is the
probability that the two vowels come together?

351 Problem (Galileo’s Paradox) Three distinguishable fair
dice are thrown (say, one red, one blue, and one white).
Observe that

9 = 1 + 2 + 6

= 1 + 3 + 5

= 1 + 4 + 4

= 2 + 2 + 5

= 2 + 3 + 4

= 3 + 3 + 3,

and

10 = 1 + 3 + 6

= 1 + 4 + 5

= 2 + 2 + 6

= 2 + 3 + 5

= 2 + 4 + 4

= 3 + 3 + 4.

The probability that a sum S of 9 appears is lower than the
probability that a sum of 10 appears. Explain why and find
these probabilities.

352 Problem (AHSME 1994) When n standard six-sided
dice are rolled, the probability of obtaining a sum of 1994 is
greater than zero and is the same as the probability of
obtaining a sum of S. What is the smallest possible value of
S?

353 Problem Five people entered the lift cabin on the
ground floor of an 8-floor building (this includes the ground
floor). Suppose each of them, independently and with equal
probability, can leave the cabin at any of the other seven
floors. Find out the probability of all five people leaving at
different floors.

354 Problem (AHSME 1984) A box contains 11 balls,
numbered 1, 2, . . . 11. If six balls are drawn simultaneously
at random, find the probability that the sum of the numbers
on the balls drawn is odd.

355 Problem A hat contains 7 tickets numbered 1 through
7. Three are chosen at random. What is the probability that
their product be an odd integer?

356 Problem (AHSME 1986) Six distinct integers are chosen
at random from {1, 2, 3, . . . , 10}. What is the probability
that, among those selected, the second smallest is 3?

357 Problem An urn contains n black and n white balls.
Three balls are chosen from the urn at random and without

replacement. What is the value of n if the probability is
1

12
that all three balls are white?

358 Problem A standard deck is shuffled and the cards are
distributed to four players, each one holding thirteen cards.
What is the probability that each has an ace?

359 Problem Twelve cards numbered 1 through 12 are
thoroughly shuffled and distributed to three players so that
each receives four cards. What is the probability that one of
the players receives the three lowest cards (1, 2, and 3)?
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360 Problem A fair die is tossed twice in succession. Let A

denote the first score and B the second score. Consider the
quadratic equation

x
2

+ Ax + B = 0.

Find the probability that

➊ the equation has 2 distinct roots.

➋ the equation has a double root.

➌ x = −3 be a root of the equation,

➍ x = 3 be a root of the equation.

361 Problem An urn contains 3n counters: n red, numbered
1 through n, n white, numbered 1 through n, and n blue,
numbered 1 through n. Two counters are to be drawn at
random without replacement. What is the probability that
both counters will be of the same colour or bear the same
number?

362 Problem (AIME 1984) A gardener plants three maple
trees, four oak trees and five birch trees in a row. He plants
them in random order, each arrangement being equally
likely. Let m/n in lowest terms be the probability that no
two birch trees are next to each other. Find m + n.

363 Problem Five fair dice are thrown. What is the
probability that a full house in thrown (that is, where two
dice shew one number and the other three dice shew a
second number)?

364 Problem If thirteen cards are randomly chosen without
replacement from an ordinary deck of cards, what is the
probability of obtaining exactly three aces?

365 Problem A calculator has a random number generator
button which, when pushed displays a random digit
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The button is pushed four times.
Assuming the numbers generated are independent, what is
the probability of obtaining one ’0’, one ’5’, and two ’9’s in
any order?

366 Problem Mrs. Flowers plants rosebushes in a row. Eight
of the bushes are white and two are red, and she plants them
in a random order. What is the probability that she will
consecutively plant seven or more white bushes?

367 Problem Let A, B, C be the outcomes of three
distinguishable fair dice and consider the system

Ax − By = C; x − 2y = 3.

Find the following probabilities

1. that the system has no solution.

2. that the system has infinitely many solutions.

3. that the system has exactly one solution.

4. that the system has the unique solution x = 3, y = 0.

3.3 Independence
368 Definition Two events A and B are said to be independent if

P (A ∩ B) = P (A) · P (B) .

369 Example Let A, B be independent events with P (A) = P (B) and P (A ∪ B) = 1
2
. Find P (A).

Solution: By inclusion-exclusion Theorem 292,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) ,

which yields
1

2
= 2P (A) − (P (A))2

=⇒ 2x2 − 4x + 1 = 0,

with x = P (A). Solving this quadratic equation and bearing in mind that we must have 0 < x < 1, we find

P (A) = x = 1 −
√

2
2

.

☞ More often than not independence is built into a problem physically, that is, an event A does

not physically influence an event B. In particular, in problems where sampling is done with
replacement, we should infer independence.

370 Example Two dice, a red one and a blue one, are thrown. If A is the event: “the red die lands on an even
number” and B is the event: “the blue die lands on a prime number” then A and B are independent, as they do not
physically influence one another.
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371 Example A die is loaded so that if D is the random variable giving the score on the die, then P (D = k) = k
21

,

where k = 1, 2, 3, 4, 5, 6. Another die is loaded differently, so that if X is the random variable giving the score on

the die, then P (X = k) = k2

91
. Find P (D + X = 4).

Solution: Clearly the value on which the first die lands does not influence the value on which the second die lands.
Thus by independence

P (D + X = 4) ⇐⇒ P (D = 1 ∩ X = 3) + P (D = 2 ∩ X = 2)

+P (D = 3 ∩ X = 1)

= P (D = 1) · P (X = 3) + P (D = 2) · P (X = 2)

+P (D = 3) · P (X = 1)

= 1
91

· 3
21

+ 4
91

· 2
21

+ 9
91

· 1
21

=
20

1911
.

372 Example Two men, A and B are shooting a target. The probability that A hits the target is P (A) =
1

3
, and

the probability that B shoots the target is P (B) =
1

5
, one independently of the other. Find

➊ That A misses the target.

➋ That both men hit the target.

➌ That at least one of them hits the target.

➍ That none of them hits the target.

Solution: The desired probabilities are plainly

➊ P (Ac) = 1 −
1

3
=

2

3
.

➋ P (A ∩ B) = P (A) · P (B) =
1

3
·

1

5
=

1

15
.

➌ P (A ∪ B) = P (A) + P (B) − P (A ∩ B) =
1

3
+

1

5
−

1

15
=

7

15
.

➍ P (Ac ∩ Bc) = P ((A ∪ B)c) = 1 − P (A ∪ B) = 1 −
7

15
=

8

15
.

373 Example A certain type of missile hits its target 30% of the time. Determine the minimum number of
missiles that must be shot at a certain target in order to obtain a change higher than 80% of hitting the target.

Solution: The probability that n missiles miss the target is (0.7)n. The probability that at least one of the n

missiles hits the target is thus 1 − (0.7)n. We need 1 − (0.7)n > 0.8 and by a few calculations, the minimum n is
found to be n = 5. When we deal with more than two events, the following definition is pertinent.

374 Definition The events A1, A2, . . . , An are independent if for any choice of k (2 ≤ k ≤ n) indexes
{i1, i2, . . . , lk} we have

P (Ai1
∩ Ai2

∩ · · · ∩ Aik
) = P (Ai1

) P (Ai2
) · · · P (Aik

) .
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Considerations of independence are important in the particular case when trials are done in succession.

375 Example A biased coin with P (H) =
2

5
is tossed three times in a row. Find the probability that one will

obtain HHT , in that order.

Solution: Each toss is physically independent from the other. The required probability is

P (HHT) = P (H) · P (H) · P (T) =
2

5
·

2

5
·

3

5
=

12

125
.

376 Example An urn has 3 white marbles, 4 red marbles, and 5 blue marbles. Three marbles are drawn in
succession from the urn with replacement, and their colour noted. What is the probability that a red, a white and
another white marble will be drawn, in this order?

Solution: Since the marbles are replaced, the probability of successive drawings is not affected by previous
drawings. The probability sought is thus

4

12
·

3

12
·

3

12
=

1

48
.

377 Example Two numbers X and Y are chosen at random, and with replacement, from the set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Find the probability that X2 − Y2 be divisible by 3.

Solution: Notice that the sample space of this experiment has size 10 · 10 since X and Y are chosen with
replacement. Observe that if N = 3k then N2 = 9k2, leaves remainder 0 upon division by 3. If N = 3k + 1 then
N2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 leaves remainder 1 upon division by 3. Also, if N = 3k + 2 then
N2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 leaves remainder 1 upon division by 3. Observe that there are 3

numbers—3, 6, 9—divisible by 3 in the set, 4 numbers—1, 4, 7, 10—of the form 3k + 1, and 3

numbers—2, 5, 8—of the form 3k + 2 in the set. Now, X2 − Y2 is divisible by 3 in the following cases: (i) both X

and Y are divisible by 3, (ii) both X and Y are of the form 3k + 1, (iii) both X and Y are of the form 3k + 2, (iv)
X is of the form 3k + 1 and Y of the form 3k + 2, (v) X is of the form 3k + 2 and Y of the form 3k + 1. Case (i)
occurs 3 · 3 = 9 instances, case (ii) occurs in 4 · 4 = 16 instances, case (iii) occurs in 3 · 3 = 9 instances, case (iv)
occurs in 4 · 3 = 12 instances and case (v) occurs in 3 · 4 = 12 instances. The favourable cases are thus

9 + 16 + 9 + 12 + 12 = 58 in number and the desired probability is
58

100
=

29

50
.

378 Example A box contains 20 white balls, 30 blue balls, and 50 red balls. Ten balls are selected, one at a time,
with replacement. Find the probability that at least one colour will be missing from the ten selected balls.

Solution: Let W be the event that the white balls are not represented among the ten selected balls, and similarly
define R and W. Since selection is done with replacement, these events are independent.Then by
inclusion-exclusion

P (W ∪ B ∪ R) = P (W) + P (B) + P (R) − P (W ∩ B) − P (W ∩ R) − P (R ∩ B) + P (W ∩ R ∩ B)

= (0.8)10 + (0.7)10 + (0.5)10 − (0.5)10 − (0.3)10 − (0.2)10 + 0

≈ 0.1356.

Homework
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379 Problem Suppose that a monkey is seated at a computer
keyboard and randomly strikes the 26 letter keys and the
space bar. Find the probability that its first 48 characters
typed (including spaces) will be: “the slithy toves did

gyre and gimble in the wabe”2.

380 Problem An urn has 3 white marbles, 4 red marbles,
and 5 blue marbles. Three marbles are drawn in succession
from the urn with replacement, and their colour noted.
What is the probability that a red, a white and a blue
marble will be drawn, in this order?

381 Problem A fair coin is tossed three times in succession.
What is the probability of obtaining exactly two heads?

382 Problem Two cards are drawn in succession and with
replacement from an ordinary deck of cards. What is the
probability that the first card is a heart and the second one a
queen?

383 Problem Two numbers X and Y are chosen at random,
and with replacement, from the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.
Find the probability that X2 − Y2 be divisible by 2.

384 Problem Events A and B are independent, events A and
C are mutually exclusive, and events B and C are

independent. If P (A) =
1

2
, P (B) =

1

4
, P (C) =

1

8
, find

P (A ∪ B ∪ C).

385 Problem A population consists of 20% zeroes, 40%

ones, and 40% twos. A random sample X, Y of size 2 is
selected with replacement. Find P (|X − Y | = 1).

386 Problem A book has 4 typos. After each re-reading, an

uncorrected typo is corrected with probability
1

3
. The

correction of different typos is each independent one from the
other. Each of the re-readings is also independent one from
the other. How many re-readings are necessary so that the
probability that there be no more errors be greater than 0.9?

387 Problem A die is rolled three times in succession. Find
the probability of obtaining at least one six.

388 Problem A, B, C are mutually independent events with
P (A) = P (B) = P (C) = 1

3
. Find P (A ∪ B ∪ C).

389 Problem Ali Baba has a farm . In the farm he has a
herd of 20 animals, 15 are camels and the rest are sheep.
Ahmed, sheik of the Forty Thieves steals 5 animals at night,
without knowing what they are. What is the probability
that exactly three of the five stolen animals are camels?

390 Problem A student knows how to do 15 out of the 20

core problems for a given chapter. If the TA chooses 3 of the
core problems at random for a quiz, what is the probability
that the student knows how to do exactly 2 of them?

391 Problem Ten equally-qualified applicants, 6 men and 4

women, apply for 3 lab technician positions. Unable to
justify choosing any of the applicants over the others, the
personnel director decides to select 3 at random. What is
the probability that one man and two women will be chosen?

392 Problem An urn has seven red and five green marbles.
Five marbles are drawn out of the urn, without replacement.
What is the probability that the green marbles outnumber
the red ones?

393 Problem (MMPC 1992) From the set {1, 2, . . . , n}, k

distinct integers are selected at random and arranged in
numerical order (lowest to highest). Let P (i, r, k, n) denote
the probability that integer i is in position r. For example,
observe that P (1, 2, k, n) = 0 and P (2, 1, 6, 10) = 4/15.
Find a general formula for P (i, r, k, n).

394 Problem A pair of dice is tossed 10 successive times.
What is the probability of observing neither a 7 nor an 11 in
any of the 10 trials?

3.4 Binomial Random Variables
395 Definition A random variable X has a binomial probability distribution if

P (X = k) =

�
n

k

�
pk(1 − p)n−k, k = 0, 1, . . . , n.

where n is the number of trials, p is the probability of success in one trial, and k is the number of successes.

Since
n∑

k=0

P (X = k) =

n∑

k=0

�
n

k

�
pk(1 − p)n−k = (p + (1 − p))n = 1,

this is a bonafide random variable.

396 Example A fair coin is tossed 5 times.

2From Lewis Carroll’s The Jabberwock.
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➊ Find the probability of obtaining 3 heads.

➋ Find the probability of obtaining 3 tails.

➌ Find the probability of obtaining at most one head.

Solution:

➊ Let X be the random variables counting the number of heads. Here p = 1 − p = 1
2
. Hence

P (X = 3) =

�
5

3

��
1

2

�3 �1

2

�2

=
5

16
.

➋ Obtaining 3 tails is equivalent to obtaining 2 heads, hence the probability sought is

P (X = 2) =

�
5

2

��
1

2

�2 �1

2

�3

=
5

16
.

➌ This is the probability of obtaining no heads or one head:

P (X = 0) + P (X = 1) =
�
5

0

� �1

2

�0 �1

2

�5

+
�
5

1

� �1

2

�1 �1

2

�4

=
1

32
+

5

32

=
3

16
.

397 Example A multiple-choice exam consists of 10 questions, and each question has 3 choices. It is assumed that
for every question one, and only one of the choices is the correct answer.

➊ Find n, the number of trials, p, the probability of success, and 1 − p, the probability of failure.

➋ Find the probability of answering exactly 7 questions right.

➌ Find the probability of answering 8 or more questions right.

➍ Find the probability of answering at most one question.

Solution:

➊ Clearly n = 10, p = 1
4
, and also, 1 − p = 3

4
.

➋ Let X be the random variables counting the number of right questions. Then

P (X = 7) =

�
10

7

��
1

4

�7 �3

4

�3

=
405

131072
.

➌ This is the probability of answering 8 or 9 or 10 questions right, so it is

P (X = 8) + P (X = 9) + P (X = 10) =
�
10

8

� �1

4

�8 �3

4

�2

+
�
10

9

� �1

4

�9 �3

4

�1

+
�
10

10

� �1

4

�10 �3

4

�0

=
405

1048576
+

15

524288
+

1

1048576

=
109

262144
.
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Homework

398 Problem When two fair coins are tossed, what is the
probability of getting no heads exactly four times in five
tosses?

399 Problem A coin is loaded so that P (H) = 3
4

and
P (T) = 1

4
. The coin is flipped 5 times and its outcome

recorded. Find the probability that heads turns up at least
once.

400 Problem A fair coin is to be flipped 1000 times. What is
the probability that the number of heads exceeds the
number of tails?

401 Problem In the world series of foosball, a five-game

match is played, and the player who wins the most games is
the champion. The probability of Player A winning any

given game against player B is constant and equals
1

3
. What

is the probability that Player A will be the champion? You
may assume that all five games are played, even when a
player wins three of the first five games.

402 Problem In a certain game John’s skill is to Peter’s as 3

to 2. Find the chance of John winning 3 games at least out
of 5.

403 Problem A coin whose faces are marked 2 and 3 is
thrown 5 times. What is the chance of obtaining a total of
12?

3.5 Geometric Random Variables
404 Definition (Geometric Random Variable) Let 0 < p < 1. A random variable is said to have a geometric or

Pascal distribution if
P (X = k) = (1 − p)k−1p, k = 1, 2, 3, . . . .

Thus the random variable X counts the number of trials necessary until success occurs.

Since
∞∑

k=1

P (X = k) =

∞∑

k=1

(1 − p)k−1p =
p

1 − (1 − p)
= 1,

this is a bonafide random variable.

Observe that
P (X ≥ k) = (1 − p)k−1, k = 1, 2, 3, . . . , (3.2)

since the probability that at least k trials are necessary for success is equal to the probability that the first k − 1

trials are failures.

405 Example An urn contains 5 white, 4 black, and 1 red marble. Marbles are drawn, with replacement, until a
red one is found. If X is the random variable counting the number of trials until a red marble appears, then

➊ P (X = 1) =
1

10
is the probability that the marble appears on the first trial.

➋ P (X = 2) =
9

10
·

1

10
=

9

100
is the probability that the red marble appears on the second trial.

➌ P (X = k) =
9k−1

10k
is the probability that the marble appears on the k-th trial.

406 Example A drunk has five keys in his key-chain, and an only one will start the car 3 He tries each key until he
finds the right one (he is so drunk that he may repeat the wrong key several times), then he starts his car and (by
cheer luck), arrives home safely, where his wife is waiting for him, frying pan in hand. If X is the random variable
counting the number of trials until he find the right key, then

➊ P (X = 1) =
1

5
is the probability that he finds the key on the first trial.

3Caution: don’t drink and drive!
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➋ P (X = 2) =
4

5
·

1

5
=

4

25
is the probability that he finds the key on the second trial.

➌ P (X = 3) =
4

5
·

4

5
·

1

5
=

16

125
is the probability that he finds the key on the third trial.

➍ P (X = 4) =
4

5
·

4

5
·

4

5
·

1

5
=

64

625
is the probability that he finds the key on the fourth trial.

➎ P (X = 5) =
4

5
·

4

5
·

4

5
·

4

5
·

1

5
=

256

3125
is the probability that he finds the key on the fifth trial.

➏ P (X = 6) =
4

5
·

4

5
·

4

5
·

4

5
·

4

5
·

1

5
=

1024

15625
is the probability that he finds the key on the sixth trial.

407 Example An urn contains 5 white, 4 black, and 1 red marble. Marbles are drawn, with replacement, until a
red one is found. If X is the random variable counting the number of trials until the red marble appears.

➊ Find the probability that it takes at most 3 trials to obtain a red marble.

➋ Find the probability that it takes more than 3 trials to obtain a red marble.

Solution:

➊ This is asking for P (X = 1) + P (X = 2) + P (X = 3) =
1

10
+

9

100
+

81

1000
=

271

1000
.

➋ This is asking for the infinite geometric sum

P (X > 3) =

∞∑

k=4

P (X = k) =

∞∑

k=4

9k−1

10k
.

We can sum this directly, or we may resort to the fact that the event “more than 3 trials” is complementary
to the event “at most 3 trials.” Thus

P (X > 3) = 1 − (P (X = 1) + P (X = 2) + P (X = 3)) = 1 −
271

1000
=

729

1000
.

We may also resort to (3.2) by noticing that

P (X > 3) = P (X ≥ 4) =

�
9

10

�4−1

=
729

1000
.

408 Example Three people, X, Y, Z, in order, roll a fair die. The first one to roll an even number wins and the
game is ended. What is the probability that X will win?

Solution: We have

P (X wins) = P (X wins on the first trial)

+P (X wins on the fourth trial)

+P (X wins on the seventh trial) + · · ·

=
1

2
+

1

2

�
1

2

�3

+
1

2

�
1

2

�6

+ · · ·

=

1
2

1 − 1
23

=
4

7
.
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409 Example A sequence of independent trials is performed by rolling a pair of fair dice. What is the probability
that an 8 will be rolled before rolling a 7?

Solution: The probability of rolling an 8 is
5

36
and the probability of rolling a 7 is

6

36
. Let An be the event that

no 8 or 7 appears on the first n − 1 trials and that a 8 appears on the nth trial. Since the trials are independent,

P (An) =

�
1 −

11

36

�n−1 5

36
=

�
25

36

�n−1 5

36
.

The probability sought is

P
�
∪∞

n=1An

�
=

∞∑

n=1

P (An) =

∞∑

n=1

�
25

36

�n−1 5

36
=

5

11
.

A different solution to this problem will be given in example 433

Homework

410 Problem An urn has three red marbles and two white
ones. Homer and Marge play alternately (Homer first, then
Marge, then Homer, etc.) drawing marbles with replacement

until one of them draws a white one, and then the game
ends. What is the probability that Homer will eventually
win?

411 Problem Two people, X, Y, in order, roll a die. The first
one to roll either a 3 or a 6 wins and the game is ended.

➊ What is the probability of throwing either a 3 or a 6?

➋ What is the probability that Y will win on the second
throw?

➌ What is the probability that Y will win on the fourth
throw?

➍ What is the probability that Y will win?

412 Problem Six persons throw for a stake, which is to be
won by the one who first throws head with a penny; if they
throw in succession, find the chance of the fourth person.

413 Problem Consider the following experiment: A fair coin
is flipped until heads appear, and the number of flips is
recorded. If this experiment is repeated three times, what is
the probability that the result (number of flips) is the same
all three times?

414 Problem A game consists of looking for 7’s in rolls of a
pair of dice. What is the probability that it takes ten rolls in
order to observe eight 7’s?

3.6 Poisson Random Variables
Consider a binomial random variable X with probability of success p and number of trials n. Observe that

P (X = k) =
n(n − 1) · · · (n − k + 1)

k!
pk(1 − p)n−k.

If n is large then n − k ≈ n, and so

P (X = k) ≈
nk

k!
pk(1 − p)n =

(np)k

k!

�
(1 − p)1/p

�np

Now, since

lim
x→0

(1 − x)1/x = e−1

we gather that (1 − p)1/p ≈ e−1. Denoting the product np by λ, we obtain

P (X = k) ≈
λk

k!
e−λ

Since λ = np is the product of a large number n and a very small number p, we expect λ to be a “medium-sized”
number. The value λ = np is the average number of successes in n trials.
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415 Definition A Poisson random variable X is a discrete random variable taking on the values 0, 1, 2, . . . with
probabilities

P (X = k) =
λk

k!
e−λ k ≥ 0

It is easy to check that
∞∑

k=0

λk

k!
e−λ = e−λ

∞∑

k=0

λk

k!
= e−λeλ = e0 = 1,

where we have used the Maclaurin expansion for ex:

ex =

∞∑

k=0

xk

k!
.

416 Example In a certain book, there is 1 misprint per 2 pages, on the average. What is the probability that there
are 2 or more misprints on a given, randomly chosen page? (This is a Poisson process.)

Solution: There is an average of λ =
1

2
misprint per page. Hence the required probability is

1 − P (0 misprints) − P (1 misprint) = 1 − e−1/2 −
e−1/2

2
= 1 −

3e−1/2

2
.

417 Example During business hours, the help desk for a company’s computer system receives an average of 10

calls per hour. What is the probability that fewer than 3 calls come in during a randomly chosen half-hour period
during business hours?

Solution: There is an average of λ = 5 calls per half-hour. Hence the required probability is

P (0 calls) + P (1 call) + P (2 calls) = e−5 + 5e−5 +
25e−5

2
=

37e−5

2
.

Answers

296 We are given that P (a) = 2P (b), P (b) = 4P (c), P (c) = 2P (d).
Hence

P (b) = 4P (c) = 4(2P (d)) = 8P (d) ,

and

P (a) = 2P (b) = 2(8P (d)) = 16P (d) .

Now P (a) + P (b) + P (c) + P (d) = 1 implies

16P (d) + 8P (d) + 2P (d) + P (d) = 1

=⇒ 27P (d) = 1,

whence P (d) =
1

27
. This yields

P (a) = 16P (d) =
16

27
,

P (b) = 8P (d) =
8

27
,

and

P (c) = 2P (d) =
2

27
.

299 Let P (X = k) = αk. Then

1 = P (X = 1) + · · · + P (X = 6) = α(1
2

+ · · · + 6
2

) = 91α

giving α =
1

91
and P (X = k) =

k

91
.

304 P (F) = 0.5, P (G) = 0.8, P (H) = 0.7

306 0.8

324
1

10
;

3

10
;

3

100
;

2

5
; 0;

1

100
;

13

100
;

8

25
;

1

50
;

29

100

325
11

36

326

�
3
1

��
4
1

��
5
1

��
12
3

� =
3

11

327
1

13

328
1

221

329
6

20825

330
6327

20825

331 4
9

332 We have
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➊ First observe that this experiment has a sample space of size

�
A+B

C

�
.

There are

�
B
T

�
ways of choosing the females. The remaining C − T

members of the committee must be male, hence the desired probability is�
B
T

��
A

C−T

��
A+B

C

� .

➋ Either C − 2 or C − 1 or C males will be chosen. Corresponding to each
case, we must choose either 2 or 1 or 0 women, whence the desired
probability is �

B
C−2

��
A
2

�
+

�
B

C−1

��
A
1

�
+

�
B
C

��
A
0

��
A+B

C

� .

➌ Either 3 or 2 or 1 or 0 women will be chosen. In each case, either C − 3

or C − 2 or C − 1 or C men will be chosen. Thus the desired probability
is �

A
C−3

��
B
3

�
+

�
A

C−2

��
B
2

�
+

�
A

C−1

��
B
1

�
+

�
A
C

��
B
0

��
A+B

C

� .

➍ We must assume that Peter and Mary belong to the original set of
people, otherwise the probability will be 0. Since Peter and Mary must
belong to the committee, we must choose C − 2 other people from the
pool of the A + B − 2 people remaining. The desired probability is thus�

A+B−2
C−2

��
A+B

C

� .

➎ Again, we must assume that Peter and Mary belong to the original set of
people, otherwise the probability will be 1. Observe that one of the
following three situations may arise: (1) Peter is in a committee, Mary is
not, (ii) Mary is in a committee, Peter is not, (iii) Neither Peter nor
Mary are in a committee. Perhaps the easiest way to count these options
(there are many ways of doing this) is to take the total number of
committees and subtract those including (simultaneously) Peter and
Mary. The desired probability is thus�

A+B
C

�
−

�
A+B−2

C−2

��
A+B

C

� .

Aliter: The number of committees that include Peter but exclude Mary is�
A+B−2

C−1

�
, the number of committees that include Mary but exclude

Peter is

�
A+B−2

C−1

�
, and the number of committees that exclude both

Peter and Mary is

�
A+B−2

C

�
. Thus the desired probability is seen to be�

A+B−2
C−1

�
+

�
A+B−2

C−1

�
+

�
A+B−2

C

��
A+B

C

�
That this agrees with the preceding derivation is a simple algebraic
exercise.

333 The experiment is choosing five people from amongst 12, and so the sample

space has size

�
12
5

�
= 792. The women will outnumber the men if there are (a)

3 women and 2 men; (b) 4 women and 1 man; or (c) 5 women. The numbers of
successes is thus �5

3

��7

2

�
+

�5

4

��7

1

�
+

�5

5

��7

0

�
= 246.

The probability sought is thus
246

792
=

41

132
.

334 We use inclusion-exclusion, where C, F, S, respectively, denote the sets of
Chinese, French and Spanish speakers. We have

card (C ∪ F ∪ S) = card (C) + card (F) + card (S)

−card (C ∩ F) − card (F ∩ S) − card (S ∩ C)

+card (C ∩ F ∩ S)

= 30 + 50 + 75 − 15 − 30 − 12 + 7

= 105,

students speak at least one language, hence 120 − 105 = 15 students speak none

of the languages. The probability sought is
15

120
=

1

8
.

335 The experiment consists in permuting the letters RRRWWWBBB and

hence the sample space size is
10!

3!4!3!
. In order to obtain success, we must have

an arrangement of the form

x1Rx2Rx3Rx4Wx5Wx6Wx7Wx8,

where the xi may have from 0 to 3 blue balls. The number of such arrangements
is the number of non-negative integral solutions to x1 + x2 + · · · + x8 = 3,

namely

�
8+3−1

8−1

�
=

�
10
7

�
=

10!

7!3!
. Hence the probability sought is

10!

7!3!

10!

3!4!3!

=
3!4!

7!
=

1

35
.

Aliter: Observe that the position of the red balls is irrelevant for success. Thus we
only worry about permutations of of RRRWWWW and only one of this is

successful. The desired probability is
1

7!
4!3!

=
4!3!

7!
=

1

35
.

336
125

216
;

91

216
;

4

9
;

1

2

337

�
26
3

�2�
52
6

� ;

�
4
2

�3�
52
6

� ;

�
13
1

��
4
4

��
48
2

��
52
6

� ;

�
4
1

��
13
4

��
39
2

��
52
6

� ;

�
48
6

��
52
6

�
338

7

18

340 The sample space consists of all vectors D1D2D3 where Di is a day of the

week, hence the sample space size is 73 = 343. Success consists in getting a
vector with all the Di different, and there are 7 · 6 · 5 = 210 of these. The

desired probability is thus
210

343
=

30

49
.

341

T
N

k
U

N

342
2

5

343
1

5

344 In the numbers {1, 2, . . . , 20} there are 6 which are multiples of 3, 7

which leave remainder 1 upon division by 3, and 7 that leave remainder 2 upon
division by 3. The sum of three numbers will be divisible by 3 when (a) the three
numbers are divisible by 3; (b) one of the numbers is divisible by 3, one leaves
remainder 1 and the third leaves remainder 2 upon division by 3; (c) all three
leave remainder 1 upon division by 3; (d) all three leave remainder 2 upon
division by 3. The required probability is thus�

6
3

�
+

�
6
1

��
7
1

��
7
1

�
+

�
7
3

�
+

�
7
3

��
20
3

� =
32

95
.

345 The person will have to try exactly 17 guns if either the third firing gun
occurs on the seventeenth place or the firing guns occur on the last three places.

Hence the probability sought is

�
16
2

�
+ 1�

20
3

� =
121

1140
.

346 The possible pairs with X < Y are (1, 2), (1, 3), (1, 4), (1, 5), (2, 3),
(2, 4), (2, 5), and (3, 4) for a total of 8 pairs. There are also eight

corresponding pairs with Y < X. The probability sought is
64�
27
2

� =
64

351
.

348 5
9

; 2
9

349
5

108

350
1

2

351 The sample space has size 63 = 216. A simple count yields 25 ways of

obtaining a 9 and 27 of getting a 10. Hence P (S = 9) = 25
216

≈ 0.1157, and

P (S = 10) =
27

216
= 1

8
= 0.125.
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352 Since the probability of obtaining the sum 1994 is positive, there are

n ≥ T
1994

6
U = 333 dice. Let x1 + x2 + · · · + xn = 1994 be the sum of the

faces of the n dice adding to 1994. We are given that

(7 − x1) + (7 − x2) + · · · + (7 − xn) = S

or 7n − 1994 = S. The minimal sum will be achieved with the minimum dice, so
putting n = 333 we obtain the minimal S = 7(333) − 1994 = 337.

353 360
2401

354
118

231

355

�
4
3

��
7
3

� =
4

35

356
1

3

357 We have �
n
3

��
2n
3

� =
1

12
=⇒

n(n − 1)(n − 2)

2n(2n − 1)(2n − 2)
=

1

12

=⇒
n − 2

4(2n − 1)
=

1

12

=⇒ 3(n − 2) = 2n − 1

=⇒ n = 5.

358

�
13
1

�4�
52
4

�
359 The experiment consists in choosing three positions to be occupied by the

three cards, this can be done in

�
12
3

�
ways. Success is accomplished by selecting

one of the players, in

�
3
1

�
and three of his cards, (in

�
4
3

�
) ways, to be the three

lowest cards. The probability required is thus

�
3
1

��
4
3

��
12
3

� =
3

55
.

360 To have 2 distinct roots we need the discriminant A2 − 4B > 0. Since
1 ≤ A ≤ 6 and 1 ≤ B ≤ 6 this occurs for the 17 ordered pairs (A, B): (3, 1),
(3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), so the desired probability is
17

36
.

To have a double root we need A2 − 4B = 0. This occurs when for the 2 ordered

pairs (A, B): (2, 1) and (4, 4). Hence the desired probability is
2

36
=

1

18
.

If x = −3 is a root, then (−3)2 − 3A + B = 0, that is 9 + B = 3A. This occurs
for the 2 ordered pairs (A, B): (4, 3) and (5, 6). Hence the desired probability

is
2

36
=

1

18
.

If x = 3 were a root, then 32 + 3A + B = 0, which is impossible since the sum
on the sinistral side is strictly positive and hence never 0. The desired
probability is thus 0.

361 This is plainly�
3
1

��
n
2

�
+

�
3
2

��
n
1

��
3n
2

� =
3n(n − 1) + 6n

3n(3n − 1)
=

n + 1

3n − 1
.

362 106

363
25

648

364 This is plainly

�
4
3

��
48
10

��
52
13

� =
858

20825
.

365 A particular configuration with one ’0’, one ’5’, and two ’9’s has probability

( 1
10

)1( 1
10

)1( 1
10

)2 =
1

10000
of occurring. Since there are

4!

2!
= 12 such

configurations, the desired probability is thus
12

10000
=

3

2500
.

366 The sample space is the number of permutations of 10 objects of two types:

8 of type W (for white) and 2 of type R (for red). There are
10!

8!2!
= 45 such

permutations. Now, to count the successful permutations, observe that we need a
configuration of the form

X1RX2RX3.

If one of the Xi = 7W then another one must be 1W and the third must be 0W,
so there are 3! = 6 configurations of this type. Similarly, if one of the Xi = 8W,

the other two must be 0W and again there are
3!

2!
= 3 configurations of this

type. The desired probability is hence
9

45
=

1

5
.

367 By subtracting A times the second equation from the first, the system
becomes

(2A − B)x = (C − 3A)y; x − 2y = 3.

For infinitely many solutions, we need 2A = B; 3A = C, hence B is even and C

is a multiple of 3, giving (A, B, C) = (1, 2, 3) or (2, 4, 6). The probability

of infinitely many solutions is thus
2

216
=

1

108
.

If the system will have no solutions, then 2A = B and 3A 6= C. For
(A, B) = (1, 2) we have 5 choices of C; for (A, B) = (2, 4) we have 5 choices
of C; and for (A, B) = (3, 6) we have 6 choices of C. Hence there are

5 + 5 + 6 = 16 successes, and the probability sought is
16

216
=

2

27
.

For the system to have exactly one solution we need 2A 6= B. If A = 1, 2 or 3,
then B cannot B = 2, 4 or 6, giving 5 + 5 + 5 = 15 choices of B in these cases. If
A = 4, 5 or 6, then B can be any of the 6 choices, giving 6 + 6 + 6 = 18 in these
cases. These 15 + 18 = 33 choices of B can be combined with any 6 choices of

C, giving 33 · 6 = 198 choices. The probability in this case is thus
198

216
=

11

12
.

For the system to have x = 3, y = 0 as its unique solution, we need 2A 6= B and
3A = C. If A = 1 then C = 3 and we have 5 choices for B. If A = 2 then C = 6

and again, we have 5 choices for B. Hence there are 10 successes and the

probability sought is
10

216
=

5

108
.

379

�
1

27

�48

380
5

144

381
3

8

382
1

52

383
41

81

384 Theorem 295.
23

32

385 We have

P (|X − Y| = 1) = P (X − Y = 1) + P (Y − X = 1)

= 2P (X − Y = 1)

= 2(P (X = 1 ∩ Y = 0) + P (X = 2 ∩ Y = 1))

= 2(P (X = 1) P (Y = 0) + P (X = 2) P (Y = 1))

= 2((.4)(.2) + (.4)(.4))

= .48,

since the sampling with replacement gives independence.

386 Suppose there are n re-reading necessary in order that there be no errors.

At each re-reading, the probability that a typo is not corrected is
2

3
. Thus the

probability that a particular typo is never corrected is ( 2
3

)n. Hence the

probability that a particular typo is corrected in the n re-readings is 1 − ( 2
3

)n.

Thus the probability that all typos are corrected is�
1 −

�
2

3

�n�4

.

We need �
1 −

�
2

3

�n�4

≥ 0.9

and with a calculator we may verify that this happens for n ≥ 10.
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387 The probability of not obtaining a six in a single trial is 5
6

. The probability

of not obtaining a single six in the three trials is ( 5
6

)3 = 125
216

. Hence the

probability of obtaining at least one six in three rolls is 1 − 125
216

= 91
216

.

388 By inclusion-exclusion and by independence,

P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A ∩ B) − P (A ∩ C)

−P (B ∩ C) + P (A ∩ B ∩ C)

=
1

3
+

1

3
+

1

3
−

1

9
−

1

9
−

1

9
+

1

27

=
19

27
.

389

�
15
3

��
5
2

��
20
5

�
390 The TA chooses 3 problems in

�
20
3

�
= 1140 ways. Success means�

15
2

��
5
1

�
= 525 ways of choosing exactly two correct answers. The probability

sought is thus
525

1140
=

35

76
.

391 The experiment consists of choosing 3 people out of 10, and so the sample

space size is

�
10
3

�
= 120. Success occurs when one man and two women chosen,

which can be done in

�
6
1

��
4
2

�
= 36 ways. The probability sought is

36

120
=

3

10
.

392 This is plainly �
5
3

��
7
2

�
+

�
5
4

��
7
1

�
+

�
5
5

��
7
0

��
12
5

� =
41

132
.

393 The r − 1 integers before i must be taken from the set {1, 2, . . . , i − 1}

and the k − r after i must be taken from the set {i + 1, i + 2, . . . , n}. Hence

P (i, r, k, n) =

�
i−1
r−1

��
n−i
k−r

��
n
k

� .

394 ( 7
9

)10

398
15

1024

399 Let A denote the event whose probability we seek. Then Ac is the event
that no heads turns up. Thus

P

�
A

c
�

=

�5

5

��3

4

�0�
1

4

�5

=
1

1024
.

Hence

P (A) = 1 − P

�
A

c
�

= 1 −
1

1024
=

1023

1024
.

Notice that if we wanted to find this probability directly, we would have to add
the five terms

P (A) =

�
5
1

��
3
4

�1 �
1
4

�4
+

�
5
2

��
3
4

�2 �
1
4

�3
+

�
5
3

��
3
4

�3 �
1
4

�2

+

�
5
4

��
3
4

�4 �
1
4

�1
+

�
5
5

��
3
4

�5 �
1
4

�0
.

=
15

1024
+

90

1024
+

270

1024
+

405

1024
+

243

1024

=
1023

1024
.

400
1

2
−

�
1000
500

�
21001

401 This is plainly�5

3

��1

3

�3�
2

3

�2

+

�5

4

��1

3

�4�
2

3

�1

+

�5

5

��1

3

�5�
2

3

�0

=
17

81
.

402
2133

3125

403
5

16

410
5

8

411 1
3

; 2
9

; 8
81

;
2

5

412
4

63

413 Let Xi be the random variable counting the number of times until heads

appears for times i = 1, 2, 3. Observe that P

�
Xi = n

�
=

1

2n
(in fact, Xi is

geometric with p = 1
2

). Hence the desired probability is

∞∑

n=1

P

�
X1 = n

�
P

�
X2 = n

�
P

�
X3 = n

�
=

∞∑

n=1

1

8n
=

1
8

1 − 1
8

=
1

7
.

414 52

68



Chapter 4
Conditional Probability

4.1 Conditional Probability
418 Definition Given an event B, the probability that event A happens given that event B has occurred is defined
and denoted by

P (A|B) =
P (A ∩ B)

P (B)
, P (B) 6= 0.

419 Example Ten cards numbered 1 through 10 are placed in a hat, mixed and then one card is pulled at random.
If the card is an even numbered card, what is the probability that its number is divisible by 3?

Solution: Let A be the event “the card’s number is divisible by 3” and B be the event “the card is an even
numbered card.” We want P (A|B) . Observe that P (B) = 5

10
= 1

2
. Now the event A ∩ B is the event that the

card’s number is both even and divisible by 3, which happens only when the number of the card is 6. Hence
P (A ∩ B) = 1

10
. The desired probability is

P (A|B) =
P (A ∩ B)

P (B)
=

1
10
1
2

=
1

5
.

420 Example A coin is tossed twice. What is the probability that in both tosses appear heads given that in at
least one of the tosses appeared heads?

Solution: Let E = {(H, H)} and F = {(H, H), (H, T), (T, H)}. Then

P (E|F) =
P (E ∩ F)

P (F)
=

P ({(H, H)})

P ({(H, H), (H, T), (T, H)})
=

1
4
3
4

=
1

3
.

The conditional probability formula can be used to obtain probabilities of intersections of events. Thus

P (A ∩ B) = P (B) P (A|B) (4.1)

Observe that the sinistral side of the above equation is symmetric. Thus we similarly have

P (A ∩ B) = P (B ∩ A) = P (A) P (B|A) (4.2)

421 Example Darlene is undecided on whether taking Statistics or Philosophy. She knows that if she takes
Statistics she will get an A with probability 1

3
, while if she takes Philosophy she will receive an A with probability

1
2
. Darlene bases her decision on the flip of a coin. What is the probability that Darlene will receive an A in

Statistics?

70
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Solution: Let E be the event that Darlene takes Statistics and let F be the event that she receives an A in whatever
course she decides to take. Then we want P (E ∩ F) . But

P (E ∩ F) = P (E) P (F|E) =
1

2
·

1

3
=

1

6
.

422 Example An urn contains eight black balls and three white balls. We draw two balls without replacement.
What is the probability that both balls are black?

Solution: Let B1 be the event that the first ball is black and let B2 be the event that the second ball is black.
Clearly P (B1) = 8

11
. If a black ball is taken out, there remain 10 balls in the urn, 7 of which are black. Thus

P (B2|B1) = 7
10

. We conclude that

P (B1 ∩ B2) = P (B1) P (B2|B1) =
8

11
·

7

10
=

28

55
.

The formula for conditional probability can be generalised to any number of events. Thus if A1, A2, . . . An are
events, then

P (A1 ∩ A2 ∩ . . . ∩ An) = P (A1)

·P (A2|A1) P (A3|A1 ∩ A2)

· · · P (An|A1 ∩ A2 ∩ . . . ∩ An−1)

(4.3)

423 Example An urn contains 5 red marbles, 4 blue marbles, and 3 white marbles. Three marbles are drawn in
succession, without replacement. Find the probability that the first two are white and the third one is blue.

Solution: Let the required events be W1, W2, B3. Then

P (W1 ∩ W2 ∩ B3) = P (W1) P (W2|W1) P (B3|W1 ∩ W2) =
3

12
·

2

11
·

4

10
=

1

55
.

Homework

424 Problem Two cards are drawn in succession from a
well-shuffled standard deck of cards. What is the probability
of successively obtaining

➊ a red card and then a black card?

➋ two red cards?

➌ a knave and then a queen?

➍ two knaves?

425 Problem Five cards are drawn at random from a
standard deck of cards. It is noticed that there is at least one
picture (A, J, Q, or K) card. Find the probability that this
hand of cards has two knaves.

426 Problem Five cards are drawn at random from a
standard deck of cards. It is noticed that there is exactly one
ace card. Find the probability that this hand of cards has
two knaves.

4.2 Conditioning
Sometimes we may use the technique of conditioning, which consists in decomposing an event into mutually
exclusive parts. Let E and F be events. Then

P (E) = P (E ∩ F) + P (E ∩ Fc)

= P (F) P (E|F) + P (Fc) P (E|Fc) .

(4.4)
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M

0.53

C.02

Cc.98

Mc

0.47

C.001

Cc
.999

Figure 4.1: Example 427.

S
1
4

A
1
52

Ac51
52

Sc
3
4

A
1
51

Ac50
51

Figure 4.2: Example 428.

427 Example A population consists of 53% men. The probability of colour blindness is .02 for a man and .001 for
a woman. Find the probability that a person picked at random is colour blind.

Solution: We condition on the sex of the person. Let M be the event that the person is a man and let C be the
event that the person is colour-blind. Then

P (C) = P (C ∩ M) + P (C ∩ Mc) .

But P (C ∩ M) = P (M) P (C|M) = (.53)(.02) = 0.106 and
P (C ∩ Mc) = P (Mc) P (C|Mc) = (.47)(.001) = .00047 and so P (C) = 0.10647. A tree diagram explaining
this calculation can be seen in figure 4.1.

428 Example Draw a card. If it is a spade, put it back and draw a second card. If the first card is not a spade, draw
a second card without replacing the second one. Find the probability that the second card is the ace of spades.

Solution: We condition on the first card. Let S be the event that the first card is a spade and let A be the event
that the second card is the ace of spades. Then

P (A) = P (A ∩ S) + P (A ∩ Sc) .

But P (A ∩ S) = P (S) P (A|S) = 1
4

· 1
52

= 1
108

and P (A ∩ Sc) = P (Sc) P (A|Sc) = 3
4

· 1
51

= 1
68

. We thus have

P (A) =
1

108
+

1

68
=

11

459
.

A tree diagram explaining this calculation can be seen in figure 4.2.

429 Example A multiple-choice test consists of five choices per question. You think you know the answer for 75%

of the questions and for the other 25% you guess at random. When you think you know the answer, you are right
only 80% of the time. Find the probability of getting an arbitrary question right.

Solution: We condition on whether you think you know the answer to the question. Let K be the event that you
think you know the answer to the question and let R be the event that you get a question right. Then

P (R) = P (K ∩ R) + P (Kc ∩ R)
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Now P (K ∩ R) = P (K) · P (R|K) = (.75)(.8) = .6 and

P (Kc ∩ R) = P (Kc) · P (R|Kc) = (.25)(.2) = .05.

Therefore P (R) = .6 + .05 = .65.

If instead of conditioning on two disjoint sets we conditioned in n pairwise disjoint sets, we would obtain

430 Theorem (Law of Total Probability) Let F = F1 ∪ F2 ∪ · · · ∪ Fn, where Fj ∩ Fk = ∅ if j 6= k, then

P (E ∩ F) = P (F1) P (E|F1) + P (F2) P (E|F2) + · · · + P (Fn) P (E|Fn) .

431 Example An urn contains 4 red marbles and 5 green marbles. A marble is selected at random and its colour
noted, then this marble is put back into the urn. If it is red, then 2 more red marbles are put into the urn and if it
is green 1 more green marble is put into the urn. A second marble is taken from the urn. Let R1, R2 be the events
that we select a red marble on the first and second trials respectively, and let G1, G2 be the events that we select a
green marble on the first and second trials respectively.

➊ Find P (R2).

➋ Find P (R2 ∩ R1).

➌ Find P (R1|R2).

Solution: Plainly,

➊

P (R2) =
4

9
·

6

11
+

5

9
·

3

5
=

19

33
.

➋

P (R2 ∩ R1) =
4

9
·

6

11
=

8

33

➌

P (R1|R2) =
P (R2 ∩ R1)

P (R2)
=

8

19
.

432 Example An urn contains 10 marbles: 4 red and 6 blue. A second urn contains 16 red marbles and an
unknown number of blue marbles. A single marble is drawn from each urn. The probability that both marbles are
the same colour is 0.44. Calculate the number of blue marbles in the second urn.

Solution: Let b be the number of blue marbles in the second urn, let Rk, k = 1, 2 denote the event of drawing a
red marble from urn k, and similarly define Bk, k = 1, 2. We want

P ((R1 ∩ R2) ∪ (B1 ∩ B2)) .

Observe that the events R1 ∩ R2 and B1 ∩ B2 are mutually exclusive, and that R1 is independent of R2 and B1 is
independent of B2 (drawing a marble from the first urn does not influence drawing a second marble from the
second urn). We then have

0.44 = P ((R1 ∩ R2) ∪ (B1 ∩ B2))

= P (R1 ∩ R2) + P (B1 ∩ B2)

= P (R1) P (R2) + P (B1) P (B2)

=
4

10
· 16

b+16
+

6

10
· b

b+16
.

Clearing denominators
0.44(10)(b + 16) = 4(16) + 6b =⇒ b = 4.
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433 Example A sequence of independent trials is performed by rolling a pair of fair dice. What is the probability
that an 8 will be rolled before rolling a 7?

Solution: This is example 409. Here we give a solution using conditioning. Let A be the event that an 8 occurs
before a 7. Now, either: (i) the first trial will be an 8, which we will call event X, or (ii) the first trial will be a 7,
which we will call event Y , or (iii) the first trial will be neither an 8 nor a 7, which we will call event Z. Since X ,
Y , Z partition A we have

P (A) = P (A|X) P (X) + P (A|Y) P (Y) + P (A|Z) P (Z) .

Observe that

P (A|X) P (X) = 1 ·
5

36
,

P (A|Y) P (Y) = 0 ·
6

36
,

and

P (A|Z) P (Z) = P (A) ·
25

36
,

where the last equality follows because if the first outcome is neither an 8 nor a 7 we are in the situation as in the
beginning of the problem. Thus

P (A) =
5

36
+

25

36
· P (A) =⇒ P (A) =

5

11
,

as we had obtained in example 409.

434 Example (Monty Hall Problem) You are on a television shew where the host shews you three doors. Behind
two of them are goats, and behind the remaining one a car. You choose one door, but the door is not yet opened.
The host opens a door that has a goat behind it (he never opens the door that hides the car), and asks you
whether you would like to switch your door to the unopened door. Should you switch?

Solution: It turns out that by switching, the probability of getting the car increases from 1
3

to 2
3
. Let us consider

the following generalisation: an urn contains a white marbles and b black marbles with a + b ≥ 3. You have two
strategies:

➊ You may simply draw a marble at random. If it is white you win, otherwise you lose.

➋ You draw a marble at random without looking at it, and you dispose of it. The host removes a black marble
from the urn. You now remove a marble from the urn. If it is white you win, otherwise you lose.

In the first strategy your probability of winning is clearly
a

a + b
. To compute the probability of winning on the

second strategy we condition on the colour of the marble that you first drew. The probability of winning is thus

a

a + b
·

a − 1

a + b − 2
+

b

a + b
·

a

a + b − 2
=

a

a + b

�
1 +

1

a + b − 2

�
.

This is greater than the probability on the first strategy, so the second strategy is better.

435 Example A simple board game has four fields A, B, C, and D. Once you end up on field A you have won and
once you end up on field B you have lost. From fields C and D you move to other fields by flipping a coin. If you
are on field C and you throw a head, then you move to field A, otherwise to field D. From field D, you move to
field C if you throw a head, and otherwise you mover to field B.

Suppose that you start in field D. What is the probability that you will win (i.e., what is the probability that you
will end up on field A)?
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Solution: We want P (A|D). This can happen in two moves (from D to C to A) with probability 1
2

· 1
2

= 1
4
, or it

can happen in 4 moves (from D to C to D to C to A) with probability 1
2

· 1
2

· 1
2

· 1
2

= 1
16

, or in six moves, . . . ,etc.
We must sum thus the infinite geometric series

1

4
+

1

42
+

1

43
+ · · · =

1
4

1 − 1
4

=
1

3
.

The required probability is therefore
1

3
.

Homework

436 Problem A and B are two events from the same sample
space satisfying

P (A) =
1

2
; P (B) =

2

3
; P (A|B) =

1

4
.

Find P (Ac ∩ Bc).

437 Problem A cookie jar has 3 red marbles and 1 white
marble. A shoebox has 1 red marble and 1 white marble.
Three marbles are chosen at random without replacement
from the cookie jar and placed in the shoebox. Then 2

marbles are chosen at random and without replacement from
the shoebox. What is the probability that both marbles
chosen from the shoebox are red?

438 Problem A fair coin is tossed until a head appears.
Given that the first head appeared on an even numbered
toss, what is the conditional probability that the head
appeared on the fourth toss?

439 Problem Three fair standard dice are tossed, and the
sum is found to be 6. What is the probability that none of
the dice landed a 1?

440 Problem An urn contains 5 red marbles and 5 green
marbles. A marble is selected at random and its colour
noted, then this marble is put back into the urn. If it is red,
then 2 more red marbles are put into the urn and if it is
green 3 more green marbles are put into the urn. A second
marble is taken from the urn. Let R1, R2 be the events that
we select a red marble on the first and second trials
respectively, and let G1, G2 be the events that we select a
green marble on the first and second trials respectively.

1. Find P (R1).

2. Find P (G1).

3. Find P (R2 |R1).

4. Find P (G2 |R1).

5. Find P (G2 |G1).

6. Find P (R2 |G1).

7. Find P (R2).

8. Find P (G2).

9. Find P (R2 ∩ R1).

10. Find P (R1 |R2).

11. Find P (G2 ∩ R1).

12. Find P (R1 |G2).

441 Problem Five urns are numbered 3, 4, 5, 6, and 7,
respectively. Inside each urn is n2 dollars where n is the
number on the urn. You select an urn at random. If it is a
prime number, you receive the amount in the urn. If the
number is not a prime number, you select a second urn from
the remaining four urns and you receive the total amount of
money in the two urns selected. What is the probability that
you end up with $25?

442 Problem A family has five children. Assuming that the
probability of a girl on each birth was 1

2
and that the five

births were independent, what is the probability the family
has at least one girl, given that they have at least one boy?

443 Problem Events S and T have probabilities
P (S) = P (T) = 1

3
and P (S|T) = 1

6
. What is P (Sc ∩ T c)?

444 Problem An insurance company examines its pool of
auto insurance customers and gathers the following
information:

➊ All customers insure at least one car.

➋ 70% of the customers insure more than one car.

➌ 20% of the customers insure a sports car.

➍ Of those customers who insure more than one car,
15% insure a sports car.

Calculate the probability that a randomly selected customer
insures exactly one car and that car is not a sports car.

445 Problem Peter writes to Paul and does not receive an
answer. Assuming that one letter in n is lost in the mail,
find the probability that Paul received the letter. (Assume
that Paul would have answered the letter had he received it.)

446 Problem A deck of cards is shuffled and then divided
into two halves of 26 cards each. A card is drawn from one
of the halves; it turns out to be an ace. The ace is then
placed in the second half-deck. This half is then shuffled,
and a card drawn from it. Find the probability that this
drawn card is an ace.
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4.3 Bayes’ Rule
Suppose Ω = A1 ∪ A2 ∪ · · · ∪ An, where Aj ∩ Ak = ∅ if j 6= k is a partition of the sample space. Then

P (Ak|B) =
P (Ak ∩ B)

P (B)
.

By the Law of Total Probability Theorem 430,
P (B) = P (A1) P (B|A1) + P (A2) P (B|A2) + · · · + P (An) P (B|An) . This gives

447 Theorem (Bayes’ Rule) . Let A1, A2, . . . , An be pairwise disjoint with union Ω. Then

P (Ak|B) =
P (Ak ∩ B)

P (B)
=

P (Ak ∩ B)
∑n

k=1 P (Ak) P (B|Ak)
.

448 Example A supermarket buys its eggs from three different chicken ranches. They buy 1/3 of their eggs from
Eggs’R Us, 1/2 of their eggs from The Yolk Ranch, and 1/6 of their eggs from Cheap Eggs. The supermarket
determines that 1% of the eggs from Eggs’R Us are cracked, 2% of the eggs from the Yolk Ranch are cracked, and
5% of the eggs from Cheap Eggs are cracked. What is the probability that an egg chosen at random is from Cheap
Eggs, given that the egg is cracked?

Solution: See figure 4.3 for a tree diagram. We have

P (cracked) = P (cracked|R ′Us) P (R ′Us) + P (cracked|YR) P (YR) + P (cracked|ChE) P (ChE)

=
1

3
·

1

100
+

1

2
·

2

100
+

1

6
·

5

100

=
13

600

and so,

P (ChE|cracked) =
P (ChE ∩ cracked)

P (cracked)

=
P (cracked|ChE) · P (ChE)

P (cracked)

=

5

100
·

1

6
13

600

=
5

13

449 Example 6% of Type A spark plugs are defective, 4% of Type B spark plugs are defective, and 2% of Type C
spark plugs are defective. A spark plug is selected at random from a batch of spark plugs containing 50 Type A
plugs, 30 Type B plugs, and 20 Type C plugs. The selected plug is found to be defective. What is the probability
that the selected plug was of Type A?

Solution: Let A, B, C denote the events that the plug is type A, B, C respectively, and D the event that the plug is
defective. We have

P (D) = P (D|A) · P (A) + P (D|B) · P (B) + P (D|C) · P (C)

=
6

100
·

50

100
+

4

100
·

30

100
+

2

100
·

20

100

=
23

500
.
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R ′Us

1/3

cracked.01

not cracked.99

YR

1/2

cracked.02

not cracked.98

ChE
1/6 cracked.05

not cracked.95

Figure 4.3: Example 448.

Hence

P (A|D) =
P (A ∩ D)

P (D)

=
P (D|A) · P (A)

P (D)

=

6

100
·

50

100
23

500

=
15

23
.

450 Example Two distinguishable dice have probabilities p, and 1 respectively of throwing a 6. One of the dice is
chosen at random and thrown. A 6 appeared.

➊ Find the probability of throwing a 6.

➋ What is the probability that one simultaneously chooses die I and one throws a 6?

➌ What is the probability that the die chosen was the first one?

Solution:

➊

P (6) = P (6 ∩ I) + P (6 ∩ II) =
1

2
· p +

1

2
· 1 =

p + 1

2

➋ P (6 ∩ I) = 1
2

· p = p

2

➌

P (I|6) =
P (6 ∩ I)

P (6)
=

p

p + 1
.

451 Example Three boxes identical in appearance contain the following coins: Box I has two quarters and a dime;
Box II has 1 quarter and 2 dimes; Box III has 1 quarter and 1 dime. A coin drawn at random from a box selected
is a quarter.

➊ Find the probability of obtaining a quarter.

➋ What is the probability that one simultaneously choosing box III and getting a quarter?
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➌ What is the probability that the quarter came from box III?

Solution:

➊

P (Q) =
1

3
·

2

3
+

1

3
·

1

3
+

1

3
·

1

2
=

1

2
.

➋

P (Q ∩ III) =
1

3
·

1

2
=

1

6

➌

P (III|Q) =
P (III ∩ Q)

P (Q)
=

1

3
.

Homework

452 Problem There are three coins in a box. When tossed,
one of the coins comes up heads only 30% of the time, one
of the coins is fair, and the third comes up heads 80% of the
time. A coin is selected at random from the box and tossed
three times. If two heads and a tails come up—in this
order—what is the probability that the coin was the fair
coin?

453 Problem On a day when Tom operates the machinery,
70% of its output is high quality. On a day when Sally
operates the machinery, 90% of its output is high quality.
Tom operates the machinery 3 days out of 5. Three pieces of
a random day’s output were selected at random and 2 of
them were found to be of high quality. What is the
probability that Tom operated the machinery that day?

454 Problem There are three urns, A, B, and C. Urn A has
a red marbles and b green marbles, urn B has c red marbles
and d green marbles, and urn C has a red marbles and c

green marbles. Let A be the event of choosing urn A, B of
choosing urn B and, C of choosing urn C. Let R be the event
of choosing a red marble and G be the event of choosing a
green marble. An urn is chosen at random, and after that,
from this urn, a marble is chosen at random.

➊ Find P (G).

➋ Find P (G|C).

➌ Find P (C|G).

➍ Find P (R).

➎ Find P (R|A).

➏ Find P (A|R).

455 Problem Three dice have the following probabilities of
throwing a 6: p, q, r, respectively. One of the dice is chosen
at random and thrown. A 6 appeared. What is the
probability that the die chosen was the first one?

456 Problem Three boxes identical in appearance contain
the following coins: Box A has two quarters; Box B has 1

quarter and 2 dimes; Box C has 1 quarter and 1 dime. If a
coin drawn at random from a box selected is a quarter, what
is the probability that the randomly selected box contains at
least one dime?

457 Problem An urn contains 6 red marbles and 3 green
marbles. One marble is selected at random and is replaced
by a marble of the other colour. A second marble is then
drawn. What is the probability that the first marble selected
was red given that the second one was also red?

458 Problem There are three dice. Die I is an ordinary fair
die, so if F is the random variable giving the score on this
die, then P (F = k) = 1

6
, Die II is loaded so that if D is the

random variable giving the score on the die, then
P (D = k) = k

21
, where k = 1, 2, 3, 4, 5, 6. Die is loaded

differently, so that if X is the random variable giving the

score on the die, then P (X = k) = k2

91
. A die is chosen at

random and a 5 appears. What is the probability that it was
Die II?

459 Problem There are 3 urns each containing 5 white
marbles and 2 black marbles, and 2 urns each containing 1

white marble and 4 black marbles. A black marble having
been drawn, find the chance that it came from the first
group of urns.

460 Problem There are four marbles in an urn, but it is not
known of what colours they are. One marble is drawn and
found to be white. Find the probability that all the marbles
are white.

461 Problem In an urn there are six marbles of unknown
colours. Three marbles are drawn and found to be black.
Find the chance that no black marble is left in the urn.

462 Problem John speaks the truth 3 out of 4 times. Peter
speaks the truth 5 out of 6 times. What is the probability
that they will contradict each other in stating the same fact?
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463 Problem Four coins A, B, C, D have the following
probabilities of landing heads:

P (A = H) =
1

5
; P (B = H) =

2

5
;

P (C = H) =
3

5
; P (D = H) =

4

5
,

and they land tails otherwise. A coin is chosen at random
and flipped three times. On the first and second flips it lands
heads, on the third, tails. Which of the four coins is it the
most likely to be?

Answers

424
13

51
;

25

102
;

4

663
;

1

221

425
1

116

426
473

16215

436 We have

P (A ∩ B) = P (A|B) P (B) =
1

6
, =⇒ P (A ∪ B) = P (A)+P (B)−P (A ∩ B) = 1

whence

P

�
A

c ∩ B
c
�

= P

�
(A ∪ B)

c
�

= 1 − P (A ∪ B) = 0.

437
3

8

438
3

16

439 Observe that there are 10 ways of getting a sum of six in three dice: the 3

permutations of (1, 1, 4), the 6 permutations of (1, 2, 3), and the 1

permutation of (2, 2, 2). Of these, only (2, 2, 2) does not require a 1. Let S be
the event that the sum of the dice is 6 and let N be the event that no die landed
on a 1. We need

P (N|S) =
P (N ∩ S)

P (S)
=

1

216

10

216

=
1

10
.

441
1

4

442 30
31

443 7
18

445 Let A be the event that Peter’s letter is received by Paul and B be the event

that Paul’s letter is received by Peter. Then we want P

�
A|Bc

�
. Then

P

�
A|Bc

�
=

A ∩ Bc

P (Bc)

=

P

�
Bc|A

�
· P (A)

P (Bc|A) · P (A) + P (Bc|Ac) · P (Ac)

=

1
n

· n−1
n

1
n

· n−1
n

+ 1 · 1
n

=
n − 1

2n − 1
.

446 We condition on whether the interchanged card is the one selected on the
second half. Let A be the event that the selected on the second half card was an
ace, and let I be the event that the card selected was the interchanged one. Then

P (A) = P (A|I) P (I) + P

�
A|I

c
�

P

�
I

c
�

= 1 ·
1

27
+

3

51
·

26

27
=

43

459
.

452 Let Y, F, E denote the events of choosing the 30% heads, the 50% heads,
and the 80% heads, respectively. Now,

P (HHT) = P (HHT|Y) · P (Y) + P (HHT|F) · P (F) + P (HHT|E) · P (E)

=
3 × 3 × 7

1000
·

1

3
+

5 × 5 × 5

1000
·

1

3
+

8 × 8 × 2

1000
·

1

3

=
79

750
,

whence

P (F|HHT) =
P (F ∩ HHT)

P (HHT)

=
P (HHT|F) · P (F)

P (HHT)

=

5 × 5 × 5

1000
·

1

3

79

750

=
125

316

453 Let T denote the event that Tom operates the machinery, S the event that
Sally operates the machinery and H that two out of three pieces of the output be
of high quality. Then

P (H) = P (H|T) · P (T) + P (H|S) · P (S)

=

�
3
2

�� 70

100

�2�
30

100

�
·

3

5
+

�
3
2

�� 90

100

�2�
10

100

�
·

2

5

=
1809

5000
,

whence

P (T|H) =
P (H|T) · P (T)

P (H)

=

�
3
2

�� 70

100

�2�
30

100

�
·

3

5

1809

5000

=
49

67
.

454 ➊ Conditioning on the urn chosen,

P (G) = P (G|A) P (A) + P (G|B) P (B) + P (G|C) P (C)

= b
a+b

· 1
3

+ d
c+d

· 1
3

+ c
a+c

· 1
3

.

➋ This is clearly c
a+c

.

➌ We use Bayes’ Rule

P (C|G) =
P (C ∩ G)

P (G)

=
P (G|C) P (C)

P (G)

=

c
a+c

· 1
3

b
a+b

· 1
3

+ d
c+d

· 1
3

+ c
a+c

· 1
3

=

c
a+c

b
a+b

+ d
c+d

+ c
a+c

➍ Conditioning on the urn chosen,

P (R) = P (R|A) P (A) + P (R|B) P (B) + P (R|C) P (C)

= a
a+b

· 1
3

+ c
c+d

· 1
3

+ a
a+c

· 1
3

.

➎ This is clearly a
a+b

.

➏ We use Bayes’ Rule

P (A|R) =
P (A ∩ R)

P (R)

=
P (R|C) P (C)

P (R)

=

a
a+b

· 1
3

a
a+b

· 1
3

+ c
c+d

· 1
3

+ a
a+c

· 1
3

=

a
a+b

a
a+b

+ c
c+d

+ a
a+c

455
p

p + q + r

457
10

17
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458
91

371

459
15

43

460
2

5

461
1

35

462
1

3

463 We have

P (HHT) =
1

4
·

4

53
+

1

4
·

12

53
+

1

4
·

18

53
+

1

4
·

16

53
=

1

10
.

Hence

P (A|HHT) =

1

4
·

4

53

P (HHT)
=

2

25
,

P (B|HHT) =

1

4
·

12

53

P (HHT)
=

6

25
,

P (C|HHT) =

1

4
·

18

53

P (HHT)
=

9

25
,

P (D|HHT) =

1

4
·

16

53

P (HHT)
=

8

25
,

so it is more likely to be coin C.



Chapter 5
Expectation and Variance

5.1 Expectation and Variance
464 Definition Let X be a discrete random variable taking on the values x1, x2, . . . , xk, . . .. The mean value or

expectation of X, denoted by E (X) is defined by

E (X) =

∞∑

k=1

xkP (X = xk) .

465 Example A player is paid $1 for getting heads when flipping a fair coin and he loses $0.50 if he gets tails.

➊ Let G denote the random variables measuring his gain. What is the image of G?

➋ Find the distribution of G.

➌ What is his expected gain in the long run?

Solution:

➊ G can either be 1 or −0.50.

➋ P (G = 1) = 1
2
, and P (G = −0.5) = 1

2
,

➌

E (G) = 1P (G = 1) − 0.5P (G = 0.5) =
3

4
.

466 Example A player is playing with a fair die. He gets $2 if the die lands on a prime, he gets nothing if the die
lands on 1, and he loses $1 if the die lands on a composite number.

➊ Let G denote the random variables measuring his gain. What is the image of G?

➋ Find the distribution of G.

➌ What is his expected gain in the long run?

Solution:

➊ G can either be 2, 0 or −1.

➋ P (G = 2) = 3
6
, P (G = 0) = 1

6
, and P (G = −1) = 2

6
.

➌

E (G) = 2P (G = 2) + 0P (G = 0) − 1P (G = −1) =
6

6
+ 0 −

2

6
=

2

3
.
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467 Example A player chooses, without replacement, two cards from a standard deck of cards. He gets $2 for each
heart suit card.

➊ Let G denote the random variables measuring his gain. What is the image of G?

➋ Find the distribution of G.

➌ What is his expected gain in the long run?

Solution:

➊ G can either be 0, 1 or 2.

➋

P (G = 0) =

�
13

0

��
39

2

��
52

2

� =
19

34
,

P (G = 1) =

�
13

1

��
39

1

��
52

2

� =
13

34
,

and

P (G = 2) =

�
13

2

��
39

0

��
52

2

� =
1

17
.

➌

E (G) = 0P (G = 0) + 1P (G = 1) + 2P (G = 2) = 0 +
13

34
+

2

17
=

1

2
.

468 Definition Let X be a discrete random variable taking on the values x1, x2, . . . , xk, . . .. Then E
�
X2
�

is
defined by

E
�
X2
�

=

∞∑

k=1

x2
kP (X = xk) .

469 Definition Let X be a random variable. The variance var (X) of X is defined by

var (X) = E
�
X2
�

− (E (X))2.

470 Example A random variable has distribution function as shewn below.

X P (X)

−1 2k

1 3k

2 4k

➊ Find the value of k.

➋ Determine the actual values of P (X = −1), P (X = 1), and P (X = 2).

➌ Find E (X).

➍ Find E
�
X2
�
.

➎ Find var (X).

Solution:
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➊ The probabilities must add up to 1:

2k + 3k + 4k = 1 =⇒ k =
1

9
.

➋

P (X = −1) = 2k =
2

9
,

P (X = 1) = 3k =
3

9
,

P (X = 2) = 4k =
4

9
.

➌

E (X) = −1P (X = −1) + 1P (X = 1) + 2P (X = 2) = −1 ·
2

9
+ 1 ·

3

9
+ 2 ·

4

9
= 1.

➍

E
�
X2
�

= (−1)2P (X = −1) + 12P (X = 1) + 22P (X = 2) = 1 ·
2

9
+ 1 ·

3

9
+ 4 ·

4

9
=

21

9
.

➎

var (X) = E
�
X2
�

− (E (X))2 =
21

9
− 12 =

4

3
.

471 Example John and Peter play the following game with three fair coins: John plays a stake of $10 and tosses
the three coins in turn. If he obtains three heads, his stake is returned together with a prize of $30. For two
consecutive heads, his stake money is returned, together with a prize of $10. In all other cases, Peter wins the
stake money. Is the game fair?

Solution: The game is fair if the expected gain of both players is the same. Let J be the random variable
measuring John’s gain and let P be the random variable measuring Peter’s gain. John wins when the coins shew
HHH, HHT, THH. Thus

E (J) = 30P (HHH) + 10P (HHT) + 10P (THH)

= 30 ·
1

8
+ 10 ·

1

8
+ 10 ·

1

8

=
25

4
.

Peter wins when the coins shew HTH, HTT, THT, TTH, TTT . Thus

E (P) = 10P (HTH) + 10P (HTT) + 10P (THT) + 10P (TTH) + 10P (TTT)

= 10 ·
1

8
+ 10 ·

1

8
+ 10 ·

1

8
+ 10 ·

1

8
+ 10 ·

1

8

=
25

4
,

whence the game is fair.

472 Example There are eight socks in a box, of which four are white and four are black. Socks are drawn one at a
time (without replacement) until a pair is produced. What is the expected value of drawings? (Clearly, this
number should be between 2 and 3.)
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Solution: Let X be the random variable counting the number of drawings. Now, X = 2 means that matching socks
are obtained when 2 socks are drawn. Hence

P (X = 2) =

�
2

1

��
4

2

��
8

2

� =
3

7
,

and thus P (X = 3) =
4

7
. Therefore

EX = 2P (X = 2) + 3P (X = 3) = 2 ·
3

7
+ 3 ·

4

7
=

18

7
.

473 Example Suppose that a player starts with a fortune of $8. A fair coin is tossed three times. If the coin comes
up heads, the player’s fortune is doubled, otherwise it is halved. What is the player’s expected fortune?

Solution: The player may have:� three wins, with probability
�
3

3

�
(1

2
)3 = 1

8
and his fortune increases eightfold.� two wins, and one loss, with probability
�
3

2

�
(1

2
)3 = 3

8
and his fortune doubles.� one win, and two losses, with probability

�
3

1

�
(1

2
)3 = 3

8
, and his fortune halves.� three losses, with probability

�
3

0

�
(1

2
)3 = 1

8
and his fortune reduces by a factor of 8.

His expected fortune is thus

8

�
8 ·

1

8
+ 2 ·

3

8
+

1

2
·

3

8
+

1

8
·

1

8

�
=

125

8
.

Homework

474 Problem A fair die is tossed. If the resulting number is
even, you multiply your score by 2 and get that many
dollars. If the resulting number is odd, you add 1 to your
score and get that many dollars. Let X be the random
variable counting your gain, in dollars.

➊ Give the range of X.

➋ Give the distribution of X.

➌ Find E (X).

➍ Find var (X).

475 Problem A casino game consists of a single toss of a fair
die and pays off as follows: if the die comes up with an odd
number, the player is paid that number of dollars (i.e., $1

for rolling a 1, $3 for rolling a 3, and $5 for rolling a 5), and
if an even number comes up the player is paid nothing.
What fee should the casino charge to play the game to make
it exactly fair?

476 Problem At a local carnival, Osa pays $1 to play a game
in which she chooses a card at random from a standard deck
of 52 cards. If she chooses a heart, then she receives $2 (that
is, $1 plus her initial bet of $1). If she chooses the Queen of
Spades she receives $13. Which of the following is closest to
Osa’s expected net profit from playing the game?

477 Problem Consider the random variable X with
distribution table as follows.

X P (X)

−2 0.3

−1 k

0 5k

1 2k

➊ Find the value of k.

➋ Find E (X).

➌ Find E
�
X2
�
.

➍ Find var (X).

478 Problem A fair coin is to be tossed thrice. The player
receives $10 if all three tosses turn up heads, and pays $3 if
there is one or no heads. No gain or loss is incurred
otherwise. If Y is the gain of the player, find EY.
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479 Problem A die is loaded so that if D is the random
variable giving the score on the die, then P (D = k) = k

21
,

where k = 1, 2, 3, 4, 5, 6. Another die is loaded differently, so
that if X is the random variable giving the score on the die,

then P (X = k) = k2

91
.

➊ Find the expectation E (D + X).

➋ Find the variance var (D + X).

480 Problem John and Peter each put $1 into a pot. They
then decide to throw a pair of dice alternately (John plays
first, Peter second, then John again, etc.). The first one who
throws a 5 wins the pot. How much money should John add
to the pot in order to make the game fair?

481 Problem A man pays $1 to throw three fair dice. If at
least one 6 appears, he receives back his stake together with
a prize consisting of the number of dollars equal to the
number of sixes shewn. Does he expect to win or lose?

482 Problem (AHSME 1989) Suppose that k boys and
n − k girls line up in a row. Let S be the number of places
in the row where a boy and a girl are standing next to each
other. For example, for the row

GBBGGGBGBGGGBGBGGBGG,

with k = 7, n = 20 we have S = 12. Shew that the average
value of S is 2k(n−k)

n
.

5.2 Indicator Random Variables
483 Example Six different pairs of socks are put in the laundry (12 socks in all, and each sock has only one mate),
but only 7 socks come back. What is the expected number of pairs of socks that come back?

Solution: Let Xi = 0 if the i-th pair does not come back, and Xi = 1 if it does. We want

EX1 + · · · + EX6 = 6EX1 = 6P (X1 = 1) ,

since the Xi have the same distribution. Now

P (X1 = 1) =

�
2

2

�
·
�
10

5

��
12

7

� =
7

22
,

and the required expectation is
21

11
.

484 Example A standard deck of cards is turned face up one card at a time. What is the expected number of cards
turned up in order to obtaina king?

Solution: (1) Consider the 48 cards which are not kings and for 1 ≤ i ≤ 48 put

Xi =






1 if the i−th non − king appears before a king.

0 otherwise

Then

X = 1 +

48∑

i=1

Xi

is the number of cards turned up in order to obtain a king. Let us prove that P (Xi = 1) =
1

5
. To this end, paint

card i blue, then we have 47 cards which are not kings, card i, and 4 kings. The experiment consists in permuting

all these cards, which can be done in
52!

47!4!
ways. A favourable arrangement has the form

x1Bx2Kx3Kx4Kx5Kx6,

where the B is the blue card, K is a king, and xn can be any of the of the 47 other non-Kings. The number of
favourable arrangements is thus the number of non-negative integral solutions to x1 + · · · + x6 = 47, which is�
47+6−1

5

�
=

52!

5!47!
. Hence
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P (Xi = 1) =

52!

5!47!
52!

4!47!

=
1

5
.

Notice that

P (Xi = 1) =
1

5
=⇒ EX = 1 +

48

5
=

53

5
.

485 Example An urn contains 30 cards: two numbered 1, two numbered 2, . . . , two numbered 15. Ten cards are
drawn at random from the urn. What is the expected number of pairs remaining in the urn?

Solution: For 1 ≤ i ≤ 15 put put

Xi =






1 if the i−th pair remains in the urn.

0 otherwise

Then

P (Xi = 1) =

�
28

10

��
2

2

��
30

10

� =

28!

18!10!
30!

20!18!

=
38

87
,

and the desired expectation is
15 · 38

87
=

190

29
.

486 Example Suppose that a class contains 10 boys and 15 girls, and suppose that 8 students are to be selected at
random from the class without replacement. Let X denote the number of boys that are selected and let Y denote
the number of girls that are selected. Find E(X − Y).

Solution: The fastest way to do this is perhaps the following. Let Xi = 1 if the i-th boy is selected, Xi = 0

otherwise. Then P (Xi = 1) =

�
24

7

��
25

8

� =
8

25
and EX =

10 · 8

25
=

16

5
. Similarly, let Yi = 1 if the i-th girl is selected,

Yi = 0 otherwise. Then P (Yi = 1) =

�
24

7

��
25

8

� =
8

25
and EY =

15 · 8

25
=

24

5
. Thus E(X − Y) = EX − EY = −

8

5
.

Homework

487 Problem A standard deck of cards is turned face up one
card at a time. What is the expected number of cards turned
up in order to obtain a heart?

488 Problem If X denotes the number of 1’s when 72 dice
are thrown, find EX2 .

489 Problem Seven married couples, the Adams, the
Browns, the Castros, the Friedmans, the Lignowskis, the
Santos, and the Jias , go to a desert island. Unbeknownst to
them, a group of savages and cannibals awaits them. After
an agonic week, five of the fourteen people survive. What is
the average number of last names which are represented? (A
last name is represented if either spouse, or possibly, both
spouses, survived.)

5.3 Conditional Expectation
490 Example A fair coin is tossed. If a head occurs, one fair die is rolled, else, two fair dice are rolled. Let X be
the total on the die or dice. Find EX.
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Solution: EX =
21

4
.

491 Example In the city of Jerez de la Frontera, in Cádiz, Spain, true sherry is made according to a multistage
system called Solera. Assume that a winemaker has three barrels, A, B, and C. Every year, a third of the wine
from barrel C is bottled and replaced by wine from B; then B is topped off with a third of the wine from A; finally
A is topped off with new wine. Find the mean of the age of the wine in each barrel, under the assumption that the
operation has been going on since time immemorial.

Solution: We start with barrel A. Abusing notation, we will let A the random variable indicating the number of
years of wine in barrel A, etc. After the transfer has been made, the mean age of the new wine is 0 years and the
mean age of the old wine is a year older than what it was. Hence

A =
1

3
Anew +

2

3
Aold =⇒ EA =

1

3
EAnew +

2

3
EAold =⇒ EA =

1

3
· 0 +

2

3
(1 + EA) =⇒ EA = 2.

Thus EAold = 3. Now,

B =
1

3
Bnew +

2

3
Bold =

1

3
Aold +

2

3
Bold =⇒ EB =

1

3
· 3 +

2

3
EBold =⇒ EB =

3

3
+

2

3
(1 + EB) =⇒ EB = 5.

Hence, EBold = 6. Similarly,

C =
1

3
Cnew +

2

3
Cold =

1

3
Bold +

2

3
Cold =⇒ EC =

1

3
· 6 +

2

3
ECold =⇒ EC =

6

3
+

2

3
(1 + EC) =⇒ EC = 8.

Homework

492 Problem A fair coin is tossed repeatedly until heads is
produced. If it is known that the coin produces heads within

the first flip, what is the expected number of flips to produce
the first heads?

Answers

475 Let G be the random variable denoting the gain of the player. Then G has
image {0, 1, 3, 5} and

P (G = 0) =
1

2
, P (G = 1) = P (G = 3) = P (G = 5) =

1

6
.

Thus

EG = 0P (G = 0)+1P (G = 1)+3P (G = 3)+5P (G = 5) =
1 + 3 + 5

6
=

3

2
,

meaning that the fee should be $1.50.

476 Let G be the random variable denoting Osa’s net gain. Then G has image
{−1, 1, 12} and

P (G = −1) =
38

52
, P (G = 1) =

13

52
, P (G = 12) =

1

52
.

Thus

EG = −1P (G = −1) + 1P (G = 1) + 12P (G = 13)

=
−38 + 13 + 12

52

= −
13

52

= −0.25,

and so the net gain is −$0.25.

477 0.0875; −0.5125 ; 1.4625 ; 1.19984375

478 −0.25

480 $
1

8

481 Lose.

487 1 +
39

14
=

53

14

488 X is a binomial random variable with EX = np =
72

6
= 12 and

varX = np(1 − p) = 72

�
1

6

��
5

6

�
= 10. But

EX
2 = var(X) + (EX)2 = 10 + 122 = 154.

489 7

 �
2
1

��
12
4

�
+

�
2
2

��
12
3

��
14
5

� !
=

55

13

492 Let F be the random variable counting the number of flips till the first
heads. Then Im (F) = {1, 2, 3}. Let A be the event that heads is produced
within the first three flips. Then

P (A) =
1

2
+

1

4
+

1

8
=

7

8
.

Hence

P (F = 1|A) =
P ((F = 1) ∩ A)

P (A)
=

1
2

7
8

=
4

7
;

P (F = 2|A) =
P ((F = 2) ∩ A)

P (A)
=

1
4

7
8

=
2

7
;

P (F = 3) =
P ((F = 3|A) ∩ A)

P (A)
=

1
8

7
8

=
1

7
.

Thus

E(F|A) = 1 ·
4

7
+ 2 ·

2

7
+ 3 ·

1

7
=

11

7
.



Chapter 6
Markov Chains

6.1 Discrete Time Stochastic Processes
493 Definition If a random variable X has image S , where S is a finite or countably infinite set, we say that X is
a discrete random variable, having S as its (discrete) state space.

☞ In this chapter, unless otherwise noted, we will only consider discrete random variables.

494 Example When flipping a fair coin and watching for the outcome, the state space of the outcome is {H, T },
where H denotes heads and T tails.

495 Example When rolling a fair die and watching for the number of dots, the state space of the random variable
X counting the number of dots is {1, 2, 3, 4, 5, 6}.

496 Example When rolling a fair die and watching for a 6 to appear, the state space of the random variable X

counting the number of trials is the countably infinite set {1, 2, 3, . . . , }.

497 Definition A sequence of random variables X1, X2, . . . , Xn, . . . , all having state space S is said to be a
discrete time stochastic process. Here the subindices indicate the time or step, so Xk is the process at step k. If
Xk = s, for s ∈ S , we say that the process is in state s at time k.

498 Definition A stochastic process X1, X2, . . . , Xn, . . . , is said to be a Markov Chain if

P (Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = xn+1|Xn = xn) ,

that is, the probability that the process changes from one step to another only depends on the immediate past and
not in the whole history of steps. The probability P (Xn+1 = xn+1|Xn = xn) is called the transition probability

and we write

P (Xn+1 = xn+1|Xn = xn) = pxnxn+1
.

The matrix P = [pxixj
] is called the transition matrix of the Markov chain.

499 Definition A Markov Chain X1, X2, . . . , Xn, . . . , is said to be a stationary if the transition probabilities
have the same value for every time n, that is, if for all states x, y,

P (Xn+1 = y|Xn = x) = P (Xk+1 = y|Xk = x) = pxy.

From here on we will only consider stationary finite Markov Chains. Thus a Markov chain will have states
x1, x2, . . . , xk.

88
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500 Example A tourist with a very short memory wants to visit four capitals: London, Dublin, Edinburgh, and
Athens. He picks the first capital at random. If he selects London, he next chooses—with equal
probability—between Dublin, Edinburgh, or Athens. If he then selects Dublin, he next chooses between London,
Edinburgh, or Athens. His memory is so short that he forgets that he has already visited London. Next time again
he chooses between three capitals, and so on. Observe that the process of moving from city to city is a Markov
Chain, since the movement from one step to the next only depends on the previous step. The states are the
different capitals. If each capital is denoted by its initial, what is the transition matrix of this process is

L D E A
L 0 1

3
1
3

1
3

D 1
3

0 1
3

1
3

E 1
3

1
3

0 1
3

A 1
3

1
3

1
3

0

501 Example Rich widow A owns two paintings by Goya, three by Velázquez, and four by Bosch. She displays
only one of these paintings at her dinner parties. From party to party, the painting on the display is replaced by a
randomly chosen one from the other eight paintings. Let G be the state “a Goya is on display”, V be “a Velázquez is
on display, and B be “a Bosch is on display.” This process is clearly a Markov Chain. Its transition matrix is

G V B
G 1

8
3
8

1
2

V 1
4

1
4

1
2

B 1
4

3
8

3
8

Homework

502 Problem A witch has a pet collection: a tarantula, a
lizard, and a frog. From day to day, she likes to pet a single
animal in the following fashion: she never pets the same
animal two days in a row. If she pets the tarantula today,
she will pet the the lizard tomorrow with probability 0.2; if
she pets the lizard today, she will pet the frog tomorrow
with probability 0.5; if she pets the frog today she will pet
the tarantula tomorrow with probability 0.3. Assume that
the day-to-day petting is a Markov Chain, where the animal
petted represents the state of the chain. If T stands for

tarantula, L for lizard, and F for frog, what is the transition
matrix of this process?

503 Problem Rich widow A owns two paintings by Goya,
three by Velázquez, and four by Bosch. She displays only one
of these paintings at her dinner parties. From party to party,
the painting on the display is replaced by a randomly chosen
one from the other two artists. Let G be the state “a Goya is
on display”, V be “a Velázquez is on display, and B be “a
Bosch is on display.” This process is clearly a Markov Chain.

6.2 Long Run Probabilities
504 Example Using data collected for a particular region over many years, an insurance company has ascertained
that 20% of the drivers involved in an automobile accident one year are also involved in an accident the following
year, while only 10% of the drivers not involved in an accident one year are involved in an accident the following
year. Use these percentages as approximate empirical probabilities to find the probability that (in the long run) a
driver chosen at random will be involved in an accident during any given year.

Solution: The transition matrix is 26640.20 0.80

0.10 0.90

3775 .

Solving �
a 1 − a

� 26640.20 0.80

0.10 0.90

3775 =

�
a 1 − a

�
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we get a =
1

9
. The probability sought is thus

1

9
.

505 Example Three people, A, B, C, are playing catch. The probabilities each will throw the other are

P (A → B) =
1

2
, P (A → C) =

1

2
, P (B → A) =

1

4
, P (B → C) =

3

4
, P (C → A) =

1

2
, and P (C → B) =

1

2
.

What is the probability that A will have the ball in the long run?

Solution: The transition matrix is 26666664 0 1/2 1/2

1/4 0 3/4

1/2 1/2 0

37777775 .

Solving �
a b 1 − a − b

� 26666664 0 1/2 1/2

1/4 0 3/4

1/2 1/2 0

37777775 =

�
a b 1 − a − b

�
we get a =

5

18
, b =

1

3
. The probability sought is thus

5

18
.

Answers

502

Today

Tomorrow
T L F

T 0 0.2 0.8

L 0.5 0 0.5

F 0.3 0.7 0

503

G V B

G 0 3
7

4
7

V 1
3

0 2
3

B 2
5

3
5

0



Chapter 7
Uniform Continuous Random Variables

506 Definition Let C be a body in one dimension (respectively, two, or three dimensions) having positive length
meas (C) (respectively, positive area or positive volume). A continuous random variable X defined on C is a
random variable with probability given by

P (X ∈ A) =
meas (A)

meas (C)
.

This means that the probability of of an event is proportional to the length (respectively, area or volume) that this
body A occupies in C.

507 Example A dartboard is made of three concentric circles of radii 3, 5, and 7, as in figure 7.1. A dart is thrown
and it is assumed that it always lands on the dartboard. Here the inner circle is blue, the middle ring is white and
the outer ring is red.

➊ The size of the sample space for this experiment is π(7)2 = 49π.

➋ The probability of landing on blue is
π(3)2

49π
=

9

49
.

➌ The probability of landing on white is
π(5)2 − π(3)2

49π
=

16

49
.

➍ The probability of landing on red is
π(7)2 − π(5)2

49π
=

24

49
.

3

5

7

Figure 7.1: Example 507

508 Definition The distribution function F of a random variable X is F(a) = P (X ≤ a).

91
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A distribution function satisfies

➊ If a < b then F(a) ≤ F(b).

➋ lima→−∞ F(a) = 0,

➌ lima→+∞ F(a) = 1.

509 Example A random variable X has probability distribution

P (X ≤ x) = κmeas (x) ,

where meas (x) denotes the area of the polygon in figure 509 up to abscissa x. Assume that P (X ≤ 0) = 0 and
that P (X ≤ 6) = 1.

➊ Find the value of κ.

➋ Find P (X ≤ 2) .

➌ Find P (3 ≤ X ≤ 4) .

Solution:

➊ The figure is composed of a rectangle and a triangle, and its total area is (4)(2) + 1
2
(4)(5) = 8 + 10 = 18.

Since 1 = P (X ≤ 6) = κmeas (6) = 18κ we have κ =
1

18
.

➋ P (X ≤ 2) is the area of the rectangle between x = 0 and x = 2 and so P (X ≤ 2) = 1
18

(8) = 4
9
.

➌ P (3 ≤ X ≤ 4) is the area of a trapezoid of bases of length 2.5 and 5 and height 1, thus
P (3 ≤ X ≤ 4) = 1

18
· 1

2
(5

2
+ 5) = 5

24
.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Figure 7.2: Example 509

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Figure 7.3: Example 510

510 Example A random variable X has probability distribution

P (X ≤ x) = κA(x),

where A(x) denotes the area of the polygon in figure 510 up to abscissa x. Assume that P (X ≤ 0) = 0 and that
P (X ≤ 7) = 1.

➊ Find the value of κ.

➋ Find P (X ≤ 3) .

➌ Find P (X ≤ 5) .
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➍ Find P (X ≤ 6) .

➎ Find P (1 ≤ X ≤ 2) .

➏ Find P (X ≥ 6) .

➐ Find a median m of X, that is, an abscissa that simultaneously satisfies P (X ≥ m) ≥ 1
2

and

P (X ≤ m) ≥ 1
2
.

Solution:

➊ In [0; 3] the figure is a triangle with base 3 and height 4, and so its area is 6. In [3; 5] the figure is a rectangle,
with base 2 and height 4, and so its area is 8. In [5; 6] the figure is a rectangle, with base 1 and height 2, and
so its area is 2. In [6; 7] the figure is a trapezium, with bases 2 and 4 and height 1, and so its area is 3.
Adding all these areas together we obtain 6 + 8 + 2 + 3 = 19. Since

1 = P (X ≤ 7) = κA(7) = κ(19),

we obtain κ = 1
19

.

➋ This measures the proportion of the area enclosed by the triangle, and so P (X ≤ 3) = 6
19

.

➌ This measures the proportion of the area enclosed by the triangle and the first rectangle, and so
P (X ≤ 5) = 6+8

19
= 14

19
.

➍ This measures the proportion of the area enclosed by the triangle, and the first and second rectangle, and so
P (X ≤ 6) = 6+8+2

19
= 16

19
.

➎ The area sought is that of a trapezium. One (of many possible ways to obtain this) is to observe that

P (1 ≤ X ≤ 2) = P (X ≤ 2) − P (X ≤ 1) .

To find P (X ≤ 2) observe that the triangle with base on [0; 4] is similar to the one with base on [0; 2]. If its
height is h1 then h1

4
= 2

3
, whence h1 = 8

3
, and

P (X ≤ 2) =
1

19

�
1

2
· 2 ·

8

3

�
=

8

57
.

To find P (X ≤ 1) observe that the triangle with base on [0; 4] is similar to the one with base on [0; 1]. If its
height is h2 then h2

4
= 1

3
, whence h2 = 4

3
, and

P (X ≤ 1) =
1

19

�
1

2
· 1 ·

4

3

�
=

2

57
.

Finally,

P (1 ≤ X ≤ 2) = P (X ≤ 2) − P (X ≤ 1) =
8

57
−

2

57
=

2

19
.

➏ Since the curve does not extend from x = 7, we have

P (X ≥ 6) = P (6 ≤ X ≤ 7) =
2

19
.

➐ From parts (2) and (3), 3 < m < 5. For m in this range, a rectangle with base m − 3 and height 4 has area
4(m − 3). Thus we need to solve

1

2
= P (X ≤ m) =

6 + 4(m − 3)

19
,

which implies
19

2
= 6 + 4(m − 3) =⇒ m =

31

8
= 3.875.
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l
2

l
2

l

l

Figure 7.4: Example 511

K

K

L

L

Figure 7.5: Example 512

511 Example A rod of length l is broken into three parts. What is the probability that these parts form a triangle?

Solution: Let x, y, and l − x − y be the lengths of the three parts of the rod. If these parts are to form a triangle,
then the triangle inequality must be satisfied, that is, the sum of any two sides of the triangle must be greater than
the third. So we simultaneously must have

x + y > l − x − y =⇒ x + y >
l

2
,

x + l − x − y > y =⇒ y <
l

2
,

y + l − x − y > x =⇒ x <
l

2
.

Since trivially 0 ≤ x + y ≤ l, what we are asking is for the ratio of the area of the region

A = {(x, y) : 0 < x <
l

2
, 0 < y <

l

2
, x + y >

l

2
}

to that of the triangle with vertices at (0, 0), (l, 0) and (0, l). This is depicted in figure 7.4. The desired
probability is thus

l2

8

l2

2

=
1

4
.

512 Example Two points are chosen at random on a segment of length L. Find the probability that the distance
between the points is at most K, where 0 < K < L.

Solution: Let the points chosen be X and Y with 0 ≤ X ≤ L, 0 ≤ Y ≤ L, as in figure 7.5. The distance of the
points is at most K if |X − Y| ≤ K, that is

X − K ≤ Y ≤ X + K.

The required probability is the ratio of the area shaded inside the square to the area of the square:

L2 − 2
(K−L)2

2

L2
=

K(2L − K)

L2
.

513 Example The amount 2.5 is split into two nonnegative real numbers uniformly at random, for instance, into
2.03 and 0.47 or into 2.5 −

√
3 and

√
3. Then each of the parts is rounded to the nearest integer, for instance 2

and 0 in the first case above and 1 and 2 in the second. What is the probability that the two numbers so obtained
will add up to 3?

Solution: Consider x and y with 0 ≤ x ≤ 2.5 and x + y = 2.5 Observe that the sample space has size 2.5. We
have a successful pair (x, y) if it happens that (x, y) ∈ [0.5; 1] × [1.5; 2] or (x, y) ∈ [1.5; 2] × [0.5; 1] The measure
of all successful x is thus 0.5 + 0.5 = 1. The probability sought is thus 1

2.5
= 2

5
.
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514 Example Two points (x, y) are chosen at random on a rectangle 5 feet by 3 feet. What is the probability that
the two points are within one foot of each other?

Solution: We want P (|x − y| < 1) = P (−1 + x < y < 1 + x). This is the area shaded in figure 7.6. The area of the
rectangle is 3 · 5 = 15, of the white triangle 1

2
· (2)(2) = 2, and of the white trapezoid 1

2
· (1 + 4)(3) = 15

2
. The

desired probability is thus
15 − 2 − 15

2

15
=

11

30
.

0

1

2

3

4

0 1 2 3 4 5 6

Figure 7.6: Problem 514.



Appendix A
The Integers

515 Definition Let a, b be integers with a 6= 0. Write a|b (read “a divides b”) if there exists an integer t such
that b = at. We say that a is a factor of b and that b is a multiple of a.

For example −5|10 (−5 divides 10) because 10 = (−2)(−5). If c does not divide d we write c ∤ d.

516 Definition Let a ∈ Z. The set of multiples of a is denoted by

aZ = {. . . , −4a, −3a, −2a, −a, 0, a, 2a, 3a, 4a, . . . , }.

For example,
2Z = {. . . − 8, −6, , −4, −2, 0, 2, 4, 6, 8, . . . , },

is the set of even integers and

3Z = {. . . − 12, −9, , −6, −3, 0, 3, 6, 9, 12, . . . , },

is the set of multiples of 3.

517 Theorem Let a, b be integers, not both equal to 0. Then

aZ ∩ bZ = lcm (a, b) Z.

Proof: If x ∈ aZ ∩ bZ then x = as, x = bt. Thus x is a common multiple of a and b. This

means that aZ ∩ bZ ⊆ lcm (a, b) Z.

Conversely, there exist integers u, v such that au = lcm (a, b) and bv = lcm (a, b). Hence

lcm (a, b) Z = auZ ⊆ aZ and lcm (a, b) Z = bvZ ⊆ bZ. This means that lcm (a, b) Z ⊆ aZ ∩ bZ.

Since we have proved that aZ ∩ bZ ⊆ lcm (a, b) Z and lcm (a, b) = aZ ∩ bZ, we must conclude

that aZ ∩ bZ = lcm (a, b) Z, as claimed. ❑

518 Example
2Z ∩ 3Z = lcm (2, 3) Z = 6Z,

12Z ∩ 15Z = lcm (12, 15) Z = 60Z.

519 Definition Let a, b be integers with a 6= 0. We define the set aZ + b as

aZ + b = {an + b : n ∈ Z}.

These are the integers that leave remainder b upon division by a.

96
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Thus
2Z + 1 = {. . . , −5, −3, −1, 1, 3, 5, . . .}

is the set of odd integers. Notice also that 2Z + 1 = 2Z − 1.

3Z + 2 = {. . . , −7, −4, −1, 2, 5, 8, . . .}

is the set of integers leaving remainder 2 upon division by 3.

520 Definition Let x be a real number. The floor of x, denoted by TxU is the greatest integer less than or equal to
x. That is, TxU is the unique integer satisfying the inequalities

x − 1 < TxU ≤ x.

☞ TxU is the integer just to the left of x if x is not an integer, and x if x is an integer.

521 Example
T0.5U = 0,

T−0.5U = −1,

T2.2U = 2,

T2.9U = 2,

T−2.2U = −3,

T2U = 2.

522 Definition Let x be a real number. The ceiling of x, denoted by VxW is the least integer greater than or equal
to x. That is, VxW is the unique integer satisfying the inequalities

x ≤ VxW < x + 1.

☞ VxW is the integer just to the right of x if x is not an integer, and x if x is an integer.

523 Example
V0.5W = 1,

V−0.5W = 0,

V2.2W = 3,

V2.9W = 3,

V−2.2W = −2,

V2W = 2.

524 Example In the set A = {1, 2, . . . , 500} of 500 integers there are

T
500

2
U = 250 divisible by 2, namely {2, 4, 6, . . . , 500},

T
500

3
U = 166 divisible by 3, namely {3, 6, 9, . . . , 498},

T
500

5
U = 100 divisible by 5, namely {5, 10, 15, . . . , 500},

T
500

7
U = 71 divisible by 7, namely {7, 14, 21, . . . , 497},

T
500

11
U = 45 divisible by 11, namely {11, 22, 33, . . . , 495},

T
500

77
U = 6 divisible by 7, namely {77, 154, 231, . . . , 462},

T
500

251
U = 1 divisible by 251, namely {251}.
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525 Theorem (Division Algorithm) Let a > 0 be an integer. For every integer n there exist unique integers q and
r such that

n = qa + r, 0 ≤ r < a.

Here a is the divisor, n the dividend, q the quotient, and r the remainder.

Proof: n must lie between two consecutive multiples of a, that is, there exist q such that

qa ≤ n < (q + 1)a. This gives

q ≤
n

a
< q + 1.

It follows that

q = T
n

a
U.

From this q is unique. We now let

r = n − qa = n − T
n

a
Ua.

Clearly 0 ≤ r < a, and the uniqueness of r follows from that of q. ❑

☞ There are exactly a possible remainders when an arbitrary integer is divided by a. Our

version of the Division Algorithm says that these remainders may be either 0, or 1, or 2, . . . , or

a − 1.

526 Example For the divisor a = 3, we have

100 = 3(33) + 1,

101 = 3(33) + 2,

103 = 3(34) + 0,

−100 = 3(−34) + 2.

Notice that our version of the Division Algorithm requires that the remainder r satisfy 0 ≤ r < 3.

It is important to realise that given an integer n > 0, the Division Algorithm makes a partition of all the integers
according to their remainder upon division by n. For example, every integer lies in one of the families 3k, 3k + 1

or 3k + 2 where k ∈ Z. Observe that the family 3k + 2, k ∈ Z, is the same as the family 3k − 1, k ∈ Z. Thus

Z = A ∪ B ∪ C

where

A = {. . . , −9, −6, −3, 0, 3, 6, 9, . . .}

is the family of integers of the form 3k, k ∈ Z,

B = {. . . − 8, −5, −2, 1, 4, 7, . . .}

is the family of integers of the form 3k + 1, k ∈ Z and

C = {. . . − 7, −4, −1, 2, 5, 8, . . .}

is the family of integers of the form 3k − 1, k ∈ Z.
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Again, we can arrange all the integers in five columns as follows:

...
...

...
...

...

−10 −9 −8 −7 −6

−5 −4 −3 −2 −1

0 1 2 3 4

5 6 7 8 9

...
...

...
...

...

The arrangement above shews that any integer comes in one of 5 flavours: those leaving remainder 0 upon division
by 5, those leaving remainder 1 upon division by 5, etc. We let

5Z = {. . . , −15, −10, −5, 0, 5, 10, 15, . . .},

5Z + 1 = {. . . , −14, −9, −4, 1, 6, 11, 16, . . .},

5Z + 2 = {. . . , −13, −8, −3, 2, 7, 12, 17, . . .},

5Z + 3 = {. . . , −12, −7, −2, 3, 8, 13, 18, . . .},

5Z + 4 = {. . . , −11, −6, −1, 4, 9, 14, 19, . . .}.

527 Example Which number of {330, 331, 332, 334, 335, 336, 337, 338, 339} lies in the sequence

−9, 3, 15, . . . ?

Solution: The numbers of the sequence have the form 12k + 3, k = −1, 0, 1, 2, . . . ,, that is, they leave remainder 3

upon division by 12. Now, 339 = 12 · 28 + 3, and so 339 is the only integer in the group that lies in the sequence.

Homework

528 Problem Determine the set 4Z ∩ 10Z.

529 Problem Find T
100

3
U, T

3

100
U, T−

100

3
U, and T−

3

100
U.

530 Problem In the set of 600 integers {1, 2, . . . , 600} how
many are divisible by 7? by 10? by 121?

531 Problem In the set of 300 integers {2, 4, 6, . . . , 600} how
many are divisible by 7? by 10? by 121?

532 Problem Consider the arithmetic progression

−8, −3, 2, 7, . . . .

Which of the 5 numbers {2000, 2001, 2002, 2003, 2004}, if
any, belongs to it?

533 Problem Consider the arithmetic progression

−8, 12, 32, 52, . . . .

Which of the 10 numbers

{2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009},

if any, belongs to it?



Appendix B
Divisibility Tests

In this section we study some divisibility tests. These will help us further classify the integers. We start with the
simple

534 Theorem An integer n is divisible by 5 if and only if its last digit is a 0 or a 5.

Proof: We derive the result for n > 0, for if n < 0 we simply apply the result to −n > 0. Now, let

the decimal expansion of n be

n = as10s + as−110s−1 + · · · + a110 + a0,

where 0 ≤ ai ≤ 9, as 6= 0. Then

n = 10(as10s−1 + as−110s−2 + · · · + a1) + a0.

The first summand is divisible by 10 and it the divisibility of n by 5 thus depends on whether a0

is divisible by 5, whence the result follows. ❑

535 Theorem Let k be a positive integer. An integer n is divisible by 2k if and only if the number formed by the
last k digits of n is divisible by 2k.

Proof: If n = 0 there is nothing to prove. If we prove the result for n > 0 then we can deduce

the result for n < 0 by applying it to −n = (−1)n > 0. So assume that n ∈ Z, n > 0 and let its

decimal expansion be

n = as10s + as−110s−1 + · · · + a110 + a0,

where 0 ≤ ai ≤ 9, as 6= 0. Now, each of 10k = 2k5k, 10k+1 = 2k+15k+1, . . . , 10s = 2s5s, is

divisible by 2k, hence

n = as10s + as−110s−1 + · · · + a110 + a0

= 2k(as2s−k5s + as−12s−k−15s−1 + · · · + ak5k)

+ak−110k−1 + ak−210k−2 + · · · + a110 + a0,

so n is divisible by 2k if and only if the number formed by the last k digits of n is divisible by 2k.

❑

536 Example The number 987654888 is divisible by 23 = 8 because the number formed by its last three digits,
888 is divisible by 8.

100
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537 Example The number 191919191919193216 is divisible by 24 = 16 because the number formed by its last
four digits, 3216 is divisible by 16.

538 Example By what digits may one replace A so that the integer 231A2 be divisible by 4?

Solution: The number 231A2 is divisible by 4 if and only if A2 is divisible by 4. This happens when A = 1

(A2 = 12), A = 3 (A2 = 32), A = 5 (A2 = 52), A = 7 (A2 = 72), and A = 9 (A2 = 92). Thus the five numbers

23112, 23132, 2315223172, 23192,

are all divisible by 4.

539 Example Determine digits a, b so that 235ab be divisible by 40.

Solution: 235ab will be divisible by 40 if and only if it is divisible by 8 and by 5. If 235ab is divisible by 8 then,
a fortiori, it is even and since we also require it to be divisible by 5 we must have b = 0. Thus we need a digit a

so that 5a0 be divisible by 8. Since 0 ≤ a ≤ 9, a quick trial an error gives that the desired integers are

23500, 23520, 23540, 23560, 23580.

540 Lemma If k is a positive integer, 9|(10k − 1).

Proof: This is immediate from the identity

xk − yk = (x − y)(xk−1 + xk−2y1 + xk−3y3 + · · · + yk−1),

upon putting x = 10, y = 1. ❑

541 Theorem (Casting-out 9’s) An integer n is divisible by 9 if and only if the sum of it digits is divisible by 9.

Proof: If n = 0 there is nothing to prove. If we prove the result for n > 0 then we can deduce

the result for n < 0 by applying it to −n = (−1)n > 0. So assume that n ∈ Z, n > 0 and let its

decimal expansion be

n = as10s + as−110s−1 + · · · + a110 + a0,

where 0 ≤ ai ≤ 9, as 6= 0. Now

n = as10s + as−110s−1 + · · · + a110 + a0

= as(10s − 1) + as−1(10s−1 − 1) + · · · + a1(10 − 1)

+as + · · · + a1 + a0,

from where the result follows. ❑

542 Example What values should the digit d take so that the number 32d5 be divisible by 9?

Solution: The number 32d5 is divisible by 9 if and only 3 + 2 + d + 5 = d + 10 is divisible by 9. Now,

0 ≤ d ≤ 9 =⇒ 10 ≤ d + 10 ≤ 19.

The only number in the range 10 to 19 divisible by 9 is 18, thus d = 8. One can easily verify that 3285 is divisible
by 9.

Since 3|(10k − 1) for positive integer k, we also obtained the following corollary.
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543 Corollary An integer n is divisible by 3 if and only if its digital sum is divisible by 3.

544 Example Is there a digit d so that 125d be divisible by 45?

Solution: If 125d were divisible by 45, it must be divisible by 9 and by 5. If it were divisible by 5, then d = 0 or
d = 5. If d = 0, the digital sum is 1 + 2 + 5 + 0 = 8, which is not divisible by 9. Similarly, if d = 5, the digital
sum is 1 + 2 + 5 + 5 = 13, which is neither divisible by 9. So 125d is never divisible by 45.

545 Definition If the positive integer n has decimal expansion

n = as10s + as−110s−1 + · · · + a110 + a0,

the alternating digital sum of n is

as − as−1 + as−2 − as−3 + · · · + (−1)s−1a0

546 Example The alternating digital sum of 135456 is

1 − 3 + 5 − 4 + 5 − 6 = −2.

547 Lemma If t is even, then 11|(10t − 1) and if t is odd, 11|(10t + 1).

Proof: Assume t = 2a, where a is a positive integer. Then

102a − 1 = (102 − 1)((102)a−1 + (102)a−2 + · · · + 102 + 1)

= 9 · 11((102)a−1 + (102)a−2 + · · · + 102 + 1),

which is divisible by 11. Similarly if t = 2a + 1, where a ≥ 0 is an integer, then

102a+1 + 1 = (10 + 1)((10)2a − (10)2a−1 + · · · + 102 − 10 + 1)

= 11((10)2a − (10)2a−1 + · · · + 102 − 10 + 1),

which is again divisible by 11. ❑

548 Theorem An integer n is divisible by 11 if and only if its alternating digital sum is divisible by 11.

Proof: We may assume that n > 0. Let

n = as10s + as−110s−1 + · · · + a110 + a0,

where 0 ≤ ai ≤ 9, as 6= 0. Assume first that s is even. Then

n = as10s + as−110s−1 + · · · + a110 + a0

= as(10s − 1) + as−1(10s−1 + 1) + as−2(10s−2 − 1) + · · · + a1(10 + 1)

+as − as−1 + as−2 · · · − a1 + a0,



Homework 103

and the result follows from this. Similarly, if s is odd,

n = as10s + as−110s−1 + · · · + a110 + a0

= as(10s + 1) + as−1(10s−1 − 1) + as−2(10s−2 + 1) + · · · + a1(10 + 1)

−as + as−1 − as−2 · · · − a1 + a0

= as(10s + 1) + as−1(10s−1 − 1) + as−2(10s−2 + 1) + · · · + a1(10 + 1)

−(as − as−1 + as−2 · · · + a1 − a0),

giving the result in this case. ❑

549 Example 912282219 has alternating digital sum 9 − 1 + 2 − 2 + 8 − 2 + 2 − 1 + 9 = 24 and so 912282219

is not divisible by 11, whereas 8924310064539 has alternating digital sum
8 − 9 + 2 − 4 + 3 − 1 + 0 − 0 + 6 − 4 + 4 − 3 + 9 = 11, and so 8924310064539 is divisible by 11.

Homework

550 Problem For which numbers N ∈ {1, 2, . . . , 25} will
N2 + 1 be divisible by 10?

551 Problem For which numbers N ∈ {1, 2, . . . , 25} will
N2 − 1 be divisible by 10?

552 Problem Determine a digit d, if at all possible, so that
2371d be divisible by 45.

553 Problem Determine a digit d, if at all possible, so that
2371d be divisible by 44.

554 Problem Determine a digit d, if at all possible, so that
23d3 be divisible by 11.

555 Problem Determine a digit d, if at all possible, so that
653d7 be divisible by 33.

556 Problem Find digits a, b, if at all possible, so that
1a2b4 be divisible by 9.

557 Problem Find digits a, b, if at all possible, so that
1a2b4 be divisible by 11.

558 Problem Why is it that no matter how you arrange the
digits 0, 1, 2, . . . , 9 in order to form a 10-digit integer, the
resulting integer is always divisible by 9?

559 Problem How must one arrange the digits 0, 1, 2, . . . , 9

in order to form a 10-digit integer divisible by 45?

560 Problem A palindrome is an integer whose decimal
expansion is symmetric, and that does not end in 0. Thus

1, 2, 11, 101, 121, 9999, 123454321,

are all palindromes. Prove that a palindrome with an even
number of digits is always divisible by 11.

561 Problem Shew that no matter how one distributes the
digits 0, 1, 2, . . . , 9 in the blank spaces of

5 383 8 2 936 5 8 203 9 3 76,

the resulting number will always be divisible by 396.
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562 Definition The sum a1 + a2 + · · · + an is denoted by

n∑

k=1

ak = a1 + a2 + · · · + an.

563 Example
4∑

k=1

ak = a1 + a2 + a3 + a4.

564 Example
4∑

k=1

k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30.

565 Example
5∑

k=1

2 = 2 + 2 + 2 + 2 + 2 = 10.

566 Example

∑5

k=1(2k − 1) = (1) + (2(2) − 1) + (2(3) − 1) + (2(4) − 1) + (2(5) − 1)

= 1 + 3 + 5 + 7 + 9

= 25.

567 Definition An arithmetic progression is one of the form

a, a + d, a + 2d, a + 3d, . . . , a + (n − 1)d, . . . .

Here a is the first term and d is the common difference. The n-th term is a + (n − 1)d.

568 Example Find the 300-th term of the arithmetic progression

−9, 1, 11, 21, 31, . . . .

Solution: Observe that the common difference is 1 − (−9) = 11 − 1 = 21 − 11 = . . . = 10. The pattern is

−9,

1 = −9 + 1 · 10,

104
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21 = −9 + 2 · 10,

31 = −9 + 3 · 10,

etc. Hence the 300-th term is −9 + 299(10) = 2981.

569 Example Consider the progressions
P1 : 4, 9, 14, · · · , 499,

P2 : 2, 5, 8, · · · , 299.

How many elements do they have in common?

Solution: Observe that first progression has common difference 5 and the second has common difference 3. If there
is a common element, there will be common elements in both separated by a distance of the least common multiple
of 3 and 5, namely 15. Now observe that 14 is in both progressions. So we need

15k + 14 ≤ 299 =⇒ k = 19.

Thus the 20 = 19 + 1 elements

14 = 15 · 0 + 14; 29 = 15 · 1 + 14; 44 = 15 · 2 + 14; . . . ; 299 = 15 · 19 + 14

are in common.

570 Example Consider the progressions

P1 : −9, 3, 15, . . . , 1263,

P2 : 7, 12, 17, . . . , 502.

➊ Write a general formula for the elements of P1.

➋ How many elements does P1 have?

➌ Write a general formula for the elements of P2.

➍ How many elements does P2 have?

➎ Find the least positive integer that belongs to both progressions, if any.

➏ How many elements do they share?

Solution:

➊ The general term is −9 + 12(n − 1) for n = 1, 2, . . ..

➋ We have
−9 + 12(n − 1) = 1263 =⇒ 12(n − 1) = 1272 =⇒ n = 107.

➌ The general term is 7 + 5(n − 1) for n = 1, 2, . . . .

➍ We have
7 + 5(n − 1) = 502 =⇒ 5(n − 1) = 495 =⇒ n = 100.

➎ Plainly this is 27.

➏ The overlapping elements have the form 27 + 60k, k = 0, 1, 2, . . . . Thus we need

27 + 60k ≤ 502 =⇒ k ≤ T
502 − 27

60
U = 7.

Thus there are 7 + 1 = 8 elements in common.
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We are now interested in finding the sum of a finite arithmetic progression.

571 Theorem (Sum of a Finite Arithmetic Progression)

∑n

k=1(a + (k − 1)d) = (a) + (a + d) + (a + 2d) + · · · + (a + (n − 1)d)

=
n(2a + (n − 1)d)

2
.

Proof: Put

S = (a) + (a + d) + (a + 2d) + · · · + (a + (n − 1)d).

Adding from the first to the last term is the same as adding from the last term to the first, so we

have

S = (a + (n − 1)d) + (a + (n − 2)d) + (a + (n − 3)d) + · · · + (a).

Adding term by term, this gives

2S = (2a + (n − 1)d) + (2a + (n − 1)d) + (2a + (n − 1)d) + · · · + (2a + (n − 1)d),

or

2S = n(2a + (n − 1)d),

from where the theorem follows. ❑

572 Example Consider the following progression.

16, 20, 24, . . . .

You may assume that this pattern is preserved.

➊ Find the common difference.

➋ Find a formula for the n-th term.

➌ Find the 100-th term of the progression.

➍ Find the sum of the first 100 terms of the progression.

Solution:

➊ The common difference is +4.

➋ The n-th term is 16 + 4(n − 1), n = 1, 2, 3, . . . .

➌ The 100-th term is 16 + 4(99) = 412

➍ If
S = 16 + 20 + · · · + 412,

then
2S = (16 + 412) + (20 + 408) + · · · + (412 + 16) = (428)(100),

whence S = 21400.

One important arithmetic sum is

An =

n∑

k=1

k = 1 + 2 + · · · + n.

By putting a = 1, d = 1 in Theorem 571, we obtain

∑n

k=1 k = 1 + 2 + · · · + n =
n(n+1)

2
.
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573 Example

1 + 2 + 3 + · · · + 100 =
100(101)

2
= 5050.

574 Example Find the sum of all the integers from 1 to 1000 inclusive, which are not multiples of 3 or 5.

Solution: We compute the sum of all integers from 1 to 1000 and weed out the sum of the multiples of 3 and the
sum of the multiples of 5, but we put back the multiples of 15, which we have counted twice. Put

An = 1 + 2 + 3 + · · · + n,

B = 3 + 6 + 9 + · · · + 999 = 3(1 + 2 + · · · + 333) = 3A333,

C = 5 + 10 + 15 + · · · + 1000 = 5(1 + 2 + · · · + 200) = 5A200,

D = 15 + 30 + 45 + · · · + 990 = 15(1 + 2 + · · · + 66) = 15A66.

The desired sum is

A1000 − B − C + D = A1000 − 3A333 − 5A200 + 15A66

= 500500 − 3 · 55611 − 5 · 20100 + 15 · 2211

= 266332.

575 Example Each element of the set {10, 11, 12, . . . , 19, 20} is multiplied by each element of the set
{21, 22, 23, . . . , 29, 30}. If all these products are added, what is the resulting sum?

Solution: This is asking for the product (10 + 11 + · · · + 20)(21 + 22 + · · · + 30) after all the terms are
multiplied. But

10 + 11 + · · · + 20 =
(20 + 10)(11)

2
= 165

and

21 + 22 + · · · + 30 =
(30 + 21)(10)

2
= 255.

The required total is (165)(255) = 42075.

576 Example Find the sum of all integers between 1 and 100 that leave remainder 2 upon division by 6.

Solution: We want the sum of the integers of the form 6r + 2, r = 0, 1, . . . , 16. But this is

16∑

r=0

(6r + 2) = 6

16∑

r=0

r +

16∑

r=0

2 = 6
16(17)

2
+ 2(17) = 850.
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Homework

577 Problem Find the sum

5∑

k=1

(k
2

+ k + 1).

578 Problem Find the sum

3∑

k=1

k2 − 1

k2 + 1
.

579 Problem How many terms are shared by the progressions

P1 : 5, 9, 13, . . . , 405,

P2 : 4, 9, 14, . . . , 504?

580 Problem How many terms are shared by the progressions

P1 : 5, 9, 13, . . . , 405,

P2 : 10, 19, 28, . . . , 910?

581 Problem Consider the following progression.

98, 90, 82, . . .

You may assume that this pattern is preserved.

➊ Find the common difference.

➋ Find the fourth term of the progression.

➌ Find the 51-st term of the progression.

➍ Find the sum of the first 51 terms of the progression.

582 Problem Consider the following progression.

a, a − b, a − 2b, . . . .

You may assume that this pattern is preserved.

➊ Find the common difference.

➋ Find the third term of the progression.

➌ Find the 101-st term of the progression.

➍ Find the sum of the first 101 terms of the progression.

583 Problem Find a formula for the n-th term of the
progression

a − 2d, a − d, a, a + d, . . . .

Then find the sum of the first 100 terms.

584 Problem The consecutive odd integers are grouped as
follows:

{1},

{3, 5},

{7, 9, 11},

{13, 15, 17, 19},

...

Shew that the sum of the n-th group is n3 .
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585 Definition A geometric progression is one of the form

a, ar, ar2, ar3, . . . , arn−1, . . . ,

with a 6= 0, r 6= 0. Here a is the first term and r is the common ratio.

586 Example Find the 30-th term of the geometric progression

−
3

1024
,

3

512
, −

3

256
. . . .

Solution: The common ratio is
3

512
÷
�

−
3

1024

�
= −2.

Hence, the 30-th term is �
−

3

1024

�
(−2)29 =

�
3

210

�
229 = 3 · 219 = 1572864.

Let us sum now the geometric series

S = a + ar + ar2 + · · · + arn−1.

Plainly, if r = 1 then S = na, so we may assume that r 6= 1. We have

rS = ar + ar2 + · · · + arn.

Hence
S − rS = a + ar + ar2 + · · · + arn−1 − ar − ar2 − · · · − arn = a − arn.

From this we deduce that

S =
a − arn

1 − r
,

that is,

a + ar + · · · + arn−1 =
a − arn

1 − r
,

which yields

587 Theorem (Sum of a Finite Geometric Progression) Let r 6= 1. Then

∑n

k=1 ark−1 = a + ar + · · · + arn−1 = a−arn

1−r
.

588 Corollary (Sum of an Infinite Geometric Progression) Let |r| < 1. Then

109
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∑∞
k=1 ark−1 = a + ar + · · · + arn−1 + · · · = a

1−r
.

Proof: If |r| < 1 then rn → 0 as n → ∞. The result now follows from Theorem 587. ❑

589 Example Find the following geometric sum:

1 + 2 + 4 + · · · + 1024.

Solution: Let

S = 1 + 2 + 4 + · · · + 1024.

Then

2S = 2 + 4 + 8 + · · · + 1024 + 2048.

Hence

S = 2S − S = (2 + 4 + 8 · · · + 2048) − (1 + 2 + 4 + · · · + 1024) = 2048 − 1 = 2047.

590 Example Find the geometric sum

x =
1

3
+

1

32
+

1

33
+ · · · +

1

399
.

Solution: We have
1

3
x =

1

32
+

1

33
+ · · · +

1

399
+

1

3100
.

Then

2
3
x = x − 1

3
x

=
�

1
3

+ 1
32 + 1

33 + · · · + 1
399

�
−
�

1
32 + 1

33 + · · · + 1
399 + 1

3100

�
= 1

3
− 1

3100 .

From which we gather

x =
1

2
−

1

2 · 399
.

591 Example Find the sum

Sn = 1 + 1/2 + 1/4 + · · · + 1/2n.

Interpret your result as n → ∞.

Solution: We have

Sn −
1

2
Sn = (1 + 1/2 + 1/4 + · · · + 1/2n) − (1/2 + 1/4 + · · · + 1/2n + 1/2n+1) = 1 − 1/2n.

Whence

Sn = 2 − 1/2n.
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So as n varies, we have:

S1 = 2 − 1/20 = 1

S2 = 2 − 1/2 = 1.5

S3 = 2 − 1/22 = 1.875

S4 = 2 − 1/23 = 1.875

S5 = 2 − 1/24 = 1.9375

S6 = 2 − 1/25 = 1.96875

S10 = 2 − 1/29 = 1.998046875

Thus the farther we go in the series, the closer we get to 2.

592 Example Find the infinite geometric sum

10

3
−

20

9
+

40

27
−

80

81
+ · · · .

Solution: The first term is a =
10

3
and the common ratio is r = −2

3
. Since |r| < 1 we find in view of Theorem 588

that the sum is
a

1 − r
=

10
3

1 −
�
−2

3

� = 2.

593 Example A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8 unit left, 1/16 unit
up, etc., ad infinitum. In what coordinates does it end up?

Solution: Its x coordinate is
1

2
−

1

8
+

1

32
− · · · =

1
2

1 − −1
4

=
2

5
.

Its y coordinate is

1 −
1

4
+

1

16
− · · · =

1

1 − −1
4

=
4

5
.

Therefore, the fly ends up in �
2

5
,
4

5

�
.

The following example presents an arithmetic-geometric sum.

594 Example Sum
a = 1 + 2 · 4 + 3 · 42 + · · · + 10 · 49.

Solution: We have
4a = 4 + 2 · 42 + 3 · 43 + · · · + 9 · 49 + 10 · 410.

Now, 4a − a yields
3a = −1 − 4 − 42 − 43 − · · · − 49 + 10 · 410.

Adding this last geometric series,

a =
10 · 410

3
−

410 − 1

9
.
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Homework

595 Problem Find the sum

1

2
+

�
1

2

�4

+

�
1

2

�7

+

�
1

2

�10

· · · .

596 Problem Find the sum

2

3
+

2

3

�
1

3

�2

+
2

3

�
1

3

�4

+
2

3

�
1

3

�6

· · · .

597 Problem Consider the following progression.

1

625
,

1

125
,

1

25
, . . . ,

You may assume that this pattern is preserved.

➊ Find the common ratio.

➋ Find the fourth term of the progression.

➌ Find the 10-th term of the progression.

➍ Find the sum of the first 10 terms of the progression.

➎ Is it possible to find the infinite sum

1

625
+

1

125
+

1

25
+ · · · ?

If it is, find it. If it is not, explain why.

598 Problem Let

n1 = 2, n2 = 3, n3 = 4, n4 = 6, n5 = 8, n6 = 9, n7 = 12, . . .

be the sequence of positive integers whose prime
factorisations consists of only 2’s and 3’s. Find

1

n1

+
1

n2

+
1

n3

+
1

n4

+ · · · .

Answers

528 20Z

529 33, 0, −34, −1.

530 85; 60; 4

531 42; 30; 2

532 2002

533 None.

550 {3, 7, 13, 17, 23}

551 {1, 9, 11, 19, 21}

552 d = 5

553 d = 6

554 There is no such digit.

555 6 − 5 + 3 − d + 7 = 11 − d must be divisible by 11. For this to happen
d = 0. But then 6 + 5 + 3 + 0 + 7 = 21 is also divisible by 3, hence d = 0.

556 1 + a + 2 + b + 4 = 7 + a + b must be divisible by 9. Since
7 ≤ 7 + a + b ≤ 25, we must have a + b + 7 = 9 or a + b + 7 = 18. There
are 11 solutions: (a, b) = (0, 2), (1, 1), (2, 0), (2, 9), (3, 8), (4, 7),
(5, 6), (6, 5), (7, 4), (8, 3), (9, 2).

557 We must have 1 − a + 2 − b + 4 = 7 − a − b divisible by 11. Since
−11 ≤ 7 − a − b ≤ 7, we must have either 7 − a − b = −11 or
7 − a − b = 0. This means that a + b = 18 or a + b = 7. Thus
(a, b) = (9, 9), (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1).

558 The sum of the digits is always
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45, which is divisible by 9.

559 The last digit must be 0 or 5, the other digits can be arranged at random.

579 The shared terms are of the form 9 + 20k. We need 9 + 20k ≤ 405, hence
k ≤ 19 and so there are 19 + 1 = 20 elements shared.

580 The shared terms are of the form 37 + 36k. We need 37 + 36k ≤ 405,
hence k ≤ 10 and so there are 10 + 1 = 11 elements shared.

581 The common difference is −8. The 51-st term is 98 + (50)(−8) = −302.
The sum of the first 51 terms is

S = 98 + 90 + · · · + −294 + −302

S = −302 + −294 + · · · + 90 + 98

2S = −204 + −204 + · · · + −204 + −204.

This gives 2S = (−204)(51) or S = −5202.

582 −b; a − 2b; a − 100b; 101a − 5050b

583 The n-th term is a − 2d + d(n − 1) = a + d(n − 3). The sum of the
first 100 terms is 50(2a + 95d).

595
4

7

596
3

4

597 5;
1

5
; 3125 ;

2441406

625
; No, since the common ratio 5 > 1.

598 We want the infinite sum�
1 +

1

2
+

1

22
+

1

23
+ · · ·

��
1 +

1

3
+

1

32
+

1

33
+ · · ·

�
− 1 = 2.
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