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Pretace

“We see that the theory of probability is at bottom only common sense reduced
to calculation; it makes us appreciate with exactitude what reasonable minds feel
by a sort of instinct, often without being able to account for it. . . . It is remarkable
that this science, which originated in the consideration of games of chance,
should have become the most important object of human knowledge. ... The
most important questions of life are, for the most part, really only problems of
probability.” So said the famous French mathematician and astronomer (the “New-
ton of France”) Pierre Simon, Marquis de Laplace. Although many people might
feel that the famous marquis, who was also one of the great contributors to the
development of probability, might have exaggerated somewhat, it is nevertheless
true that probability theory has become a tool of fundamental importance to nearly
all scientists, engineers, medical practitioners, jurists, and industrialists. In fact,
the enlightened individual had learned to ask not “Is it s0?” but rather “What is
the probability that it is s07”

This book is intended as an elementary introduction to the mathematical
theory of probability for students in mathematics, engineering, and the sciences
(including the social sciences and management science) who possess the prerequi-
site knowledge of elementary calculus. It attempts to present not only the mathe-
matics of probability theory, but also, through numerous examples, the many
diverse possible applications of this subject.

In Chapter 1 we present the basic principles of combinatorial analysis, which

~ are most useful in computing probabilities.

In Chapter 2 we consider the axioms of probability theory and show how
they can be applied to compute various probabilities of interest. This chapter

xi




xii Preface

includes a proof of the important (and, unfortunately, often neglected) continuity
property of probabilities, which is then used in the study of a “logical paradox.”
' Chapter 3 deals with the extremely important subjects of conditional probabil-
ity and independence of events. By a series of examples we illustrate how condi-
tional probabilities come into play not only when some partial information is
available, but also as a tool to enable us to compute probabilities more easily,
even when no partial information is present. This extremely important technique
of obtaining probabilities by “conditioning” reappears in Chapter 7, where we
use it to obtain expectations.

In Chapters 4, 5 and 6 we introduce the concept of random variables. Discrete
random variables are dealt with in Chapter 4, continuous random variables in
Chapter 5, and jointly distributed random variables in Chapter 6. The important
concepts of the expected value and the variance of a random variable are introduced
in Chapters 4 and 5. These quantities are then determined for many of the common
types of random variables.

Additional properties of the expected value are considered in Chapter 7.
Many examples illustrating the usefulness of the result that the expected value
of a sum of random variables is equal to the sum of their expected values are
presented. Sections on conditional expectation, including its use in prediction,
and moment generating functions are contained in this chapter. In addition, the
final section introduces the multivariate normal distribution and presents a simple
proof concerning the joint distribution of the sample mean and sample variance
of a sample from a normal distribution.

In Chapter 8 we present the major theoretical results of probability theory.
In particular, we prove the strong law of large numbers and the central limit
theorem. Our proof of the strong law is a relatively simple one which assumes
that the random variables have a finite fourth moment, and our proof of the central

limit theorem assumes Levy’s continuity theorem. Also in this chapter we present -

such probability inequalities as Markov’s inequality, Chebyshev’s inequality, and
Chernoff bounds. The final section of Chapter 8 gives a bound on the error
involved when a probability concerning a sum of independent Bernoulli random
variables is approximated by the corresponding probability for a Poisson random
variable having the same expected value.

Chapter 9 presents some additional topics, such as Markov chains, the Poisson
process, and an introduction to information and coding theory, and Chapter 10
considers simulation.

NEW TO THE FIFTH EDITION

Each chapter in the fifth edition has been updated in response to reviewers com-
ments. Professors who wish to move through the first chapters quickly, will
appreciate the addition of asterisks to denote optional sections that may safely be
skipped. Among new text material included are discussions on the odds-ratio in
Chapter 3, and two new discussions in Chapter 6: a new section on exchangeable
random variables and a discussion of the fact that independence is a symmetric re-
lation.

Preface xiii

A goal of the Fifth Edition is to make the book more accessible to students.
The examples are updated to include many interesting and practical examples
including one dealing with the counterintuitive ace of spades versus the two of
clubs problem zExample 5j in Chapter 2); the two girls problem (Example 3j in
Chapter 3); the analysis of the quicksort algorithm (Example 20 of Chapter 7);
and the best prize problem (Example 4I in Chapter 7). In addition, the problems
are thoroughly revised with over 25% being new to this edition. The chapter
exercises are reorganized to present the more mechanical problems before the
theoretical exercises. Prose summaries now conclude each chapter and a new
study tool is included in the book. The new Self-Test Problems and Exercises
section is designed to help students test their comprehension and study for exams.
After working through the problems and theoretical exercises in each chapter,
students are encouraged to do the Self-test problems and to check their work
against the complete solutions that appear in Appendix B.

Another new feature of the Fifth Edition, in the addition of the Probability
Models Disk. This easy to use PC Disk is packaged in the back of each copy of
the book. Referenced in text, this disk allows students to quickly and easily
perform calculations and simulations in six key areas.

@ Three of the modules derive probabilities for, respectively, binomial, Poisson,
and normal random variables.

@ Another illustrates the central limit theorem. It considers random variables
that take on one of the values 0, 1, 2, 3, 4 and allows the user to enter the
probabilities for these values along with a number n. The module then plots
the probability mass function of the sum of n independent random variables
of this type. By increasing n one can “see” the mass function coverage to
the shape of a normal density function.

@ The other two modules illustrate the strong law of large numbers. Again
the user enters probabilities for the five possible values of the random variable
along with an integer n. The program then uses random numbers to simulate
n random variables having the prescribed distribution. The modules graph
the number of times each outcome occurs -along with the average of all
outcomes. The modules differ in how they graph the results of the trials.

We would like to thank the following reviewers whose helpful comments
and suggestions contributed to the Fifth Edition: Anant Godbole, Michigan Tech
University; Zakkula Govindarajulu, University of Kentucky; Richard Groeneveld,
Towa State University; Bernard Harris, University of Wisconsin; Stephen Hersch-
korn, Rutgers University; Robert Keener, University of Michigan; Thomas Liggett,
University of California, Los Angeles; Bill McCormick, University of Georgia;
and Kathryn Prewitt, Arizona State University. Special thanks go to Ben Perles
for his hard work in accuracy checking this manuscript.

We also express gratitude to the reviewers on previous editions: Thomas R.
Fischer, Texas A & M University; Jay DeVore, California Polytechnic University,
San Luis Obispo; Robb J. Muirhead, University of Michigan; David Heath, Cornell
University; Myra Samuels, Purdue University; I. R. Savage, Yale University;

R. Miller, Stanford University; K. B. Athreya, Iowa State University; Phillip



xiv Preface

i ichizan Tech; Howard Bird, St. Cloud State University; Steven Ch1ap~
E:fi{{gﬁf(/:[igxh;%ziversity; James Clay, University of Ar.izona atT ucson; I'Jra'nms
Conlan, University of Santa Clara; Fred Leysieffer, Florida 'State‘ University; I_ar}
McKeaoue, Florida State University; Helmut Mayer, I_vaers1§y gf Georgia;
N. U Pbrabhu, Cornell University; Art Schwartz, University of Michigan at é&llm
Arbor; Therese Shelton, Southwestern University; and Allen Webster, Bradley

University.
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CHAPTER 1

Combinatorial Analysis

1.1 INTRODUCTION

Here is a typical problem of interest involving probability. A communication
system is to consist of n seemingly identical antennas that are to be lined up in
a linear order. The resulting system will then be able to receive all incoming
signals—and will be called functional—as long as no two consecutive antennas
are defective. If it turns out that exactly m of the n antennas are defective, what
is the probability that the resulting system will be functional? For instance, in

the special case where n = 4 and m = 2 there are 6 possible system configura-
tions—namely,

0110
01 01
1 010
0 011
1 0 0 1
1100

‘where 1 means that the antenna is working and O that it is defective. As the

resulting system will be functional in the first 3 arrangements and not functional
in the remaining 3, it seems reasonable to take % = ; as the desired probability.
In the case of general n and m, we could compute the probability that the system
is functional in a similar fashion. That is, we could count the number of configura-
tions that result in the system being functional and then divide by the total number
of all possible configurations. ' .

From the above we see that it would be useful to have an effective method
for counting the number of ways that things can occur. In fact, many problems
in probability theory can be solved simply by counting the number of different

1



2 Chapter 1 Combinatorial Analysis

ways that a certain event can occur. The mathematical theory of counting is
formally known as combinatorial analysis.

1.2 THE BASIC PRINCIPLE OF COUNTING

The following principle of counting will be basic to all our work. Loosely put,
it states that if one expenment can result in any of m possible outcomes and if
another experiment can result in any of n possible outcomes, then there are mn
possible outcomes of the two experiments.

' The bas:c prmclple of countmg :

Suppose that two expenments are to be performed Then 1f expenment g
-1 can result in any one of m possible outcomes and if for each outcome
 of experiment 1 there are n possible outcomes of experiment 2, then
. f'together there are mn possxble outcomes of the two expenments

Proof of the Basic Principle: The basic principle may be proved by
enumerating all the possible outcomes of the two experiments as follows:

(1L, D, 1,2),....0,n
2,1,2,2),....,2, m

(m,- D, m, 2),...,{m,n

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in the jth of its possible outcomes. Hence
the set of possible outcomes consists of m rows, each row containing » elements,
which proves the result.

Example 2a. A small community consists of 10 women, each of whom has 3
children. If one woman and one of her children are to be chosen as mother
and child of the year, how many different choices are possible?

Solution By regarding the choice of the woman as the outcome of the first
experiment and the subsequent choice of one of her children as the outcome
of the second experiment, we see from the basic principle that there are
10 X 3 = 30 possible choices. |

When there are more than:two experiments to be performed, the basic
principle can be generalized as follows.

Section 1.3 Permutations 3

The generélized basic princviple\,of counting

If r experiments that are to be performed are such that the first one
may result in any of n; possible outcomes, and if for each of these
ny possible outcomes there are n, possible outcomes of the second
experiment, and if for each of the possible outcomes of the first two
- experiments there are n3 possible outcomes of the third experiment,
“and if . . ., then there is a total of ny “ny -+ possible outcomes of
the r expenments ; : T

Example 2b. Acollege plannmo committee consists of 3 freshmen, 4 sophomores,
5 juniors, and 2 seniors. A subcommittee of 4, consisting of 1 person from
each class, is to be chosen. How many different subcommittees are possible?

Solution We may regard the choice of a subcommittee as the combined
outcome of the four separate experiments of choosing a single representative
from each of the classes. Hence it follows from the generalized version
of the basic principle that there are 3 X 4 X 5 X 2 = 120 possible
subcommittees. i

Example 2c. How many different 7-place license plates are possible if the first
3 places are to be occupied by letters and the final 4 by numbers?

Solution By the generalized version of the basic principle the answer is
26-26-26-10-10-10- 10 = 175,760,000. |

Example 2d. How many functions defined on n points are possible if each
functional value is either 0 or 1?

Solution Let the points be 1, 2, ..., n. Since f(i) must be either 0 or 1
foreachi = 1,2, ..., n, it follows that there are 2" possible functions. B

Example 2e. In Example 2c, how many license plates would be possible if
repetition among letters or numbers were prohibited?

Solution In this case there would be 26-25:24-10-9-8-7 =
78,624,000 possible license plates. B

1.3 PERMUTATIONS

How many different ordered arrangements of the letters a, b, and ¢ are possible?
By direct enumeration we see that there are 6: namely, abc, ach, bac, bea, cab,
and cba. Bach arrangement is known as a permutation. Thus there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained from
the basic principle, since the first object in the permutation can be any of the 3,
the second object in the permutation can then be chosen from any of the remaining
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2, and the third object in the permutation is then chosen from the remaining 1.
Thus there are 3 -2 - 1 = 6 possible permutations.

' Suppose now that we have n objects. Reasoning similar to that we have just
used for the 3 letters shows that there are

ﬁ(n - Dn—-—2)-+-3-2-1=n!
different permutations of the n objects. -

Example 3a. How many different batting orders are possible for a baseball team
consisting of 9 players?

Solution There are 9! = 362,880 possible batting orders. L

Example 3b. A class in probability theory consists of 6 men and 4 women.
An examination is given, and the students are ranked according to their
performance. Assume that no two students obtain the same score.

(a) How many different rankings are possible?
(b) If the men are ranked just among themselves and the women among
themselves, how many different rankings are possible?

Solution (a) As each ranking corresponds to a particular ordered arrange-
ment of the 10 people, we see that the answer to this part is 10! = 3,628,800.

(b) As-there are 6! possible rankings of the men among themselves
and 4! possible rankings of the women among themselves, it follows from
the basic principle that there are (6!)(4!) = (720)(24) = 17,280 possible
rankings in this case. \ R

Example 3¢. Mr. Jones has 10 books that he is going to put on his bookshelf.
Of these, 4 are mathematics books, 3 are chemistry books, 2 are history
books, and 1 is a language book. Jones wants to arrange his books so that
all the books dealing with the same subject are together on the shelf. How
many different arrangements are possible?

Solution There are 4! 3! 2! 1! arrangements such that the mathematics
books are first in line, then the chemistry books, then the history books, and
then the language book. Similarly, for each possible ordering of the subjects,
there are 4! 3! 2! 1! possible arrangements. Hence, as there are 4! possible
orderings of the subjects, the desired answer is 4! 413121 1! = 6912. 1#

We shall now determine the number of permutations of a set of n objects
when certain of the objects are indistinguishable from each other. To set this
straight in our minds, consider the following example.

Example 3d. How many different letter arrangements can be formed using the
letters PEP P ER? o

Solution We first note that there are 6! permutations of the letters P; E;
P, P3 E, R when the 3 P’s and the 2 E’s are distinguished from each other.
However, consider any one of these permutations—for instance, Py P, E;
P3 E, R. If we now permute the P’s among themselves and the E’s among

Section 1.4 Combinations 5

themselves, then the resultant arrangement would still be of the form
PP.EPER. That is, all 3! 2! permutations

, . P, P,E,PsE;R P, P,E,PyE R
é P, PyE PyE;R P, P3E,P,E R
P, P, E,PsE;R  P,P E, Py E| R
P, PyE PLE;R P,PyE, P E R
PyP E,P,E,R P3P E,P,E R

are of the form P P E P E R. Hence there are 6!/3! 2! = 60 possible letter
arrangements of the letters P EP P ER. , |

In general, the same reasoning as that used in Example 3d shows that there are

n!
nyltny! - -nl

: 91

_ different permutations of n objects, of which n; are alike, n, are alike, ..., n
\ are alike.

Example 3e. A chess tournament has 10 competitors of which 4 are Russian, 3
are from the United States, 2 from Great Britain, and 1 from Brazil. If the
tournament result lists just the nationalities of the players in the order in
which they placed, how many outcomes are possible?

r

Solution There are

v _ 10! _
41312111 12,600

possible outcomes. ' B

Example 3f. How many different signals, each consisting of 9 flags hung in a
line, can be made from a set of 4 white flags, 3 red flags, and 2 blue flags
if all flags of the same color are identical?

i

Solution There are

- arara -~ 1260

different signals. B

1.4 COMBINATIONS

We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects. For instance, how many different
groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer
this, reason as follows: Since there are 5 ways to select the initial item, 4 ways
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to then select the next item, and 3 ways to select the final item,  there are thus
5 -4 -3 ways of selecting the group of 3 when the order in which the items are
" selected is relevant. However, since every group of 3, say, the group consisting
of items A, B, and C, will be counted 6 times (that is, all of the permutations
ABC, ACB, BAC, BCA, CAB, and CBA will be counted when the order of selection
is relevant), it follows that the total number of groups that can be formed is

5-4-3 ~ 10
3-2-1
In general, asn(n — 1) - - - (n — r + 1) represents the number of different

ways that a group of r items could be selected from n items when the order of
selection is relevant, and as each group of r items will be counted r! times in
this count, it follows that the number of different groups of r items that could be
formed from a set of 7 itemns is

11(11——1)---(11—1‘~1—1)= n!
rt (n—rr

: NQtatianiand terminola’gy' i

| ”“Wedeﬁne( ) forr<n by
. r

co
r) @il

and say that ( ) represents the number of p0351ble combmat1ons of

- objects takenr at a‘tune.‘ o e <

Thus ( > represents the number of different groups of size r that could be

selected from a set of n objects when the order of selection is not considered
relevant.

Example 4a. A committee of 3 is to be formed from a group of 20 people. How
many different committees are possible?
20) . 20-19-18 _

1140 possible committees.

3-2-1 8

Solution There are <3

7 By convention, 0! is defined to be 1. Thus <g> = <n> = [. We also take < ) to be equal

to O when either i < Qori > n.

Section 1.4 Combinations 7

Example 4b. From a group of 5 women and 7 men, how many different commit-
tees consisting of 2 women and 3 men can be formed? What if 2 of the men

are feudigg and refuse to serve on the committee together?
N ;

5
Solution  As there are <2> possible groups of 2 women, and (;) possible
groups of 3 men, it follows from the basic principle that there are
5\(7 5:4\7-6-5 . . _—
<2> (3) = ( 7 1> 301 350 possible committees consisting of 2
wornen and 3 men.
On the other hand, if 2 of the men refuse to serve on the committee

2\(5
together, then, as there are <O) (3) possible groups of 3 men not containing

either of the 2 feuding men and <?> <;

1 of the feuding men, it follows that there are (3) G) + (?) <§> = 30

groups of 3 men not containing both of the feuding men. Since there are

> groups of 3 men containing exactly

5
<2> ways to choose the 2 women, it follows that in this case there are

5
30 <2> = 300 possible committees. ]

~ Example 4c. Consider a set of n antennas of which m are defective and n — m

are functional and assume that all of the'defectives and all of the functionals
are considered indistinguishable. How many linear orderings are there in
which no two defectives are consecutive?

Solution Imagine that the n — m functional antennas are lined up among
themselves. Now, if no two defectives are to be consecutive, then the spaces
between the functional antennas must each contain at most one defective
antenna. That is, in the n — m + 1 possible positions—represented in
Figure 1.1 by carets—between the n — m functional antennas, we must
select m of these in which to put the defective antennas. Hence there are

Alalal...alala
1 = functional

a = place for at most one defective

Figure 1.1
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n—m-+1 . . . . . .
< > possible orderings in which there is at least one functional
m

antenna between any two defective ones. |

A useful combinatorial identity is

(n) _ (n - 1) + <n - 1) l<r=n @1
r r—1 r

Equation (4.1) may be proved analytically or by the following combinatorial

argument. Consider a group of n objects and fix attention on some particular one

of these objects—call it object 1. Now, there are (n 1) groups of size r that

contain object 1 (since each such group is formed by selecting r — 1 from

¥ .
the remaining n — 1 objects). Also, there are < ) groups of size r that do

not contain object 1. As there is a total of <n> groups of size r, Equation (4.1)
r
follows.
The values <n> are often referred to as binomial coefficients. This is so
F . :

because of their prominence in the binomial theorem.

The binomial theorem

k=0

We shall present two proofs of the binomial theorem. The first is a proof
by mathematical induction, and the second is a proof based on combinatorial
considerations.

Proof of the Binomial Theorem by Induction: When n = 1, Equation

(4.2) reduces to
1
x+y= (é)xoyl + <1>x1y0 =y -+ x

Assume Equation (4.2) for n — 1. Now,
(r+ )" =@+ )+ )"

n-—1 n—1 . (—k
=@+ D xyn
k=0 \ k

i

Section 1.4 Combinations 9

n—1

— -1/
=3 (” 1>xk+1yn—-1~—k i ”E (’1 - 1>xkyn—k
k=0 \ k F=o \ k

Letting i = k£ % 1 in the first sum and { = k in the second sum, we find that

. 2ofn—1\ , . St n-1\ ., _.
\ - x+ = 2 ( 1>xzyn iy 2 <n ‘ >xzyn—z
- i=0

i=1 \! 1

-1
o= X"+ HE [(Il: 1> + <I’l _ 1>:Ixiyn—i + yn
i=1 4 1 1

n-—1

= 3" + 2 <n> xiyn~i +yn

i=1 \!

— i <n> xiyn—i
i=o \I

" where the next-to-last equality follows by Equation (4.1). By induction the theorem
is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product
(e + yDla + y2) - (g + y)

Its expansion consists of the sum of 2" terms, each term being the product of n
\ factors. Furthermore, each of the 2" terms in the sum will contain as a factor
either x; or y; foreach.i = 1,2, ..., n Fog example,

(1 + ¥yl + y2) = x10 + X1y + yixa + Y12

Now, how many of the 2" terms in the sum will have as factors k of the x;’s and
(n — k) of the y;’s? As each term consisting of k of the x;’s and (n — k) of the
¥;’s corresponds to a choice of a group of k from"the n values x;, x5, ..., X,

there are (Z) sugh terms. Thus, letting x; = x, y; = ¥, i= 1, ..., n, we see that
Lo (n
Gt = kgo (k) e
Example 4d. Expand (x + y)>.

Solution

(x+y)? = (?)) Oy + <i’> xly? + <z> £y + @) 0

=y + 3% + 3%y + x° |
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Example 4e. How many subsets are there of a set consisting of n elements?

n . . .
Solution Since there are ( k> subsets of size k, the desired answer 1S

n n
> <>=(1+1)"=2”
K=o \k
This result could also have been obtained by assigning to each element in
the set either the number 0 or the number 1. To each assignment of numbers
there corresponds, in a one-to-one fashion, a subset, namely, that subse"g
consisting of all elements that were assigned the value 1. As there are 2
possible assignments, the result follows. o

Note that we have included as a subset the set consisting of 0 elements
(that is, the null set). Hence the number of subsets that contain at least one
element is 2" — 1. : |

1.5 MULTINOMIAL COEFFICIENTS

In this section we-consider the following problem: A set of n distinct items
is to be divided into r distinct groups of respective sizes 1y, fiy, - . . , 1, Where

E n; = n. How many different divisions are possible? To answer this, we note

n
that there are (

) possible choices for the first group; for each choice of the
1y

n—n . . .
first group there are < 1) possible choices for the second group; for each

Ty

n—n —

n . .
choice of the first two groups there are < 2) possible choices for the

f3
third group; and so on. Hence it follows from the generalized version of the basic
counting principle that there are

n n—-n1> <n—nl-—nz—~---——nr_1>
1y fly i,

n! (n - n! (n—ny —ny = — np_p)!

= a)in! (- oy — )l ! 0l'n,!

n!

mlngt- - n,l

possible divisions.

Section 1.5 Multinomial Coefficients 11
- Notation

If;zl+n§+---+nr=n,wedeﬁne</ » »)by
. n]_s ’12, 5 }lr

n Y n!
Ay, Mg, .. ) o ngtnglsconl

. . B B n . # " - : . ’ N ; N : ,. ; S N Wi /~ ;‘

Thus < V ) represents the number of possible divisions of

B nlsnzi‘---gnar‘, ‘ B : 3 . g g :
n distinct objects into r distinct groups of respective sizes ny, ny, . . . , 1,

Example 5a. A police department in a small city consists of 10 officers. If the
department policy.is to have 5 of the officers patrolling the streets, 2 of the
officers working full time at the station, and 3 of the officers on reserve at

the station, how many different divisions of the 10 officers into the 3 groups
are possible?

Solution There are = 2520 possible divisions. |

10!
512131
Example 5b. Ten children are to be divided into an A team and a B team of 5

each. The A team will play in one league and the B team in another. How
many different divisions are possible?

!
Solution There are 31'—05—' = 252 possible divisions. i

Example Sc. In order to play a game of basketball, 10 children at a playground

divide themselves into two teams of 5 each. How many different divisions
are possible?

Solution Note that this example is different from Example 5b because
now the order of the two teams is irrelevant. That is, there is no A and B

team but just a division consisting of 2 groups of 5 each. Hence the desired
answer is

101/5¢ 5!
T 126 ]

The proof of the following theorem, which generalizes the binomial theorem,
is left as an exercise.
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,The multmomlal theorem
: (xli-l- X —l—,, +xr)'l

= Z ( Sl )3‘1 n—;...x’rlr
)i N gy Ty - o

= ny+-c +ll,-——ll

: That is; the sum is over all nonnecatlve mtecer~va1ued vectors ;
(nl, Hoy...3 1 ) such that n + oyt + n, =n. ' f

n

The numbers ( ) are known as multinomial coefficients.

ny, o, o .oy 1,

Example 5d

()CI -+ X9 + X3)2

Il
TN
[\)
o ™
(=]
~—
H
st |
&
NOo
=
wo
+
TN
e
o™
(o)
~——
=
-t (D
=
[S+10
b
WO

x7 + x5+ x% + 2x1% + 2xyx3 + 2x9X3

I

- *1.6 ON THE DISTRIBUTION OF BALLS IN URNS

There are " possible outcomes when 7 distinguishable balls are to be distributed
into r distinguishable urns. This follows because each ball may be distributed
into any of r possible urns. Let us now, however, suppose that the n balls are
indistinguishable from each other. In this case, how many different outcomes are
possible? As the balls are indistinguishable; it follows that the outcome of the
experiment of distributing the n balls into r urns can be described by a vector
(x1, X3, . . . x,.), where x; denotes the number of balls that are distributed into the
ith urn. Hence the problem reduces to finding the number of distinct nonnegative
integer-valued vectors (x;, Xy, - . ., X,) such that

X +x+ -+ x.=n

To compute this, let us start by considering the number of positive integer-valued
solutions. Toward this end, imagine that we have n indistinguishable objects lined

* Note that asterisks denote material that is optional.
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up and that we want to divide them into r nonempty groups. To do so, we can
select r — 1 of the n — 1 spaces between adjacent objects as our dividing points
(see Figure 1.2). For instance, if we have n = 8 and r = 3 and choose the 2
divisors as shown

000|000]|00

) -1
then the vector obtained is x; = 3, x, = 3, x3 = 2. As there are (7 _ 1)

possible selections, we obtain the following proposition.

""Propo$itibh‘6.;1f -
. S

: There are (
o\r -

r) saﬂsfymg

xl + lf) ’ "'+x,. : l’l ; x,> 0,l= 1,V. .':*’ ¥

1) distinct posmve mteoer—valued vectors (xl, Xy i 5

To obtain the number of nonnegative (as opposed to positive) solutions,
note that the number of nonnegative solutions of x; + x, + - - - + x, = nis the
same as the number of positive solutions of y; + - -- + y, = n + r (seen by
letting y; = x; + 1,i = 1, ..., r). Hence, from Proposition 6.1, we obtain the
following proposition.

'-*Propbsitibn 62

o n+1—1 Con
: There are < : p ) distinct nonnegatlve mteaer—valued Vectors

. \r— o ey

: (xl, xz, ceenX,) satlsfymg

0A0A0A...A0A0
n objects 0

Choose r ~1 of the spaces a.

Figure 1.2
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Example 6a. How many distinct nonnegative integer-valued solutions of
Xy + x, = 3 are possible?

3+2-—-1
Solution There are < 51 > = 4 such solutions: (0, 3), (1, 2),

@, 1,6,0. - |

Example 6b. An investor has 20 thousand dollars to invest among 4 possible
investments. Each investment must be in units of a thousand dollars. If the
total 20 thousand is to be invested, how many different investment strategies
are possible? What if not all the money need be invested?

Solution If we let x;, i = 1, 2, 3, 4, denote the number of thousands
invested in investment number i, then, when all is to be invested, x;, x5, X3,
x4 are integers satisfying

xl+X2+X3+X4:20 xiEO

23\
Hence, by Proposition 6.2, there are <3> = 1771 possible investment

strategies. If not all of the money need be invested, then if we let x5 denote
the amount kept in reserve, a strategy is a nonnegative integer-valued vector
(X1, X3, X3, X4, Xs) satisfying

x1+x2+x3+x4+x5=20

24 ’
Hence, by Proposition 6.2, there are now ( 4 ) = 10,626 possible strategies.

|
Example 6c. How many terms are there in the multinomial expansmn of
(x; + x5 + -+ x)?
Solution

n
G+ X+ X)) =D X xpr
Ryyeeos Tl .

where the sum is over all nonnegative integer-valued (x4, . . ., r,) such that
.. fn+r—1
ny + -+ + n. = n. Hence, by Proposition 6.2, there are ( ] )
r—
such terms. : |

Example 6d. Let us reconsider Example 4c, in which we have a set of n items,
of which m are (indistinguishable and) defective and the remaining n — m
are (also indistinguishable and) functional. Our objective is to determine the
number of linear orderings in which no two defectives are next to each other.
To determine this quantity, let us imagine that the defective items are lined
up among themselves and the functional ones are now to be put in position.
Let us denote x; as the number of functional items to the left of the first

Summary 15

defective, x5 as the number of functional items between the first two defec-
tives, and so on. That is, schematically we have

X1 Qx20 T X Oxm-i—l

. .
Now there will be at least one functional item between any pair of defectives
aslong as x; > 0,1 = 2, ..., m. Hence the number of outcomes satisfying
the condition is the number of vectors xy, - * * , X,,+ that satisfy

X1 +o +xm+1 =n—m xlzo’xm+1209xi>0’i: 2""”72

Butonlettingy; = x;+ Ly, = X5 i = 2, .o, 0 Yypa1 = X1 + 1,
we see that this is equal to the number of positive vectors (¥, - . ., Ym+1)
that satisfy

ViHYr At Yy = m 2

n—m+1

Hence, by Proposition 6.1, there are ( ) such outcomes, which

m
is in agreement with the results of Example 4c.

Suppose now that we are interested in the number of outcomes in
which each pair of defective items is separated by at least 2 functional ones.
By the same reasoning as that applied above, this would equal the number
of vectors satisfying

x+ o t+x, =n-m x20x,.,=0,5=2,i=2,...,m
Upon letting y; = x; + 1,3, = x; — L i = 2, ..., m Vs
Xn+1 + 1, we see that this is the same as the number of positive solutions
of

Yyi+ ot Y =0 — 2m+ 3

n—2m+ 2

> such outcomes.
m

Hence, from Proposition 6.1, there are (

SUMMARY

The basic principle of counting states that if an experiment consisting of two
phases is such that there are n possible outcomes of phase 1, and for each of
these n outcomes there are m possible outcomes of phase 2, there are nm possible
outcomes of the experiment.

There are n! = n(m — 1) - - - 3 - 2 - 1 possible linear orderings of # items.
The quantity 0! is defined to equal 1.

Let
ny n!
N\ (m— Dl
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when 0 =i =< p, and let it equal 0 otherwise. This quantity represénts the number
of different subgroups of size i that can be chosen from a set of size n. It is often

called a binomial coefficient because of its prominence in the bmormal theorem,
which states that ‘ T

E (n . i
(x + y)n — 2 xlyll i i .
i=o \I -

For nonnegative integers ny, . .., A, summing to n,

n n!
ny,Hy, ..., 0,  mplngl--onl

is the number of ways of d1v1d1n0 up n items into r dlstmct nonoverlapping

subgroups of sizes ny, ny, .. ., 1. o

PROBLEMS

1. (a) How many different 7-place license plates are possible if the first 2 places

are for letters and the other 5 for numbers?
(b) Repeat part (a) under the assumption that no letter or number can be
repeated in a single license plate.

2. How many outcome sequences are possible when a die is rolled four times,
where we say, for instance, that the outcome is 3, 4, 3, 1 if the first roil
landed on 3, the second on 4, the third on 3, and the fourth on 1?

3. Twenty workers are to be assigned to 20 different jobs, one to each job. How
many different assignments are possible?

4. John, Jim, Jay, and Jack have formed a band consisting of 4 instruments. If

each of the boys can play all 4 instruments, how many different arrangements -
are possible? What if John and Jim can play all 4 instruments, but Jay and "

Jack can each play only piano and drums?

5. For years, telephone area codes in the United States and Canada consisted
of a sequence of three digits. The first digit was an integer between 2 and 9;
the second digit was either O or 1; the third digit was any integer between 1
and 9. How many area codes were possible? How many area codes starting
with a 4 were possible?

6. A well-known nursery rhyme starts as follows:

As I was going to St. Ives
I met a man with 7 wives.
Each wife had7 sacks.
Each sack had 7 cats.
Each cat had 7 kittens.

How many kittens did the traveler meet?

R TR

8.

{

9.

Problems 17

(a) In how many ways can 3 boys and 3 girls sit in a row?

(b) In how many ways can 3 boys and 3 girls sit in a row if the boys and
the girls are each to sit together?

(¢) In how many ways if only the boys must sit together?

(d) In how " many ways if no two people of the same sex are allowed to
sit together?

How many different letter arrangements can be made from the letters

(a) FLUKE;

(b) PROPOSE;

(€) MISSISSIPPI;

(d) ARRANGE?

A child has 12 blocks of which-6 are black, 4 are red, 1.is white, and 1 is

/ blue. If the child puts the blocks in a line, how many arrangements are possible?

10.

277

11.

In how many ways can 8 people be seated in a row if

(a) there are no restrictions on the seating arrangement;

(b) persons A and B must sit next to each other; _

(¢) there are 4 men and 4 women and no 2 men or 2 women can sit next to
each other;

(d) there are 5 men and they must sit next to each other;

(e) there are 4 married couples and each couple must sit together?

In how many ways can 3 novels, 2 mathematlcs books, and 1 chemistry book

be arranged on a bookshelf if

(a) the books can be arranged in any order;

(b) the mathematics books must be together and the novels must be together;

(c) the novels must be together but the other books can be arranged in
any order?

. Five separate awards (best scholarsmp, best leadership qualmes and so on)

are to be presented to selected students from a class of 30. How many different
outcomes are possible if
(a) a student can receive any number of awards;

-.(b) each student can receive at most 1 award?

13.

14,
15.

16.
. economics books. How many choices are possible if

17.

18.

Consider a group of 20 people. If everyone shakes hands with everyone else,
how many handshakes take place?

How many 5-card poker hands are there?

A dance class consists of 22 students, 10 women and 12 men. If 5 men and
5 women are to be chosen and then paired off, how many results are possible?
A student Has to sell 2 books from a collection of 6 math, 7 science, and-4

(a) both books are to be on the same subject;

(b) the books are to be on different subjects?

A total of 7 different gifts are to be distributed among 10 children. How
many distinct results are possible if no child is to receive more than one gift?
A committee of 7, consisting of 2 Republicans, 2 Democrats, and 3 Indepen-
dents, is to be chosen from a group of 5 Republicans, 6 Democrats, and 4
Independents. How many committees are possible?- :
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19. From a group of 8 women and 6 men a committee consisting of 3 men and
3 women is to be formed. How many different committees are possible if
(a) 2 of the men refuse to serve together;
(b) 2 of the women refuse to serve together;
(¢) 1 man and 1 woman refusg to serve together?

20. A person has 8 friends, of whom 5 will be invited to a party.
(a) How many choices are there if 2 of the friends are feuding and will not

attend together?

(b) How many choices if 2 of the friends will only attend together?

21. Consider the grid of points shown below. Suppose that starting at the point
labeled A you can go one step up or one step to the right at each move. This
is continued until the point labeled B is reached. How many different paths
from A to B are possible?

HINT: Note that to reach B from A you must take 4 steps to the right and
3 steps upward.

® o ® e o’
- & e ® e
® ® & 9 ®
,© 606 ———6———©

22. In Problem 21, how many different paths are there from A to B that go through
the point circled below?

B
© © L4 @ ®

© 4 ©
AG © ‘ &

23. A psycholooy laboratory conducting dream research contains 3 rooms, with
2 beds in each room. If 3 sets of 1dent1cal twins are to be assigned to these

6 beds so that each set of twins sleeps in different beds in the same room,

how many assignments are possible? Y

24.
25.

26.
27.

28.

29,

30.

*31.

*32.

*33.

Theoretical Exercises 19

Expand (3x% + y)°.

The game of bridge is played by 4 players, each of whom is dealt 13 cards.
How many bndge deals are possible?

Expand (x;*+ 2x, + 3x3)*.

If 12 people are to be divided into 3 committees of respective sizes 3, 4, and
5, how many divisions are possible?

If 8 new teachers are to be divided among 4 schools, how many divisions
are possible? What if each school must receive 2 teachers?

Ten weight lifters are competing in a team weight-lifting contest. Of the
lifters, 3 are from the United States, 4 are from Russia, 2 are from China,
and 1 is from Canada. If the scoring takes account of the countries that the
lifters represent but not their individual identities, how many different out-
comes are possible from the point of view of scores? How many different
outcomes correspornid to results in which the United States has 1 competitor
in the top three and 2 in the bottom three?

Delegates from 10 countries, including Russia, France, England, and the
United States, are to be seated in a row. How many different seating arrange-
ments are possible if the French and English delegates are to be seated next
to each other, and the Russian and U. S delegates are not to be next to
each other?

If 8 identical blackboards are to be divided among 4 schools, how many
divisions are possible? How many, if each school must receive at least 1 black-
board?

An elevator starts at the basement with 8 people (not including the elevator
operator) and discharges them all by the time it reaches the top floor,
number 6. In how many ways could the operator have perceived the people
leaving the elevator if all people look alike to him? What if the 8 people
consisted of 5 men and 3 women and the operator could tell a man from
a woman?

We have 20 thousand dollars that must be invested among 4 possible opportu-
nities. Each investment must be integral in units of 1 thousand dollars, and
there are minimal investments that need to be made if one is to invest in
these opportunities. The minimal investments are 2, 2, 3, and 4 thousand
dollars. How many different investment strategies are available if

(a) an investment must be made in each opportunity;

(b) investments must be made in at least 3 of the 4 opportunities?

THEORETICAL EXERCISES

1.
2.

Prove the generalized version of the basic counting principle.

Two experiments are to be performed. The first can result in any one of m
possible outcomes. If the first experimerit results in outcome number i, then
the second experiment can result in any of n; possible outcomes, i = 1,
2, ..., m. What is the number of possible outcomes of the two experiments?
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10.

~ (&) Use the factorial definition of ( ) to verify the identity in part (d).

. Determine the number of vectors (xy, . ..

Chapter 1 Combinatorial Analysis

. In how many ways can r objects be selected from a set of n if the order of

selection is considered relevant?

There are (’:

and n — r are white. Give a combinatorial explanation of this fact.
, X,,), such that each x; is either O

) different linear arrangements of »n balls of which r are black

or 1 and
n
> xzk
i=1

How many vectors xy, . . . , X are there for which each x; is a positive integer
suchthat ] = x; < pand x; < xp < - -+ < x?

. Give an analytic proof of Equation (4.1).
/8.

Prove that

)=+ 00+ + ()

uint:  Consider a group of 7 men and m women. How many groups of size
r are possible?
Use Theoretical Exercise 8 to prove that

(%7) -3

From a group of n people, suppose that we want to choose a committee of
k, k = n, one of whom is to be designated as chairperson.
(a) By focusing first on the choice of the committee and then on the cho1ce

of the chair, argue that there are <k>k possible choices.

(b) By focusing first on the choice of the nonchair committee members
and then on the choice of the chair, argue that there are

( I i 1) (n — k + 1) possible choices.

(¢) By focusing first on the choice of the chair and then on the choice of

1> possible

n
the other committee members, argue that there are n<k

choices.
(d) Conclude from parts (a), (b), and (c) that

n n _ n—1
k(k) =(m—-k+ 1)<k _ 1> = n(k _ 1)

B
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11. The following identity is known as Fermat’s combinatorial identity.

N LA

Give a combinatorial argument (no computations are needed) to establish this
identity.

HINT:  Consider the set of numbers 1 through n. How many subsets of size
k have i as their highest-numbered member?

12. Consider the following combinatorial identity:

i k<”> =n- 20!

(a) Present a combinatorial argument for the above by considering a set of
n people and detenmmng, in two ways, the number of possible selections
of a committee of any size and a chairperson for the committee.

HINT: (i) How many possible selections are there of a committee of
size k and its chairperson?
(ii) How many possible selections are there of a chairperson and
the other committee members?

(b) Verify the following identity forn = 1, 2, 3, 4, 5:
> (”) K2 = 2""2n(n + 1)
, =1 \k
For a combinatorial proof of the above, consider a set of n people, and
argue that both sides of the identity above represent the number of different
selections of a committee, its chairperson, and its secretary (possibly the
same as the chairperson).

HINT: (1) How many different selections result in the committee con-
taining exactly k people?
(i) How many different selections are there in which the chair-
person and the secretary are the same?
(ANSWER: 12" 1)
(i1i) How many different selections result in the chairperson and
the secretary being different?

(¢) Now argue that

i <Z> B =2""3@m + 3)

k=1

i(—l)"(’?) =0 ’
i=0 l

HINT: Use the binomial theorem.

13. Show that for n > 0,
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- 14,

15.

16.
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From a set of n people a committee of size j is to be chosen, and from this

committee a subcommittee of size i, i = j, is also to be chosen.

(a) Derive a combinatorial identity by computing, in two ways, the number
of possible choices of the committee and subcommittee—first by suppos-
ing that the committee is chosen first and then the subcommittee, and
second by supposing that the subcommittee is chosen first and then the
remaining members of the committee are chosen.

(b) Use part (a) to prove the following combinatorial identity:

S0 - ()2 =

(¢) Use part (a) and Theoretical Exercise 13 to show that

’2 <j><’l> (—1y'*7 =0 i=n
j=i

Let Hy(n) be the number of vectors xy, . . ., x; for which each x; is a positive
integer satisfying l = x; =nandxy = xp = -+ - = xp.
(a) Without any computations, argue that

Him)=n

H) = X Hea() k>1
=

uiNT:  How many vectors are there in which x;, = j?
(b) Use the preceding recursion to compute H5(5).

HINT:  First compute Ho(n) forn = 1, 2, 3, 4, 5.

Consider a tournament of n contestants in which the outcome is an ordering
of these contestants, with ties allowed. That is, the outcome partitions the
players into groups, with the first group consisting of the players that tied
for first place, the next group being those that tied for the next best position,
and so on. Let N(n) denote the number of different possible outcomes. For
instance, N(2) = 3 since in a tournament with 2 contestants, player 1 could
be uniquely first, player 2 could be uniquely first, or they could tie for first.
(a) List all the possible outcomes when n = 3.

(b) With N(0) defined to equal 1, argue, without any computations, that

N = 21 <’: ) N — i)

uiNT:  How many outcomes are there in which i players tie for last place?
(c) Show that the formula of part (b) is equivalent to the following:

n—1 n )
Ny = >, (l.)N(z)

i=0

" (d) Use the recursion to find N(3) and N(4).

17

18,

19.
*20.

*#21.

*22.

*23.
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»

n—1
+
, 1y ny,no —1,...,n,

n—1
+.-.+
Ay, oy ... n, — 1

HINT:  Use an argument similar to the one used to establish Equation (4.1).
Prove the multinomial theorem.

In how many ways can n identical balls be distributed into r urns so that the
ith urn contains at least m; balls, for each i = 1, ..., r? Assume that n =

N
> m;.

i=1

Present a combinatorial explanation of why <n> = < " >
rnn-—r

Argue that _

( n ) _ n—1
ny, Ny, ..., 0, ny— 1Ln,, ...

n-—1

Argue that there are exactly (;{) < +k
n—r

> solutions of

x1+x2+"‘+x,.=n

for which exactly & of the x; are equal to 0.
Consider a function f(x;, . . ., x,,) of n variables. How many different partial
derivatives of order r does it possess?

Determine the number of vectors (x, . .

.,X,), such that each x;is a nonnegative
integer and

SELF-TEST PROBLEMS AND EXERCISES

1.

How many different linear arrangements are there of the letters A, B, C, D,
E, F for which ‘ ‘
(a) A and B are next to each other;

(b) A is before B;

(¢) A is before B and B is before C;

(d) A is before B and C is before D;

(e) A and B are next to each other and C and D are also next to each other;
(f) E is not last in line?

If 4 Americans, 3 Frenchmen, and 3 Englishmen are to be seated in a row,
how many seating arrangements are possible when people of the same national-
ity must sit next to each other? '
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. A president, treasurer, and secretary, all different, are to be chosen from a

club consisting of 10 people. How many different choices of officers are
possible if

(a) there are no restrictions;

(b) A and B will not serve together;

(¢) C and D will serve together or not at all;

(d) E must be an officer;

(e) F will serve only if he is president?

A student is to answer 7 out of 10 questions in an examination. How many
choices has she? How many if she must answer at least 3 of the first 5 ques-
tions?

In how many ways can a man divide 7 gifts among his 3 children if the eldest
is to receive 3 gifts and the others 2 each?

. How many different 7-place license plates are possible when 3 of the entries

are letters and 4 are digits? Assume that repetition of letters and numbers is
allowed and that there is no restriction on where the letters or numbers can
be placed.

. Give a combinatorial explanation of the identity

-0

. Consider n-digit numbers where each digit is one of the 10 integers O,

1, ..., 9. How many such numbers are there for which
(a) no two consecutive digits are equal;
(b) O appears as a digit a total of i times, i = 0, ..., n?

. Consider three classes, each consisting of n students. From this group of 3n

students, a group of 3 students is to be chosen.

(a) How many choices are possible?

(b) How many choices are there in which all 3 students are in the same class?

(¢) How many choices are there in which 2 of the 3 students are in the same
class and the other student is in a different class?

(d) How many choices are there in which all 3 students are in different classes?

(e) Using the results of parts (a) through (d), write a combinatorial identity.

An art collection on auction consisted of 4 Dalis, 5 van Goghs, and 6 Picassos.

At the auction were 5 art collectors. If a reporter noted only the number of -
Dalis, van Goghs, and Picassos acquired by each collector, how many different

results could have been recorded if all works were sold?

Determine the number of vectors (xy, . . ., x,,) such that each x; is a positive
integer and

where k = n.

CHAPTER 2

Axioms of Probability

2.1 INTRODUCTION

In this chapter we introduce the concept of the probability of an event and
then show how these probabilities can be computed in certain situations. As a
preliminary, however, we need the concept of the sample space and the events
of an experiment. '

2.2 SAMPLE SPACE AND EVENTS

Consider an experiment whose outcome is not predictable with certainty in ad-
vance. However, although the outcome of the experiment will not be known in
advance, let us suppose that the set of all possible outcomes is known. This set
of all. possible outcomes of an experiment is known as the sample space of the
experiment and is denoted by S. Some examples follow.

1. Jf the outcome of an experiment consists in the determination of the sex
of a newborn child, then
§ = {& b}

where the outcome g means that the child is a girl and b that it is a boy.

2. If the outcome of an experiment is the order of finish in a race among
the 7 horses having post positions 1, 2, 3, 4, 5, 6, 7, then

S = {all 7! permutations of (1, 2, 3, 4, 5, 6, 7)}

[he dutcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse
comes in first, then the number 3 horse, then the number 1 horse, and so on.

3. If the experiment consists of flipping two coins, then the sample space
consists of the following four points:

S = {(#, H), (H, T), (T, H), (T, T}
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The outcome will be (H, H) if both coins are heads, (H, T) if the first coin is
heads and the second tails, (T, H) if the first is tails and the second heads, and
(T, T) if both coins are tails.

4. If the experiment consists of tossing two dice, then the sample space
consists of the 36 points

S=1{Gj)ij=123456)

where the outcome (i, j) is said to occur if i appears on the leftmost die and j on
the other die. .

5. If the experiment consists of measuring (in hours) the lifetime of a
transistor, then the sample space consists of all nonnegative real numbers. That
is

S ={x0=x<ow}

Any subset E of the sample space is known as an event. That is, an event
is a set consisting of possible outcomes of the experiment. If the outcome of the
experiment is contained in E, then we say that E has occurred Some examples
of events are the following.

In example 1 above, 1f E = {g}, then E is the event that the child is a girl.
Similarly, if F = {b}, thén F is the event that the child is a boy.

In example 2, if

E = {all outcomes in § starting With a3}

then FE is the event that horse 3 wins the race. :

In example 3, if E = {(H, H), (H, T)}, then E is the event that a head
appears on the first coin.

In example 4, if E = {(1, 6), (2, 5), (3, 4), 4, 3), (5 2), (6, 1)}, then E is
the event that the sum of the dice equals 7.

In example 5, if E = {x: 0 = x =< 5}, then E is the event that the transistor
does not last longer than 5 hours.

For any two events E and F of a sample space S, we define the new event
E U F to consist of all points that are either in E or in F or in both E and F. That
is, the event E U F will occur if either E or F occurs. For instance, in example
lifevent E = {g} and F = {b}, then

EUF = {g, b}

That is, E U F would be the whole sample space S. In example 3, if E =
{(H, H), (H, T)} and F = {(T, H)}, then

EUF = {(# H), #H,1T), (TH)}

Thus E U F would occur if a head appeared on either coin.
The event E U F is called the union of the event E and the event F.
Similarly, for any two events E and F we may also define the new event
EF, called the intersection of E and F, to consist of all outcomes that are both
in E and in F. That is, the event EF (sometimes written £ N F) will occur only
if both E and F occur. For instance, in example 3 if E = {(H, H), (H, T),
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(T, H)} is the event that at least 1 head occurs, and F = {(H, T), (T, H), (T, T)}
is the event that at least 1 tail occurs, then

EF = {(#, 1), (T, H)}

is the event that exactly 1 head and 1 tail appear. In example 4 if E = {(1, 6),
2,5, (3, 4), 4, 3), (5, 2), (6, 1)} is the event that the sum of the dice is 7 and
F={({,5), 2,4, @3,3),4,2), (5, 1)} is the event that the sum is 6, then the
event EF does not contain any outcomes and hence could not occur. To give such
an event a name, we shall refer to it as the null event and denote it by &J (that
is, @ refers to the event consisting of no points). If EF = (), then E and F are
said to be mutually exclusive.

- We also define unions and intersections of more than two events in a similar

manner. If E;, E,, . . . are events, the union of these events, denoted by U E,,,
n=1
is defined to be that event which consists of all points that are in E,, for at least

one value of n = 1,2, .... Similarly, the intersection of the events £, denoted

by ﬂ ., is defined to be the event consisting of those points that are in all of
n=1

“theevents E,, n = 1,2, ....

Finally, for any event E we define the new event E°, referred to as the
complement of E, to consist of all points in the sample space S that are not in
E. That is, E€ will occur if and only if E does not occur. In example 4, if event
E = {(, 6), (2,5, 3, 4), 4,°3), (5, 2), (6, 1)}, then E® will occur when the
sum of the dige does not equal 7. Also note that because the experiment must
result in some outcome, it follows that S¢ = .

For any two events E and F, if all of the points in E are also in F, then we
say that E is contained in F and write E C F (or equivalently, F D E). Thus, if
E C F, the occurrence of E necessarily implies the occurrence of F. If E C F and
F C E, we say that E and F are equal and write E = F.

A graphical representation that is very useful for illustrating logical relations
among events is the Venn diagram. The sample space S is represented as consisting
of all the points in a large rectangle, and the events E, F, G, . .. are represented
as consisting of all the points in given circles within the rectangle. Events of
interest can then be indicated by shading appropriate regions of the diagram. For
instance, in the three Venn diagrams shown in Figure 2.1, the shaded areas
represent, respectively, the events E U F, EF, and E°. The Venn diagram in Figure
2.2 indicates that E C F.

The operations of forming unions, intersections, and complements of events
obey certain rules not dissimilar to the rules of algebra. We list a few of these rules.

Commutative laws EUF=FUE EF=FE
Associative laws (EURNUG=EU(FUG (EF)G=EFG)
Distributive laws (EUF)G=EGUFG EFUG=(EUG)FUG)

These relations are verified by showing that any outcome that is contained in the
event on the left side of the equality sign is also contained in the event on the
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.

(a) Shaded region: EU F. (b) Shaded region: EF.

S

(c) Shaded region: E€.
Figure 2.1

right side, and vice versa. One way of showing this is by means of Venn diagrams.
For instance, the distributive law may be verified by the sequence of diagrams
in Figure 2.3.

The following useful relationships between the three basic operations of
forming unions, intersections, and complements are known as DeMorgan’s laws:

n < n
(Us) - A
i=1 i=1
n < n
< N Ei) = U Ef
i=1 i=1

n c
To prove DeMorgan’s laws, suppose first that x is a point of ( U E,-) .
n =1
Then x is not contained in |_J E;, which means that x is not contained in any of
i=1 :
the events E;, i = 1, 2, ..., n, implying that x is contained in Ef for all i = 1,

S

ECF Figure 2.2
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E F E F

(AN AR

G G
(a) Shaded region: EG. (b) Shaded region: FG.

G
(c) Shaded region: (E U F)G.
(EUF)G=EGUFG

Figure 2.3

n

2, ..., n and thus is contained in ) Ef. To go the other way, suppose that x
i=1

n
is a point of () Ef. Then x is contained in Ef for all i = 1, 2, ..., n, which
i=1
means that x is not contained in E; for any i = 1, 2, ..., n, implying that x is
n

- n €
" not contained in | E;, which yields that x is contained in <U Ei> . This proves
i 1

1
the first of DeMorgan’s laws.
To prove the second of DeMorgan’s laws, we use the first law to obtain

(Gm) - v

which, since (E€)¢ = E, is equivalent to
n < n
(Um) =
1 1
Taking complements of both sides of the above yields the result, namely,

i

.

n n <
SERIGE)
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2.3 AXIOMS OF PROBABILITY

One way of defining the probability of an event is in terms of its relative frequency.
Such a definition usually goes as follows: We suppose that an experiment, whose
sample space is S, is repeatedly performed under exactly the same conditions.
For each event E of the sample space S, we define n(E) to be the number of times
in the first 1 repetitions of the experiment that the event E occurs. Then P(E),
the probability of the event E, is defined by

P(E) = lim &)

) no= 1
That is, P(E) is defined as the (limiting) proportion of time that E occurs. It is
thus the limiting frequency of E.

Although the preceding definition is certainly intuitively pleasing and should
always be kept in mind by the reader, it possesses a serious drawback: How do
we know that n(E)/n will converge to some constant limiting value that will be
the same for each possible sequence of repetitions of the experiment? For example,
suppose that the experiment to be repeatedly performed consists of flipping a
coin. How do we know that the proportion of heads obtained in the first n flips
will converge to some value as n- gets large? Also, even if it does converge to
some value, how do we know that, if the experiment is repeatedly performed a
second time, we shall again obtain the same limiting proportion of heads?

Proponents of the relative frequency definition of probability usually answer
this objection by stating that the convergence of n(E)/n to a constant limiting
value is an assumption, or an axiom, of the system. However, to assume that
n(E)/n will necessarily converge to some constant value seems to be a very
complex assumption. For, although we might indeed hope that such a constant
limiting frequency exists, it does not at all seem to be a priori evident that this
need be the case. In fact, would it not be more reasonable to assume a set of

simpler and more self-evident axioms about probability and then attempt to prove -

that such a constant limiting frequency does in some sense exist? This latter
approach is the modern axiomatic approach to probability theory that we shall
adopt in this text. In particular, we shall assume that for each event E in the
sample space § there exists a value P(E), referred to as the probability of E. We
shall then assume that the probabilities satisfy a certain set of axioms, which, we
hope the reader will agree, is in accordance with our intuitive notion of probability.

Consider an experiment whose sample space is S. For each event E of the
sample space S we assume that a number P(E) is defined and satisfies the following
three axioms.

Axiom 1.

 0=PE)=1
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Py =1
Axiom 3 '
For any sequence of mutually exclusive events El; E,, ... (that is,

* events for which E;E; = & when i # j),

P( U E) =3 PE)
i=1

i=1

We refer to P(E) as the probabi]ity of the event E. - i

Thus Axiom 1 states that the probability that the outcome of the experiment
is a point in E is some number between 0 and 1. Axiom 2 states that, with
probability 1, the outcome will be a point in the sample space S. Axiom 3 states
that for any sequence of mutually exclusive events the probability of at.least one
of these events occurring is just the sum of their respective probabilities.

If we consider a sequence of events E, E5, ..., where E; = S, E; = &

for i > 1, then, as the events are mutually exclusive and as § = | E;, we have
i=1

from Axiom 3 that
PS) = > P(E;) = P(S) + > P©)
f==1 i=2

implying that
P(QD) =0
That is, the null event has probability 0 of occurring.

It should also be noted that it follows that for any finite sequence of mutually
exclusive events Ey, Es, ..., E,,

P(U E,-) ="2, P(E) 3.1
1 i=1
This follows from Axiom 3 by defining E; to be the null event for all values of
i greater than n. Axiom 3 is equivalent to Equation (3.1) when the sample space
is finite (why?). However, the added generality of Axiom 3 is necessary when
the sample space consists of an infinite number of points.

Example 3a. If our experiment consists of tossing a coin and if we assume that
a head is as likely to appear as a tail, then we would have

P({H}) = P({T}) = 3
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On the other hand, if the coin were biased and we felt that a head were
twice as likely to appear as a tail, then we would have

PAHY) =3 PUTH =3

Example 3b. If a die is rolled and we suppose that all six sides are equally likely
to appear, then we would have P({1}) = P({2}) = P({3}) = P({4}) =
P({5}) = P({6}) = & From Axiom 3 it would thus follow that the probability
of rolling an even number would equal

P({2, 4, 6}) = P({2}) + P({4}) + P({6}) = 3

The assumption of the existence of a set function P, defined on the events
of a sample space S, and satisfying Axioms 1, 2, and 3, constitutes the modern
mathematical approach to probability theory. Hopefully, the reader will agree that
the axioms are natural and in accordance with our intuitive concept of probability
as related to chance and randomness. Furthermore, using these axioms we shall
be able to prove that if an experiment is repeated over and over again then, with
probability 1, the proportion of time during which any specific event E occurs
will equal P(E). This result, known as the strong law of large numbers, is presented
in Chapter 8. In addition, we present another possible interpretation of probabil-
ity—as being a measure of belief—in Section 2.7.

TecuNicaL REMARK. We have supposed that P(E) is defined for all the
events E of the sample space. Actually, when the sample space is an uncountably
infinite set P(E) is defined only for a class of events called measurable. However,
this restriction need not concern us as all events of any practical interest are mea-
surable.

2.4 SOME SIMPLE PROPOSITIONS

In this-section we prove some simple propositions regarding probabilities. We

first note that as E and E€ are always mutually exclusive and since E U E€ =
S, we have by Axioms 2 and 3 that

1 = P(S) = P(EUE®) = P(E) + P(E°)

Or equivalently, we have the statement given in Proposition 4.1.

 Proposition 4.1

In words, Proposition 4.1 states that the probability that an event does not
occur is 1 minus the probability that it does occur. For instance, if the probability

of obtalmnv a head on the toss of a coin is 3, the probability of obtaining a tail -

must be 3.
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Our second proposition states that if the event E is contajned in the event
F, then the probability of E is no greater than the probability of F'

Propdsitian 42

. KECF, then P(E) < P(F).

~ Proof:  Since E C F, it follows that we can express I as
F = EUEF
Hence, as E and E°F are mutually exclusive, we obtain ffom Axiom 3 that
P(F) = P(E) + P(E°F)

which proves the result, since P(E°F) = 0.

Proposition 4.2 tells us, for instance, that the probability of rolling a 1 with
a die is less than or equal to the probability of rolling an odd value with the die.

The next proposition gives the relationship between the probability of the

union of two events in terms of the individual probabilities and the probability
of the intersection.

: Proposmon 4 3

P(EU F) = P(E) + P(F) = P(EF)

Proof: To derive a formula for P(E U F), we ﬁrst note that £ U F can be
written as the union of the two disjoint events E and E°F. Thus from Axiom 3

we obtain that
P(EUF) = P(EU E°F)
= P(E) + P(E°F)

Furthermore, since F = EF U E°F, we again obtain from Axiom 3 that
P(F) = P(EF) + P(E°F)
or, equivalently, :
P(E°F) = P(F) — P(EF) n
thus completing the proof. /
Proposition 4.3 could also have been proved by making use of the Venn
diagram in Figure 2.4.

Let us divide E U F into three mutually exclusive sections, as shown in
Figure 2.5. In words, section I represents all the points in E that are not in F (that
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Figure 2.4 Venn diagram.

is, EF°); section II represents all points both in E and in F (that is, EF); and
section III represents all points in F that are not in E (that is, E°F).
From Figure 2.5 we see that.

EUF=1UNDUII
E=1Ull
F=TUuIl _
As 1, II, and TIT are mutually exclusive, it follows from Axiom 3 that
P(EUF) = PQ) + P + POID
P(E) = P(D) + PAD
P(F) = P(II) + P(ID)
which shows that .
P(EUF) = P(E) + P(F) — POD

and Proposition 4.3 is proved, since II = EF.

Example 4a. Suppose that we ‘toss two coins and suppose that each of the
four points in the sample space S = {(H 0], H, 1), T, H), (T, T)} is
equally likely and hence has probab111ty 3. Let

E={HH),H T} ad F={#H H), (T H)}

That is, E is the event that the first coin falls heads, and F is the event that
the second coin fails heads.

By Proposition 4.3 we have that P(E U F), the probability that either
the first or second coin falls heads, is given by

PEEUF) = P(E) + P(F) — P(EF)
= P({H, H)})

Il

]
B0 pa I
!
-M»—-“

<ES

Figure 2.5 Venn diagram in
sections.
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This probability could, of course, have been computed directly because
PEUF) = P{(H, H), H,T), (T, H)}) = 3 |
We may also calculate the probability that any one of the three events E or
F or G occurs:
P(EUFUG) = P(EU F)U G]
which by Proposition 4.3 equals
PEUF) + P(G) — P[(EU F)G]

Now, it follows from the distributive law that the events (E U F )G and G U FG
are equivalent, and hence we obtain from the preceding equations that

P(EUFUG)
= P(E) + P(F) — P(EF) + P(G) — P(EG U FG)
= P(E) + P(F) — P(EF) + P(G) — P(EG) — P(FG) + P(EGFG)
= P(E) + P(F) + P(G) — P(EF) — P(EG) — P(FG) + P(EFG)

In fact, the following proposition can be prbved by induction.

Proposition 4.4 .
P(E,UE,U---UE,) = ZP(E)'

| -;-; ‘+(""1"’)”i“}5(}§{é{ . n) o
The'summaﬁOn' > P( E) is taken over all of the :

11<to< <zr

(n) ypVoss'ible subsets of size r bf the Set {1,’ .2, SELy n}.‘, , o

In words, Proposition 4.4 states that the probability of the union of n events
equals the sum of the probabilities of these events taken one at a time, minus the
sum of the probabilities of these events taken two at a time, plus the sum of the
probabilities of these events taken three at a time, and so on.

RemaRrk. For a noninductive argument for Proposition 4.4, note first that if
a point of the sample space is not a member of any of the sets E; then its probability
does not contribute anything to either side of the equality. On the other hand,
suppose that a point is in exactly m of the events E;, where m > 0. Then since

it is in (J E; its probability is counted once in P(U E,->; also as this point is
- :

i
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contained in <IZ) subsets of the type E; E;, * - - E;, its probability is counted

() (5) <';f> —x ()

times on the right of the equality sign in Proposition 4.4. Thus, for m > 0, we

must show that
1 (ﬂl) (I?l) <l72> L <I71>
1 2 3 m

However, since 1 = (l(’;)’ the preceding is equivalent to
m
> <".1)<—1>" =0
i=0 \1
and the latter equation follows from the binomial theorem since

0= (_1 o+ l)m — i <’Z‘1>(__1)i(l)m—i

i=0

2.5 SAMPLE SPACES HAVING EQUALLY LIKELY OUTCOMES

For many experiments it is natural to assume that all outcomes in the sample
space are equally likely to occur. That is, consider an experiment whose sample
space S is a finite set, say S = {1, 2, ..., N}. Thenitis often natural to assume that

P({1}) = P({zn = .-+ = P({N})
which implies from Axioms 2 and 3 (why?) that

P{i)) = %} i=1,2...,N

From this it follows from Axiom 3 that for any event E

number of points in £
number of points in S

P(E) =

In WOI'dS,‘ if we assume that all outcomes of an experiment are equally likely to
occur, then the probability of any event E equals the proportion of points in the
sample space that are contained in E.

Example 5a. If two dice are rolled, what is the prbbability that the sum of the
upturned faces will equal 7?

Solution We shall solve this problem under the assumption that all of the
36 possible outcomes are equally likely. Since there are 6 possible outcomes,
namely (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), that result in the sum of
the dice being equal to 7, the desired probability is & = L. |

4
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Example 5b. If 3 balls are “randomly drawn” from a bowl containing 6 white
and 5 black balls, what is the probability that one of the drawn balls is white
and the other two black?

Solution* .If we regard the order in which the balls are selected as being
relevant, then the sample space consists of 11 - 10 -+ 9 = 990 outcomes.
Furthermore, there are 6 - 5 - 4 = 120 outcomes in which the first ball
selected is white and the other two black, 5 - 6 -+ 4 = 120 outcomes
in which the first is black, the second white, and the third black; and
5+4 -6 = 120 in which the first two are black and the third white. Hence,
‘assuming that “randomly drawn” means that each outcome in the sample
space is equally likely to occur, we see that the desired probability is

120 + 120 + 120 _ 4
990 11

This problem could also have been solved by regardiﬁg the outcome
of the experiment as the unordered set of drawn balls. From this point of

11
view, there are ( 3 > = 165 outcomes in the sample space. Now, each set

of 3 balls corresponds to 3! outcomes when the order of selection is noted.
As a result, if all outcomes are assumed equally likely when the order of
selection is noted, then it follows that they remain equally likely when the
outcome is taken to be the unordered set of selected balls. Hence, using the
latter representation of the experiment, we see that the desired probability is

DG _

(5)

which, of course, agrees with the answer obtained previously. |

Example 5c. A committee of 5 is to be selected from a group of 6 men and 9
women. If the selection is made randomly, what is the probability that the
committee consists of 3 men and 2 women?

Solution Let us assume that randomly selected means that each of the

15
< 5> possible combinations is equally likely to be selected. Hence the

L))
3/\2/ 240 B
<15> 1001
5
Example Sd. An urn contains n balls, of which one is special. If k of these balls
are withdrawn one at a time, with each selection being equally likely to be

desired probability equals
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any of the balls that remain at the time, what is the probability that the
special ball is chosen?

Solution Since all of the balls are treated in an identical manner, it follows

that the set of k balls selected is equally likely to be any of the (Z) sets of

k balls. Therefore,
<1><n - 1>
1/\k -1 k

M

We could also have obtained the preceding result by letting A; denote the

P{special ball is selected} =

event that the special ball is the ith ball to be chosen, i = 1, ..., k. Then, "~ 7

since each one of the n balls is equally likely to be the ith ball chosen, it
follows that P(A;) = 1/n. Hence, since these events are obviously mutually
exclusive, we have that

P{special ball is selected} = P< U A,—) Z P;) = -

i=1 i=1

We could have argued that P(A;) = 1/n, by noting that there are

nn— 1)<+ —k+ 1) = nl/(n — k)! equally likely outcomes of the

experiment, of which (n — D)(n — 2) - - - (n — i + D) — ) - - -

(n—k+1)=(@m— DY@ — k)! result in the special ball being the ith

one chosen. From this it follows that

n—10D 1

P@A) =—F == ]

n! n

Example Se. Suppose that n + m balls, of which n are red and m are blue, are

arranged in a linear order in such a way that all (n + m)! possible orderings
are equally likely. If we record the result of this experiment by only hstmg
the colors of the successive balls, show that all the possible results remain
equally likely.

Solution Consider any one of the (n + m)! possible orderings and
note that any permutation of the red balls among themselves and of the blue
balls among themselves does not change the sequence of colors. As a result,
every ordering of colorings corresponds to n! m! different orderings of the
n + m balls, so every ordering of the colors has probability _niml
(n + m)!
of occurring.
For example, suppose that there are 2 red balls, numbered r;, r, and
2 blue balls, numbered by, b,. Then, of the 4! possible orderings, there will
be 2! 2! orderings that result in any specified color combination. For instance,
the following orderings result in the successive balls alternating in color
with a red ball first: :

rys bl’ , b2 F1s b2, Iy, bl Fa, bl’ 1, b2 Fa, bz, ¥is bl

4
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Hence each of the possible orderings of the colors has probability 5 = &
of occurring. i

Example Sf. A poker hand consists of 5 cards. If the cards have distinct consecu-
tive values and are not all of the same suit, we say that the hand is a straight.
For instance, a hand consisting of the five of spades, six of spades, seven
of spades, eight of spades, and nine of hearts is a straight. What is the
probability that one is dealt a straight?

52
" Solution We start by assuming that all <5> possible poker hands are

equally likely. To determine the number of outcomes that are straights, let
us first determine the number of possible outcomes for which the poker hand
consists of an ace, two, three, four, and five (the suits being irrelevant).
Since the ace can be any 1 of the 4 possible aces and smularly for the two,
three, four, and five, it follows that there are 4° outcomes leading to exactly
one ace, two, three, four, and five. Hence, since in 4 of these outcomes all
the cards will be of the same suit (such a hand is called a straight flush), it
follows that there are 4> — 4 hands that make up a straight of the form ace,
two, three, four, and five. Similarly, there are 4> — 4 hands that make
up a straight of the form ten, jack, queen, king,~-and ace. Hence there are
10(4°> — 4) hands that are straights. Thus the desired probability is

10(4° — 4)
()
5
Example 5g. A 5-card poker hand is said to be a full house if it consists of 3
cards of the same denomination and 2 cards of the same denomination. (That

is, a full house is three of a kind plus a pair.) What is the probability that
one is dealt a full house?

~ 0039 B

52
Solution Again we assume that all ( 5 ) possible hands are equally likely.

To determine the number of possible full houses, we first note that there

4\/4
are <2> (3) different combinations of, say, 2 tens and 3 jacks. Because

there are 13 different choices for the kind of pair and, after a pair has been
chosen, there are 12 other choices for the denomination of the remaining 3
cards, it follows that the probability of a full house is

o))
5)

=~ .0014 B
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Example 5h. In the game of bridge the entire deck of 52 cards is dealt out to 4

players. What is the probability that
(a) one of the players receives all 13 spades;
(b) each player receives 1 ace?

52

> possible divisions of the cards
13,13,13,13

Solution (a) There are <
39 .
13, 13, 13) possible divisions
of the cards leading to a fixed player having all 13 spades, it follows that

the desired probablhty is given by

39
4 L)
(13, 13, 13)

(5,191
13,13,13,13

(b) To determine the number of outcomes in which each of the distinct
players receives exactly 1 ace, put aside the aces and note that there are

among the 4 distinct players. As there are <

~ 6.3 X 10712

4
<12’ 12,81 2, 12) possible divisions of the other 48 cards when each player

is to receive 12. As there are 4! ways of dividing the 4 aces so that each
player receives 1, we see that the number of possible outcomes in which

48
each player receives exactly 1 ace is 4!( 12,12, 12, 12). Hence the desired
probability is
4!< 2 124812 12)
12121212 _ 105 i

(15,1911
13,13, 13,13

Some results in probability are quite surprising when initially encountered.
Our next two examples illustrate this phenomenon. :

Example 5i. If n people are present in a room, what is the probability that no

two of them celebrate their birthday on the same day of the year? How large
need 1 be so that this probability is less than 3?

Solution As each person can celebrate his or her birthday on any one of

365 days, there is a total of (365)" possible outcomes. (We are ignoring the

possibility of someone’s having been born on February 29.) Assuming that
each outcome is equally likely, we see that the desired probability is
(365)(364)(363) - - - (365 — n + 1)/(365)". It is a rather surprising fact
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that when n = 23, this probability is less than 3. That is, if there are 23
or more people in a room, then the probability that at least two of them
have the same bm;hday exceeds 3. Many people are initially surprised
by this result, since 23 seems so small in relation to 365, the number
of days of the year. However, every pair of individuals has probability

365 1

G 65)‘ 365 of having the same birthday, and in a group of 23 people

23
there are ( ) ) = 253 different pairs of individuals. Looked at this way,

the result no longer seems so surprising

When there are 50 people in the room, the probability that at least two
share the same birthday is approximately .970. And with 100 persons in the
room, the odds are better than 3,000,000:1 (that is, the probability is greater

X
than 573(?;9——) that at least two people have the same birthday. |

Example 5j. A deck of 52 playing cards is shuffled and the cards turned up one

at a time until the first ace appears. Is the next card—that is, the card
following the first ace—more likely to be the ace of spades or the two of clubs?

Solution To determine the probability that the card following the first ace
is the ace of spades, we need to calculate how many of the (52)! possible
orderings of the cards have the ace of spades immediately following the
first ace. To begin, note that each ordering of the 52 cards can be obtained
by first ordering the 51 cards different from the ace of spades and then
inserting the ace of spades into that ordering. Furthermore, for each of the
(S1)! orderings of the other cards, there is only one place where the ace of
spades can be placed so that it follows the first ace. For instance, if the
ordering of the other 51 cards is

4c, 6h, Jd, 55, Ac,7d, . . ., Kh

then the only insertion of the ace of spaces into this ordering that results in
it following the first ace is

dc, 6h, Jd, 55, Ac, As, 7d, . .., Kh

Therefore, we see that there are (51)! orderings that result in the ace of-
spades following the first ace, so
Gn! 1
62 52
In fact, by exactly the same argument, it follows that the probablhty that
the two of clubs (or any other specified card) follows the first ace is also
3. In other words, each of the 52 cards of the deck is equally likely to be
the one that follows the first ace!

Many people find this result rather surprising. Indeed, a common reac-
tion is to suppose initially that it is more likely that the two of clubs (rather
than the ace of spades) follows the first ace, since that first ace might itself

P {the ace of spades follows the first ace} =
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be the ace of spades. This reaction is often followed by the realization that
the two of clubs might itself appear before the first ace, thus negating its
chance of immediately following the first ace. However, as there is one
chance in four that the ace of spades will be the first ace (because all 4 aces
are equally likely to be first) and only one chance in five that the two of
clubs will appear before the first ace (because each of the set of 5 cards
consisting of the two of clubs and the 4 aces is equally likely to be the first
of this set to appear), it again appears that the two of clubs is more likely.
However, this is not the case and a more complete analysis shows that they
are equally likely. |

Example 5k. A football team consists of 20 offensive and 20 defensive players.
The players are to be paired in groups of 2 for the purpose of determining
roommates. If the pairing is done at random, what is the probability that
there are no offensive—defensive roommate pairs? What is the probability
that there are 2i offensive—defensive roommate pairs, i = 1, 2, ..., 10?

40 > _(40)!

2,2,...,2)  (@H*°
ways of dividing the 40 players into 20 ordered pairs of two each. [That is,
there are (40)!/22° ways of dividing the players into a first pair, a second

Solution There are

pair, and so on.] Hence there are (40)!/22%(20)! ways of dividing the players

into (unordered) pairs of 2 each. Furthermore, since a division will result
in no offensive—defensive pairs if the offensive (and defensive) players are
paired among themselves, it follows that there are [(20)!/210(10)!]2 such
divisions. Hence the probability of no offensive—defensive roommate pairs,
call it Py, is given by

< (20)! >‘

_\2%g0)  eo?

07 @0 [(10)112(40)!
220020)!

To determine P,;, the probability that there are 2i offensive—defensive pairs,

2
we first note that there are <2> ways of selecting the 2i offensive players
i

and the 2i defensive players who are to be in the offensive—defensive pairs.
These 41 players can then be paired up into (2i)! possible offensive—defensive
pairs. (This is so because the first offensive can be paired with any of the
2i defensives, the second offensive with any of the remaining 2i — 1
defensives, and so on.) As the remaining 20 — 2i offensives (and defensives)
must be paired among themselves, it follows that there are

20V [ @o0-2y TP
() o 7525
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divisions which lead to 2i offensive—defensive pairs. Hence

20V [ @o-2i P
. <2i> 20! [210—"(10 - i)!]

Py, = i =0,1,...,10
2 @0)! !
22020)!
The Py;,i = 0,1,...,10, can now be computed or they cah be approximated

by making use of a result of Stirling which shows that n! can be approximated
by n"*12¢~"\/24. For instance, we obtain that

Py~ 1.3403 X 107°
P,y = 7.6068 X 1076 B

Our next three examples illustrate the usefulness of Proposition 4.4. In
Example 51, the introduction of probability enables us to obtain a quick solution
to a counting problem.

Example 51. A total of 36 members of a club play tennis, 28 play squash, and
18 play badminton. Furthermore, 22 of the members play both tennis and
squash, 12 play both tennis and badminton, 9 play both squash and badminton,
and 4 play all three sports. How many members of this club play at least
one of these sports?

Solution Let N denote the number of members of the club, and introduce
probability by assuming that a member of the club is randomly selected. If
for any subset C of members of the club, we let P(C) denote the probability
that the selected member is contained in C, then

number of members in C

P(C) = N

Now, with 7 being the set of members that plays tennis, S being the set that
plays squash, and B being the set that plays badminton, we have from
Proposition 4.4 that

P(T'U SU B) = P(T) + P(S) + P(B) — P(TS) — P(TB) — P(SB) + P(TSB)
=36+28+18—22—12—9+4
N

]
N

Hence we can conclude that 43 members play at least one of the sports. B

The next example in this section not only possesses the virtue of giving rise
to a somewhat surprising answer but is also of theoretical interest.
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Example 5m. The matching problem. Suppose that each of N men at a party

throws his hat into the center of the room. The hats are first mixed up, and
then each man randomly selects a hat. What is the probability that

(a) none of the men selects his own hat;

(b) exactly k of the men select their own hats?

Solution (a). We first calculate the complementary probability of at least
one man’s selecting his own hat. Let us denote by E;, i = 1,2, ..., N the

event that the ith man selects his own hat. Now, by Proposition 4.4

N
P( U Ei>, the probability that at least one of the men selects his own hat,

i=1 .
is given by

N N
P(U E,-) = > P(E)— > PELE,) + -
i==1 i=1 i1<i2

+(=D"*Y Y PELE;, - E;)

i1<iz - <iy

+ o A (= DVTIPEE, - - - Ey)

If we regard the outcome of this experiment as a vector of N numbers, where '

the ith element is the number of the hat drawn by the ith man, then there
are N'! possible outcomes. [The outcome (1, 2, 3, . . ., N) means, for example,
that each man selects his own hat.] Furthermore, E; E;, ... E; , the event
that each of the n men iy, i», ..., i, selects his own hat, can occur in any
of N —mN ~n—1)---3-2-1 = (N — n)! possible ways; for, of
the remaining N — n men, the first can select any of N — n hats, the second
can then select any of N — n — 1 hats, and so on. Hence, assuming that

all N! possible outcomes are equally likely, we see that
_ (N —n)!
PE By - - By = T

. N .
Also, as there are ( ) terms in 2 P(E; E,, - - - E;), we see that

n i1<iz -+ <ip
_ N@WN-m! 1
1.1(1.22_’ <y P(EEs, E) = (N —m!n!N!
and thus
N
- 1 | o+ L
P(igEi>—1—'2—!'+§-!*— + (=1) I
Hence the probability that none of the men selects his own hat is
1 1 =DV
1-1+ ‘27 - ‘3—' + + —]VT——
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which for N large is approximately equal to e ~! =~ .36788. In other words,
for N large, the probability that none of the men selects his own hat is
approximately .37. (How many readers would have incorrectly thought that
this probahility would go to 1 as N — ?) -
(b) To obtain the probability that exactly k of the N men select their
own hats, we first fix attention on a particular set of ¥ men. The number of
ways in which these and only these k¥ men can select their own hats is equal
to the number of ways in which the other N — & men can select among

their hats in such a way that none of them selects his own hat. But, as

11 (— DNk
l—1+—===+- - +—Z
TRETI +(N—k)!

is the probability that not one of N — k men, selecting among their hats,
selects his own, it follows that the number of ways in which the set of men
selecting their own hats corresponds to the set of k men under consideration is

1 1 (—DN—*
N-—IH1l—-1+4+—=—==+4+" -+
( ) [ 21 31 + * N = k)
N . .
Hence, as there are <k> possible selections of a group of k men, it follows

that there are

Myl L1 =pv*
<k> (N — k)! I:l 1+ 2 3 + + M:I

ways in which exactly k of the men select their own hats. The desired
probability is thus

<ZZ>(N—k)![1—1+i_l+...+(:_1_)__Nif}

21 31 N — k!
N!
1 1 (=DV-*
1 — 1 4+ —— - [P S A
_ 20 31 + + N — B!
- k!
which for N large is approximately e ~'/k!. The values e ~'/k!, k = 0,
1, ..., are of some theoretical importance as they represent the values

associated with the Poisson distribution. This is elaborated upon in Chap-
ter 4.7 ’

For another illustration of the usefulness of Proposition 4.4, consider the

following example.

T See Example 5c of Chapter 3 for another approach to this problem.
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Example 5n. If 10 married couples are seated at random at a round table, compute
the probability that no wife sits next to her husband.

Solution IfweletE; i = 1,2,...,10 denote the event that the ith couple
sit next to each other, it follows that the desired probability is

10
1 - P( U E,->. Now, from Proposition 4.4,

i=1

10 10
P<U Ei) = > PE)— -+ (=)' > PELE, - E;)
1 1

- i1<ia<- - <ip
+ o = P(E{Ey - - - Eyg)

To compute P(E; E;, - - - E; ), we first note that there are 19! ways of
arranging 20 people around a round table (why?). The number of arrange-
ments that result in a specified set of n men sitting next to their wives can
most easily be obtained by first thinking of each of the n married couples
as being single entities. If this were the case, then we would need to arrange
20 — n entities around a round table, and there are clearly (20 — n — 1)!
such arrangements. Finally, since each of the n married couples can be
arranged next to each other in one of two possible ways, it follows that there
are 2"(20 — n — 1)! arrangements that result in a specified set of n men
each sitting next to their wives. Therefore,

_ 2719 = n)!
a9

Thus, from Proposition 4.4, we obtain that the probability that at least one
married couple sits together equals

1), 48! (10) , (D!, (10) 506
(‘1)2@9)! <2>2<19>!+<3>2<19>!

10 9!
— = 210 =— =~ 6605
<1o> (19)!

and the desired probability is approximately .3395. |

P(EilEig et Ei")

*Example 50. Runs. Consider an athletic team that had just finished its season
with a final record of n wins and m losses. By examining the sequence of
wins and losses, we are hoping to determine whether the team had stretches
of games in which it was more likely to win than at other times. One way

to gain some insight into this question is to count the number of runs of -

wins and then see how liKely that result would be when all (n + m)!/(n! m!)
orderings of the n wins and m losses are assumed equally likely. By a run
of wins we mean a consecutive sequence of wins. For instance, if n = 10,
m = 6 and the sequence of outcomes was WWLLWWWLWLLLWWWW,
then there would be 4 runs of wins—the first run being of size 2, the second
of size 3, the third of size 1, and the fourth of size 4.
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Suppose now that a team has »n wins and m losses. Assuming that all

n -+ '
(n + ml@ ml) = ( . m) orderings are equally likely, let us determine

the probabiﬁty that there will be exactly » runs of wins. To do so, consider
first any vector of positive integers xy, xo, ..., x, with x; + + - + x, =
n, and let us see how many outcomes result in » runs of wins in which the
ithrun is of size x;, i = 1, ..., r. For any such outcome, if we let ¥y denote
the number of losses before the first run of wins, y, the number of losses
between the first 2 runs of wins, ..., y,, the number of losses after the
last run of wins, then the y; satisfy

Yity,t -ty =m Y1 ZO,)’,.+1 203)’i>oai =2,...,r
and the outcome can be represented schematically as

Y1 X1 Ya X2 Xr Yr+1
Hence the number of outcomes that result in » runs of wins—the ith of size
x;, 1 = 1,... r—is equal to the number of integers y, . . ., y,, ; that satisfy

the above, or equivalently, to the number of positive integers
Yi=yitl Fi=yi=2....0 Yrp1 =Y + 1
that satisfy
; y1+372+"'+y,.+1=-1n+2
. . m +
By Proposition 6.1 in Chapter 1 there are < vt
r
Hence the total number of outcomes that result in r runs of wins is

> such outcomes.

m+1 o
< - ) multiplied by the number of positive integral solutions of

Xy + -+ + x, = n. Hence, again from Proposition 6.1, there are thus

m+1\(n—1 . .
- .1 outcomes resulting in r runs of wins. As there are

n-—+m .
<, u ) equally likely outcomes, we thus see that
<m + 1><n - 1)
. r r—1/ -
P({r runs of wins}) = r=1
<m + n)
n
For example, if n = 8, m = 6, then the probability of 7 runs is

FAYN) 14 . 14
7N\ g~ 1/429 if all g outcomes are equally likely. Hence,
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if the outcome was WLWLWLWLWWLWLW, then we might suspect that the
team’s win probability was changing over time. (In particular, the probability
that the team wins seems to be quite high when it lost its last game and
quite low when it won its last game.) On the other extreme, if the outcome
were WWWWWWWWLLLLLL, then there would have been only 1 run, and

1 8

that the team’s win probability remained unchanged over its 14 games. H

' 7 14 )
as P({1run}) = <7> (0> / < > = 1/429, it would thus again seem un_likely

*2.6 PROBABILITY AS A CONTINUOUS SET FUNCTION

A sequence of events {E,, n = 1} is said to be an increasing sequence if
E,CE,C---CE,CE,,{C"---

whereas it is said to be a decreasing sequence if
E,DE,D---DE,DE, ;D"

If {E,, n = 1} is an increasing sequence of events, then we define a new event,
denoted by lim E,, by
n—-%®.-

lim En = U Ei

n—e i=1
when E, C E,, ., for all n. Similarly, if {E,,, n = 1} is a decreasing sequence of
events, we define lim E,, by

n

lim En = m Ei
n-® i=1

where E, D E,, ¢ for all n.
We now prove Proposition 6.1.

/Propdsition 6.1 .

I {E,;; n= 1} is e1ther an mcreasmg or a decreasmg sequence of
~events, then - ~ : G
. hmP(E,,) = P(lnn En)

n—E S

Proof: - Suppose, first, that {E,,, n = 1} is an increasing sequence and
define the events F,,, n = 1 by

F1=E1 /

n—1 <
Fn:En(UEi) mEEn—l n>1
1
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n—1
where we have used the fact that U E; = E, _ 1, since the events are increasing.

In words, F,, consists of those pomts in E,, that are not in any of the earlier E;,
[ < n. It is easy %o verify that the F, are mutually exclusive events such that

«

UF=UE ad UF,=UE foraln=1
=1

i==1 i=1 i=1

Thus

= i P(F;)  (by Axiom 3)
1

= lim 2 P(F))

n-

e 05)

n-3®

()

n—«

= lim P(E,)

n-%

which proves the result when {E,, n = 1} is increasing.
If {E,, n = 1} is a decreasing sequence, then {ES, n = 1} is an increasing
sequence; hence, from the preceding equations,

P<U Ef) = lim P(E;,
1

%
x @ c
But as |J Ef = <ﬂ E,-) , we see that
1

1
P<<ﬂ E,-) ) = lim P(ES
1 n—®

1 - P(ﬁ Ei) —lim[1 — PE,)] = 1 — lim P(E,)
1

n= n-=

or, equivalently,

or

P<ﬁ Ei> = lim P(E,)
1

n—a

which proves the result.
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Example 6a. Probability and a paradox. Suppose that we possess an infinitely
large urn and an infinite collection of balls labeled ball number 1, number
2, number 3, and so on. Consider an experiment performed as follows. At
1 minute to 12 p.m., balls numbered 1 through 10 are placed in the urn, and
ball number 10 is withdrawn. (Assume the withdrawal takes no time.) At
1 minute to 12 p:m., balls numbered 11 through 20 are placed in the urn, and
ball number 20 is withdrawn. At 1 minute to 12 p.m., balls numbered 21
throuOh 30 are placed in the urn, and ball number 30 is withdrawn. At
¢ minute to 12 pMm., and so on. The question of 1nterest is, how many balls
are in the urn at 12 pm.?

The answer to this question is clearly that there is an infinite number
of balls in the urn at 12 pm., since any ball whose number is not of the
form 10n, n = 1, will have been placed in the urn and will not have been
withdrawn before 12 p.m. Hence the problem is solved when the experiment
is performed as described.

However, let us now change the experiment and suppose that at
1 minute to 12 pm. balls numbered 1 through 10 are placed in the urn, and
ball number 1 is withdrawn; at ; minute to 12 p.M., balls numbered 11 through
20 are placed in the umn, and ball number 2 is withdrawn; at 3 minute to
12 p.m,, balls numbered 21 through 30 are placed in the urn, and ball number
3 is withdrawn; at § minute to 12 p.M., balls numbered 31 through 40 are
placed in the urn, and ball number 4 is withdrawn, and so on. For this new
experiment how many balls are in the urn at 12 p.m.?

Surprisingly enough, the answer now is that the urn is empty at 12 pm.
For, consider any ball—say, ball number n. At some time prior to 12 p.m.
[in particular, at (3)" ! minutes to 12 p.m], this ball would have been
withdrawn from the urn. Hence for each 7, ball number #» is not in the urn
at 12 pm.; therefore, the urn must be empty at this time.

Thus we see from the preceding discussion that the manner in which
the withdrawn balls are selected makes a difference. For, in the first case
only balls numbered 10r, n = 1, are ever withdrawn; whereas in the second
case all of the balls are eventually withdrawn. Let us now suppose that
whenever a ball is to be withdrawn that ball is randomly selected from
among those present. That is, suppose that at 1 minute to 12 p.m. balls
numbered 1 through 10 are placed in the urn, and a ball is randomly selected
and withdrawn, and so on. In this case how many balls are in the urn at 12 p.m.?

Solution We shall show that, with probability 1, the urn is empty at .‘
12 p.m. Let us first consider ball number 1. Define E,, to be the event that

ball number 1 is still in the urn after the first n withdrawals have been

made. Clearly,

. 9:18-27---(9n)
10-19-28---On + 1)

P(E,)

[To understand this equation, just note that if ball number 1 is still to be in
the urn after the first n withdrawals, the first ball withdrawn can be any one
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of 9, the second any one of 18 (there are 19 balls in the urn at the time of
the second withdrawal, one of which must be ball number 1), and so on.
The denominator is similarly obtained.]

Now, the event that ball number 1 is in the urn at 12 p.M. is just the

event (| E,. As the events E,, n = 1, are decreasing events, it follows

n=1
from Proposition 6.1 that

P{ball number 1 is in the urn at 12 p.m.}

-#(A )

= lim P(E,)

n->%

= 9n
,LII (911 + 1>
ot On |
H On +1

n=1

-1
= On e (9n + 1
,,11 (9n+1>‘[£< 9n ﬂ

this is equivalent to showing that

n==1 9n
Now, for all m = 1,

@ 1 m 1
IZI;II <1 +-9_l’l.> 2n«-]:‘[l <1 * %>

1 1 1 1
= <1 + '9‘> 1+ E)(l + 27> (1 + 9m>

>

‘We now show that

Since

+

2

1 1

§ —g 27 + 9m
1l

9

Hence, letting m — oo and using the fact that Z 1/i = o yields
i=1

= 1
;11;[1 <1 - 9”) ”
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Hence, letting F; denote the event that ball number i is in the urn at 12
PM., we have shown that P(F;) = 0. Similarly, we can show that
P(F;) = 0 for all i. (For instance, the same reasoning shows that P(F;) =

H [9n/(On + 1)l fori = 11,12, ..., 20.) Therefore, the probability that

n=2

the urn is not empty at 12 p.m,, P(U F ,-), satisfies
i

P<CJF1>$iP(F1)=O
1 1

by Boole’s inequality (see Self-Test Exercise 10).
Thus, with probability 1, the urn will be empty at 12 p.m. B

PROBABILITY AS A MEASURE OF BELIEF

Thus far we have interpreted the probability of an event of a given experiment
as being a measure of how frequently the event will occur when the experiment
is continually repeated. However, there are also other uses of the term probability.
For instance, we-have all heard such statements as, ‘it is 90 percent probable
* that Shakespeare actually wrote Hamlet,”” or ‘‘the probability that Oswald acted
alone in assassinating Kennedy is .8.”” How are we to interpret these statements?
The most snnple and natural interpretation is that the probabilities referred
to are measures of the individual’s belief in the statements that he or she is making.
In other words, the individual making the foregoing statements is quite certain
that Oswald acted alone and is even more certain that Shakespeare wrote Hamlet.
This interpretation of probability as being a measure of one’s belief is often
referred to as the personal or subjective view of probability.
It seems logical to suppose that a ‘‘measure of belief’” should satisfy all of
the axioms of probability. For example, if we are 70 percent certain that Shake-
speare wrote Julius Caesar and 10 percent certain that it was actually Marlowe,

then it is logical to suppose that we are 80 percent certain that it was either

Shakespeare or Marlowe. Hence, whether we interpret probability as a measure
of belief or as a long-run frequency of occurrence, its mathematical properties
remain unchanged.

Example 7a. Suppose that in a 7-horse race you feel that each of the first 2
horses has a 20 percent chance of winning, horses 3 and 4 each has a 15
percent chance, and the remaining 3 horses, a 10 percent chance each. Would
it be better for you to wager at even money, that the winner will be one of
the first three horses, or to wager, again at even money, that the winner will
be one of the horses 1, 5, 6, 77

Solution Based on your personal probabilities concerning the outcome of
the race, your probability of winning the first bet is .2 + .2 + .15 = .55,
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whereas, itis .2 + .1 + .1 + .1 = .5 for the second. Hence the first wager
is more attractive. |

It should be noted that in supposmg that person’s subjective probabilities

are always consistent with the axioms of probability, we are dealing with an

. idealized rather than an actual person. For instance, if we were to ask someone
what he or she thought the chances were of

(a) rain today,

(b) rain tomorrow,

(¢) rain both today and tomorrow,
(d) rain either today or tomorrow,

it is quite possible that after some deliberation that this person might give 30
percent, 40 percent, 20 percent, and 60 percent as answers. Unfortunately, however,
such answers (or such subjective probabilities) are not consistent with the axioms
of probability (why not?). We would of course hope that after this was pointed
out to the respondent, he or she would change the answers. (One possibility we
could accept is 30 percent, 40 percent, 10 percent, and 60 percent.)

SUMMARY

Let S denote the set of all possible outcomes of an experiment. S is called the

- sample space of the experiment. An event is a subset of S. If A;, i = 1,...,n,
n

are events, then | A;, called the union of these events, consists of all outcomes
i=1 n
that are in at least one of the events A;, i = 1, ..., n. Similarly, () A;, sometimes
i=1
written-as Ay - - - A, is called the intersection of the events A;, and consists of
all outcomes that are in all of the events A;, i = 1, ..., n.

For any event A, we define A€ to consist of all outcomes in the sample space
that are not in A. We call A€ the complement of the event A. The event S¢, which
is empty of outcomes, is designated by & and is called the null set. IfAB &,
then we say that A and B are mutually exclusive.

For each event A of the sample space S we suppose that a number P(4),
called the probability of A, is defined and is such that

Ho=sPA =1
(i) P(S) =
(ifi) For mutually exclusive events A;, i = 1,

A9) -
i=1 i=1

> P@AY

P(A) represents the probability that the outcome of the experiment is in A.
It can be shown that

P =1 - PA)
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A useful result is that
P(A U B) = P(A) + P(B) — P(AB)

which can be generalized to give

P( LHJ Ai) = i P@A) — 2, 2 PAA) + 2 2, 2 PAAAD

i=1 i=1 i<j i<j<k

4o (ST PA - AY)
If S is finite and each one point set is assumed to have equal probability, then

A
PA) = 77
N
where |E| denotes the number of points in the event E.
P(A) can be interpreted either as a long-run relative frequency or as a measure
of one’s degree of belief.

PROBLERMS

1. A box contains 3 marbles, 1 red, 1 green, and 1 blue. Consider an experiment
that consists Of taking 1 marble from the box, then replacing it in the box
and drawing a second marble from the box. Describe the sample space. Repeat
when the second marble is drawn without first replacing the first marble.

" 2. A die is rolled continually until a 6 appears, at which point the experiment
stops. What is the sample space of this experiment? Let E, denote the event
that n rolls are necessary to complete the experiment. What points of the

= c
sample space are contained in E,? What is (U E,z> 7
A 1

“ 3. Two dice are thrown. Let E be the event that the sum of the dice is odd; let
F be the event that at least one of the dice lands on 1; and let G be the event
that the sum is 5. Describe the events EF, E U F, FG, EF¢, and EFG.

- 4. A, B, and C take turns in flipping a coin. The first one to get a head wins.
The sample space of this experiment can be defined by

g = 1,01, 001, 0001,...,
~ 10000 - - -

(a) Interpret the sample space.
(b) Define the following events in terms of S:
(i) A wins = A.
(ii) B wins = B.
(iii) (A U B)“.
Assume that A flips first, then B, then C, then A, and so on.
-- 5. A system is composed of 5 components, each of which is either working or
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failed. Consider an experiment that consists of observing the status of each

component, and let the outcome of the experiment be given by the vector

(x1, X9, X3, X4, X5), Where x; is equal to 1 if component i is working and is

equal to 0 if component i is failed.

(a) How many outcomes are in the sample space of this experiment?

(b) Suppose that the system will work if components 1 and 2 are both working,
or if components 3 and 4 are both working, or if components 1, 3, and
5 are all working. Let W be the event that the system will work. Specify
all the outcomes in W. '

-(¢) Let A be the event that components 4 and 5 are both failed. How many

outcomes are contained in the event A?
(d) Write out all the outcomes in the event AW.

. A hospital administrator codes incoming patients suffering gunshot wounds

according to whether they have insurance (coding 1 if they do and O if they

do not) and according to their condition, which is rated as good (g), fair (f),

or serious (s). Consider an experiment that consists of the coding of such

a patient. '

(a) Give the sample space of this experiment.

(b) Let A be the event that the patient is in serious condition. Specify the
outcomes in A.

(¢) Let B be the event that the patient is uninsured. Specify the outcomes in B.

(d) Give all the outcomes in the event B° U A.

. Consider an experiment that consists of determining the type of job—either

blue collar or white collar—and the political affiliation—Republican, Demo-

cratic, or Independent—of the 15 members of an adult soccer team. How

many outcomes are

(a) in the sample space; ~

(b) in the event that at least one of the team members is a blue-collar worker;

(¢) in the event that none of the team members considers himself or herself
an Independent?

Suppose that A and B aré mutually exclusive events for which PA) = 3
and P(B) = .5. What is the probability that

(a) either A or B occurs;

(b) A occurs but B does not;

(c) both A and B occur?

. A retail establishment accepts either the American Express or the VISA credit

card. A total of 24 percent of its customers carry an American Express card,
61 percent carry a VISA card, and 11 percent carry both. What percentage
of its customers carry a credit card that the establishment will accept?
Sixty percent of the students at a certain school wear neither a ring nor a
necklace. Twenty percent wear a ring and 30 percent wear a necklace. If one
of the students is chosen randomly, what is the probability that this student
is wearing

(a) aring or a necklace;

(b) a ring and a necklace?
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over a l-year span are, respectively, .05, .15, and .30. If 20 percent of the
population are good risks, 50 percent are average risks, and 30 percent are
bad risks, what proportion of people have accidents in a fixed year? If pohcy—
holder A had no accidents in 1997, what is the probability that he or she is
a good (average) risk?

A worker has asked her supervisor for a letter of recommendation for a new -

job. She estimates that there is an 80 percent chance that she will get the job
if she receives a strong recommendation, a 40 percent chance if she receives
a moderately good recommendatlon and a 10 percent chance if she receives
a weak recommendation. She further estimates that the probabilities that the
recommendation will be strong, moderate, or weak are .7, .2, and .1, respec-
ively.
(3) How certain is she that she will receive the new job offer?
) Given that she does receive the offer, how likely should she feel that she
received a strong recommendation; a moderate recommendation; a weak

recommendation? .
(c) Given that she does not receive the job offer, how likely should she feel

48.

that she received a strong recommendation; a moderate recommendation;
a weak recommendation?
A high school student is anxiously waiting to receive mail telling her whether
she has been accepted to a certain college. She estimates that the conditional
probabilities; given that she is accepted and that she is rejected, of receiving
notification on each day of next week are as follows:

Day P(mail |accepted) P(mail |rejected)
Monday 15 .05
Tuesday .20 10
Wednesday 25 .10
Thursday 15 15
Friday .10 20

She estimates that her probability of being accepted is .6.
) What is the probability that mail is received on Monday?
b) What is the conditional probability that mail is received on Tuesday given
that it is not received on Monday?
If there is no mail through Wednesday, what is the conditional probability
that she will be accepted?

/ (d) What is the conditional probability that she will be accepted if mail comes

on Thursday? . '
((e) What is the conditional probability that she will be accepted if no mail
arrives that week?

49. A parallel system functions whenever at least one of its components works.

)

Consider a parallel system of n components and suppose that each component
independently works with probability 3. Find the conditional probability that
component 1 works given that the system is functioning.

. ®
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50. If you had to construct a mathematical model for events E and F, as described

51.

52.

53.

54.

in parts (a) through (e), would you assume that they were independent events?

Explam your reasoning.

(a) Eis the event that a businesswoman has blue eyes, and F is the event
that her secretary has blue eyes.

(b) E is the event that a professor owns a car, and F is the event that he is

. listed in the telephone book. -

(¢) E is the event that a man is under 6 feet tall, and F is the event that he
weighs over 200 pounds.

(d) Eis the event that a woman lives in the United States, and F is the event
that she lives in the western hemisphere.

(e) E is the event that it will rain tomorrow, and F is the event that it will
rain the day after tomorrow.

In a class there are 4 freshman boys, 6 freshman girls, and 6 sophomore
boys. How many sophomore girls must be present if sex and class are to be
independent when a student is selected at random?

Suppose that you continually collect coupons and that there are m different
types. Suppose also that each time a new coupon is obtained it is a type i
coupon with probability p;, i = 1, . . ., m. Suppose that you have just collected
your nth coupon. What is the probability that it is a new type?

uiNT:  Condition on the type of this coupon.

A simplified model for the movement of the price of a stock supposes that

on each day the stock’s price either moves up 1 unit with probability p or it

moves down 1 unit with probability 1 — p. The changes on different days

are assumed to be independent.

(a) What is the probability that after 2 days the stock will be at its origi-
nal pnce‘7

(b) What is the probability that after 3 days the stock’s price will have
increased by 1 unit?

(c) Given that after 3 days the stock’s price has increased by 1 unit, what
is the probability that it went up on the first day?

Suppose that we want to generate the outcome of the flip of a fair coin but
that all we have at our disposal is a biased coin which lands on heads with
some unknown probability p that need not be equal to3. Consider the following
procedure for accomplishing our task.

1. Flip the coin.

2. Flip the coin again.

3. If both flips land heads or both land tails, return to step 1.
4. Let the result of the last flip be the result of the experiment.

(a) Show that the result is equally likely to be either heads or tails.
(b) Could we use a simpler procedure that continues to flip the coin until

the last two flips are different and then lets the result be the outcome of
the final flip?
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Independent flips of a coin that lands on heads with probability p are made.

What is the probability that the first four outcomes are

(a) H, H, H, H,

(b) T, H, H, H?

(c) What is the probability that the pattern T, H, H, H occurs before the
‘pattern H, H, H, H? .

HINT FOR PART (C): How can the pattern H, H, H, H occur first?

The color of a person’s eyes is determined by a single pair of genes. If they
are both blue-eyed genes, then the. person will have blue eyes; if they are
both brown-eyed genes, then the person will have brown eyes; and if one of
them is a blue-eyed gene and the other a brown-eyed gene, then the person
will have brown eyes. (Because of the latter fact we say that the brown-eyed
gene is dominant over the blue-eyed one.) A newborn child independently
receives one eye gene from each of its parents and the gene it receives from
a parent is equally likely to be either of the two eye genes of that parent.
Suppose that Smith and both of his parents have brown eyes, but Smith’s
sister has blue eyes. A . v
(a) What is the probability that Smith possesses a blue-eyed gene?
Suppose that Smith’s wife has blue eyes. .
(b) What is the probability that their first child will have blue eyes?
(¢) If their first child has brown eyes, what is the probability that their next
child will also have brown eyes? )

Genes relating to albinism are denoted by A and a. Only those people who
receive the a gene from both parents will be albino. Persons having the gene
pair A, a are normal in appearance and, because they can pass on the trait
to their offspring, are called carriers. Suppose that a normal couple has two
children, exactly one of whom is an albino. Suppose that the nonalbino child
mates with a person who is known to be a carrier for albinism.

(a) What is the probability that their first offspring is an albino?

(b) What is the conditional probability that their second offspring is an albino

given that their firstborn is not?
Barbara and Dianne go target shooting. Suppose that each of Barbara’s shots

hits the wooden duck target with probability p;, while each shot of Dianne’s .

hits it with probability p,. Suppose that they shoot simultaneously at the same
target. If the wooden duck is knocked over (indicating that it was hit), what
is the probability that

(a) both shots hit the duck;

(b) Barbara’s shot hit the duck?

_ What independence assumptions have you made?
59.

A and B are involved in a duel. The rules of the duel are that they are to
pick up their guns and shoot at each other simultaneously. If one or both are
hit, then the duel is over. If both shots miss, then they repeat the process.

Suppose ‘that the results of the shots are independent and that each shot of
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A will hit B with proBability Pa» and each shot of B will hit A with -
pg. What is \ , 1th probability

(a) the probability that A is not hit;
(b) the probability that both duelists are hit; ‘
(c) the probgl?ility that the duel ends after the nth round of shots;
(d) the conditional probability that the duel ends after the nth round of shots
- given that A is not hit;
(e) the conditional probability that the duel ends after the nth round of shots
given that both duelists are hit?

* 60. A true—false question is to be posed to a husband and wife team on a quiz
show. Bo@h the husl?q.nd and the wife will, independently, give the correct
answer with probability p. Which of the following is a better strategy for
this couple? , ' o
(a) Choose one of them and let that person answer the'question; or
(b) have thg‘m both consider the question and then either give the common

-answer if they agree or, if they disagree, flip a coin to determine which
answer to give?

61. In Problem' §O, if p = 6 and the couple uses the strategy in part (b), what
is the conditional probability that the couple gives the correct answer given
that they (a) agree; (b) disagree?

62. The prqbabﬂity of the closing of the ith relay in the circuits shown is given
by p;, i = 1, 2, 3, 4, 5. If all relays function independently, what is the

probability that a current flows between A and B for the respective circuits?

- (a

/

1 2

A ——_/—->—B
J

o)
.

(b)

HINT FOR (B): Condition on whether relay 3 closes.

63. An engineering system consisting of n components is said to be a k-out-of-
n system (k =< n) if the system functions if and only if at least k of the n
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64.

65.

* 66.

- 67.

components function. Suppose that all components function independently

of each other.

(a) If the ith component functions with probability P;, i = 1,2, 3, 4, compute
the probability that a 2-out-of-4 system functions. '

(b) Repeat part (a) for a 3-out-of-5 system.

(¢) Repeat for a k-out-of-n system when all the P; equal p (that is, P; = p,
i=12,...,n.

In Problem 62a, find the conditional probability that relays 1 and 2 are both

closed given that a current flows from A to B.

A certain organism possesses a pair of each of 5 different genes (which we
will designate by the first 5 letters of the English alphabet). Each gene appears
in 2 forms (which we designate by lowercase and-capital letters). The capital
letter will be assumed to be the dominant gene in the sense that if an organism
possesses the gene pair xX, then it will outwardly have the appearance of the
X gene. For instance, if X stands for brown eyes and x for blue eyes, then
an individual having either gene pair XX or xX will have brown eyes, whereas
one having gene pair xx will have blue eyes. The characteristic appearance
of an organism is called its phenotype, whereas its genetic constitution is
called its genotype. (Thus 2 organisms with respective genotypes a4, bB, cc,
dD, ee and AA, BB, cc, DD, ee would have different genotypes but the same
phenotype.) In a mating between 2 organisms each one contributes, at random,
one of its gene pairs of each type. The 5 contributions of an organism (one
of each of the 5 types) are assumed to be independent and are also independent
of the contributions of its mate. In a mating between organisms having
genotypes ad, bB, cC, dD, eE and aa, bB, cc, Dd, ee what is the probability
that the progeny will (i) phenotypically and (ii) genotypically resemble

(a) the first parent;

(b) the second parent;

(c) either parent;

(d) neither parent?

There is a 50-50 chance that the queen carries the gene for hemophilia. If
she is a carrier, then each prince has a 50-50 chance of having hemophilia.
If the queen has had three princes without the disease, what is the probability
the queen is a carrier? If there is a fourth prince, what is the probability that
he will have hemophilia?

On the morning of September 31, 1982, the won-lost records of the three
leading baseball teams in the western division of the National League of the
United States were as follows:

Team Won Lost
Atlanta Braves ’ 87 72
San Francisco Giants 86 73
Los Angeles Dodgers 86 73

68.

69.

70.

71.

72.

73.

74.

75.
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Each team had 3 games remaining to be played. All 3 of the Giants games
were with the Dodgers, and the 3 remaining games of the Braves were against
the San Diego Padres. Suppose that the outcomes of all remaining games are
independent and each game is equally likely to be won by either participant.
What are the probabilities that each of the teams wins the division? If two
teams tie for first place, they have a playoff game, which each team has an
equal chance of winning.

A town council of 7 members contains a steering committee of size 3. New
ideas for legislation go first to the steering committee and then on to the
council as a whole if at least 2 of the 3 committee members approve the
legislation. Once at the full council, the legislation requires a majority vote
(of at least 4) to pass. Consider now a new piece of legislation and suppose
that each town council member will approve it, independently, with probability
p. What is the probability that a given steering committee member’s vote is
decisive in the sense that if that person’s vote were reversed, then the final
fate of the legislation would be reversed? What is the corresponding probability
for a given council member not on the steering committee?

Suppose that each child born to a couple{s,equally likely to be a boy or a
girl independent of the sex distribution of the€ other children in the family. For
a couple having 5 children, compute the probabilities of the following events:
(a) All children are of the same sex.

(b) The 3 eldest are boys and the others girls.

(c) Exactly 3 are boys.

(d) The 2 oldest are girls.

(e) There is at least 1 girl.

The probability of winning on a single toss of some dice is p. A starts, and
if he fails, he passes the dice to B, who then attempts to win on his roll. They
continue to pass the dice back and forth until one of them wins. What are
their respective probabilities of winning? Repeat if there are k players.

Repeat Problem 70 under the assumption that when A rolls the dice, she wins
with probability Py, and, when B rolls, B wins with probability P,.

Suppose that £ and F are mutually exclusive events of an experiment. Show
that if independent trials of this experiment are performed, then E will occur
before F with probability P(E)/[P(E) + P(F)].

When A and B flip coins, the one coming closest to a given line wins 1 penny
from the other. If A starts with 3 and B with 7 pennies, what is the probability
that A winds up with all of the money if both players are equally skilled?
What if A were a better player who won 60 percent of the time?

In successive rolls of a pair of fair dice, what is the probability of getting 2
sevens before 6 even numbers?

Players are of equal skill, and in a contest the probability is 3 that a specified
one of the two contestants will be the victor. A group of 2" players are paired
off against each other at random. The 2"~ ! winners are again paired off
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randomly, and so on, until a single winner remains. Consider two specified
contestants, A and B, and define the events A;, i = n, E by

A;: A plays in exactly i contests;
E: A and B ever play each other.

(@) Find PA),i=1,...,n
(b) Find P(E).
(¢) Let P, = P(E). Show that

1 2" —2(1Y
Pu=m 3 +2"—1<2> Fa

and use this to check your answer obtained in part (b).

uiNT: Find P(E) by conditioning on which of the events A;, i =
1, ..., n occur. In simplifying your answer use the algebraic identity
S O S o ol O 4
> ix = 5

For another approach for solving this problem, note that there are a total of
2" — 1 games played.

(d) Explain why a total of 2" — 1 games are played.

Number these games and let B; denote the event that A and B play each other
ingamei,i = 1,...,2" — L

(e) What is P(B;)? v

(f) Use part (e) to find P(E).

A stock market investor owns shares in a stock whose present value is 25.
She has decided that she must sell her stock if it either goes down to 10 or
up to 40. If each change of price is either up 1 point with probability .55 or
down 1 point with probability .45, and the successive changes are independent,
what is the probability that the investor retires a winner?

A and B flip coins. A starts and continues flipping until a tail occurs. At this
point B starts flipping and continues until there is a tail, then A takes over,
and so on. Let P, be the probability of the coin’s landing heads when A flips,
and P, when B flips. The winner of the game is the first one to get

(a) 2 heads in a row;

(b) a total of 2 heads;

(¢) 3 heads in a row;

(d) a total of 3 heads.

In each case, find the probability that A wins.

Die A has 4 red and 2 white faces, whereas die B has 2 red and 4 white
faces. A fair coin is flipped once. If it lands on heads, the game continues
with die A; if it lands tails, then die B is to be used.

(a) Show that the probability of red at any throw is 3.

i g i g L g
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(b) If the first twd throws result in red, what is the probability of red at the
third throw?

(¢) If red turns up at the first two throws, what is the probability that it is
die A that is being used?

There are 12 balls, of which 4 are white, in an urn. Three players—A, B,

C—successively draw from the urn, A first, then B, then C, then A, and so

on. The winner is the first one to draw a white ball. Find the win probabilities

for each player if

(a) each ball is replaced after it is drawn;

(b) the withdrawn balls are not replaced.

Repeat Problem 79 so that each of the 3 players selects from his own urn.
That is, suppose that there are 3 different urns of 12 balls with 4 white in each.

LetS = {1,2,...,n}and suppose that A and B are, independently, equally

~ likely to be any of the 2" subsets (including the null set and S itself) of S.

82.

83.

84.

85.

(a) Show that
P{A C B} = (%)”.

HINT: Let N(B) denote the number of elements in B. Use

P{ACB} = 2 P{A C B|N(B) = i}P{N(B) = i}
i=0

(b) Show that P{AB = @} = ()"

In Example 5d, what is the conditional probability that the ith coin was
selected given that the first n trials all result in heads?

In Laplace’s rule of succession, Example 5d, are the outcomes of the successive
flips independent? Explain.

A person tried by a 3-judge panel is declared guilty if at least 2 judges cast
votes of guilty. Suppose that when the defendant is, in fact, guilty, each judge
will independently vote guilty with probability .7, whereas when the defendant
is, in fact, innocent, this probability drops to .2. If 70 percent of defendants
are guilty, compute the conditional probability that judge number 3 votes
guilty given that

(a) judges 1 and 2 vote guilty;

(b) judges 1 and 2 cast 1 guilty and 1 not guilty vote;

(c) judges 1 and 2 both cast not guilty votes.

Let E;, i = 1, 2, 3 denote the event that judge i casts a guilty vote. Are these
events independent. Are they conditionally independent? Explain.

Suppose that # independent trials, each of which results in any of the outcomes
2
0, 1, or 2 with respective probabilities, pgy, p;, and p,, 2 p; = 1, are per-

i=0
formed. Find the probability that outcomes 1 and 2 both occur at least once.















































































166 Chapter 4 Random Variables

As there is an equal probability that it is the left-hand box that is first
discovered to be empty and there are k matches in the right-hand box at
that time, the desired result is

ON — B\ /R E
o) = ()3 '

Example 9f. Compute the expected value and the variance of a negative binomial
random variable with parameters r and p.

Solation

E[X"] = 2n< :1>p,(1_p),,_r |

n=r

= 2 n _1< ) 11 —p)*”"  since n<n B 1) = ’<n>
Pn=r r—1 r

k4

r _fm—1 - by setting
[EE— -1 k—1[ "% r+lp1 _ Nxm—(r+1)
pm=§r:+ 1 (’n ) ( r >p (1 p) m=n+1

= LRy — 1)f Y
P

where Y is a negative binomial fandom variable with parameters r + 1, p.
Setting k£ = 1 in the preceding equation yields
r
E[x] =~
p

Setting k = 2 in the preceding equation, and using the formula above for
the expected value of a negative binomial random variable, gives that

E[X?] = ZE[Y - 1]
P

=£(r+1_1)
P\ p
e \2
w552
p\ p

_rd—-p
pz

Therefore,

Thus we see from Example 9f that if independent trials, each of which
is a success with probability p, are performed, then the expected value and
variance of the number of trials that it takes to amass r successes is r/p and
(1 — p)/p?, respectively.

Since a geometric random variable is just a negative binomial with parameter

= 1, it follows from the precedmg example that the vanance of a geometric
random variable with parameter p is equal to (1 — p)/p?, wh1ch checks with the
result of Example 9c.
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Example 9g. Find the expected value and the variance of the .number of times
one must throw a die until the outcome 1 has occurred 4 times.

Solution Since the random variable of interest is a negative binomial with
parameter # = 4 and p = , we see that

E[X] = 24
4()
Var(X) = — = 120 B

O}

4.9.3 The Hypergeometric Random Variable

Suppose that a sample of size # is to be chosen randomly (without replacement)
from an urn containing N balls, of which m are white and N — m are black. If
we let X denote the number of white balls selected, then

(07

PX=ij=—-t"" "L i=01,...,n (9.4)

()

A random variable X, whose probability mass function is given by Equation (9.4)

for some values of n, N, m is said to be a hypergeometric random variable.

ReMARK. Although we have written the hypergeometric probability mass
function with i going from 0 to n, P{X = i} will actually be O unless i satisfies
the inequalities n — (N — m) < i =< min (1, m). However, Equation (9.4)

. . . ry . .
is always valid because of our convention that <k> is equal to O when either

k<Oorr<kt

Example 9h. An unknown number, say N, of animals inhabit a certain region.
To obtain some information about the population size, ecologists often per-
form the following experiment: They first catch a number, say m, of these
animals, mark them in some manner, and release them. After allowing the
marked animals time to disperse throughout the region, a new catch of size,
say n, is made. Let X denote the number of marked animals in this second
capture. If we assume that the population of animals in the region remained
fixed between the time of the two catches and that each time an animal was
caught it was equally likely to be any of the remaining uncaught animals,
it follows that X is a hypergeometric random variable such that

(0

P{X =i} = ————=PD)

Wi
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Suppose now that X is observed to equal i. Then, as P;(N) represents
the probability of the observed event when there are actually N animals
present in the region, it would appear that a reasonable estimate of N would
be the value of N that maximizes P;(N). Such an estimate is called a maximum
likelihood estimate. (See Theoretical Exercises 13 and 18 for other examples
of this type of estimation procedure.)

The maximization of P;(N) can most simply be done by first noting that

P(N)  (N—m®N—n)
P(N—1) NN-—m=—n+1i
Now, the above ratio is greater than 1 if and only if
N—mWN —n=NN-—-m-—n+1i
or, equivalently, if and only if

' N<n mn
i

Thus P;(N) is first increasing, and then decreasing, and reaches its maximum
value at the largest integral value not exceeding mn/i. This value is thus the
maximum likelihood estimate of N. For example, suppose that the initial
catch consisted of m = 50 animals, which are marked and then released.
If a subsequent catch consists of n = 40 animals of which i = 4 are marked,
then we would estimate that there are some 500 animals in the region. (It
should be noted that the above estimate could also have been obtained by
assuming that the proportion of marked animals in the region, m/N, is
approximately equal to the proportion of marked animals in our second
catch, i/n.) |

Example 9i. A purchaser of electrical components buys them in lots of size 10.
It is his policy to inspect 3 components randomly from a lot and to accept
the lot only if all 3 are nondefective. If 30 percent of the lots have 4 defective
components and 70 percent have only 1, what proportion of lots does the
purchaser reject?

Solution Let A denote the event that the purchaser accepts a lot. Now,

P(A) = P(Allot has 4 defectives) 1_36 + P(A|lot has-1 defective) 17—0

B)6) 5y W)G),
o3/ 3y \o/\s) (7
(10 <1O> i 1o> <1O>
(%) (;

54
Hence 46 percent of the lots are rejected. |

100

If n balls are randomly chosen without replacement from a set of N balls,
of which the fraction p = m/N is white, then the number of white balls selected
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is hypergeometric. Now, it would seem that when m and N are-large in relation
to 7, it shouldn’t make much difference whether the selection is' being done with
or without replacement. Because no matter which balls have previously been

~ selected, each adgitional selection will, when m and N are large, be white with

a probability approximately equal to p. In other words, it seems intuitive when
m and N are large in relation to n that the probability mass function of X should
approximately be that of a binomial random variable with parameters »n and p.
To verify this intuition note that if X is hypergeometric then, for i = n,

()

_ m! (N — m)! (N — n)! n!
T m =i WN=m—n+ D@~ i) N!
__<n>ﬂm——1_”m~i+lN—mN—m—l
B NN-1 N—-i+1N—-i N—i—1
N-m—-—@m-i-1)
N—i—m—1i~—1)
/ ~ (™) i1 — = when p = m/N and m and N are
P p) large in relation to n and i

P(X =i} =

Example 9j. Determine the expected value and the variance of X, a hypergeomet-
ric random variable with parameters n, N, m.

Solution
n

E[X¥ = > i*P{X = i)
i=0

i ik<m> (N - m) <N>
=1 i n—i n
Using the identities
i<n'z> m<m B 1) and n<N> = N(N - 1)
i i—1 n n—1

we obtain that
. N—m\[|[N—-1
Erxk] = =1 <m ) < > < )
X1 = ,21 i—1 n-—i n-—1
nm Z( +1)k_1<171 1)( N—m > (N—1>
J n—1—j/f\n—1

nlnE[(Y + I)k“ 1]

Il
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where Y is a hypergeometric random variable with parameters n — 1,
N — 1, m — 1. Hence, upon setting £k = 1 we see that

E[X] =

In words, if n balls are randomly selected from a set of N balls, of which
m are white, then the expected number of white balls selected is nm/N.
Upon setting k = 2 in the equation for E[X*] we obtain that

IUTL

nm

E[X* = ——E[Y+ 1]
_nm|(n— 1)(m - 1)
_N[ N -1 *ﬂ

where the final equality uses our preceding result to compute the expected
value of the hypergeometric random variable Y.
As E[X] = nm/N we can conclude that

Var(x) = nm [(ll —A})S’ll‘ 1) +1— ’_1]:{[ 9.5)

If we let p = m/N denote the fraction of balls that are white, then it follows
from Equation (9.5), after a little algebra, that

Var(X) =

—np(l = p) ©.6)
| B

ReMark. We have shown in Example 9j that if n balls are raidomly selected
without replacement from a set of N balls, of which the fraction p are white, then
the expected number of white balls chosen is np. In addition, if N is large in
relation to n [and so (N — n)/(N — 1) is approximately equal to 1], then

Var(X) = np(1 — p)

In other words, E[X] is the same as when the selection of the balls is done with
replacement (so the number of white balls is binomial with parameters » and p),
and if the total collection of balls is large, then Var(X) is approximately equal
to what it would be if the selection were done with replacement. This is, of course,
exactly what we would have guessed given our earlier result that when the number
of balls in the urn is large, the number of white balls chosen approximately has
the mass function of a binomial random variable.

4.9.4 The Zeta (or Zipf) Distribution

A random variable is said to have a zeta (sometimes called the Zipf) distribution
if its probability mass function is given by

C

PiX =k = o5t

k=1,2,...
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’ ~
for some value of @ > 0. Since the sum of the foregoing probabilities must equal
1, it follows that

BT

The zeta distribution owes its name to the fact that the function

. 1V 1\ 1\
g(S)=1+<§>+<§>+"'+<z>+"'

is known in mathematical disciplines as the Riemann zeta function (after the
German mathematician G. F. B. Riemann).
"The zeta distribution was used by the Italian economist Pareto to describe
" the distribution of family incomes in a given country. However, it was G. K. Zipf
who applied these distributions in a wide variety of different areas and, in doing
so, popularized their use.

SUMMARY

A real-valued function defined on the outcome of a probability experiment is
called a random variable. ‘
If X is a random variable, then the function F(x), defined by

F(x) = P{X < x}

is called the distribution function of X. All probabilities concerning X can be
stated in terms of F.

A random variable whose set of possible values is either finite or countably
infinite is called discrete. If X is a discrete random variable, then the function

. p(x) = P{X = x}
is ca]led the probability mass function of X. Also, the quantity E[X], defined by
EX]= 2 xp()
x:p(x)>0
is called the expected value of X. E[X] is also commonly called the mean or the

expectation of X.
A useful identity states that for a function g,

Eg@]= 2 xexp)
. x:p(x)>0
The variance of a random variable X, denoted by Var(X), is defined by
Var(X) = E[(X — E[X])’]

The variance, which is equal to the expected square of the difference between X
and its expected value, is a measure of the spread of the possible values of X. A
useful identity is that

Var(X) = E[X*] — (E[X])?




Y T T

172 Chapter 4 Random Variables

The quantity \V/Var(X) is called the standard deviation of X.
We now note some common types of discrete random variables.

The random variable X whose probability mass function is given by

p@) = (?)Piﬂ —p~t i=0,...,n

is said to be a binomial random variable with parameters n and p. Such a random
variable can be interpreted as being the number of successes that occur when n
independent trials, each of which results in a success with probability p, are
performed. Its mean and variance are given by

EX]=np  VarX) = np(1 — p)
The random variable X whose probability mass function is given by

et
pl) = 7 i=0

is said to be a Poisson random variable with parameter A. If a large number of
(approximately) independent trials are performed, each having a small probability

* of being successful, then the number of successful trials that result will have a

distribution that is approximately that of a Poisson random variable. The mean
and variance of a Poisson random variable are both equal to its parameter A. That is,

E[X] = Var(X) = A
The random variable X whose probability mass function is given by
p() =pl =p"  i=12...
is said to be a geometric random variable with parameter p. Such a random variable
represents the trial number of the first success when each trial is independently a
success with probability p. Its mean and variance are given by

1 1—-p
El = - Var(X) =
L » X) i

The random variable X whose probability mass function is lgiven by

— 1 _ .
p) = (" 1)pfu —prTr iz
o

is said to be a negative binomial random variable with parameters r and p. Such
a random variable represents the trial number of the rth success when each trial
is independently a siccess with probability p. Its mean and variance are given by

I
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A hypergeometric random variable with parameters z, N, m represents the number
of white balls selected when # balls are randomly chosen from an urn that contains
N balls, of which m are white. Its probability mass function is given by

‘a (m) <N — m)
pi) = AT g m
)
(v

With p = m/N, its mean and variance are

N—n
N-—-1

E[X] = np Var(X) = np(l — p)

PROBLEMS

/

= 1. Two balls are chosen randomly from an urn containing 8 white, 4 black, and
--2 orange balls. Suppose that we win $2 for each black ball selected and we
lose $1 for each white ball selected. Let X denote our winnings. What are the

/ possible values of X, and what are the probabilities associated with each value?
=2,

Two fair dice are rolled. Let X equal the product of the 2 dice. Compute
P{X =i}fori=1,2,....

3. Three dice are rolled. By assuming that each of the. 6> = 216 possible
outcomes is equally likely, find the probabilities attached to the possible
values that X can take on, where X is the sum of the 3 dice.

© 4. Five men and 5 women are ranked according to their scores on an examination.
Assume that no two scores are alike and all 10! possible rankings are equally
likely. Let X denote the highest ranking achieved by a woman (for instance,
X = 1 if the top-ranked person is female). Find P{X = i},i = 1,2,3, ...,

8, 9, 10.
(/"f’ 5. Let X represent the difference between the number of heads and the number

of tails obtained when a coin is tossed n times. What are the possible values

of X7
% In Problem 5, if the coin is assumed fair, for # = 3 what are the probabilities

associated with the values that X can take on?
* 7. Suppose that a die is rolled twice. What are the possible values that the
following random variables can take on
(a) the maximum value to appear in the two rolls;
(b) the minimum value to appear on the two rolls;

) the sum of the two rolls;
d) the value of the first roll minus the value of the second roll?

= 8. If the die in Problem 7 is assumed fair, calculate the probabilities associated
with the random variables in parts (a) through (d).
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9. Repeat Example 1b when the balls are selected with replacement.

10.

11.

- 12,

© 8 13.

In Example 1d compute the conditional probablhty that we win i dollars

given that we win something; compute it for i = 1, 2, 3. T

(a) An integer N is to be selected at random from {1, 2, ..., (.10)3} in the
sense that each integer has the same probability of being selected. What
is the probability that N will be divisible by 3?7 by 57 by 7? by 15? by
105? How would your answer change if (10)® is replaced by (10)" as k
became larger and larger?

(b) An important functlon in number theory—one whose properties can be
shown to be related to what is probably the most important unsolved
problem of mathematics, the Riemann hypothesis—is the M&bius func-
tion w(n), defined for all posmve integral values n as follows: Factor n
into its prime factors. If there is a repeated prime factor, as in 12 =
2:2-30r49 = 7-7, then ,u(n) is deﬁned to equal 0. Now let N be
chosen at random from {1, 2, . (10) '}, where k is large. Determine
P{u{N) = 0} as k — oo

HINT:  To compute P{u(N) ¥ 0}, use the identity

iljl P%P,; : ZG)@(%)@) =

where P; is the ith smallest prime. (We do not include 1 as a prime.)
In the game of Two-Finger Morra, 2 players show 1 or 2 fingers and simultane-
ously guess the number of fingers their opponent will show If only one of
the players guesses correctly, he wins an amount (in dollars) equal to the

sum of the fingers shown by him and his opponent. If both players guess.

correctly or if neither guesses correctly, then no money is exchanged. Consider

a specified player and denote by X the amount of money he wins in a single

game of two-finger Morra.

(a) If each player acts independently of the other, and if each player makes
his choice of the number of fingers he will hold up and the number he
will guess that his opponent will hold up in such a way that each of the
4 possibilities is equally likely, what are the possible values of X and
what are their associated probabilities?

(b) Suppose that each player acts independently of the other. If each player
decides to hold up the same number of fingers that he guesses his opponent
will hold up, and if each player is equally likely to hold up 1 or 2 fingers,
what are the possible values of X and their associated probabilities?

A salesman has scheduled two appointments to sell encyclopedias. His first
appointment will lead to a sale with probability .3, and his second will lead
independently to a sale with probability .6. Any sale made is equally likely
to be either for the deluxe model, which costs $1000, or the standard model,
which costs $500. Determine the probability mass function of X, the total
dollar value of all sales.

. 14. Five distinct numbers are randomly distributed to players numbered 1 through

5. Whenever two players compare their numbers, the one with the higher one

15.

16.

®17.
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~
is declared the winner. Initially, players 1 and 2 compare their numbers; the
winner then compares with player 3, and so on. Let X denote the number of
times player 1 is a winner. Find P{X = i},i = 0, 1, 2, 3, 4.

The Nationgl Basketball Association (NBA) draft lottery inivolves the 11
teams that had the worst won-loss records during the year. A total of 66
balls are placed in an urn. Each of these balls is inscribed with the name of
a team; 11 have the name of the team with the worst record, 10 have the
name of the team with the second worst record, 9 have the name of the team
with the third worst record, and so on (with 1 ball having the name of the
team with the eleventh worst record). A ball is then chosen at random and
the team whose name is on the ball is given the first pick in the draft of
players about to enter the league. Another ball is then chosen and if it “belongs”
to a different team than the one that received the first draft pick, then the
team to which it belongs receives the second draft pick. (If the ball belongs
to the team receiving the first pick, then it is discarded and another one is
chosen; this continues until the ball of another team is chosen.) Finally,
another ball is chosen and the team named on the ball (provided that it is
different from the previous two teams) receives the third draft pick. The
remaining draft picks 4 through 11 are then awarded to the 8 teams that did
not “win the lottery” in inverse order of their won-loss records. For instance,
if the team with the worst record did not receive any of the 3 lottery picks,
then that team would receive the fourth draft pick. Let X denote the draft
pick of the team with the worst record. Find the probability mass function
of X.

In Problem 15, let team number 1 be the team with the worst record, let team
number 2 be the team with the second worst record, and so on. Let ¥; denote
the team that gets draft pick number i. Thus ¥; = 3 if the first ball chosen
belongs to team number 3. Find the probability mass function of (a) Yy,
(b) Yz, and (C) Y3.

Suppose that the distribution function of X is given by

¢

0 b<0

b

- 0=b<1

4

1 b-1
F@)=<§+—z—» 1=b<2

11

— 2=bh<3

12

@ 3=<p

(a) Find P{X = i},i =1, 2, 3.
(b) Find P{3 < X < 3}.
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© 18. Four independent flips of a fair coin are made. Let X denote the number of

= 19,

heads obtained. Plot the probability mass function of the random variable

- X - 2.
If the distribution function of X is given by

(0 b<0O

I o=b<1
F(b) = é l=bh<2

T 2=bh<3
2 3=bh<35

\ 1 b=35

5 20.

2 21.

22,

v 23,

24,

calculate the probability mass function of X.

A gambling book recommends the following “winning strategy” for the game

of roulette. It recommends that a gambler bet $1 on red. If red appears

(which has probability %), then the gambler should take her $1 profit and

quit. If the gambler loses this bet (which has probability 2 of occurring), she

should make additional $1 bets on red on each of the next two spins of the

roulette wheel and then quit. Let X denote the gambler’s winnings when

she quits.

(a) Find P{X > 0}.

(b) Are you convinced that the strategy is indeed a “winning” strategy?
Explain your answer!

(¢) Find E[X].

A total of 4 buses carrying 148 students from the same school arrives at a

football stadium. The buses carry, respectively, 40, 33, 25, and 50 students..

One of the students is randomly selected. Let X denote the number of students
that were on the bus carrying this randomly selected student. One of the 4
bus drivers is also randomly selected. Let ¥ denote the number of students
on her bus.

(a) ‘Which of E[X] or E[Y] do you think is larger? Why?

(b) Compute E[X] and E[Y].

Suppose that two teams play a series of games that ends when one of them
has won i games. Suppose that each game played is, independently, won by
player A with probability p. Find the expected number of games that are
played when (a) i = 2 and (b) i{ = 3. Also show in both cases that this
number is maximized when p = 3.

A bin of 5 electrical components is known to contain 2 that are defective. If
the components are to be tested one at a time, in random order, until the
defectives are discovered, find the expected number of tests that are made.

A and B play the following game: A writes down either number 1 or number
2 and B must guess which one. If the number that A has written down is i
and B has guessed correctly, B receives { units from A. If B makes a wrong
guess, B pays 3 unit to A. If B randomizes his decision by guessing 1 with
probability p and 2 with probability 1 — p, determine his expected gain if
(a) A has written down number 1 and (b) A has written down number 2.

= 285,
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What value of p maximizes the minimum possible value of B’s expected
gain and what is this maximin value? (Note that B’s expected gain depends
not only on p but also on what A does.) '

Consider now player A. Suppose that she also randomize$ her decision,
writing dowh number 1 with probability g. What is A’s expected loss if (¢) B
chooses number 1 and (d) B chooses number 27

. What value of g minimizes A’s maximum expected loss? Show that the
minimum of A’s maximum expected loss is equal to the maximum of B’s
minimum expected gain. This result, known as the minimax theorem, was
first established in generality by the mathematician John von Neumann and
is the fundamental result in the mathematical discipline known as the theory
of games. The common value is called the value of the game to player B.

A typical slot machine has 3 dials, each with 20 symbols (cherries, lemons,
plums, oranges, bells, and bars). A typical set of dials is set up as follows:

Dial 1 Dial 2 Dial 3

Cherries 7 7 0
Oranges 3 7 6
Lemons 3 0 4
Plums 4 1 6
Bells 2 2 3
Bars 1 3 1

20 20 20

According to this table, of the 20 s\lots on dial 1, 7 are cherries, 3 are
oranges, and so on. A typical payoff on a l-unit bet is as shown in the
following table.

Dial 1 Dial 2 Dial 3 Payoff
Bar Bar Bar 60
Bell Bell Bell 20
Bell Bell Bar 18
Plum Plum Plum 14
Orange Orange Orange 10
Orange Orange Bar 8
Cherry Cherry Anything 4
Cherry No cherry Anything 2
Anything else -1

Compute the player’s expected winnings on a single play of the slot machine.
Assume that each dial acts independently.

. One of the numbers 1 through 10 is randomly chosen. You are to try to guess

the number chosen by asking questions with “yes—no” answers. Compute the
expected number of questions you will need to ask in each of the two cases:
(a) Your ith question is to be “Is it i7", i = 1,2,3,4,5,6,7, 8, 9, 10.
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29.

s 30.

31.
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(b) With each question you try to eliminate one-half of the remaining num-
bers, as nearly as possible.

An insurance company writes a policy to the effect that an amount of money
A must be paid if some event E occurs within a year. If the company estimates
that £ will occur within a year with probability p, what should it charge the
customer in order that its expected profit will be 10 percent of A?

A sample of 3 items is selected at random from a box containing 20 items

.of which 4 are defective. Find the expected number of defective items in

the sample.

There are two possible causes for a breakdown of a machine. To check the
first possibility. would cost C; dollars, and, -if that were the cause of the
breakdown, the trouble could be repaired at a cost of R, dollars. Similarly,
there are costs C, and R, associated with the second possibility. Let p and
1 — p denote, respectively, the probabilities that the breakdown is caused
by the first and second possibilities. Under what conditions on p, Ci, R,
i = 1, 2, should we check the first possible cause of breakdown and then
the second, as opposed to reversing the’ checking order, so as to minimize
the expected cost involved in returning the machine to working order?

NoTe:  If the first check is negative, we must still check the other possibility.

A person tosses a fair coin until a tail appears for the first time. If the tail

appears on the nth flip, the person wins 2" dollars. Let X denote the player’s

winnings. Show that E[X] = +co. This problem is known as the St. Peters-

burg paradox.

(@) Would you be willing to pay $1 million to play this game once?

(b) Would you be willing to pay $1 million for each game if you could play for
as long as you liked and only had to settle up when you stopped playing?

Each night different meteorologists give us the probability that it will rain

the next day. To judge how well these people predict, we will score each of
them as follows: If a meteorologist says that it will rain with probability p,
then he or she will receive a score of

1-@1-py

1 — p?
We will then keep track of scores over a certain time span and conclude that
the meteorologist with the highest average score is the best predictor of
weather. Suppose now that a given meteorologist is aware of this and so
wants to maximize his or her expected score. If this person truly believes
that it will rain tomorrow with probability p*, what value of p should he or
she assert so as to maximize the expected score?

To determine whether or not they have a certain disease, 100 people are to have
their blood tested. However, rather than testing each individual separately, it
has been decided first to group the people in groups of 10. The blood samples
of the 10 people in each group will be peoled and anayzed together. If the
test is negative, one test will suffice for the 10 people; whereas, if the test

if it does rain
if it does not rain

= 33.

* 35.

= 37,
~ 38.

s 40,

e

34.

36.

39.
~ ball is drawn, it is then replaced and another ball is drawn. This goes on

41,
42.

43.
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is positive each of the 10 people will also be individually tested and, in all,
11 tests will be made on this group. Assume the probability that a person
has the disease is .1 for all people, independently of each other, and compute
the expected number of tests necessary for each group. (Note that we are
assuming that the pooled test will be positive if at least one person in the
pool has the disease.)

A newsboy purchases papers at 10 cents and sells them at 15 cents. However,
he is not allowed to return unsold papers. If his daily demand is a binomial
random variable withn = 10,p = %, approximately how many papers should
he purchase so as to maximize his expected profit?

In Example 5b, suppose that the department store incurs an additional cost
of ¢ for each unit of unmet demand. (This is often referred to as a goodwill
cost because the store loses the goodwill of those customers whose demands
it cannot meet.) Compute the expected profit when the store stocks s units,
and determine the value of s that maximizes the expected profit.

A box contains 5 red and 5 blue marbles. Two marbles are withdrawn ran-
domly. If they are the same color, then you win $1.10; if they are different
colors, then you win —$1.00 (that is, you lose $1.00). Calculate

(a) the expected value of the amount you win;

(b) the variance of the amount you win.

Consider Problem 22 with i = 2. Find the variance of the number of games

~played and show that this number is maximized when p = 3.

Find Var(X) and Var(Y) f/or X and Y as given in Problem 21.

If E[X] = 1 and Var(X) = 5, find

(@) E[C + X)*;

(b) Var(4 + 3X).

A ball is drawn from an urn containing 3 white and 3 black balls. After the

indefinitely. What is the probability that of the first 4 balls drawn, exactly 2
are white?
On a multiple-choice exam with 3 possible answers for each of the 5 questions,

“what is the probability that a student would get 4 or more correct answers

just by guessing?

A man claims to have extrasensory perception. As a test, a fair coin is flipped
10 times, and the man is asked to predict the outcome in advance. He gets
7 out of 10 correct. What is the probability that he would have done at least

_this well if he had no ESP?

Suppose that when in flight, airplane engines will fail with probability
1 — p independently from engine to engine. If an airplane needs a majority
of its engines operative to make a successful flight, for what values of p is
a 5-engine plane preferable to a 3-engine plane?

A communications channel transmits the digits 0 and 1. However, due to
static, the digit transmitted is incorrectly received with probability .2. Suppose
that we want to transmit an important message consisting of one binary digit.
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To reduce the chance of error, we transmit 00000 instead of 0 and 11111
instead of 1. If the receiver of the message uses “majority” decoding, what
is the probability that the message will be wrong when decoded? What
independence assumptions are you making?

A satellite system consists of n components and functions on any given day
if at least k of the n components function on that day. On a rainy day each
of the components independently functions with probability p;, whereas on
a dry day they each independently function with probability p,. If the probabil-
ity of rain tomorrow is «, what is the probability that the satellite system

~‘will function?
. A student is getting ready to take an important oral examination and is
_concerned about the possibility of having an “o

n” day or an “off” day. He
figures that if he has an on day, then each of his examiners will pass him
independently of each other, with probability .8, whereas, if he has an off
day, this probability will be reduced to .4. Suppose that the student will pass
the examination if a majority of the examiners pass him. If the student feels
that he is twice as likely to have an off day as he is to have an on day, should
he request an examination with 3 examiners or with 5 examiners?

Suppose 'that it takes at least 9 votes from a 12-member jury to convict a
defendant. Suppose that the probability that a juror votes a guilty person
innocent is .2, whereas the probability that the juror votes an innocent person
guilty is .1. If each juror acts 1ndependently and if 65 percent of the defendants

are guilty, find the probablhty that the jury renders a correct decision. What
percentage of defendants is convicted?

In some military courts, 9 judges are appointed. However, both the prosecution
and the defense attorneys are entitled to a peremptory challenge of any judge,
in which case that judge is removed from the case and is not replaced. A
defendant is declared guilty if the majority of judges cast votes of guilty, and
he or she is declared innocent otherwise. Suppose that when the defendant
is, in fact, guilty, each judge will (independently) vote guilty with probability

.7, whereas when the defendant is, in fact, innocent, this probability drops

to .3.

(a) What is the probability that a guilty defendant is declared guilty when
there are (1) 9, (ii) 8, and (iii) 7 judges?

(b) Repeat part (a) for an innocent defendant.

(¢) If the prosecution attorney does not exercise the right to a peremptory
challenge of a judge and if the defense is limited to at most two such
challenges, how many challenges should the defense attorney make if he
or she is 60 percent certain that the client is guilty?

. It is known that diskettes produced by a certain company will be defective

with probability .01, independently of each other. The company sells the
diskettes in packages of size 10 and offers a money-back guarantee that at
most 1 of the 10 diskettes in the package will be defective. If someone buys
3 packages, what is the probability that he or she will return exactly 1 of them?
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€ 49. Suppose that 10 percent of the chips- produced by a computer hardware
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manufacturer are defective. If we order 100 such chips, will the number of
defective ones we receive be a binomial random variable?

Suppose that,a biased coin that lands on heads with probability p is flipped

10 times. Given that a total of 6 heads result, find the conditional probablhty

that the first 3 ouicomes are

(a) ‘H, T, T (meaning that the first flip is heads, the second is tails, and the
third is tails); ‘

~ () T, H,T.
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The expected number of typographical errors on a page of a certain magazine
is .2. What is the probability that the next page you read contains (a) 0-and
(b) 2 or more typographical errors? Explain your reasoning!

The monthly worldwide average number of airplane crashes of commercial
airlines is 3.5. What is the probability that there will be

(a) at least 2 such accidents in the next month;

(b) at most 1 accident in the next month?

~Explain your reasoning! -
53.

Approximately 80,000 marriages took place in the state of New York last
year. Estimate the probability that for at least one of these couples

(a) both partners were born on April 30;

(b) both partners celebrated their bjrthday on the same day of the year.
State your assumptions.

Suppose that the average number of cars abandoned weekly on a certain
highway is 2.2. Approximate the probability that there will be

(a) no abandoned cars in the next week;

(b) at least 2 abandoned cars in the next week.

A certain typing agency employs 2 typists. The average number of errors per
article is 3 when typed by the first typist and 4.2 when typed by the second.
If your article is equally likely to be typed by either typist, approximate the
probability that it will have no errors.

How many people are needed so that the probab1hty that at least one of them
has the same birthday as you is greater than 3?

Suppose that the number of accidents occurring on a highway each day is a
Poisson random variable with parameter A = 3.

(a) Find the probability that 3 or more accidents occur today.

(b) Repeat part (a) under the assumption that at least 1 accident occurs today.

Compare the Poisson approximation with the correct binomial probability for
the following cases:

(@) P{X = 2) whenn = 8, p = .1;
(b) P{X = 9} whenn = 10, p = .95;
(¢) P{X = 0} whenn = 10,p = .1;
(d) P{X = 4} whenn = 9,p = .2
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If you buy a 1ottery ticket in 50 lotteries, in each of which your chance of
wmnmg a prize is 755, what is the (approximate) probability that you will win
a prize

(a) at least once;

(b) exactly once;

"~ (¢) at least twice?

The number of times that a person contracts a cold in a given year is a Poisson
random variable with parameter A = 5. Suppose that a new wonder drug
(based on large quantities of vitamin C) has just been marketed that reduces
the Poisson parameter to A = 3 for 75 percent of the population. For the
other 25 percent of the population the drug has no appreciable effect on colds.
If an individual tries the drug for a year and has 2 colds in that time, how
likely is it that the drug is beneficial for him or her?

‘The probability of being dealt a full house in a hand of poker is approximately

.0014. Find an approximation for the probability that in 1000 hands of poker
you will be dealt at least 2 full houses.

If n married couples are seated at random at a round table, approximately
what is the probability that no wife sits next to her husband? When n = 10
compare your approximation with the exact answer given in Example 5n of
Chapter 2.

People enter a gambling casino at a rate of 1 for every 2 minutes.

(a) What is the probability that no one enters between 12:00 and 12:05?

(b) What is the probability that at least 4 people enter the casino during
that time?

The suicide rate in a certain state is 1 suicide per 100,000 inhabitants per month.

(a) Find the probability that in a city of 400,000 inhabitants within this state,
there will be 8 or more suicides in a given month.

(b) What is the probability that there will be at least 2 months during the
year that will have 8 or more suicides?

(c) Counting the present month as month number 1, what is the probability
that the first month to have 8 or more suicides will-be month number i,
i=1?

What assumptions are you making?

Each of 500 soldiers in an army company 1ndependent1y has a certain disease

with probability 1/10°. This disease will show up in a blood test, and to

facilitate matters blood samples from all 500 are pooled and tested.

(a) What is the (approximate) probability that the blood test will be positive
(and so at least one person has the disease)?

Suppose now that the blood test yields a positive result.

(b) What is the probability, under this circumstance, that more than one
person has the disease?

One of the 500 people is Jones, who knows that he has the disease.

(¢) What does Jones think is the probablhty that more than one person has
the disease?

As the pooled test was positive, the authorities have decided to test each

66.
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individual separately. The first i — 1 of these tests were negative, and the

ith one—which was on Jones—was positive.

(d) Given the above, as a function of i, what is the probability that any of
the remajning people have the disease?

Consider a roulette wheel consisting of 38 numbers—1 through 36, 0, and

+ double 0. If Smith always bets that the outcome will be one of the numbers

7 67.
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1 through 12, what is the probability that
(a) Smith will lose his first 5 bets;
(b) his first win will occur on his fourth bet?

Two athletic teams play a series of games; the first team to win 4 games is
declared the overall winner. Suppose that one of the teams is stronger than
the other and wins each game with probability .6, independent of the outcomes
of the other games. Find the probability that the stronger team wins the series
in exactly i games. Do it for i = 4, 5, 6, 7. Compare the probability that the
stronger team wins with the probability that it would win a 2-out-of-3 series.

‘Suppose in Problem 67 that the two teams are evenly matched and each has

probability 5 of winning each game. Find the expected number of games played.

An interviewer is given a list of potential people she can interview. If the
interviewer needs to interview 5 people and if each person (independently)
agrees to be interviewed with probabﬂlty 5 what is the probability that her
list of potential people will enable her to obtain her necessary number of
interviews if the list consists of (a) 5 people and (b) 8 people? For part (b)
what is the probability that the interviewer will speak to exactly (c) 6 people
and (d) 7 people on the list?

A fair coin is continually flipped until heads appears for the tenth time. Let
X denote the number of tails that occur. Compute the probability mass function
of X.

Solve the Banach match problem (Example 9¢) when the left-hand matchbox
originally contained N| matches and the right-hand box contained N, matches.

. In Banach’s matchbox problem find the probability that at the moment when

the first box is emptied (as opposed to being found empty), the other box
contains exactly k matches.

An urn contains 4 white and 4 black balls. We randomly choose 4 balls. If
2 of them are white and 2 are black, we stop. If not, we replace the balls in
the urn and again randomly select 4 balls. This continues until exactly 2 of
the 4 chosen are white. What is the probability that we shall make exactly
n selections?

Suppose that a batch of 100 items contains 6 that are defective and 94 that
are nondefective. If X is the number of defective items in a randomly drawn
sample of 10 items from the batch, find (a) P{X = 0} and (b) P{X > 2}.

A game popular in Nevada gambling casinos is Keno, which is played as
follows: Twenty numbers are selected at random by the casino from the set
of numbers 1 through 80. A player can select from 1 to 15 numbers; a win
occurs if some fraction of the player’s chosen subset matches with any of
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the 20 numbers drawn by the house. The payoff is a function of the number
of elements in the player’s selection and the number of matches. For instance,
if the player selects only 1 number, then he or she wins if this number is
among the set of 20, and the payoff is $2.2 won for every dollar bet. (As the
player’s probability of winning in this case is §, it is clear that the “fair”
payoff should be $3 won for every $1 bet.) When the player selects 2 numbers,
a payoff (of odds) of $12 won for every $1 bet is made when both numbers
are among the 20,
(a) What would be the fair payoff in this case?
Let P, ; denote the probability that exactly k of the n numbers chosen
by the player are among the 20 selected by the house.
(b) Compute P, . '
(¢) The most typical wager at Keno consists of selecting 10 numbers. For
such a bet the casino pays off as shown in the following table. Compute
the expected payoff:

KENO PAYOFFS IN 10 NUMBER BETS

Number Dollars won for
of matches each $1 bet

0-4 -1

5 1

6 17

7 179

8 1,299

9 2;599

10 24,999

_In Example 9i, what percentage of i defective lots does the purchaser reject?

Find it for i = 1, 4. Given that a lot is rejected, what is the conditional
probability that it contained 4 defective components?

A purchaser of transistors buys them in lots of 20. It is his policy to randomly
inspect 4 components from a lot and to accept the lot only if all 4 are
nondefective. If each component in a lot is, independently, defective with
probability .1, what proportion of lots is rejected?

THEORETICAL EXERCISES

There are N distinct types of coupons, and each time one is obtained it will,
independently of past choices, be of type i with probability P;, i = 1, ...,
N. Let T denote the number one need select to obtain at least one of each
type. Compute P{T = n}.

HINT:  Use an argument similar to the one used in Example le.
Prove property 3 of a distribution function.

el
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Express P{X = a} in terms of the distribution function of X.
Prove or give a counterexample:

P{X<b} = lim P{X <b,}
Y by—b

. If X has distribution function F, what is the distribution function of the random

variable X + B, where « and (3 are constants, a # 07

. For a nonnegative integer-valued random variable N, show that

E[N] = >, P{N=i)

i=1

HINT: z P{N=i} = 2 2 P{N = k}. Now interchange the order of
i=1 i=1k=i
summation.

. For a nonnegative integer-valued random variable N, show that

i iP{N > i} = XE[N?] — E[N])
i=0

HNT:  » iP{N>i} = > i », P{N = k}. Now interchange the order
i=0 i=0 k=i+1
of summation. !

. Let X be such that

PlX=1}=p=1-P{X= —1}
Find ¢ # 1 such that E[¢*] = 1.

. Let X be a random variable having expected value w and variance o?. Find

the expected value and variance of
X—p
o

Y =

Let X be a binomial random variable with parameters n and p. Show that

5 1 ]_1_(1_p)n+1
X+1|  (+1p

Consider n independent sequential trials, each of which is successful
with probability p. If there is a total of k successes, show that each of the
n!/[k! (n — k)!] possible arrangements of the k successes and n — k failures
is equally likely.

There are n components lined up in a linear arrangement. Suppose that each
component independently functions with probability p. What is the probability
that no 2 neighboring components are both nonfunctional?

HiNT:  Condition on the number of defective components and use the results
of Example 4c of Chapter 1.
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Let X be a binomial random variable with parameters (n, p). What value of

p maximizes P{X = k},k = 0, 1, ..., n? This is an éxample of a statistical

method used to estimate p when a binomial (71, p) random variable is observed

to equal k. If we assume that n is known, then we estimate p by choosing

that value of p that maximizes P{X = k}. This is known as the method of

maximum likelihoed estimation. .

A family has n children with probability ap”, n = 1, where @ < (1 — p)/p.

(a) What proportion of families has no children?

(b) If each child is equally likely to be a boy or a girl (independently of
each other), what proportion of families consists of k boys (and any
number of girls)?

Suppose that n independent tosses of a coin having probab1hty p of coming
up heads are made. Show that the probability that an even number of heads

results is 31 + (g — p)™], where g = 1 — p. Do this by proving and then
utilizing the identity

[Ilé’] n 2 n—2i __ 1 n- n
2 )P4 =5lp + "+ (@ —p)l
i=0 1 2

where [1/2] is the largest integer less than or equal to n/2. Compare this
exercise with Theoretical Exercise 15 of Chapter 3.

Let X be a Poisson random variable with parameter A. Show that P{X = i)
increases monotonically and then decreases monotonically as i increases,
reaching its maximum when / is the largest integer not exceeding A. -

HINT:  Consider P{X = i}/P{X =i — 1}.

Let X be a Poisson random variable with parameter A.

(a) Show that

=3[l + e™

by using the results of Theoretical Exercise 15 and the relationship be-

tween Poisson and binomial random variables.
(b) Verify the above directly by making use of the expansion of e ~* + e,

P{X is even}

Let X be a Poisson random variable with parameter A. What value of A

maximizes P{X = k}, k = 0?
If X is a Poisson random variable with parameter A, show that
E[X"] = AE[(X + 1" ']
Now use this result to compute E [X3].
Let X be a Poisson random variable with parameter A, where 0 < A < 1.
Find E[X!].
From a set of n randomly chosen people let E;; denote the event that persons
i and j have the same-birthday. Assume that each person is equally likely to
have any of the 365 days of the year as his or her birthday. Find
(@) P(E34|E2);
(b) P(E1,3[E1,2)
(©) P(Ey3|E 12 NE, ).

22,
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What can you conclude from the above about the independence of the

(g) events E;;?

An urn contains 2n balls, of which 2 are numbered 1, 2 are numbered 2, . . .,
and 2 are numbered n. Balls are successively withdrawn 2 at a time without
replacement. Let T denote the first selection in which the balls withdrawn
have the same number (and let it equal infinity if none of the pairs withdrawn
has the same number). For 0 < a < 1 we want to show that

limP{T> an) = e~

To verify the above, let M, denote the number of pairs w1thdrawn in the first

k selections, k = 1, , H.

(a) Argue that when nis larve M, can be reoarded as the number of successes
ink (approxunately) mdependent tnals

(b) When n is large, apprommate P{M, = 0}.

(¢) Write the event { T > an} in terms of the value of one of the vanables M.

(d) Verify the limiting probability above.

Suppose that the number"of events that occur in a specified time is a Poisson

random variable with parameter A. If each event is counted with probability

" p, independently of every other event, show that the number of events that

24,
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are counted is a Poisson random variable with parameter Ap. Also, give an
intuitive argument as to why this should be so. '

As an application of the preceding paragraph, suppose that the number
of distinct uranium deposits in a given area is a Poisson random variable
with parameter A = 10.If,ina ﬁxed period of time, each deposit is discovered
independently with probability 55, find the probability that (a) exactly 1, (b)
at least 1, and (c) at most 1 deposit is discovered during that time.

Prove

i —A)U ____];_ me—-xxndx

=0 ntJy
HINT: Use integration by parts.
If X is a geometric random variable, show analytically that

P{X=n+k|X>n} = P{X =k}
Give a verbal argument using the interpretation of a geometric random variable
as to why the equation above is true.
Let X be a negative binomial random variable with parameters r and p, and
let Y be a binomial random variable with parameters n and p. Show that
P{X>n} = PlY<r}

HINT:  One could either attempt an analytical proof of the above, which is
equivalent to proving the identity

» .__1 ) r—1 .
> <‘ 1>pr(1 —p)ir = Z ( )p a-p"

i=n+1 \I' ™~
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or one could attempt a proof that uses the probabilistic interpretation of these
random variables. That is, in the latter case start by considering a sequence
of independent trials having a common success probability p. Then try to
express the events {X > n} and {Y < r} in terms of the outcomes of
this sequence.
For a hypergeometric random variable, determine

P{X =k + 1}/P{X = k}
Balls numbered 1 through N are in an urn. Suppose that n, n < N, of
them are randomly selected without replacement. Let ¥ denote the largest
number selected.
(a) Find the probability mass function of Y.
(b) Derive an expression for E[Y] and then use Fermat’s combinatorial identity

(see Theoretical Exercise 11 of Chapter 1) to simplify.

A jar contains m + n chips, numbered 1, 2, ..., n + m. A set of size n is
drawn. If we let X denote the number of chips drawn having numbers that
exceed all the numbers of those remaining, compute the probability mass
function of X. .
A jar contains n chips. Suppose that a boy successively draws a chip from
the jar, each time replacing the one drawn before drawing another. This
continues until the boy draws a -chip that he has previously drawn before.
Let X denote the number of draws, and compute its probability mass function.
Show that Equation (9.6) follows from (9.5).
From a set of n elements a nonempty subset is chosen at random in the sense
that all of the nonempty subsets are equally likely to be selected. Let X denote
the number of elements in the chosen subset. Using the identities given in
Theoretical Exercise 12 of Chapter 1, show that

n

B = S
n-22"2 — p(n + 1272
A =
HI(X) (211 . 1)2
Show also that for n large,

n
V P
ar(X) ~ 7

in the sense that the ratio of the above approaches 1 as n approaches oo.
Compare this with the limiting form of Var(Y) when P{Y = i} = 1/n,
i=1,...,n

An urn initially contains one red and one blue ball. At each stage a ball is
randomly chosen and then replaced along with another of the same color.
Let X denote the selection number of the first chosen ball that is blue. For
instance, if the first selection is red and the second blue, then X is equal to 2.
(a) Find P{X > i},i = 1.

(b) Show that with probability 1, a blue ball is eventually chosen. (That is,

show that P{X < 0} = 1))
(e) Find E[X].
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SELF-TEST PROBLEMS AND EXERCISES

1. Suppose that the random variable X is equal to the nﬁmber of hits obtained
by a certain baseball player in his next 3 at bats. If P{X = 1} = .3,
P{X = 2} = 2,and P{X = 0} = 3P{X = 3}, find E[X].

2. Suppose that X takes on one of the values 0, 1, 2. If for some constant c,
PX =i} =cPX=1i-1},i = 1,2, find E[X].

3. A coin that when flipped comes up heads with probability p is flipped until
either heads or tails has occurred twice. Find the expected number of flips.

4. A certain community is composed of m families, ; of which have i children,

E n; = m. If one of the families is randomly chosen, let X denote the

i=1 . R

number of children in that family. If one of the 2 in; children is randomly

i=1
chosen, let Y denote the total number of children in the family of that child.
Show that E[Y] = E[X].

5. Suppose that P{X = 0} = 1 - P{X = 1}. If E[X] = 3Var(X), find
P{X = 0}. : ’

6. There are 2 coins in a bin. When one of them 1s flipped it lands on heads
with probability .6, and when the other is flipped it lands on heads with
probability .3. One of these coins is to be randomly chosen and then flipped.
Without knowing which coin is chosen, you can bet any amount up to 10
dollars and you then either win that amount if the coin comes up heads or
lose it if it comes up tails. Suppose, however, that an insider is willing to
sell you, for an amount C, the information as to which coin was selected.
What is your expected payoff if you buy this information? Note that if you
buy it and then bet x, then you will end up either winning x — C or
—x — C (that is, losing x + C in the latter case). Also, for what values of
C does it pay to purchase the information?

7. A philanthropist writes a positive number x on a piece of red paper, shows
it to an impartial observer, and then turns it face down on the table. The
observer then flips a fair coin. If it shows heads, she writes the value 2x,
and, if tails, the value x/2, on a piece of blue paper which she then turns
face down on the table. Without knowing either the value x or the result
of the coin flip, you have the option of turning over either the red or the blue
piece of paper. After doing so, and. observing the number written on that
paper, you may elect to receive as a reward either that amount or the (un-
known) amount written on the other piece of paper. For instance, if you elect
to turn over the blue paper and observe the value 100, then you can elect
either to accept 100 as your reward or to take the amount (either 200 or
50) on the red paper. Suppose that you would like your expected reward to
be large. - ‘

(a) Argue that there is no reason to turn over the red paper first because if
you do so, then no matter what value you observe, it is always better to
switch to the blue paper.
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(b) Lety be a fixed nonnegative value, and consider the following strategy.
Turn over the blue paper and if its value is at least y, then accept that
amount. If it is less than y, then switch to the red paper. Let R(x) denote
the reward obtained if the philanthropist writes the amount x and you
employ this strategy. Find E[R,(x)]. Note that E[Ry(x)] is the expected
reward if the philanthropist writes the amount x when you employ the
strategy of always choosing the blue paper.

Let B(n, p) represent a binomial random variable with parameters »n and p.
Argue that

P{Bn,py=i}=1—-PBn,1 ~p)=n-1-1}

HINT:  The number of successes is less than or equal to i is equivalent to
what statement about the number of failures?

. If X is a binomial random variable with expected value 6 and variance 2.4,

find P{X = 5).

An urn contains n balls, numbered 1 through n. If m balls are randomly
withdrawn in sequence, each time replacing the ball selected previously, find
P{X =k}, k=1,...,m, where X is the maximum of the m chosen numbers.

First find P{X =< k).

Teams A and B play a series of games with the first team to win 3 games
being declared the winner of the series. Suppose that team A independently
wins each game with probability p. Find the conditional probability that team
A wins

(a) the series given that it wins the first game;

(b) the first game given that it wins the series.

HINT!

. A local soccer team has 5 more games that it will play. If it wins its game

this weekend, then it will play its final 4 games in the upper bracket of its
league, and if it loses, then it will play its final games in the lower bracket.
If it plays in the upper bracket, then it will independently win each of its
games in this bracket with probability .4, and if it plays in the lower bracket,
then it will independently win each of its games with. probability .7. If the
probability that it wins its game this weekend is .5, what is the probability
that it wins at least 3 of its final 4 games?

On average, 5.2 hurricanes hit a certain region in a year. What is the probability
that there will be 3 or fewer hurricanes hitting this year?

The number of eggs laid on a tree leaf by an insect of a certain type is a
Poisson random variable with parameter A. However, such a random variable
can only be observed if it is positive, since if it is 0, then we cannot know
that such an insect was on the leaf. If we let Y denote the observed number
of eggs, then -

P{Y =i} = P(X

where X is Poisson with parameter A. Find E[Y].

= i|X >0}

) ®. 15.

g

16.

Self-Test Problems and Exercises 191

A casino patron will continue to make $5 bets on red in roulette until she
has won 4 of these bets.

(a) What is the probability that she places a total of 9 bets?

(b) What is her expected winnings when she stops?

REMARK: On each bet she will either win $5 with probability 3 or lose $5
with probability 2

When three fnends go for coffee, they decide who will pay the check by
each flipping a coin and then letting the “odd person” pay. If all three flips
are the same (so there is no odd person), then they make a second round
of flips, and continue to do so unul there is an odd person. What is the
probability that

(a) exactly 3 rounds of flips are made;

" (b) more than 4 rounds are needed?
. If X is a geometric random variable with parameter p, show that

E[lx] = =2 log(p)
L=p

You will need to evaluate an expression of the form 2 d'fi. To do
i=1
f %'~ ! dx, and then interchange the sum and the integral.

HINT!

so, write a'/i =

~
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In Chapter 4 we considered discrete random variables, that is, random variables
whose set of possible values is either finite or countably infinite. However, there
also exist random variables whose set of possible values is uncountable. Two
examples would be the time that a train arrives at a specified stop and the lifetime
of a transistor. Let X be such a random variable. We say that X is a continuous’
random variable if there exists a nonnegative function f, defined for all real
X € (—o», »), having the property that for any set B of real numbers*

P{XEB) = jB F00 dx (1.1)

The function f is called the probability density function of the random variable
X (see Figure 5.1).

In words, Equation (1.1) states that the probability that X will be in B may
be obtained by integrating the probability density function over the set B. Since
X must assume some value, f must satisfy

1= PXE(~w®) = [ )

All probability statements about X can be answered in terms of f. For instance,
letting B = [a, b], we obtain from Equation (1.1) that

. b
Pla=X=b) =f F(0) dx (12)
- : a
¥ Sometimes called absolutely continuous.

% Actually, for technical reasons Equation (1.1) is true only for the measurable sets B, which,
fortunately, includes all sets of practical interest.

‘Figure 5.1 Probability a b
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density function f. P(a < X = b) = area of shaded region

If we let @ = b in Equation (1.2), we obtain
P{X=a} = f Fx) dx =0
a

In words, this equation states that the probability that a continuous random variable
will assume any fixed value is zero. Hence, for a continuous random variable,

a
P{X<a} = P{X=a) = F(a) = f F(0) dx
EXample la. Suppose that X is a continuous random variable whose probability
density function is given by
~
_fCEx -2 0<x<2
fx) = 0 otherwise

(a) What is the value of C?
(b) Find P{X > 1}.

Solution (a) Since fis a probability density function, we must have that
S _fx) dx = 1, implying that

2 2A o
cf (4x — 2% dx = 1
0 .

or
3 x==2
C [2x2 - 3"—} =1
3 x=0
or
3
C=3
Hence

) P(X>1} = fjf(x)dx = gfl' (4x — 2% dx =

[
]
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Example 1b. The amount of time, in hours, that a computer functions before
breaking down is a continuous random variable with probability density
function given by

e —¥/100

o) = {O

What is the probability that

(a) a computer will function between 50 and 150 hours before breaking
down;

(b) it will function less than 100 hours?

x=0
x<0

Solution (a) Since
1= f@dr=a[ e 104y
f ™ fo

we obtain

<)

= 100A or

- _ —x/100 -
1 A(100)e . 100

Hence the probability that a computer will function between 50 and 150
hours before breaking down is given by

150 1 ” ] 150
P{50 < X < 150} = f 1 ~xn00 4 _ _ ~x100
so 100 ' 50
=e¢ 2 — ¢T3 = 384
(b) Similarly,
P{X <100} = fmo_l__e—xllot.)dx = _ =100 0 —1— o1~ 633
o 100 . :

In other words, approximately 63.3 percent of the time a computer will fail
before registering 100 hours of use. |

Example 1c. The lifetime in hours of a certain kind of radio tube is a random
variable having a probability density function given by

0 x =100

TO=1E2 x> 100

What is the probability-that exactly 2 of 5 such tubes in a radio set will
have to be replaced within the first 150 hours of operation? Assume that
the events E;, i = 1, 2, 3, 4, 5, that the ith such tube will have to be replaced
within this time, are independent.
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Solution Now,
150

PE) = [ fwds
LY 150 _ ;’l_—)l'r"
=100 x2dx =00 e
100 _ “’2: .
1 = 73+
= .

~“~

| Hence, from the independence of the events E;, it follows that the desired
probability is 3

| e - -

The relationship between the cumulative distribution F and the probability
density f is expressed by

F@ = PIXE (—wd) = [ fo)dr

Differentiating both sides of the above yields

d
- F(@) = f@

That is, the density is the derivative of the cumulative distribution function. A
somewhat more intuitive interpretation of the density function may be obtained
- from Equation (1.2) as follows:

: a-+el2
P{a - gﬁXﬁa—l— g} = L_elz J(x) dx = gf(a)

when e is small and when f(-) is continuous at x = a. In other words, the
_.—— probability that X will be contained in an interval of length & around the point a
is approximately £f(a). From this, we see that f(a) is a measure of how likely it

is that the random variable will be near a.

5.2 EXPECTATION AND VARIANCE OF CONTINUOUS
RANDOM VARIABLES

In Chapter 4 we defined the expected value of a discrete random variable X by
E[X] = > xP{X = x}
X

If X is a continuous random variable having probability density function f(x),
then as

fdx=P{x=X=x + dx} for dx small
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it is easy to see that the analogous definition is to define the expected value of
X by

Ex) = [ xf@as

Example 2a. Find E[X] when the density function of X is
2x if O0=x=1
fo) = {0 otherwise

Solution

Ex1= [ xf(x) dx

Example 2b. The density function of X is given by

1 if 0=x=1
f6) = 0 otherwise ‘
Find E[eX]. ‘

Solution LetY = e*. We start by determining Fy, the probability distribu-
tion function of Y. Now, for 1 = x < e,

Fy(x) = P(Y < x)
= P{e* < x}
= P{X =log(x)}
log(x)
= [ soray

= log(x) .
By dlfferentlatmg F Y(x) we obtain that the probability density function of
Y is given by

fld =2 1=xse

Hence

E[eX] = E[Y] = f " xfy() dx
1 .
. =e—1 |

Although the method employed in Example 2b to’ compute the expected
value of a function of X is always applicable, there is, as in the discrete case, an
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alternative way of proceeding. The following is a direct analog of Proposmon
5.1 of Chapter 4. -

Prapositio’h 2 1V '

If X is a continuous random vanable w1th probablhty denSIty function
f(x) then for any real-valued function g,

Elg(X)] = f_,mg(x) feydx

An application of Proposition 2.1 to Exainple 2b yields that

1
E[e¥] = fo dr sincef() =1, 0<x<I

Wthh is in accord with the result of that example.

The proof of Proposition 2.1 is more involved than its discrete random
variable analog and we will present one under the provision that the random
variable g(X) is nonnegative. (The general proof, which follows the argument in
the case we present, is indicated in Theoreucal Exercises 2 and 3.) We will need
the following lemma, which is of independent interest.

Lemma 2.1

For a nonnegative random variable ¥,

E[Y] =.f:P{Y> 3} dy

Proof: We present a proof when Y is a continuous random variable with
probability density function fy. We have

J PY>y)dy = j: f) ) dx dy

where we have used the fact that P{Y > y} = f i JSyr(x) dx. Interchanging the
order of mteoranon in the preceding equation ; ylelds

j PIY>yldy= | ( A dy)fy(x) d

= [y

= BEY]
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Proof of Proposition 2.1: For any function g for which g(x) = 0, we
have from Lemma 2.1 that

ElgC0] = [ PleX) >3] dy

- fo L:gm F00) die dy

8(x)
- [ dyfe ax

x:8(x)>0 -0

= g(x) fx) dx
x:8(x)>0 -

which completes the proof.

Example 2c. A stick of length 1 is split at a point U that is uniformly disn_'ibuted
over (0, 1). Determine the expected length of the piece that contains the
point p, 0 =p = L.

Solution Let L,(U) denote the length of the substick that contains the

point p, and note (see Figure 5.2) that

Uy = 1—-U U<p
L) = U U>p

Hence from Proposition 2.1 we have that
1
EIL(U) = | L) du
0

= fp (1 — u)du + E udu

0
N2 2
1A, 1 P
2 2 2 2
=2+ p(l — p)
5 p p

Since p(1 — p) is maximized when p = 1, it is interesting to note that the
expected length of the substick containing the point p is maxnmzed when
p is the midpoint of the original stick. |

' - (a)

U p 1

. () Figure 5.2 Substick containing point

D U 1 p@U<p,()U>p.

7
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Example 2d. Suppose that if you are s minutes early for an appomtment then
you incur the cost cs, and if you are s minutes late, then you incur the cost
ks. Suppose that the travel time from where you presently are to the location
of your appointment is a continuous random variable having probability
density fuhction f. Determine the time at which you should depart if you
‘want to minimize your expected cost.

Solution Let X denote the travel time. If you leave f minutes before your
appointment, then your cost, call it C,(X), is given by

_jet - X) fX=t
C'(X)“{k(x-—t) ifX=¢

Therefore, {

EIC,001 = [ Cafeo ds

= jot c(t — Xf(x) dx + ft " kGr — D00 dx

ctfotf(x)dx - cj;xf(x)dx + kfxf(x)dx - kfff(x)dx

The value of ¢ that minimizes E[C,(X)] can now be obtained by calculus.
Differentiation yields

i

%E[CI(X)] ctf(6) + cF() — ctf(f) — ke f(1) + ke f(t) — k[1 — F(9)]

=+ oF@F — k

Equating to zero shows that the minimal expected cost is obtained when
you leave #* minutes before your appointment, where #* satisfies

.k
P = e B

As in Chapter 4, we can use Proposition 2.1 to show the following.

| , Corollary 21
Ll Ifa and b are constants then '

E[aX + b] = aE[X] + b

The proof of Corollary 2.1 for a continuous random variable X is the same
as the one given for a discrete random variable. The only modification is that the
sum is replaced by an integral and the probability mass function by a probability
density function.
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The variance of a continuous random variable is defined exactly as it is for
a discrete one. Namely, if X is a random variable with expected value u, then
the variance of X is defined (for any type of random variable) by

Var(X) = E[(X — w)]
The alternative formula, . .
Var(X) = E[X?] — (E[X])?

is established in a similar manner as in the discrete case.
Example 2e. Find Var(X) for X as given in Example 2a.
Solution We first compute E[X?].

E[X?] = Jimxzf(x) dx
= jl 23 dx

=

Hence, since E[X] = % we obtain that

Ve =t- @ =4 .

It can be shown, with the proof mimicking the one given for discrete random
variables, that for constants a and b 4
Var(aX + b) = a* Var(X)

There are several important classes of continuous random variables that
appear frequently in applications of probability; the next few sections are devoted
to a study of some of them.

5.3 THE UNIFORM RANDOM VARIABLE

A random variable is said to be uniformly distributed over the interval (0, 1) if
its probability density function is given by

fo) = {1 O<x=l | 3.1)

otherwise

Note that Equation (3.1) is a density function, since f(x) = 0 and f S dx =
f o dx = 1. Because f(x) > 0 only when x € (0, 1), it follows that X must assume
a value in (0, 1). Also, since f(x) is constant for x € (0, 1), X is just as likely to
be near any value in (0, 1) as-any other value. To check this, note that for any
O<a<b<l,

PlasX=bh) =j R de=b - a
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In other words, the probablhty that X is in any particular subinterval of (0, 1)
equals the length of that subinterval.

Ig general, we say that X is a uniform random variable on the interval
(e, B) if its proRQability density function is given by

1 .
Jf@) =498 — « fa<x<p (3.2)

0 otherwise

Sincg Fla) = f iw f(x) dx, we obtain from Equation (3.2) that the distribution
function of a uniform random variable on the interval (e, B) is given by

0 as=aw
a—a
R —— <a<
F@ =ig—, @<a<p
1 az=f
Figure 5.3 presents a graph of f(a) and F(a).
fl) Fla)
1 .
1 -
B-a
| i a | a
@ B « B

(2) (®)

Figure 5.3 Graph of (a) f(a) and (b) F(a) for a uniform (&, B) random
variable.

Example 3a. Let X be uniformly distributed over (&, B). Find (a) E[X] and
(b) Var(X).

Solution ‘
@ EX = [ xfo) i
B fa B - dx
_ BZ . Cl!2
2(B — a)
Bt
)

In words, the expected value of a random variable uniformly distributed
over some interval is equal to the midpoint of that interval.
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(b) To find Var(X), we first calculate E[Xz].
2 B 1 2
FA — 4 [lx
E[X?] j e
B3 . a3
3B -9
_ ,82 + aff + o?
B 3
Hence
2 + 2 + B2
Vag ~ Bt B+ @+ p
3 4
_(B—ap

12

Therefore, the variance of a random variable that is uniformly distn:bpted
over some interval is the square of the length of that interval d1v1dec:
by 12.

Example 3b. If X is uniformly distributed over (0, 10), calculate the probability

that (a) X <3, (b)) X > 6,and (c) 3 < X < 8.
Solution

(2) P{X < 3} =f
0

10 )

(®) PX>6) = | w6dx =13

3

Ly = 32
G dx =

10

8
(c)P{3<X<8}=L{5dx=§ B

Example 3c. Buses arrive at a specified stop at 15-minute intervals starting at

7 am. That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger
arrives at the stop at a time that is uniformly distributed between 7 and 7:30,
find the probability that he waits

(a) less than 5 minutes for a bus;

(b) more than 10 minutes for a bus.

Solution Let X denote the number of minutes past 7 that the passenger
arrives at the stop. Since X is a uniform random variable over the interval
(0, 30), it follows that the passenger will have to wait less.than 5 minutes
if (and only if) he arrives between 7:10 and 7:15 or between 7:25 and 7:30.
Hence the desired probability for part (a) is

15 30 .
P{I0<X <15} + P{25 <X <30} = fm Lax + LS Ly =1

3
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Similarly, he wotld have to wait more than 10 minutes if he arrives between
7 and 7:05 or between 7:15 and 7:20, and so the probability for part (b) is

PO<X<5) + P{I15<X<20} =1 0

The next example was first considered by the French mathematician L. F,

Bertrand in 1889 and is often referred to as Bertrand’s paradox. It represents our
initial introduction to a subject commonly referred to as geometrical probability.

Example 3d. Consider a random chord of a circle. What is the probability that

the length of the chord will be greater than the side of the equilateral triangle
inscribed in that circle? o

Solution The problem as stated is incapable of solution because it is not
clear what is meant by a random chord. To give meaning to this phrase, we
shall reformulate the problem in two distinct ways.

The first formulation is as follows: The position of the chord can be
determined by its distance from the center of the circle. This distance can
vary between 0 and r, the radius of the circle. Now, the length of the chord
will be greater than the side of the equilateral triangle inscribed in the circle
if its distance from the center is less than r/2. Hence, by assuming that a
random chord is one whose distance D from the center is uniformly distributed
between 0 and r, we see that the probability that it is greater than the side
of an inscribed equilateral triangle is

r ri2 1

Plo<z} =21
For our second formulation of the problem consider an arbitrary chord
of the circle; through one end of the chord draw a tangent. The angle § between
the chord and the tangent, which can vary from 0° to 180°, determines the
position of the chord (see Figure 5.4). Furthermore, the length of the chord
will be greater than the side of the inscribed equilateral triangle if the angle
6 is between 60° and 120°. Hence, assuming that a random chord is one

whose angle 6 is uniformly distributed between 0° and 180°, we see that
the desired answer in this formulation is

P{60 < 6 < 120} '""1_2015—_069:%
0
L\,

Figure 54
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It should be noted that random experiments could be performed in such
a way that 3 or  would be the correct probability. For instance, if a circular
disk of radius r is thrown on a table ruled with parallel lines a distance 2r
apart, then one and only one of these lines would cross the disk and form
a chord. All distances from this chord to the center of the disk would be
equally likely so that the desired probablhty that the chord’s length will be
greater than the side of an inscribed equilateral triangle is 3 3. On the other
hand if the experiment consisted of rotating a needle freely about a point
A on the edge (see Figure 5.4) of the circle, the desired answer would
be 3. |

5.4 NORMAIL RANDOM VARIABLES

We say that X is a normal random variable, or simply that X is normally distributed,
with parameters p and o~ if the density of X is given by

e—~(.7c—/.c)2/202 < x< ®

_ 1
™= s

This density function is a bell-shaped curve that is symmetric about wu (see
Figure 5.5).

The normal distribution was introduced by the French mathematician Abra-
ham de Moivre in 1733 and was used by him to approximate probabilities associ-
ated with binomial random variables when the binomial parameter # is large. This
result was later extended by Laplace and others and is now encompassed in a
probability theorem known as the central limit theorem, which is discussed in

399

399

Figure 5.5 Normal density
function: (@) £ = 0, 0 = 1;
(b) arbitrary p, o
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Chapter 8. The central limit theorem, one of the two most important results in
probablhty theory," gives a theoretical base to the often noted empirical observation
that, in practice, many-random phenomena obey, at least approximately, a normal
probability distrjbution. Some examples of this behavior are the height of a man,
the velocity in any direction of a molecule in gas, and the error made in measuring
a physical quantity.

To prove that f(x) is indeed a probability density function, we need to
show that

1 ’fm —(x— w2202
e dx =1
V2 g’—=
By making the substitution y = (x — w)/o, we see that
2o —= Vord—=

and hence we must show that
f e VP dy = Vg
Toward this end, let ] = [ jm e~ Y2 dy. Then

12v=f e_yz/zdyf e ™2 gy

=f f e 0P+ g 1y

We now evaluate the double integral by means of a change of variables to
polar coordinates. (That is, let x = r cos 6, y = rsin 0 and dydx = rdfdr.)
Thus

o 2
I? = f j e "2 rdodr
o Jo

©
= ZWJ re "2 dr
0

L

— 2
—Qqre =" 12

i

= 247

Hence I = V2, and the result is proved.

We now show that the parameters j and ¢” of a normal random variable
represent its expected value and variance.

7 The other is the strong law of large numbers.
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Example 4a. Find (a) E[X] and (b) Var(X) when X is a normal random variable
with parameters p and o™

Solution

1 b (v — Y2 2
a) E[X] = xe” KTR207 gy
(@) EL \/ZTTaf—m

Writing x as (x — u) + u yields

1 = —(x— w)2/262
EIX] = | G e gy
. V2mod—=
1 B N2
+ f e T m20% gy
'u\/27r0' -

Letting y = x — u in the first integral yields

1 b —y2/202 =
E[X] = e YT dy + p | f(x)dx
V2w crf—x) f~°° :

where f(x) is the normal density. By symmetry, the first integral must be 0, so
EXI=p| foyde=p

(b) Since ;E[X] = u, we have that
Var(X) = E[(X — w)’]
1

_ (x — “)Zew(x-ﬂ)2/202 dx
vV 2ar o’f—x

Substituting y = (x — w)/o in Equation (4.1) yields

2 * 5
Var) = = [y ay
'n' e L

(4.1)

=

2 E
-7 —y272 ) . :
= —ye ? + f e dy | by integration by parts
V2 I: -

= 2—-———1 e——yz/?. dy

V2 —=

= o2 |

.

An important fact about normal random variables is that if X is normally
distributed with parameters w and 0' then Y = aX + (is normally distributed
with parameters o + B8 and o?c>. To show this, suppose that a > 0. (The
verification when « < 0 is similar.) Now Fy," the cumulative distribution function

7 When there is more than one random variable under consideration, we shall denote the
cumulative distribution function of a random vanable Z by F. Similarly, we shall denote the density

of Z by fz.
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of the random variable ¥, is given by

Fy(a) = P{aX + B = a}

2 , ZP{XSQ;B}
:FX<“;B>

Differentiation yields that the density function of Y is

e =L 2=E)

e (5 ]

— aw)¥2ao)?} 4.2)

1
Bl \/27'*aa'exp{“(a — B
2

which shows that Y is normal with mean au + B and variance « o2

An important implication of the preceding result is that if X is normally
distributed with parameters w and o2, then Z = (X — w)/o is normally distributed
with parameters O and 1. Such a random variable Z is said to have the standard,
or unit, normal distribution.

Itis traditional to denote the cumulative dlStI‘lbuthIl function of a standard
normal random variable by ®(x). That is, T

\/—_m

The values of ®(x) for nonnegatlve x are given in Table 5.1. For negative values
of x, ®(x) can be obtained from Equation (4.3):

D(x) = e~y dy

O(~-x)=1- D —00 < x < (4.3)

[The values of ®(x) can also be obtained from the text diskette.] The proof of
Equation (4.3), which follows from the symmetry of the standard normal density,
is left as an exercise. This equation states that if Z is a standard normal random
variable, then

P{Z= —x} = P{Z> x} — o< x <o

Since Z = (X — w)/o is a standard normal random variable whenever X
is normally distributed with parameters w and o2, it follows that the distribution
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In this case, where the noise is Laplacian with parameter A = 1, the 2 types
of errors will have probabilities given by

P{error|message 1 is sent} = P{N < —1.5}
= 1,15
. ~ 1116
P{error|message Q is sent} = P{N = 2.5}
-1 e—25
=~ .041
On comparing this with the results of Example 4e, we see that the error
probabilities are higher when the noise is Laplacian with A = 1 than when
it is a standard normal variable.

5.5.1' Hazard Rate Functions

Consider a positive continuous random variable X that we interpret as being the
lifetime of some item, having distribution function F and density f. The hazard
rate (sometimes called the failure rate) function A(r) of F is defined by

o) -1 -
A = 0 F -

To interpret A(f), suppose that the item has survived for a time ¢ and we desire
the probability that it will not survive for an additional time dt. That is, consider
P{X € (t,t + d|X > t}. Now
PIXe(tt+ d),X>1)}
P{X>1})
N _PXeE(@1t+ dn)
P{X>1}

PXE @1+ d)|X>1) =

_fo

F(o)

That is, A(¢) represents the conditional probability intensity that a ¢-unit-old item
will fail.

Suppose now that the lifetime distribution is exponential. Then, by the

memoryless property, it follows that the distribution of remaining life for a #-

dt

year-old item is the same as for a new item. Hence A(f) should be constant. ThlS ‘

checks out, since

J@
F(®
)\ — AL

e—-At

= A

AD) =
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Thus the failure rate function for the exponential distribution is constant. The
parameter A is often réferred to as the rate of the distribution.

It turns out that the failure rate function A(f) uniquely determines the distribu-
tion F. To prove,this, note that by definition

Ei F(t)

Al = 1-F0

Integrating both sides yields )
!
log(1 — F(f) = — f A dt + k
0

or

1 — F(t) = éf exp{ - f; AQ) dt}

Letting t = O shows that £k = 0 and thus

Fi)=1-— exp{ . fot A dt} (5.4)

Hence a distribution function of a positive continuous random variable can
be specified by giving its hazard rate function. For instance, if a random variable
has a linear hazard rate function—that is, if

Al) = a + bt
then its distribution function is given by ‘
F(t)=1— e @ b2
and differentiation yields that its densify is
O = (@ + bne~ @D 1=
When a = 0, the above is known as the Rayleigh density function.

Example 5f. One often hears that the death rate of a person who smokes is, at
each age, twice that of a nonsmoker. What does this mean? Does it mean
that a nonsmoker has twice the probability of surviving a given number of
years as does a smoker of the same age? /

Solution If A (r) denotes the hazard rate of a smoker of age ¢ and A, (¥)
that of a nonsmoker of age ¢, then the above is equivalent to the statement that

As(f) = 2A,(t)
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The probability that an A-year-old nonsmoker will survive until age B,
A <B,is

P{A -year-old nonsmoker reaches age B}
= P{nonsmoker’s lifetime > B|nonsmoker’s lifetime > A}

. 1 - non(B)
1 = Foon(A)

B
exp { - fo A () dt}

= from (5.4)

A
exp‘{ - fo A, (0 dt}
B
= exp{ - jA A D dt}

whereas the corresponding probability for a smoker is, by the same reasoning,

B
P{A-year-old smoker reaches age B} = exp{ - f AD dt}

A
‘ B
- exp{ ~2 f A0 dt}

A

B 2

= [exp{ - fA A0 dtH

In other words, of two people of the same age, one of whom is a smoker
and the other a nonsmoker, the probability that the smoker survives to any
given age is the square (not one-half) of the corresponding probability for
a nonsmoker. For instance, if A,(f) = 35, 50 <t < 60, then the probability
that a 50-year-old nonsmoker reaches age 60 is ¢~/ =~ .7165, whereas the
corresponding probability for a smoker is e~ =~ .5134. .

5.6 OTHER CONTINUdUS DISTRIBUTIONS

5.6.1 The Gamma Distribution

A random variable-is said to have a gamma distribution with parameters (t /\)
A >0, and r > 0 if its density fUIlCtIOD is given by

. -‘/\.1 (/\x)t 1

=1 TO ,
0 . x<0

where I'(¢), called the gamma function, ig defined as
ro) = [ ey~ dy
0

x=0

Section 6 Other Continuous Distributions 223

The integration by parts of I'(¢) yields that

o

I = —e™y"™!
. 0

=@¢-1 r;e"yy’"zdy (6.1)
0
=@ — D¢~ 1)

For integral values of ¢, say t = n, we obtain by applying Equation (6.1) repeat-
edly that

+ [ e — 1y 2 ay
J0

Ty =@ —DI'n — 1)
n—1Dx—-—2I'(n — 2)

[

n—Dmn-—2)---3-2I'CL
Since I'(1) = f e Fdx = 1 1Lfellows that-for. mtegral values of #n,
(n) n — D! N

When tisa posmve mteoer say t= n, the gamma dlsmbu‘uwnh -parame-

/hasﬂ:o wait until a total of n events has occurred. More spec1ﬁca]ly, if events are
occurring randomly in time and in accordance with the three axioms of Section
4.8, then it turns out that the amount of time one has to wait until a total of »n
events has occurred will be a gamma random variable with parameters (1, A). To
prove this, let T,, denote the time at which the nth event occurs, and note that 7,
is less than or equal to ¢ if and only if the number of events that have occurred
by time ¢ is at least n. That is, with N(f) equal to the number of events in [0, 1],

P{T, =1} = P{N@) = n}
= X P{N® = j}
j=n
2 M e My A
h ]zn J!
where the final identity follows, since the number of events in [0, #] has a Poisson

distribution with parameter Az. Differentiation of the above yields that the density
function of T,, is as follows:

™ —At j—-1 ® — At 1
i« 5, SO0 S e 0 /
j=n ' J=n :
_ i AeT My Tl & e
&G = D! “ jl
Jj=n j=n
. Ae“)\t (At)n_l ’
Y
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Hence T, is the gamma distribution with parameters (1, A). (This distribution is
often referred to in the literature as the n-Erlang distribution.) Note that when

= 1, this distribution reduces to the exponent1al

The cramma distribution with A = 3 Land ¢t = n/2 (n being a positive integer)
is called the X2 (read ““chi- squared”) distribution with n degrees of freedom. The
chi-squared distribution often arises in practice as being the distribution of the
error involved in attempting to hit a target in n dimensional space when each
coordinate error is normally distributed. This distribution will be studied in Chapter
6, where its relation to the normal distribution is detailed.

Example 6a. Let X be a gamma random variable with parameters ¢ and A. ‘

Calculate (a) E[X] and (b) Var(X).

Solution

(a) E[X] = f%) f; Mxe ™ MO T dx

— ____1__ * —Ax t
TOTO fo Ae™ T(Ax) dx
T+ 1

YD)

= :l;— by Equation (6.1)

(b) By first calculating E[Xz], we can show that
1
A2

The details are left as an exercise. i

Var(X) =

5.6.2 The Weibull Distribution

The Weibull distribution is widely used in engineering practice due to its versatility.
It was originally proposed for the interpretation of fatigue data, but now its use
has extended to many other engineering problems. In particular, it is widely used,
in the field of life phenomena, as the distribution of the lifetime of some object,
particularly when the ‘‘weakest link’’ model is appropriate for the object. That
is, consider an objéct consisting of many parts and suppose that the object experi-

ences death (failure) when any of its parts fail. Under these conditions, it has been
shown (both theoretically and empirically) that a Weibull distribution provides {

close approximation to the distribution of the lifetime of the item.
The Weibull distribution function has the form

0 x=v

. . B
F(x) = l—exp{—— <x v)} s (6.2)
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A random variable whose cumulative distribution function is given by Equation
(6.2) is said to be a Weibull random variable with parameters v, «, and B.
Differentiation -yields that the density is

—_— a O X=v

= B ol (]
o 44 a

5.6.3 The Cauchy Distribution

A random variable is said to have a Cauchy distribution with parameter 6,
—o0 < < oo, if its density is given by '

1
7Tl+(x )2

Example 6b. Suppose that a narrow beam flashlight is spun around its center,
which is located a unit distance from the x-axis (see Figure 5.7). When the
flashlight has stopped spinning, consider the point X at which the beam
intersects the x-axis. (If the beam is not pointing toward the x-axis, repeat
the experiment.)

As indicated in Figure 5.7, the point X is determined by the angle 6
between the flashlight and the y-axis, which from the physical situation
appears to be umformly distributed between — 7/2 and 7/2. The distribution
function of X is thus given by

Fx) = P{X=x}

—00 < x < 0

fx) =

= P{tan 0 = x}
= P{f=tan" ' x}
-1 + 1 tan~!x
2
where the last equality follows since 6, being uniform over (— 7/2, 7/2),
yields that
. a—(—a2) 1 a T T
<qa} = = ——<ag<=
P{o=a) T 2 + T A
x-axis

Figure 5.7
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Hence the density function of X is given by

d_ .1
&) =0 =055

and we see that X has the Cauchy distribution. ‘ |

—00 < x <<

5.6.4 The Beta Distribution

A random variable is said to have a beta distribution if its density is given by
1
fx) = {B(a, b)

0 otherwise

7 -7t 0<x<1

where
1
B(a, b) =f X1 — )P~ dx
0

The beta distribution can be used to model a random phenomenon whose
set of possible values is some finite interval [c, d]—which by letting ¢ denote
the origin and taking d — c as a unit measurement can be transformed into the
interval [0, 1].

When a = b, the beta density is symmetric about 3, giving more and more
weight to regions about 3 as the common value a increases (see Figure 5.8). When

fx)

a=10

P

Figure 5.8 Beta densities
x  with parameters
(a, b) when a = b.

[UNy ASUIDEVEREYE (S e 1 T

[N

T That d/dx tan™ " x = 1/(1 + x?) can be seen as follows: If y = tan™ ! x, then tan y = x,
50

d d dy d (siny\dy
== (1 )} e B e e I
! dx (tan y) dy (tan y) dx - dy <cos y> dx
_ <coszy + sin® y) dy
. cos? y dx
or
dy _ cos”y _ 1 o1

dx  sin®y +cos’y tan’y+1 x>+ 1
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b > a, the density is skewed to the left (in the sense that smaller values become
more likely); and it is’ skewed to the right when a > b (see Figure 5.9).
The following relationship can be shown to exist between
’ \

1
* B b) = fo 2711 - 0P ax

and the gamma function:
T@l'®)
I'(a + b)

Upon using Equation (6.1) along with the identity (6.3), it is an easy matter to
show that if X is a beta random variable with parameters a and b, then

B(a, b) = 6.3)

a
a+b

E[X] =
ab
(@+b2@+b+1)

RemArk. A verification of Equation (6.3) appears in Example 7c of Chap-
ter 6.

Var(X) =

5.7 THE DISTRIBUTION OF A FUNCTION
OF A RANDOM VARIABLE

It is often the case that we know the probability distribution of a random variable
and are interested in determining the distribution of some function of it. For
instance, suppose that we know.the distribution of X and want to find the distribu-

f)

Figure 5.9 Beta densities
with parameters (a, b) when
x alla + b) = 1/20.
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tion of g(X). To do so, it is necessary to express the event that g(X) =< yin terms
of X being in some set. We illustrate by the following examples.

Example 7a. Let X be uniformly distributed over (0, 1). We obtain the distribution
of the random variable Y, defined by ¥ = X", as follows: For 0 = y < 1,
Fy(y) = P{Y =y}
= P{X" =y}
— P{XS ylln}
- FX(ylln)
—_ ylln
For instance, the density function of Y is given by
1 1m—1
o n O S S 1
fr(y) = qn Y Y

0 otherwise B

Example 7b. If X is a continuous random variable with probability density fy,
then the distribution of ¥ = X? is obtained as follows: For y=0,

Fy(y) = P{Y<}’}
= P{X"_<.y}
-Vy=X=Vy}
= Fy(Vy) = Fx(—VYy)

Differentiation yields
Fr(3) = \/mw@+n(v" g

Example 7c. If X has a probability density fy, then ¥ = |X| has a density function
that is obtained as follows: For y = 0,

Fy(y) = P{Y =y}
= P{|X] =y}
=P{-y=X=y}
= Fx(y) — Fx(—y)

Hence, on differentiation, we obtain
Fr() = fx(y) + fx(*y) y=0 |

The method employed in Examples 7a through 7c can be used to prove
Theorem 7.1.
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Theorem 71 L
- Let X be a continuous random variable having probability density
- function fi Suppose that g(x) is a strictly monotone (increasing or
. decreasing), differentiable (and thus continuous) function of x. Then

the random variable Y deﬁned by ¥ = g(X) has a probab1hty dens1ty
function given by L

fr (y = fX[g 1()’)] l“‘g 1()’)] lfy = g(x) for some x |

O : , ﬁy%g(x)fora]lx

where g l(y) is deﬁned to equal that value of x such that
g(x) =y

We shall prove Theorem 7.1 when g(x) is an increasing function.

Proof: Suppose that y = g(x) for some x. Then, with ¥ = g(X),

g Fy(») = P{g(X) =)
=P{X=g"'(»}
= Fx(g~ ')

Differentiation gives that ,
o
) = fxle™ N 87 0)

which agrees with Theorem 7.1 since g~ !(y) is nondecreasmg, so its derivative
is nonnegative.
When y # g(x) for any x, then F Y(y) is either 0 or 1, and in either case

frO= ‘ B

Example 7d. Let X be a continuous nonnegative random variable with density
function f, and let ¥ = X”. Find fy, the probability density function of Y.

Solution If g(x) = x", then

g7y =y

and
—1 — I/n
& Lig o) =

Hence, from Theorem 7.1, we obtain that

fr) ==y M
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If n = 2, this gives
1
) = == F(VY)
Oy 5 \/;f y

which (since X = 0) is in agreement with the result of Example 7b. |

SUMMARY

A random variable X is called continuous if there is a nonnegative function f,
called the probability density function of X, such that for any set B

PXEB) = fo(x) dx

If X is continuous, then its distribution function F will be differentiable and

2 Fw =
The expected value of a continuous random variable X is defined by
BX) = [ @ as
A useful identity is that for any function g,
Efg(0) = [ 00 fx)

As in the case of a discrete random variable, the vériance of X is defined by
Var(X) = E[(X — E[X])’]

A random variable X is said to be uniform over the interval (a, b) if its probability
density function is given by

a=x=<b

f(x) =3b—a
0 otherwise
Its expected value and variance are
_a+b _b—a?
ElX] ="~ Va0 =~

A random variable X is said to be normal with parameters u and o if its probability
density function is given by

R o

1
(x) =
7 \x
It can be shown that
w=EX  o¢*=ValX)
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- If X is normal with mean K and variance o, then Z, defined by

X—
a

7 =

is normal with mean 0 and variance 1. Such a random variable is said to be a
standard normal random variable. Probabilities about X can be expressed in terms
of probabilities about the standard normal variable Z, whose probability distribution
function can be obtained either from Table 5.1 or from the text diskette.

The probability distribution function of a binomial random variable with
paranieters n and p can, when » is large, be approximated by that of a normal

" random variable having mean np and variance np(1 — p).

A random variable whose probability density function is of the form

Ae ™™ x=0
f) = {O otherwise

is said to be an exponential random variable with parameter A. Its expected value
and variance are

EXI =1 Va() =

A key property, possessed only by exponential random variables, is that they are
memoryless in the sense that for positive s and ¢,

P{X>s + th‘> t} = P{X>s)

If X represents the life of an item, then the memoryless property states that for
any ¢, the remaining life of a #-year-old item has the same probability distribution
as the life of a new item. Thus one need not remember the age of an item to
know its distribution of remaining life.

Let X be a nonnegative continuous random-variable with distribution function
F and density function f. The function

__f® _
A(Q Ty =0

is called the hazard rate, or failure rate, function of F. If we interpret X as being
the life of an item, then for small values of df, A(?) dt is approximately the

probability that a r-unit-old item will fail within an additional time dr. If F is the
exponential distribution with parameter A, then

M) =A t=0

In addition, the exponential is the unique distribution having a constant failure
rate.

A random variable is said to have a gamma distribution with parameters ¢
and A if its probability density function is equal to ‘

AE-A_\'(M)Iﬂl
T'®

x=0

fx) =
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and is O otherwise. The quantity I'(¢) is called the gamma function and is defined
by
F(t) — J — Xy t—1 dx
0

The expected value and variance of a gamma random variable are
' t
ElX] =~  Var(X) =5
A random variable is said to have a beta distribution with parameters

(a, b) if its probability density function is equal to

1

B( b) 1 —-x x

fx) =
and is equal to O otﬁerwise. The constant B(a, b) is given by
1
B(a, b) = j X1 — b~ dx
0

The mean and variance of such a random variable are

ab
(a+ b*a+b+1)

E[X] = Var(X) =

a+b

PROBLEMS

» 1. Let X be a random variable with probability density function

f()_{c(l - —1l<zx<l1

otherwise

(a) What is the value of ¢?
\ (b) What is the cumulative distribution function of X?

"2 2. A system consisting of one original unit plus a spare can function for a
random amount of time X. If the density of X is given (in units of months)

by
Cxe ™2 x>0
fex) = { o

what is the probability that the system functions for at least 5 months‘7
« 3. Consider the function '

fo) = {C(Zx—x3) 0<x<3

0 otherwise

& 4.

4 5.

7.

e 8.
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Could fbe a probability_aensity function? If so, determine C. Repeat if f(x)
were given by

\ C2x — %) 0<x<i

. f (X) = { ( N ) X2

2

otherwise

The probability density function of X, the lifetime of a certain type of electronic
device (measured in hours), is given by
10
— x>10
fx)y =12
0  x=10

(a) Find P{X > 20}.

(b) What is the cumulative distribution function of X?

(e) What is the probability that of 6 such types of devices at least 3 will
function forat least 15 hours? What assumptions are you making?

A filling station is supplied with gasoline once a week. If its weekly volume

of sales in thousands of gallons is a random variable with probability density

function

5(1 -x*  0<zx<1
otherwise

f&) =

what need the capacity of the tank be so that the probability of the supply’s
being exhausted in a given week is .01?

. Compute E[X] if X has a density function given by

(@) f02) = {5"6% =0
0

otherwise

c(l-—x“) —1<x<1
otherwise

(b) f(x) =

3 x>5
© f@ =42 *7°
0 X=5

The density function of X is given byl

a + bx* 0=x=1
otherwise

f) =

If E[X] = %, find g and .

The lifetime in hours of an electronic tube is a random variable having a
probability density function given by

f&x)=xe"" x=0
Compute the expected lifetime of such a tube.
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. Consider Example 5b of Chapter 4, but now suppose that the seasonal demand

is a continuous random variable having probability density function f. Show
that the optimal amount to stock is the value s* that satisfies

, b
FsH =377 |
where b is net profit per unit sale, € is the net loss per unit unsold, and F is
the cumulative distribution function of the seasonal demand.

Trains headed for destination A arrive at the train station at 15-minute intervals

starting at 7 A.M., whereas trains headed for destination B arrive at 15-minute

intervals starting at 7:05 am.

(a) If a certain passenger arrives at the station at a time uniformly distributed
between 7 and 8 am. and then gets on the first train that arrives, what
proportion of time does he or she go to destination A?

(b) What if the passenger arrives at a time uniformly distributed between
7:10 and 8:10 am.? \

A point is chosen at random on a line segment of length L. Interpret this

statement and find the probability that the ratio of the shorter to the longer

segment is Jess than ;.

A bus travels between the two cities A and B, which are 100 miles apart. If

the bus has a breakdown, the distance from the breakdown to city A has a

uniform distribution over (0, 100). There is a bus service station in city A,

in B, and in the center of the route between A and B. It is suggested that it

would be more efficient to have the three stations located 25, 50, and 75

miles, respectively, from A. Do you agree? Why?

You arrive at a bus stop at 10 o’clock, knowing that the bus will arrive at

some time uniformly distributed between 10 and 10:30.

(a) What is the probability that you will have to wait longer than 10 minutes?

(b) If at 10:15 the bus has not yet arrived, what is the probability that you
will have to wait at least an additional 10 minutes?

Let X be a uniform (0, 1) random variable. Compute E[X"] by using Proposition
2.1 and then check the result by using the definition of expectation.

If X is a normal random variable with parameters u = 10 and o? = 36,
compute

(@ P{X>5}; (b)P4<X<16}; (¢) P{X <38};

(d) P{X < 20}; (e) P{X > 16}.

The annual rainfall (in inches) in a certain region is normally distributed with
# = 40 and o = 4. What is the probability that starting with this year, it
will take over 10 years before a year occurs having a rainfall of over 50
inches? What assumptions are you making?

A man aiming at a target receives 10 points if his shot is within 1 inch of
the target, 5 points if it is between 1 and 3 inches of the target, and 3 points
if it is between 3 and 5 inches of the target. Find the expected number of
points scored if the distance from the shot to the target is uniformly distributed
between 0 and 10.

18,

> 19,

(29

¢ 21.

v 22,

® 24,

® 25.

26.

e 27.
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Al

Suppose that X is a normal random variable with mean 5. If P{X > 9} =
.2, approximately what is Var(X)?

Let X be a normal random variable with mean 12 and variance 4. Find the
value of ¢ such that P{X > ¢} = .10.

If 65 percent of the population of a large community is in favor of a proposed
rise in school taxes, approximate the probability that a random sample of 100
people will contain

(a) at least 50 who are in favor of the proposition;

(b) between 60 and 70 inclusive who are in favor;

(c) fewer than 75 in favor.

Suppose that the height, in inches, of a 25-year-old man is a normal random
variable with parameters g = 71 and o> = 6.25. What percentage of 25-
year-old men are over 6 feet 2 inches tall? What percentage of men in the
6-footer club are over 6 foot 5 inches?

The width of a slot of a duralumin forging is (in inches) normally distributed

with u = .9000 and o = .0030. The specification limits were given as

.9000 = .0050.

(a) What percentage of forgings will be defective?

(b) What is the maximum allowable value of ¢ that will permit no more
than 1 in 100 defectives when the widths are normally distributed with
= 9000 and o?

. One thousand independent rolfé of a fair die will be made. Compute an

approximation to the probability that number 6 will appear between 150 and
200 times. If number 6 appears exactly 200 times, find the probability that
number 5 will appear less than 150 times.

The lifetimes of interactive computer chips produced by a certain semiconduc-
tor manufacturer are normally distributed with parameters u = 1.4 X 10°
hours and o = 3 X 10° hours. What is the approximate probability that a
batch of 100 chips will contain at least 20 whose lifetimes are less than
1.8 x 10%?

Each item produced by a certain manufacturer is, independently, of acceptable
quality with probability .95. Approximate the probability that at most 10 of
the next 150 items produced are unacceptable.

Two types of coins are produced at a factory: a fair coin and a biaséd one
that comes up heads 55 percent of the time. We have one of these coins but
do not know whether it is a fair coin or a biased one. In order to ascertain
which type of coin we have, we shall perform the following statistical test:
We shall toss the coin 1000 times. If the coin lands on heads 525 or more
times, then we shall conclude that it is a biased coin, whereas, if it lan
heads less than 525 times, then we shall conclude that it is the fair coin. If
the coin is actually fair, what is the probability that we shall reach a false
conclusion? What would it be if the coin were biased?

In 10,000 independent tosses of a coin, the coin landed heads 5800 times. Is
it reasonable to assume that the coin is not fair? Explain.
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28. An image is partitioned into 2 regions—one white and the other black. A
reading taken from a randomly chosen point in the white section will give a

reading that is normally distributed with u = 4 and ¢* = 4, whereas one ‘

taken from a randomly chosen point in the black region will have a normally
distributed reading with parameters (6, 9). A point is randomly chosen on
the image and has a reading of 5. If the fraction of the image that is black
is @, for what value of a would the probability of making an error be the
same whether one concluded the point was in the black region or in the
white region?

29. (a) A fire station is to be located along a road of length A, A < oo If fires
will occur at points uniformly chosen on (0, A), where should the station
be located so as to minimize the expected distance from the fire? That
18, choose a so as to

minimize E[|X — al]
when X is uniformly distributed over (0, A).

(b) Now suppose Fmat the road is of infinite length——stretching from point 0

outward to co. If the distance of a fire from point O is exponentially
distributed with rate \, where should the fire station now be located?
That is, we want to minimize E[|X — a|] where X is now exponential
with rate A. '

@ 30. The time (in hours) required to repair a machine is an exponentially distributed
random variable with parameter A = 3. What is
(a) the probability that a repair time exceeds 2 hours;

(b) the conditional probability that a repair takes at least 10 hours, given that
its duration exceeds 9 hours?

2 31. The number of years a radio functions is exponentially distributed with param-
eter A = 3. If Jones buys a used radio, what is the probability that it will be
working after an additional 8§ years? .

s 32. Jones figures that the total number of thousands of miles that an auto can be
driven before it would need to be junked is an exponential random variable
with parameter 3;. Smith has a used car that he claims has been driven only
10,000 miles. If Jones purchases the car, what is the probability that she would
get at least 20,000 additional miles out of it? Repeat under the assumption that
the lifetime mileage of the car is not exponentially distributed but rather is
(in thousands of miles) uniformly distributed over (0, 40).

33. The lung cancer hazard rate of a t-year-old male smoker, A(#), is such that

Ar) = .027 + .00025( — 40)*> =40

Assuming that a 40-year-old male smoker survives all other hazards, what
is the probability that he survives to (a) age 50 and (b) age 60 without
contracting lung cancer?

34. Suppose that the life distribution of an item has hazard rate function
Mt) = 13, t > 0. What is the probability that
(a) the item survives to age 2;
(b) the item’s lifetime is between .4 and 1.4;
(c) a l-year-old item will survive to age 27
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35. If X is uniformly distributed over (—1, 1), find
(@ P{|X] >3};
(b) the density function of the rapdom variable | X|. y

36. If Y is uniformly distributed over (0, 5), what is the probability that the roots
of the equation 4x*> + 4xY + Y + 2 = 0 are both real?

37. If X is an exponential random variable with parameter A = 1, compute the
probability density function of the random variable Y defined by ¥ = log X.

38. If X is uniformly distributed 1 over (0, 1), find the density function of ¥ = e~

39. Find the distribution of R = A sin 6, where A is a fixed constant and 6 is
uniformly distributed on (— 77/2, 7/2). Such a random variable R arises in
the theory of ballistics. If a projectile is fired from the origin at an angle
from the earth with a speed v, then the point R at which it returns to the earth
can be expressed as R = (v*/g) sin 2a, where g is the gravitational constant,
equal to 980 centimeters per second squared.

THEORETICAL EXERCISES

1. The speed of a molecule in a uniform gas at equilibrium is a random variable
whose probability density function is given by

Lo T o)
ax’e ™ b* x=0

f(x):{o £<0

where b = m/2kT and k, T, and m denote, respectively, Boltzmann’s constant,
the absolute temperature, and the mass of the molecule. Evaluate a in terms
of b.

2. Show that
Byl = [ PLY>yhdy - [ PIY< -y} dy
0 0

HINT: Show that ) o
JPr<-yay=—[ spa

[ Pr>yray = [ xfoax
_ 0 0
3. If X has density function f, show that
Flg00] = [ 200 f@) dx
HINT:  Using Theoretical Exercise 2, start with
Elg0) = | Plge0 >y dy ~ | Plse0 < —y) dy

and then proceed as in the proof given in the text when g(X) = 0.
¢ 4. Prove Corollary 2.1.
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Use the result that for a nonnegative random variable Y,
E[Y] = f:P{Y> 1} dt
to show that for a.nonnegative random variable X,
E[X"] = E = PIX > x} dx

HINT: Start with
E[X"] = f P(X" > 1) dt
’ 0

and make the change of variables t = xn.

Define a collection of events E,, 0 < a < 1, having the property that

P(E,) = 1 for all a, but P(NE,) = 0.

HINT:  Let X be tiniform over (0, 1) and define each E, in terms of X.
The standard deviation of X, denoted SD(X), is given by

SDX) = VVar(X)
Find SD(aX + b) if X has variance 0.

Let X be a random variable that takes on valuAes between O and c¢. That is,
P{0 =X =c¢} = 1. Show that .
wi
2
=
Var(X) 1

HINT: . One approach is to first argue that
E[X?] = cE[X]
Then use this to show that

Var(X) = la(l — @] where a = 20

[

. If Z is a standard normal random variable, show that for x > 0,

(@ P{Z>x} = PlZ< —x};

(b) P{|Z]| > x} = 2P{Z > x};

(¢) P{|Z| <x} =2P{Z<x} — 1.

Let f(x) denote the probablhty density function of a normal random vanable
with mean u and variance o2. Show that & — o and g + o are points of
inflection of this function. That is, show that f"(x) = O whenx = u — o
orx = u + o

Use the identity of Theoretlcal Exercise 5 to derive E[X”] when X is an
exponential random variable with parameter A.

The median of a continuous random variable having distribution function F
is that value m such that F(m) = 3. Thatis, a random variable is just as likely
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“to be larger than its median as it is to be smaller. Find the median of X
if X is
(a). uniformly distributed over (a, b);
(b) normal with parameters w,
(¢) exponential with rate A.
¢ 13. The mode of a continuous random variable having density f is the value of
T x for which f(x) attains its mAXimum. Compute the mode of X in cases (a),
(b), and (c) of Theoretical Exercisé 12.
14. If X is an exponential random variable with parameter A, and ¢ > 0, show
that cX is exponential with parameter A/c.
15. Compute the hazard rate function of X when X is uniformly distributed over
O, a).
16. If X has hazard rate function Ay(#), compute the hazard rate function of aX
where a is a positive constant.
¢ 17. Verify that the gamma density function integrates to 1.
¢ 18. If X is an exponential random variable with mean 1/A, show that

!
refl E[xXH =—% k=1,2,...

-~

fm

HINT: Make use of the gamma density function to evaluate the above.
@ 19. Verify that

Var(X) = —

when X is a gamma random variable with parameters ¢ and A.
20. Show that I'(}) = V7.

mnt: @) = f e *x~ 12 dx. Make the change of variables y = V2x and
then relate the resultmg expression to the normal distribution.
21. Compute the hazard rate function of a gamma random variable with parameters
(¢, A) and show it is increasing when ¢ = 1 and decreasing when ¢ < 1.
22. Compute the hazard rate function of 2 Weibull random variable and show it
is increasing when 8 = 1 and decreasing when B8 < 1.

23. Show that a plot of log(log(1 — F(x))™!) against log x will be a straight
line with slope 8 when F(-) is a Weibull distribution function. Show also
that approximately 63.2 percent of all observations from such a distribution
will be less than «. Assume that v = 0.

24, Let )
y = <X - v)ﬂ
a

Show that if X is a Weibull random variable with parameters v, @, and B,
then Y'is an exponential random variable with parameter A = 1 and vice versa.

25. If X is a beta random variable with parameters a and b show that

ab
Ex1 = Vad) = a5+ D

a+b
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26.

27.

28.

29.

30.

If X is uniformly distributed over (a, b), what random variable, having a

linear relation with X, is uniformly distributed over (0, 1)?

Consider the beta distribution with parameters (a, ). Show that

(a) when a > 1 and b > 1, the density is unimodal (that is, it has a unique
mode) with mode equal to (@ — 1)/(a + b — 2);

(b) whena =1, =1, and a + b < 2, the density is either unimodal with
mode at 0 or 1 or U-shaped with modes at both 0 and 1;

(¢) whena = 1 = b, all points in [0, 1] are modes.

Let X be a continuous random variable having cumulative distribution function

F. Define the random variable ¥ by ¥ = F(X) Show that Y is uniformly

dlstnbuted over (0, 1).

Let X have probability density fy. Find the probability density function of

the random variable Y, defined by ¥ = aX + b.

Find the probability den51ty function of ¥ = e* when X is normally distributed

with parameters y and ¢. The random variable Y is said to have a locrnormal

distribution (since log ¥ has a normal distribution) with parameters u and a>.

Let X and Y be mdependent random variables that are both equally likely to

be either 1, 2, ..., (10)", where N is very large. Let D denote the greatest

common divisor ofX and Y, and let Q; = P{D = k}.

(a) Give a heuristic argument that Q; = l’, 0.
HINT: Note that in order for D to equal k, k must divide both X and ¥ and

also X/k and Y/k must be relatively prime. (That is, they must have a greatest
common divisor equal to 1.)

(b) Use part (a) to show that
1

>k
k=1

It is a well-known identity that 2 1k = 716, so 0 =6/ 7~ (In number
1

0, = P{X and Y are relatively prime} =

theory this is known as the Legendre theorem.)

(c) Now argue that
= (P? — 1
Ql = I—.[ < P2 >

i=1 i

where P; is the ith smallest prime greater than 1.

HINT: X and Y will be relatively prime if they have no common prime
factors.

Hence, from part (b), we see that

11 (%) =%
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which was noted without explanation in Problem 11 of Chapter 4. (The
relationship between this problem and Problem 11 of Chapter 4 is that
X and Y are relatively prime if XY has no multiple prime factors.)

32. Prove Theorem 7.1 when g(x) is a decreasing function.

SELF-TEST PROBLEMS AND EXERCISES

1. The number of minutes of playing time of a certain high school basketball

player in a randomly chosen game is a random variable whose probability
density function is given below.

.050

025

10 20 30 40

Find the probability that the player plays
(a) over 15 minutes;

(b) between 20 and 35 minutes;

(c) less than 30 minutes;

(d) more than 3'\6 minutes.

. For some constant ¢, the random variable X has probability density function

X 0<x<1
f<x>={g .

otherwise

Find (a) c and (b) P{X > x}, 0 <x < L.

. For some constant ¢, the random variable X has probability density function

4
cx 0<x<2.
fe) = {O otherwise

Find (a) E[X] and (b) Var(X).

. The random variable X has probability density function

f@x) =
If E[X] = .6, find (a) P{X < 3} and (b) Var(X).

ax + bx?  0<x<1
otherwise

. The random variable X is said to be a discrete uniform random variable on

the integers 1, 2, ..., nif
P{X=i}=l i=1,2,...,n
n

For any nonnegative real number x, let Int(x) (sometimes written as [x]) be
the largest integer that is less than or equal to x. If U is a uniform random
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10.

11.

12.

variable on (0, 1), show that X = Int(nU) + 1 is a discrete uniform random
variable on 1, ..., n.

. Your company must make a sealed bid for a construction project. If you

succeed in winning the contract (by having the lowest bid), then you plan to
pay another firm 100 thousand dollars to do the work. If you believe that the
maximum bid (in thousands of dollars) of the other participating companies
can be modeled as being the value of a random variable that is uniformly
distributed on (70, 140), how much should you bid to maximize your ex-
pected profit?

. To be a winner in the following game, you must be successful in three

successive rounds. The game depends on the value of U, a uniform random

variable on (0, 1). If U > .1, then you are successful in round 1; if U > .2,

then you are successful in round 2; and if U > .3, then you are successful

in round 3.

(a) Find the probability that you are successful in round 1.

(b) Find the conditional probability that you are successful in round 2 given
that you weré successful in round 1.

(c) Find the conditional probability that you are successful in round 3 given
that you were successful in rounds 1 and 2.

(d) Find the probability that you are a winner.

A randomly chosen IQ test taker obtains a score that is approximately a
normal random variable with mean 100 and standard deviation 15. What is
the probability that the test score of such a person is (a) above 125;
(b) between 90 and 1107

Suppose that the travel time from your home to your office is normally
distributed with mean 40 minutes and standard deviation 7 minutes. If you
want to be 95 percent certain that you will not be late for an office appointment
at 1 p.M., what is the latest time that you should leave home?

The life of a certain type of automobile tire is normally distributed with mean

34,000 miles and standard deviation 4000 miles.

(a) What is the probability that such a tire lasts over 40,000 miles?

(b) What is the probability that it lasts between 30,000 and 35,000 miles?

(¢) Given that it has survived 30,000 miles, what is the conditional probability
that it survives another 10,000 miles?

The annual rainfall in Cleveland, Ohio is approximately a normal random

variable with mean 40.2 inches and standard deviation 8.4 inches. What is

the probability that '

(a) next year’s rainfall will exceed 44 inches;

(b) the yearly rainfalls in exactly three of the next seven years will exceed
44 inches?

Assume that if A; is the event that the rainfall exceeds 44 inches in year i

(from now), then the events A;, i = 1, are independent.

The following table uses 1992 data concerning the percentages of male and

female fulltime workers whose annual salaries fall in different ranges.

13.

14.

15.

16.
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Earnings range  Percentage of females Percentage of males

=9999 8.6 4.4
10,000-19,999 38.0 211
201000-24,999 - 19.4 15.8
25,000-49,999 29.2 41.5

=50,000 4.8 17.2

Suppose that random samples of 200 male and 200 female fulltime workers
are chosen. Approximate the probability that
(@) at least 70 of the women earn $25,000 or more;
(b) at most 60 percent of the men earn $25,000 or more;
(c) at least three-fourths of the men and at least half the women earn $20,000

or more. - '
At a certain bank, the amount of time that a customer spends being served
by a teller is an exponential random variable with mean 5 minutes. If there
is a customer in service when you enter the bank, what is the probability that
he or she will still be with the teller after an additional 4 minutes?
Suppose that the cumulative distribution function of the random variable X
is given by

F)=1-¢% x>0

Evaluate (a) P{X > 2}; (b) P{1 < X < 3}; (c¢) the hazard rate function
of F; (d) E[X]; (e) Var(X).
uiNT:  For parts (d) and (e) you might want to make use of the results of

Theoretical Exercise 5.

The number of years that a washing machine functions is a random variable
whose hazard rate function is given by

2 0<r<?2
AMr) =42+ 30— 2) 2<=t<5
1.1 t>5

+

(a) What is the probability that the machine will still be working six years
after being purchased?

(b) Ifitis still working six years after being purchased, what is the conditional
probability that it will fail within the succeeding two years?

A standard Cauchy random variable has density function

—o0 < x < ™

If X is a standard Cauchy random variable, show that 1/X is also a standard

" Cauchy random variable.




CHAPTER 6

- Jointly Dlstrlbuted
Random Variables

!

6.1 JOINT DISTRIBUTION FUNCTIONS
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Thus far, we have only concerned ourselves with probability distributions for
single random variables. However, we are often interested in probability statements
concerning two or more random variables. In order to deal with such probabilities,
we define, for any two random variables X and Y, the joint cumulative probability
distribution function of X and Y by

Fla,b) = P{X=a,Y = b} —o<g bh<ow

The distribution of X can be obtained from the joint distribution of X and ¥
as follows:
Fy(a) = P{X = a}
= P{X=gqa,Y <x}

= P(lim{XS oY= b})

b=

= lmP{X=<a, Y=b}

b

= lim F(a, b)

b=
= F(a, »)

The reader should note that we have, in the preceding set of equahues once again
made use of the fact that probability is a continuous set (that is, event) funcuon
Similarly, the cumulative distribution function of Y is given by

Fy(b) = P{Y < b}
= lim F(a, b)

a-==

= F(oo, b)
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The distribution functions F v and Fy are sometimes referred to as the marginal
distributions of X and Y.

All joint probability statements about X and Y can, in theory, be answered
in terms of their joint distribution function. For instance, suppose we wanted to
compute the Jomt probability that X is greater than a and Y is greater than b. This
could be done as follows.

P{X>a,Y>b} =1—- P{X>aY>b}
=1— P({X>a}°U{Y>Db})
=1—-P{X=a}U{Y=b}) (1.1)
=1-[P(X=a} + P{Y=b} -~ P{X=a,Y=0b}]
= 1 — Fy(a) — Fy(b) + F(a, b)
Equation (1.1) is a special case of Equation (1.2), whose verification is left as
an exercise.
P{Cll <X= Cl:)_,b1 <Y= bz}
= F(az, bz) -+ F(al, bl) - F((ll, b2) - F(az, bl)

whenever a; < a,, by < b,.

(1.2)

In the case when X anél Y are both discrete random variables, it is convenient
to define the joint probability mass function of X and Y by

plx,y) = P{X = x, Y =y}
The probability mass function of X can be obtained from p(x, y) by
px(x) = P{X = x}
= 2 pxy)

y:p(x,)>0

py) =2 pxy)

x:p(x,y)>0

Similarly,

Example 1a. Suppose that 3 balls are randomly selected from an urn containing
3 red, 4 white, and 5 blue balls. If we let X and Y denote, respectively, the
number of red and white balls chosen, then the joint probability mass function

.of Xand Y, p(i,j) = P{X = i, Y = j}, is given by

5 12 10
- ()2)-2

o= (ENE) -5
0. - (3)@/(?) .
109 =(3) - 2
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6.4 CONDITIONAL DISTRIBUTIONS: DISCRETE CASE

Recall that for any two events E and F, the conditional probability of E given F
is defined, provided that P(F) > 0, by

P(EF)

P(F)

Hence, if X and Y are discrete random variables, it is natural to define the conditional
probability mass function of X given that ¥ = y, by

P(E|F) =

pxiy(xly) = P{X = x|Y = y}
_PX=xY=y}
- P(Y =y}
_ P y)
~ py(y)

for all values of y such that py(y) > 0. Similarly, the conditional probability
distribution function of X given that ¥ = y is defined, for all y such that

py(y) >0, by ‘
= P{X=x|Y =y}
= > pxirlaly)

a=x

Fyy(x]y)

In other words, the definitions are exactly the same as in the unconditional case
except that everything is now conditional on the event that ¥ = y. If X is
independent of Y, then the conditional mass function and distribution function
are the same as the unconditional ones. This follows because if X is independent
of Y, then
= P{X = x|Y = y}
_PX=xY =y}

P{Y =y}
_PX=x} P(Y =)}

P{Y = y}

= P{X = x}
Example da. Suppose that p(x, y), the joint probability mass function of X and

Y, is given by

p(0,0) = 4 p0,1) =2 p(1,0) = .1 p(l,1)=23

" Calculate the conditional probability mass function of X, given that ¥ = 1.

pxiy(x|y)

Solution We first note that .
py() = D px, 1) =pO, 1) +pA, )= 5
X

I, et - ot camembumonn) ot
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Hence
- p0,1) 2
01) = ——7F ==
/ . . ApXIY ! py(l) 5
-and
p(l,1) 3
1) =— == B
pxy(1|1) e 5

Example 4b. If X and Y are independent Poisson random variables with respecnve
parameters A, and A, calculate the conditional distribution of X, given that
X+Y=mn

Solutmn We calculate the conditional probability mass function of X given
that X + YA=, n.as follows:
P{X=kX+ Y =n}
P{X + Y = n}
:P{X=l€,Y:=n~—k}
P{X 4+ Y =n}
_PX=kP{Y=n—k}
P{X +Y = n}
where the last equahty follows from the assumed independence of X and Y.

Recalling (Example 3d) that X + Y has a Poisson distribution with parameter
Ay +- Ay, we see that the above equals

e~ Mpk e AN TR T~ it dd () 4,y
K (n— k) [ ]
‘ N pLPYa k

T -+ )

- () ) G
IRVIAVIE DY AV S

In other words, the conditional distribution of X, giventhat X + Y = n,is the
binomial distribution with parameters n and A1/(A; + A). i

PIX=kKX+Y=n}=

P X=klX+Y=n}= pY

6.5 CONDITIONAL DISTRIBUTIONS: CONTINUOUS CASE

If X and Y have a joint probability density function f(x, y), then the conditional
probability density function of X, given that ¥ = y, is defined for all values of
y such that f3(y) > 0, by

AES))

Fryxly) = )
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To motivate this definition, multiply the left-hand side by dx and the right-hand
side by (dx dy)/dy to obtain

fG, y) dx dy

fr(y) dy
~P{x£XSx+dx,y_<.YSy+dy}
- Ply=Y=y + dy}
=Px=X=x+dxlysY=y + dy}

Friyxl|y) dx =

In other words, for small values of dx and dy, fxy (x|y) dx represents the conditional
probability that X is between x and x + dx, given that Y is between y and y + dy.

The use of conditional densities allows us to define conditional probabilities
of events associated with one random variable when we are given the value of a
second random variable. That is, if X and Y are jointly continuous, then for any
set A,

PXEAY =) = | fartly) dv

In particular, by letting A = (—¢0, a], we can define the conditional cumulative
distribution function of X, given that ¥ = y, by

Frlaln=PlX=al¥ =y} = [ far(xly) dx

The reader should note that, by using the ideas presented in the preceding
discussion, we have been able to give workable expressions for conditional proba-
bilities, even though the event on which we are conditioning (namely, the event
{Y = y}) has probability 0.

Example 5a. The joint density of X and Y is given by
Ly —x—vy
fny) = {2x(2 Fon 0<z<ll=y=l
0 otherwise
Compute the conditional density of X, given that ¥ = y, where 0 <y < 1.
Solution For 0 <x < 1,0 <y <1, we have
G )
x =
Fry@ly) = 20
- ___J&y
JZ . fex y) dx ;
x2—-x—y
1
Jox@—x—ydx
_x2=x—-y)
T2y
62 —x—Yy)
4 — 3y
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Example 5b. Suppose that the jdi‘nt density of X and Y is given by
. o= xly e~
fxy) = y
o 0 : otherwise
Find P{X > 1|Y = y}.
Sdlll_ﬁon We first obtain the conditional density of X, given that ¥ = y.

0<x<oo,<y<w

f&x
(xly) ===
MYb r(
_ e x/ye >/y
e fo (L/y)e ™™ dx
- 1e—x/>'
: y
Hence
P{X> 11Y = y} = j l-e—.\'/ydx
1y
— __,e-—x/y
I .
- e——l/y . g

\
~

If X and Y are independent continuous random variables, the conditional
density of X, given Y = y, is just the unconditional density of X. This is so
because, in the independent case, ' :

fee,y) _ KO ()
Fr(y) fr(¥)
We can also talk about conditional distributions when the random variables
are neither jointly continuous nor jointly discrete. For example, suppose.that)(
is a continuous random variable having probability density function f and N is a
discrete random variable, and consider the conditional distribution of X given that
N = n. Then / :
Plx<X<x+dx|[N=n} P{N= nlx<X<x+dx} Px<X<x+dx}
dx ’ P{N = n} dx

and letting dx appfoach 0 gives

Frr(x]y) = = fx()

. P{x<X<x+dxlN=n}__P{N=11]X:x}
Jm dx =T PN=n ¥
thus showing that the conditional density of X given that N = n is given by

P{N = n|X =
Fawtel = EE= X g
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Example 5c. Consider n -+ m trials having a common”probability of success.
Suppose however, that this success probability is not fixed in advance but
is chosen from a uniform (0, 1) population. What is the conditional distribu-
tion of the success probability given that the 2 +m trials result in 7 successes?

~ . ™

Solution If we let X denote the trial success probability, then X is a
uniform (0, 1) random variable. Also, given that X = x, the n + m trials
are independent with common success probability x, and so N, the number
of successes, is a binomial random variable with parameters (n + m, x).
Hence the conditional density of X given that N = n is as follows:

‘ P{N = n|X =
Sxin@xln) = { Pl{lll\l - n’;} Sx®)

(n + nf) (1 — )"
n

P{N = n}

— an(]. _ x)m

0<x<1

where ¢ does not depend on x. Hence the conditional density is that of a
beta random variable with parameters n + 1, m + 1. _

The result-above is quite interesting, for it states that if the original or
prior (to the collection of data) dlstnbuuon of a trial success probability is
uniformly distributed over (0, 1) [or, equivalently, is beta with parameters
(1, 1)] then the posterior (or conditional) distribution given a total of n
successes in n + m trials is beta with parameters (1 + n, 1 + m). This is
valuable, for it enhances our intuition as to what it means to assume that a
random variable has a beta distribution. |

*6.6 ORDER STATISTICS

Let X;, Xy, ..., X,, be n independent and identically distributed, continuous
random Vanables havmt7 a common density f and distribution function F. Define

X(l) = gsmallest of Xl? X2, ey Xn
- X2y = second smallest of Xy, X5, ..., X,

X(J) = ]th Sma]lest of Xl’ Xz, ey Xll

Xy = largest of X, Xz, e X

The ordered values X(jy < Xy = -+ * < X, are known as the order statistics
corresponding to the random vanables X;, X5, ..., X,. In other words,
Xy - - - » X are the ordered values of X3, ..., X,

L S
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The joint density function of the order statistics is obtained by noting that

the order statistics Xj), . . X(,,) will take on the values x; < x, =< -+ = x, if
and only if for some permutatlon (09, ..., 0p0of (1,2, ..., n)

® 1 = J\fiw X2 = xiz, ... 7Xn = xi"
Since, for any permutation (iy, . .., i,) of (1,2, ..., n),

X T
= 8"le ..... X,,(xip s Xy,
= s”f(xil) t 'f(xi,,)

= &"f(x) - - - flx)

we see that for x; <zx, < --- <x

n?

& & & &
P{Xil~—2'<Xl<xi[+_ X; _<Xll<xi"+_2_}

£ &

P{xl - —2-<X(1)<x1 -+ 'i,. .
=nle" f(x;) - - - f(x,)

Dividing by &" and letting € — 0 yields

& &
ek T §<X(n)<xn + '2-}

fX(]) ..... X(,,)(x19x27 R "xll) = n!f(xl) T 'f(xlz) =31 <x2 <--- <xn (61)

~ Equation (6.1) is most simply explainéd by arguing that in order for the vec-

tor (Xyy, ..., X to equal (xj, ..., x,), it is necessary and sufficient for
(X;, ..., X, toequal one of the n! permutations of {x,, . . ., x,)). A the probablhty
(den51ty) that (Xy, . .., X,,) equals any given permutation of {x;, ..., x,) is just
fx1) -+ - f(x,), Equation (6.1) follows.

Example 6a. Along a road 1 mile long are 3 people “distributed at random.”

Find the probablhty that no 2 people are less than a distance of d miles
apart, when d =<

Solution Let us assume that “distributed at random” means that the posi-
tions of the 3 people are independent and uniformly distributed over the
road. If X; denotes the posmon ofvthe ith person, the desired probability is
P{X(Z) >X(l—1) + d [ = 2 3} As

fX(]),X(z),X(3)(xly X2, x3) = 3l 0< X1 < X9 < X3 <1
it follows that ‘

PXp>Xi—1+di=23}= ffj Ty Xy X K15 X2, %3) dxy dxp dxg

Xi>Xj1+d
=23

_ 3!]01‘261[ 1 o

x1+dJxy+d

1 R t
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- 6]1—2‘1[ (-d-x)dndy
x

1-2d ;1-2d—x
-6[ | y2dyady
0 0

where we have made the change of variables y, = 1 — d — x,. Hence
continuing the string of equalities yields

1-—-2d
=3f (1 — 2d — x,) dx,
(0]

1—2d 5
= 3f ¥1dy
0]

= (1 — 2d)°

Hence the desired probability that no 2 people are within a distance d of
each other when 3 people are umformly and Lndependently distributed over
an interval of size 1 is (1 — 2d)> when d =< 1 Tn fact, the same method
can be used to prove that when there are n people distributed at random
over the unit interval the desired probability is

1
[1—(@n— Dd" when a’<—_—1

The proof is left as an exercise. |

The density function of the jth-order statistic X ;, can be obtained either by
integrating the joint density function (6.1) or by direct reasoning as follows: in
order for X, to equal x, it is necessary for j — 1 of the n values X, ..., X, to
be less than x, n — j of them to be greater than x, and 1 of them to equal x. Now,
the probability. density that any given set of j — 1 of the X;’s are less than x,
another given set of n — j are all greater than x, and the remaining value is equal
to x, equals

[FOP 1 — F@I"™ fx)

Hence, as there are

( n ) _ n!
) j—Ln—j1 (n=nN'g — D! /

different paftitions of the »n random variables X, . .., X, into the three groﬁps,
we see that the density function of Xy is given by

fx 0 = F@Y 1~ F@I"™ f(x) (6.2)

n!
(m~ NG — D!
Example 6b. When a sample of 2n + 1 random variables (that is, when 2n + 1
independent and identically distributed random variables) are observed, the
(n + 1)st smallest is called the sample median. If a sumple of size 3 from
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a uniform distribution over (O 1) is observed find the probability that the
sample median is between 3 and 2.

Solution From Equation (6.2) the density of X5, is given by

L]

fX(,)) x) = ﬁx(l - X) 0<x<1

Hence a4
P{§<X(2)<§}=6f x(1 — x) dx
1/4

x2 x3
= 6{7 - ?}

The cumulative distribution function of X(,) can be obtained by integrating
Equation (6.2). That is,

n! 4
FX(j)(y) T =Dl - D! Lx

However, F X(j) (y) could also have been derived directly by notmg that the jth
order statistic” 1s less than or equal to y if and only if there are j or more of the
X;’s that are less than or equal to y. Hence, as the number of the X;’s that
are less than or equal to y is a binomial random variable with parameters
[n, p = F(y)], it follows that

x==3/4 _ l_l

x=1/4 16

[F@VP L — FOI" T f(x)dx  (6.3)

FXU,)(y) = P{X(i) =y} = P{j or more of the X;’s are < y}
n

=> (Z) [FO)FIL — FO)p—*

k=j

6.4)

If, in Equations (6.3) and (6.4), we take F to be the uniform (0, 1) distribution
[that is, f(x) = 1, 0 < x < 1], then we obtain the interesting analytical identity

L n k =k n! Y J=1 IRy Xy |
2<k>y(1 y) fx A — " dx

k=j N =)'G - D!

0=y=1 (6.5

By employing the same type of argument that we used in establishing
Equation (6.2), we can show that the joint density function of the order statistics
X(l) and X(_])’ when i < ], is

n!

i—1
I Y vy [F(x)]
X [F@x) — Fa)V ™7 1 — FeI" I f(x) f(x)

fX(,'),XU) (xi’ xj) = (6.6)

for all X; < Xj.

Example 6c. Distribution of the range of a random sample. Suppose that n
independent and identically distributed random variables X;, X5, . . . , X,, are
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observed. The random variable R, defined by R =X,,) — X1, is called the
range of the observed random variables. If the random variables X; have

distribution function ¥ and density function f, then the distribution of R can °

be obtained from Equation (6.6) as follows: for a = 0,

N f f Tty X 15 Xn) dxy dox,

Xy —Xx1=a

x| +a R |

- f j 2)‘ [F(xn) F(xl)]lz_~f(x1)f(xll) dxn dxl
—a g

Making the change of variable y = F(x,) — F(x;), dy = f(x,) dx, yields
x1+a s F(xq+a)—F(xy) n—2 ‘
[ Fe) — Fer o d, = | "2 dy
X1

1 -
= ——[FG +a) = F)"™

and thus ) ,
PIR=a}=n| [Fy+a) - Fol' ' fadn  (67)

Equation (6.7) can be explicitly evaluated only in a few special cases. One
such case is when the X;’s are all uniformly distributed on (0, 1). In this
case we obtain from Equation (6.7) that for 0 < a < 1,

1
PR<a) =n| [Fl +a = Fo)l"™' flw) dn

-a

l1—a 1
nJ a*ldx, +n L 1 — x)" ldxy
0

=n(l ~ a)a"" ' + a"

Differentiation yields that the density function of the range is given,
in this case, by

fR()_{n(n Da" %1 ~a) O0=a=l1

otherwise

That is, the range of n independent uniform (0, 1) random variables is a
beta random variable with parameters n — 1, 2. - B

6.7 JOINT PROBABILITY DISTRIBUTION OF FUNCTIONS
OF RANDOM VARIABLES

Let X; and X, be jointly continuous random variables with joint probability
density function fy, x,. It is sometimes necessary to obtain the joint distribution
of the random variables Y, and Y,, which arise as functions of X; and Xq
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Specifically, suppose that ¥; = g(X;, X,) and ¥, = g,(X;, X,) for some functlons
g1 and g.
Assume that the funcnons g and g, satisfy the following conditions:

1. The equations y; = g;(xy, x,) and y, = g5(x;, x,) can be uniquely solved
for x; and x, in terms of y; and y, with solutions given by, say,
x1 = (¥, X2 = ha(yy, y2)- >

2. The functions g, and g, have continuous partial derivatives at all points
(x1, xp) and are such that the following 2 X 2 determinant

981 981

9xy dxy | 98,108, 09g1 08
J(xy, 1) = 9 9% = ox 0x,  oxy0x;

dx4 0%,

at all points (x;, xp).

v Under these two conditions it can be shown that the random variables Y,
and Y, are jointly continuous with joint density function given by

Triva (1 ¥2) = Sy, (1 %2) [ Gy, x0)| 7 (7.1)

where x; = hy(y1, ¥2), X2 = ha(y1, ¥2)-
A proof of Equation (7.1) would proceed along the following lines:

PHi=nt=w = [[ foxGwdud, (2

(x1,x2):
81(x.x2)=y)
82(x1,x2)=y;
The joint density function can now be obtained by differentiating Equation (7.2)
with respect to y; and y,. That the result of this differentiation will be equal to
the right-hand side of Equation (7.1) is an exercise in advanced calculus whose
proof will not be presented in this book. -

Example 7a. Let X; and X, be jointly continuous random variables with probabil-
lty denSity function thX?_. Let Yl = Xl + Xz, Y2 = Xl - Xz. Find the
joint density function of ¥; and Y, in terms of Jxy. %

SOluﬁOI‘i Let gl(xl, X2) = X + Xo and gz(xl, Xz) = X1 = X Then
1

|1
J(xl, xZ) = 1 -1

-

Also, as the equations y; = x; + x,andy, = x; — x, have as their solution
x1 = (1 + 212, x5 = (y1 — y»)/2, it follows from Equation (7.1) that
the desired density is

Yty yi—»
2 ’ 2

Frirn (1 ¥2) = 3fx,.%, <
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For instance, if X; and X, are independent, uniform (0, 1) random vari-
ables, then

D =

_ B 0=y 4 =2,0=sy =2
T, ()'1,)’2‘)‘ ' {O ~ otherwise

or if X; and X, were independent, exponential random variables with respec-
tive parameters A; and A,, then

Srur,(Y1s ¥2)

AA C(yit -
_ 12 23XP{"/\1 (yl 2y2) ‘M(yl 2y2>} y1 + 5220, yp —y2=0

0 otherwise

Finally, if X, and X, are independent unit normal random variables,

Froy. (1 ¥2) = 1 o~ (1 + Y8+ (31— y2)*/8]
L2 4ar

B

4qr
_ 1 oy L =3
\Vdar Vi

Thus, not only do we obtain (in agreement with Proposition 3.2) that both
X; + X, and X; — X, are normal with mean 0 and variance 2, we also
obtain the interesting result that these two random variables are independent.
(In fact, it can be shown that if X; and X, are independent random variabies
having a common distribution function F, then X; + X, will be independent
of X, — X, if and only if F is a normal distribution function.) B

Example 7b. Let (X, ¥) denote a random point in the plane and assume that th'e
rectangular coordinates X and Y are independent unit normal random vari-
ables. We are interested in the joint distribution of R, ©, the polar coordinate
representation of this point (see Figure 6.4).

=
mmmmm ——

Figure 6.4 + = Random
point. (X, ¥) = R, ©@. ™

e e

Section 7  Joint Probability Distribution of Random Variables 283

Letting r = gl(x, y) = Vx2 + y2 and 6 = go(x,y) == tan—ly/x, we see that

081 x %1___y
L Va2 y? y  Vx% 44?2
982 _ 1 <:Z> __ =y @ _ 1 _ X
ox 1+ (y/x)2 x2 ) x%+y? dy x[1+ /x)*1 x2+y?
Hence ‘
Ty = g by e L ]

G2+ T Ty Pt y2 7
As the joint density function of X and Y is

1 ) )
— —(x=+y*)/2
flx,y) = —2 e

we see that the joint density function of R = Vx? + 32, @ = tan~ ! y/x,
is given by

f@, (9)-=~-1~~re-r2/2 0 <0< 2m, 0<r<ow
2
As this joint density factors into the marginal densities for R and ©®, we
obtain that R and ® are independent random variables, with ® being uni-
formly distributed over (0, 27) and R having the Rayleigh distribution with
density

fn = re~ 2 0<r<om

(Thus, for instance, when one is. aiming at a target in the plane, if the
horizontal and vertical miss distances are independent unit normals, then
the absolute value of the error has the above Rayleigh distribution.)

The above result is quite interesting, for it certainly is not evident a
priori that a random vector whose coordinates are independent unit normal

~ random variables will have an angle of orientation that is not only uniformly

distributed, but is also independent of the vector’s distance from the origin.

If we wanted the joint distribution of R? and @, then, as the transforma-
tiond = g(x,y) = x> + y* and 6 = g5(x, y) = tan~ ' y/x has a Jacobian

_ 2x 2y
J = -y X =2
Z17 4yl
we see that ’
. 9)=§e"d/2%7 0<d<w, 0<@<2m

Therefore, R* and @ are independent, with R? having an exponential distribu-
tion with parameter 5. But as R* = X* + Y?, it follows, by definition, that
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R*has a chi-squared distribution with 2 degrees of freedom. Hence we have

a verification of the result that the exponential distribution with parameter

3 is the same as the chi-squared distribution with 2 degrees of freedom.

The above result can be used to simulate (or generate) normal random
variables by making a suitable transformation on uniform random variables.
Let Uy and U, be independent random variables each uniformly distributed
over (0, 1). We will transform U;, U, into two independent unit normal
random variables X; and X, by first considering the polar coordmate represen-
tation (R, ®) of the random vector (X;, X,,) From the above, R? and O will
be independent, and, in addition, R2 = X7 + X3 will have an exponential
distribution with parameter A = 3. But 2 log U, has such a distribution
since, for x > 0,

P{—2log U, <x} = P{log U, > —g}

= P{U; > e~ 2}
=1 — e~x/2

Also, as 27tU, is a uniform (0, 27r) random variable, we can use it to generate
0. That is, if we let

R2
0]
then R? can be taken to be the square of the distance from the origin and

0 as the angle of orientation of (X;, X,). As X; = Rcos ©, X, = R sin 0,
we obtain that

o

—2log U;
27TU2

X, =V —2log U; cos(2mUs,)
= -2 lOg Ul Sin(27TU2)

are independent unit normal random variables. |

Example 7c. If X and Y are independent gamma random variables with parameters

(a, A) and (B, A), respectively, compute the joint density of U = X + Y
and V = X/(X + Y).

Solution The joint density of X and Y is given by
N 05 M A0S ) ol
I'(a) I'(B)

+
)\a A -—A(x—i-y)xa—-l B—1

T T@I@ Y

fxy(,y) =

Now, if gi(x, y) = x + y, g2(x, y) = x/(x + y), then

g _ds_ | s _ y & x
ox dy ax  (x + y)? dy (x + y)?
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and so
1 1
Jx,y) = Y X = - .
. &+ &+’ x+Yy

Finally, as the equations # = x + y, v = x/(x + y) have as their solutions
x = uv,y = u(l — v), we see that

Juy, v) = fy yluw, u(1 — v)]u
Ae Q)BT ~ )P + B)
I'(e+ B INCINC

Hence X + Y and X/(X + Y) are independent, with X + Y having a gamma
distribution with parameters (¢ + f3, A) and X/(X + Y) having a beta
distribution with parameters (¢, 8). The above also shows that B(«, ), the
normalizing factor in the beta density, is such that

B(a ﬁ)=f1 ye= 11 — )P 1 gy
BRI

_ T(@)T(@)
I'lae + B)

The result above is quite interesting. For suppose there are n + m jobs
to be performed, with each (independently) taking an exponential amount
of time with rate A for performance, and suppose that we have two workers
to perform these jobs. Worker I will do jobs 1, 2, . . ., n, and worker I will
do the remaining m jobs. If we let X and Y denote the total working times
of workers I and II, respectively, then (either from the above result or from
Example 3b) X and Y will be independent gamma random variables having
parameters (r, A) and (m, A), respectively. Then the above result yields that
independently of the working time needed to complete all n + m jobs (that
is, of X + Y), the proportion of this work that will be performed by worker

I has a beta distribution with parameters (n, m). |
When the joint density function of the n random variables X, X,, ..., X,,
is given and we want to compute the joint density function of ¥, Y5, . . . , ¥,,, where

legl(Xl""’Xn) Y2;g2(X19“"Xn)""

Yn = gn(Xlﬂ et Xn)
the approach is the same. Namely, we assume that the functions g; have continuous

partial derivatives and that the Jacobian determinant J(xy, ..., x,) ¥ O at all
points (x, . .., X,), where
% 9% . %
0x; axz' ax,
TG, ..., x) =982 98 = 08
0x;  0xp ax,,
98n O8n .. %8
0x; - dxy dx,,
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Furthermore, we suppose that the equations y; = gi(x1, ..., X)), Yo =
&(xy, ooy X)), ooy ¥y = gu(x1, ..., X,) have a unique solution, say, x; =
(Y1 oo s Vs o5 X = (Y1, - -+, ¥,). Under these assumptions, the joint
density function of the random variables Y; is given by

le ..... Y, Ops - - 3 ) = fX, ,,,,, X, (CI TN xn)lj(xlr < xn)[ -t (7.3)
where x; = B(yi, - .., V)i = 1,2, ..., n

Example 7d. Let X;, X,, and X3 be independent unit normal random variables.
Y, =X +X + X3, Y, =X, — X,, Y3 = X; — X3, compute the joint
density function of Y}, Y,, Ys.

Solution Lettmg Yl = Xl + Xz + X3, Y2 = Xl - Xz, Y3 = X1 - X3,
the Jacobian of these transformations is given by

1 1 1
J=11 =1 0j=3
1 0 -1
As the transformations above yield that -
N+ Y+ L -2+ Y+ Y, - 21
L= Ty 2= 7 3 3T T 3
we see from Equation (7.3) that
Jv1, 0,75 (V15 Y25 ¥3)
_1 ()'1 SR R PRl B s 2y3>
3 X1,X2,X3 3 ’ 3 ’ 3
Hence, as

1
Sx1, 30,53 (515 X, X3) = amt
we see that

1
=m0 1Y2,Y2
71, , ¥ e
fyl,yz,y3()1 Y2, ¥3) 302m32

where

. 2 2 2
yy + o+ ya\ N <y1 — 2y, + y3> N ()’1 +yy — 2y3>

O(y1:¥2,y3) = < 3 ) 3 3

2
yi 2 2 2
=37 ‘3')’% + g)% —3%2)3 |

Example 7e. Let X, X,, ..., X, be independent and identically distributed expo-
nential random variables with rate A. Let

Yi=X1+"'+Xi i=1,...,71
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(a) Find the joint density function of ¥y, ..., ¥,

n-

(b) Use the result of part (a) to find the density of ¥,,.

Solution (a) The Jacobian of the transformations Y; = X;, ¥, =
X1+X2,?..,YH=X1+"'+XniS
10 00 0
11 00 0
1 110 0
J =
1111 --- 1

Since only the first term of the determinant will be nonzero, we have that
J = 1. Now the joint density function of X, ..., X,, is given by

n
S, x, (X)) = H e A O0<x;<oo,i=1,...,n
i=1
Hence, as the preceding transformations yield that
Xl = YI’XZ = Y?_ - YI’""XI' = Yi - Yi—l""’Xn = Yn - Yn-"l
we obtain from Equation (7.3) that the joint density functionof ¥y, ..., ¥, is
fri,..., 7, (V1> Y20 - -5 V)

=fX; ..... X,I(ylsy2 Yoo Yi T Yim15- -5 ¥n T yn—l)

= \" exp{-)x[yl + _22 i — yi—l):l}

:/\’1€~)L}”' O<y1,0<yi—yi_1,i=2,...,11
=Ne P 0<y; <y <<y,

(b) To obtain the marginal density of Y,, let us integrate out the other
variables one at a time. This gives

Y2
fYo ..... Yn(y?_a s yn) = fO )\ne—/\),, dyl

= Nyse Mn 0<y,<y3 < - <y,
Continuing gives that
//
%
3 oy, -
= NeTNr T 0<yy <y, <o <y,
The next integration yields that

3
‘ Ya
fY4 ..... Y,,()’4,--~,}’n)=)\"§‘,€ W 0<y,<---<yy,
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Continuing in this fashion yields

— \n y;;—l — Ay,
fY (yn) A € O<yn

(n — D!
w}uch in agreement with the result obtained in Example 3b, shows that
Xy + -+ + X, is a gamma random variable with parameters n and A. B

*6.8 EXCHANGEABLE RANDOM VARIABLES

The random variables X;, X», ..., X,, are said to be exchangeable if for every

permutation iy, ..., i, of the integers 1, ..., n
P{Xil le’Xi.’!_sz’ [P 7Xi,, S.Xn} = P{Xl SXI,X?_SXZ, [P ,Xn = n}
for all x, ..., x,. That is, the n random variables are exchangeable if their joint

distribution is the same no matter in which order they are observed.
Discrete random variables will be exchangeable if

P{Xi1 =x1,X,-2 :x2""7Xi,, =x,,} = P{Xl =X1,XQ_ =X2,...,Xn =x,,}

for all permutations_iy, ..., i,, and all values x,, ..., x,. This is equivalent to
stating that p(x;, x5, ..., x,) = P{X; = x, ..., X, = x,} is a symmetric
function of the vector (xy, .. ., x,,), which means that its value does not change

when the values of the vector are permuted.

Example 8a. Suppose that balls are withdrawn one at a time and without replace-
ment from an urn that initially contains n balls, of which k are considered
special, in such a manner that each withdrawal is equally likely to be any
of the balls that remain in the urn at the time. Let X; = 1 if the ith ball
withdrawn is special and let it be 0 otherwise. We will show that the random
variables Xj, ..., X,, are exchangeable. To do so, let (x;, ..., x,,) be a
vector consisting of k ones and n — k zeros. However, before considering
the joint mass function evaluated at (xi, ..., X,), let us try to gain some
insight by considering a fixed such vector—for instance, consider the vector
(1,1,0,1,0,...,0,1), whichis assurned to have k ones and n — k zeros. Then

kk—1n—-—kk—-—2n—k—-1 11

1‘31973’---,, = - ..
p( 0.1,0 01).nn—ln—2n—3 n-—4 21

which follows since the probability that the first ball is special is &/n, the
conditional probability that the next one is special is (k — 1)/(n — 1), the
conditional probability that the next one is not special is (n — k)/(n — 2),
and so on. By the same argument, it follows that p(xl, ..., X,) can be
expressed as the product of n fractions. The successive denominator terms
of these fractions will go from n down to 1. The numerator term at the
location where the vector (xq, ..., x,) is 1 for the ith time is k — (i — 1),
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and where it is O for the ith time itisn — & — (i — 1). Hence, since the
vector (xy, - .., X,) consists of k ones and n — k zeros, we obtain that

k' (n — B)!

n
r xi=0,1,2x,~=k

i=1

P, Xy) =
Since thisis a symmetric function of (x;,...,x,),1t follows that the random
variables are exchangeable.

REMARK. Another way to obtain the preceding formula for the joint
probability mass function is to regard all the n balls as distinguishable from
each other. Then, as the outcome of the experiment is an ordering of these
balls, it follows that there are n! equally likely outcomes. As the number of
outcomes having special and nonspecial balls in specified places is equal to
the number of ways of permuting the special and the nonspecial balls among
themselves, namely k! (n — k)!, we obtain the preceding density function. I

If X, X5, ..., X, are exchangeable, it easily follows that each X; has the
same probability dlstnbutlon For instance, if X and Y are exchanoeable discrete
random variables, then

P{X-x}_zp{x——xy y}—EP{X-y =x} = P{Y = x}

For instance, it follows from Example 8a that the ith ball withdrawn will be
special with probability k/n, which is intuitively clear since each of the n balls
is equally likely to be the ith one selected.

Example 8b. In Example 8a, let Y; denote the selection number of the first special
ball withdrawn, let Y, denote the additional number that are then withdrawn
until the second special ball appears, and in general, let ¥; denote the addi-
tional number of balls withdrawn after the (i — 1)st special ball is selected
until the ith is selected, { = 1, , k. For instance, if n = 4, k = 2 and
X1 =1,X =0,X3 =0, X4— 1 then ¥y = 1 Ya = 3. Since ¥} =

i, Yo = ip, ..., 1 =iy <‘_‘>X = Xt1+17 = = Xz1+ S 1,

X; =0, Othemlse we obtain f:om the joint mass function of the X; that
= )

P{Y:l:ll’Yz:l?_’“‘?Yk:lk}='_(————)

b+ -+ ip=n
N ! ! k
Hence we see that the random variables Yy - .., Yp are exchangeable. For
instance, it follows from this that the number of cards one must select from
a well-shuffled deck until an ace appears has the same distribution as the
number of additional cards one must select after the first ace appears until

the next one does and so on.

Example 8c. The following is known as Polya s urn model. Suppose that an urn
initially contains n red and m blue balls. At each stage a ball is randomly
chosen, its color is noted, and it is then replaced along with another ball of
the same color. Let X; = 1 if the ith ball selected is red and let it equal 0
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if the ith ball is blue, i = 1. To obtain a feeling for the joint probabilities
of these X;, note the following special cases.

PX,=1,%X=1X=0X,=1X5 =0}

. n n+1 m n+ 2 m+1
n+mn+m+ln+m+2n+m+3nt+mt+4b

_ nn + D + Dm(m + 1)
B m+mun+m+Da+m+2)n+m+3)n+m+4)

and

PX;=0,X =1,X;=0,X,=1,Xs = 1}
__m n m+ 1 n+1 n+2
T n+mnt+m+lnt+m+2n+m+3nt+tmt+4

_ nn + D(n + 2ym@m + 1)
B m+mmnp+m+ Da+m+2)n+m+3)n+m+4d)

By the same reasoning it follows that for any sequence x,, ..., x; that
contains » ones and k — r zeros, we have

P{Xl-:xl,...,Xk:‘—xk}
='n(n+1)---(n+r——1)m(m+1)---(m+k~—r-—1)
m+m---mn+m+k—1)

Therefore, we see that for any value of k, the random variables X, ..., X;
are exchangeable.

Our final example deals with continuous random variables that are ex-
changeable.

Example 8d. Let X;, X5, ..., X, be independent uniform (0, 1) random

variables, and let Xy, . .., X, denote their order statistics. That is, X,
is the jth smallest of X, X5, . .., X,,. Also, let

YI = X(l)’

YizX(i)“X(i~1): i=2,..,n
Show that Yy, ..., Y, are exchangeable.

Solu%ion The transformations
V1= XY =X T X i=2,...,n
yield that
=y + -ty [ =1,...,n

As it is easy to see that the Jacobian of the preceding transformations is
equal to 1, we obtain from Equation (7.3) that

fY] ..... Y,,(y11y29---’yn) zf(yhyl +)’2,---,)’1 +oe +yn)

S
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where f is the joint density function of the order statistics. Hence from
Equation (6.1) we obtain that

le ..... Y,,(yls Y25 o - - ’yn) = n!
a

O<y<yr+ym<---<y+---+y, <1
or, equivalently,
Ty, .., v, (Y1: Y25 -+ -5 Ym) = 1!
O0<y;<l,i=1,...,nm, i+ +y, <1

As the preceding joint density is a symmetric function of yq, ..., y,, we
see that the random variables Y, . .., ¥, are exchangeable.

SUMMARY

The joint cumulative probability distribution function of fhe pair of random vari-
ables X and Y is defined by

Flx,y) =P{X=x, Y=y} —o<x,y<o

All probabilities regarding the pair can be obtained from F. To obtain the individual
probability distribution functions of X and Y, use

Fy(x) = Iim F(x,y)  Fy(y) = lim F(x, y)

y-= x—®

If X and Y are both discrete random variables, then their joint probability
mass function is defined by

p@i,j) = P{X =1,Y = j}

The individual mass functions are
P{X=i}=2pG)) P(Y=j}=2pG)
J 1

The random variables X and Y are said to be jointly continuous if there is

a function f(x, y), called the joint probability density function, such that for any
two-dimensional set C,

A
MY EC) = [ [ fxy drdy
c
It follows from the preceding that
Plx<X<x+de,y<Y<y+ dyl=f(x,y)dxdy
If X and Y are jointly continuous, then they are individually continuous with
density functions o ’ '

K= fend fO) =] fena
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The random variables X and Y are independent if for all sets A and B
P{X€A,YEB} = P[X€ A}P{Y € B}

If the joint distribution function (or the joint probability mass function in the
discrete case, or the joint density function in the continuous case) factors into
a part depending only on x and a part depending only on y, then X and Y
are independent. ‘

In general, the random variables X, . . ., X, are independent if for all sets
of real numbers Ay, ..., 4,

P{X,€A,....X, €A} =P{X; €A} - PlX, €A}

If X and Y are independent continuous random variables, then the distribution
function of their sum can be obtained from the identity

Fror@ = [ _Fyl@a = »frdy

IfX,i=1,...,n,are independent normal random variables with respec-
n
tive parameters u; and a'?, i=1,...,n,then z X; is normal with parameters
n n : i=1
2

> mand 3 o i
i=1 i=1 ‘

IfX; i = 1,...,n, are independent Poisson random variables with respec-

n n

tive parameters A, [ = 1, ..., n, then 2 X; is Poisson with parameter 2 A

i=1 i=1
If X and Y are discrete random variables, then the conditional probability
mass function of X given that ¥ = y is defined by

p(xy)
P X =x|]Y =y} =
| e
where p is their joint probability mass function. Also, if X and Y are jointly

continuous with joint density function f, then the conditional probability density
function of X given that ¥ = y is given by

f(xy)
(xly) ==——=
) Frir(x]y 0
The ordered values X(;y = X(3) = - - - = X{;,) of a set of independent and identic-
ally distributed random variables are called the order statistics of that set. If the
random variables are continuous with density function f, then the joint density
function of the order statistics is

FGrn oz = nl fa) - - - flx)

The random variables X, . . ., X,, afe exchangeable if the joint distribution
..»X; is the same for every permutation iy, ..., 5, of 1,..., n

X=x ==X,

of X;

17"
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PROBLEMS

1.

Two fair dice are rolled. Find the joint probability mass function of X and
Y when

(a) Xis the.largest value obtained on any die and Y is the sum of the values;
(b) X is the value on the first die and Y is the larger of the two values;

(¢} X is the smallest and Y is the largest value obtained on the dice.

. Suppose that 3 balls are chosen without replacement from an urn consisting

of 5 white and 8 red balls. Let X; equal 1 if the ith ball selected is white,
and let it equal O otherwise. Give the joint probability mass function of
@) X, Xp;

(b) X 1» X2, X3.

. In Problem 2, suppose that the white balls are numbered, and let ¥; equal 1

if the ith white ball is selected and 0 otherwise. Find the joint probability
mass function of

(a) Y 1» Yz;

(b) Yy, ¥s, Y3.

. Repeat Problem 2 when the ball selected is replaced in the urn before the

next selection.

. Repeat Problem 3a when the ball selected is replaced in the urn before the

next selection.

. A bin of 5 transistors is known to contain 2 that are defective. The transistors

are to be tested, one at a time, until the defective ones are identified. Denote
by N, the number of tests made until the first defective is spotted and by N,
the number of additional tests until the second defective is spotted; find the
joint probability mass function of N; and N,.

. Consider a sequence of independent Bernoulli trials, each of which is a success

with probability p. Let X; be the number of failures preceding the first success,
and let X, be the number of failures between the first two successes. Find
the joint mass function of X; and X5.

. The joint probability density function of X and Y is given by

e y) = c(y* 5 e

(a) Find c.
(b) Find the marginal densities of X and Y.
(¢) Find E[X].

—y=x=y 0<y<ow

. The joint probability density function of X and Y is given by

ﬂ&w=g(ﬁ+%g 0<x<1,0<y<2

(a) Verify that this is indeed a joint density function.
(b) Compute the density function of X.
(¢) Find P{X > Y}. :
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10.

11.

12.

13.

14.

15.

16.
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(d) Find P(Y > }|x < i}.
(¢) Find E[X].
(f) Find E[Y].

The joint probability density function of X and Y is given by
flx,y) = e &*Y
Find (a) P{X < Y} and (b) P{X < a}.

A television store owner figures that 45 percent of the customers entering
his store will purchase an ordinary television set, 15 percent will purchase a
color television set, and 40 percent will just be browsing. If 5 customers enter
his store on a given day, what is the probability that he will sell exactly 2
ordinary sets and 1 color set on that day?

O0=x<o 0=y<w

The number of people that enter a drugstore in a given hour is a Poisson
random variable with parameter A = 10. Compute the conditional probability
that at most 3 men entered the drugstore, given that 10 women entered in
that hour. What assumptions have you made?

A man and a woman agree to meet at a certain location about 12:30 pm. If
the man arrives at a time uniformly distributed between 12:15 and 12:45 and
if the woman independently arrives at a time uniformly distributed between
12:00 and 1 p.Mm, find the probability that the first to arrive waits no longer
than 5 minutes. What is the probability that the man arrives first? ‘

An ambulance travels back and forth, at a constant speed, along a road of
length L. At a certain moment of time an accident occurs at a point uniformly
distributed on the road. [That is, its distance from one of the fixed ends of
the road is uniformly distributed over (0, L).] Assuming that the ambulance’s
location at the moment of the accident is also uniformly distributed, compute,
assuming independence, the distribution of its distance from the accident.

The random vector (X, Y) is said to be uniformly distributed over a region

R in the plane if, for some constant c, its joint density is

_Jc ifG,y€R
fo. ) = {O otherwise

(a) Show that 1/¢ = area of region R.

Suppose that (X, Y) is uniformly distributed over the square centered at

(0, 0), whose sides are of length 2.

(b) Show that X and Y are mdependent with each being distributed umformly
over (—1, 1).

(¢) What is the probab1hty that (X, Y) hes in the circle of radius 1 centered
at the origin? That is, find P{X‘ + Y2 =1).

Suppose that 1 points are independently chosen at random on the perimeter
of a circle, and we want the probability that they all lie in some semicircle.

PP ———
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17.

18.

19.

20.

21.
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(That is, we want the probability that there is a line passing through the center
of the circle such that all the points are on one side of that line.)

Let Py, ..., P, denote the n points. Let A denote the event that all the points
are contained in some semicircle, and let A; be the event that all the points
lie in the semicircle beginning at the point P; and going clockwise for 180°,
i=1,...,n

(a) Express A in terms of the A;.

(b) Are the A; mutually exclusive?

(¢) Find P(A).

Three points X;, X,, X3 are selected at random on a line L. What is the
probability that X, lies between X; and X3?

Two points are selected randomly on a line of length L so as to be on opposite
sides of the midpoint of the line. [In other words, the two points X and Y are
independent random variables such that X is uniformly distributed over (0,
L/2) and Y is uniformly distributed over (L/2, L).] Find the probablhty that
the distance between the two points is greater than L/3.

In Problem 18 find the probability that the 3 line segments from 0 to X, from
X o Y, and from Y to L could be made to form the three sides of a triangle.
(Note that three line segments can be made to form a triangle if the length
of each of them is less than the sum of the lengths of the others.)

The joint density of X and Y is given by

—(x+y)
xe x>0,y>0
foy) = {0 otherwise
Are X and Y independent? What if f(x, y) were given by

]2 O<x<y O<y<1

Sy = {0 otherwise
Let
f(xa)’)=24x}’ OSxﬁl,OSySl,Osx—}-ysl

and let it equal O otherwise.
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22,

23.

24,

25.

26.

217.

28.

(a) Show that f(x, y) is a joint probability density function.
(b) Find E[X].
(c) Find E[Y].

The joint density function of X and Y is

- _Jx+y 0<x<1,0<y<1
fory) = 0 otherwise

(a) Are X and Y independent?
(b) Find the density function of X.
() Find P{X + Y < 1}.

The random variables X and Y have joint density function.
flny) =121 -x 0<x<1,0<y<1

and equal to O otherwise.

(a) Are X and Y independent?
(b) Find E[X].

(¢) Find ETY].

(d) Find Var(X).

(e) Find Var(Y).

Consider independent trials each of which results in outcome i, i = 0,

, k with probability p;, 20 p; = 1. Let N denote the number of trials

needed to obtain an outcome that is not equal to 0, and let X be that outcome.
(a) Find P{N = n},n = 1.

() Find P{X = j},j = 1, , k.

(¢c) Show that P{N = n, X = ]} = P{N = n}P{X = j}.

(d) Is it intuitive to you that N is independent of X7

(e) Is it intuitive to you that X is independent of N7

Suppose that 106 people arrive at a service station at times that are mdependent

random variables, each of which is uniformly distributed over (0, 10%). Let

N denote the number that arrive in the first hour. Find an approximation for

P{N = i}.

Suppose that A, B, C, are independent random variables, each being uniformly

distributed over (0, 1).

(a) What is the joint cumulative distribution function of A, B, C?

(b) What is the probability that all of the roots of the equat1on
Ax*> + Bx + C = 0 are real?

If X is uniformly distributed over (0, 1) and Y is exponentially distributed
with parameter A = 1, find the dlStl’lbllthIl of(a)Z =X+ Yand (b) Z =
X/Y. Assume independence.

If X; and X, are independent exponential random variables with respective
parameters A; and A,, find the distribution of Z = X,/X,. Also compute
P{X, < X,}.

29.

30.

31.

32.

33.

34.

35.

36.
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When a current / (measured in amperes) flows through a resmtance R (mea—
sured in ohms), the power generated is given by W = I?R (measured in
watts). Suppose that / and R are independent random variables with densities

* fr(x) = 6x(1 — x) 0=x=1
Jr(x) = 2x 0=x=1

Determine the density function of W.

The expected number of typographical errors on a page of a certain magazine
is .2. What is the probability that an article of 10 pages contains (a) 0, and
(b) 2 or more typographical errors? Explain your reasoning!

The monthly worldwide average number of airplane crashes of commercial
airlines is 2.2. What is the probability that there will be

(a) more than 2 such accidents in the next month;

(b) more than 4 such accidents in the next 2 months;

(¢) more than 5 such accidents in the next 3 months?

Explain your reasoning!

The gross weekly sales at a certain restaurant is a normal random variable
with mean $2200 and standard deviation $230. What is the probability that
(a) the total gross sales over the next 2 weeks exceeds $5000;

(b) weekly sales exceed $2000 in at least 2 of the next 3 weeks?

What independence assumptions have you made?

Jill’s bowling scores are approximately normally distributed with mean 170
and standard deviation 20, while Jack’s scores are approximately normally
distributed with mean 160 and standard deviation 15. If Jack and Jill each
bowl one game, then assuming that their scores are independent random
variables, approximate the probability that

(a). Jack’s score is higher;

(b) the total of their scores is above 350.

According to the U.S. National Center for Health Statistics, 25.2 percent of

males and 23.6 percent of females never eat breakfast. Suppose that random

samples of 200 men and 200 women are chosen. Approxnnate the probabil-

ity that

(a) at least 110 of these 400 people never eat breakfast;

(b) the number of the women who never eat breakfast is at least as large as
the number of the men who never eat breakfast.

In Problem 2, calculate the conditional probability mass function of X,
given that

(@ X, = 1;

In Problem 4, calculate the conditional probability mass function of X;
given that - .

(@ X = 1

d) X, = 0.
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38.

39.

40.

41.

42.

43.

44.
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In Problem 3, calculate the conditional probability mass function of Y;
given that

@@ Y, = 1;

®b) v, = 0.

In Problem 5, calculate the conditional probability mass function of Y,
given that )

(@ Y, = 1;

M) Y, =0.

Choose a number X at random from the set of numbers {1, 2, 3, 4, 5}. Now

choose a number at random from the subset no larger than X, that is, from

{1,. X}. Call this second number Y.

(a) Fmd the joint mass function of X and Y.

(b) Find the conditional mass function of X given that ¥ = i. Do it for
=1,2,3,4,5.

(¢) Are X and Y independent? Why?

Two dice are rolled. Let X and Y denote, respectively, the largest and smallest

values obtained. Compute the conditional mass function of ¥ given X = i,

fori = 1,2,..., 6. Are X and Y independent? Why?

The joint probability mass function of X and Y is given by
p, =3 pQA,2) =4
p@2. 1) =3 p@2,2) =3

(a) Compute the conditional mass function of X given'Y = i,i = 1, 2.
(b) Are X and Y independent?
(¢) Compute P{XY = 3}, P{X + Y > 2}, P{X/Y > 1}.

The joint density function of X and Y is given by
flx,y) = xe™*OFD x>0,y>0 .
(a) Find the conditional density of X, given ¥ = y, and that of ¥, given

X = x.
(b) Find the- den51ty function of Z = XY.
The ]omt density of X and Y is

fl,y) =c(x® —yHe ™™ 0=x<owo, —x=<y=x

Find the conditional distribution of ¥, given X = x.

An insurance company supposes that each person has an accident parameter
and that the yearly number of accidents of someone whose accident param-
eter is A is Poisson distributed with mean A. They also suppose that the
parameter value of a newly insured person can be assumed to be the value
of a gamma random variable with parameters s and «. If a newly insured
person has n accidents in her first year, find the conditional density of her
accident parameter. Also, determiné the expected number of accidents that
she will have in the following year.

45.

46.

47.

48.

49.

50.

51.
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If X;, X5, X3 are independent random variables that are uniformly dis-
tributed over (a, b), compute the probability that the largest of the three is
greater than the sum of the other two.

A complex machine is able to operate effectively as long as at least 3 of its
5 motors are functioning. If each motor independently functions for a random
amount of time with density function f(x) = xe™*, x > 0, compute the
density function of the length of time that the machine functions.

If 3 trucks break down at points randomly distributed on a road of length L,

find the probability that no 2 of the trucks are within a distance d of each
other when d =< L/2.

Consider a sample of size 5 from a uniform distribution over (0, 1). Compute
the probability that the median is in the interval (3, 3).

If X;, X5, X3, X4, X5 are independent and identically distributed exponential
random variables with the parameter A, compute

(@) P{min(Xy, ..., X5) =.a};

(b) P{max(Xy, ..., Xs) = a}.

Derive the distribution of the range of a sample of size 2 from a distribution
having density function f(x) = 2x, 0 < x < 1.

Let X and Y denote the coordinates of a point uniformly chosen in the circle

© of radius 1 centered at the origin. That is, their joint density is

52.

53.

54.

SS.

fay == % +y’=l
T
Find the ]omt den51ty function of the polar coordinates R = (X2 + Y?%)!/?
and O = Vy/x.
If X and Y are independent random-variables both uniformly distributed over
(0, 1), find the joint density function of R = VX2 + ¥2, ® = tan~ ! Y/X.
If U is uniform on (0, 277) and Z, independent of U, is exponential with rate

1, show directly (w1thout using, the results of Example 7b) that X and Y
defined by

X =‘-VZZcos U
Y= V2Zsin U

are independent unit normal random variables.
If X and Y have joint density function

x=1, yZi

f&xy) = o
(a) Compute the joint density function of U = XY, V = X/Y.

(b) What are the marginal densities? '

If X and Y are independent and identically distributed uniform random vari-
ables on (0, 1), compute the joint density of

@U=X+YV=X/Y




300 Chapter 6

56.

57.

38.
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(b) U=X V=X, »

@ U=X+Y,V=X/X+7). :

Reépeat Problem 55 when X and Y are independent exponent1a1 random vari-
ables, each with parameter A=

It Xl and Xa are 1ndependent exponenual random variables each having
parameter /\ ﬁnd the joint density funct1on of Y, = Xl + Xr, and ¥, =
e I

If X, Y, and Z are independent random varlables having identical densrty

functions f(x) = e, 0 < x < oo, derive the joint distribution of U =

T'X+YV X+ZW~Y+Z

59.

60.

. Show analytically (by induction) that X; +

InExample 8b let Yipr = n+1 - E Y; Show that ¥y, ..., Y Yeq

are exchangeable Note that ¥ ; is the nurnber of balls one must observe
to-obtain a special. ball if one considers the balls in their reverse order
of withdrawal.

Consider an urn containing 7. balls, numbered 1, ii and suppose that k&
of them are randomly withdrawn. Let X; equal 1 if ba]l numbered i is removed
and let it be O otherwise. Show that X;, . . ., X,, are exchangeable.

THEORETICAL EXERCISES

Verify Equation (1.2). .

Suppose that the nimber of events that occur in a given time period is a
Poisson random variable with parameter A. If each event is classified as a
type i event with probability p;, i = 1, , 1, 2 p; = 1, independently
of other events, show that the -numbers of type { events that occur, | =
1,...,n, are independent Poisson random variables with respective parame-
ters Ap;, i = 1, ..., n.

. Suggest a procedure for usirig Buffon’s needle problem to estimate 7. Surpris-

ingly enough, this was once a common method of evaluating .
Solve Buffon’s needle problem when L > D.

ANSWER! —Z—L— (1 - sin 6) + 26/, where 6 is such that cos 6 = DIL.

If X and Y are independent continuous positive random variables, express the
den51ty function of (a) Z = X/Y and (b) Z = XY in terms of the density
functions of X and Y. Evaluate these expressions in the special case where
X and Y are both exponential random variables.

X,, has a negative binomial
distribution when the X;, i = 1, ..., n are independent and identically
distributed geometric random variables. Also, give a second argument that
verifies the above without any need for computations.

- ——e——e

10.

11.

12.

13.

14.
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. (a) If X has a gamma distribution with parameters (¢, A), what is the distribu-

tion of ¢X, ¢ > 0?
(b) Show that

k3

1 o
E\ X2n

_has a gamma distribution with parameters r2, A when n is a positive integer
and 3, is a chi-squared random variable with 2n degrees of freedom.

. Let X and Y be independent continuous random variables with respective

hazard rate functions Ay(¢) and Ay(?), and set W = min(X, Y).
(a) Determine the distribution function of W in terms of those of X and Y.
(b) Show that Ay/(?), the hazard rate function of W, is given by

Aw(t) = Ax () + Ay(D)
be independent exponential random variables having a

common parameter A. Determine the distribution of min(Xj, . .., X,).

The lifetimes of batteries are independent exponential random variables, each
having parameter A. A flashlight needs 2 batteries to work. If one has a
flashlight and a stockpile of n batteries, what is the distribution of time that
the flashlight can operate?

Let X;, X5, X3, X4, X5, be independent continuous random variables having
a common distribution function F and density function f, and set

I = P{Xl <X2>X3 <X4>X5}
(a) Show that I does not depend on F.

HINT:  Write ] as a five-dimensional integral and make the change of
variables u; = F(x;),i = 1,..., 5.

(b)- Evaluate I.

Show that the jointly continuous (discrete) random variables X, .. ., X,, are
independent if and only if their joint probability density (mass) function
f(xq, ..., x,) can be written as

G ex) = T gix)

i=1
for nonnegative functions g;(x), i = 1, ..., n.
In Example 5c we computed the conditional density of a success probability
for a sequence of trials when the first n + m trials resulted in n successes.

Would the conditional density change if we actually specified which n of
these trials resulted in successes?

Suppose that X and Y are independent geometric random variables with the
same parameter p.
(a) Without any computations, what do you think is the value of

PIX=ilX +Y=n}?
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HINT: Imagine that you continually flip a coin having probability p of
coming up heads. If the second head occurs on the nth flip, what is the
probability mass function of the time of the first head?

(b) Verify your conjecture in part (a).

If X and Y are independent binomial random variables with identical parame-
ters n and p, show analytically that the conditional distribution of X, given
that X + Y = m, is the hypergeometric distribution. Also, give a second
argument that yields the result without any computations.

HINT:  Suppose that 2n coins are flipped. Let X denote the number of heads
in the first  flips and ¥ the number in the second n flips. Argue that given
a total of m heads, the number of heads in the first n flips has the same
distribution as the number of white balls selected when a sample of size m
is chosen from n white and n black balls.

Consider an experiment that results in one of three possible outcomes, outcome
i occurring with probability p;, i = 1, 2, 3. Suppose that n independent
replications of this experiment are performed and let X;, i = 1, 2, 3 denote

the number of times that outcome i occurs. Determine the conditional probabil-

ity mass function of X;, given that X, = m.

Let X, X,, X5 be independent and identically distributed continuous random
variables. Compute

(@) P(X; > X|X; > X;3);

(b) P{X; > X, |X, < X3};

(©) P{X; > X,|X, > X3},

(d) P{Xl > leXz < X3}

Let U denote a random variable uniformly distributed over (0, 1). Compute
the conditional distribution of U given that

(a U>a

(b) U <a;

where 0 < a < 1.

Suppose that W, the amount of moisture in the air on a given day, is a
gamma random variable with parameters (¢, ). That is, its den51ty is
fw) = Be P (Bw) ~UT'(r), w > 0. Suppose also that given that W =

the number of accidents during that day—call it N—has a P01sson dlStI‘lbllthIl
with mean w. Show that the conditional distribution of W given that N = n
is the gamma distribution with parameters (t + n,  + 1).

I

Let W be a gamma random variable with parameters (¢, ), and suppose
that conditional on W = w, X;, X5, ..., X,, are independent exponential
random variables with rate w. Show that the conditional distribution of W
given that X; = xy, X3 = X, ..., X,, = X, is gamma with parameters

n
<t +n, B+ _21 x,-).
i=

- ——

-
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21. A rectangular array of mn numbers arranged in n rows, each consisting of

22,

m columns is said to contain a saddlepoint if there is a number that is both
the minimum of its row and the maximum of its column. For instance, in
the array

1 3 2
0 -2 6
S 12 3

the number 1 in the first row, first column is a saddlepoint. The existence of
a saddlepoint is of significance in the theory of games. Consider a rectangular
array of numbers as described above and suppose that there are two individu-
als—A and B—that are playing the following game: A is to choose one of
the numbers 1, 2, . . ., # and B one of the numbers 1, 2, . . ., m. These choices
are announced simultaneously, and if A chose i and B chose j, then A wins

.from B the amount specified by the number in the ith row, jth column of the

array. Now suppose that the array contains a saddlepoint—say the number
in the row r and column k—call this number x,.. Now if player A chooses
row r, then that player can guarantee herself a win at least x,, (since x,y, is
the minimum number in the row ). On the other hand, if player B chooses
column k, then he can guarantee that he will lose no more than x,; (since x,;
is the maximum number in the column k). Hence, as A has a way of playing
that guarantees her a win of x,; and as B has a way of playing that guarantees
he will lose no more than x,;, it seems reasonable to take these two strategies
as being optimal and declare that the value of the game to player A is x,.

If the nm numbers in the rectangular array described above are indepen-
dently chosen from an arbitrary continuous distribution, what is the probability
that the resulting array will contain a saddlepoint?

The random variables X and Y are said to have a bivariate normal distribution
if their joint density function is given by

1
2wo o, V1 — P

I S N A U e A I T O™
XCXP{ 2(1—p2)[< 0% >+< ay ) T o, ]}

(a) Show that the conditional density of X, given that ¥ = y, is the normal
density with parameters

Jy) =

T 2 2
et p=(y—py) and oy (1 —p)

Oy
(b) Show that X and Y are both normal random variables with respective
parameters j,, 0% and u,, o%.

(¢) Show that X and Y are independent when p = 0.
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23. Suppose that F(x) is a cumulative distribution function. Show that (a) F"(x)
and (b) 1 — [1 — F(x)]" are also cumulative distribution functions when n
is a positive integer.

HINT:  Let X, ..., X, be independent random variables having the common
distribution functlon F. Define random variables Y and Z in terms of the X;
sothat P{Y = x} = F'x), and P{Z=1x} = 1 — [1 — Fx)]". |
24. Show that if n people are distributed at random along a road L miles lon
then the probability that no 2 people are less than a d1stance of D miles apart
is, when D < L/(n — 1), [1 — (n — 1)D/L]". What if D > L/(n — 1)?

25. Establish Equation (6.2) by differentiating Equation (6.4).

26. Show that the median of a sample of size 2n + 1 from a uniform distribution
on (0, 1) has a beta distribution with parameters (n + 1, n + 1).

27. Verify Equation (6.6), which gives the joint density of X(;, and X ;).

28. Compute the density of the range of a sample of size n from a continuous
distribution having density functlon f

29. Let X1y = X(g) = - * * = X, be the ordered values of n independent umform
0, D random variables Prove thatfor 1l = k=n + 1,

P{X(k) - X(k—l) > t} = (1 - l'n

where X5 =0,X,, . =t

30. Let X;, ..., X, be a set of independent and identically distributed continuous
ranflom variables having distribution function F, and let X;), i = 1, ..., n
denote their ordered values. If X, independent of the X;, i = 1, ..., n, also

has distribution F, determine
(a) P{X > X(n)};
(b) P{X > Xh};

31. Let Xy, ..., X,, be independent and identically distributed random variables
having distribution function F and density f. The quantity M = [X;, + X(,,)1/2,
defined to be the average of the smallest and largest value, is called the
midrange. Show that its distribution function is

ﬂAm)=nfi}ﬂmn~x)—F@ﬂ“4ﬂﬂdx

32. Let-X,,...,X, be independent uniform (0, 1) random variables. Let
R = X(-n) - X(l) denote the range and M = [X(n) + X(l)]/z the mldrange
Compute the joint density function of R and M.

33. If X and Y are independent standard normal random variables, determine the
joint density function of

U=Xx V==t

Then use your result to show that X/Y has a Cauchy distribution.

PO

-
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1. Each throw of a unfair die lands on each of the odd numbers 1, 3, 5 with
probability C and on each of the even numbers with probability 2C.

(a) Find C.

(b) Suppose that the die is tossed. Let X equal 1 if the result is an even
-number, and let it be 0 otherwise. Also, let Y equal 1 if the result is a number
greater than three and let it be 0 otherwise. Find the joint probability mass
functlon of X and Y.

Suppose now that 12 independent tosses of the die are made.
¢(c) Find the probability that each of the six outcomes occurs exactly twice.
o (@) Find the probability that 4 of the outcomes are either one or two, 4 are
either three or four, and 4 are either five or six.
o (€) Find the probability that at least 8 of the tosses land on even numbers.

2. The joint probability mass function of the random variables X, ¥, Z is
p(1,2,3)=p2,1,1) = p2,2,1) = p(2,3,2) =1

~ Find (a) E[XYZ], and (b) E[XY + XZ + YZ].
3. The joint density of X and Y is given by

fx,y) = Cly — x)e™”

+(a) Find C.

#(b) Find the density function of X.
(¢) Find the density function of Y.
(d) Find E[X].

(e) Find E[Y].

4. Suppose that X, Y, and Z are independent random variables that are each
equally likely to be either 1-or 2. Fmd the probability mass function of
(@) XYZ, (b) XY + XZ + YZ, and (¢) X* + YZ.

5. Let X and Y be continuous random variables with joint density function

—y<x<y, 0<y<ow

+c 0<x<l,1<y<5
fx) = Y )

O =

otherwise

where c is a constant.

(a) What is the value of ¢?
(b) Are X and Y independent?
(¢) Find P{X + Y > 3}.

6. The joint density function of X and Y is

I<x<,0<y<2
otherwise

f(x,y)f=~{2?

(a) Are Xand Y independeﬁt?
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(b) Find the density function of X.

(¢) Find the density function of Y.

(d) Find the joint distribution function.
(e) Find E[Y].

(f) Find P{X + Y < 1}.

Consider two components and three types of shocks. A type 1 shock causes
component 1 to fail, a type 2 shock causes component 2 to fail, and a type
3 shock causes both components 1 and 2 to fail. The times until shocks 1,
2, and 3 occur are independent exponential random variables with respective
rates A, Ay, and As. Let X; denote the time at which component i fails, i =
1, 2. The randorm variables X;, X, are said to have a joint bivariate exponential
distribution. Find P{X; > s, X, > t}.

Consider a directory of classified advertisements that consists of m pages,
where m is very large. Suppose that the number of advertisements per page
varies and that your only method of finding out how many advertisements
there are on a specified page is to count them. In addition, suppose that there
are too many pages for it to be feasible to make a complete count of the total
number of advertisements and that your objective is to choose a directory
advertisement in such a way that each of them has an equal chance of
being selected.

(a) If yourandomly choose a page and then randomly choose an advertisement

from that page, would that satisfy your objective? Why or why not?

Let n(i) denote the number of advertisements on page i, { = 1, ..., m, and
suppose that whereas these quantities are unknown, we can assume that they
are all less than or equal to some specified value n. Consider the following
algorithm for choosing an advertisement.

Step 1. Choose a page at random. Suppose it is page X. Determine n(X) by
counting the number of advertisements on page X.

Step 2. “Accept” page X with probability n(X)/n. If page X is accepted, go
to step 3. Otherwise, return to step 1.

Step 3. Randomly choose one of the advertisements on page X.

Call each pass of the algorithm through step 1 an iteration. For instance, if

the first randomly chosen page is rejected and the second accepted, than we

would have needed 2 iterations of the algorithm to obtain an advertisement.

(by What is the probability that a single iteration of the algorithm results in
the acceptance of an-advertisement on page i? :

(c) What is the probability that a single iteration of the algorithm results in
the acceptance of an advertisement?

(d) What is the probability that the algorithm goes through k iterations,
accepting the jth advertisement on page i on the final iteration?

(e) Whatis the probability that the jth advertisement on page i is the advertise-
ment obtained from the algorithm?

(f) What is the expected number of iterations taken by the algorithm?
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9. The “random” parts of the algorithm in Self-Test Problem 8 can be written

10.

11.

12.

in terms of the generated values of a sequence of independent uniform
(0, 1) random variables, known as random numbers. With [x] defined as the
largest integgr less than or equal to x, the first step can be written as follows:

Step 1. Generate a uniform (0, 1) random variable U. Let X = [mU] + 1,
and determine the value of n(X).

(a) Explain why the above is equivalent to step 1 of Problem 8.
HINT:  What is the probability mass function of X?

(b) Write the remaining steps of the algorithm in a similar style.

Let Xy, X5, . . . be a sequence of independent uniform (0, 1) random variables.
For a fixed constant ¢, define the random variable N by

N = min{n: X, > c}

Is N independent of Xp? That is, does knowing the value of the first random
variable that is greater than ¢ affect the probability distribution of when this
random variable occurs? Give an intuitive explanation for your answer.

The following dartboard is a square whose sides are of length 6. The three
circles are all centered at the center of the board and are of radii 1, 2, and
3. Darts landing within the circle of radius 1 score 30 points, those landing
outside this circle but within the circle of radius 2 are worth 20 points, and
those landing outside the circle of radius 2 but within the circle of radius 3
are worth 10 points. Darts that do not land within the circle of radius 3 do
not score any points. Assuming that each dart that you throw will, independent
of what occurred on your previous throws, land on a point uniformly distrib-
uted in the square, find the probabilities of the following events.

(a) You score 20 on a throw of the dart.

(b). You score at least 20 on a throw of the dart.

(¢) You score O on a throw of the dart.

(d) The expected value of your score on a throw of the dart.

(e) Both of your first two throws score at least 10.

() Your total score after two throws is 30.

10 -
‘
A model proposed for NBA basketball supposes that when two teams with

roughly the same record play each other, then the number of points scored
in a quarter by the home, team minus the number scored by the visiting team
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Thus
n—1
E[X]= D 2logn — i+ 1)

i=1

n--1
--2f log(n — x + 1) dx
1

=2 log( ay
2

= 2(ylog(y) — »)l5
= 2n log(n)

Thus we see that when n is large, the quicksort algorithm requires, on
average, approximately 2n log(n) comparisons to sort n distinct values. H

Example 2p. The probability of a union of events. Let Ay, ... A, denote events
and define the indicator variables X;, i = 1, ..., n, by
¥ = 1 if A; occurs
i 1o otherwise
Now, note that

- ﬁl—X—l if UA; occurs
h i=1( =10  otherwise
Hence
E[l - [Ta- X,-)} = P<U A,->
i=1 i=1
Expanding the left side of the above yields that

P(L”J Ai> = E[E X - I3 XX + I XXX,

i=1 i=1 i<j i<j<k (2.3)
_ e (-—1)"+IX1"'X,,}
However, as

X. X, -

ot

¥ = 1 ifA; Ay, - - - Ay, occurs
% 0  otherwise

we see that
E[X; - X1 = PA; - - - A;)

and thus (2.3) is just a statement of the well-known formula for the union

of events
P(UA) = S P(A) — S5 P(AA) + EZ; P(AA;AD)
i i<j i<j<k
— e+ (=1)"TIPA - Ay i

O W S U——

. - - e e T
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Our next example gives another illustration of how the introduction of
randomness can sometimes be employed advantageously.

Example 2q. A round-robin tournament of n contestants is one in which each

n\* . .
of the <2> pairs of contestants play each other exactly once, with the cutcome

of any play being that one of the contestants wins and the other loses.
Suppose that the n players are initially numbered as player 1, player 2, and
so on. The permutation iy, i, . . . , i,, is said to be a Hamiltonian permutation
if i, beats i, i, beats iz, . . ., and i,,_ | beats i,,. A problem of some interest
is to determine the largest possible number of Hamiltonian permutations.

For instance, suppose that there are 3 players. Then it is easy to see
that if one of the players wins twice, then there is a single Hamiltonian
permutation (for instance, if 1 wins twice and 2 beats 3 then the only
Hamiltonian is 1, 2, 3); and if each of the players wins once, then there will
be three Hamiltonians (for instance, if 1 beats 2, 2 beats 3, and 3 beats 1,
then 1,2,3, 2,3,1, and 3,1,2 -are all Hamiltonians). Thus, when n = 3 the
largest possible number of Hamiltonian permutations is 3.

Although the Hamiltonian permutation problem does not involve proba-
bility, we will introduce randomnesses to show that in a round-robin tourna-
ment of n players, n > 2, there is an outcome for which the number of
Hamiltonian permutations is greater than n!/2"~!.

To verify the above, let us suppose that the results of the <;L> games

are independent and that either of the two contestants is equally likely to
win each encounter. If we let X denote the number of Hamiltonians that
result, then X is a random variable whose set of possible values is all the
possible numbers of Hamiltonian permutations that can result from a round-
robin tournament of »n contestants. Since at least one of the possible values
of a nonconstant random variable must exceed its mean, it follows that there
must be at least one possible tournament result which has more than E[X]
Hamiltonian permutations. To determine E[X], number the n! permutations

and let, fori = 1, ..., n!,
1 if permutation i is a Hamiltonian
Xi = ~ .
0  otherwise
Now, '
X = E X;
‘ i
S0
EX] = ) EIX]]
14
But

E[X;] = P{permutation 7 is a Hamiltonian}

=6
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#

The preceding equality being true because the probability that any permuta-
tion, say i, is, - . - » iy, is 2 Hamiltonian is, by independence, the probability
that i, beats i,, multiplied by the probability that i, beats i3, and so on.
Hence we obtain from the preceding that

{
BX]= 3=t -

Since, for n > 2, X is not a constant randqm'i}ariiible, it thus follows that
at least one of its possible values exceeds n!/2"". |

When one is dealing with an infinite collection of random variables X;,
i = 1, each having a finite expectation, it is not necessarily true that

E[EX} - S Ex 2.4)

i=1 i=1

. © n
To determine when (2.4) is valid, we note that 2 X; = lim 2 X; and thus

i=1 no® j=]

o[ 3 %) = o im 3 x|

i=1 noe j=1]

I

lim E[ 21 X,-] - (2.5)

n-»a i=1

= lim i E[X}]

no® j=1
= > E[X]
i=}

Hence Equation (2.4) is valid whenever we are justified in interchanging tt%e
expectation and limit operations in Equation (2.5). Although, in general, this
interchange is not justified, it can be shown to be valid in two important spe-
cial cases:

1. The X; are all nonnegative random variables (that is, P{X; = 0} =1 for
all 7).

2. > ElX|] <o
i=1

Example 2r. Consider any nonnegative, integer-valued random variable X. If for

each i = 1, we define
¥ = 1 if X=i
PTlo i X<i
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then
o X @
28 X; = ZS X; + jg X;
i=1 i=1 i=X+1
a X -

“Hence, since the X; are all nonnegative,

B = igl B 2.6)

= i P{X =i}
a useful identity. = |
Example 2s. Suppose that n elements—call them 1, 2, ..., n—must be stored

in a computer in the form of an ordered list. Each unit of time a request
will be made for one of these elements-—i being requested, independently
of the past, with probability P(i), i = 1, 2 P() = 1. Assuming these proba-

bilities are known, what ordering minimizes the average position on the line
of the element requested?

Solution Suppose that the elements are numbered so that P(1) =
P(2) = - -+ = P(n). To show that 1, 2, ..., n is the optimal ordering, let
X denote the position of the requested element. Now under any ordering—

say, O = iy, ip, ..., iy,

PolX= k) = 2, Pl
=

,,,,,,

thus showing that ordering the elements in decreasing order of their request
probabilities minimizes the expected position of the element requested. H

7.3 COVARIANCE, VARIANCE OF SUMS, AND CORRELATIONS

We start with the following proposition, which shows that the expectation of

a product of independent random variables is equal to the product of their expecta-
tions.

A
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Proposn‘lan 3.1

If X and Y are 1ndependent then for any funcuons h and g
' EL@OhM)] = E[gX]ED]

Proof: Suppose that X and Y are jointly continuous with joint density
f(x, ). Then

E[g(X)h(Y)] = fimjimg(x)h(y)f(x, y) dx dy
- fin f:c g fx(®) fy(y) dx dy

= [" honG dy [ gt dx

= E[M(Y)]E[g(X)]
The proof in the discrete case is similar.

Just as the expected value and the variance of a single random variable give
us information about this random variable, so does the covariance between two
random variables give us information about the relationship between the ran-
dom variables.

Defmman

The covanance between X and Y, denoted by Cov(X, Y) is defined by
‘ COV(X Y) = El(X — E[X]) ¥ - E[Y])] ‘

Upon expanding the right side of the definition above, we see that
Cov(X,Y) = E[XY — E[X]Y — XE[Y] + E[Y]E[X]]
= E[XY] — E[X]E[Y] — EIX]E[Y] + E[X]E[Y]
= E[XY] — E[X]E[Y]
Note that if X and Y are independent then, by Proposition 3.1, it follows that
Cov(X, Y) = 0. However, the converse is not true. A snnple example of two

dependent random variables X and ¥ having zero covariance is obtained by letting
X be a random variable such that

PX=0}=PX=1}=PX=—1} =3
and define

v {0 ifX # 0

1 fX=0
now, XY = 0, so E[XY] = 0. Also, E[X] = 0 and thus
Cov(X, Y) = E[XY] — E[X]E[Y] =
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However, X and Y are clearly not independent.
The following proposition lists some of the properties of covariance.

Propositioh 3.2

(@) Cov(X, Y) = Cov(¥, X)

(i) Cov(X,; X) = VarX) -~ :
(iii) Cov(aX, V) = aCov(X, Y) b
(iv) ch<§_‘,1 X,-,‘Z Y,) D 2 va( X, Y))
i= =1 S

i=1j=

_Ifroof of Proposition 3.2: Parts (i) and (ii) follow immediately from the
deﬁmtlpn of covariance, and part (iii) is left as an exercise for the reader. To
prove .(1v), which states that the covariance operation is additive (as is the operation
of taking expectations), let u; = E[X;] and v; = E[Y}]. Then

i=1

and

i=1 i=1 i=1

m

=E Z(X m—)Z(

S o]
 i=1 _/=

- n om

=E| X > Xi— ) - v,-)]

L i=1j=1

con($ 1.5 1) - <zz><z %))
‘ Y -

n m

= > > E&; — (¥ — v)]

i=1j=1

whc?re the. last equality follows because the expected value of a sum of random
variables is equal to the sum of the expected values. |

. It follows from parts (ii) and (iv) of Proposition 3.2, upon taking ¥; = X;,
J=1,...,n, that j j

Var(}n: X,.> = cOv<2 X;, 2 X)

i=1 i=1

N n n

= 2 2 Cov(X; X))

i=1j=1

= >, Var(X;) + 2> Cov(X;, X))

i=1 %]
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Since each pair of indices i, j, i # j, appears twice in the double summation, the
above is equivalent to the following:

Var<2 X,-> 2 Var(X;) + 2 >, Cov(X;, X)) (3.1)
i=1 i=1 i<j
If Xy, ..., X, are pairwise independent, in that X; and X; are independent

for i #+ j, then Equation (3.1) reduces to
n n
Var<2 Xi> = > Var(X;)
i=1 i=1
The following examples illustrate the use of Equation (3.1).

Example 3a. Let X, ..., X,, be independent and identically distributed random
variables havmo expected value p and variance o?, and as in Example 2c,

let X = 2 X,/n be the sample mean. The quantities X; — X, i = 1, ...,
i=1

n, are called deviations, as they equal the differences between the individual

data and the sample mean. The random variable

X; — X) X)*
S - 121 n — 1
is called the sample variance. Find (a) Var(X) and (b) E[SZ].

Solution

(@) VarX) = ( >2 Var(E X>

i=1

( > 2 Var(X;) by independence
i=1

(b) We start with the following algebraic identity

D& - ptp— X

i=1

ﬁmew+2@—w-m—m§%—

i=1 i=1 [ ==

=> & w @ - p? 28 - wn® -
i==1

=2 & - p? - X - w?

i=1

(n — 1)§?
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Taking expectations of the above yields that

(= DES? = X B — w?] — nBIR— w)?]
N ) i=1 :
= no? — n Var(X)
_ 4 = (n— 1)o?
where the final equality made use of part (a), and the one preceding it made
use of the result, of Example 2c, that E[X] = u. D1v1d1ng through by

n—1 shows that the expected value of the sample variance is the d1smbut10n
variance. o~ : S |

Our next example presents an alternative method (to the one used in Chap-
ter 4) for obtammc the vanance of a binomial random variable.

Example 3b. Varzance of a bmomlal random variable. Compute the variance
of a binomial random varlable X with parameters 7 and p-

Solutlon Since such a random vanable represents the number of successes
in n independent trials when each trial has a common probablhty p of being
a success, we may ‘write

. X=X + - +X,
where the X are 1ndependent Bernoulli random vanables such that

1 if the ith trial is a success
Xi - . ’
0 otherwise

Hence, from Equution (3.1) we obtain ' ~
Var(X) = Vur(Xl) + - - 4+ Var(X,)

But
Var(X;) = E[X?] — (E[X]])? ,
= E[X] - (BX)®  sinceX} =X;
. = P P
and.thus ;
VaI(X) = np(l — p) _ B

Example 3c Varzance of the number of matches Compute the variance of X,
the number of people- that select their own hats in Example 2h.

Solution Using' the same representation for X as we do in Example 2h,
namely,

X=X + -+ Xy
where

X = 1 if the ith man selects his own hat
70 otherwise
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we obtain from Equation (3.1) that
N
Var(X) = >, Var(Xy) + 2 2,>, Cov(X;, X)) (3.2)
i=1 Ti<j

Since P{X; = 1} = 1/N, we see from the preceding example that

_if oy y=1
Var(Xy) =N N T N2
Also,
- Cov(X;, X;) = EIXiXj] — E[IXE[X;]
Now, :

1 if the ith and jth men both select their own hats
XiX; =10  otherwise ' ’

and thus .
| EIXX] = P(X; = 1,X; = 1)
=H&:HH&=H&=H
11
TNN-1
Hence

! (1Y 1
CoviXe X)) = N — 1) (N) NN - 1)
and from Equation (3.2),

N-1 N 1
Var(X) = N + 2<2> NM2(N .

N-1 1
= +N

=

=1

Thus both the mean and variance of the number of matches are equal
to 1. In a way, this result is not unexpected because, as shown» ip Exampl'e
5m of Chapter 2, when N is large, the probability of i matches is approxi-
mately e~ !/il. That is, when N is large, the nurgber of' matches is
approximately distributed as a Poisson random vanable_ with mean 1.
Hence, as the mean and variance of a Poisson random variable are equal,
the result obtained in this example is not surprising. i

Example 3d. Sampling from a finite population. Consider a set of N people

each of whom has an opinion about a certain subject that is Ipeasured by a
real number v, which represents the person’s “strength of ff.:eyng about the
subject. Let v; represent the strength of feeling of person i, i = 1,...,N.
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Suppose that these quantities v;, i = 1, ..., N are unknown and to gather
information a group of n of the N people is “randomly chosen” in the sense

4 : N
that all of the < > subsets of size n are equally likely to be chosen. These
* \n . :

n people are then questioned and their feelings determined. If S denotes the
suin of the n sampled values, determine its mean and variance.

An imiportant application of the above is to a forthcoming election in
which each person in the population is either for or against a certain candidate
or proposition. If we take v; to equal 1 if person i is in favor and 0 if he or

N .
she is against, then v = 2 v;/N represents the proportion of the population
i=1 S
that is in favor. To estimate v, a random sample of n people is chosen, and

these people are polled. The proportion of those polled that are in favor—
that is, S/n—is often used as an estimate of V.

Solution For each person i, / = 1, ..., N, define an indicator variable /;
to indicate whether or not that person is included in the sample. That is,

{1 if pérson i is in the random sample
Ii = ’ . .
0  otherwise

Now § can be expressed by

N
S = 2 ViIi

i=1

S0
N
E[S] = 2 vEll]
i=1
N
=1 i<j
IN
= > v} Varl) + 23>, v;v; Cov(l, I)
i==1 i<j
As
n
ElL] = N
nn-—1
» HH =y V=1
we see that
n n
Var(l) = N <1 — N>
2
oy nmm—1) [ny
Cov(l;, I})) = NN = 1) <N>
_ —nN — n)
N3N — 1)
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Hence

i v
E[S] =7 — =y
=1N

| N — ‘ )2 2n(N - n)
. VaI(S) - ( ) i=1 Vi N? (N - zl<124
The expression for: Var(S) can be simplified somewhat by using the identity

(v, + -+ v’ = 2 Vi + 222 vv; to give, after some simplification,

i=1 i<j N
2
N — 1) EIVi
n - i= =2
Var(S) = N1 NV

Corsider now. the special case in which Np of the v’s are equal to 1
and the remainder equal to 0. Then in this case S is a hypergeometric random
variable and has mean and variance given by |

E[S] = nv = np since?=—]\-]lz=p \
l\‘\
n(N — n) {Np 2> \
Var(§) = =51 <N p
\
n(N — n)
== 251 —
-1 X p)

The quantity S/n, equal to the proportion of those sampled that have values
equal to 1, is such that

-

S N — _
Var (Z) "(“]\‘_]“"‘")‘ p(l — p) |

The correlation of two random variables X and Y, denoted by p(X, Y) is
defined, as long as Var(X) Var(Y) is positive, by

X.Y) = Cov(X, Y)
P Nar(X) Var(Y)

—l=pX Y)=1 (3.3)
To prove Equation (3.3), suppose that X and Y have variances given by

It can be shown that

o2 and o*%, respectively. Then
0= Var(E + —}i> ‘
o, Oy
Var(X) Var(Y) , 2Cov(X,Y)
= +——+
o> o, 0, 0y

= 2[1 + p(X, Y)]
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implying that
-1 =pX,7)

0= Var(zi— - 1)
oy O

¥y
Var(X) VarY 2Cov(X, Y)
= + 5 —
oz (o) 040y,

= 2[1 — p(X, V)]

On the other hand,

*

implying that
pX,Y) =

which completes the proof of Equation (3. 3)

'In fact, since Var(Z) = 0 implies that Z is constant with probability 1 (this
intuitive fact will be rigorously proved in Chapter 8), we see from the proof of
(3.3) that p(X, Y) = 1 implies that Y = a + bX, where b = oy,/0, > 0 and
p(X, Y) = —1 implies that Y = a + bX, where b = —o,/0, < 0. We leave
it as an. exercise for the reader to show that the reverse is also true: that if
Y = a + bX, then p(X, Y) is either +1 or — 1, depending on the sign of b.

The correlation coefficient is a measure of the degree of linearity between
X and Y. A value of p(X, Y) near +1 or —1 indicates a high degree of linearity
between X and Y, whereas a value near 0 indicates a lack of such linearity.

A positive value of p(X, Y) indicates that Y tends to increase when X does,

whereas a negative value indicates that ¥ tends to decrease when X increases. If
p(X, Y) = 0, then X and Y are said to be uncorrelated.

Example 3e. Let I, and I be indicator variables for the events A and B. That is,
7. = 1 if A occurs
47 10  otherwise

I = 1 if B occurs
570 otherwise

Then
E[l4] = P(A)
Ellg] = P(B)
E[l4I5] = P(AB)
SO

Cov(ly, Ig) = P(AB) — P(A)P(B)
= P(B)[P(A|B) — P(4)]
Thus we obtain the quite intuitive result that the indicator variables for A
and B are either positively correlated, uncorrelated, or negatively correlated
depending on whether P(A|B) is greater than, equal to, or less than P(A). B

Our next example shows that the sample mean and a deviation from the
sample mean are uncorrelated.
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Example 3f. Let X, ..., X, be independent and identi}aﬂy distributed random
variables having variance o”. Show that

Cov(X; — X, X) =0

Solution

= Cov<X,~, 1 X_j) ~ Var(X)
llj=1
1 n 02
= — Cov(X;, Xj) — —
Ilj=1 n
) 2
(0 ()

where the nexi-to-last equality uses the result of Example 3a, and the final
equality follows since

_]0 ifj +{ byindependence

Cov(X;, X)) = {02 ifj =1 since Var(X)) = o”
Although X and the deviation X; — X are uncorrelated, they are not,

in general, independent. However, in the special case where the X; are normal

random variables it turns out that not only is X independent of a single

deviation but it is independent of the entire sequence of deviations

X -Xj=1...,n This result will be established in Section 9, where
we will also show that, in this case, the sample mean X and the sample
variance $?/(n — 1) are independent, with §?/¢? having a chi-squared
distribution with n— 1 degrees of freedom. (See Example 3a for the definition
of 52 B
Example 3g. Consider m independent trials, each of which results in any of r
r
possible outcomes with probabilities Py, Pa, - - -5 P, E P; = 1. If we let
T ,
N;,i=1,...,r denote the number of the m trials that result in outcome
i, then Ny, Ny, . .., N, have the multinomial distribution

P{N, = n;,Ny, = ny, ..., N, = n;}
m! -
= pliph...pPk n;=m
nlng!..o.onl 12 ’ ,-21 '
For i # j it seems likely that when N; is large N; would tend to be small,
and hence it is intuitive that they should be negatively correlated. Let us
compute their covariance by using Proposition 3.2(iv) and the representation

m m

Ni= > L) and N;= 2 LK)
k=1 k=1
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where

L) = 1 if trial k results in outcome i
t 0 otherwise

*

LG = 1 if trial k results in outcome j
! 0  otherwise
From Proposition 3.2(iv) we have

n m

Cov(N;, Np) = >, >, Cov(l;(k), I;(£)
(=1k=1

Now, when k #+ ¢,
\ Cov(Z;(K), [;(€)) = 0

since the outcome of trial k is independent of the outcome of trial €. On the
other hand,

Cov(l;(£), [;(£)) = EUL;(O[;(O] — EML(O]EL(6)]

where the above uses that I;(€)I;(€) = O since trial £ cannot result in both\
outcome i and outcome j. Hence we obtain that

Cov(N;, Nj) = —mP;P;

which is in accord with our intuition that N; and N; are negatively correlated.

CONDITIONAL EXPECTATION

7.4.1 Definitions

Recall _tpat if X and Y are jointly discrete random variables, the conditional
probability mass function of X, given that ¥ = vy, is defined for all y such that
P{Y = y} >0, by

pxip(aly) = P(X = x| = y) = 2
py(y)

It. is therefore natural to define, in this case, the conditional expectation of X,
given that ¥ = y, for all values of y such that py(y) > 0 by

E[X|Y = y] = >, xP{X = x|Y = y}

X
= 2 wpxir(xly)
x ’

Example 4a. If X and Y are independent binomial random variables with identical

parameters n and p, calculate the conditional expected value of X, given that
X+ Y=m
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Solution Let us first calculate the conditional probability mass function
of X, given that X + Y = m. For k = min(n, m),
P X=kX+Y=m}
P{X+Y=m}
P X=kY=m—k}
T PX+Y=m}
APX=KkP{Y=m—k}
B P{X+Y=m}

PX=k|X+Y=m}=

2n 71 n—m
< )p (1 -py
m
(0"
k) \m—k
<2n>
m
where we have used the fact (see Example 3e of Chapter 6) that X + Y is
a binomial random variable with parameters 2n and p. Hence the conditional

distribution of X, given that X + Y = m, is the hypergeometric distribution;
thus, from Example 2g, we obtain

EX|X+Y=m]= ﬂ |

Similarly, let us recall that if X and Y are jointly continuous, with a Jomt
probability density function f(x, y), the conditional probability density of X, given
that Y = y, is defined for all values of y such that fy(y) > 0 by

fG, )
Frir&|y) = 2 0)

It is natural, in this case, to define the conditional expectation of X, given that
Y =y, by

EX|Y =31 = [ xfuyly) dx
provided that fy(y) > 0.

Example 4b. Suppose that the joint density of X and Y is given by
e~ e
fx,y) = —— I<x<oo,<y<om
y

Compute E[X|Y = y].

o

/

i
i

n ke _ o\n—k n m -k 1 — n—m+k /
<k>p (1-p) <m__k>p (1-p) (

~__ |-
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Solution _Wé start by c()mputing the conditional density

1t
O
__ fxy

[ reyax
(1/y)e ™ e~
- f: (1/y)e~ e dx
(1/y)e ™"
- f: (Liy)e ™" dx

fX|Y( x|y) =

1
=—e
y

Hence the condltlonal distribution of X, given that Y ¥, is just the exponen-
tial distribution with mean y. Thus

—xly

S :
Y .

‘ ReMARK. Just as conditional probabilities satisfy all of the properties of
ordinary probabilities, so do conditional expectations satisfy the properties
of ordinary expectations. For instance, such formulas as

: > g px y(x|y) in the discrete case
E[gX)|Y =yl =1 %,
| separly &

in the continuous case

and

E[Z X;|Y = )’]
Li<h

remain valid: ‘As a matter of fact, conditional expectation given Y = y can be

thought of as being an ordinary expectation on a reduced sample space consisting
only of outcomes for which ¥ = y,

}3 E[XIY——y]

i=1

7.4.2 COmputing Expectations by Cbnditioning

Let us denote by E[X | Y] that function of the random variable ¥ whose value at
Y = yis E[X [ Y = y]. Note that E[X|Y] is itself a random variable. An extremely
important property of conditional expectation is given by the following proposition.
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. Proposition41

. oEmeEmM . @n

If Y is a discrete random variable, then Equation (4.1) states that
E[X] = 2, EIX|Y = y]P{Y = y} (4.1a)
)?

whereas if Y is continuous with density fy(y), then Equation (4.1) states

Ex) = [ EX|Y = 310 dy (4.1b)

We now give a proof of Equation (4.1) in the case where X and Y are both discrete
random variables.

Proof of Equation (4.1) When X and Y Are Discrete: We must show that
E[X] = X, E[X|Y = yIP{Y = y} (4.2)
¥y

Now, the right-hand side of Equation (4.2) can be written as
> EIX|Y = ylP{Y = y} = >, X xP{X = x|Y = y}P{Y = y}
y - y x

and the result is proved.

One way to understand Equation (4.2) is to interp.rc.et it as follows: To calculate
E[X], we may take a weighted average of the co_nd1t1on_a1 expected value qf _X,
given that ¥ = y, each of the terms E[X |Y = y] being welghted I_Jy the probab}ht_y
of the event on which it is conditioned. (Of what does this remind you?) T%qs is
an extremely useful result that often enables us to easily compute expectations
by first conditioning on some appropriate random variable. The following examples
illustrate its use. '

Example 4¢. A miner is trapped in a mine containing 3 doors. The first door
leads to a tunnel that will take him to safety after 3 hours of travel. The
second door leads to a tunnel that will return him to the mine after 5 hoprs
of travel. The third door leads to a tunnel that will return him to the mine
after 7 hours. If we assume that the miner is at all times equally likely to
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choose any one of the doors, what is the expected length of time until he
\ reaches safety?

Solution Let X denote the amount of time (in hours) until the miner reaches
safety, and et Y denote the door he initially chooses. Now

EIX] = EIX|Y = 11P{Y = 1} + E[X|Y = 2]P{Y = 2}

[

- + E[X|Y = 3]P(Y = 3)
— LEX|Y = 1] + E[X|Y = 2] + E[X|Y = 3])
However,
EX|Yy=1]=3
EX|Y = 2] = 5 + E[X] 4.3)
EX|Y =3] = 7 + E[X]

To understand why Equation (4.3) is correct, consider, for instance,
E[X [ Y = 2] and reason as follows: If the miner chooses the second door,
he spends 5 hours in the tunnel and then returns to his cell. But once he
returns to his cell the problem is as before; thus his expected additional time
until safety is just E[X]. Hence E[X|Y = 2] = 5 + E[X]. The argument
behind the other equalities in Equation (4.3) is similar. Hence

E[X]1 =13 + 5+ E[X] + 7 + E[X])
or )
E[X] = 15 |

Example 4d. Expectation of a random number of random variables. Suppose
that the number of people entering a department store on a given day is a
random variable with mean 50. Suppose further that the amounts of money
spent by these customers are independent random variables having a common
mean of $8. Assume also that the amount of money spent by a customer is
also independent of the total number of customers to enter the store. What
is the expected amount of money spent in the store on a given day?

Solution If we let N denote the number of cuStomers that enter the store
and X; the amount spent by the ith such customer, then the total amount of

N
money spent can be expressed as z X;. Now,
i=1

o] = el S

I

But
N n
E[z X;|N = n] = E[E XN = n]
1 1

=E [E X,-] by the independence of the X; and N
1

= nE[X] where E[X] = E[X]]
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which implies that
E[i X,.{N] = NE[X]
and thus < 1
E[i X,-] = E[NE[X]] = E[NIE[X]

i=1
Hence, in our example, the expected amount of money spent in the store is
50 X 8, or $400. |

Example 4e. Consider n points that are independently and uniformly distributed
on the interval (0, 1). Say that any one of these points is “isolated” if there
are no other points within a distance d of it, where d is a specified constant
such that 0 < d < 3. Compute\the expected number of the n points that are
isolated from the others. -

Solution Let the points be Uy, ..., U,, and define ; as the indicator

variable for the event that Uj; is an isolated point, j = 1, ..., n. Thatis, [;
n

is 1 if U; is an isolated point, and is 0 otherwise. Then ), I; represents the
: i=1
number of isolated points. Now

VIR
i=1 j=1
To compute E[[;] we condition on U;:
1
Ell = jo ElL|U, = ] dx

Now, if x = d, then a point at location x will be isolated if none of the other
n — 1 points occur within the interval from 0 to x + difd<x=1-d,
then it will be isolated if none of the other points occur within the interval
fromx — dtox + d;if x > 1 — d, then it will be isolated if none of the
other points occur within the interval from x — d to 1 (see Figure 7.2).
Hence we see that

d A—d 1
Bl = fo EU,|U = x1dx + L EL|U; = x) dx + fl_dE[zjwj=x]dx
d 1—d
---j a ~d-x)”‘1dx+j (1 — 24" Ldx
0 d
1
+f (1—x+d)" ldx
1—-d
1—d 24
[ gy -2 -2+ [y
d

1—2d

- 1 - n 1 dﬁ
IO ) N () PP N S )
n n n n
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@ | e . |
0 X x+d 1

(b) Pt > |
3 X—d X x+d i
I . !

© | * T !
0 x—d x 1

Figure 7.2 xisisolated point. @ x=d; (b)d<x=<1-d; ()] — d < x.

Therefore,
Elijél IJ:I ={1-d)"+@m~DA-2d)"+ 2" — Dd"
For instance, if d = c/n, then for n large it follbws from the preceding that
E['le Ij:l ~e 4+ (n— e %* B
j=

Example 4f, An.urn contains a white and b black balls. One ball at a time is
randomly withdrawn until the first white ball is drawn. Find the expected
number of black balls that are withdrawn.

Solution This: problem was préviously treated in Example 2m. Here we
present a solution using conditioning. Let X denote the number of black

balls withdrawn and, to make explicit the dependence on a and b, let

M,;, = E[X]. We obtain an expression for M, ;, by conditioning on th
initial ball that is withdrawn. That is, define b ® )

y = {1 if the first ball selected is white
. 0 if the first ball selected is black
Conditioning on Y yields
M,, = E[X] = E[X[Y = 1]P{Y = 1} + E[X|Y = 0]P{Y = 0}
However,

EX|Y=1]=0 (4.4)
EX|]Y=01=1+M,;, 4.5)

To un@erstand Equations (4.4) and (4.5), suppose, for instance, that the first
ball withdrawn is black. Then, after the first withdrawal, the situation is
exactly the same as if we had started with a white balls and » — 1 black
balls, which establishes Equation (4.5).

Since P{Y = 0} = b/(a + b), we see that

b
M, = Tl T Moyl

VRN
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Now, M, is clearly equal to 0, and we obtain

1 1
Moy =~ + Mgl = ——

2 2 1 2
Maﬁz_m[1+M“’1]"a+z[1+a+1]“a+1

3 3 2 3
M“’3“a_+_§[1+M“’2]‘a+3[1+a+1]’a+1
By using induction, one can easily verify that

b
M“’b—a—l-l

It is also possible to obtain the variance of a random variable by conditioning.
We illustrate this by the following example.

Example 4g. Variance of the geometric distribution. Independent trials each
resulting in a success with probability p are successively performed. Let N
be the time of the first success. Find Var(V).

Solution Let Y = 1 if the first trial results in a success and ¥ = 0
otherwise. Now, ‘
Var(N) = E[N?] ~ (EIN])®
To calculate E[N?], we condition on Y as follows:
EIN?] = E[EIN?|YT]
However,
EN}|lr=1]1=1
E[N2|Y = 0] = E[(1 + N)*]

These two equations follow because, if the first trial results 1n a success,
then clearly N = 1; thus N 2 = 1. On the other hand, if the first trial results
in a failure, then the total number of trials necessary for the first success
will have the same distribution-as one (the first trial that results in failure)
plus the necessary number of additional trials. Since the latter quantity has
the same distribution as N, we obtain that E[N2[Y = 0] = E[(1 + N)].
Hence we see that

E[N?] = EIN?|Y = 1]P{Y = 1} + E[N*|Y = 0]P{Y = 0}
=p + (1 — pEI(l + N)’]
=1+ (1 — p)E2N + N*

However, as was shown in Example 9b of Chapter 4, E[N] = 1/p; therefore,

E[NY] =1+ —-—————2(1; P) L (1 - pEIN?
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or

Therefore, «

Var(N) = E[N?] — (E[N])?

_2-p <1>2
~2-p (1
D p

1= |

- In our next example we determine the expected number of uniform (0, 1)

- random variables that need to be added for their sum to exceed 1. The answer,

surprisingly, is e.

Example_e 4h. Let Uy, U,,. . . be a sequence of independent uniform (0, 1) random
variables. Find E[N] when

N = mm{n > U 1}
i=1
Solution We will solve the above by obtaining a more general result. For
x &€ [0, 1], let

N(x) = min{n: i U, > x}
i=1

and set
m(x) = E[N(x)]

Tha}t is, N(x) is the number of uniform (0, 1) random variables we need add
until thgr sum exceeds x, and m(x) is its expected value. We will now derive
an equation for m(x) by conditioning on U;. This gives, from Equation (4.1b),

1
mx) = jo EIN®|U; = yl dy (4.6)

Now,

EING)|U; = 3] ={1 £y

1+ mlx — y) if y=x S

The preceding formula is obvious when y > x. It is true when y < x since
if Fhe first uniform value is y, then at that point the remaining number of
uniforms needed is the same as if we were just starting and were going to
add uniforms until their sum exceeded x — y. Substituting (4.7) into (4.6)
gives that :

Il

X
mx) =1+ f m(x — y)dy
0

by letting
H=x-y

1+ f ' m{u) du
o
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Differentiating the preceding equation yields that

m'(x) = m(x)
or, equivalently,

new
_ m(x)
Integrating this gives
loglm(x)] = x + ¢

or

m(x) = ke*
Since m(0) = 1. we see that k = 1, so we obtain that

mx) = e*

Therefore, m(1), the expected number of uniform (0, 1) random variables
that need to be added until their sum exceeds 1 is equal to e. |

7.4.3 Computing Probabilities by Conditioning

Not only can we obtain expectations by first conditioning on an appropriate random
variable, but we may also use this approach to compute probabilities. To see this,
let E denote an arbitrary event and define the indicator random variable X by

¥ = 1 if E occurs
10  if E does not occur

It follows from the definition of X that
E[X] = P(E)
E[X|Y =y] = P(E|Y =y)  for any random variable Y
Therefore, from Equations (4.1a) and (4.1b) we obtain

P(E) = >, P(E|Y = y)P(Y = y)  if Yisdiscrete
); (4.8)
= f P(E|Y = y)fy(y)dy  if Yis continuous

Note that if ¥ is a discrete random variable taking on one of the values yq, . s
¥,.» then, by defining the events F;, i = 1, ..., nby F; = {Y = y;}, Equation

(4.8) reduces to the familiar equation

P(E) = Y, P(E|F)P(Fy)

i=1
where F,, . . ., F, are mutually exclusive events whose union is the sample space.

Example 4i. The best prize problem. Suppose that we are to be presented with
n distinct prizes in sequence. After being presented with a prize we must
immediately decide whether to accept it or to reject it and consider the next
prize. The only information we are given when deciding whether to accept
a prize is the relative rank of that prize compared to ones already seen. That
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is, for instance, when the fifth prize is presented, we learn how it compares
with the four prizes already seen. Suppose that once a prize is rejected it is
lost, and that our objective is to maximize the probability of obtaining the
best prize. Assuming that all n! orderings of the prizes are equally likely,
how well can we do?

Solution Rather surprisingly, we can do quite well. To see this, fix a value
k, 0 = k < n, and consider the strategy that rejects the first k prizes and
then accepts the first one that is better than all of those first k. Let Py (best)
denote the probability that the best prize is selected when this strategy is
employed. To compute this probability, condition on X, the position of the
best prize. This gives '

P.(best) = i Pi(best|X = HP(X = i)

i=1
1 < .
== > Py(best|X = i)
ni=1
Now, if the overall best prize is among the first &, then no prize is ever
selected under the strategy considered. That is,
Py(best|X = i) =0 ifisk

On the other hand, if the best prize is in position i, where i > k, then the
best prize will be selected if the best of the first i — 1 prizes is among the
first k (for then none of the prizes in positions ¥ + 1,k + 2, ...,i — 1
would be selected). But conditional on the best prize being in position i, it
is easy to verify that all possible orderings of the other prizes remain equally
likely, which implies that each of the first i — 1 prizes is equally likely to
be the best of that batch. Hence we see that

Py (best|X = i) = P{best of firsti — 1 is among the first k| X = i}

= if i>k

From the preceding, we obtain that

k& 1
Py(best) == >

nilgari— 1

1
%kf 1 dx
nhre1x -1

_ _lgk)a(n - 1)
no 2\ k
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Now, if we consider the function

X n
= -—-1 —
g(x) " og< x)
then

SO

! — E = = Zl—
g(x)—O::log(x> l=x >
Thus, since Py(best) = g(k), we see that the best strategy of the type consid-
ered is to let the first n/e prizes go by and then accept the first one to appear
that is better than all of those. In addition, since g(n/e) = 1/e, the probability
that this strategy selects the best prize is approximately 1/e = .36788.

REMARK. Most people are quite surprised by the size of the probability
of obtammg the best prize, thinking that this probablhty would be close to
0 when n is large. However, even without going through the calculations,
a little thought reveals that the probability of obtaining the best prize can
be made reasonably large. For consider the strategy of letting half of the
prizes go by and then selecting the first one to appear that is better than all
of those. The probability that a prize is actually selected is the probability
that the overall best is among the second half, and this is 1. In addition,
given that a prize is selected, at the time of selection that prize would have

. been the best of more than n/2 prizes to have appeared and would thus have
probability of at least 3 of being the overall best. Hence, the strategy of
1ett1ng the first half of all pnzes go by and then accepting the first one that
is better than all of those prizes has a probability greater than 3 of obtaining
the best prize. g

Example 4j. Let Ube a uniform random variable on (0, 1), and suppose that the
conditional distribution of X, given that U = p, is binomial with parameters n
and p. Find the probability mass function of X.

Solution Conditioning on the value of U gives

1
PIX =i} = fo P{X = i|U = p} fy(p) dp
1
= fo P{X =i|U=p}dp

=———--——l,(n__l),f P —py*ldp

'Now it can be shown (a probabilistic proof is given in Section 6.6) that

g nei g _ i = D!
fop(l"”) P =" D!
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Hence we obtain that .

. 1 .
P{X = i} —— i=0,...,n

That is, we*obtain the surprising result that if a coin whose probability of
coming up heads is uniformly distributed over (0, 1) is flipped » times, then
the number of heads occurring is equally likely to be any the values 0, ... ,n
Because the preceding conditional distribution has such a nice form,

it is worth trying to find another argument to enhance our intuition as to
why such a result is true. To do so, let U, Uy, . .., U, be n + 1 independent
uniform (0, 1) random variables, and let X denote the number of the random
variables U I» - - - » U, that are smaller than U. Since all the random variables
‘U, U, ..., U, have the same distribution, it follows that U is equally likely
to be the smallest, or second smallest, or largest of them; so X is equally

likely to be any of the values 0, 1, ..., n. However, given that U = p, the
number of the U; that are less than U is a binomial random variable with
parameters »n and p, thus establishing our previous result. |

Example 4k. Suppose that X and Y are independent continuous random variables
having densities fy and fy, respectively. Compute P{X < Y}.

Solution Conditioning on the value of Y yields

P{X<Y} = J;P{X< Y|Y = y} fy() dy
- [ Px <l =3rm @
= r P{X <y}fy(y}dy by indepehdence

RSO

where

Y
Fx) = | _fu)dx ;

Example 41. Suppose that X and Y are independent continuous random variables.
Find the distribution of X + Y.

Solution By conditioning on the value of Y, we obtain

PX+Y<a)= [ PX+Y<alt=31f0)dy
= [ P+ y<aly =yp0)d
= [ Px<a-yfoa

= [ Fa = a




348 Chapter 7 Properties of Expectation

7.4.4 Conditional Variance

Just as we have defined the conditional expectation of X given the value of ¥,
we can also define the conditional variance of X given that ¥ = y, which is
defined as follows:

Var(X|Y) = E[(X — E[X|Y1)?|Y]

That is, Var(X|Y) is equal to the (conditional) expected square of the difference
between X and its (conditional) mean when the value of Y is given. Or, in other
words, Var(X|Y) is exactly analogous to the usual definition of variance, but now
all expectations are conditional on the fact that Y is known.

There is a very useful relationship between Var(X), the unconditional vari-
ance of X, and Var(X|Y), the conditional variance of X given Y, that can often
be applied to compute Var(X). To obtain this relationship, note first that by the
same reasoning that yields Var(X) = E[X 2] — (E[X])2 we have that

Var(X|Y) = E[X*|Y] — (E[X|Y])?
SO

E[Var(X|Y)] = E[E[X?|Y]] — E[(E[X|Y])*]
= E[X* — E[(EX|Y])?]

Also, as E[E[X IY]] = E[X], we have that
Var(E[X|Y]) = E[(EX|Y])*] — (E[X])? (4.10)

4.9)

Hence, by adding Equations (4.9) and (4.10), we arrive at the following proposition.

Proposition 4.2 ' The conditional
_ variance formula :

Var(X) = EtVa_r(Xl ] + Var(E[X| Y1) -

Example 4m. Suppose that by any time ¢ the number of people that have arrived
at a train depot is a Poisson random variable with mean Ar. If the initial
train arrives at the depot at a time (independent of when the passengers
arrive) that is uniformly distributed over (0, T'), what is the mean and variance
of the number of passengers that enter the train? :

Solution Let, for each ¢ = 0, N(¢) denote the number of arrivals by ¢, and
let Y denote the time at which the train arrives. The random variable of
interest is then N(Y). Conditioning on Y gives:

EINV)|Y =11 = EIN®|Y = 1]
= E[N(] by the independence of Y and N(¢)
= At since N(f) is Poisson with méan At
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Hence
EIND)|Y] = AY
so taking gxpectations gives

EING] = MBIV = 4

To obtain Var(N(Y)), we use the conditional variance formula:

Var(N(Y)|Y = £) = VarN@)|Y = 1)
= Var(N(®)) by independence
= At

SO

Var(N(Y)|Y) = AY
EIND)|Y]1= )Y

Hence, from the conditional variance formula,
Var(N(Y)) = E[AY] + Var(AY)

T, er
——)\2+/\ D

where the above uses that Var(¥Y) = T2/12. |

Example 4n. Variance of a random number of random variables. Let X,
X,, ... be a sequence of independent and identically distributed random
variables and let N be a nonnegative integer-valued random variable that is

\ N
independent of the sequence X;, i = 1. To compute Var( 2 X,->, we condi-
: i=1
tion on NV

N
E[z Xi!N] = NE[X]

i=1

N
Var<2 X,.|N> = N Var(X)
i=1
N

The result above follows, since given N, 2 X; is just the sum of a fixed
i=1

number of independent random variables, so its expectation and variance is

just the sum of the individual means and variances. Hence, from the condi-

tional variance formula,

N
Var(E Xl-> = EIN] Var(X) + (E[X])? Var(¥)

i=1
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7.5 CONDITIONAL EXPECTATION AND PREDICTION

Sometimes a situation arises where the value of a random variable X is observed
and then, based on the observed value, an attempt is made to predict the value
of a second random variable Y. Let g(X) denote the predictor, that is, if X is
observed to equal x, then g(x) is our prediction for the value of Y. Clearly, we
would like to choose g so that g(X) tends to be close to Y. One possible criterion
for closeness is to choose g so as to minimize E[(Y — g(X))z] We now show
that under this criterion, the best possible predictor of ¥ is g(X) = E[Y|X].

 Proposition 5.1°

LY - gV = EIY — E[YXI]

Proof

E[(Y — gX))*|X] =\ E[(Y — E[Y|X] + E[Y|X] — g(0))*|X]
= E[(Y — E[Y]|X])*|X]
-+ E[EY]X] - g(X))*|X]
CH2E[(Y — E[Y|XDEY|X] - )X |

However, given X, E[Y|X] — g(X), being a function of X, can be treated as a
constant. Thus

5.1)

E[(Y —E[Y|X])(ELY|X] — g(X))|X]
= (E[Y|X] — g(X))E[Y — E[Y|X]|X]
= (E[Y|X] — g@))ELY|X] — E[Y|X])
=0
Thus, from Equations (5.1) and (5.2), we obtain

E[(Y — g(X))*|X] = E[(Y — E[Y|X])*|X]

and the result follows by taking expectations of both sides of the expres-
sion above.

(5.2)

RemARK. A second, more intuitive although less rigorous argument verifying
Proposition 5.1 is as follows. It is straightforward to verify that E[(Y — ¢)?] is
minimized at ¢ = E[Y] (see Theoretical Exercise 1). Thus if we want to predict
the value of Y when there are no data available to use, the best possible prediction,
in the sense of minimizing the mean square error, is to predict that ¥ will equal
its mean. On the other hand, if the value of the random variable X is observed
to be x, then the prediction problem remains exactly as in the previous (no data)
case with the exception that all probabilities and expectations are now conditional
on the event that X = x. Hence it follows that the best prediction in this situation
is to-predict that ¥ will equal its conditional expected value given that X = x,
thus establishing Proposition 5.1.
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Example 5a. Suppose that the son of a man of height x (in inches) attains a
height that is normally distributed with mean x + 1 and variance 4. What
is the best prediction of the height at full growth of the son of a man who
is 6 feet tall?

Solution Formally, this model can be written as
Y=X+1+e

where e is a normal random variable, independent of X, having mean 0 and
variance 4. The X and Y, of course, represent the heights of the man and
his son, respectively. The best prediction E[Y|X = 72] is thus equal to
E[Y|X =721 =EX + 1 + ¢|X = 72]

=73 + Ele|X = 72]

= 73 + E(e) by independence

=173 |

Example 5b. Suppose that if a signal value s is sent from location A, then the

signal value received at location B is ‘normally distributed with parameters
(s, 1). If S, the value of the signal sent at A, is normally distributed with
parameters (u, o), what is the best estimate of the signal sent if R, the
value received at B, is equal to r?

Solution Let us start by computing the conditional density of S given R
as follows:

Js,r(s:7) ")
fSiR(Sl’) = )

=w \
- fr(@)

- Ke‘(s w2202 , = (r—s)? %)

Where K does not depend on s. Now,

(S_M)2+(T—S)2=SQ<_L+.1_>_(—%+7‘>S+C1

202 2 202 2 o

\' 1+ a2 5 w+ ro?
' = 2B )s|+C
o’ [S 2(1-!—0‘2 s !

2
2 + oY
=1+g<s_(u 10’2) +C

N

20 1+0
where C; and C, do not depend on s. Hence
_(p ro?) 2
\ 1+ 0'2
fsir(s|r) = Cexp 5
o)
1+ a?
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where C does not depend on s. Hence we may conclude that the conditional
distribution of S, the signal sent, given that r is received, is normal with
mean and variance now given by

o =,u,-i-ray‘
E[S|R = 1] Tt o2
2
o2
Var(S|R——;)—1—_—F—?r—5

Hence, from Proposition 5.1, given that the value received is r, the best
estimate, in the sense of minimizing the mean square error, for the signal
sent is

2

1 o°
E[S|R"']f1+a-2“+1+al'
Writing the conditional mean as we did above is informative, for it shows
that it equals a weighted average of w, the a priori expected value of the
signal and r, the value received. The relative weights given to u and r
are in the same proportion to each other as 1 (the conditional variance
of the received signal when s is sent) is to o (the variance of the signal to
be sent). 4 |

Example Sc. In digital signal processing raw continuous analog data X must be
quantized, or discretized, in order to obtain a digital representation. In order
to quantize the raw data X, an increasing set of numbers a;, i = 0, *1,
*2,...,such that lim g; = o, lim g; = —oo, is fixed and the raw data
it i —o
are then quantized according to the interval (a;, @; ., ] in which X lies. Let
us denote by y; the discretized value when X € (a;, a;, ], and let Y denote
the observed discretized value—that is,

i Y=yl lf(li<XSai+l
The distribution of Y is given by

P{Y = y;} = Fx(a;41) — Fx(a)

Suppose now that we want to choose the values y;, i = 0, %1,
*+2,...s0 as to minimize E[(X — Y)?], the expected mean square dlfference
between the raw data and their quantized version.

(a) Find the optimal values y;, i = 0, =1, ....

For the optimal quantizer Y show that:

(b) E[Y] = E[X], so the mean square error quantizer preserves the input
mean;

(©) Var(¥) = Var(X) — E[X — ¥)].

Solution (a) For any quantizer ¥, upon conditioning on the value of ¥
we obtain

E[(X = )] = > ElX — y)’la; <X < a4 1 1P{a; <X < a;, 1)
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Now, if we let
I =i ifa, <X =<a;4
then
BIX — y)la; < X < a40] = EIX — y2|1 =
and by Proposition 5.1 this quantity is minimized when
y: = EIX|I = i]
= EX|a; <X =a;.1]
_ Jaiﬂ xfx(s) dx
Fx(a; 1) — Fx(a)
Now, since the optimal quantizer is given by ¥ = E[X II], it follows that
(b) E[Y] = E[X]
(¢) Var(X) = E[Var(X|I)] iy Var(E[X|I])

= E[E[X — Y) [17] + Var(Y)
= E[(X — Y)*] + Var(Y) |

It sometimes happens that the joint probability distribution of X and ¥
is not completely known; or if it is known, it is such that the calculation of
E[Y|X = x] is mathematically intractable. If, however, the means and variances
of X and Y and the correlation of X and Y are known, then'we can at least determine
the best linear predictor of Y with respect to X.

To obtain the best linear predictor of ¥ Wlth respect to X, we need to choose
a and b so as to minimize E[(Y — (a + bX))*]. Now,

E[(Y — (a + bX))?] = E[Y? — 2aY — 2bXY + a® + 2abX + b°X?]
= E[Y?] — 24E[Y] — 2bE[XY] + a®
+ 2abE[X] + bPE[X?]

Taking partial derivatives, we obtain

;—E[(Y — a — bX)?] = —2E[Y] + 2a + 2bE[X]
a

(5.3)
B%E[(Y — a — bX)?] = —2E[XY] + 2aE[X] + 2bE[X?]
Equating Equations (5.3) to 0 and solving for a and b yields the solutions
p = EIXY] — EIX]E[Y] _ Cov(X, ) _ p@
- EX] - (BIXD? % T 5.4)
poy E[X]

a = E[Y] — bEIX] = E[Y] —

X
where p = Correlation(X, ¥), ¢ = Var(¥), and o7 = Var(X). It is
easy to verify that the values of a and b from Equation (5.4) minimize
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E[(Y — a — bX)?], and thus the best (in the sense of mean square error) linear
predictor Y with respect to X is

poy
My + —z.__)'(X = )
x

where @, = E[Y] and f, = E[X].
The mean square error of this predictor is given by

oy, 2
E Y“%“P;(X—*ux)
| 2 203 2 9y
=E[(Y - )1+ p ;%E[(X — M)l = 2p;,—l‘i’[(Y — )X~ )]
= 032, + p?‘a§ - 2p20'§
=021 - p?) 55

We note from Equation (5.5) that if p is near +1 or —1, then the mean square
error of the best linear predictor is near zero.

Example 5d. An example in which the conditional expectation of ¥ given X is
linear in X, and hence the best linear predictor of ¥ with respect to X is the
best overall predictor, is when X and Y have a bivariate normal distribution.
In this case their joint density is given by

fxy) = L i ex {* 1 [(x — 'ux>2
T e, V12 P 20 - A [\ o
200 = )y — ) <y - p»yﬂ}

0.0y, oy,

We leave it for the reader to verify that the conditional density of ¥, given
X = x, is given by

FaxO1) = == .

mo, V1 — p?

. {_____1____<_ _P% )>2}
Pl i -\ T T g T )

Hence the conditional distribution of ¥, given X = X, is the normal distribu-
tion with mean

-
EYIX = x] = py + p—>(x = pr)

and variance cr%(l - p?).
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7.6 MOMENT GENERATING FUNCTIONS

The moment generating function M(#) of the random variable X is defined for all
real values of ¢ by

M@ = E[e™] ~
2 e™p(x) if X is discrete with mass function p(x)
— x

f " e™f(x)dx  if X is continuous with density f(x)

We call M(#) the moment generating function because all of the moments of X
can be obtained by successively differentiating M(¢) and then evaluating the result
at t = 0. For example,

M) = 2 Bl

_ ol 4 x
—E[dt(e )} (6.1)
= E[Xe'X]

where we have assumed that the interchange of the differentiation and expectation
operators is legitimate. That is, we have assumed that ‘

d- d .
< [2 e’xp(x):l =3~ [e"p()]
X X
in the discrete case, and

d X — ﬁi_ tx
- [ f F(x) dx] = f o le™ f) dx
in the continuous case. This assumption can almost always be justified and, indeed,
is valid for all of the distributions considered in this book. Hence, from Equation
(6.1) we obtain, by evaluating at = 0, that

M'(0) = E[X]
Similarly,
M'(r) = %M'(z‘)
= 4 opeyax
=7 E[Xe™]
_ 4y
= E[ 7 Xe )J
— E[xQetX]
and thus
! MII(O) — E[XZ]
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In general, the nth derivative of M(¢) is given by

M) = E[X"%™] n=1
implying that
M™0) = E[X"] n=1

We now compute M(r) for some common distributions.

Example 6a. Binomial distribution with parameters n and p. If X is a binomial
random variable with parameters n and p, then

M) = E[e'X]

_ > e (”) P — py Tk

£=0 k

& (n 8 ek

=2 (k) (pe(1 = p)"~*

k=0

— (pet + 1 _p)n
where the last equality follows from the binomial theorem.
M@ = n(pe' + 1 — p)y"~ ! pe’
and thus '
EX] = M) = np

which checks with the result obtained in Example 1c. Differentiating a second
time yields

M"(®) = n(n — 1)(pe’ + 1 — p)"~Xpe')? + n(pe’ + 1 — p)*~ ! pef
S0 )

E[X*] = M"(0) = n(n — 1)p* + np

The yariance of X is given by

Var(X) = E[X*] — (E[X])?
= n(n — )p? + np — n’p?
= np(l — p)
verifying the result of Example 3b. |

Example 6b. Poisson distribution with mean A. If Xis a Poisson random variable
with parameter A, then
M@ = E[e'¥]

= etlle - AAI!

n=0 n!

_ cw /\et n
=g A 2 ( )
ne=o 1!

— t
=e ).e)\e

= exp{A(e’ — 1))
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Differentiation yields
M' () = Ae' exp{A(e'-— 1)}
M"(f) = (Ae")? exp{A(e’ — 1)} + Ae"exp{A(e’ — 1)}

and thus
EX]1=M@©) = A
E[X?] = M"(0) = A*> + A
Var(X) = E[X?] — (E[X])?
= A
Hence both the mean and the variance of the Poisson random variable equal A.

|
Example 6¢c. Exponential distribution with parameter A
M(@) = E[e']
= f e e ™ dx
0

= )\re—“")xdx
0

A
= t<A
X for
We note from this derivation that for the exponential distribution, M(z) is
only defined for values of ¢ less than A. Differentiation of M(z) yields

LA w2
MO=5_—pw MO=G"m
Hence
1 — _1_ 27 — " —_ __2__
E[X] = M'(0) = 3 E[X~"] = M"(0) 32
The variance of X is given by
Var(X) = E[X?] — (E[X])*
1
Y E

Example 6d. Normal distribution. We first compute the moment generating
function of a unit normal random variable with parameters 0 and 1. Letting
Z be such a random variable, we have

M) = E[e]

— 2y
1x,—x /”dx

= ——1———'—[03 e
V2r/ ==
V2mrd ~=
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1 = (x — 2 tz}
=— ex + —rdx

V2mrd—= { 2 2

2 ]_ @ . 2
2 —(x—0D*/2
= — e dx

V2 —=
212

=€

Hence the moment generating function of the unit normal random variable
Z is given by Mz(f) = €' '>. To obtain the moment generating function of
an arbitrary normal random variable, we recall (see Section 5.4) that X =

. i + oZ will have a normal distribution with parameters u and o2 whenever
Z is a unit normal random variable. Hence the moment generating function
of such a random variable is given by

Mx(r) = E[e"]

- E[et(ll + U’Z)]
E[et}LetUZ]
— et}b E[etU‘Z]
= e'* Mz(to)

2/
— em e(ra-) /2

i

It

]

>4

el
—

)

IS
to

+

IS

S
[

By differentiating, we obtain

2.2
M) = (u + 162) exp{a;t + m}

: 2.2 2
M%) = (u + to?)? exp{rt + y,t} + azexp{g2 + m‘}
~and thus

EX]=M©) = pu
EX?Y = M"(0) = p* + 0°
implying that

I

Var(X) EQXZ] — E(IX1?

o [

Tables 7.1 and 7.2 give the moment generating function for some common

discrete and continuous distributions.

- An important property of moment generating functions is that the moment
generating function of the sum of independent random variables equals the prod-
uct of the individual moment generating functions. To prove this, suppose/
that X and Y are independent and have moment generating functions Mx(f) and
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TABLE 7.1 DISCRETE PROBABILITY DISTRIBUTION

Moment
Probability mass generating
. function, p(x) function, M(5) Mean Variance
Binomial with (") - pyr (pe' + 1 — p)* np np(1 — p)
parameters 1, p; x
0=p=1 x=0,1,...,n
X
Poisson with parameter - X exp{A(e’ — 1)} A A
A>0 x!
x=012,...
. ’ _
Geometric with parameter ~ p(1 — p)*~! 1—:-%—3-———[ 1 1 -2
0=p=1 ! 1 - pe p P
x=1,2,... )
— I r - - —
Negative binomial with (” 1) pPa—-ptr [-———Rf———-;] Z il_z__p_)
parameters r, p; Ar—1 1= - pe p p
n=nrr+1,...

O0=p=1

My (1), respectively. Then My, y(f), the moment generating function of X + 7,

is given by
My 1 y(t) = E[e"*™ 7]
= E[ etX etY]
= E[¢"¥]E[¢"]
= Mx(OMy(t)
where the next-to-last equality follows from Proposition 3.1, since X and Y are inde-
pendent.

Another important result is that the moment generating function uniquely
determines the distribution. That is, if Mx(f) exists and is finite in some region
about ¢+ = 0, then the distribution of X is uniquely determined. For instance, if
My(® = (4% + 1, then it follows from Table 7.1 that X is a binomial

random variable with parameters 10 and 3

Example 6e. Suppose that the moment generating function of a random variable
X is given by M(®) = >© D, What is P{X = 0}?

Solution We see from Table 7.1 that M(r) = €>© 1 is the moment
generating function of a Poisson random variable with mean 3. Hence, by
the one-to-one correspondence between moment generating functions and
distribution functions, it follows that X must be a Poisson random variable
with mean 3. Thus P{X = 0} = e~ °. B

Example 6f. Sums of independent binomial random variables. If X and Y are
independent binomial random variables with parameters (n, p) and (m, p),
respectively, what is the distribution of X + Y?
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TABLE 7.2 CONTINUOUS PROBABILITY DISTRIBUTION

Moment
generating
function, M(1)

Probability mass

Variance

Mean

function, f(x)

12

(b — a)®

etb —
Hh — a)

a<x<b

otherwise

1

foy=1{b—a

0

,\ —Ax
fo) = {Oe

A
fo) =

0

fo) =

Uniform over (a, b)

ot o]

>

—1=

x=0
x<0

e—)\.\'(/\x)s—- i

Exponential with

parameter A > 0

i)

LR R

(-

=
x<0

I'(s)

Gamma with parameters
(5, A),A>0

b

}

ot?
2

exp{ mt -+

e-—(.\'-;l.)2/2a"~’ — <y <@

1

Va2mo

Normal with parameters
(1, 0%
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Solution The moment generating function of X + Y is given by

My, y(1) = Mx(OMy(t) = (pe’ + 1 = p)*(pe’ + 1 — p)”
— (pet + 1 — p)m+n

However, (pe’ + 1 — p)™*"is the moment generating function of a binomial
random variable having parameters m + n and p. Thus this must be the
distribution of X + Y. |

Example 6g. Sums of independent Poisson random variables. Calculate the
distribution of X + ¥ when X and Y are independent Poisson random variables
with means A; and A,, respectively.

Solution
! My, y(£) = Mx@®My(2)

exp{A(e’ — 1)} exp{As(e’ — 1)}

exp{(A; + A)(e’ — D}

Hence X + Y is Poisson distributed with mean A; + A,, verifying the result

given in Example 3d of Chapter 6. R

i

Example 6h. Sums of independent normal random variables. Show that if X
and Y are independent normal random variables with parameters
(wy, 03) and (up, 03), respectively, then X + Y is normal with mean
My + p, and variance oy + 03.

Solution
My y(0) = Mx(t)My ()

ot’ o3’
= exp 2 + it exp ) + ot

{(o‘% + o)
= eXpyT— 5

) + (pp + M)f}

which is the moment generating function of a normal random variable with
mean w; + p, and variance o+ o%. Hence the result follows because
the moment generating function uniquely determines the distribution. B

Example 6i. Compute the moment generating function of a chi-squared random
variable with n degrees of freedom.

Solution We can represent such a random variable as
2 2
Z 1 A oee e+ le

where Z,, . .., Z, are independent standard normal random variables. Let
M(?) be its moment generating function. By the above,

M® = (EleZ])"




362 Chapter 7 Properties of Expectation

where Z is a standard normal. Now,
1 b 2
e

= — e~ X127 gx where 0% = (1 — 20!

=0
=@1-2"1?

where the next-to-last equality uses that the normal density with mean O
and variance o”-integrates to 1. Therefore,

M@ = (1 —2)""? |

Example 6j. Moment generating function of the sum of a random number of
random variables. Let X;, X5, . .. be a sequence of independent and identi-
cally distributed random variables, and let N be a nonnegative, integer-valued
random variable that is independent of the sequence X, i = 1. We want to
compute the moment generating function of

N
Y= 2 X;
i=1

(In Example 4d, Y was interpreted as the amount of money spent in a store
on a given day when both the amount spent by a customer and the number
of such customers are random variables.)

To compute the moment generating function of Y, we first condition
on N as follows:

Elexp{tSY X;}|N = n] = Elexp{t 2} X;}|N = n]
= Efexp{t 2} X;}]

. = [Mx(®]"
where
Mx() = E[e'™]
Hence
E['|N] = (Mx()Y
and thus

My(H) = E[Mx)"]
The moments of ¥ can now be obtained upon differentiation, as follows:
My () = EINMx(®)" ™ My (0)] |
SO

E[Y] = My(0) .
= E[NMx(0)" ™ 'Mx(0)]
= E[NEX]
= E[N]E[X]

6.2)
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verifying the result of Example 4d. (In this last set of equalities we have
used the fact that My (0) = E[¢%%] = 1))
Also,

L)'= EINN — DMy ~2M ) + NMx 0N~ M(0)]

SO 1
E[Y*] = M%(0)
=E[N(N — 1)(E[X])* + NE[X?]]
= (E[X*(EIN®] — E[N]) + E[NIE[X?] (6.3)

= E[N)EIX?] — (E[X])*) + (E[X]EIN?]
= E[N] Var(X) + (E[X])’E[N?]

Hence, from Equations (6.2) and (6.3), we see that
Var(Y) = E[N] Var(X) + (E[IXD*EIN*] — (EIN]))
= E[N] Var(X) + (E[X])* Var(V)

Example 6k. Let Y denote a uniform random variable on (0, 1), and suppose
that conditional on ¥ = p, the random variable X has a binomial distribution
with parameters n and p. In Example 4j we showed that X is equally likely
to take on any of the values O, 1, ..., n. Establish this result by using
moment generating functions.

Solution To compute the moment generating function of X, start by condi-
tioning on the value of Y. Using the formula for the binomial moment
generating function gives

E[eX|Y = p] = (pe' + 1 — p)"

Hence, since Y is uniform on (0, 1), we obtain upon taking expectations,
1
E[e™] = f (pe + 1 —p)tdp
0

el
o 1_ 1 L y* dy (by the substitutiony = pe’ + 1 — p)
1 et(11+1) -1 '

Ta+l f-1

1 t 21 nt
= + - P
. 1(1 + e e+ -+ ")
As the preceding is the moment generating function of a random variable
that is equally likely to be any of the values 0, 1, . . ., n, the result follows
from the fact that the moment generating function of a random variable
uniquely determines its distribution. i
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7.6.1 Joint Moment Generating Functions

It is also possible to define the joint moment generating function of two or more
random variables. This is done as follows. For any n random variables X, ...,
X,,, the joint moment generating function, M(zy, . . ., ), is defined for all real
values of #1, ..., %, by’

M(ty, ..., t,) = E[et1X1+ +1,,X,,]

The individual moment generating functions can be obtained from M(%;, . . . , 1)
by letting all but one of the #; be 0. That is,

My (1) = E[e”] = M, ...,0,10,...,0)

where the 7 is in the ith place.

It can be proved (although the proof is too advanced for this text) that
M(ty, . . ., t,) uniquely determines the joint distribution of X3, . . . , X,,. This result
can then be used to prove that the r random variables X, . . . , X, are independent
if and only if

M(ty, ..., 1) = Mx,(t;) - - - My, (2,) 6.4)
This follows because, if the n random variables are independent, then
My, ..., t,) = E[¢"%1 o X))
= E[e"1%1 . . - gin¥n]
= E[¢"X1] - - - E[e™Xn] by independence
= Mx,(t1) - - - Mx, (1)

On the other hand, if Equation (6.4) is satisfied, then the joint moment generating
function M(¢,, .. ., t,) is the same as the joint moment generating function of n
independent random variables, the ith of which has the same distribution as X;.
As the joint moment generating function uniquely determines the joint distribution,
this must be the joint distribution; hence the random variables are independent.

Example 61. Let X and Y be independent normal random variables, each with
mean p and variance o?. In Example 7a of Chapter 6 we showed that
X + Y and X — Y are independent. Let us now establish this result by
computing their joint moment generating function.
E[et(X*i-Y)'}-S(X’-Y)] — E[e(I+S)X+(t~S)Y]

— E[e(t—l-S)X]E[e(t-—s)Y]
= pHt+3)+ 2+ )22 it =)+ 02 (1~ 5)212

= g2Ht 22 euzs:’-

But we recognize the preceding as the joint moment generating function of
the sum of a normal random variable with mean 2y and variance 207 and
an independent normal random variable with mean O and variance 20°. As
the joint moment generating function uniquely determines the joint distri-
bution, it thus follows that X + Y and X — Y are independent normal
random variables. |
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In the next example we use the joint moment generating function to verify
a result that was established in Example 2b of Chapter 6.

Example 6m. Suppose that the number of events that occur is a Poisson random
variable with mean A, and that each event is independently counted with
probability p. Show that the number of counted events and the number of
uncounted events are independent Poisson random variables with respective
means Ap and A(1 — p).

Solution Let X denote the total number of events, and let X, denote the
number of them that are counted. To compute the joint moment generating
function of X, the number of events that are counted, and X — X_, the
number that are uncounted, start by conditioning on X to obtain

E[¢e XXX = n] = ¢"E[e®™|X = n]
- — etn(pes—-t +1 _p)n
= (pe + (1 — p)e')"
where the preceding equation follows since conditional on X = n, X, is a
binomial random variable with parameters » and p. Hence

E[esXC+t(X——XC)|X] — (pes + (1 . p)et)X
Taking expectations of both sides of the preceding yields that

E[¢¥c X ~X] = E[(pe® + (1 — p)e')*]
Now, since X is Poisson with mean A, it follows that E[eX] = eM¢'—D,
Therefore, for any positive value a we see (by letting a = &) that
E[a®] = M*™D. Thus '

El S+ X = Xc)] = Mpeft(l—ple'—1)

= (e =1 A0 ~p)e'— 1)

As the preceding is the joint moment generating function of independent

Poisson random variables with respective means Ap and A(1 — p), the result
is proven.

7.7 ADDITIONAL PROPERTIES OF NORMAL RANDOM VARIABLES

7.7.1 The Multivariate Normal Distribution
- LletZy,...,Z,beasetofn independent unit normal random variables. If, for
some constants a;, 1 =i=m, 1 =j<s=nand y;,, 1 =i=m,

Xy =anZy + - + a2, +
X2 = aZIZl + oo+ a2nZn + U

Xi=anZy + -+ apd, + Wy

1

Xn = @y + -0+ Gl + oy, )
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then the random variables Xy, . . . , X,, are said to have a multivariate normal distri-
bution.

It follows from the fact that the sum of independent normal random variables
is itself a normal random variable that each X;is a normal random variable with
mean and variance given by

EX;] = m
Var(X,) = _21 a;
J=

Let us now consider
M(tl’ LR} tnz) = E[CXP{thI R thm}]

the joint moment generating function of Xi, ..., X The first thing to note is
m

that since 2 X, is itself a linear combination of the independent normal random
i=1 )
variables Z;, . .., Z,, it is also normally distributed. Its mean and variance are

mn m
E[E tiXi:| = 2 Lil;

=1 i=1
and

Var(Z tiX,-> = &w(Z t:X; 2 tX)

i=1 i=1
m m

z z [itj COV(Xi, X_])

i=1j=1
. . - 2
Now, if Y is a normal random variable with mean y and variance o~, then

Ele"] = My(@)|,=1 = "+

Thus we see that

n m m
Mty - oo t) = exp{z AR rtjCov(Xf,Xﬁ}

i=1 Ti=1j=1

which shows that the joint distribution of Xy, ..., X,, is ccmpletely determined
from a knowledge of the values of E[X;] and Cov(X;, X)), i, ] = 1,..., m.

7.7.2 The Joint Distribution of the Sample Mean
and Sample Variance

Let X;, ..., X, be independent normal random variables, each with mean (. and

n
variance o”. Let X = 2 X,/n denote their sample mean. Since the sum of in-
i=1 )
dependent normal random variables is also a normal random variable, it follows
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that X is a normal random variable with (from Examples 2¢ and 3a) expected
value g and variance o”/n.
Now, recall from Example 3f that

» CovX, X; — X) =0, i=1,...,n (7.1)

Also, note thatsince X, X; — X, X, — X, ..., X,, — X are all linear combinations
of the mdependent standard normals (X; — ,u)/ o,i =1,...,n, it follows that
XX, —X,i=1, , n has a joint distribution that is muluvanate normal. If
we let Y be a norrnal random variable with mean y and variance o?/n that is
independent of the X;, i = 1, ,mthen ¥, X; — X,i = 1, , nalso has a
multivariate normal d1str1but10n and indeed, because of (7.1), has the same ex-
pected values and covariances as the random variables X, X; — X,i = 1,...,n.
But since a multivariate normal distribution is determmed completely by its

expected values and covariances we can conclude that ¥, X; — X, i = 1,
nand X, X; — X, i = 1, , 1 have the same joint d1stnbut1on thus showmg
that X is independent of the sequence of deviations X; — X, i = 1,..., n
Since X is independent of the sequence of deviations X; — X, i
1, ..., n, it follows that it is also independent of the sample variance $*

n

> X — X% — 1)

i=1

m I

Since we already know that X is normal w1th mean y and variance o>/n, it
remains only to determine the distribution of S*. To accomplish this, recall from
Example 3a the algebraic identity

il

> & — X)?

i=1

= > X - w—nX - w?

i=1

(n — 1)S?

Upon dividing the equation above by ¢, we obtain that

n — 1)S8? <}’< - ;L)z 2 (X,. - ,L>2
5 + = 72
2 alNn igl o (72)

5 (552]
i=1 "o

is the sum of the squares of n independent standard normal random variables,
and so is a chi-squared random variable with 1 degrees of freedom. Hence, from
Example 61, its moment generating function is (1 — 21)'"/ 2. Also,

EH

Now,
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is the square of a standard normal and so is a chi-squared random variable with
1 degree of freedom, and so has moment generating function (1 — 21)~ 12 Now,
we have seen previously that the two random variables on the left side of Equation
(7.2) are independent. Hence, as the moment generating function of the sum of
independent random variables is equal to the product of their individual moment
generating functions, we see that

E[et(lz-—l)52/0'2](1 . 2t)—1/2 — (1 . 2t)—nl2
or
E[et(n*l)S?‘/O'z] — (1 . zt)—(n‘l)/.?.

But as (1 — 26~ @12 i3 the moment generating function of a chi-squared
random variable with n — 1 degrees of freedom, we can conclude, since the
moment generating function uniquely determines the distribution of the random
variable, that this is the distribution of (n — 1)S*/0”.

Summing up, we have shown the following.

i %Proposiiidn 7.1

IfX;,...,X,areindependent and identically distributed normalrandom
~ variables with mean g and variance o2, then the sample mean X and
 the sample variance S? are independent. X is a normal random variable
- with mean p and variance o”/n; (n — 1)$*/0” is a chi-squared random
variable with n — 1 degrees of freedom.

*7.8 GENERAL DEFINITION OF EXPECTATION

Up to this point we have defined expectations only for discrete and continuous
random variables. However, there also exist random variables that are neither
discrete nor continuous, and they too may possess an expectation. As an example
of such a random variable, let X be a Bernoulli random variable with parameter
p = 3 and let Y be a uniformly distributed random variable over the interval
[0, 1]. Furthermore, suppose that X and Y are independent and define the new
random variable W by
{X ifX =1
W el

Yy ifX+#1

Clearly, Wis neither a discrete (since its set of possible values [0, 1] is uncountable)
nor a continuous (since P{W=1}= %) random variable.

In order to define the expectation of an arbitrary random variable, we require
the notion of a Stieltjes integral. Before defining the Stieltjes integral, let us recall

that for any function g, fab g(x) dx is defined by

b n
[ g dx = tim 3, gt = 50

/
/ -
/ R
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where the limit is taken over all @ = x5 < x; <Xy -+ - <x, = basn —> ®
and max (x; — x_1) = 0.
n

. For any distribution function F, we define the Stieltjes integral of the nonnega-
tive function g owver the interval [a, b] by

b n
| 809 dPG) = tim 3 o)l FGx) — Fxp )]

i=1

where, as before, the limit is taken over alla = xp < x; < -+ <x, = bas
n—»and max (x; — x;—;) — 0. Further, we define the Stieltjes integral
n

i=1,...,

over the whole real line by

« b
C ] swdrw = tim [ gt dF
b +=

Finally, if g is not a nonnegative function, we define g% and g~ by

8 ) 8 ifgx)=0
& (x)_{ 0 if g(x) < 0
— 0 ifglx)y=0
g W= { —ex)  ifg() <0

As g(x) = g*(x) — g7 (x) and g* and g~ are both nonnegative functions, it is
natural to define

[ awarw = [ g*warm - [ g wdrw

and we say that f ix g(x) dF(x) exists as long as f :ﬂ gT(®) dF(x) and
f _ 8 (%) dF(x) are not both equal to +co.

If X is an arbitrary random variable having cumulative distribution F, we
define the expected value of X by

BX] = [ xdF@ @.1)
It can be shown that if X is a discrete random variable with mass function p(x), then
[ xdarey = 3w
b x:p(x)>0

whereas, if X is a continuous random variable with density function f(x), then

f;xdF(x) = [wxf(x) dx

The reader should note that Equation (8.1) yields an intuitive definition of
E[X]; for consider the approximating sum

n

D 5[F() — Flx_ )]

i=1
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of E[X]. As F(x;) — F(x;_) is just the probability that X will be in the interval
(x; 1, X;1, the approximating sum multiplies the approximate value of X when it
is in the interval (x;_, x;] by the probability that it will be in that interval and
then sums over all the intervals. Clearly, as these intervals get smaller and smaller
in length, we obtain the “expected value” of X.

Stieltjes integrals are mainly of theoretical interest because they yield a
compact way of defining and dealing with the properties of expectation. For

instance, use of Stieltjes integrals avoids the necessity of having to give separate

statements and proofs of theorems for the continuous and the discrete cases.
However, their properties are very much the same as those of ordinary integrals,
and all of the proofs presented in this chapter can easily be translated into proofs
in the general case.

SUMMARY

If X and Y have a joint probability mass function p(x, y), then
E[g(X. V)] = 2 2 80 Y)p(%. )
y x

whereas if they have a joint density function f(x, y), then
e v = [ [ s fe ) dxdy

A consequence of the preceding is that
E[X + Y] = E[X] + E[Y]

which generalizes to

i=1 i=1

E[Z X,-] = 2, EIX]
The covariance between random variables X and Y is given by
Cov(X,Y) = E[(X — EIXD(Y — E[Y])] = E[XY] — E[X]E[Y]
A useful identity is that

n m 14 m
cOv<2 X, >, Y,-) = > > Cov(¥X;Y)
‘ P

i=1 i=1j=1

Whenn = m,and ¥; = X;,i = 1,...,n, the preceding gives that
n \ /71\\ -
Var(z X,.> = > var(Xy) + 2 2,2, Cov(X, )
i=1 i=1 PR

The correlation between X and 7, dendte\a/ by p(X, Y), is defined by
Cov(X,Y)
pX,Y) =
VVar(X) Var(Y)
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If X and Y are jointly discrete random variables, then the conditional expected
value of X given that Y = y is defined by

EX|Y = y] = D, xP{X = x|Y = y]

If they are jointly continuous random variables, then

~ E[Xle ¥yl = r xfx[y(xl)’)

o O

where

[ y)
x|y) = ==
Fxy |y 720
is the conditional probability density of X given that ¥ = y. Conditional expecta-
tions, which are similar to ordinary expectations except that all probabilities are
now computed conditional on the event that ¥ = y, satisfy all the properties of
ordinary expectations.
Let E[X| Y] denote that function of ¥ whose value at ¥ = y is E[X|Y = ¥].
A very useful identity is that

E[X] = E[EX|Y]]
In the case of discrete random variables, this reduces to the identity

ElX] = 2 EIX|Y = y]P{Y =y}
y
and, in the continuous case, to
EX) = | BIX|Y =)1fv()

The preceding equations can often be applied to obtain E[X] by first “conditioning”
on the value of some other random variable Y. In addition, since for any event
A, P(A) = E[l,], where I, is 1 if A occurs and O otherwise, we can also use
them to compute probabilities.

The conditional variance of X given that ¥ = y is defined by

Var(X|Y = y) = E[(X — E[X|Y = y])*|Y = y]

Let Var(X|Y) be that function of ¥ whose value at ¥ = y is Var(X|Y = y). The
following is known as the conditional variance formula:

Var(X) = E[Var(X|Y)] + Var(E[X|Y])

Suppose that the random variable X is to be observed and, based on its value,
one must then predict the value of the random variable Y. In such a situation, it
turns out that, among all predictors, E[Y|X] has the smallest expectation of the
square of the difference between it and Y.

The moment generating function of the random variable X is defined by

M(@) = E[e'X]
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The moments of X can be obtained by successively differentiating M(¢) and then
evaluating the resulting quantity at ¢ = 0. Specifically, we have that

n
d n

Two useful results coneerning moment generating functions are, first, that the
moment generating function uniquely determines the distribution function of the
random variable, and second, that the moment generating function of the sum of
independent random variables is equal to the product of their moment generating
functions. These results lead to simple proofs that the sum of independent normal
(Poisson) [gamma] random variables remains a normal (Poisson) [gamma] ran-
dom variable.

If X5, ..., X,, are all linear combinations of a finite set of independent
standard normal random variables, then they are said to have a multivariate
normal distribution. Their joint distribution is specified by the values of E[Xj],
Cov(X;, Xj), i,j = 1, ..., m.

X1 - .., X, are mdependent and identically distributed normal random
variables, then their sample mean

X n &

E[X"] = —M®)|;=0 n=12,.

i=17
and their sample variance
oS E X
= n-—1

are mdependent The sample mean X is a normal randcm variable with mean w
and variance ¢/n; the random variable (n — 1)S*/0” is a chi-squared random
variable with n — 1 degrees of freedom.

PROBLEMS

! T

«’\ /,,

1. A player throws a fair die\and{hnultaﬁe@y/ﬂips a fair coin. If the coin
lands heads, then she wins twice, and if tails, then one-half of the value that
appears on the die. Determine her expected winnings.

2. The game of Clue involves 6 suspects, 6 weapons, and 9 rooms. One of each
is randomly chosen and the object of the game is to guess the chosen three.
(a) How many solutions are possible?

In one version of the game, after the selection is made each of the players
is then randomly given three of the remaining cards. Let S, W, and R be,
respectively, the numbers of suspects, weapons, and rooms in the set of three
cards given to a specified player. Also, let X denote the number of solutions
that are possible after that player observes his or her three cards.

(b) Express X in terms of S, W, and R.

(¢) Find E[X].

N

o

10.
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. If X and Y are independent uniform (0, 1) random variables, show that

2
E[|X - Y|] = fi >
,[IX M= ary P 2>
Let X and Y’be independent random variables, both being equally likely to
be any of the values 1, 2, ..., m. Show that .

(m— Dim + 1)

E[lX YI] 3m

. The county hospital is located at the center of a square whose sides are 3

miles wide. If an accident occurs within this square, then the hospital sends
out an ambulance. The road network is rectangular, so the travel distance
from the hospital, whose coordinates are (0, 0), to the point (x, y) is |x| + [y].
If an accident occurs at a point that is uniformly distributed in the square,
find the expected travel distance of the ambulance.

. A fair die is rolled 10 times. Calculate the expected sum of the 10 rolls.
. Suppose that A and B each randomly, and independently, choose 3 of 10

objects. Find the expected number of objects
(a) chosen by both A and B;

(b) not chosen by either A or B;

(c) chosen by exactly one of A and B.

. N people arrive separately to a professional dinner. Upon arrival, each person

looks to see if he or she has any friends among those present. That person
then either sits at the table of a friend or at an unoccupied table if none of

2) pairs of people are,

independently, friends with probability p, find the expected number of occu-
pied tables.

those present is a friend. Assuming that each of the (N

uiNT:  Let X; equal 1 or O depending on whether the ith arrival sits at a
previously unoccupied table.

. A total of n balls, numbered 1 through n, are put into 1 urns, also numbered

1 through » in such a way that ball i is equally likely to go into any of the
urns 1, 2, ..., i. Find

(a) the expected number of urns that are empty;

(b) the probability that none of the urns is empty.

Consider 3 trials, each having the same probability of success. Let X denote
the total number of successes in these trials. If E[X] = 1.8, what is

(a) the largest possible value of P{X = 3};

(b) the smallest possible value of P{X = 3}?

In both cases construct a probability scenario that results in P{X = 3} having
the stated value.

HINT:  For part (b) you might start by letting U be a uniform random variable
on (0, 1) and then defining the trials in terms of the value of U.
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11.

- 1

13.
14.

15.

16.

17.
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Consider n independent flips of a coin having probability p of landing heads.
Say that a changeover occurs whenever an outcome differs from the one
preceding it. For instance, if n = 5 and the outcome is HH T HT, then
there is a total of 3 changeovers. Find the expected number of changeovers.

uINT:  Express the number of changeovers as the sum of n — 1 Bernoulli
random variables.

A group of n men and m women are lined up at random. Determine the
expected number of men that have a woman on at least one side of them.

giNT:  Define an indicator random variable for each man.
Repeat Problem 12 when the group is seated at a round table.

An urn has m black balls. At each stage a black ball is removed and a new
ball, that is black with probability p and white with probability 1 — p, is put
in its place. Find the expected number of stages needed until there are no
more black balls in the urn.

NOoTE: The above has possible applications to understanding the AIDS dis-
ease. Part of the body’s immune system consists of a certain class of cells,
known as T-cells. There are 2 types of T-cells, called CD4 and CD8. Now
while the total number of T-cells of AIDS sufferers is (at least in the early
stages of the disease) the same as that of healthy individuals, it has recently
been discovered that the mix of CD4 and CD8 T-cells is different. Roughly
60 percent of the T-cells of a healthy person are of the CD4 type, whereas
for AIDS sufferers the percentage of the T-cells that are of CD4 type appears
to decrease continually. A recent model proposes that the HIV virus (the
virus that causes AIDS) attacks CD4 cells, and that the body’s mechanism
for replacing killed T-cells does not differentiate between whether the killed
T-cell was CD4 or CDS. Instead, it just produces a new T-cell that is CD4
with probability .6 and CD8 with probability .4. However, while this would
seem to be a very efficient way of replacing killed T-cells when each one
killed is equally likely to be any of the body’s T-cells (and thus has probability
.6 of being CD4), it has dangerous consequences when facing a virus that
targets only the CD4 T-cells.

A ball is chosen, at random, from each of 5 urns. The urns contain, respectively,
1 white, 5 black; 3 white, 3 black; 6 white, 4 black; 2 white, 6 black; and 3
white, 7 black balls. Compute the expected number of white balls selected.

Let Z be a unit normal random variable, and for a fixed x, set

’ z
x={

Show that E[X] = \/%_e—-"zfz.
m

A deck of n cards, numbered 1 through n, is thoroughly shuffled so that all
possible n! orderings can be assumed to be equally likely. Suppose you are

if Z>x
otherwise

18.

19.

20.
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to make n guesses sequentially, where the ith one is a guess of the card in

position i. Let N denote the number of correct guesses.

(a) If you are not given any information about your earlier guesses show
that, for any strategy, E[N] = 1. '

(b) Supposerthat after each guess you are shown the card that was in the
position in question. What do you think is the best strategy? Show that
_under this strategy ’

1
E[N] = — + + -4 1
n n—1
nldx
=~ ~dx =1
L ogn

(c) Suppose that you are told after each guess whether you are right or wrong.
In this case it can be shown that the strategy that maximizes E[/N] is one
which keeps on guessing the same card until you are told you are correct
and then changes to a new card. For this strategy show that

1 1 1
E[N] L+ 2! + 31 + +n!
~eg — 1

HINT:  For all parts, express N as the sum of indicator (that is, Bernoulli)
random variables.

Cards from an ordinary deck of 52 playing cards are turned face up one at
a time. If the first card is an ace, or the second a deuce, or the third a three,
or ..., or the thirteenth a king, or the fourteenth an ace, and so on, we say
that a match occurs. Note that we do not require that the (13n + 1)th card
be any particular ace for a match to occur but only that it be an ace. Compute
the expected number of matches that occur.

A certain region is inhabited by r distinct types of a certain kind of insect

species, and each insect caught will, independently of the types of the previous
catches, be of type i with probability

.
Poi=1,....,r > P=1
1

(a) Compute the mean number of insects that are caught before the first type
1 catch.

(b) Compute the mean number of types of insects that are caught before the
first type 1 catch.

An urn contains n balls—the ith having weight W(i), i = 1, ..., n. The balls

are removed without replacement one at a time according to the following

rule: At each selection, the probability that a given ball in the urn is chosen

is equal to its weight divided by the sum of the weights remaining in the

urn. For instance, if at some time i, . . ., i, is the set of balls remaining in

the urn, then the next selection will be i; with probability W(i;) / z W(ip),
k=1
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21.

22,

23.

24,

25.

26.

27.

j =1, ..., r. Compute the expected number of balls that are withdrawn

before ball number 1.

For a group of 100 people compute

(a) the expected number of days of the year that are birthdays of exactly
3 people;

(b) the expected number of distinct birthdays.

How many times would you expect to roll a fair die before all 6 sides appeared
at least once?

Urn 1 contains 5 white and 6 black balls, while urn 2 contains 8 white and
10 black balls. Two balls are randomly selected from urn 1 and are then put
in urn 2. If 3 balls are then randomly selected from urn 2, compute the
expected number of white balls in the trio.

uiNT:  Let X; = 1 if the ith white ball initially in urn 1 is one of the three
selected, and let X; = O otherwise. Similarly, let ¥; = 1 if the ith white ball

from urn 2 is one of the three selected, and let ¥; = O otherwise. The number
5 8

of white balls in the trio can now be written as , X; + >, ;.
1 1

A bottle initially contains m large pills and n small pills. Each day a patient

randomly chooses one of the pills. If a small pill is chosen, then that pill is

eaten. If a large pill is chosen, then the pill is broken in two; one part is

returned to the bottle (and is now considered a small pill) and the other part

is then eaten.

(a) Let X denote the number of small pills in the bottle after the last large
pill has been chosen and its smaller half returned. Find E[X].

HINT: Define n + m indicator variables, one for each of the small pills
initially present and one for each of the m small pills created when a large
one is split in two. Now use the argument of Example 2m.

(b) Let Y denote the day on which the last large pill is chosen. Find E[Y].

HINT: What is the relationship between X and Y7
Let X;, X,,... be a sequence of independent and identically distributed
continuous random variables. Let N = 2 be such that

X\ =X = - =Xy_; <Xy
That is, N is the point at which the sequence stops decreasing. Show that
E[N] = e.
HiNT:  First find P{N = n}.

If Xy, X5, ..., X, are independent and identically distributed random
variables having uniform distributions over (0, 1), find

(a) E[max(Xl, LR | Xn)];

(b) E[min(Xy, ..., X))

In Problem 6, calculate the variance of the sum of the rolls.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
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In Problem 9, compute the variance of the number of empty urns.

If E[X] = 1 and Var(X) = 5 find

(@) E[2 + X)7];

(b) Var(4 + 3X).

If 10 married couples are randomly seated at a round table, compute (a) the
expected number and (b) the variance of the number of wives who are seated
next to their husbands.

Cards from an ordinary deck are turned face up one at a time. Compute the
expected number of cards that need be turned face up in order to obtain
(a) 2 aces;

(b) 5 spades;

(c) all 13 hearts.

Let X be the number of 1’s and Y the number of 2’s that occur in # rolls of
a fair die. Compute Cov(X, ).

A die is rolled twice. Let X equal the sum of the outcomes, and let Y equal
the first outcome minus the second. Compute Cov(X, Y).

The random variables X and Y have a joint density function given by

A _ 2¢” F/x 0=x<ow,0=y=x

&) =10 otherwise

Compute Cov(X, Y).

Let X1, . . . be independent with common mean p and common variance a2,

andset ¥, = X, + X,,41 + X, 4o Forj =0, find Cov(¥,, ¥, -
The joint density function of X and Y is given by

fee,y) = 317_8‘():+x/)’)’ x>0, y>0

Find E[X], E[Y], and show that Cov(X, ¥) = 1.

A pond contains 100 fish, of which 30 are carp. If 20 fish are caught, what
are the mean and variance of the number of carp among these 20?7 What
assumptions are you making?

A group of 20 people—consisting of 10 men and 10 women—are randomly
arranged into 10 pairs of 2 each. Compute the expectation and variance of
the number of pairs that consist of a man and a woman. Now suppose the
20 people consisted of 10 married couples. Compute the mean and variance
of the number of married couples that are paired together.

Let X;, X5, ..., X, be independent random variables having an unknown
continuous distribution function F, and let Yy, Y5, ..., Y,, be independent
random variables having an unknown continuous distribution function G.
Now order those n + m variables and let

I = 1 if the ith smallest of the n 4+ m variables is from the X sample
7o otherwise
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40.

41.

42,

43.

44,

n-+m

E il; is the sum of the ranks of the X sample
i=1

and is the basis of a standard statistical procedure (called the Wilcoxon sum
of ranks test) for testing whether F and G are identical distributions. This
test accepts the hypothesis that F = G when R is neither too large nor too
small. Assuming that the hypothesis of equality is in fact correct, compute
the mean and variance of R.

The random variable R =

HINT: Use the results of Example 3d.

There are two distinct methods for manufacturing certain goods, the quality
of goods produced by method i being a continuous random variable having
distribution F;, { = 1, 2. Suppose that n goods are produced by method 1
and m by method 2. Rank the n + m goods according to quality and let

¥ = 1 if the jth best was produced from method 1
2 otherwise

For the vector X, X5, ..., X,,4,,» Which consists of n I’s and m 2’s, let R
denote the number of runs of 1. For instance, if n = 5, m = 2, and X = 1,
2,1,1,1,1,2,then R = 2. If F; = F, (that is, if the two methods produce
identically distributed goods), what are the mean and variance of R?

If X;, X5, X5, X, are (pairwise) uncorielated random variables each having
mean 0 and variance 1, compute the correlations of

(a) XI + X2 and X2 + X3,

(b) Xl + X2 and X3 + X4.

Consider the following dice game, as played at a certain gambling casino:
Players 1 and 2 roll in turn a pair of dice. The bank then rolls the dice to
determine the outcome according to the following: player i, i = 1, 2, wins
if his roll is strictly greater than the bank’s. Let for i = 1, 2,

L _[1 ifiwins
£ 7 10 otherwise

and show that /; and I, are positively correlated. Explain why this result was
to be expected.

Consider a graph having n vertices labeled 1, 2, ..., n, and suppose that

n .. . ..
between each of the <2> pairs of distinct vertices an edge is, independently,

present with probability p. The degree of vertex i, designated as D;, is the
number of edges that have vertex i as one of its vertices.

(a) What is the distribution of D,?

(b) Find p(D;, D; );), the correlation between D; and D;.

A fair die is successwely rolled. Let X and Y denote, respectlvely, the number
of rolls necessary to obtain a 6 and a 5. Find

(a) E[X];

(b) E[X|Y =

(¢) EX|Y = 51.

45.

46.

47.

48.

49.

50.

51.

52.
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An urn contains 4 white and 6 black balls. Two successive random samples
of sizes 3 and 5, respectively, are drawn from the urn without replacement.
Let X and Y denote the number of white balls in the two samples, and compute
E[X|Y = ilsfori = 1, 2, 3, 4.
The joint density of X and Y is given by
e ey
f(x,y)=———)7——— 0<x<®0<y<e
Compute E[X?|Y = y].
The joint density of X and Y is given by
e Y S
f(x,y)=—y— 0<x<y,0<y<mw

Compute E[X3|Y = y].

A population is made up of r disjoint subgroups. Let p; denote the propor-
tion of the population that is in subgroup i, i = 1, ..., r. If the average
weight of the members of subgroup i is w;, i = 1, ..., r, what is the aver-
age WCIUht of the members of the population?

A prisoner is trapped in a cell containing 3 doors. The first door leads to a
tunnel that returns him to his cell after 2 days travel. The second leads to
a tunnel that returns him to his cell after 4 days travel. The third door leads
to freedom after 1 day of travel. If it is assumed that the prisoner will always
select doors 1, 2, and 3 with respective probabilities .5, .3, and .2, what is
the expected number of days until the prisoner reaches freedom?

Consider the following dice game. A pair of dice are rolled. If the sum is 7,
then the game ends and you win 0. If the sum is not 7, then you have the
option of either stopping the game and receiving an amount equal to that
sum or starting over again. For each value of i, i = 2, , 12, find your
expected return if you employ the strategy of stoppmc the ﬁrst time that a
value at least as large as [ appears. What value of i leads to the largest
expected return?

HINT:  Let X; denote the return when you use the critical value i. To compute
E[X;], condition on the initial sum:

Ten hunters are waiting for ducks to fly by. When a flock of ducks flies
overhead, the hunters fire at the same time, but each chooses his target at
random, independently of the others. If each hunter independently hits his
target with probability .6, compute the expected number of ducks that are
hit. Assume that the number of ducks in a flock is a Poisson random variable
with mean 6.

The number of people that enter an elevator on the ground floor is a Poisson
random variable with mean 10. If there are N floors above the ground floor
and if each person is equally likely to get off at any one of these N floors,
independently of where the others get off, compute the expected number of
stops that the elevator will make before discharging all of its passengers.
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53.

54.

55.

56.

57.

Suppose that the expected number of accidents per week at an industrial plant
is 5. Suppose also that the numbers of workers injured in each accident are
independent random variables with a common mean of 2.5. If the number of
workers injured in each accident is independent of the number of accidents
that occur, compute the expected number of workers injured in a week.

A coin having probability p of coming up heads is continually flipped until
both heads and tails have appeared. Find

(a) the expected number of flips;

(b) the probability that the last flip lands heads.

A person continually flips a coin until a run of 3 consecutive heads appears.
Assuming that each flip independently lands heads with probability p, deter-
mine the expected number of flips required.

HINT:  Let T denote the first flip that lands on tails and let it be 0 if all flips
land on heads, and then condition on T.

There are n + 1 participants in a game. Each person, independently, is a
winner with probability p. The winners share a total prize of 1 unit. (For
instance, if 4 people win, then each of them receives 3, whereas if there are
no winners, then none of the participants receive anything.) Let A denote a
specified one of the players, and let X denote the amount that is received by A.
(a) Compute the expected total prize illlared by the players.

- '
(b) Argue that E[X] = 1-d=p .
n+1

(¢) Compute E[X] by conditioning on whether A is a winner, and conclude
that

— (1 — n+1
E[(1 + B)"'] = 1 (;5 — 15’;

when B is a binomial random variable with parameters » and p.

Each of m + 2 players pays 1 unit to a kitty in order to play the following
game. A fair coin is to be flipped successively n times, where n is an odd
number, and the successive outcomes noted. Each player writes down, before
the flips, a prediction of the outcomes. For instance, if n = 3, then a player
might write down (H, H, T), which means that he or she predicts that the
first flip will land heads, the second heads, and the third tails. After the coins
are flipped, the players count their total number of correct predictions. Thus,
if the actual outcomes are all heads, then the player who wrote (H, H, T
would have 2 correct predictions. The total kitty of m + 2 is then evénly

-split up among those players having the largest number of correct predictions.

Since each of the coin flips is equally likely to land on either heads or
tails, m of the players have decided to make their predictions in a totally
random fashion. Specifically, they will each flip one of their own fair coins
n times and then use the result as their prediction. However, the final 2 of
the players have formed a syndicate and will use the following strategy. One
of them will make predictions in the same random fashion as the other m

58.

59.
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players, but the other one will then predict exactly the opposite of the first.
That is, when the randomizing member of the syndicate predicts an H, the
other member predicts a 7. For instance, if the randomizing member of the
syndicate predicts (H, H, T), then the other one predicts (7, T, H).

(a) Argue that exactly one of the syndicate members will have more than

- n/2 correct predictions. (Remember, 7 is odd.)
(b) Let X denote the number of the m nonsyndicate players that have more
than n/2 correct predictions. What is the distribution of X?
(c) With X as defined in part (b), argue that

E[payoff to the syndicate] = (m + 2)E[X n J

(d) Use part (c) of Problem 56 to conclude that

. 2m + 2) 1y
E[payoff to the syndicate] = mr 1l 1 - )

and explicitly compute this when m = 1, 2, and 3.
As it can be shown that

2(m + 2) B l m+1:l
m+ 1 [1 <2> =2

it follows that the syndicate’s strategy always gives it a positive expected profit.

Let Uy, Us, . . . be a sequence of independent uniform (0, 1) random variables.
In Example 4h we showed that for 0 < x = 1, E[N(x)] = e, where

Nx) = min{n: i U; >x}
i=1

Tﬁis problem gives another approach to establishing this result.
(a) Show by induction on n that for 0 <x = 1 and all n = 0,

P{Nx)=n + 1} =)nc_"

uiNT:  First condition on U; and then use the induction hypothesis.
(b) Use part (a) to conclude that
EN(x)] = e*

An urn contains 30 balls, of which 10 are red and 8 are blue. From this urn,

12 balls are randomly withdrawn. Let X denote the number of red, and Y the

number of blue, balls that are withdrawn. Find Cov(X, ¥)

(a) by defining appropriate indicator (;hat is, Bernoulli) random variables
10

X;, ¥; such that X = 21 X, Y= _21 Y;;
j= Jj=
(b) by conditioning (on either X or ¥) to determine E[XY].
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60. Type i light bulbs function for a random amount of time having mean u; and
standard deviation o;, i = 1, 2. A light bulb randomly chosen from a bin of
bulbs is a type 1 bulb with probability p, and a type 2 bulb with probability
1 — p. Let X denote the lifetime of this bulb. Find
(a) E[X]

(b) Var(X).

61. In Example 4c compute the variance of the length of time until the miner

reaches safety.

62. The dice game of craps was defined in Problem 26 of Chapter 2. Compute
(a) the mean and (b) the variance of the number of rolls of the dice that it
takes to complete one game of craps.

63. Consider a gambler who at each gamble either wins or loses her bet with
probabilities p and 1 — p. When p > %, a popular gambling system, known
as the Kelley strategy, is to always bet the fraction 2p — 1 of your current
fortune. Compute the expected fortune after n gambles of a gambler who
starts with x units and employs the Kelley strategy.

64. The number of accidents that a person has in a given year is a Poisson random
variable with mean A. However, suppose that the value of A changes from
person to person, being equal to 2 for 60 percent of the population and 3 for
the other 40 percent. If a person is chosen at random, what is the probability
that he will have (a) 0 accidents and (b) exactly 3 accidents in a year? What
is the conditional probability that he will have 3 accidents in a given year,
given that he had no accidents the preceding year?

65. Repeat Problem 64 when the proportion of the population having a value of
Aless than xis equal to 1 — e~ .

66. Consider an urn containing a large number of coins and suppose that each
of the coins has some probability p of turning up heads when it is flipped.
However, this value of p varies from coin to coin. Suppose that the composition
of the urn is such that if a coin is selected at random from the urn, then its
p-value can be regarded as being the value of a random variable that is
uniformly distributed over [0, 1]. If a coin is selected at random from the
urn and flipped twice, compute the probability that
(a) the first flip is a head;

(b) both flips are heads.

67. In Problem 66, suppose that the coin is tossed 7 times. Let X denote the
number of heads that occur. Show that

P{Xzi}:;l—%—l_ i=0,1,...,ll

HINT:  Make use of the fact that

1
a—1,1 _ b1 4. @a—= DI - D!
fo* (=" dx = =

when a and D are positive integers.

68.

69.

70.

71.

72.

73.

74.
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Suppose that in Problem 66 we continue to flip the coin until a head appears.
Let N denote the number of flips needed. Find

(@ PINz=i},i= 0

(b) P{N =.i};

(o) E[N].

In Example 5b let S denote the signal sent and R the signal received.

(a) Compute E[R].

(b) Compute Var(R).

(¢) Is R normally distributed?

(d) Compute Cov(R, 3).

In Example 5c, suppose that X is uniformly distributeld over (0, 1). If ?he
discretized regions are determined by ap = 0, a; = 3, ap = 1, determine
the optimal quantizer ¥ and compute E[(X — V)2

The moment generating function of X is given by Mx() = exp{2e’ — 2}
and that of ¥ by My(r) = (3)'°. If X and Y are independent, what are

(a) P{X + Y =2}

(b) P{XY = O};

(o) E[XY]? .

Let X be the value of the first die and Y the sum of the values when two dice
are rolled. Compute the joint moment generating function of X and Y.

The joint density of X and Y is given by

e.aye~(_\‘—y)2/2 O<y<oo’ —o < x <<

1
f(xa )’) - m

(a) Compute the joint moment generating function of X and Y.
(b) Compute the individual moment generating functions.

Two envelopes, each containing a check, are placed in front of you. You are
to choose one of the envelopes, open it, and see the amount of the check. At
this point you can either accept that amount or you can exchapge it for t.he
check in the unopened envelope. What should you do? Is it possible to devise
a strategy that does better than just accepting the first envelope?

Let A and B, A < B, denote the (unknown) amounts of the checks, and
note that the strategy that randomly selects an envelope and ahyays accepts
its check has an expected return of (A + B)/2. Consider the fo@lov&fmg strategy:
Let F(+) be any strictly increasing (that is, continuous) distribution function.
Randomly choose an envelope and open it. If the discovered check has
value x then accept it with probability F(x), and with probability 1 — F(x)
exchange it. .
(a) Show that if you employ the latter strategy, then your expected return 1s

greater than (A + B)/2.

uint:  Condition on whether the first envelope has value A or B.

Now consider the strategy that fixes a value x, and then accepts the first check
if its value is greater than x and exchanges it otherwise.




384 - Chapter 7 Properties of Expectation

(b) Show that for any x, the expected return under the x-strategy is always
at least (A + B)/2, and that it is strictly larger than (A + B)/2 if x lies
between A and B.

(c) Let X be a continuous random variable on the whole line, and consider
the following strategy: Generate the value of X, and if X = x then employ
the x-strategy of part (b). Show that the expected return under this strategy
is greater than (A + B)/2.

THEORETICAL EXERCISES

1.
2.

Show that E[(X — «)?] is minimized at a = E[X].

Suppose that X is a continuous random variable with density function f. Show
that E[|X — a|] is minimized when a is equal to the median of F.

HINT: Write
E[|X — a|] = [|x ~ alfx) dx

Now break up the integral into the regions where x < a and where x > a
and differentiate. '

. Prove Proposition 2.1 when

(a) X and Y have a joint probability mass function;
(b) X and Y have a joint probability density function and g(x, y) = 0 for all
X, y.

. Let X be a random variable having finite expectation u and variance o2, and

let g(-) be a twice differentiable function. Show that

Elg(0)] ~ g() + £ o2

HINT:  Expand g(-) in a Taylor series about w. Use the first three terms and
ignore the remainder.

. Let A}, A,, ..., A, be arbitrary events, and define C;, = {at least k of the

A; occur}. Show that

> P(CY = >, P(A
k=1 k=1

HINT: Let X denote the number of the A; that occur. Show that both sides
of the above are equal to E[X].

. In the text we noted that

E{E X,-] = S Ex]

i=1 i=1
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when the X; are all nonnegative random variables. Since an integral is a limit
of sums, one might expect that

. E[ | xw dt] = [ Exo dr
0 0
whenever X(7), 0 = t < o, are all nonnegative random variables; and this

result is indeed true. Use it to give another proof of the result that, for a
nonnegative random variable X,

E[X) = f: PLX > 1) dt

HINT:  Define, for each nonnegative #, the random variable X(#) by

1 if r<X
XD =30 if 1=x

Now relate f X() dr 1o X.
0

. We say that X is stochastically larger than Y, written X = Y, if for all ¢,

P(X>1 =P{Y>1)

Show that if X =, ¥, then E[X] = E[Y] when
(a) X and Y are nonnegative random variables;
(b) X and Y are arbitrary random variables.

HINT:  Write X as

where

+ = X if X=0 X = 0 ﬁXZO
0 if X<0O -X if X<0

Similarly, represent Y as ¥t — Y. Then make use of part (a).

. Show that X is stochastically larger than Y if and only if

E[fX)] = E[f(V)]

for all increasing functions f.

unt:  If X =, ¥, show that E[f(X)] = E[f(Y)] by showing that f(X) =
F(¥) and then using Theoretical Exercise 7. To show that E[f(X)] = E[f(Y)]
for all increasing functions f implies that P{X > ¢} = P{Y > t}, define an
appropriate increasing function f.

. A coin having probability p of landing heads is flipped n ti- es. Compute the

expected number of runs of heads of size 1, of size 2, oft ek, 1=k=n
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10.

11.

12.

13.

14.

15.

16.

LetX;, X5, ..., X, be independent and identically distributed positive random
variables. Find, for k < n,
k

2 X;

i==

> X

i=1

Consider n independent trials each resulting in any one of r possible outcomes
with probabilities Py, Py, ..., P, Let X denote the number of outcomes that
never occur in any of the tnals Fmd E[X] and show that among all probability
vectors Py, ..., P,, E[X] is minimized when P; = 1/r,i = 1,..., r.

Independent trials are performed. If the ith such trial results in a success with
probability P;, compute (a) the expected number, and (b) the variance, of
the number of successes that occur in the first n trials. Does independence
make a difference in part (a)? In part (b)?

LetX,,...,X, be independent and identically distributed continuous random
variables. We say that a record value occurs at time j, j = n, if X; = X; for
all 1 =i = j. Show that

(a) E[number of record values] = 2 1/;
] i=1

(b) Var(number of record values) = 2 G — 1)/jz.
. =1

For Example 2j show that the variance of the number of coupons needed to
amass a full set is equal to

Nil iN

= (N =0
When'N is large, this can be shown to be approxnnately equal (in the sense
that their ratio approaches 1 as N — ) to N2(w>/6).
Consider n independent trials, the ith of which results in a success with
probability P;.
(a) Compute the expected number of successes in the n trials—call it w.
(b) For fixed value of u, what choice of P, . .., P, maximizes the variance

of the number of successes?
(¢) What choice minimizes the variance?

Suppose that balls are randomly removed from an urn initially containing

n white and m black balls. It was shown in Example 2m that E[X] =

1 + m/(n + 1), when X is the number of draws needed to obtain a white ball.

(a) Compute Var(X).

(b) Show that the expected number of balls that need be drawn to amass a
total of k white balls is k[1 + m/(n + 1)].

HINT: LetY,i=1,...,n + 1, denote the number of black balls withdrawn
after the (i — 1)st white ball and before the ith white ball. Argue that the
Y;;i=1,...,n + 1, are identically distributed.

17.

18.

19.

20.

21.

22,

23.

24.
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Suppose that X; and X, are independent random variables having a common
mean . Suppose also that Var(X;) = o7 and Var(X,) = o03. The value of
1 is unknown and it is proposed to estimate u by a we1ghted average of X;
and X,. That is, AX; + (1 — A)X, will be used as an estimate of u, for
some appropriate value of A. Which value of A yields the estimate having
the lowest possible variance? Explain why it is desirable to use this value of A.
In Example 3g we showed that the covariance of the multinomial random
variables N; and N; is equal to —mP;P; by expressing N; and N; as the sum
of indicator variables. This result could also have been obtained by using the
formula

Var(V; + Nj) = Var(Ny) + Var(N) + 2 Cov(N;, Ny)
(a) What is the distribution of N; + N;?
(b) Use the identity above to show that Cov(N;, N;) = —mP;P;.
If X and Y are identically distributed, not necessarily independent, show that
CovX + ¥, X - 1) =0

The Conditional Covariance Formula. The conditional covariance of X and
Y, given Z, is defined by

Cov(X, Y|Z) = El(X — EIX|Z)¥ — E[Y|Z])|Z]
(a) Show that

Cov(X, Y|Z) = E[XY|Z] — E[X|Z]E[Y|Z]

(b) Prove the conditional covariance formula

Cov(X, Y) = E[Cov(X, Y|2)] + Cov(E[X|Z], E[Y|Z])

(c) Set X = Y in part (b) and obtain the conditional variance formula.
Let X5, i = 1, ..., n, denote the order statistics from a set of n uniform
(0, 1) random variables and note that the density function of X, is given by

n!
T P
(a) Compute Var(X;), i = 1,...,n
(b) Which value of i minimizes and which value maximizes Var(X;)?
If Y = a + bX, show that

Tl -0 0<x<1

o [T >0
PEY =11  ip<0

If Z is a unit normal random variable and if Y is defined by ¥ = a +
bZ + c¢Z?, show that
b
Y, 2) = ——=
g ViZ + 22

Prove the Cauchy—Schwarz inequality, namely, that
(EIXY])* = E[X*]E[Y?]
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25.

26.
27.

28.
29.

30.

31.

32,
33.

34.
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minT:  Unless ¥ = —£X for some constant, in which case this inequality
holds with equality, if follows that for all 7,

0 < E[(iX + Y)!] = E[X2 + 2E[XY]t + E[Y*]
Hence the roots of the quadratic equation
E[X22 + 2E[XY]r + E[Y?] =0

must be imaginary, which implies that the discriminant of this quadratic
equation must be negative.

Show that if X and Y are independent, then
E[X|Y = y] = E[X] forally
(a) in the discrete case;
(b) in the continuous case.
Prove that E[g(X)Y|X] = g(X)E[Y|X].
Prove that if E[Y|X = x] = E[Y] for all x, then X and Y are uncorrelated,
and give a counterexample to show that the converse is not true.
HINT:  Prove and use the fact that E[XY] = E[XE[Y IXJ].
Show Cov(X, E[Y|X]) = Cov(X, Y).

Let Xj, ..., X, be independent and identically distributed random vari-
ables. Find ~

EX|X; + - + X, = 1]
Consider Example 3g, which is concerned with the multinomial distribution.

Use conditional expectation to compute E[N;N;] and then use this to verify
the formula for Cov(N;, N;) given in Example 3g.

An urn initially contains b black and w white balls. At each stage we add r
black balls and then withdraw, at random, r from the b + w + r. Show that

. b+w \
E[number of white balls after stage ] = (b I r) w
Prove Equation (6.1b).
A coin, which lands on heads with probability p, is continually flipped.
Compute the expected number of flips that are made until a string of r heads
in a row is obtained.

HINT: Condition on the time of the first occurrence of tails, to obtajn the
equation ‘

ElX] = (1 - p) Elp"‘(i + EXD) + (1 - p) EHP'_I r
Simplify and solve for E[X].
For another approach to Theoretical Exercise 33, let T, denote the number
of flips required to obtain a run of r consecutive heads.
(a) Determine E[T,|T,_1].
(b) Determine E[T,] in terms of E[T,_1].

35.

36.

37.

38.

39.
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(c¢) What is E[T;]?
(d) What is E[T,]?
(a) Prove that

E[X] = E[X|X < a]lP{X <a} + E[X|X= alP{X = a}

uiNT:  Define an appropriate random variable and then compute E[X] by

conditioning on it.

(b) Use part (a) to prove Markov’s inequality, which states that if
P{X = 0} = 1, then fora > 0,

P{XZa}s—EL:ﬂ—

One ball at a time is randomly selected from an urn containing a white and
b black balls until all of the remaining balls are of the same color. Let M, ;,
denote the expected number of balls left in the urn when the €éxperiment ends.
Compute a recursive formula for M, ;, and solve when a = 3, b = 5.

An urn contains a white and b black balls. After a ball is drawn, it is returned
to the urn if it is white; but if it is black, it is replaced by a white ball from
another urn. Let M,, denote the expected number of white balls in the urn
after the foregoing operation has been repeated n times.

(a) Derive the recursive equation

1
Mn-f-l: (1_a+b>Mn+1

(b) Use part (a) to prove that

M,=a+b-0b{l— 1
a+b

(¢) What is the probability that the (n + 1)st ball drawn is white?
The best linear predictor of Y with respect to X; and X, is equal to a +
bX, + cX,, where a, b, and c are chosen to minimize

E[(Y — (a + bX; + cX»))*]
Determine a, b, and c.
The best quadratic predictor of ¥ with respect to X is a + bX + cX?, where

a, b, and ¢ are chosen to minimize E[(Y — (a + bX + cX?))?]. Determine
a, b, and c.

40. X and Y are jointly normally distributed with joint density function given by

feey) = :
’ 270,V 1 — p?

_ 1 x””’.\tz y_/-"yz
X‘”‘P{ 2<1—p2>[< o >+< - >

PN Gl uy)]}

0,0y
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41.

42,

43.

44,
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(a) Show that the conditional distribution of ¥, given X = x, is normal with
o, )
mean p, + p -(-ri (x — w,) and variance o3(1 — p?).
X
(b) Show that Corr(X, ¥) = p.

(e¢) Argue that X and Y are independent if and only if p = 0.

Let X be a normal random variable with parameters & = 0 and o2 = 1 and
let I, independent of X, be such that P{I = 1} = 3 = P{I = 0}. Now define

Y by
X ifI=1
Y_{—X if 7=0

In words, Y is equally likely to equal either X or —X.
(a) Are X and Y independent?

(b) Are ] and Y independent?

(¢) Show that Y is normal with mean O and variance 1.
(d) Show that Cov(X, Y) = 0.

It follows from Proposition 5.1 and the fact that the best linear predictor of

o, .
Y with respect to X is u, + po_—.’ (X — ) that if
X

E[YI)G = q -+ bX
then

(Why?) Verify this directly.
For random variables X and Z show that

E[(X — Y)’] = E[X*] — E[Y?]
where

Y = E[X|Z]
Consider a population consisting of individuals able to produce offspring of
the same kind. Suppose that each individual will, by the end of its lifetime,
have produced j new offspring with probability P;, j = 0, independently of
the number produced by any other individual. The number of individuals
initially present, denoted by X, is called the size of the zeroth generation.
All offspring of the zeroth generation constitute the first generation, and their
number is denoted by X;. In general, let X, denote the size of the nth

generation. Let u = >, jP;and 0 = », (j — w)’P; denote, respectively,
j=0 j=0

the mean and the variance of the number of offspring produced by a single

individual. Suppose that X, = 1—that is, initially there is a single individual

in the population.

45.

46.

47.
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(a) Show that
E[Xn] = /-LE[Xn—ll
(b) Use part, (a) to conclude that

E[X,] = u'
(¢) Show that
‘ Var(X,) = o> u*~ ! + p? Var(X,_,)

(d) Use part (c) to conclude that
2 n—1 :u‘n -1 .
o (IL — 1) ifu+1

no? ifpu=1

Var(X,) =

The case described above is known as a branching process, and an important
question for a population that evolves along such lines is the probability that
the population will eventually die out. Let 7 denote this probability when
the population starts with a single individual. That is,

7 = P{population eventually dies out|X, = 1)

(e) Argue that 7 satisfies
j=0

HINT:  Condition on the number of offspring of the initial member of the popu-
lation.

Verify the formula for the moment generating function of a uniform random
variable that is given in Table 7.2. Also, differentiate to verify the formulas
for the mean and variance.

For a standard normal random variable Z, let u,, = E[Z"]. Show that

0 when n is odd
— M
K ———(22111.)" when n = 2j

HINT:  Start by expanding the moment generating function of Z into a Taylor
series about 0 to obtain

E[etZ] - et2/2
=0 J!
Let X be a normal random variable with mean u and variance o”. Use the
results of Theoretical Exercise 46 to show that

N\ —2i 2im.
[,,/2]< >I-Ll 21021@])!

9
]

E[X"l = -
_,'Zo 2JJ!
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48.

49.

50.

51.

52.

53.

Properties of Expectation

In the equation above, [n/2] is the largest integer less than or equal to n/2.
Check your answer by letting n = 1 and n = 2.

IfY = aX + b, where a and b are constants, express the moment generating
function of Y in terms of the moment generating function of X.

The positive random vanable X is said to be a lognormal random variable
with parameters u and o? if log(X) is a normal random variable with mean
w and variance o Use the normal moment generating function to find the
mean and variance of a lognormal random variable.

Let X have moment generating function M(¢), and define W() = logM(?).
Show that

V()| ;=0 = Var(X)
Use Table 7.2 to determine the distribution of z X; when Xy, ..., X,, are

i=1

independent and identically distributed exponential random variables, each
having mean 1/A.

Show how to compute Cov(X, Y) from the joint moment generating function
of X and Y.

Suppose that X, . . ., X, have a multivariate normal distribution. Show that
X1, ..., X, are independent random variables if and only if

Cov(X;, Xj) = 0 when [ # j

54. If Z is a unit normal random variable, what is Cov(Z, Z%)?

SELF-TEST PROBLEMS AND EXERCISES

-~
i
/

/‘

o 2.

i 1. Consider a list of m names, where the same name may appear more than

once on the list. Let n(i) denote the number of times that the name in position

i appears on the list, i =1, , m, and let d denote the number of distinct
names on the list.
(a) Express d in terms of the variables m, n;, i = 1, ..., m.

Let U be a uniform (0, 1) random variable, and let X = [mU] + 1.

(b) What is the probability mass function of X?

(¢) Argue that E[m/n(X)] = d.

An urn has n white and m black balls which are removed one at a time in a
randomly chosen order. Find the expected number of instances in Wthh a
white ball is immediately followed by a black one.

+ 3. Twenty individuals, consisting of 10 married couples, are to be seated at five

different tables, with four people at each table.

(a) If the seating is done “at random,” what is the expected number of married
couples that are seated at the same table?

(b) If two men and two women are randomly chosen to be seated at each
table, what is the expected number of married couples that are seated at
the same table?

24,

10.

. Let Al’ Az, “e
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If a die is to be rolled until all sides have appeared at least once, find the
expected number of times that outcome 1 appears.

. A deck of 2n cards consists of n red and n black cards. These cards are

shuffled and*then turned over one at a time. Suppose that each time a
red card is turned over we win 1 unit if more red cards than black cards
have been turned over by that time. (For instance, if n = 2 and the result
isr b b, then we would win a total of 2 units.) Find the expected amount
that we win.

, A, be events, and let N denote the number of them that
occur. Also, let / = 1 if all of these events occur, and let it be O ctherwise.
Prove Bonferroni’s inequality, namely that

PAy - A= '21 PA) — (i — 1)

HINT:  Argue first that N<=n — 1 + L

Suppose that & of the balls numbered 1, 2, . . ., n, where n > k, are randomly
chosen. Let X denote the maximum numbered ball chosen. Also, let R denote
the number of the n — k unchosen balls that have higher numbers than all
the chosen balls.

(a) What is the relationship between X and R?

(b) Express R asthe sumofn — ksuitably defined Bernoulli random variables.
(e) Use parts (a) and (b) to find E[X].

(Note that E[X] was obtained previously in Theoretical Exercise 28 of Chap-
ter 4.)

Let X be a Poisson random variable with mean A. Show that if A is not too
small, then

Var(VX) = 25

HINT:  Use the result of Theoretical Exercise 4 to approximate E[VX].

Suppose in Self-Test Problem 3 that the 20 people are to be seated at seven
tables, three of which have 4 seats and four of which have 2 seats. If the
people are randomly seated, find the expected value of the number of married
couples that are seated at the same table.

Individuals 1 through n, n > 1, are to be recruited into a firm in the following

manner. Individual 1 starts the firm and recruits individual 2. Individuals 1

and 2 will then compete to recruit individual 3. Once individual 3 is recruited,

individuals 1, 2, and 3 will compete to recruit individual 4, and so on. Suppose

that when individuals 1, 2, .. ., { compete to recruit individual { + 1, each

of them is equally likely to be the successful recruiter.

(a) Find the expected number of the individuals 1, . . ., n that did not recruit
anyone else.

(b) Derive an expression for the variance of the number of individuals who
did not recruit anyone else and evaluate it for n = 5.
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11.

12.

13.

14.

The nine players on a basketball team consist of 2 centers, 3 forwards, and

4 backcourt players. If the players are paired up at random into three groups

of size 3 each, find the (a) expected value and the (b) variance of the number

of triplets consisting of one of each type of player.

A deck of 52 cards is shuffled and a bridge hand of 13 cards is dealt out.

Let X and Y denote, respectively, the number of aces and the number of

spades in the dealt hand.

(a) Show that X and Y are uncorrelated.

(b) Are they independent?

Each coin in a bin has a value attached to it. Each time that a coin with value

p is flipped it lands on heads with probability p. When a coin is randomly

chosen from the bin, its value is uniformly distributed on (0, 1). Suppose

that after the coin is chosen but before it is flipped, you must predict whether

it will land heads or tails. You will win 1 if you are correct and will lose

1 otherwise.

(a) What is your expected gain if you are not told the value of the coin?

(b) Suppose now that you are allowed to inspect the coin before it is flipped,
with the result -of your inspection being that you learn the value of the
coin. As a function of p, the value of the coin, what prediction should
you make?

(¢) Under the conditions of part (b), what is your expected gain?

In Self-Test Problem 1 we showed how to use the value of a uniform (0, 1)

random variable (commonly called a random number) to obtain the value of

a random variable whose mean is equal to the expected number of distinct

names on a list. However, its use required that one chooses a random position

and then determine the number of times that the name in that position appears
on the list. Another approach, which can be more efficient when there is a
large amount of name replication, is as follows. As before, start by choosing
the random variable X as in Problem 3. Now identify the name in position
X, and then go through the list starting at the beginning until that name
appears. Let I equal O if you encounter that name before ‘getting to position
X, and let I equal 1 if your first encounter with the name is at position X.
Show that E[mlI] =

HINT: Compute E[/] by using conditional expectation.

CHAPTER 8

Limit Theorems

8.1 INTRODUCTION

The most important theoretical results in probability theory are limit theorems.
Of these, the most important are those that are classified either under the heading
laws of large numbers or under the heading central limit theorems. Usually,
theorems are considered to be laws of large numbers if they are concerned with
stating conditions under which the average of a sequence of random variables
converges (in some sense) to the expected average. On the other hand, central
limit theorems are concerned with determining conditions under which the sum
of a large number of random variables has a probability distribution that is
approximately normal.

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW
OF LARGE NUMBERS

We start this section by proving a result known as Markov’s inequality.

: Propos:tlon 21 Markov s mequallty

'If Xisa random vanable that takes only nonnegatwe values then for
»anyvaluea>0 ci

Px .>.'a} 's % :

Proof: For a > 0, let
= if X=a
- otherwise

395




396 Chapter 8 Limit Theorems

and note that since X = 0,
=%
, a
Taking expectations of the above yields that
a
which, since E[I] = P{X = a}, proves the result.

As a corollary, we obtain Proposition 2.2.

Pfoposition 22 Chebyshev’s inequality :
IfXisa random variable with finite mean g and variance o2, then for -

2 anyvaluek>0

P{X —plzkl=pmr -

Proof: Since (X — w)? is a nonnegative random variable, we can apply
Markov’s inequality (with a = k?) to obtaln

E[X — w*
k?.

But since (X — w)? = k2 if and only if [X — u| = k, Equation (2.1) is equivalent
to

P{X — p?*=z=k} = 2.1)

EX -~ w1 _o°

and the proof is complete.

The importance of Markov’s and Chebyshev’s inequalities is that they enable
us to derive bounds on probabilities when only the mean, or both the mean and
the variance, of the probability distribution are known. Of course, if the actual
distribution were known, then the desired probabilities could be exactly computed
and we would not need to resort to bounds.

Example 2a. Suppose that it is known that the number of items produced ina
factory during a week is a random variable with mean 50.
(a) What can be said about the probablhty that this week’s production will
exceed 757
(b) If the variance of a week’s production is known to equal 25, then what
can be said about the probability that this week’s production will be
between 40 and 60?

\/
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Solution Let X be the number of items that will be produced in a week:
(a) By Markov’s inequality

_EX]_50_2
> —==
. PiX>75) = 7575 3
(b) By Chebyshev’s inequality
1
P{|X — 50| =10} = 102 i

Hence
P{IX — 50| <10} =1—3=2

so the probability that this week’s production will be between 40 and
60 is at least .75. i

As Chebyshev’s inequality is valid for all distributions of the random variable
X, we cannot expect the bound on the probability to be very close to the actual
probability in most cases. For instance, consider Example 2b.

Example 2b. If X is umformly distributed over the interval (0, 10), then, as
E[X] = 5, Var(X) = %, it follows from Chebyshev’s inequality that
25 ,
-5 >4)=s—= 52
P{|X — 5| > 4} 3(16) 5
whereas the exact result is
P{|X — 5| >4} =

Thus, although Chebyshev’s inequality is correct, the upper bound that it
provides is not particularly close to the actual probability.

Similarly, if X is a normal random variable with mean p and variance
a2, Chebyshev’s inequality states that

P{|X — p| > 20} =4
whereas the actual probability is given by
X—p

oz

P{X — u| > 20} = P{] i >2} =2[1 — ®Q2)] ~ .0456 §

Chebyshev’s inequality is often used as a theoretical tool in proving results.
This is illustrated first by Proposition 2.3 and then, most importantly, by the weak
law of large numbers.

_ Proposition2.3
. I Va®) = 0,then o
o . PIX=EXn=1
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In other words, the only random variables having variances equal to O are those
that are constant with probability 1.

Proof: By Chebyshev’s inequality we have, for any n = 1

P{]X— w >%} =0

Letting n — < and using the continuity property of probability yields

0 = lim P{[X w| > } P{hm {]X w]> }}
=P{X # u}

and the result is established.

§ Theorem 2 1 The weak Iaw of Iarge numbers o

- LetXy, X5, ... beasequence of independent and 1dentlcally dlstnbuted
random Vanables each having finite mean E[X;] = u. Then, for any

"8>O
X+

P{}

Proof: We shall prove the result only under the additional assumption that
the random variables have a finite variance o>. Now, as

4o X, +---4+ X 0,2
E[Xl -+ Xn:l =pu and Var( 1 p n> = Y
. n

n

oy e
- ,’X”-;L|.>_s}—>0 as n—o -
n. - . o e : .

it follows from Chebyshev’s inequality that

X, + -+ X,
Pil—m——————2 —pu|=ep =
il ne

and the result is proved.

158

The weak law of large numbers was originally proved by James Bernoulli
for the special case where the X; are 0—1 (that is, Bernoulli) random variables.
His statement and proof of this theorem were presented in his book Ars Conjec-
tandi, which was published in 1713, 8 years after his death by his nephew Nicholas
Bernoulli. It should be noted that as Chebyshev’s inequality was not known in
his time, Bernoulli had to resort to a quite ingenious proof to establish the result.
The general form of the weak law of large numbers presented in Theorem 2.1
was proved by the Russian mathematician Khintchine.

e
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8.3 THE CENTRAL LIMIT THEOREM

The central limit theorem is one of the most remarkable results in probability
theory. Loosely put, it states that the sum of a large number of independent random
variables has a distribution that is approximately normal. Hence it not only provides
a simple method for computing approximate probabilities for sums of independent
random variables, but it also helps explain the remarkable fact that the empirical
frequencies of so many natural populations exhibit bell-shaped (that is, normal)
curves.
In its simplest form the central limit theorem is as follows.

Theorem 3.1 The central Iimii theorem

LetX;, X, . . . be a sequence of independent and 1dentlcally distributed
random vanables each havmg mean /.L and variance ¢2. Then the
distribution of ~ :

X, 4+ +X, - np
oVn

 tends to the standard normal as n — . That is, for —o < g < 90,:,
P{Xl R nMSa}a
o oVn

The key to the proof of the central limit theorem is the following lemma,
which we state without proof.

1 a —2p : ;
e e “dx as 00
V2mgd—= oo

Lemma 3.1

'Ift Zi,Z,, ... be asequence of random variables havmg distribution -

functions F_ and moment generating functions Mz , n = 1; and let Z
be a random variable having distribution function F ~ and moment
generating function M. If MZ () = Mz(¢) for all ¢, then F5 () —
FZ(t) for all £ at which F(¢) is continuous.

If we let Z be a unit normal random variable, then, as Mz(r) = , it
follows from Lemma 3.1 that if A z,(H = e as n — o, then Fy (t) —> CD(r)
as n — w®,

We are now ready to prove the central limit theorem.

Proof of the Central Limit Theorem: Let us assume at first that
k= 0and 0> = 1. We shall prove the theorem under the assumption that the
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moment generating function of the X;, M(z), exists and is finite. Now the moment
generating function of X;\/n is given by

Aeof2]- ()

n
and thus the moment generating function of E X,-/\/ﬁ is given by
i=1
Z n !
M ——>} . Let

and note that

L(t) = log M(p)

L) = 0

M'(0)

M©)

=p

= () ]

MOM"(0) — [M'(0)*
[M(0))

L'©) =

L'"(0) =
= E[X?]
=1

Now, to prove the theorem, we must show that [M(t/\/ﬁ)]" — e asn — o,
or equivalently, that nL(t/\/ﬁ) — t%/2 as n — . To show this, note that

th(t/\/fz) . —L'¢INmyn~ 3t

1272

- —5 by L’Hospital’s rule
noe R ) n—e —2n" <
C [LeVa
= ol D P 172

[~ __rn —3/2 ;2
— 1im | —E \;'E)_’é N } again by L’Hospital’s rule
n-® | - .
B 2
i L,,(__r_> z_]
n-e | Vn/ 2
_z
)

Thus the central limit theorem is proved when p = 0 and o? = 1. The Fesult
now follows in the general case by considering the standardized random variables
X¥ = (X; — w)lo and applying the result above, since E[X}] = 0, Var(X}) = L.
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Remark. Although Theorem 3.1 only states that for each a,

P{Xl + -+ X, - nu
0‘\/}_1
it can, in fact, be shown that the convergence is uniform in a. [We say that

f+(@) = f(a) uniformly in a, if for each &€ > 0, there exists an N such that
Ifil@ — fla)| < e for all a whenever n = N.]

= a} — ®(a)

The first version of the central limit theorem was proved by DeMoivre
around 1733 for the special case where the X; are Bernoulli random variables
with p = 3. This was subsequently extended by Laplace to the case of arbitrary
p. (Since a binomial random variable may be regarded as the sum of # independent
and identically distributed Bernoulli random variables, this justifies the normal
approximation to the binomial that was presented in Section 5.4.1.) Laplace also
discovered the more general form of the central limit theorem given in Theorem
3.1. His proof, however, was not completely rigorous and, in fact, cannot easily
be made rigorous. A truly rigorous proof of the central limit theorem was first
presented by the Russian mathematician Liapounoff in the period 1901-1902.

This important theorem is illustrated by the central limit theorem module
on the text diskette. This diskette plots the density function of the sum of n
independent and identically distributed random variables that each take on one
of the values 0, 1, 2, 3, 4. When using it, one enters the probability mass function
and the desired value of n. Figure 8.1 shows the resulting plots for a specified
probability mass function when (@) n = 5, (b) n = 10, (¢c) n = 25, and
(d) n = 100.

Example 3a. An astronomer is interested in measuring, in light years, the distance
from his observatory to a distant star. Although the astronomer has a measur-
ing technique, he knows that, because of changing atmospheric conditions
and normal error[ each time a measurement is made it will not yield the
exact distance but merely an estimate. As a result the astronomer plans to
niake a series of measurements and then use the average value of these
measurements as his estimated value of the actual distance. If the astronomer
believes that the values of the measurements are independent and identically
distributed random variables having a common mean 4 (the actual distance)
and a common variance of 4 (light years), how many measurements need
he make to be reasonably sure that his estimated distance is accurate to
within *.5 light year?

Solution Suppose that the astronomer decides to make n observations. If
X1, X,, ..., X, are the n measurements, then, from the central limit theorem,
it follows that ‘

> X;— nd

7 = i=1
" 2Vn
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© . Central Limit Theorem
Enter the probabilities and the number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.
ro [25 ] e
Mean = 10.75
Variance = 12.6375
0.15
X x
0.10 x % %
. : X x
p(i) x <
0.05 X X
x
x x X * ; ' " x X x
0-00 5 10 15 20
i
Figure 8.1(a)

has approximately a unit normal distribution. Hence

n
> X

Pl-5== _g=<35 =P{-.5——SZ,,5.5——

o)) () -

4 4

Therefore, if the astronomer wanted, for instance, to be 95 percent certain
that his estimated value is accurate to within .5 light year, he should make
n* measurements, where n* is such that

\/p# Vi
2<1>< :>—1=.95 or CI>< ”)=.975

4
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. Central Limit Theorem

Enter the probabilities and the number of random
® variables to be summed. The output gives the mass

function of the sum along with its mean and

variance.

c8tart il
.
3 Quit
Mean = 21.5
Variance = 25.275
0.08 XXy
X X
0.06 X/ x
X X
p(i) 0.04 e .
X X
0.02 X X
X X
0.00 yyyxi.( : xXvi X
10 20 30 40
i
Figure 8.1(b)

and thus from Table 5.1 of Chapter 5,

Vn*
4

=196 or n* = (7.84)% ~ 6147

As n* is not integral valued, he should make 62 observations.

It should, however, be noted that the preceding analysis has been
done under the assumption that the normal approximation will be a good
approximation when n = 62. Although this will usually be the case, in
general the question of how large n need be before the approximation is
“good” depends on the distribution of the X;. If the astronomer was concerned
about this point and wanted to take no chances, he could still solve his
problem by using Chebyshev’s inequality. Since

i=1 N ji=1 1 n
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C‘eifltlféll,_gLimit ‘Theorem

Enter the probabilities and the number of random
variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.
w0 [ =
Start
P1 -
e [ ]
oz ] e |
n = [25] /
Mean = 53.75
Variance = 63.1875
0.05
£
0.04 )2( )§<
. 0.03 ) L S
p(i) X b
0.02 = %

0.01 & %,
0.00 t y
0 20 40 60 80 100

i

Figure 8.1(c)

Chebyshev’s inequality yields that

{52

i=1 M

T

Hence, if he makes n = 16/.05 = 320 observations, he can be 95 percent
certain that his estimate will be accurate to within .5 light year. '

R

Example 3b. The number of students that enroll in a psychology course is a

Poisson random variable with mean 100. The professor in charge of the
course has decided that if the number enrolling is 120 or more he will t€ach
the course in two separate sections, whereas if fewer than 120 students enroll
he will teach all of the students together in a single section. What is the
probability that the professor will have to teach two sections?

Solution The exact solution e~ 1% 2 (100)7/i! does not readily yield
i=120

a numerical answer. However, by recalling that a Poisson random variable

with mean 100 is the sum of 100 independent Poisson random variables
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Centrai Limit Théore’m

Enter the probabilities and the number of random

® variables to be summed. The output gives the mass
function of the sum along with its mean and
variance.

gtart:

s ] o

Variance = 252.75

p(i)

OO0 0O 00

0 100 200 © 300 T 200

Figure 8.1(d)

each with mean 1, we can make use of the central limit theorem to obtain

an approximate solution. If X denotes the number of students that enroll in
the course, we have

P{X =120} = P{X — 100 120 — 100}

V100 V100
=1 - @)
~ 0228
yvhere we have used the fact that the variance of a Poisson random variable
is equal to its mean. : |

Example 3c. If 10 fair dice are rolled, find the approximate probability that the

sum obtained is between 30 and 40.

Solution _Let X; denote the value of the ith die, i = 1, 2, ..., 10. Since

E()lcé) = 3, Var(X) = E[X?] — (EIX,)®> = £, the central limit theorem
yieids
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10

> X;— 35

30 =35 _i=1 40— 35

0 350 I 1]
12 12 12
20(f) - 1

=~ .65 |

Example 3d. Let X;, i = 1, ..., 10 be independent random variables,
each uniformly distributed over (0, 1). Calculate an approximation to

-

i=1

10
P{SOS > X,~s40} =P

!

Solution Since E[X;] = 3, Var(X)) = &, we have by the central limit

theorem
10
10 Z Xi =5 6 — 5
P{E X; > 6} =P — > :
! | V0@ 106
=1 - ®(V12)
=~ .16
10
Hence only 16 percent of the time will z X; be greater than 6. |

i=1

Central limit theorems also exist when the X; are independent but not neces-
sarily identically distributed random variables. One version, by no means the most
general, is. as follows.

' Theorem 3.2 Central limit theorem for
independent random variables

Let Xl, X,, ... beasequence of independent réqndom variables having
respective means and varjances u; = E[X;], o7 = Var(X). If (a) the
X; are uniforml@ﬁ; that is, if for some M, P{X;| <M} =1
for all , and (b) >, o7 = oo, then

i=1

n
2 &) T
p{=l =at— da) as n-—>o
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HISTORICAL NOTE
Pierre Simon, Marquis de Laplace

The.central limit theorem was originally stated and proved by the French
mathematician Pierre Simon, the Marquis de Laplace, who came to this theorem
from his observations that errors of measurement (which can usually be
regarded as being the sum of a large number of tiny forces) tend to be normally
distributed. Laplace, who was also a famous astronomer (and indeed was
called "the Newton of France”), was one of the great early contributors to both
probability and statistics. Laplace was also a popularizer of the uses of
probability in everyday life. He strongly believed in its importance, as is indicated
by the following quotations of his taken from his published book Analytical
Theory of Probability. “We see that the theory of probability is at bottom only
common sense reduced fo calculation; it makes us appreciate with exactitude
what reasonable minds feel by a sort of instinct, often without being able to
account for it. . . . It is remarkable that this science, which originated in the
consideration of games of chance, should become the most important object
of human knowledge. . . . The most important questions of life are, for the most
part, really only problems of probability.”

The application of the central limit theorem to show that measurement
errors are approximately normally distributed is regarded as an important
contribution to science. Indeed, in the seventeenth and eighteenth centuries
the central limit theorem was often called the “law of frequency of errors.”
The law of frequency of errors was considered a major advance by scientists.
Listen to the words of Francis Galton (taken from his book Natural
Inheritance, published in 1889): “I know of scarcely anything so apt to impress
the imagination as the wonderful form of cosmic order expressed by the ‘Law
of Frequency of Error.” The Law would have been personified by the Greeks
and deified, if they had known of it. It reigns with serenity and in complete self-
effacement amidst the wildest confusion. The huger the mob and the greater
the apparent anarchy, the more perfect is its sway. It is the supreme law

~ of unreason.”

8.4 THE STRONG LAW OF LARGE NUMBERS

The strong law of large numbers is probably the best-known result in probability
theory. It states that the average of a sequence of independent random variables
having a common distribution will, with probability 1, converge to the mean of
that distribution.
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Theorem 4.1 ' The strong law of large numbers
Let Xy, X'Z; .i.bea Séquence’é’f indepéﬁdent and identic'ally di'st,ryi‘l'jutedf;
- random variables, each having a finite mean u = E[Xj]. ‘Then, with-
probability 1, o . -
s A

N

As an application of the strong law of large numbers, suppose that a sequence
of independent trials of some experiment is performed. Let E be a fixed event of
the experiment and denote by P(E) the probability that E occurs on any particular
trial. Letting

X, =

i

1 if E occurs on the ith trial
0 if E does not occur on the ith trial

we have by the strong law of large numbers that with probability 1,

X+ + X,
13

— E[X] = P(E) “.1)

Since X; + - -+ + X, represents the number of times that the event E occurs
in the first n trials, we may interpret Equation (4.1) as stating that, with probability
1, the limiting proportion of time that the event E occurs is just P(E).

Although the theorem can be proven without this assumption, our proof of
the strong law of large numbers will assume that the random variables X; have
a finite fourth moment. That is, we will suppose that E[Xj-"] = K < oo,

Proof of the Strong Law of Large Numbers: To begin, assume that u,
the mean of the X}, is equal to 0. Let S, = z X; and consider

i=1
E[S =E[(X; + - + X)X + - + X))
X Ky + e X)X+ X

Expanding the right side of the above will result in terms of the form
Xt X3X;, X7X7, XXX, and X X;X\X,

[ ekl B

T That is, the strong law of large numbers states that

P{lim(XI Foe 4 X)n = ,L} =1

n—x
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ghere i,], k, l are all different. As all the X; have mean 0, it follows by independence
at

EIX?X;) = EDGIEX] = 0
E[X;X;X,] = EX;IEIXE[X,] = 0
EDQ%X%&]z:O

L

. _ . . 4
Now, for a given pair { and j there will be <2> = 6 terms in the expansion that

wil'l equal X,ZXJ2 Hence it follows upon expanding the preceding product and
taking expectations term by term that

E[S{] = nE[X}] + 6(’21 > EX2X7]

= nK + 3n(n — DE[X;]E[X7]
where we have once again made use of the independence assumption. Now, since
0 = Var(X?) = E[X]] — (E[X}1)’
we see that
(EIX7)? < E[X{] = K
Therefore, from the preceding we have that
E[SH < nK + 3n(n — DK
which implies that
Sil K

E[;—ZZ} =3+ %{

Therefore, it follows that

{5 5] 5 5] -

A
n=117 n=1 n

But the preceding implies that with probability 1, 2 Stin* < oo, (For if there
. - .- NP n=1
1s a positive probability that the sum is infinite, then its expected value is infinite.)
But the convergence of a series implies that its nth term goes to 0; so we can
conclude that with probability 1, +
Lim Sﬁ =0
o
But if Sy/n* = (S,/n)* goes to 0, then so must S,/n; so we have proven that
with probability 1,
SJI O
P as n-—o
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When u, the mean of the X;, is not equal to 0, we can apply the preceding
argument to the random variables X; — w to obtain that with probability 1,

i n (Xif;L)z

n—-® j= 1 n

0

or, equivalently,
n .
lim >, = =u
n-® j=1 n
which proves the result.

The strong law is illustrated by two modules on the text diskette that consider
independent and identically distributed random variables which take on one of
the values 0, 1, 2, 3, 4. The modules simulate the values of n such random

variables; the proportions of time that each outcome occurs, as well as the resulting
123

sample mean E X;/n, are then indicated and plotted. When using these modules,
i=1

which differ only in the type of graph presented, one enters the probabilities and

the desired value of n. Figure 8.2 gives the results of a simulation using a specified

probability mass function and (a) n= 100, (b) n = leQO, and (¢) n = 10,000.

- _ Strong Law Of Large Numbers

Enter the probabilities and the number of trials to|be
simulated. The output gives the total number of
times each outcome occurs, and the average of all
outcomes.

=0 s’tart‘
P3 o quit

Theoretical Mean = 2.05

Sample Mean = 1.89

15 20 30 31

>

Figure 8.2(a)
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© U dtvong Taw Of TLarge Numbers =

Enter the probabilities and the number of trials to|be
o simulated. The output gives the total number of
times each outcome occurs, and the average of all
outcomes.

F0 Start
o
e
P3 , ;'Quit;
»4
n =

Theoretical Mean = 2.05
Sample Mean = 2.078

—— r B
0 1 2 3

>

106 189 285 361 59

Figure 8.2(b)

Many students are initially confused about the difference between the weak
and the strong law of large numbers. The weak law of large numbers states that
for any specified large value n*, (X; + - -+ +/X,»)/n* is likely to be near pu.
However, it does not say that (X; + --- + X,)/n is bound to stay near u for
all values of n larger than »n*. Thus it leaves open the possibility that large values
of [(X; + -+ + X,)/n — u| can occur infinitely often (though at infrequent
intervals). The strong law shows that this cannot occur. In particular, it implies
that with probability 1, for any positive value &,

noy. \

L
Zn‘ *

will be greater than ¢ only a finite number of times.

The strong law of large numbers was originally proved, in the special case
of Bernoulli random variables, by the French mathematician Borel. The general
form of the strong law presented in Theorem 4.1 was proved by the Russian
mathematician A. N. Kolmogorov.
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. Strong Law Of ‘Large Numbers

Enter the probabilities and the number of trials to]|be
simulated. The output gives the total number of
times each outcome occurs, and the average of all
outcomes.

PO :
Start
Pl

P2

P3 |.35 L QuiE
P4 5

n = 110000

Theoretical Mean = 2.05
Sample Mean = 2.0416

- & 1 s
0 1 2 3

4

1041 2027 2917 3505 510

Figure 8.2(c)

8.5 OTHER INEQUALITIES

We are sometimes confronted with situations in which we are interested in ob-
taining an upper bound for a probability of the form P{X — u = a}, where a is
some positive value and when only the mean . = E[X] and variance ¢? =
Var(X) of the distribution of X are known. Of course, since X — pw=a>0
implies that |[X — u| = g, it follows from Chebyshev’s inequality that

P{X—MZa}SP{|X—M|2a}s%,: when a>0

However, as the following proposition shows, it turns out that we can do better.

I

Proposition 5.1 ' One-sided Chebyshév inequality

If X is a random variable with mean 0 and finite variance a2, then for
any a > 0, : S . : '
S : )

PiXza}=—2 5
:'{', a‘}‘4 0'2,+a?
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Proof: Let b > 0 and note that

X=a isequivalentto X+ b=a+ b

L]

Hence

P{X=a}l=P{X+b=a-+b)
= P{(X + b)*= (a + b)?}

where the inequality above is obtained by noting that since a + b > 0,
X + b=a + b implies that (X + b)> = (a + b)>. Upon applying Markov’s
inequality, the above yields that

EX + b _ o>+ 1

, (@+b?*  (a+b)?

Letting b = o*/a [which is easily seen to be the value of b that minimizes
(o + bDla + by gives the desired result.

P Xz=a}=

Example Sa. If the number of items produced in a factory during a week is a
random variable with mean 100 and variance 400, compute an upper bound
on the probability that this week’s production will be at least 120.

Solution It follows from the one-sided Chebyshev inequality that

400 1

P{X =120} = P{X — 100 = 20} 400 + 2077~ 2

Hence the probability that this week’s production will be 120 or more is at

most 3.
If we attempted to obtain a bound by applying Markov’s inequality,
then we would have obtained 8
EX) 5
> < Xl I
P{X = 120} 190 6
which is a far weaker bound than the preceding one. |

Suppose now that X has mean y and variance 0. As both X — w and
& — X have mean 0 and variance o2, we obtain from the one-sided Chebyshev
inequality that for a > 0, )

CT2
PX—p=al =0
and
2
Plo-x=d=pya

Thus we have the following corollary.
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Corollary 5.1
If E[X] = u, Var(X) = o2, then fora > 0,

PIX<p-al<—>—
. - O

Example 5b. A set of 200 people, consisting of 100 men and 100 women, is
randonr}l_y divided into 100 pairs of 2 each. Give an upper bound to the
probability that at most 30 of these pairs will consist of a man and a woman.

Solution Number the men, arbitrarily, from 1 to 100 and let for i = 1,
2, ... 100,

1 if maniis paired with a woman
X = ;
0  otherwise

Then X, the number of man—woman pairs, can be expressed as

100

X=X

i=1

As man i is equally likely to be paired with any of the other 199 people,
of which 100 are women, we have

100

ElX]] = P{X; =1} = 199

Similarly, for i # j,
EIXX] = P{X; = 1,X; = 1}

100 99

= P{X; = JP{X; = 11X, = 1) = ;507

where P{X; = 1|X = 1} = 99/197 since, given that man i is paired with
a woman, man j is equally likely to be palred with any of the remammo
197 people, of which 99 are women. Hence we obtain that \

100

E[X] = >, E[X]
i=1

100

= (100)@

= 50.25
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100
Var(X) = >, Var(X) + 2 >, Cov(X;, X))
i=1 i<j
100 99 100\[ 100 99 100
= 100755 799 * 2( 2 >[199 197 (199)]
~25.126

The Chebyshev inequality yields that

25.126

0257~ %!

P{X =30} = P{|X — 50.25| =20.25} =

and thus there are fewer than 6 chances in a hundred that fewer than 30
men will be paired with women. However, we can improve on this bound
by using the one-sided Chebyshev inequality, which yields that
P{X =30} = P{X=5025 — 20.25}
25.126
= 3
25.126 + (20.25)*
= (058 |

When the moment generating function of the random variable X is known,
we can obtain even more effective bounds on P{X = a}. Let
7
M@) = E[e™]

be the moment generating function of the random variable X. Then for 7 > 0,

P{X =a} = P{eX ="}
< E[¢X]e”™ by Markov’s inequality

Similarly, for r < 0,

P{X=a} = P{e¥ ="}
< E[e®]e ™

Thus we have the following inequalities, known as Chernoff bounds.
Proposition 5.2 Chernoff bounds

P X=a})=e "M@  forall t>0

P{X=<a}=e "M@  forall t<0

Since the Chernoff bounds hold for all # in either the positive or negative quadrant,
we obtain the best bound on P{X = a} by using the ¢ that minimizes e M.
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Example Sc. Chernoff bounds for the standard normal random variable. 1f Z
is a standard normal random variable, then its moment generating function
is M(f) = e'™2, so the Chernoff bound on P{Z = a} is given by

P{Z=a}<e %™  forall t>0

I\OIow the value of ¢, £ > 0, that minimizes e’ 212=1a i the value that minimizes
t°/2 — ta, which is t = a. Thus for a > 0 we see that

P{Z=a)=<e 2
Similarly, we can show that for a < 0,
P{Z=a) =e P [

Example 5d. Chernoff bounds for the Poisson random variable. If X is a
Poisson random variab}e with parameter A, then its moment generating
function is M(f) = ¢*¢' =1, Hence the Chernoff bound on P{X = i} is

P{X=i} =M= Demit >0

Minimizing the right side of the above is equivalent to minimizing
A — 1) — it, and calculus shows that the minimal value occurs when
¢’ = i/). Provided that i/A > 1, this minimizing value of 7 will be positive.

Therefore, assuming that i > A and letting ¢’ = i/A in the Chernoff bound
yields that

[

i
P{XZ i} < e/\(i//\—l) <£L_>
or, equivalently,

P X=i}= i

e Med)

—

Example Se. Consider a gambler who on every play is equally likely, independent
of the past, to either win or lose 1 unit. That is, if X; is the gambler’s
winnings on the ith play, then the X; are independent and

P{X;=1} = P{X; = —1} =1

2
7n

Let S, = Z X; denote the gambler’s winnings after n plays. We will use

i=1
the Chernoff bound on P{S,, = a}. To start, note that the moment generating
function of X; is

e+ e!
2

Now, using the McLaurin expansions of ¢’ and e ' we see that

E[¢*] =

. — t2 t3 : t2 t3
R S TR TR Ca ik R

t2 t4
-2{14‘54‘54""'}
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L 2 n
a=2 S T e @yt = w27

Therefore, ,
E[etX] < et~/2

Since the moment generating function of the sum of independent random
variables is the product of their moment generating functions, we have that

E[e®Sr] = (E[e™])"
= enz3/2
Using the result above along with the Chernoff bound gives that
P{S,=a) <e "™ >0

The value of ¢ that minimizes the right side of the above is the value that
minimizes nr*/2 — ta, and this value is ¢ = a/n. Supposing that a > 0 (so
that this minimizing ¢ is positive) and letting + = a/n in the preceding
inequality yields that

P{S,=al=e ®P"  a>0
Y
For instance, this inequality yields that
P{S;o= 6} < e 320 =~ 1653
whereas the exact probability is
P{S,o = 6} = P{gambler wins at least 8 of the first 10 games}
10
(12? ) ' <190> " (10> 56
210 1024

The next inequality is one having to do with expectations rather than probabil-
ities. Before stating it, we need the following definition.

Definition

A twice-differentiable real-valued function f(x) is said to be convex if
f"(x) = 0 for all x; similarly, it is said to be concave if f ”(x) =0.

ax

Some examples of convex functions are fx)y = x",‘ f&) = €%,
f(x) = —x" for x = 0. If f(x) is convex, then g(x) = —f(x) is concave, and
vice versa.
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 Proposition 5.3 Jensen’s inequalty
If f(x) is a convex function, then S
ELfX)] = fBIX])

provided that the expectations exist and are finite. -

R U S

Proof: Expanding f(x) in a Taylor’s series expansion about yu = E[X]
yields

[O6 - &7
2

where £ is some value between x and u. Since f"(£) = 0, we obtain

f@ = f(w) + (e — w)

J@ = f(w + (W — p +

Hence

J&) = f(w) + Fw&X — )

Taking expectations yields

E[fX)] = f(uw) + f(WEX — pl = f(w)
and the inequality is established.

Example 5f. An investor is faced with the following choices: She can either
invest all of her money in a risky proposition that would lead to a random
return X that has mean m; or she can put the money into a risk-free venture
that will lead to a return of m with probability 1. Suppose that her decision
will be made on the basis of maximizing the expected value of u(R), where
R is her return and u is her utility function. By Jensen’s inequality it follows
that if i is a concave function, then E[u(X)] = u(im), so the risk-free alternative
is preferable; whereas if u is convex, then E[u(X)] = u(m), so the risk
investment alternative would be preferred.

8.6 BOUNDING THE ERROR PROBABILITY WHEN
APPROXIMATING A SUM OF INDEPENDENT

BERNOULLI RANDOM VARIABLES BY A POISSON
RANDOM VARIABLE

In this section we establish bounds on how closely a sum of independent Bernoulli
random variables is approximated by a Poisson random variable with the same
mean. Suppose that we want to approximate the sum of independent Bernoulli
random variables with respective means py, ps, - . - , p,,- Starting with a sequence
Yy, ..., Y, of independent Poisson random variables, with Y; having mean

o

o

S

%o TR,

A U S-S S——
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p;» we will construct a sequence of independent Bernoulli random variables
Xy, ..., X,, with parameters p;, ..., p, such that

P{X; + Y;}<p?  foreachi

a

Letting X = ’zz X;and ¥ = i Y;, we will use the preceding fact to conclude
that i=1 i=1
P(X + Y} = .il p?
=
Finally, we will show that the inequality above implies that for any set of real
numbers A,
|P(X € A} — PlYE A} = ilp?

Since X is the sum of independent Bernoulli random variables and Y is a Poisson
random variable, the preceding inequality will yield the desired bound.

To show how the preceding is accomplished, let ¥;, i = 1, ..., n be
independent Poisson random variables with respective means p;. Now let
Ui, ..., U, be independent random variables that are also independent of the

¥;s and which are such that

U = 0  with probability © (1 — pye”
{7 |1  withprobability  1.— (1 — p)e”
The preceding definition implicity makes use o(f the inequality
e P=1—-p
in assuming that (1 — pyefi = 1.
Now define the random variables X;, i = 1, ..., n by
{711  otherwise
Note that
P{X; =0} = P{Y; = 0}P{U; = 0} = e Pi(1 — ppePi =1 —p;
PiX;=1} =1-P{X; =0} =p;
Now if X; is equal to 0, then so must ¥; equal O (by the definition of X;). Therefore,
we see that
P{Xl:ﬁ: Yl} =P{X1= 1,Y1¢ 1}
=P{Y;=0,X; = 1} + P{Y;> 1}
= P{Y;=0,U; = 1} + P{Y;> 1}
= ¢P[l — (1 — p)eP] + 1 — e P — pe™Pi
=p; —pie 7
=p? (since 1 — e P =p)
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n 1
Now let X = 2 X;and Y = ), ¥; and note that X is the sum of independent
i=1 i=1

Bernoulh random variables and Y is Poisson with the expected value E[Y] =

E[X] = 2 p;- Note also that the inequality X # Y implies that X; # ¥; for
i==1
some i, SO

P{X + Y} = P{X; #+ Y, for some i}

= '21 P{X; + Y} (Boole’s inequality)

n
=2
i=1
For any event B, let I, the indicator variable for the event B, be defined by

I — 1 if B occurs
B7 10  otherwise

Note that for any set of real numbers A,

Iixeay — Liveay = Iix+v)

The above follows since, as an indicator variable is either O or 1, the left-hand
side equals 1 only when I{xc4y = 1 and I;yes; = 0. But this would imply that
X € Aand Y & A, which means that X # Y, so the right side would also equal
1. Upon taking expectations of the preceding inequality, we obtain that

PIXeEA} — PlYEA} =PX + 7]}
By reversing X and Y, we obtain in the same manner that
' P{Y € A} — P[X € A} = P{X # Y}
and thus we can conclude that
|IP(X € A} — P{YE A} =P{X + Y}

Therefore, we have proven that with A = 2 Dis
i=1

n —Ayi
P{EXiEA}~Ee N

i=1 fea 1!

Remark. When all the p; are equal to p, X is a binomial random variable.
Thus the above shows that for any set of nonnegative integers A,

. . —np i
E <’Z’) pl(l _ p)n—z - 2 € (”P)

2
' = np~
i€A €A L
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SUMMARY

Two useful probability bounds are provided by the Markov and Chebyshev in-
equalities. The Markov inequality is concerned with nonnegative random variables,
and says that for X of that type

P Xza}=——— E[X]

for every positive value a. The Chebyshev inequali_ty, which is a simple conse-
quence of the Markov inequality, states that if X has mean u and variance o~
then for every positive k,

1
P{lX — pl=ko} =15

The two most important theoretical results in probability are the central limit
theorem and the strong law of large numbers. Both are concerned with a sequence
of independent and identically distributed random variables. The central limit
theorem says that if the random variables have a finite mean w and a finite
variance ¢, then the distribution of the sum of the first n of them is, for large
n, approximately that of a normal random variable with mean nu and variance

. That is, if X;, i = 1, is the sequence, then the central limit theorem states
that for every real number a, \

. X+ -+ X, — nu 1
lim P{ = L Sa}=———:—
n—® { U'\/I; 29 —=

The strong law of large numbers requires only that the random variables in the
sequence have a finite mean p. It states that with probability 1, the average of
the first n of them will converge to w as n goes to infinity. This implies that if
A is any specified event of an experiment for which independent rephcat1ons are
performed, then the limiting proportion of experiments whose outcomes are in A
will, with probability 1, equal P(A). Therefore, if we accept the interpretation that
“with probability 1” means “with certainty,” we obtain the theoretical justification
for the long-run relative frequency interpretation of probabilities.

s

a 7/7
e ' dx

PROBLEMS

© 1. Suppose that X is a random variable with mean and variance both equal to
20. What can be said about P{0 = X = 40}7

¢ 2. From past experience a professor knows that the test score of a student taking
her final examination is a random variable with mean 75.
(a) Give an upper bound for the probability that a student’s test score will

exceed 85.

Suppose, in addition, the professor knows that the variance of a student’s
test score is equal to 25.
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10.

11.
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(b) What can be said about the probability that a student will score between
65 and 857

(¢) How many students would have to take the examination to ensure, with
probability at least .9, that the class average would be within 5 of 757
Do not use the central limit theorem.

. Use the central limit theorem to solve part (c) of Problem 2.

Let Xi, ..., Xao be independent Poisson random variables with mean 1.
(a) Use the Markov inequality to obtain a bound on

20
P{Z X, > 15}
1

20
(b) Use the central limit theorem to approximate P{E X; > 15}.
1

. Fifty numbers are rounded off to the nearest integer and then summed. If the

individual round-off errors are uniformly distributed over (—.5, .5) what is
the probability that the resultant sum differs from the exact sum by more
than 3?

. A die is continually rolled until the total sum of all rolls exceeds 300. What

is the probability that at least 80 rolls are necessary?

. One has 100 light bulbs whose lifetimes are independent exponentials with

mean 5 hours. If the bulbs are used one at a time, with a failed bulb _beir}g
replaced immediately by a new one, what is the probability that there is still
a working bulb after 525 hours?

. In Problem 7 suppose that it takes a random time, uniformly distributed over

(0, .5), to replace a failed bulb. What is the probability that all bulbs have
failed by time 5507

. If X is a gamma random variable with parameters (1, 1) how large need n

be SO that

PHQ—( - 1‘ > .01} <.01?

n

Civil engineers believe that W, the amount of weight (in units of 1000 pounds)
that a certain span of a bridge can withstand without structural damage
resulting, is normally distributed with mean 400 and standard deviation 40.
Suppose that the weight (again, in units of 1000 pounds) of a car is a random
variable with mean 3 and standard deviation .3. How many cars would have
to be on the bridge span for the probability of structural damage to exceed .1?
Many people believe that the daily change of price of a company’g) stock on
the stock market is a random variable with mean 0 and variance o~. That is,
if ¥, represents the price of the stock on the nth day, then

Yn = Yn—l + Xn n=1

where X;, X,, . . . are independent and identically distributed random va‘riableS
with mean O and variance o>. Suppose that the stock’s price today is 100.

12.

13.

14.

15.

16.

17.

18.

19.
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If o = 1, what can you say about the probability that the stock’s price will
exceed 105 after 10 days?

We have 100 components that we will put in use in a sequential fashion.
That is, component 1 is initially put in use, and upon failure it is replaced
by component 2, which is itself replaced upon failure by component 3, and
so on. If the lifetime of component i is exponentially distributed with mean
10 + /10,1 = 1, ..., 100, estimate the probability that the total life of
all components will exceed 1200. Now repeat when the life distribution of
component i is uniformly distributed over (0, 20 + i/5),i = 1, ..., 100.

Student scores on exams given by a certain instructor have mean 74 and

standard deviation 14. This instructor is about to give two exams, one to a

class of size 25 and the other to a class of size 64.

(a) Approximate the probability that the average test score in the class of
size 25 exceeds 80.

(b) Repeat part (a) for the class of size 64.

(c) Approximate the probability that the average test score in the larger class
exceeds that of the other class by over 2.2 points.

(d) Approximate the probability that the average test score in the smaller
class exceeds that of the other class by over 2.2 points.

A certain component is critical to the operation of an electrical system and
must be replaced immediately upon failure. If the mean lifetime of this type
of component is 100 hours and its standard deviation is 30 hours, how many
of these components must be in stock so that the probability that the system
is in continual operation for the next 2000 hours is at least .95?

An insurance company has 10,000 automobile policyholders. The expected
yearly claim per policyholder is $240 with a standard deviation of $800.
Approximate the probability that the total yearly claim exceeds $2.7 million.
Redo Example 5b under the assumption that the number of man—woman
pairs is (approximately) normally distributed. Does this seem like a reason-
able supposition?

Repeat part (a) of Problem 2 when it is known that the variance of a student’s
test score is equal to 25.

A lake contains 4 distinct types of fish. Suppose that each fish caught is
equally likely to be any one of these types. Let Y denote the number of fish
that need be caught to obtain at least one of each type.

(a) Give an interval (a, b) such that P{la =Y =< b} = .90.

(b) Using the one-sided Chebyshev inequality, how many fish need we plan
on catching so as to be at least 90 percent certain of obtaining at least
one of each type?

If X is a nonnegative random variable with mean 25, what can be said about:

(@) EX°];

(b) E[VX];

(c) Ellog X];

(d) E[e™*]?
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20. Let X be a nonnegative random variable. Prove that
ElX] = (EIX*D'? = (EIX°D'P = - -

21. Would the results of Example 5f change if the investor were allowed to divide
her money and invest the fraction o, 0 < & < 1 in the risky proposition and
invest the remainder in the risk-free venture? Her return for such a split
investment would be R = aX + (1 — a)m.

22. Let X be a Poisson random variable with mean 20.
(a) Use the Markov inequality to obtain an upper bound on

p = P{X = 26}

(b) Use the one-sided Chebyshev inequality to obtain an upper bound on p.
(¢) Use the Chernoff bound to obtain an upper bound on p.

(d) Approximate p by making use of the central limit theorem.

(e) Determine p by running an appropriate program.

THEORETICAL EXERCISES

® 1. If X has variance ¢, then o, the positive square root of the variance, is called
the standard deviation. If X has mean p and standard deviation o, show that

P(X — p = ko) =25

2. If X has mean y and standard deviation o, the ratio r = |u|/o is called the
measurement signal-to-noise ratio of X. The idea is that X can be expressed
as X = u + (X — w) with p representing the signal and X — u the noise.
If we define |(X — p)/u|= D as the relative deviation of X from its signal
(or mean) w, show that for @ > 0,

1
< >1 —
PID=qa}=1 2.7

3. Compute the measurement signal-to-noise ratio—that is, |u|[/c where
@ = E[X], 0> = Var(X)—of the following random variables:
(a) Poisson with mean A;
(b) binomial with parameters n and p;
(¢) geometric with mean 1/p;
(d) uniform over (a, b); '
(e) exponential with mean 1/A;
(f) normal with parameters w, 2.

4. Let Z,, n = 1 be a sequence of random variables and ¢ a constant such that
for each € > 0, P{|Z, — ¢| > &} — 0 as n — . Show that for any bounded
continuous function g,

Elg(Z,)] — g(c) as n—w

5.

10.
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Let f(x) be a continuous function defined for 0 = x = 1. Consider the functions

— S E h k1 . n—k
B,(x) = kgof(,)( k) (1 = %)

(called Bernstein polynomials) and prove that
lim B,(x) = f(x)

n-—®

uiNT:  Let X;, X5, . . . be independent Bernoulli random variables with mean
x. Show and then use the fact (by making use of the result of Theoretical

Exercise 4) that
Xl R Xll
B(x) = E|f .

As it can be shown that the convergence of B,,(x) to f(x) is uniform in x, the
above provides a probabilistic proof to the famous Weierstrass theorem of
analysis that states that any continuous function on a closed interval can be
approximated arbitrarily closely by a polynomial.

(a) Let X be a discrete random variable, whose possible values are 1, 2, . ..
If P{X = k} is nonincreasing in k = 1, 2, ..., prove that
E
PIX =k} = 2—}%“—-

(b) Let X be a nonnegative continuous random variable having a nonincreas-
ing density function. Show that

2E[X]

x’2

fo= forall x>0

Suppose that a fair die is rolled 100 times. Let X; be the value obtained on
the ith roll. Compute an approximation for

100
P{HX,.SalOO} 1<a<6
1

. Explain why a gamma random variable with parameters (¢, A) has an approxi-

mately normal distribution when ¢ is large.

Suppose a fair coin is tossed 1000 times. If the first 100 tosses all result in
heads, what proportion of heads would you ‘expect on the final 900 tosses?
Comment on the statement that “the strong law of large numbers swamps
but does not compensate.”

If X is a Poisson random variable with mean A, show that for i < A,
e~ Mer)

PX=i}=—F7
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11. Let X be a binomial random variable with parameters »n and p. Show that for

12.

13. If E[X] < 0 and 6 # O is such that E[e?X] =

i > np:
(a) minimum e~ “E[e'*] occurs when f is such that ¢’ = —. where
>0 (n—10p
q=1-p.

n

(b) PIX =i} < m———pi(l — p)"~".
i'(n — i)

The Chernoff bound on a standard normal random variable Z gives that
P{Z > a}l = e““” 2, a > 0. Show, by considering the density of Z, that the
right side of the mequahty can be reduced by a factor 2. That is, show that

P{Z> a} S%e”azlz a>0

1, show that 8 > 0.

SELF-TEST PROBLEMS AND EXERCISES

» 1. The number of automobiles sold weekly at a certain dealership is a random

o

4% 5,

variable with expected value 16. Give an upper bound to the probability that
(a) next week’s sales exceed 18;
(b) next week’s sales exceed 25.

. Suppose in Problem 1 that the variance of the number of automobiles sold

weekly is 9.

(a) Give a lower bound to the probability that next week’s sales are between
10 and 22 inclusively.

(b) Give an upper bound to the probability that next week’s sales exceed 18.

If

EX]=175 E[Y]=75
give an upper bound to
(@ P{|X - Y| > 15});
() PIX>Y + 15}
(o P{Y>X + 15}.

Var(X)=10 Var(Y)=12 Cov(X,Y)= -3

. Suppose that the number of units produced daily at factory A is a random

variable with mean 20 and standard deviation 3 and the number produced at
factory B is a random variable with mean 18 and standard deviation 6.
Assuming independence, derive an upper bound for the probability that more
units are produced today at factory B than at factory A.

The number of days that a certain type of component functions before failing
is a random variable with probability density function

fo)=2x 0<zx<]1

Once the component fails it is immediately replaced by another one of the
same type. If we let X; denote the lifetime of the ith component to be put in

1.
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, .
use, then S, = 2 X; represents the time of the nth failure. The long-term
i=1
rate at which failures occur, call it r, is defined by
k]
.n
ro= lim—

=% Lp

Assﬁm'mg that the random variables X;, i = 1 are independent, determine r.

In Self-Test Problem 5, how many components would one need to have on
hand to be approximately 90 percent certain that the stock will last at least
35 days? ,

The servicing of a machine requires two separate steps, with the time needed
for the first step being an exponential random variable with mean .2 hour
and the time for the second step being an independent exponential random
variable with mean .3 hour. If a repairperson has 20 machines to service,
approximate the probability that all the work can be completed in 8 hours.

. On each bet, a gambler loses 1 with probability .7, loses 2 with probability

.2, or wins 10 with probability .1. Approximate the probabLhty that the gambler
will be losing after his first 100 bets.

. Determine 7 so that the probability that the repairperson in Self-Test Problem

7 finishes the 20 jobs within time ¢ is approximately equal to .95.
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Before defining a Poisson process, recall that a function f is said to be o(h) if

lim f(h)/h = 0. That is, fis o(h) if, for small values of &, f(h) is small even in
h-0

relation to h. Suppose now that “events” are occurring at random time points and
let N(t) denote the number of events that occur in the time interval [0, ¢]. The
collection of random variables {N(t), t = 0} is said to be a Poisson process
having rate A, A > 0 if

(i) N(O) = 0.
(i) The numbers of events that occur in disjoint time intervals are independent.
(iii) The distribution of the number of events that occur in a given interval
depends only on the length of that interval and not on its location.
@(iv) P{N(h) = 1} = Ah + o(h).
v) P{N(h) = 2} = o(h).

Thus condition (i) states that the process begins at time 0. Condition (ii),
the independent increment assumption, states, for instance, that the number of
events by time ¢ [that is, N(#)] is independent of the number of events that occur
between ¢ and ¢ + s [that is, Nt + 5) — N()]. Condition (iii), the stationary
increment assumption, states that the probability distribution of N(t + 5) = N(¥)
is the same for all values of ¢.

In Chapter 4 we presented an argument, based on the Poisson distribution
being a limiting version of the binomial distribution, that the foregoing conditions
imply that N(¢) has a Poisson distribution with mean Az. We will now obtain this
result by a different method.

CHAPTER 9

Section 1 The Poisson Process =~ 429

 Lemmati
For a Poisson procéss with rate A,
P(N(t) = 0} = e~

Proof: Let Py(t) = P{N(t) = 0}. We derive a differential equation for
Po(2) in the following manner:
Py(t + h) = P{N@ + h) = 0}

= P{N(t) = 0,N(t + h) — N@) = 0}

= P{N(t) = 0} P{N(t + h) — N(t) = 0}

= Po@®[1 — Ak + o(h)]
where the final two equationshfollow from condition (ii) plus the fact that conditions
(iv) and (v) imply that P{N(h) = 0} = 1 — Ah + o(h). Hence

Po(t + h) = Po(t) o(h)
p = —\Py(1) +

h
Now, letting 7 — 0, we obtain

Po(t) = —APy(1)

or, equivalently,
Po®) _ _
Po(1)
which implies, by integration, that
log Po(t) = — At + ¢
or '
Po(t) = Ke ™
Since Pg(0) = P{N(0) = 0} = 1, we arrive at
Pot) = e~ M ]
For a Poisson process, let us denote by T the time of the first event. Further,
for n > 1, let T,, denote the elapsed time between the (n — 1)st and the nth event.
The sequence {T,, n = 1, 2, ...} is called the sequence of interarrival times.
For instance, if Ty = 5 and T, = 10, then the first event of the Poisson process
would have occurred at time 5 and the second at time 15.
We shall now determine the distribution of the 7. To do so, we first note

that the event { T} > ¢} takes place if and only if no events of the Poisson process
occur in the interval [0, £], and thus

P{T; > 1} 5 P{N@) = 0} = ™™
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Hence T; has an exponential distribution with mean 1/A. Now,
P{T, >t} = E[P(T, > t|T\}]
However,

P{T, > t|T; = s} = P{Oeventsin(s,s + 1]|T} = s}

= P{0eventsin (s, s + t]}

— , N

=e
where the last two equations followed from the assumptions about independent
and stationary increments. Therefore, from the above we conclude that T, is
also an exponential random variable with mean 1/A, and furthermore, that 7, is
independent of T;. Repeating the same argument yields Proposition 1.1.

Proposition 1.1

Ty Tyyivo-are independent exponential random variables each with
mean 1/A.

Another quantity of interest is S, the arrival time of the nth event, also
called the waiting time until the nth event. It is easily seen that

n
= z T; n=1
i=1

and hence from Proposition 1.1 and the results of Section 5.6.1, it follows that
S, has a gamma distribution with parameters n and A. That is, the probability
density of S, is given by
e ( )\_X)n -1
(n — D!
We are now ready to prove that N(¢) is a Poisson random variable with
mean Af.

x=0

Js,(x) = Ae

Theorem 1.1

For a Poisson process with rate A,
e~ AT(/\t)n

n!

P{N() = n} =

Proof: Note that the nth event of the Poisson process will occur before
or at time ¢ if and only if the number of events that occur by ¢ is at least n. That is,

NO)zne S, =t

e\
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S0
P{N(@) = n} = P{N@t)=n} — P{N(t) =n + 1}
= P{Snst} _P{ n+1—'t}
t A1 n
— e (Ax) — e (M%)
= 2 dx - A?S
J Ae (n— 1! * f Ae n! dx
But the integration by parts formula [ u dv = uv — [ v du yields, with u =
A gy = /\[(/\x)"_ll(n — D! dx,
Bt S 0y o (w
fo Ae n—Nn! dx m! + f Ae

which completes the proof.

9.2 MARKOV CHAINS

Consider a sequence of random variables Xy, X;, . .., and suppose that the set
of possible values of these random variables is {0, 1, , M}. It will be helpful
to interpret X,, as being the state of some system at tlrne n, ands-in. accordance
with this mterpretatlon we say that-the system is in state iat time n if X i
Thq§eguence of random variables is said-to-form & T Markov chain if each time
the system is in state i there is some ﬁxed probablhty—call/ltfﬁ—that it w111
next be in state] That is, for all igs oo oslnets Iy Js

P{ n+1 = .][Xn = 'l’ Xn-l = n—-l’ . "Xl = il’XO = lO} =P
The values P;;, 0 = i = M, 0 = j < N, are called the transition probabilities of
the Markov chain and they satisfy (why?)
M
P;=0 X Pj=1 i=01,....M
ji=0

It is convenient to arrange the transition probabilities P;; in a square array

as follows:
Al
Poo  Poy - Poy
Pio Py - Py
Puo Pyn " Puu

Such an array is called a matrix.
Knowledge of the transition probablhty matrix and the distribution of X5
enables us, in theory, to compute all probabilities of interest. For instance, the

joint probability mass function of X, . .., X,, is given by
P{X ln’Xn—l = in—-la- . X] =1i;,Xp = iO}
:P{ - nIXn—l n—l"' XO"'ZO}P{Xz-«l 11—1""’XO=iO}

= P; P{Xn—l "—]l 'vXO_lO}

Ip—1>1n
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and continual repetition of this argument yields that the above is equal to

P. . P.

—1:1p" In—2,lp—1

- P; P{XO == lo}

i1.in 10 i

Example 2a. Suppose that whether or not it rains tomorrow depends on previous

weather conditions only through whether or not it is raining today. Suppose

further that if it is raining today, then it will rain tomorrow with probability

a, and, if it is not raining today, then it will rain tomorrow with probability .

‘ If we say that the system is in state O when it rains and state 1 when

= it does not, then the system above is a two- state Markov chain having
transition probability matrix

I ““H
B 1-p
Thatis,P00=a=1—-P01,P10=B=I—Pll. ) C B

P

Example 2b Con31der a gambler who at each play of the game either wins 1
that the gambler will quit playing when his fortune hits elther 0 or M, then
the gambler’s sequence of fortunes is a Markov chain havmg transition proba-
bilities I

S

Piivi=p=1-P i i=1....M-1
Pog = Py = 1 |

Example 2¢c. The physicists P. and T. Ehrenfest considered a conceptual model
for the movement of molecules in which M molecules are distributed among

2 urns. At each time point one of the molecules is chosen at random and is - .

removed from its urn and placed in the other one. If we let X, denote the
number of molecules in the first urn immediately after the nth exchange,
then {X,, X;, ...} is a Markov chain with transition probabilities

e Pi;i—l‘l:MA;‘l OSiSM
Pi,i—lhzﬁ OSZSM
P;=0 if|j —i| > 1 |

Thus for a Markov chain, P;; represents the probability that a system in

state | will enter state 1 at the next trans1t1on ition. We can also define the two- -stage
transition probability, P} ;7> that a system presently in state { will be in state j after
two additional transitions. That is,

(7) = P{X111+7 = ‘IXm = l}

\
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The P,(J;) can be computed from the P;; as follows:

%?=H&=ﬂ%=n

52H&ﬂ1ﬁﬂ%=ﬂ

o .

X, = j|X; = k, X

iYP{X, = k|Xy = i}

Py

_]Pik :

Il
@&ngn

In general, we define the n-stage transition probabilities, denoted as Pgl), by
~ ) —
P 7 P{ n+m - | m l}

Proposmon 2.1, known as the Chapman-Kolmooorov equations, shows how the
P(") can be computed

Praposition 2.1 - The: Chapman-,-Kolmdgorov équations K

P = LEO PRPEY  forall0<r<n

_Proof
PP = P{X, = j|X, = i}
= > P{X, =j,X = k|Xy = i}
k ’

il

= D P(X, = j|X, = k, Xo = i} P{X, = K|X, = i}
k

. = }k: p](\j}‘r) Pz(‘l?

Example 2d. A random walk. Anexample of a Markov chain having a countably
infinite state space is the random walk, which tracks a particle as it moves
along a one-dimensional axis. Suppose that at each point in time the particle
will move either one step to the right or one step to the left with respective
probabilities p and 1 — p. That is, suppose the partlcle s path follows a
Markov chain with transition probabilities

- Pii—l-l:p:]“—.Pii——l l=0i1
If the pamcle is at state z then the probablhty it will be at state j after n -

ncrht and n — (n—i+)DRI=®0 + = - 7)/2 are to the left. As each
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step will be to the right, indépendently of the other steps, with probability‘

p, it follows that the above is just the binomial probability

n - . - .
Pl = (n—i+j2 1 — n+i—jrR2
i <(n —i+ j)/2>p (4 =p

where ( > is taken to equal O when x is not a nonnegative integer less than
x

or equal to n. The above can be rewritten as

2 . e
P,z':m = <n 4’_’ k>p"+l‘(1 — )"k gk =0,%1,...,*n

2n + 1 : n—k
Pk = <n 4 1>p"+"“(l -p)F

k=20 =1,...,%n, —(n+ 1B

Although the P{ denote conditional probabilities, we can, by conditioning
on the initial state, use them to derive expressions for unconditional probabilities.
For instance,

P(Xy = j} = 2 P(X, = j1Xo = 1}PXo = i)
= 2 P{PP(X, = i}

For a large number of Markov chains it turns out that P(j') converges, as

n — , to a value II; that depends only on j. That is, for large values of n, the
probablhty of being 1 m state j after n transitions is approximately equal to II; no
matter what the 1111t1a1 state was. It can be shown that a sufficient condmon for

a Markov chain to possess this property is that for some n > 0,
PP >0 forallij=0,1,...,M (2.1)

Markovdchains that satisfy Equation (2.1) are said to be ergodic. Since Proposition
2.1 yields

M
PGTD = LEO PPy

it follows, by letting n — oo, that for ergodic chains

M
I, = > P ' (2.2)
£=0
M
Furthermore, since 1 = >, sz)’ we also obtain, by letting n — oo,
Jj=0

M
> I=1 . 2.3)

=0
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In fact, it can be shown that the Hj, 0 = j = M, are the unique nonnegative
solutions of Equations (2.2) and (2.3). All this is summed up in Theorem 2.1,
which we state without proof. .

- Theorem 2.1
For an ergodic Markov chain
, , i

i pm
J—hmPij,f

H=®
exists; and the Hj, 0 = j = M, are the unique nonnegative solutions of

“a

~ I; = > TPy
K=o

M
Lj=0

Example 2e. Consider Example 2a, in which we assume that if it rains today,
then it will rain tomorrow with probability o; and, if it does not rain today,
then it will rain tomorrow with probability 8. From Theorem 2.1 it follows
that the limiting probabilities of rain and of no rain, I1; and IT;, are given by

Iy = olly + BII,
II, =1 — ol + (1 = I,
H0+H1 =1

which yields ~ .

o B _ 1~ «
H0—1+[3—a 1 1+B8—-«a

For instance, if @ = .6, B = .3, then the limiting probability of rain on the
nth day is II; = 2. . _k ]

w

The quantlty IT; is also equal to the long-run propomon of time that-the-
Markov chain is 1n state J.j = 0,..., M To see 1ntu1t1vely why this might be
so, let P; denote thé long-run propomon of time the chain is in state j. (It can be
proven, usmo the strong law of large numbers, that for an ergodic chain such
long-run proportions exist and are constants.) Now, since the proportion of time
the chain is in state k is P, and since, when in state k, the chain goes to state j
with probabﬂlty Py;, it follows that the proportion of time the Markov chain is
entering state j from state k is equal to PkPk Summing over all k shows that
P;, the proportion of time the Markov chain is entering state j, satisfies
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Since clearly it is also true that
2 P =1
J

it thus follows, since by Theorem 2.1 the II;, j = 0, ..., M are the unique
solution of the preceding, that P; = IL;,j = 0, ..., M.

Example 2f. Suppose in Example 2c that we are interested in the proportion of

time there are j molecules inurn 1, j = 0, ..., M. By Theorem 2.1 these
quantities will be the unique solution of
I, =11 ><~1—
0 12y
M-j+1 j+1 .
HJ:HJ_IX——WJ—-_-}-HJ‘*‘IX——A{— ]=1,...,M
1
Oy =1l X =
M M-1 2 s

M
j=0

However, as it is easily checked that

M
M\(1 o
HJ_<J'><§> ]-—O,...,M

satisfy the equations above, it follows that these are the long-run proportions
of time that the Markov chain is in each of the states. (See Problem 11 for
an explanation of how one might have guessed at the foregoing solution.)

9.3 SURPRISE, UNCERTAINTY, AND ENTROPY

Consides an event E that can occur when an experiment is performed. How
surprised would we be to hear that E does, in fact, occur? It seems reasonable to
suppose that the amount of surprise engendered by the information that E has
occurred should depend on the probability of E. For instance, if the experiment
consists of rolling a pair of dice, then we would not be too surprised to hear that
E has occurred when E represents the event that the sum of the dice is even (and
thus has probability 3), whereas we would certainly be more surprised to.hear
that E has occurred when E is the event that the sum of the dice is 12 (and thus
has probability ).

In this section we attempt to quantify the concept of surprise. To begin, let
us agree to suppose that the surprise one feels upon learning that an event E has
occurred depends only on the probability of E; and let us denote by S(p) the
surprise evoked by the occurrence of an event having probability p. We determine
the functional form of S(p) by first agreeing onia set of reasonable conditions
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that S(p) should satisfy, and then proving that these axioms require that S(p) has
a specified form. We assume throughout that S(p) is defined for all 0 <p = 1
but is not defined for events having p = 0.

Our first condition is just a statement of the intuitive fact that there is no
surprise in heariflg that an event sure to occur has indeed occurred.

Axiom 1 ,

S(1) - 0 -

Our secbnd condition states that the more unlikely an event is to occur, the
greater is the surprise evoked by its occurrence.

Axiom 2

 S(p)fis a strictly decreasing function of p; that is, 1f p < g, then
S(p) > S(q). TP SR R

The third condition is a mathematical statement of the fact that we would
intuitively expect a small change in p to correspond to a small change in S(p).

Axiom 3 ,

S(p)isa éontinmyus function of p:

To motivate the final condition, consider two independent events £ and F,
having respective probabilities P(E) = p and P(F) = gq. Since P(EF) = pq, the
surprise evoked by the information that both E and F have occurred is S(pg).
Now, suppose that we are first told that E has occurred and then, afterward, that
F has also occurred. As S(p) is the surprise evoked by the occurrence of E, it
follows that S(pq) — S(p) represents the additional surprise evoked when we are
informed that F has also occurred. However, as F is independent of E, the
knowledge that E occurred does not change the probability of F, and hence the
additional surprise should just be S(g). This reasoning suggests the final condition.

Axiom 4

S(pg) = Sp) + S@ 0<p=1,0<g=1

We are now ready for Theorem 3.1, which yields the structure of S(p).
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" Theorem 31 Rl

- If §(-) satisfies Axioms 1 through 4, then
 S(p= —Clogp i

~ where C is an arbitrary positive integer.

Proof: It follows from Axiom 4 that
S(p*) = S(p) + S(p) = 25(p)
and by induction that
S(p™) = m S(p) 3.1
Also, since for any integral 1, S(p) = S(p'/* - - - p™) = n S(p'’™), it follows that

S(p'm) = - S(p) (32)

Thus, from Equations (3.1) and (3.2), we obtain

S(pm/n) = m S(plln)
m
=" 5(p)
which is equivalent to
S(p*) = xS(p) (3.3)

whenever x is a positive rational number. But this implies by the continuity of S
(Axiom 3) that Equation (3.3) is valid for all nonnegative x. (Reason this out.)

Now, for any p, 0 < p = 1, let x = —log, p. Then p = (5)* and from
Equation (3.3),

S(p) = S(E)) = x5() = ~Cloga»

where C = S(3) > S(1) = 0 by Axioms 2 and 1. B

It is usual to let C equal 1. In this case the surprise is said to be expressed
in units of bits (short for binary digits).

Consider now a random variable X, which must take on one of the values
Xy, ..., X, with respective probabilities py, ..., p,.- As —log p; represents the
surprise evoked if X takes on the value x;,T it follows that the expected amount
of surprise we shall receive upon learning the value of X is given by

HX) = -, p;logp;

i=1

T For the remainder of this chapter we write log x for log, x. Also, we use In x for log, x.
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The quantity H(X) is known in information theory as the entropy of the random
variable X. (In case one of the p; = 0, we take Olog0 to equal 0.) It can be shown
(and we leave it as an exercise) that H(X) is maximized when all of the p; are
equal. (Is this infuitive?)

As H(X) represents the average amount of surprise one receives upon learning
the value of X, it can also be interpreted as representing the amount of uncertainty
that exists as to the value of X. In fact, in information theory, H(X) is interpreted
as the average amount of information received when the value of X is observed.
Thus the average surprise evoked by X, the uncertainty of X, or the average
amount of information yielded by X, all represent the same concept viewed from
three slightly . different points of view.

g

Consider now two random variables X and Y, which take on respective

values xy, ..., x, and yy, ..., ¥,, with jeint mass function

p(x, yp) = PIX =x,Y =y}
It follows that the uncertainty as to the value of the random vector (X, Y), denoted
by H(X, ), is given by

HX, ¥) = =2, 2 p(x;, y) log p(xi, ¥)
J .

H

Suppose now that Y is observed to equal y;. In this situation the amount of
uncertainty remaining in X i}s given by

Hy—,,(X) = =2, p(xi|y;) log p(x:]y))

!
where

plly) = P(X = x|Y = y;}

Hence the average amount of uncertainty that will remain in X after Y is observed
is given by

Hy(X) = 2, Hy=y,(X0py(3))
J

where

py(y) = P{Y = y;}

Proposition 3.1 relates H(X, Y) to H(Y) and Hy(X). It states that the uncertainty
as to the value of X and Y is equal to the uncertainty of Y plus the average
uncertainty remaining in X when Y is to be observed.

Proposition 3.1

HX, V) = H(Y) + Hy(_X_)_ .






















CHAPTER 10

Simulatidn

10.1 INTRODUCTION

452

How can we determine the probability of our winning a game of solitaire? (By
solitaire we mean any one of the standard solitaire games played with an ordinary
deck of 52 playing cards and with some fixed playing strategy.) One possible
approach is to start with the reasonable hypothesis that all (52)! possible arrange-
ments of the deck of cards are equally likely to occur and then attempt to determine
how many of these lead to a win. Unfortunately, there does not appear to be any
systematic method for determining the number of arrangements that lead to a win
and, as (52)! is a rather large number and the only way to determine whether or
not a particular arrangement leads to a win seems to be by playing the game out,
it can be seen that this approach will not work. _

In fact, it might appear that the determination of the win probability for
solitaire is mathematically intractable. However, all is not lost, for probability
falls not only within the realm of mathematics, but also within the realm of applied
science; and, as in all applied sciences, experimentation is a valuable technique.
For our solitaire example, experimentation takes the form of playing a large
number of such games, or, better yet, programming a computer to do so. After
playing, say n games, if we let

1 if the ith game results in a win
Xi=10  otherwise

then X;, i = 1, ..., n will be independent Bernoulli random variables for which
E[X;] = P{win at solitaire}

Hence, by the strong law of large numbers, we know that

i X number of games won
/= n  number of games played
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will, with probability 1, converge to P{win at solitaire}. That is, by playing a
large number of games we can use the proportion of won games as an estimate
of the probability of winning. This method of empirically determining probabilities
by means of experimentation is known as simulation.

In order to*use a computer to initiate a simulation study, we must be able to
generate the value of a uniform (0, 1) random variable; such variates are called
random numbers. To generate such numbers, most computers have a built-in subrou-
tine, called a random number generator, whose output is a sequence of pseudo ran-
dom numbers. This is a sequence of numbers that is, for all practical purposes,
indistinguishable from a sample from the uniform (0, 1) distribution. Most random
number generators start with an initial value X, called the seed, and then recursively
compute values by specifying positive integers a, ¢, and m, and then letting

X, +1 = (aX,, + ¢) modulo m n=0

where the foregoing means that aX,, + ¢ is divided by m and the remainder is
taken as the value of X,,, ;. Thus each X, is either 0, 1, ..., m — 1 and the
quantity X,,/m is taken as an approximation to a uniform (0, 1) random variable.
It can be shown that, subject to suitable choices for a, ¢, and m, the foregoing
gives rise to a sequence of numbers that look as if they were generated from
independent uniform (0, 1) random variables.

As our starting point in simulation, we shall suppose that we can simulate
from the uniform (0, 1) distribution and we shall use the term random numbers
to mean independent random variables from this distribution.

In the solitaire example we would need to program a computer to play out
the game starting with a given ordering of the cards. However, since the initial
ordering is supposed to be equally likely to be any of the (52)! possible permuta-
tions, it is also necessary to be able to generate a random permutation. Using
only random numbers, the following algorithm shows how this can be accom-
plished. The algorithm begins by randomly choosing one of the elements and
then putting it in position #n; it then randomly chooses among the remaining
elements and puts the choice in position » — 1; and so on. It efficiently makes
a rand&m choice among the remaining elements by keeping these elements in an
ordered*list and then randomly choosing a position on that list.

Example 1a. Generating a random permutation. Suppose we are interested in
generating a permutation of the integers 1, 2, ..\, n that is such that all n!
possible orderings are equally likely. Starting with any initial permutation
we will accomplish this after n — 1 steps where at each step we will
interchange the positions of two of the numbers of the permutation. Through-
out, we will keep track of the permutation by letting X(@), i = 1, ..., n
denote the nuniber currently in position i. The algorithm operates as follows:

1. Consider any arbitrary permutation and let X(i) denote the element
in position i, i = 1..., n. [For instance, we could take X(i) = i,
i=1,...,n]
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2. Generate a random variable N, that is equally likely to equal any of
the values 1, 2, ..., n

3. Interchange the values of X(N,) and X(n). The value of X(n) will now
remain fixed. [For instance, suppose that n = 4 and initially X(i) = i,
i =1,2, 3,4 If Ny = 3, then the new permutation is X(1) =
X(2) = 2,X(3) = 4, X(4) = 3, and element 3 will remain in position
4 throughout.]

4. Generate a random variable N,,_; that is equally likely to be either 1,
2,...,n— 1.

5. Interchange the values of X(N,,_;) and X(n — 1). [If N5 = 1, then,
the new permutation is X(1) = 4, X(2) = 2, X(3) = 1, X4) = 3.]

6. Generate N, _,, which is equally likely to be either 1,2, ...,n — 2.

7. Interchange the values of X(N,,_,) and X(2). [If N, = 1, then the new
permutation is X(1) = 2, X(2) = 4, X(3) = 1, X(4) = 3 and this is
the final permutation.]

8. Generate N,,_ 3, and so on. The algorithm continues until N, is generated
and after the next interchange the resulting permutation is the final one.

To implement this algorithm, it is necessary to be able to generate a
random variable that is equally likely to be any of the values 1, 2, ..., k.
To accomplish this, let U denote a random number—that is, U is uniformly
distributed on (0, 1), and note that kU is uniform on (0, k). Hence

P{i — 1<kU<i} =7
so if we take N, = [kU] + 1, where [x] is the integer part of x (that is,
it is the largest integer less than or equal to x), then N, will have the
desired distribution.

The algorithm can now be succinctly written as follows:

i=1,...,k

Step 1. Let X(1), . .., X(n) be any permutation of 1, 2, . . ., n. [For instance,
wecanset X()) = i,i=1,...,n]

Step 2. Let] = n.

Step 3. Generate a random number U and set N = [[U] + 1.

Step 4. Interchange the values of X(N) and X(J).

Step 5. Reduce the value of / by 1 and if / > 1 go to step 3.

Step 6. X(1), ..., X(n) is the desired random generated permutation.

The foregoing algorithm for generating a random permutation is extremely
useful. For instance, suppose that a statistician is developing an experiment to
compare the effects of m different treatments on a set of n subjects. He decides

to split the subjects into m different groups of respective sizes nq, ny, ..., i,
m

where 2 n; = n with the members of the ith group to receive treatment i. To

i=1
eliminate any bias in the assignment of subjects to treatments (for instance, it
would cloud the meaning of the experimental results if it turned out that all the
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“best” subjects had been put in the same group), it is imperative that the assign-
ment of a subject to a given group be done “at random.” How is this to be
accomplished?”

A simple and efficient procedure is to arbitrarily number the subjects 1
through » and thtn generate a random permutation X(1), ..., X(m)of 1,2, ...,
n. Now assign subjects X(1), X(2), . . ., X(n;) to be in group 1, X(n; + 1), ...,
X(n, + ny) to be in group 2, and in general group j is to consist of subjects

numbered X(ny + ny + -+ + iy + k), k=1,...,n

10.2 GENERAL TECHNIQUES FOR SIMULATING CONTINUOUS

RANDOM VARIABLES

In this section we present two general methods for using random numbers to
simulate continuous random variables.

10.2.1 The Inverse Transformation Method
A general method for simulating a random variable having a continuous distribu-

tion—called the inverse transformation method—is based on the following propo-
sition.

o Prapas:tlon 21

Let U'be a umform (O 1) random vanable For any continuous L
dlstmbutmn f}ncnon F, if we deﬁne the random vanable Y by

L, Y=FO)
: then the random vanable Y has distribution functlon F [F 1(,x) 1s
deﬁned to equal that value y for whmh F (y) = x]

Proof
Fy(a) = P{Y < a)
/ = P{F~Y(U) = a)
Now, since F(x) is a monotone function, it follows that '~ YUy = a if and only
if U = F(a). Hence, from Equation (2.1), we see that
Fy(a) = P{U=F(a)}
T = F(a)

I3

2.1)

Ve

T When m = 2, another technique for randomly dividing the subjects was presented in
Example 2g of Chapter 6. The preceding procedure is faster but requires more space than the one
of Example 2g
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It follows from Proposition 2.1 that we can simulate a random variable X
having a continuous distribution function F by generating a random number U
and then setting X = F~ L.

Example 2a. Szmulatmg an exponential random variable. If F(x) = 1 — e™ 7,
then F~1(u) is that value of x such that
1l —e *=u
or

x = —log(l — u)
Hence, if U is '_a uniform (0, 1) variable, then
F~YU) = —logl — U)

is exponentially distributed with mean 1. Since 1 — U is also uniformly
distributed on (0, 1), it follows that —log U is exponential with mean 1.
Since cX is exponential with mean ¢ when X is exponential with mean 1,
it follows that —c¢ log U is exponential with mean c. |

The results of Example 2a can also be utilized to simulate a gamma ran-
dom variable.

Example 2b. Simulating a gamma (n, A) random variable. To simulate from
a gamma distribution with parameters (n, A), when rn is an integer, we use
the fact that the sum of »n independent exponential random variables each
having rate A has this distribution. Hence, if Uy, ..., U, are independent
uniform (0, 1) random variables,

n

X=-> AlogU = ;llog<H U>

i=1 i=1
has the desired distribution. |

10.2.2 The Rejection Method

Suppose that we have a method for simulating a random variable having density
function g(x). We can use this as the basis for simulating from the continuous
distribution having density f(x) by simulating ¥ from g and then accepting this
simulated value with a probability proportional to f(Y)/g(¥).

Specifically, let ¢ be a constant such that

Q) =c forall y
8(y)

We then have the following technique for simulating a random variable having

density f.

Rejection Method
Step 1. Simulate Y having density g and simulate a random number U.
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Step 2. U = f(Y)/cg(Y), set X = Y. Otherwise return to step 1.

The rejection method is expressed pictoﬁally in Figure 10.1.
We now prove that the rejection method works.

Lo Proposmon 2 2

’ The random vanable X generated by the rejectmn method has den51ty
,functlon f V : ~

Proof: LetXbe the value obtained and let N denote the number of necessary
iterations. Then

P{X=x} = P{¥y=x}

N <ﬂm}
P{Y x|U %)
_ <ﬂm}
{Y x, U 2(7)
K

where K = P{U = f(Y)/cg(Y)}. Now the joint den81ty function of ¥ and U is,
by independence,
N foow =g 0<u<l
so, using the foregoing, we have
1
Px=xi =% [[ woraudy
ysx -~
0<u<f(y)/cg(y)

-f(¥cg(y) dit g(y) d
I
K » j g\y)ay
- __1__ f(y) dy 2.2)
cK
Start {
. Generate a Is —Yﬁ——> SetX=Y
P Generate random number =3 U< Y)
Y~g U cg(Y)
No
V4

Figure 10.1 Rejection method for simulating a random variable X having
density function f.
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Letting x approach o and using the fact that f is a density gives

_1r _ 1
L= ch_mf())dy K

Hen‘ce from Equation (2.2) we obtain that
PiX=x} = fo)dy
which completes the proof. . B

~ Remarks. (a) It should be noted that the way in which we “accept the value
Y with probability f(Y)/cg(Y)” is by generating a random number U and then
accepting Y if U = f(Y)/cg(Y).
(b) Since each iteration will, independently, result in an accepted value with
probability P{U < f(Y)/cg(Y)} = K = 1/c, it follows that the number of iterations
has a geometric distribution with mean c.

Example 2c. Simulating a normal random variable. To simulate a unitbnormal
random variable Z (that is, one with mean 0 and variance 1), note first that
the absolute value of Z has probability density function

fx) = -\/—22_; e p<x<w (2.3)

We w.ill start by simulating from the preceding density function by using
the rejection method with g being the exponential density function with
mean 1—that is

gx) = e * 0<x<oo

= Jron =5
_ 2 —x2-2x+1) 1
- e "D

Now, note that

= géex _____—(x—1)2
. P 5 ('2.4)_

2e
S —
V 7

Hence we can take ¢ = V2e/m; so, from Equation (2.4),

J& —( =1’
cg(x) B exp{ 2 }
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Therefore, using the rejection method we can simulate the absolute value
of a unit normal random variable as follows:

(a) Generate independent random variables Y and U, Y being exponential
with rate 1 and U being uniform on (0, 1).
(b) If U < exp{ — (¥ — 1)*/2} set X = Y. Otherwise, return to (a).

Once we have simulated a random variable X having density function as in
Equation (2.3) we can then generate a unit normal random variable Z by
letting Z be equally likely to be either X or —X.

In step (b), the value Y is accepted if U < exp{ —(¥ — 1)%/2}, which
is equivalent to —log U = (¥ — 1)%2. However, in Example 2a it was
shown that —log U is exponential with rate 1, so steps (a) and (b) are
equivalent to

(é’) Generate independent exponentials with rate 1, Y; and Y.
) IfY, = (¥; — 1)%2, set X = Y. Otherwise, return to (a).

Suppose now that the foregoing results in ¥; being accepted—and so we
know that Y, is larger than (¥Y; — 1)%/2. By how much does the one exceed
the other? To answer this recall that Y, is exponential with rate 1, and
so, given that it exceeds some value, the amount by which Y, exceeds
(Y; — 1)*2 [that is, its “additional life” beyond the time (¥; — 1)%2] is
(by the memoryless property) also exponentially distributed with rate 1. That
is, when we accept step (b'), we obtain not only X (the absolute value of a
unit normal) but by computing Y5~ — (¥; — 1)%/2 we can also generate an
exponential tandom variable (independent of X) having rate 1.

" Hence, summing up, we have the following algorithm that generates
an exponential with rate 1 and an independent unit normal random variable.

Step 1. Generate Y7, an exponential random variable with rate 1.

Step 2. Generate Y,, an exponential random variable with rate 1.

Step 3. B Y, — (¥, — 1)%2 > 0setY =Y, — (¥; — 1)*/2 and go to
step 4. Otherwise, go to step 1.

Step 4. Generate a random number U and set -

Y, if U=1
Z = . |
The random variables Z and Y generated by the foregoing are independent
with Z being normal with mean 0;and variance 1 and Y being exponential

with rate 1. (If we want the normial random variable to have mean p and
variance o, just take u + oZ3)

ReMARKS. (a) Since ¢ = V2e/ # =~ 1.32, the foregoing requires a geometri-

cally distributed number of iterations of step 2 with mean 1.32.

(b) If we want to generate a sequence of unit normal random variables, then

we can use the exponential random variable Y obtained in step 3 as the initial
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exponential needed in step 1 for the next normal to be generated. Hence, on the
average, we can simulate a unit normal by generating 1.64 (= 2 X 1.32 — 1)
exponentials and computing 1.32 squares.

Example 2d. Simulating normal random variables—the polar method. It was
shown in Example 7b of Chapter 6 that if X and Y are independent unit
normal random variables then their polar coordinates R = VX2 + Y2,
O = tan~ }(¥/X) are independent, with R? being exponentially d1stnbuted
with mean 2 and © being uniformly distributed on (0, 27). Hence, if U,
and U, are random numbers then (using the result of Example 2a) we can set

R = (—2log Up'”?
6 = 27TU2
which yields that

X = Rcos © = (—2log UD'? cosmUs)
Y = Rsin © = (—2log U;)Y? sin(27wU,)
are independent unit normals.

The above approach to generating unit normal random variables is
called the Box—Muller approach. Its efficiency suffers somewhat from its
need to compute the above sine and cosine values. There is, however, a way
-to get around this potentially time-consuming difficulty. To begin, note that
if U is uniform on (0, 1) then 2U is uniform on (0, 2) and so 2U — 1 is
uniform on (— 1, 1). Thus, if we generate random numbers U; and U, and set

V1=2U1"‘1
V2=2U2"‘1

then (Vy, V,) is uniformly distributed in the square of area 4 centered at
(0, 0) (see Figure 10.2).

" 4

(+1,-1) @,-1)
o =(0,0)

X =V, Vo) Figure 10.2

2.5)

N -1,1)

1D

\ .
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Suppose now that we continually generate such pairs (Vy, V5) until we
obtain one that is contained in the dxsk of radius 1 centered at (0, 0)—that
is, until (Vy, V) is such that V2 + V3 = 1. It now follows that such a pair
(V1, V) is uniformly distributed in the disk. If we let R, © denote the polar
coordmates of this pair, then it is easy to verify that R and © are independent,
with R? being uniformly distributed on (O 1), and © uniformly distributed
on (0, 2m) (see Problem 13).

Since
5 - V’) Vs
sin e
R VV2+ V3
-V V
cos O = — 1

R VV2+ V2

it follows from Equation (2.5) that we can generate inde:pen(%ent unit normals
X and Y by generating another random number U and setting

X = (—2log)'?V{/R
Y = (—2log )2 V,/R

In fact, since (conditional on Vi+ Vi=1) R? is uniform on (0, 1) and is
independent of § we can use it instead of generating a new random number

U; thus showing that
[—2 log S v,
[—2 log S v,
and independent unit normals, where

S=R?>= V2+V2

X = (—2log RH)? 2

Y = (—2logR»)'”?

wll.s >cll<

Summing up, we thus have the following approach to generating a pair
of independent unit normals:

Step 1. Generate random numbers U; and U,. ) 5
StepZ Set VI = 2U1 - ]., V2 = 2U2 - I,S == V] + V2.
Step 3. If § > 1, return to step 1.

Step 4. Return the independent, ynit normals

[—2 log-S [—2log S
/

The above is called the polar method. Since the probability that a
random point in the square will fall within the circle is equal to /4 (the
area of the circle divided by the area of the square), it follows that, on
average, the polar method will require 4/7 =~ 1.273 iterations of step 1.
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Hence it will, on average, require 2.546 random numbers, 1 logarithm,

1 square root, 1 division, and 4.546 multiplications to generate 2 independent
unit normals.

Example 2e. Simulating a chi-squared random variable. The chi-squared distri-

bution with n degrees of freedom is the distribution of y2 = 72+ -+
Z2 where Z;,i = 1,...,nare independent unit normals. Now it was shown

in Section 3 of Chapter 6 that Z7 + Z3 has an exponential distribution with
rate 3. Hence, when # is even, say n = 2k, x3; has a gamma distribution
with parameters (k, 3). Hence, —2 log(IT¥_ | U;) has a chi-squared distribution
with 2k degrees of freedom. We can simulate a chi-squared random variable

with 2k + 1 degrees of freedom by first simulating a unit normal random
variable Z and then adding Z? to the foregoing. That is,

k
X%4=?~N%OTM>

i=1

where Z, Uy, ..., U, are independent with Z being a unit normal and the
others being uniform (0, 1) random variables.

10.3 SIMULATING FROM DISCRETE DISTRIBUTIONS

All of the general methods for simulating random variables from continuous
distributions have analogs in the discrete case. For instance, if we want to simulate
a random variable Z having probability mass function

PiX=x}=P, j=01,..., >P=1
J

We can use the following discrete time analog of the inverse transform technique.

To simulate X for which P{X = x;} = P;let U be uniformly distributed
over 0, 1), and set

fx1 if U<P1
X if P1<U<P1+P2

ji—1 J
x if D PR<U<YP
1 i

Since

1 V J
P{X = x;} =P{Z P,-<U<2P,} =P
1 1

we see that X has the desired distribution.
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Example 3a. The geometric distribution. Suppose that independent trial‘s each
of which results in a “success” with probability p, 0 < p < 1, are continually
performed until a success occurs. Letting X denote the number of necessary
trials, then,

PiX=i}l=( = p)iTlp i=1

which is seen by noting that X = i if the first i — 1 trials are all failurc?s
and the ith is a success. The random variable X is said to be a geometric
random variable with parameter p. Since

JEIP{X= i}=1-P{X>j— 1}
- = ] — P{firstj — 1 are all failures}
=1-QQ-pf ! j=1
we can simulate such a random variable by generating a random number U
and then setting X equal to that value j for which
1-1-pft<Uu<1-(1-py
or, equivalently, for which
Q-p/<1-U<@a-p!
Since 1 — U has the/same distribution as U, we can ﬂms define X by
X = min{j: (1 — p) < U}
= min{;:jlog(l — p) <log U}
I log U
zmmpﬁﬁ%a—m}

where the inequality changed sign since log(l — p) is‘negative [since
log(1 — p) <log 1 = 0]. Using the notation [x] for the integer part of x
(that is, [x] is the largest integer less than or equal to x), we can write

logU
- ——2 B
X 1+L%a—m}

As in the continuous case, special simulating techniques have been developed
for the more common discrete distﬂb}ltions. We now present two of these.

Example 3b. Simulating a binomial random variable. A binorgial (n, p) ran-
dom variable can be easily simulated by recalling that it can be‘ ex-
pressed as the sum of n independent Bernoulli random Valiableg. That is, if
U,, ..., U, are independent uniform (0, 1) variables, then letting

7o otherwise
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n
it follows that X = IZZI X; 1s a binomial random variable with parameters n
and p.

Example 3c. Simulating a Poisson random variable. To simulate a Poisson

rangiom variable with mean A, generate independent uniform (0, 1) random
variables Uy, U,, ... stopping at

n
N = min{n: H U; < e’)‘}
i=1

The ;andom variable X = N — 1 has the desired distribution. That is, if we
continue generating random numbers until their product falls below ¢ ~*
then the number required, minus 1, is Poisson with mean A.

That X =N — 1 is indeed a Poisson random variable having mean A
can perhaps be most easily seen by noting that

n
X+1 =min{n:H U,-<e"“"}

B

i=1

is equivalent to

n 0
X = max{n: [1U= e')‘} where [ [ U;=1
i=1 i=1

or, taking logarithms, to

X = max{n: E logU; = —A}

i=1

or

n
X = max{n: > —log U; = )\}

i=1

N
How§ver, —log U; is exponential with rate 1 and so X can be thought of
as being the maximum number of exponentials having rate 1 that can be
summeq and still be less than A. But by recalling that the times between
successive events of a Poisson process having rate 1 are independent exponen-
tials with rate 1, it follows that X is equal to the number of events by time
A of a Poisson process having rate 1; and thus X has a Poisson distribution
with mean A.

7

10.4 VARIANCE REDUCTION TECHNIQUES

Let D. T - X, have a given joint distribution and suppose that we are interested
in computing

0=Elg(Xy, ..., X))l
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where g is some specified function. It sometimes turns out that it is extremely
difficult to analytically compute the foregoing, and when such is the case we can
attempt to use simulation to estimate 6. This is done as follows: generate
x®, ..., XD having the same joint distribution as X;, ..., X,, and set

Y] = g(Xg,l)s v 9X§11))

Now simula‘g)e a second set of random variables (independent of the first set)
X9, ..., X® having the distribution of Xy, ..., X,, and set

Y, = gx?,.... X -

Continue this until you have generated k (some predetermined number) sets and
so have also computed ¥;, Ys, ..., Y;. Now, Yj, ..., Y are independent and
identically distributed random variables each having the same distribution of
g(X,,...,X,). Thus, if we let Y denote the average of these k random variables—
that is,

=
R

Y =

H

1
then
E[Y] =06
E[(Y — "] = Var(Y) '

Hence, we can use Y as an estimate of 6. Since the expected square of
the difference between Y and @ is equal to the variance of ¥ we would like
this quantity to be as small as possible. [In the preceding situation, Var(Y) =
Var(Y;)/k, which is usu‘ally not_known in advance but must be estimated from
the generated values Yy, ..., ¥,]. We now present 3 general techniques for
reducing the variance of our estimator.

10.4.1 Use of Antithetic Variables

Tn the foregoing situation, suppose that we have generated Y; and Y5, which are
identically distributed random variables having mean 6. Now

ar(ﬁ_;——y_> B %,War(m + Var(¥z) + 2 Cov(¥, 1)l

VaI(Yl) CQV(Yl, Y2)

Hence it would be advantageous (in the sénse that the variance would be reduced)
if ¥; and Y, rather than being independ’ent were negatively correlated. To see
how we could arrange this, let us suppose that the random variables X, . .., X,
are independent and, in addition, that each is simulated via the inverse transform
technique. That is, X; is simulated from F; Y(U;) where U; is a random number
and F; is the distribution of X;. Hence, ¥; can be expressed as

Yl = g(Flnl(Ul)9 . ’F;I(Ulz))
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Now, since 1 — U is also uniform over (0, 1) whenever U is a random number
(and is negatively correlated with U), it follows that ¥, defined by

Yo =g(Frl(1 = Up,....F (1 = U,)

will have the same distribution as Y;. Hence, if ¥; and Y, were negatively
correlated, then generating Y, by this means would lead to a smaller variance
than if it were generated by a new set of random numbers. (In addition, there is
a computational savings since rather than having to generate n additional random
numbers, we need only subtract each of the previous n from 1). Although we
cannot, in general, be certain that ¥; and Y, will be negatively correlated, this
often turns out to be the case and indeed it can be proven that it will be so
whenever g is a monotonic function.

10.4.2 Variance Reduction by Conditioning

Let us start by recalling the conditional variance formula (see Section 7.4.4)
Var(Y) = E[Var(¥|2)] + Var(E[Y|Z])

Now suppose that we are interested in estimating E[g(X], . . . , X,,)] by simulating
X = (X, ..., X,) and then computing ¥ = g(X). Now, if for some random
variable Z we can compute E[Y|Z] then, as Var(Y|Z) = 0, it follows from the
conditional variance formula above that

Var(E[Y|Z]) = Var(Y)

implying, since E[E[Y|Z]] = E[Y], that E[Y|Z] is a better_estimator of E[Y]
thanis Y. -

Example d4a. Estimation of m. Let U, and U, be random numbers and set
V;=2U; - 1,i = 1,2. Asnoted in Example 2d, (V;, V5) will be uniformly
distributed in the square of area 4 centered at (0, 0). The probability that
this -point will fall within the inscribed circle of radius 1 centered at 0, 0)
(see Figure 10.2) is equal to 7/4 (the ratio of the area of the circle to that

f the square). Hence, upon simulating a large number # of such pairs and

setting

I = 1 if the jth pair falls within the circle

7 0 otherwise
it follows that I;,j = 1,. .., nwill be independent and identically distributed
random variables having E[L;] = m/4. Thus, by the strong law of large
numbers :

L +---+1, T
———— ey — as n— @
n "4
Therefore, it follows that by simulating a large number of pairs (Vi, Vo)
and multiplying the proportion of them that fall within the circle by 4, we
can accurately approximate 7r.
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The above estimator can, however, be improved upon by using condi-
tional expectation. If we let I be the indicator variable above for the pair
(V4, V) then, rather than using the observed value of /, it is better to condition
on V; and.so utilize

E[I|V,] = P{V? + V3 =1|V,}
= P{V3=1-Vi|v}
Now :
P(V3=1- V3V, =v}=P{Vi=1—-?
=P{-V1—-1v*=V,=V1 —v?}
VI ~

EU|V)] = E[V1 — V2]

Thus, an improvement on using the average value of [ to estimate
/4 is to use the average value of V'1 — V3. Indeed, since

1
ENV1 = V2 =f11§\/1 —v2dv=jo V1= 2du = EV1 - U

where U is uniform over (0, 1), we can generate n random numbers U and
use the average value of V1 — U? as our estimate of /4. (Problem 14
shows that this estimator has the same variance as the average of the n
values \/I——V?‘.)

The above estimator of 7r can be improved even further by noting that
the function g) = V1 — u? 0 = u = 1is amonotone decreasing function
of u and so the method of antithetic variables will reduce the variance of
the estimator of E[V1 — U?]. Tha{ is, rather than generating n random
numbers and using the average value of V'1 — U? as an estimator of /4,
an improved estimator would be obtained by generating only n/2 random
numbers U and then using one-half the average of V1 — U? +
V1 — (1 — U)* as the estimator of /4.

The following table gives the estimates of 7 resulting from simulations,
using n = 10,000, based on the three estimators above.

SO

Estimate

Method of w

Proportion of the random points that fall in the circle. 3.1612
Average value of V1 — U? \ 3.128448
Average wqlue of V1 — 1% + V1 — (1 - U)? 3.139578

7

A further simulation using the final approach and n = 64,000 yielded the
estimate 3.143288. B

~
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10.4.3 Control Variates

Again suppose that we want to use simulation to estimate E[g(X)] where
X = (Xj, ..., X,). But now suppose that for some function f the expected value
of f(X) is known—say E[f(X)] = w. Then for any constant a we can also use

W=gX) + a[f(X) — ul
as an estimator of E[g(X)]. Now
Var(W) = Var[g(X)] + a? Var[f(X)] + 2a Cov[g(X), f[(X)] (4.1)

Simple calculus shows that the foregoing is minimized when

_ —Covlf(X), g(X)]
@ = Xl 4.2)

and for this value of a

[Cov[£(X), g(X)I”
Var[ f(X)]
Unfortunately, neither Var[ f(X)] nor Cov[f(X)], g(X)] is usually known, so we
cannot usually obtain the foregoing reduction in variance. One approach in practice

is to use the simulated data to estimate these quantities. This usually yields almost
all of the theoretically possible reduction in variance.

Var(W) = Var[g(X)] — (4.3)

SUMMARY

Let F be a continuous distribution function and U a uniform (0, 1) random variable.
The random variable F~'(U) has distribution function F, where F~ L) is that
value x such that F(x) = u. Applying this result, we can use the values of uniform
(0, 1) random variables, called random numbers, to generate the values of other
random variables. This is called the inverse transform method.

™ Another technique for generating random variables is based on the rejection
method. Suppose that we have an efficient procedure for generating a random
variable from the density function g, and that we desire to generate a random
variable having density function f. The rejection method for accomplishing this
starts by determining a constant ¢ such that

It then proceeds as follows.

1. Generate Y having density g.

2. Generate a random number U.

3. U = f(Y)lcg(Y), set X = Y and stop.
4. Return to step 1.

The number of passes through step 1 is a geometric random variable with mean c.
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Standard normal random variables can be efficiently simulated by using the
rejection method (with g being exponential with mean 1) or by using a technique
known as the polar algorithm.

To estimate:a quantity 6, one often generates the values of a partial sequence
of random variables whose expected value is . The efficiency of this approach
is increased when these random variables have a small variance. Three techniques
that can often be used to specify random variables with mean 6 and relatively
small variances are:

1. The use of antithetic variables
2. The use of conditional expectations
3. The use of control variates

PROBLEMS

1. The following algorithm will generate a random permutation of the elements
1, 2, ..., n. It is somewhat faster than the one presented in Example 1a but
is such that no position is fixed until the algorithm ends. In this algorithm,
P(i) can be interpreted as the element in position i.

Step 1. Setk = 1.
Step 2. Set P(1) = 1.

. Step 3. If k = n, stop. Otherwise, let k = k + 1.
Step 4. Generate a’random number U and let

P(k) = P([kU] + 1)
PkUI+ 1) =k

Go to step 3.

(a) Explain in words what the algorithm iy doing.
(b) Show that at iteration k—that is, when the value of P(k) is initially set—
that P(1), P(2), ..., P(k) is a random permutation of 1, 2, ..., k.

uiNT:  Use induction and argue that

Pliyig, . s ij_1, ki i, R PP B
A . .. . 1
=P_{ipio o sijm by s ip—n)~
j Jj k
1

= by the induction hypothesis

4 - .
2. Develop a techniquéxfor simulating a random variable having density function

2x
e -0 < x <0
f(x)_{e“zx 0<x<w

~
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3. Give a technique for simulating a random variable having the probability
density function

1
E(x——Z) 2=x=3

fx) =491 x
§<2—§> 3<x=6

0 otherwise

. Present a method to simulate a random variable having distribution function

(0 x< -3

l_;.f ~3<x<0
F(x)=¢2 6

~1-+£2— O0<x=4

2 32 o

\1 x> 4

. Use the inverse transformation method to present an approach for generating
a random variable from the Weibull distribution

FO)=1-—e =0

. ?i)ve;(x 1)nethod for simulating a random variable having failure rate function
a t

(b) A1) =

) A@t) = ct~

@ A = o,

. In the following, F is the distribution function
' F(x) = x" 0<x<o

(a) Give a method for simulating a random variable having distribution F
that uses only a single random number.
(b) Let Uy, ..., U, be independent random numbers. Show that

Plmax(Uy, ..., U,) = x} = x"

(©) Use. part (b) to give a second method of simulating a random variable
having distribution F.

. Suppose it is relatively easy to simulate from F; for each i = 1, . . , M.
How can we simulate from

@ F() = [] Fi:

i=1

(b) F(x) =1~ ﬁ [1 = F;(x)].

i=1

10.

11.

12.

13.

14.

15.

16.
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. Suppose we have a method to simulate random variables from the distributions

F, and F,. Explain how to simulate from the distribution
JF@) = pFi(x) + 1 —pFx)  0<p<l
Give a method for simulating from
- +x O0<x=l1
F(x) =4, “3xy 2
s —e )+ 3 x>1

In Example 2c we simulated the absolute value of a unit normal by using
the rejection procedure on exponential random variables with rate 1. This
raises the question of whether we could obtain a more efficient algorithm by
using a different exponential density—that is, we could use the density

g(x) = Ae ™. Show that the mean number of iterations needed in the rejection
scheme is minimized when A = 1.

Use the rejection method with g (x) = 1,0 < x < 1, to determine an algorithm
for simulating a random variable having density function

60x3(1 — x>  0<x<1
f&) = { otherwise
1
Explain how you could use random numbers to approximate f o k(x) dx where
k(x) is an arbitrary function,
unt:  If U is uniform on (0, 1), what is E[k(U)]?

Let (X, Y) be uniformly distributed in the circle of radius 1 centered at the
origin. Its joint density is thus

fay) == 0=x+y’=1
a

LetR = (X* + Y2 and 6 = tan~ (¥, }! ) denote its polar coordinates.
Show that R and 6 are independent with being uniform on (0, 1) and 6
being uniform on (0, 2).

In Example 4a we have shown that

Bl - V)] = Bl - UH'?] =7

when V is uniform (—1, 1) and U is uniform (0, 1). Show that
Var[(1 ~ V2)”2] = Var[(1 — U»']

and find their common value. ~\

(a) Verify that the minimum of (4.1) occurs when a is as given by (4.2).
(b) Verify that the minimum of (4.1) is given by (4.3).

let Xbea rancllom variable on (0, 1) whose density is f(x). Show that we
can estimate fo g(x) dx by simulating X and then taking g(X)/f(X) as our
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estimate, This method,i called importance sampling, tries to choose f similar APPENDIX A

in shape to g so that g(X)/f(X) has a small variance.

SELF-TEST PROBLEMS AND EXERCISES

1. The random variable X has probability density function

function

fo) = 0<x<l . Answers to
(a) Find the value of the constant C. '
(b) Give a method for simulating such a random variable. S 1 t d P bl
2. Give an approach for simulating a random variable having probability density ‘ e eC e rO ems

f&x) = 30(x* — 2x3 + x% 0<x<1

3. Give an efficient algorithm to simulate the value of a random variable with
probability mass function

P = 15 Pr = 2 pP3 = 35 Pqg = .30

4. If X is a normal random variable with mean u and variance o2, define a

random variable Y that has the same distribution as X and is negatively CHAPTER 1
correlated with it
' ; . 4. 24;4 5. 144;18
5. Let X and Y be independent standard normal random variables. é 322)6100’0097’ 19,}%6’930 144 32 1292. " 120: 1260: 34.650
(2) Explain how we could use simulation to estimate E[e”] - 9. 27,720  10. 40,320; 10,080; 1152; 2880; 384  1L. 720;72; 144
- (b) Show how to improve the estimation approach in part (a) by using a 12, 24.300.000: 17.100.720 T3 190 14. 2598960 .
control variate. . : . 16. 42;94  17. 604,800  18. 600  19. 896; 1000; 910
() Show how to improve the estimation approach in part (a) by using 20. 36: 26 21. 35  22. 18 23. 48 25. 521/(131*
antithetical variables. 27. 27720  28. 65536;2520. 29. 12,600;945  30. 564,480
: 31. 165; 35 32. 1287; 14,112 33. 220; 572
REFERENCE !
Ross, S. M, Simulation. San Diego, Calif.: Academic Press, Inc., 1997. CHAPTER 2

9. 74 10. 4;.1 11. 70;2 12. .5;.32; 149/198

13.  20,000; 12,000; 11,000; 68,000; 10,000 14. 1.057

15. .0020; .4226) 0475; 0211; 00024~ 17. 9.10946 x 107°

18. .048  19. 5/18 20. 9017 22. (n + 12" 23. 5/12
V25, 4 26. 492929 27. 58333 28. .2477; 2099

30. 1/18; 1/6; 1/2 31 2/9; 1/9 33. 70/323 35. 8363 °

36. .0045; .0588 37. .0833;.5 38. 4 39, 48

40. 1/64; 21/64; 36/64; 6/64 41, 5177 44. 3;.2; .1 46. 5

48. 1.0604 x 1073 49, 4329 50. 2.6084 x 1076

52. .09145; 4268 53. 12/35 54. 0511 55. .2198; .0342
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474 Appendix A  Answers to Selected Problems
CHAPTER 3
1. 173 2. 1/6; 1/5; 1/4; 1/3; 1/2; 1 3. .339 5. 6/91
6. 1/2 7. 2/3 8. 172 9. 7/11 10. .22 11.  .4697
12. 9835 13. .0792; .264 14. .331; .383; .286; 48.62
15. 44.3; 41.18 16. 4; 1/26 17. .496; 3/14; 9/62
18. .504; .3629 20. 35/768 21. 4/9; 1/2 22, 1/3; 172
24. 20/21; 40/41 26. 3/128; 29/1536 27. .083 28. 7/12; 3/5
29. 5/11 30. 27/31 31. 3/4 32. 112 33. 1/3;1/5;1
34, 12/37 35.. 46/185 36. 3/13; 5/13; 5/52; 15/52
37. 43/459 38. 34.48 39. 4/9 41. 1/11 44. 2/3
45, 19/268 46. 17.5; 38/165; 17/33
47. .65; 56/65; 8/65; 1/65; 14/35; 12/35; 9/35
48. .11; 16/89; 12/27; 3/5; 9/25 51. 9 53. (c)2/3
56. 2/3; 1/3; 3/4 57. 1/6; 3/20 61. 9/13; 1/2
65. 9;9; 18; 110; 4; 4; 8; 120 all over 128 66. 1/9; 1/18
07. 38/64; 13/64; 13/64 69. 1/16; 1/32; 5/16; 1/4; 31/32
70. 1/2 — p) for A 71. PP, + Py, — PPy 73. 3
74. - .5550 76. .9530 78. .5;.6; .8
79. 9/19; 6/19; 4/19; 77/165; 53/165; 35/165 84. 97/142; 15/26; 33/102
CHAPTER 4
1. p@)-= 6/91; p(2) = 8/91; p(1) = 32/91; p(0) = 1/91; p(—1) = 16/91;
p(—2) = 28/91 4. 1/2; 5/18; 5/36; 5/84; 5/252; 1/252; 0; 0; 0; 0 -
5. n—2i;i=0,...,n 6. p(3) = p(—3) = 1/8;p(1) = p(—1) = 3/8
12. p(4) = 1/16; p(3) = 1/8; p(2) = 1/16; p(0) = 1/2;
p(—i) = p@); p(0) = 1
13. "p(0) = .28; p(500) = .27, p(1000) = .315; p(1500) = .09;
p(2000) = .045 o
14. p(0) = 1/2; p(1) = 1/6; p(2) = 1/12; p(3) = 1/20; p(4) = 1/5
17. \1/4; 1/6; 1/12; 172 19. 1/2; 1/10; 1/5; 1/10; 1/10
20. .5918; no; —.108 21. 39.28; 37 23. 35
24. p = 11/18, maximum = 23/72 26. 11/2; 17/5
27. A(p + 1/10) 28. 3/5 31. p* 32, 110 — 100(.9)10 .
33. 3 35. —.067; 1.089 37. 82.2;84.5 39. 378
40. 117243 .42, p=1/2 45. 3 50. 1/10; 1/10/
51, e” 31— 1272 53 1 —e 61— 21918
56. 365 log (2) 57. .5768; .6070 - 59. .3935; .3033; .0902
60. .8886 61. .4082 63. .0821; .2424
65. .3935; .2293; .3935 66. .1500; .1012 68. 5.8125
69. 32/243; 4864/6561; 160/729; 160/729 73. 18(17)"”1/(35)"
76. 3/10; 5/6; 75/138 77. .3439
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CHAPTER 5
2. 3.5¢7 2 3. no; no 4. 12 5. 1 — (0D
6. 4,0, 7. 3/5;6/5 8. 2 10. 2/3; 2/3 11. 2/5
13. 2/3; 1/3 16. (.9938)!0 18. 22.66 19. 14.56
20. .0006;.75; .977  22. 95;.0019  23. .9258;.1762
26. .0606; .0525 30 e Le 2 32, e L 13 36. 3/5
38. '1ly
CHAPTER 6
2. (a) 14/39; 10/39; 10/39; 5/39 (b) 84; 70; 70; 70; 40; 40; 40; 15 all
divided by 429 3. 15/26; 5/26; 5/26; 1/26
4. 25/169; 40/169; 40/169; 64/169 6. p@,j) = 1/10
7. pG,j) =p*0 —p)i* 8 c=18,EX =0
9. (12x% + 6x)/7; 15/56; .8625; 5/7; 8/7  10. 1/2;1 — e °
11. .1458 12. 393¢7° 13. 1/6; 12 15. /4
16. n(1/2y" 1 17. 1/3 18. 7/9 19. 127 21. 2/5;2/5
22. no; 1/3 23. 1/2; 2/3; 120; 1/18  25. e Vil
30. 721 —3e~2 32, .0326  33. .3446; .2061
34. .0829; 3766  35. 1/3;2/3;5/12;7/12  36. 5/13; 8/13
37. 1/6;5/6; 1/4;3/4 42, (y + 1)%xe *OFD; xo=, g7
43. 172 + 3y/(4x) — y3/(4x>) 47. (1 — 2d/L)®>  48. .79297
49. 1 — e~a; (1 — g 51. rlwm  52. r
55. (a) u/(v + 1)?
CHAPTER 7
- e
1. 525/12 2. 324;1988 5. 32/ 6. 35 7. .9;49;42
8. -1 —-pMHp 10. 60 11. 2(n — L)p(l — p)
14. m/(1 — p) 15. 109/60  18.- 4  21. .9301; 87.5757
22. 147 23. 147110  26. w/(n + 1); U@n + 1) 27. 175/6
20. 14 30. "20/19; 360/361 31. 21.2; 18.929; 49.214
32, —n/36  33. 0 34. 1/8 37. 6;112/33
38. 100/19; 16,200/6137; 10/19; 3240/6137  41. 1/2;0
43. Umn —1)  44. 6;7;58192 45. 9/5;6/5,3/5,0  46. 2y*
47. y¥ 4  49. 12 50. 8 52. N1 — e O™ - 53, 125
59. —96/145 61. 218 63. x[1 + 2p — 11"
65. 1/2; 1/16; 2/81 66. 1/2,1/3 68. 1/i;[iG + 1)]7 Y
69. w1 + o yes; 2
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CHAPTER 8

1. =19/20 2. 15/17; =3/4; =10 3. =3 4. =4/3; .8428
- 5. .1416 6. .9431 7. .3085 8. .6932 9. 66,564
10. 117 11. =6 13. .0162; .0003; .2514; .2514 14. n=23
17. =2 22. .769; .357; .1093; .112184

CHAPTER 9 .

1. 1/9;5/9 3. .0265; .0902; .2642; 4422 10. (b) 1/6
14. 2.585; .5417; 3.1267 15. 5.5098

APPENDIX B

Solutions to Seli-Test
Problems and Exercises

CHAPTER 1

1. (a) There are 4! different orderings of the letters C, D, E, F. For each of
these orderings, we can obtain an ordering with A and B next to each
other by inserting A and B, either in the order A, B or in the order B,
A, in any of 5 places. Namely, either before the first letter of the permuta-
tion of C, D, E, F, or between the first and second, and so on. Hence,
there are 2 - 5 - 4! = 240 arrangements. Another way of solving this is
to imagine that B is glued to the back of A. This yields that there are 5!

" orderings in which A is immediately before B. As there are also 5!
orderings in which B is immediately before A, we again obtain a total
of 2 - 5! = 240 different arrangements.

(b) There are a total of 6! = 720 possible arrangements, and as there are
as many with A before B as with B before A, there are 360 arrangements.

() Of the 720 possible arrangements, there are as many that have A before
B béfore C, as have any of the 3! possible orderings of A, B; and C.
Hence, there are 720/6 = 120 possible orderings.

(d) Of the 360 arrangements that have A before B, half will have C before
D and hdlf D before C. Hence, there are 180 arrangements havma A
before B and C before D.

(e) Gluing B to the back of A, and D to the back of C, ylelds 4! = 24
different orderings in which B immediately follows A and D immediately
follows C. Since the order of A and B and of C and D can be reversed,
there are thus 4 - 24 = 96 different arrangements.

477
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10.

11.

Appendix B Solutions to Self-Test Problems and Exercises

(f) There are 5! orderings in which E is last. Hence, there are 6! — 5! =
600 orderings in which E is not last.

3141313! since there are 3! possible orderings of countries and then the
countrymen must be ordered.

(a) 10-9-8 =720

(b)8-7-6+2-3-8-7=672.
The preceding follows since there are 8 - 7 - 6 choices not including A
or B, and there are 3 - 8 - 7 choices in which a specified one of A and
B, but not the other, serves. The latter following since the serving member
of the pair can be assigned to any of the 3 offices, the next position can
then be filled by any of the other 8 people, and the final position by any
of the remaining 7.

(¢c) 8:7-6+3-2-8 = 384

@ 3-9-8 = 216.

(€ 9-8-7+ 9-8 = 576.

SO NER
: <3’;2> = 210

. There are (7

3> = 35 choices of the three places for the letters. For each

choice, there are (26)°(10)* different license plates. Hence, altogether there
are a total of 35 - (26)> - (10)* different plates.

. Any choice of r of the n items is equivalent to a choice of n — r, namely,

those items not selected.

.(@ 10-9-9---9=10-9"""

(b) (l:) 9"~ since there are (7) choices of the i places to put the zeroes,

and then each of the other n — i positions can be any of the digits
L....,9

w () ws(l) @R - @
AN

(e) <33”\> = 3(;) + 3n2(n - 1D + n

(number of solutions of x; + -+ + x5 = 4)(number of solutions of x; +
-+ 4+ x5 = S5)(number of solutions of x; + -+ + x5 = 6) =

BOE)

Since there are ({l B 11> positive vectors whose sum is j, it follows that there

k :
are 21—:,1 ({1 _ 11) such vectors.
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CHAPTER 2

1. (@ 2-3-4=24 (b)2-3=6 (©03-4=12
(d) AB = {(c, pasta, i), (c, rice, i), (c, potatoes, i)}
(& 8 () ABC = {(c, rice, i)}

2. Let A be the event that a suit is purchased, B be the event that a shirt is
purchased, and C be the event that a tie is purchased. Then,
PAUBUC = .22 + .30 + 28 — .11 — .14 — .10 + .06 = .51

(@ 1l-.51=.49
(b) The probability that two or more items are purchased is

PABUACUBC) = .11 + .14 + .10 — .06 — .06 — .06 + .06 = .23

Hence, the probability that exactly 1 item is purchased is .51 — 23 = .28

3. By symmetry the fourteenth card is equally likely to be any of the 52 cards,
and thus the probability is 4/52. A more formal argument is to count the
number of the 52! outcomes for which the fourteenth card is an ace. This yields,

_4-51-50---2-1 _ 4

(52)! T 52
Letting A be the event that the first ace occurs on the fourteenth card, we have
48 - 47 - - - 36 -
P(A) = 847 36 4 = 0312

52-51---40-39
4. Let D denote the event that the minimum temperature is 70 degrees. Then,
P(A U B) = P(A) + P(B) — P(AB) = .7 — P(AB)
P(CUD) = P(C) + P(D) — P(CD) = 2 + P(D) — P(DC)

Subtracting one of the preceding equations from the other yields, upon using
the fact that A U B = C U D and AB = CD,

0=.5-—PWD)
or, PD) = .5
5248 -44-40 _ 52392613 _
5@ S50 — 0761 ®) Hrgsgw 109

6. Let R be the event that both balls are red, and let B be the event that they
are both black. Then ‘

3-4 3-6
P B = T s —
(RU B) P(R)—l—P(B)/ 6'10+6-10 1/2
1 g 7)\1 6
7. @) -—— =13 X 10 by —————= =33 X 107,

(%) (%)
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6)C)
6402 + 13X 1078 +33 X 1076 = 1.8 X 1074

(5)
()G Y
3-4-4-3 2 4
8. (a) 2272 = 1439 (b) 2L = 0360 (0) k-
(14) (14) (14)
4 4 4
9. Let S = |J%.; A;, and consider the experiment of randomly choosing an

element of S. Then P(A) = N(A)/N(S), and the results follow from Propositions
43 and 44.

10. Since there are 5! = 120 outcomes in which the position of horse number
1 is specified, it follows that N(A) = 360. Similarly, N(B) = 120, and
N(AB) = 2 - 4! = 48. Hence, from self-test problem 9, we obtain that
NA U B) = 432,

11. One way to solve this problem is to start with the complementary probability
that at least one suit does not appear. Let A; be the event that no cards from
suit { appear, { = 1, 2, 3, 4. Then,

P(U._, 4) = 2 P(A) — >, >, PAA) + -+ - — P(AAzA3A,)

J i

(0

= .0699

6 +
52 52) (52)
G G G
The desired probability is then 1 minus the preceding. Another way to solve
is to let A be the event that all 4 suits are represented, and then use

P(A) = P(n,n,n,n,0) + P(n,n,n,o,n) + P(n,n,o,n,n) + P(n,o,n,n,n)

where P(n, n, n, o, n), for instance, is the probability that the first card is
from a new suit, the second is from a new suit, the third is from a new suit,
the fourth is from an old suit (that is, one that has already appeared) and the
fifth is from a new suit. This gives

52-39-26-13-48 +52-39-26-36-13
52-51-50-49-48
52 39-24-26-13 +52-12-39-26-13
52-51-50-49 -48

PA) =

12.

13.

14.

15.
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:52-39-26-13(48+36+24+12)
52-51-50-49-48

= .2637
There are (10)'/25 different divisions of the 10 players into a ﬁrst roommate
pair, a second roommate pair, and so on. Hence, there are (10)!/(5! 23 ) divisions
into 5 roommate pairs. There are <g> <4> ways of choosing the frontcourt and

backcourt players to be in the mixed roommate pairs, and then 2 ways of
pairing them up. As there is then 1 way to pair up the remaining two backcourt
players and 41/(212% = 3 ways of making two roommate pairs from the
remaining four frontcourt players, we see that the desired probability is

)3

QoG -

P{2 mixed pairs} =

P(A°B°) = P((A U B)°)
=1—-PAUB)
=1 — [P(A) + P(B) — P(AB)]

1

Let B, = Ay, B; = A,.(U""IAJ) i > 1. Then,

P(szlAi) =P(U_, B)"
= i P(B))

i=1

= > PA) .

i=1

where the final equality uses the fact that the B; are mutually exclusive, and
the inequality follows since B; C A;. «

PN &) = 1= P((N]_, A)
1= p(UL, A1)

i

Il

=1- i P(AS)

i=1
=1
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CHAPTER 3
35
(3)
(%)
13

13//\13

()s2)
(¢) P(i aces) = ASVACE 74
39
()
2. Let L; denote the event that the life of the battery is greater than 10,000 X i
miles.
(@) P(L,|Ly) = P(L,Ly)/P(Ly) = P(Ly)/P(Ly) = 1/2
(b) P(Ls|Ly) = P(LyL3)IP(Ly) = P(L3)/P(Ly) = 1/8
3. Put 1 white and 0 black balls in urn one, and the remaining 9 white and 10
black balls in urn two.

4. Let T be the event that the transferred ball is white, and let W be the event
that a white ball is drawn from urn B. Then,

_ P(W|T)P(T) _ @IMQ2/13) -
P(W|T)P(T) + P(W|T)P(T®)  (2IT)(2/3) + (1/7)(1/3)

5. Let B; denote the event that ball i is black, and let R; = Bj.
P(Ry|By1)P(By)

P(R,|B)P(By) + P(Ry|R)P(Ry)

_ [r(b + r+ OB/ + 1] .

T b+ 4 OB/ + D]+ [+ )b+ r+ OB + ]

- b
b+r+c

1 (a) P(no aces) = (35> / (39> (b) 1 — P(no aces) —

P(T|W) = 4/5

P(By|Ry) =

6. Let B denote the event that both cards are aces.

P{B, yes t f spad
(@) P{Bl|yes to ace of spades} = {B, yes to ace of spades}

P{yes to ace of spades}

_0)0) / W)
G G)

= 3/51

(b) Since the second card is equally likely to be any of the remaining 51,
of which 3 are aces, we see that the answer in this situation is also 3/51.
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\ (c) Since we can always interchange which card is considered first and which
is considered second, the result should be the same as in part (b). A more
formal argument is as follows:

, oy . __ P|{B, second is ace}
y P{B|second is ace} = P (second is ace]
_ P(B)
P(B) + P{first is not ace, second is ace}
_ (4/52)(3/51)
(4/52)(3/51) + (48/52)(4/51)
= 3/51
_ P(B) ~
(d) P{B|at least one} = P (at least one]
_ (4/52)(3/51)
1 — (48/52)(47/51)

= 1/33

PH|E) _ PHE) _ PU)PE|HD)
P(G|E)y P(GE) P(G)P(E|G)

The hypothesis H is 1.5 times as likely.

8. Let A denote the event that the plant is alive and let W be \the event that it
was watered.

(a) P(A) = P(A|W)P(W) + P(A|W®)P(W®)
= (.85)(.9) + (2)(.1) = .785

P(AS| W) P(WE)

(b) P(WF|A°) = P(A°)
_ (8D _16
T 215 43

9. Since the black rat has a brown sibling we can conclude that both its parents
have one black and one brown gene.

/| P2 /4 1
P(2 black]|at least one) = m == 3

(a) Let F be the event that all 5 offspring are black. Let B, be the event that
the black rat has 2 black genes, and let B, be the event that it has 1 black
and 1 brown gene.
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~ P(F|B,)P(By)
P(By|F) = P(F|B,)P(B,) + P(F|B;)P(By)
(D(1/3) _16

= Man) + 42°%eR) 17

10. Let F be the event that a current flows from A to B, and let C; be the event
that relay i closes. Then

P(F) = P(F|Cpp; + PF|CH( — py)

Now,
P(F[Cl) = P(C4 U C:)_Cs)
= P(Cy) + P(CyCs) — P(C4CC5)
= p4 + P2P5 — P4P2Ds
Also,

P(F|CS) = P(C,C5 U CGC5Cy)
= papPs + P2P3Pa — P2P3P4Ds

Hence, for part (a) we obta'm>

P(F) = py(ps + paps — Papaps) + (1 — pPa(ps + papa — p3psaps)
For part (b), let g; = 1 — p;. Then,
P(C3|F) = P(F|C3)P(C3)/P(F)
= ps[1 — P(C{C5 U CLCHI/P(F)
= p3(1 — q192 — 9495 T 91929495)/P(F)

11. Let A be the event that component 1 is wofking; and let F be the event that
the system functions.

() PAIF) = P(AF) _P@A) 172 )

PF) PF) 1-Q1R7° 3

where P(F) was computed by noting that it is equal to 1 minus the
probability that components 1"and 2 are both failed.

P@AF) _ P(FlA)PA) @4Harn) 3

P(F) P(F) (1727 +3(1/2° 4

(b) PA|F) =

where P(F) was computed by noting that it is equal to the probability
that all 3 components work, plus the three probabilities relating to exactly
two of the components working.

12. If we accept that the outcomes of the successive spins are independent then
the conditional probability of the next outcome is unchanged by the result
that the previous ten spins landed on black.

\
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13. Condition on outcome of initial tosses:

P(AOdd) =P1(1 _‘Pz)(l - P3) + (]. ‘_Pl)P2P3 +P1P2P3P(A0dd)
+ (1 = P — P)(1 — P3)P(A odd)

[
S0,

P(AOdd)= Pl(l”Pz)(l—P3)+(1'—P1)P2P3
P1+P2+P3_P1P2“‘P1P3~P2P3‘

14. Let A and B be the evenis that the first trial is larger and that the second is
larger, respectively. Also, let E be the event that the results of the trials are
equal. Then

1 = P(A) + P(B) + P(E)
But, by symmetry, P(A) = P(B), and thus

n

1-PE) _1-2_.p}

P@B) =— 2

Another way of solving the problem is to note that

P(B) = >, >, P({first trial results in i, second trial results in j }

i j>i
=2 2 pp;
i j>i
To see that the two expressions derived for P(B) are equal, note that
n n
L= 2 p 2P
i=1 j=1
= 2 2 bipj
i
=i+ 2 2 mp T
i i j#i
=2 pi + 222, pipj
1

i i
15. Let E = {A gets more heads than B}, then ‘
P(E) = P(E|A leads after both flip ) P(A leads after both flip )
+ P(E|even after both flip n) P(even after both, flip )
+ P(E|B leads after both flip n) P(B leads after both flip n)

= P(A leads) + %P(even).
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16.

17.

18.
19.
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Now, by symimetry,
P(A leads) = P(B leads)

1 — P(even)
=

Hence,
1
P(E) = 5
(a) Not true: In rolling 2 dice let E = {sum is 7},
F = {l1st die does not land on 4}, G = {2nd die does not land on 3}.
Then

P{7,not(4,3)} _ 5/36
P{not (4, 3)} 35/36
(b) P(E(F U G)) = P(EF U EG)
= P(EF) + P(EG)
= P(B)[P(F) + P(G)]
= P(E)P(F U G)
P(EFG)
P(EF)
= ﬂ%_;ﬂ) since E is independent of FG
_ PEYP(F)P(G)
- PEPE
= P(G). _
(a) necessarily false, since if they were mutually exclusive then
0 = P(AB) # P(A)P(B)
(b) necessarily false, since if they were independent then
P(AB) = P(A)P(B) >0
(¢) necessarily false, since if they were mutually exclusive then
PAUB) = P(A) + P(B) = 1.2

PE|IFUG) = = 5/35 # P(E).

since EFG =0

since FG = (.

(© P(G|EF) =

by independence

(d) possibly true )
The probabilities in parts (a), (b), and (c) are .5, (.8)3 =512, (.9)7 = .4783.
Let D;, i = 1, 2, denote the event that radio i is defective. Also, let A and

B be the events that the radios were produced at factory A and at factory B,
respectively. Then,
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P(DD5)
P(Dy)

_ P(D\D,|A)P(A) + P(D,D,|B)P(B)
b P(D;|A)P(A) + P(D,|B)P(B)

_(05)%(1/2) + (01)*(1/2)
T (05)(1/2) + (01)(1/2)

13/300

P(D,|Dy) =

CHAPTER 4

1. Since the probabilities sum to 1, we must have that 4P{X = 3} 4+ .5
implying that P{X = 0} = .375, P{X = 3} = .125. Hence E[X]
1(3) + 2(.2) + 3(.125) = 1.075

2. The relationship implies that p; = c¢'pg, i = 1, 2, where p; = P{X = i}.
As these probabilities sum to 1, we see that

1,

‘ 1
l+ec+cD)=1= S S, !
Do c+ c9) Po= 17712
Hence,
c + 2¢?
[X] = p, P2 =11 1 &2

3. Letting X be the number of flips, then the probability mass function of X is
pp=p*+ 0 —p7? ps=1-ps=2p( - p)

Hence,
E[X] =2p, + 3p3 =2p, + 3(1 = p)) =3 —p* — (1 — p)*

4. The probability that a randomly chosen famﬂy will have i children is
n;/m. Hence,

r ]
E[X] = D, ini/m
i=1
Also, since there are in; children in families having i children, it follows that

the probability that a randomly chosen child is from a family with i children
R /
is in,—/ ;1 in;. Therefore,

r
Zi= 1 izn,-

7
ziz 1 illi

E[Y] =
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We must, thus, show

or, equivalently, that

or, equivalently, that
- r r
> Einm~2 Ezfn,
i=1j=1 i=1j=1

But, for a fixed pazr i, j, the coefficient of n;n; in the left side summation of
the preceding is % + 12 whereas its coefﬁment in the right hand summation
is 2ij. Hence, it suffices to show that

2+ j*=2ij

which follows since (i — j)* = 0.

. Letp = P{X = 1}. Then, E[X] = p, Var(X) = p(1 — p), and so

p=73p(1—p)
implying that p = 2/3. Hence, P{X = 0} = 1/3.

. If you wager x on a bet that wins the amount wagered with probability p and

loses that amount with probability 1 — p, then your expected winnings is
xp —x(1 —p)=@p — Dx

which is positive (and increasing in x) if and only p > 1/2. Thus, if
p = 1/2 one maximizes one’s expected return by wagering O, and if
p > 1/2 one maximizes one’s expected return by wagering the maximal
possible bet. Thus, if the information is that the .6 coin was chosen then you
should bet 10, and if the information is that the .3 coin was chosen then you
should bet 0. Hence, your expected payoff is

1 1
— . — — — :1 —
2(12 1)10+20 C C

Since your expected payoff is0 w1thout the information (because in this, case
the probability of winning is 3(.6) + 3(.3) < 1/2) it follows that if the
information costs less than 1 then it pays to purchase it.

7. (a) If you turn over the red paper and observe the value x then your expected

return if you switch to the blue paper is
2x(1/2) + x/2(1/2) = 5x/4 > x
Thus, it would always be better to switch.

/
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(b) Suppose the philanthropist writes the amount x on the red paper and so
the amount on the blue paper is either 2x or x/2. Note that if x/2 = y
then the amount on the blue paper will be at least y and will thus be
accepted Hence, in this case, the reward is equally likely to be either
2x or x/2 and so

E[R,(x)] = 5x/4, if xI2=y

If x/2 <y = 2x then the blue paper will be accepted if its value is 2x
and rejected if it is x/2. Therefore,

E[R,(x)] = 2x(1/2) + x(1/2) = 3x/2, fx2<y=2x

Finally, if 2x < y then the blue paper will be rejected. Hence, in this
case the reward is x, and so

R,(x) = x, if 2x<y

That is, we have shown that the expected return under the y-policy is,
when the amount x is written on the red paper,

X if x<y/2
ER,(M] = {3x2  if y2=x<2y
5x/4 if x=2y

8. Suppose that n independent trials each of which results in a success with

probability p are performed. Then the number of successes will be less than
or equal to i if and only if the number of failures is greater than or equal to
n — i. But since each trial is a failure with probability 1 — p, it follows that
the number of failures is a binomial random variable with parameters »n and
1 — p. Hence,

P{Bin(n,p) =i} = P{Bin(n,1 — p)=n — i}
=1-—P{Bin(n,l —p)=n—1i-1}
The final equality following since the probability that the number of failures

is greater than or equal to n — i is 1 minus the probability that it is less than
n— 1L

. Since E[X] = np, Var(X) = np(l — p), we are given that np = 6,

np(1 — p) = 24. Thus, 1 — p = 4,orp = .6, n = 10. Hence,

P{X =35} = (15()) (.6)°(4)

10. Let X; denote the number on the i ball drawn, i = 1, ..., m. Then

PIX=k} =P{X, =k X, S/ka s Xy =k}
=P{X; <kP(X, <k} - P(X,=k)

B < k)m
n
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11.

12.

13.

14.

15.

16.

Solutions to Self-Test Problems and Exercises

Therefore,

n

(a) Given that A wins thé first game, it will win the series if from then on
it wins 2 games before team B wins 3 games. Thus.

4
P{A wins|A wins first} = >, (jf)pi(l ~p)*t
i=2

A

Condition on whether the team wins this weekend, to obtain the solution:

LAy 44»“_'_
5 23 <i>(.4)’(.6)4"" + 5 23 <i)(.7)'(.3)4*'

Assuming that the number of hum’cahes can be approximated by a Poisson

random variable, we obtain the solution ’
3 ‘ )
> e732(5.2)i!
i=0

E[Y] = 2 iP{X = i}/P{X > 0}
i=1

_ = E[X]/P{X > 0}

@) (8)(9’ 19)°(10/19)°(9/19) = (8)(9/19)4(10/19)5

(b) If W is her final winnings and X is the number of bets she makes, then
since she would have won 4 bets and lost X — 4 bets, it follows that

W=20——5(X——4)=40——5X

Hence,

r

E[W] = 40 — SE[X] = 40 — 5[4/(9/19)] = —20/9

The probability that a round does not result in an “odd person” is equal to
1/4, the probability that all three coins land on the same side.

(a) (1/4)2(3/4) = 3/64

(b) (1/4)* = 1256
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i

o
~

S

Q

| 1M
Ry
|
>

Il

. n

—
N [ e
&

I
"%

il

Sl Sl elw wly Sl

o

I
|
QT

-

(=]

uQ
=

)
N

CHAPTER 5

1. Let X be the number of minutes played.
(@ P{X>15)=1—-P{(X=15} =1 - 5( 025) .875
(b) P{20 < X < 35} = 10(.05)-+ 5(. 025) = .625
(¢) P{X <30} = 10(.025) + 10( 05) =
@ P{X > 36} = 4(.025) =
2. (a) 1_f cx dx—c/(n+1)=i>c——n+1
M) PIX>x}=(n + 1)f Xde=x"tH|L =1 -yt
3. First, let us find ¢ by using that ‘

2 .
1 =f ext dv = 32¢/5 = ¢ = 5/32
0 .

491

(@) EIX] = f"‘x‘,jdx =5% =53
() E[X?] = f Sdx =58 = 207 = Var(X) = 20/7 — (53 =
5163
4. Since

1
1=f (ax + bx®) dx = al2 + b3
0

1 -
= [ @+ bxddx = al3 + bi4
0
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we obtain that a = 3.6, b = —2.4. Hence,

(@ PX <12} = [ 3.6x — 24x%) dx = (1.8 — &) |{? = 35

®) E(X%] = [ 3.6 — 24x%) dx = 42 = Var(X) = .06
S.Fori=1,...,n
P{X = i} = P{Int(nl) = i — 1)
= Pli—1=nU<i)

=P{l_1sU<—l-}
n n

= 1/n

6. If you bid x, 70 < x =< 140, then you will win the bid and make a profit of
x — 100 with probability (140 — x)/70, or lose the bid and make a profit
of 0 otherwise. Therefore, your expected profit if you bid x is

1 _1 _ 2
=5 G = 100)(140 — x) = - (240x — »* — 14000)

Differentiating and setting the preceding equal to O gives that
' 240 — 2x = 0
Therefore, you should bid 120 thousand dollars. Your expected profit will
be 40/7 thousand dollars.
7. (a) P{U > .1} = 9/10
{
(b) P{U > 2|U > .1} = P{U > 2}/P{U > .1} = 8/9
() P{U> 3|U>2,U> .1} = P{U> 3}/P{U> 2} = 7/8
(d) P{U > 3} = 7/10
The answer to part (d) could also have been obtained by multiplying the
probabilities in parts (a), (b) and (c).

8. Let X be the test score, and let Z = (X — 100)/15. Note that Z is a standard
normal random variable.
(a) P{X > 125} = P{Z > 25/15} =~ .0478

(b) P{90 <X <110} = P{~10/15 < Z < 10/15} )
= P{Z<2/3} — P{Z< —2/3}
= P{Z<23} — [1 — P{Z<2/3}]
=~ 4950
9. Let X be the travel time. We want to find x such that

P{X>x} = .05

I
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which is equivalent to

X —40 _x—40| _
P{ — > }-.05

That is, we need to find x such that
P{Z> x “740} = .05

where Z is a standard normal random variable. But,

P{Z>1.645} = .05
and thus

x — 40

7 = 1.645 or x = 51.515

Therefore, you should leave no later than 8.485 minutes after 12 P.M.

10. Let X be the tire life in units of one thousand, and let Z = (X — 34)/4. Note
that Z is a standard normal random variable.
(a) P{X > 40} = P{Z> 1.5} = .0668
() P30<X<35} =P{—-1<Z< 25} =P{Z< 25} — P{Z> 1} =
44 :
(¢) P{X > 40|X > 30} = P{X >_40}/P{X > 30} = P{Z > 15}/
P{Z> —1} = .0079 :
11. Let X be next year’s rainfall and let Z = (X — 40.2)/8.4.
(@) P{X > 44} = P{Z > 3.8/8.4} = P{Z > 4524} = 3255

(b) (g>(.3255)3(.6745)4

12. Let M; and W; denote, respectively, the numbers of men and women in the
samples that earn, in units of one thousand dollars, at least i per year. Also,
let Z be a standard normal random variable.

(a) P{W25 = 70} = P{WQ_S = 695}

{W25 — 200(.34) _ 69.5 — 200(.34)}
=P =
V200(.34)(.66)  V200(.34)(.66)
~ P{Z = 2239}

~ 4114
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8. (a) No, advertisements on pages having many ads are less likely to be chosen
than are ones on pages with few ads.

(k) =20

m n

(0 2= ‘"(’) = 7i/n, where 71 = S| n(i)/m

(@ (1 - n/n)k 11o® 1 — o — mm)c = Ym)

m n n(z)

e L —amEl = L
€ 22— — 1 — n/m)* —.

(f) The number of iterations is geometric with mean n/7.

9. (@ P X=i}=1Umi=1,...,m
(b) Step 2. Generate a uniform (0, 1) random variable U. If U < n(X)/n,
go to step 3. Otherwise return to step 1.
Step 3. Generate a uniform (0, 1) random variable U, and select the
element on page X in position [n(X)U] + 1.

10. Yes, they are independent. This can be easily seen by considering the equiva—
lent question of whether X,y is independent of N. But this is indeed so, since
knowing when the first random variable greater than ¢ occurs does not affect
the probablhty distribution of its value which is the uniform distribution on
(c, D.

11. Letting p; denote the probability of obtaining i points on a single throw of
the dart, then

D3g = 736 .
D20 = 4736 — p3g = /12
Pio = 9736 — pyg — p3g = S57/36
Po=1=pi1o =P = psp=1— /4
(a) w/12
(b) =/9
() 1 — 7w/4
(d) 7T(30/36 + 20/12 + 50/36) = 357/9
(e) (mw/4y?
) 2(w/36)1 — w/4) + 2(77'/12)(577/36)

12. Let Z be a standard normal random variable.

4 EI—IX - 6 —-—6
PIS X. >0 =
® {2 > } { Vad \/—}
~ P{Z> —1.2247) ~ 8897
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(b) {2X>OIEX }=P{X3+X4>5}
i=1

i=1

. X; + X, — 3 }
=p{B T2 T5oV12
{ V12

~ P{Z> 5774} ~ 2818
© {2 X; >0le = 5} = P{X, + X3 + X, > —5)

i=1
X, + X3 + X, — 45 }
= p{=2 > —9.5/V/18
{ V18

~ P{Z> —2.239} ~ 9874

13. In the following, C does not depend on x.

P(N = n|X = x} = fxn&[m)P{N = n}/fx(x)

— . 1 n-1 . n—1
= C(n i (Ax) 1 -p)
= CO(1 — )"~ U — D!

which shows that, conditional on X = x, N — 1 is a Poisson random variable
with mean A(1 — p)x. That is,

PIN=n|X=x}=P{N—1=n—-1|X = x}
= M=Px\1 — px)* Y — D,n=1.

14. (a) The Jacobian of the transformation is

As the equations 4 = x, v = x + yimply thatx = u,y = v — u, we
obtain that

fuvw,v) = fxyv—uw =1 0<u<l0<v-u<lI
or, equivalently

= —_— < pu<mi , 1 -
fuvu,v) =1, /max(v 1,0) < u <min(v, 1)
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(b) For0 <v <1,

fry) = fov du =v

For, 1 =v=2,
1

fv(v)zf du =2 —v

v—-1

CHAPTER 7

1. (@) d =2/, Un()
) If{X =i} = P{mU] =i~ 1} = P{i — 1 =mU<i} = Um,

i=1,...,m

n

(© 4&%]=zllmx=ﬂ= m1_,

i=1n() =) m B

2. Let J; egual 1 if the j™ ball withdrawn is white and the (j + 1)*is black,
and l_et ‘1t equarl 0 otherwise. If X is the number of instances in which a white
ball is immediately followed by a black one, then we may express X as

n+m—1
X= >
Jj=1

and, thus,
n+m-—1

> ElL
j=1

n4m-—-1

= > P{j" selection is white, (j + 1) is black}
i=1

E[X]

Il

n+m-—1

= >, P{j™selection is white} P{j + 1)*is black|j" is white}
j=1

n-+m-—1
n m

j=1 ntmn+m-—1

nm

n-+m

The prece_ctl,ing used the fact that each of the n + m balls is equally likely
to be the j* one selected, and given that selection is a white ball each of the
other n + m — 1 balls is equally likely to be the next ball chosen.
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3. Arbitrarily number the couples, and then let /; equal 1 if married couple

number j, j = 1, ..., 10, is seated at the same table. Then, if X represents
the number of married couples that are seated at the same table, we have that
2 10
X=21
j=1
and so

10
E(X] = 2 Elj
=

(a) To compute E[[}] in this case, consider wife number j. Since each of the

(139> groups of size 3 not including her is equally likely to be the remaining

members of her table, it follows that the probability that her husband is
at her table is :

)G)
1/\2 i
(19) 19
3
Hence, E[I]] = 3/19 and so

E[X] = 30/19

(b) In this case, since the two men at the table of wife j are equally likely
to be any of the 10 men, it follows that the probability that one of them
is her husband is 2/10, and so

E[L;] = 2/10, and E[X] =2

4. From Example 2j, we know that the expected number of times that the die
need be rolled until all sides have appeared at least once is 6(1 + 1/2 +
1/3 + 1/4 + 1/5 + 1/6) = 14.7. Now, ig we let X; denote the total number
of times that side i appears, then since 2;—1 X, is equal to the total number
of rolls, we have that

6 6
14.7 = E[E X,-] = > E[X;]

i=1 i=1

But, by symmetry, E[X;] will be the same for all i, and thus it follows from
the preceding that E[X;] = 14.7/6 = 2.45.

5. Let I; equal 1 if we win 1 when the j * red card to show is turned over and
let I; equal O otherwise. (For instance, /; will equal 1 if the first card turned
over is red.) Hence, if X is our total winnings then

‘EW%#{EG]=ZEW
=1 j=1
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Now, I; will equal 1 if j red cards appear before j black cards and, by symmetry,
the probability of this event is equal to 1/2. Therefore, E[[] = 1/2, and
E[X] = n/2.

- Tosee that N=n — 1 + I, note that if all events occur then both sides of
the preceding are equal to 1, whereas if they do not all occur then the inequality
reduces to N < n — 1, which is clearly true in this case. Taking expectations,
yields that

EINI=n — 1 + E[I]

However, if we let I; equal 1 if A; occurs and O otherwise, then

E[N] = E[E 1,] = > ElL] = 21 P4y
i=1 i=1 i=
As E[I] = P(A; - - - A,), the result follows.
.(@AX=n—-R
(b) Randomly order the n — k unchosen balls, and let Irequal 1 if the j™

one has a larger number than each of the k selected balls, and let I; equal
0 otherwise. Then

n—k
. R = Z ]J
j=1

(¢) Consider the k chosen balls along with the j  unchosen ball. Since each
of these &k + 1 balls is equally likely to have the largest number it follows
that E[L] = 1k + 1). Therefore, by parts (a) and b)

n—k_kn+1)

B = = ER =0 = g =

. If g(x) = x'2, then
A P Pt mey - 1 _3p
gW =3x""% = i
and so the Taylor series expansion of Vx about A gives
VX~V + —;-,r“-’-(x -1 - él-r?”z(x — A2
Taking expectations yields

EIVE] = VX + 227 "2E[x - A - §A2E - a7

=V - -;-rf"zx\
— __1_ —1/2
=Vi-2A

10.
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Hence,
Var(VX) = E[X] — (E[VX])?
2
) ~A - (\/Xmé)r”z)
1
= 1/4 — 6—4*):
= 1/4
Number the tables so that tables 1, 2, 3 are the ones with four and tables 4,

5, 6, 7 are the ones with two seats. Also, number the women and let X;;
equal 1 if woman i is seated with her husband at table j. Note that

B3

E[Xl,_]] = 20 = '9-53 ] = 19 25 3
()
and
1 1 o
E[Xl,_]] = <20> = 'E‘d, J = 4, 5: 6, 7
2 ‘

If X denotes the number of married couples that are seated at the same table,

we thus have

E[X] = E[i i Xi,j]

i=1j=1
5 3 5 7
= > 2 EX ]+ > > EX;)]
i=1j=1 i=1j=4
=15(3/95) + 20(1/190) = 11/19

Let X; equal 1 if individual i does not recruit anyone and let it equal O
otherwise. Then
E[X;] = P{idoes not recruit any of i + 1,i + 2,..., n}
i—1 i oon—2
i i+ 1
i1
T n-—1

Hence,

i=1n—1
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From the preceding we also obtain that

1(, i=1\_G~-Dn—i
Var(X) = -10 n-1>" n — 1

Now, for i <,

E[X.X.]=i_1...j“2j—2j_1...”'"3
4 i i—1 j j+1 "n-\

_G-1G-2
n—2)n-1)
and, thus,
=D =2 i-1j-1
CovXe X) = = 1) n—1n—1
_G=-DG-n
(n — 2)(n — 1)
Therefore,

1

n n—1
“w<2&> Z\way+22 >, Cov(Xy X;)

Q=1 i=1 i=1j=i+1

I]

- Zi—ﬂ’?———'-u"f S G=DG=n

i=1 (@m— RN ) [

1f2@~nm—n

i==1
1 n—1

m_mm_noﬁu—um—nm~i~n

i=1

11. Let X; equal 1 if the i triple consists of one of each type of player. Then

—h

( >
3
Hence, for part (a) we obtain that

3 5] e

i=1

It follows from the preceding that

Var(X;) = (/7)1 — 2/7) = 10/49
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Also, for i # j,

E[X:X] = P(X;=1,X;=1)
i = P(X; = }P(X; = 1]X, = 1}

_006 066)
A

3
Var<2 Xi> = 2 Var(X) + 2 >, 2, Cov(X;, X))

f==1 i=1 ]>1

i

30/49 + 2<;> (6/70)
_552
490
12. Let X; equal 1 1f the i card is an ace and let it be O otherwise, and let ¥;
equal 1 if the j card is a spade and let it be O otherwise, i, = 1,. .., 13. Now,

Cov(X,Y) = Cov <i i )
= i i oV Xv

However, X; is clearly independent of Y; because knowing the suit of a
particular card clearly gives no informatipn about whether it is an ace and
thus cannot affect the probability that another specified card is an ace. More
formally, let A; 5, A; 1, A;a A;c be the events, respectively, that card isa
spade, a heart, a diamond, or a club. Then

P(Y; = 1) = 7 (PLY; = 1|4} + P(Y; = 1]4u)

+ P{Y; = 1|44} + PY; = 1|A;D)

But, by symmetry, we have that
P(Y; = 1|4y} = P{Y; = 1]4;,) = P{Y; = 1|40} = P{Y; = 1]4;)

Therefore,

- P{(Y; =1} =P{Y; = 1A}
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13.

14.

As the preceding implies that
P(Y; =1} = P{Y; = 1|A},)

we see that ¥; and X; are independent. Hence, Cov(X;, ¥;) = 0, and thus
Cov(X, Y) = 0. ‘ -

The random variables X and Y, although uncorrelated, are not indepen-
dent. This follows, for instance, from the fact that

P{Y = 13|X =4} = 0 # P{Y = 13}

@ Ybur expected gain without any information is 0.
(b) You should predict heads if p > 1/2 and tails otherwise.
(¢) Conditioning on V, the value of the coin, gives

8o |
E[Gain] = f E[Gain|V = p] dp

172 1
[Tna-p-1ende+ [ 1) - 10 - pldp
0 172
=11

Given that the name chosen appears in n(X) different positions on the list it
follows, since each of these positions is equally likely to be the one chosen, that

ElI|n(0] = P{I = 1{n(X)} = 1/n(X)
Hence,
E[I] = E[1/n(X)]
and thus, E[ml] = E[m/'n(X)] = d.

- CHAPTER 8 |

1. Let X denote the number of sales made next week, and note that X is integral.
From Markov’s inequality we obtain the following. '
@) P{X> 18} = P{X= 19) s%%ﬂ — 16/19
®) P{X>25) = P(X= 26} < %-6)-{]— — 16/26
2. (a) P{10 =X =22} = P{|X — 16| =6}
= P{|X — p|=6)

=1-P{|X — u[>6)
=1 — 9/36 = 3/4

9
(b) P(X=19) = P(X — 16 =3} =5—— =112
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In part (a) we used Chebyshev’s inequality and in part (b) its one sided
version (see Proposition 5.1).

3. First note that E[X — Y] = 0, and

Var(X — ) = Var(X) + Var(¥) — 2 Cov(X, Y) = 28 .

Usirig Chebyshev’s inequality in part (a) and the one-sided version in partsA
(b) and (c) gives the following results.

(a) P{|X — Y| > 15} = 28/225
28
(b) }:{X Y>15) = 5o = 28253
(c) P{Y — X> 15} =B __ 28/253
28 + 225 '

. If X is the number produced at factory A and Y the number produced at

factory B, then
E[Y — X] = -2, Var(Y — X) = 36 + 9 = 45

45
45+ 9

P(Y—X>0]=P(Y—X=1}=P{Y—X+2=3}=< = 45/54

. Note first that

1
E[X;] = j 222 dx = 2/3

0
Now use the strong law of large numbers to obtain

. R
r = hm —

\ lim 1

now Sp/h

R S
lim,, = S,/n

= 1/(2/3) = 3/2

. Since E[X;] = 2/3, and

1
E[X?] = f 23 dx = 112
(0]

we have that Var(X;) = 1/2 — (2/3)* = 1/18. Thus, if there are n components
on hand, then
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P{S, =35} = P{S, = 34.5} (the continuity correction)

_ plSa— 203 _345 - 2n/3}
Vall8  Vn/l8

34.5 — 2n/3
~plz=2"2 202
{ Vn/l8 }

where Z is a standard normal random variable. Since
P{Z> —1.284} = P{Z<1.284} = 90
we see that n should be chosen so that
(34.5 — 2n/3) =~ —1.284V/n/18

A numerical computation gives the result n = 55.
7. If X is the time to service a machine then

EX]=2+3=.5

Also using that the variance of an exponenual random variable is equal to
the square of its mean gives

Var(X) = (2)* + (3)* = .13

Therefore, with X; being the time to service job i, i = 1, ..., 20, and Z
being a standard normal random variable,

S ’ _|_ -1 -
P{X1+---+X20<8}=P{X1+ X0 = 10 8 10}

V2.6 V2.6
= P{Z < - 1.24035}
=~ 1074

8. Note first that if X is the gambler’s winnings on a single bet, then

EX]=-7—4+1=—1EX1=7+.8+10=115
— Var(X) = 11.49

Therefore, with Z having a standard normal distribution,

f

PIX, + - + Xyop = —.5) =P{X1 + o+ X+ 10 _ —.5+ 10}

| V1149 V149
~ P{Z = 2803}
~ 6104
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9. Using the notation of Problem 7 we have

+ .+ . —
P{X1+.__+X20<t}:__P{X1 Xy — 10 _t 10}

N V2.6 V2.6
t— 10
=PiZ<
<)
Now, P{Z < 1.645} = .95, and so ¢ should be such that
t— 10
= 1.645

V2.6

which yields that ¢ = 12.65.

CHAPTER 9

1. From axiom (iii) it follows that the number of events that occur between
times 8 and 10 has the same distribution as the number of events that occur
by time 2, and thus is a Poisson random variable with mean 6. Hence, we
obtain the following solutions for parts (a) and (b).

(@) P{N(1Q) — N@®) = 0} = ¢~

(b) E[N(10) — N(8)] = 6

(¢) It follows from axioms (ii) and (iii) that from any time point onward the
process of events occurring is a Poisson process with rate A. Hence, the
expected time of the fifth event after 2 P.M. is 2 + E[Ss] = 2 + 5/3.
That is, the expected time of this event is 3:40 P.M.

2. (@) P{N(1/3) = 2|N(1) = 2}

_ P{NA/3) = 2,N(D) = 2}
N P{N(1) = 2}

_ P{N(1/3) = 2, N(1) — N(1/3) = 0}
B P{N(1) = 2}

_ P{N(1/3) = 2} P{N(1) — N(1/3) = 0}
B P{N(1) = 2}

_ P{N(1/3) = 2} P{N(2/3) = 0}
- P{N(Q) = 2}

e M3 e
e " N12!

1/9 4

(by axiom (if))

(by axiom (iii))

I
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(b) P{N(1/2)=1|N(1) = 2} = 1 — P{N(1/2) = O|N(1) = 2}
_ P{N(1/2) = 0,N(1) = 2}

P{N(1) = 2}
_ _ PVQ2) = 0,N() — N(12) = 2}
- P{N(1) = 2}
-1 P{N(1/2) = 0} P{N(1) — N(1/2) = 2}
- P{N(1) = 2}
_ | _ PINQ/2 = 0} P(N(/2) = 2}
B P{N(1) = 2}
_ e Panyn
B e 222!
=1—1/4=3/4

3. Fix a point on the road and let X, equal O if the n'™ vehicle to pass is a car
and let it equal 1 if it is a truck, n = 1. We now suppose that the sequence
X,, n = 1, is a Markov chain-with transition probabilities

‘PO,O = 5/6, PO,I = 1/6, PI,O = 4/5, Pl,l = 1/5
Hence, the long run proportion of times are the solution of
7y = mo(5/6) + m(4/5)
e+ om =1
Solving the preceding equations give that
T = 24/29 ary = 5/29
Thus, 2400/29 =~ 83 percent of the vehicles on the road are cars.

4. The successive weather classifications constitute a Markov chain. If the states
are O for rainy, 1 for sunny, and 2 for overcast, then the transition probability
matrix is as follows.

0 12 12
P=13 13 13
1/3 1/3 173

the long run proportions satisfy
o = m(1/3) + m(1/3)
mo(1/2) + m(1/3) + 75(1/3)
amy = my(1/2) + m(1/3) + m(1/3)
1= ) + T + Kb

i

T
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The solution of the preceding is
M9 = 1/4, = 3/8, o = 3/8
Hence, thre::-eights of the days are sunny and one-fourth are rainy.
5. (a) A direct computation yields that
H(X)/H(Y) = 1.06

(b) Both random variables take on two of their values with the same probabili-
ties .35 and .05. The difference is that if they do not take on either of
those values then X, but not Y, is equally likely to take on any of its
three remaining possible values. Hence, from Problem 13 we would
expect the result of part (a).

CHAPTER 10
1
L @ 1=C[ &dr= C=1e — 1)
0
\ = C * Y :‘ex_l < y <<
(b) F(x) Cjoe dy o 1 0=x=1
Hence, if we let X = F~1(U), then
b'¢
e” — 1
U= e — 1

or

X =log(U(e — 1) + 1)
AN
Thus, we can simulate the random variable X by generating a random

number U and then setting X = log(U(e — 1) + 1).

2. Use the acceptance-rejection method with g(x) = 1, 0 < x < 1. Calculus
shows that the maximum value of f(x)/g(x) occurs at a value of x,
0 < x < 1, such that

2 — 6x* +4x> =0
or, equivalently, when
4> —6x+2=(@x—-Dx—-1) =0
The maximum thus occurs when x = 1/2, and {

C = max f(x)/g(x) = 30(1/4 — 2/8 + 1/16) = 15/8
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Hence, the algorithm is as follows:

Step 1: Generate a random number U;
Step 2: Generate a random number U,
Step 3: If U, < 16(U% — 2U3 + U?) set X = U\, else return to Step- 1

3. It is most efficient to check the higher probability values first, as in the
following algorithm.
Step 1: Generate a random numberlU
Step 2: If U = .35, set X = 3 and stop
Step 3: If U= .65, set X = 4 and stop
Step 4: If U = .85, set X = 2 and stop

Step 5: X=1
4. 2,u, - X
5. (a) Generate 2n independent standard normal random variables X;, Y,
i =1,...,n, and then use the estimator >;_; X%i/n.

(b) We can use XY as a control variate to obtain an estimator of the type

> (St 4+ XY/
i=1

Another possibility would be to use XY + X2Y?/2 as the control variate
and so obtain an estimator of the type

> (@Y + c[X,Y; + XPY2/2 — 112])/n
i=1

The motivation behind the precedin0 is based on the fact that the first
. three terms of the MacLaurin series expansion of e™ are 1 + xy +
y*)2.

(c) The logic of antithetic variables leads to the estimator

n
2 (eXiYi + e~ Xy 2p
i=1

Index

Antithetic variables, 465-466 2
Associative laws for events, 27
Axioms of Probability, 30-31
Axioms of surprise, 437

Ballot problem, 121

Banach match problem, 165166

Basic principle of counting, 2
generalized, 3

Bayes’ formula, 79

Bernoulli, Daniel, 315~

Bernoulli, Jacob, see James

Bernoutlii

Bernoulli, James, 93, 398

Bernoulli, Nicholas, 398

Bernoulli random variable, 144

Bernoulli trials, 120

Bertrand’s paradox, 203-204

Beta distribution, 226, 240, 285

Binary symmetric channel, 443

Binomial coefficients, 8

Binomial random variable, 144-145, 150,

172, 185, 190, 335336, 426

approximation to hypergeometric,
168-169

computing its distribution function,
152

randomly chosen success probability,
346-347, 363

simulation of, 463464

sums of independent, 271, 360-361

" Binomial theorem, 8

Birthday problem, 40-41, 157158

Bivariate normal distribution, 303-304,
354, 389-390

Bonferroni’s inequality, 63, 393

Boole’s inequality, 66, 312

Borel, 411

Box-Muller, 460 .

Branching process, 390-391

Bridge, 40

Buffon’s needle probem, 255-256, 300

Cauchy distribution, 225, 305
standard, 243
Cauchy-Schwarz inequality, 387-388
Central limit theorem, 204-203, 399
for independent random variables, 406
Channel capacity, 449-450
Chapman-Kolmogorov equations, 433
Chebyshev’s inequality, 396
one-sided version, 412-414
Chernoff bounds, 415-417
Chi-squared distribution, 267-268,
361-362, 367-368
relation to gamma distribution, 267,
284, 301
simulation of, 462
Coding theory, 441-446
Combinations, 6
Combinatorial analysis, 2
Commulative laws for events, 27
Complementary events, 27, 53
Complete graph, 95

Conditional covariance formula, 387
Conditional distribution, 272, 273
Conditional expectation, 333, 336, 337
use in prediction, 350-354
use in simulation, 466
Conditional probability, 67-68
as a long run relative frequency, 72
as a probability function, 96-98
Conditional probability.density function,
273-274, 275, 292
Conditional probability distribution func-
tion, 272, 274 .
Conditional probability mass funcnon
272, 292
Conditional variance, 348
Conditional variance formula, 348
Conditionally independent events, 102
Continuity property of probability,
48-49, 87
Continuous random variables, 192
Control variates, 468
Convex function, 417
Convolution, 265
Correlation, 332-333
Correlation coefficient, see Correlation
Coupon collecting problems, 129-131,
315-316, 386
Covariance, 326-327, 388
Craps, 58
Cumulative distribution function, 131,
171
properties of, 132~133

DeMere, 89

DeMoivre, 204, 212, 214-215, 401

DeMoivre-Laplace limit theorem, 212

DeMorgan’s laws, 28-29

Dependent events, 84

Dependent random variables, 253

Deviations, 328

Discrete random variables, 134, 171

Discrete uniform random variable,
241-242

Distributive laws for events, 27

Distribution function, see Cumulative dis-
tribution function

Dominant gene, 112

Double exponential distribution, see
Laplacian distribution

Ehrenfest urn model, 432, 436
Entropy, 439
relation to coding theory, 441
Ergodic Markov chain, 434435
Erlang distribution, 224
Event; 26
Exchangeable random variables,
288-291, 292
Expectation, 136137, 171, 185, 309,
368-370, 384385, 388
of a beta random variable, 227
of a binomial random variable,
149-150, 313
as a center of gravity, 138-139

of a continuous random variable,
195-196

of an exponential random variable, 216

of a function of a random variable,
139-140, 310

of a gamma random variable, 224

of a geometric random variable, 163

of a hypergeometric random variable,
169170, 313-314

of a negative binomial random vari-
able, 166, 313

of a nonnegative random variable, 197

of a normal random variable, 206

of number of matches, 314-315

of a Poisson random variable, 156

of a sum of a random number of ran-
dom variable, 339-340

of sums of random variables, 310--325

of a uniform random variable, 201

tables of, 359, 360

Expected value, see Expectation
Exponential random variable, 215, 239,

430

relation to_ half-life,

simulation of, 456

sums of, 267, 286-288

Failure rate; see Hazard rate

Fermat, §9-90, 93

Fermat's combinatorial identity, 21

First moment; see Mean

Frequency interpretation of probability,
30

Galton, 407
Gambler’s ruin problem, 90-93, 120
Game theory, 177
Gamma function, 222-223, 227, 239
Gamma random variable, 222, 239,
266-267, 284285, 302303
relation to chi-squared distribution,
224, 267, 301
relation to exponential random vari-
ables, 267
relation to Poisson process, 223-224
simulation of, 456
Gauss, 214, 215
Genetics, 112, 114, 117
Geometric random variable, 162, 163,
187, 191
simulation of 463
Geometrical probability, 203 -

Half-life, 261263
Hamiltonian permuation, 323-324
Hazard rate, 220-221, 301
Huygens, 89, 93
Hypergeometric random variable, 167,
172, 336
relation 1o binomial, 168-169, 170

Importance sampling, 471472

Independent events, 83-86

Independent random variables, 252-253,
257-258, 259, 263-264, 292, 301

513



514 Index

Independent increments, 428

Information, 439

Inheritance, theory of, 147

Intersection of events, 26, 27, 53

Inverse transform method of simulation,
455

Jensen’s inequality, 418

Joint cumulative probability distribution
function, 244, 251, 291

Joint moment generating function, 364

Joint probability density function,
247-248, 251-252, 291

Jointly continuous random variables, 247,
251,291

k-of-n system, 113
Keno, 183-184
Khintchine, 398
Kolmogorov, 411

Laplace, 204, 212, 401, 407

Laplace’s rule of succession, 102103,
122, 123

Laplace distribution, 219

Law of large numbers, 395

Legendre theorem, 240

Liapounoff, 401

Limit of events, 48

Linear prediction, 353-354, 389, 390

Lognormal distribution, 240, 392

Marginal distribution, 245, 246 -
Markov chains, 431436
Markov’s inequality, 395
Matching problem, 44-45, 63, 100-101
Maximum likelihood estimates, 168
Mean of a random variable, 142
Median of a random variable, 238-239
Memoryless random variable, 217, 218
Mendel, 147
Midrange, 304
Mode of a random variable, 239
Moment generating function, 355,
358-359, 392 .
of a binomial random variable, 356
of an exponential random variable, 357
of a normal random variable, 357-358
of a Poisson rjandom variable,
356-357
of a sum of a random number of ran-
dom variables, 362263
tables for, 359, 360
Muitinomial coefficients, 1112
Multinomial distribution, 252, 334-335
Multinomial theorem, 12

Multiplication rule of probability, 71
M’u-l’ﬁ:%rmxnormal distribution,

- 7 365-366, 392
Mutually exclusive eveats, 27, 53

Negative binomial random variable,
164-165, 172
relation to geometric, 165, 301
relation to binomial, 187
Noiseless coding theorem, 443
Noisy coding theorem, 446
Normal random variable, 204, 282-284,
364
approximation to binomial, 212

characterization of, 256-257

joint distribution of sample mean and
sample variance, 366-368

moments of, 391

simulation of, 458-462

sums of independent, 268269, 292,
361

table for, 208
Null set, 54

Odds ratio, 77-78
Order statistics, 276-277, 278, 290-291,
292

Paradox problem, 5052
Parallel system, 87
Pareto, 171
Partition, 62
Pascal, 89-90
Pascal random variable; see Negative bi-
nomial random variable
Pearson, Karl, 214, 215
Permutation, 3-5
Personal probability, 52-53
Poisson, 154
Poisson process, 1539161, 428-431
Poisson random variable, 154, 172, 186,
187, 253-255, 273, 302-303, 330,
365, 393, 404, 425
as an approximation, 154-155,
156-158, 418-420
computing its distribution function,
161-162
simulation of, 464
sums of independent, 270-271, 292,
361
Poker, 39
Poker dice, 57
Polya’s urn model, 289-290
Prize problem, 344-346
Probabilistic method, 95-96
Probability density function, 192
relation to cumulative distribution func-
tion, 195
Probability mass function, 134, 171
relation to cumulative distribution func-
tion, 135
Problem of the points, 80-90, 165

Quadratic prediction, 389
Quicksort algorithm, 320-322

Random number, 393, 453

Random permuation, 453-454, 469

Random subset, 259-261, 454-455

Random variable, 126, 171

Random walk, 318-320, 433-434

Range of a random sample, 279-280

Rayleigh density function, 221, 283

Record values, 386

Rejection method of simulation, 456-458

Relative frequency definition of probabil-
ity, 30

Riemann hypothesis, 174 -

Riemann zeta function, 171

Round robin tournament, 122

Runs, 46-48, 64, 99-100, 317-318

Sample mean, 311312, 328, 333334
joint distribution of sample mean and
sample variance, 366-368

Sample median, 278-279, 304
Sample space, 25, 53
Sample variance, 328-329
Sampling from a finite population,
330-332
Sampling with replacement, 58
Sequential drug test, 93
Shannon, 446
Signal processing, 352353
Signal to noise ratio, 424
Simulation, 453
St. Petersburg paradox, 178
Standard deviation, 144, 172, 424
Standard normal random variable, 207,
238
distribution function, 207
inequalities for, 211
Stationary increments, 428
Stieltjes integral, 368-369 -
Stirling’s approximation, 151
Stochastically larger, 385
Strong law of large numbers, 407-408
proof of, 408-410
Subjective probability; see Personal prob-
ability
Sum of ranks, 377-378 N
Surprise, 436438

Trials, 86
Triangular distribution, 266

Uncertainty, 439, 440

Uncorrelated random variables, 333

Uniform randorh variable, 200--201, 240,
343-344, 373, 381

Union of events, 26, 27, 53

Unit normal random variable; see Stan-
dard normal random variable

Variance, 142-143, 171, 200, 238
as a moment of inertia, 144
of a binomial random variable,
149-150, 329
of an exponential random variable, 216
of a gamma random variable, 224
of a geometric random variable, 164,
342-343
of a hypergeometric random variable,
169-170, 332
of a negative binomial random vari-
able, 166
of a normal random variable, 206
of the number of matches, 329-330
of a Poisson random variable, 156
of a sum of a random number of ran-
dom variables, 349
of sums of random variables, 327-328
of a uniform random variable, 202
tables for, 359, 360
Venn diagrams, 27
von Neumann, John, 177

Weak law of large numbers, 398

Weinbull distribution, 224225, 239
relation to exponential, 239

‘Weierstrass theorem, 423

Zeta distribution, 170171
Zipf distribution; see Zeta distribution
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Chapter 1

Problems

L.

10.

Chapter 1

(a) By the generalized basic principle of counting there are
26-26-10-10-10-10-10=67,600,000

(b) 26-25-10-9-8-7-6=19,656,000

6" = 1296

An assignment is a sequence iy, ..., oo where i; is the job to which person is assigned. Since

only one person can be assigned to a job, it follows that the sequence is a permutation of the

numbers 1, ..., 20 and so there are 20! different possible assignments.

There are 4! possible arrangements. By assigning instruments to Jay, Jack, John and Jim, in
that order, we see by the generalized basic principle that there are 2 - 1 - 2 - 1 =4 possibilities.

There were 8 - 2 - 9 = 144 possible codes. There were 1 - 2 - 9 = 18 that started with a 4.

Each kitten can be identified by a code number i, j, k, | where each of i, j, k, 1 is any of the
numbers from 1 to 7. The number i represents which wife is carrying the kitten, j then
represents which of that wife’s 7 sacks contain the kitten; £ represents which of the 7 cats in
sack j of wife 7 is the mother of the kitten; and / represents the number of the kitten of cat £ in
sack j of wife i. By the generalized principle there are thus 7 - 7 - 7 - 7 = 2401 kittens

(a) 6! =720
(b) 2-31-31=T72
(c) 413! = 144
) 6-3:-2.2-1.1=72
(a) 5!=120
b 7! = 1260
(b) o1
|
(©) — = 34,650
414121

a1 —1260
@ 2o~

2! = 27,720
614!

(a) 8!=40,320
(b) 2-7!=10,080
(c) 5!4!=2.880
(d) 412% =384



11.

12.

13.

14.

15.

16.

17.

18.

19.

(a) 6!
(b) 312131
(c) 314!

(a) 30°
(b) 30-29-28-27-26

2)
)

10)(12 . . .
There are ( 50 j( 5 j possible choices of the 5 men and 5 women. They can then be paired up

in 5! ways, since if we arbitrarily order the men then the first man can be paired with any of

the 5 women, the next with any of the remaining 4, and so on. Hence, there are 5 !(150 J[lj j

possible results.

6 7 4 — g eqe, e
@) [zj + (J + [2] =42 possibilities.

(b) There are 6 - 7 choices of a math and a science book, 6 - 4 choices of a math and an
economics book, and 7 - 4 choices of a science and an economics book. Hence, there are
94 possible choices.

The first gift can go to any of the 10 children, the second to any of the remaining 9 children,
and so on. Hence, there are 10-9 -8 - - -5 -4 = 604,800 possibilities.

5\6)\(4)
HHHE
(a) There are @)@j + @jﬁ)@j = 896 possible committees.

There are @j@j that do not contain either of the 2 men, and there are @jﬁj@j that

contain exactly 1 of them.

6)(6 2\(6)(6) . .
(b) There are (J(J + (J(J(J = 1000 possible committees.

Chapter 1



20.

21.

22.

23.

25.

27.

28.

29.

30.

Chapter 1

75 75 7\(5 . . 7Y\5) .
(c) There are (3J(3j+(2j(3j+(3J[2j =910 possible committees. There are (3}[3} in

which neither feuding party serves; (;j (5

:J in which the feuding women serves; and

3

SR EA

instance the arrangement r, r, u, u, r, r, u specifies the path whose first 2 steps are to the right,
next 2 steps are up, next 2 are to the right, and final step is up.

[q[;j in which the feuding man serves.

=35. Each path is a linear arrangement of 4 »’s and 3 u’s (» for right and u for up). For

! !
There are % paths from A to the circled point; and % paths from the circled point to B.

Thus, by the basic principle, there are 18 different paths from A to B that go through the
circled piont.

312}

52
13,13,13,13

12 ) 12!
3,4,5) 31415

Assuming teachers are distinct.
(a) 4°

8 8l
(b) (2’ 2 2J=W = 2520.

(a) (10)1/31412!

3y 7!
(b) 3&}@

29! —2°8! since 2 - 9! is the number in which the French and English are next to each other
and 2°8! the number in which the French and English are next to each other and the U.S. and
Russian are next to each other.



31. (a) number of nonnegative integer solutions of x; + x, + x3 + x4 = 8.

Hence, answer is (l;j =165

(b) here it is the number of positive solutions—hence answer is [Zj =35

32. (a) number of nonnegative solutions of x; + ... + x4 =8

answer = 13
5

(b) (number of solutions of x; + ... + x4 = 5) x (number of solutions of x; + ... + x¢ =3) =
10)(8
5)\5
33. (a) X1+XQ+X3+X4:20,X122,X222,X323,X424
Letylle_15y2:x2_1,y3:.X3_2,y4:)C4—3

Vitym+ys+ys=13,y,>0

12 . .
Hence, there are ( 3 J = 220 possible strategies.

15
2

1
th
ereare |

(b) there are investments only in 1, 2, 3

o

investments only in 1, 2, 4

2

13

there are
2

investments only in 2, 3, 4

there are (13j investments only in 1, 3, 4

1) (1) o 12)(12 -
+ + _
[ 2J ( 2) 2( 2 j J{ 3 ) 552 possibilities

4 Chapter 1



Theoretical Exercises

10.

z:'il”i
nn—1)---(n—r+1)=nl/(n-r)!

Each arrangement is determined by the choice of the » positions where the black balls are
situated.

n
J
characterized by a selection of j of the n indices whose values are then set equal to 1. Hence

There are [ j different 0 — 1 vectors whose sum is j, since any such vector can be

there are Z e k[’;} vectors that meet the criterion.
n
k
- - —1! —1!
[n lj+(n 1) _ (=D N (n-1!
r r—1 rin—1-r)! (n—-r)!(r-1!

_ n! [n—r r} (nj
e J’__ =
ri(n—=r)!l n n r

n+m . n\ m : .
There are [ j gropus of size . As there are [ j[ j groups of size r that consist of i
r i\r—i

men and 7 — i women, we see that

[")-200n)
(201020

Parts (a), (b), (c), and (d) are immediate. For part (e), we have the following:

(nj _ kln! n!
™| = -
k) =ikl (n—k)l(k—1)!
B n\_  (n—k+Dn! _ n!
(n kﬂ)(k—lj =k +DIk=D)!  (n—k)(k 1!

[n—lj _ n(n-=-1! n!
n = =
k-1 (n-O(k-D! (n-k)!(k-1)!

Chapter 1



11.

12.

13.

14.

The number of subsets of size & that have i as their highest numbered member is equal to

[llc_—llj , the number of ways of choosing k£ — 1 of the numbers 1, ..., i — 1. Summing over i

yields the number of subsets of size k.
Number of possible selections of a committee of size k£ and a chairperson is k(Zj and so

Zk(Zj represents the desired number. On the other hand, the chairperson can be anyone of
k=1

the n persons and then each of the other n — 1 can either be on or off the committee. Hence,
n2" "' also represents the desired quantity.

o (i

(ii) 72"~ since there are n possible choices for the combined chairperson and secretary and
then each of the other n — 1 can either be on or off the committee.
(iii)n(n — 1)2" 2

(c) From a set of n we want to choose a committee, its chairperson its secretary and its
treasurer (possibly the same). The result follows since

(a) there are n2" ' selections in which the chair, secretary and treasurer are the same
person.

(b) there are 3n(n — 1)2""~ ? selection in which the chair, secretary and treasurer jobs are
held by 2 people.

(c) there are n(n — 1)(n — 2)2" > selections in which the chair, secretary and treasurer are
all different.

(d) there are (Zjlf selections in which the committee is of size .

(1-1y'= Z(’Zj(—l)”‘l

i=0

@ (-G
o rem . 330 CRIS)CR
o Zo

n n—i
i

k

M:
o R
~. S
[
. ~.
N——
T
—
=
S
<

)(_l)n—i—k =0

Chapter 1



15.

16.

17.

18.

Chapter 1

(a) The number of vectors that have x; = is equal to the number of vectors x; <x, < ... <xp g
satisfying 1 <x; <j. That is, the number of vectors is equal to H;_(j), and the result follows.

(b)
Hy(1)=Hy(1)=1
Hy(2)=H\(1) + Hi(2)=3
H3)=H\(1) + Hi(2) + Hi(3) =6
Ho(4) = Hy(1) + Hy(2) + Hi(3) + Hy(4) = 10
Hy(5) = Hy(1) + Hy(2) + Hy(3) + Hy(4) + Hy(5) = 15
Hy(5) = Hy(1) + Hx(2) + Hy(3) + Hy(4) + Hy(5) = 35

(a) 1<2<3,1<3<2,2<1<3,2<3<1,3<1<2,3<2<1,
1=2<3,1=3<2,2=3<1,1<2=3,2<1=3,3<1=2,1=2=3

(b) The number of outcomes in which 7 players tie for last place is equal to (7) , the number

of ways to choose these i players, multiplied by the number of outcomes of the remaining
n — i players, which is clearly equal to N(n — i).

© Z(’ZJN(n -1 = Z(n’i JN(n —i)

i=1
n-1
n .
= Z( .jN ()
=N/
where the final equality followed by letting j =n —i.

d) N3)=1+3N1)+3N2)=1+3+9=13
N(4) =1+ 4N(1) + 6N(2) + 4N(3) = 75

A choice of r elements from a set of n elements is equivalent to breaking these elements into
two subsets, one of size r (equal to the elements selected) and the other of size n — r (equal to
the elements not selected).

Suppose that  labelled subsets of respective sizes ny, n,, ..., n, are to be made up from

r n—1

elements 1, 2, ..., n where n = Zni . As (nl,...,ni —1,...n,] represents the number of
i=1

possibilities when person # is put in subset i, the result follows.



19.

20.

21.

22.

By induction:

(e +xp+ .. +x)

- n i n—i : :
= E ( (%, +...4+x,)""" by the Binomial theorem
i
i=0\'1

n .
_ n il ZZ Vl—ll iz iz
= . . R S o
=\ ; Iyyensd,

25ee

27 r
iy toti =n—i
222 [
= X X
. . 1 1
l1 ..... lr 1» s by
i, +i,+ .+ir:n

where the second equality follows from the induction hypothesis and the last from the
n—i n

identi b= .

aen lty( j(zzlj [il,...,i,]

The number of integer solutions of

n
i

1

X1t ...tx.=n,x;2m;

is the same as the number of nonnegative solutions of

nt..ty.=n- Zmi,inO.
i

.\ . n—>) m+r—1
Proposition 6.2 gives the result 21: ! .

r—1
There are [Zj choices of the £ of the x’s to equal 0. Given this choice the other » — k of the

x’s must be positive and sum to 7.

. n—1 n—1 .
By Proposition 6.1, there are (r e J = (n - kj such solutions.

Hence the result follows.

[n ;il_ 1) by Proposition 6.2.

Chapter 1



+n—1 . .
23. There are (] n j nonnegative integer solutions of
J

+n—1
Hence, there are z ’;0(] . j such vectors.
J

Chapter 1



Chapter 2

Problems

L. (@) S=1{(,1),(r, 8, D), (g 1), (& &), (g b), (b,1), b, g), (b, b);
(b) §=1{(r. 8, (. b), (g, 1), (g b), (b, 1), (D, &)}

2. S={(n,x1, ..., %), n=21,x;#6,i=1, ..., n— 1}, with the interpretation that the outcome is
(n, x1, ..., x,_1) if the first 6 appears on roll n, and x; appears on roll, i,i =1, ...,n— 1. The
event (U, _ E,)" is the event that 6 never appears.

3. EF={(1,2),(1,4),(1,6),(2 1), (4 1), (6, D}.
E U F occurs if the sum is odd or if at least one of the dice lands on 1. FG = {(1, 4), (4, 1)}.
EF" is the event that neither of the dice lands on 1 and the sum is odd. EFG = FG.

4, A= {1,0001,0000001, ...} B= {01, 00001, 00000001, ...}
(4 U BY = {00000 ..., 001, 000001, ...}

5. (a) 2°=32
(b)
w={1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,1),(1, 1,0, 1, 1), (1, 1, 1,0, 0), (1, 1, 0, 1, 0)
(15 15 03 03 b 13 0’ 0’ 0)’ (1’ 0’ 15 15 1)’ (09 15 15 15 1)5 (15 05 15 19 0)’ (05 1’ 15 15 0)’ (03 0’ 1’ 15 1)
1 ,

)
(0,0,1,1,0),(1,0,1,0, 1)}

N, (1
0), (1
() 8

(d) AW=1{(1,1,1,0,0),(1,1,0,0,0)}

6. (@) §=1{(1,2),(0, ), (1,/),(0,), (1, 9), (0, 5)}
(b) 4={(1,s), (0, 5)}
(©) B=1{(0, ), (0,7, (0, 5)}
(d) {(1,9),(0,5), (1,2, (1,)}

7. (a) 6°
(b) 615 — 315
(C) 415
8. (a) .8
(b) 3
(c) 0

9. Choose a customer at random. Let A denote the event that this customer carries an American
Express card and V the event that he or she carries a VISA card.

P(A U V)=PA) +P(V) - P(AV)= 24+ 61 — .11 = .74,

Therefore, 74 percent of the establishment’s customers carry at least one of the two types of
credit cards that it accepts.

10 Chapter 2



10. Let R and N denote the events, respectively, that the student wears a ring and wears a
necklace.

(a) PRUN)=1-.6=4

(b) .4=P(R U N)=P(R) + P(N) — P(RN) = .2 + .3 — P(RN)
Thus, P(RN) = .1

11. Let 4 be the event that a randomly chosen person is a cigarette smoker and let B be the event
that she or he is a cigar smoker.

(a) 1-P(AuB)=1-(07+.28—.05)=.7. Hence, 70 percent smoke neither.

(b) P(A°B)=P(B) — P(AB) = .07 — .05 = .02. Hence, 2 percent smoke cigars but not
cigarettes.

12. (@) PSUFUG) =(28+26+16—-12-4—-6+2)/100=1/2
The desired probability is 1 — 1/2 = 1/2.

(b) Use the Venn diagram below to obtain the answer 32/100.

S F

A
(NN

(c) since 50 students are not taking any of the courses, the probability that neither one is
taking a course is [520) / (1goj =49/198 and so the probability that at least one is taking a
course is 149/198.

13. I I (a) 20,000
(b) 12,000

() 11,000
19000 () 68,000
w () 10,000

i
Chapter 2 11



14.

15.

16.

17.

18.

19.

20.

12

P(M) + P(W) + P(G) — P(MW) — P(MG) — P(WG) + P(MWG) = 312 + 470 + .525 — .086 —
042 — 147 +.025 = 1.057

@ {S)3)
/13)

5 6),(5)3
i i
6-5-4-3-2 b) 2 © 2)(2)\2

6 6° 6°
o5 ) o) =N
d ——~~~ e
(d) o1 (e) & (H s
6
(g o
8i2
i=1
64-63---58
2.-4-16
52-51

4/36 +4/36 +1/36 + 1/36 = 5/18

Let A be the event that you are dealt blackjack and let B be the event that the dealer is dealt
blackjack. Then,

P(4 U B) = P(4) + P(B) — P(4B)
4416 4-4-16-3-15
52-51  52-51-50-49
.0983

where the preceding used that P(4) = P(B) =2 x % . Hence, the probability that neither

is dealt blackjack is .9017.

Chapter 2



21.

22.

23.

25.

27.

28.

Chapter 2

(a) p1=4/20, p, = 8/20, p; = 5/20, ps = 2/20, ps = 1/20
(b) There are atotal of 4-1+8-2+5-3+2-4+1-5=48 children. Hence,
q1 =4/48, q, = 16/48, q; = 15/48, q, = 8/48, g5 = 5/48

The ordering will be unchanged if for some £, 0 < k < n, the first k£ coin tosses land heads and
the last #n — & land tails. Hence, the desired probability is (z + 1/2"

The answer is 5/12, which can be seen as follows:

1 = P{first higher} + P{second higher} + p{same}
= 2P{second higher} + p{same}
= 2P{second higher} + 1/6

Another way of solving is to list all the outcomes for which the second is higher. There is 1
outcome when the second die lands on two, 2 when it lands on three, 3 when it lands on four,
4 when it lands on five, and 5 when it lands on six. Hence, the probability is
(1+2+3+4+5)/36=5/12.

n—1 ©
P(En) = [%) i? ZP(En) :%

n=1
Imagine that all 10 balls are withdrawn

3-947-6-3-747-6-5-4-3-547-6-5-4-3-2.3-3!
10!

P(4) =

s ()

If sampling is with replacement

3 3 3
P{same} = w
19)
P{different} = P(RBG) + P{BRG) + P(RGB) + ... + P(GBR)
_6:5-6-8
(19)°

13



29.

30.

31.

32.

33.

34.

35.

14

(a)

n(n—1)+m(m-1)
(n+m)(n+m-1)

(b) Putting all terms over the common denominator (n + m)*(n + m — 1) shows that we must

(a

o Gl

(©)

3.2-1 2

P({complete} = ——— =—

({complete} 3339
3 1
P{same} = — =—
{ j 27 9

prove that

wn+m—1)+m*n+m—1)2nn—-1)n+m)+mim—1)n+m)

which is immediate upon multiplying through and simplifying.

)@:1/18

- 1/18=1/6

1
LG,
HH

gb+g-!' g

(b+g)! b+g

H e

20 323
4

Chapter 2



36. (a) (‘2‘) / (szzj ~.0045,

3. (a) @/@oj — 1/12 ~ 0833
(b) @G’j / (lsoj F112=102

38. 1/2—(2J/(2J orn(n—1)=12orn=4.

o, 3431
5.5.5 25

40. p{1}:4i4=64
P{2} = [j}{4+(;)+4}/44 = ;46
o (e

41, 1—2—:

42. 1- [3—5j
36

2An=hn=2) = 2 in a line
n! n
2n(n-2)! 2

n! n—1

43.

ifin a circle, n > 2

44, (a) If A is first, then 4 can be in any one of 3 places and B’s place is determined, and the
others can be arranged in any of 3! ways. As a similar result is true, when B is first, we
see that the probability in this case is 2 - 3 - 3!/5! =3/10

(b) 2-2-31/51=1/5
(c) 2-31/51=1/10

Chapter 2 15



45.

46.

47.

48.

49.

50.

S1.

52.

53.

16

n (n—-DF" | .
1/n if discard, ——~—— if do not discard
n

If n in the room,

12:11-  -(13-n)
12:12- 12

P({all different} =

When n =5 this falls below 1/2. (Its value when n =5 is .3819)

121/(12)"

(L /o
Yl
FIREEELR)

( j(n —1)""/N"
m

S

20-18-16-14-12-10-8-6
20-19-18-17-16-15-14-13

Lok

20-19-18-17-16-15-14-13

(a)

(b)

Let A; be the event that couple 7 sit next to each other. Then

2.70 2%.61  2%.51 2%.41
P(U4) =4 T TR

and the desired probability is 1 minus the preceding.
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P(SuH:E;]Q ((?((Ha S —
(5
) 4i)
&
) G, CIE) G
I
A5 ()
)
R 5 B
B

56. Player B. If Player A chooses spinner (a) then B can choose spinner (c). If A chooses (b)
then B chooses (a). If A chooses (c¢) then B chooses (b). In each case B wins probability 5/9.

Chapter 2 17



Theoretical Exercises

i=l1
5. F‘,:E‘I(WE‘C

T
6. (a) EF°G°

(b) EF°G

c) EOFUG

(d) EF UEG U FG

(e) EFG

(f) EFG

(g) EFFG° UEF'G°UEFG VEFG

(h) (EFG)

(i) EFG°UEFGUEFG

0 S
7. (a) E
(b) EF
(c) EGUF
8. The number of partitions that has » + 1 and a fixed set of i of the elements 1,2, ..., nas a

. n
subset is 7,,;. Hence, (where Ty, = 1). Hence, as there are [ J such subsets.
l

n n—l1 n
o= B B B

11.  1>P(EUF)=P(E)+ P(F) - P(EF)

12.  P(EF° U E°F) = P(EF°) + P(E°F)
= P(E) — P(EF) + P(F) — P(EF)

13. E=EF U EF°

18 Chapter 2



15.

16.

19.

21.

MY N
k \r—k
M+ N
r
PE,...E)>2P(E ... E,.) + P(E,) — 1 by Bonferonni’s Ineq.

n—1

> ZP(EI.) —(n—2)+ P(E,) — 1 by induction hypothesis
1

(r’ilj(knjrj(n —r+l)

(n+mj(n+m—k+l)

k-1
Let y1, va, ..., i denote the successive runs of losses and xy, ..., x; the successive runs of wins.
There will be 2k runs if the outcome is either of the form y,, xi, ..., yx X; Or X1y1, ... Xs, yx Where

all x;, y; are positive, with x; + ... + x,=n, y; + ... + y, = m. By Proposition 6.1 there are

2[” B IJ[m B lj number of outcomes and so

k-1 k-1
n—1\m-1 m+n
P{2kruns} = 2(1{—1)(1{—1}/( p J
There will be 2k + 1 runs if the outcome is either of the form x,, y, ..., Xx, Vi, X5+1 OF Y1, X1, ...,

Vi Xk Ve+1 Where all are positive and le. =n, z ¥; =m. By Proposition 6.1 there are

n—1\m-1 n—1)m-1
[ i j( i lj outcomes of the first type and [k— J( i jof the second.

Chapter 2 19



Chapter 3

Problems

1.

20

P{6 | different} = P{6, different}/P{different}
_ P{lst =6,2nd # 6} + P{lst # 6,2nd = 6}
5/6

173

_21/6 5/6 _
5.6

could also have been solved by using reduced sample space—for given that outcomes differ it
is the same as asking for the probability that 6 is chosen when 2 of the numbers 1, 2, 3,4, 5, 6
are randomly chosen.

P{6 | sumof 7} = P{(6,1)}/1/6 =1/6
P{6 | sumof 8} = P{(6,2)}/5/36 = 1/5
P{6 | sum of 9} = P{(6,3)}/4/36 = 1/4
P{6 | sum of 10} = P{(6, 4)}/3/36 =1/3
P{6 | sumof 11} = P{(6,5)}/2/36 =1/2

P{6 | sumof12} = 1.

P{E has3, N — S has 8}
P{N — S has 8}

GG GLE)
(L) o)

P{at least one 6 | sum of 12} = 1. Otherwise twice the probability given in Problem 2.

P{Ehas3 | N—Shas8} =

598

15141312

In both cases the one black ball is equally likely to be in either of the 4 positions. Hence the
answer is 1/2.

Plgand15b | at least one b} = ;—i =2/3

Chapter 3



8. 1/2

9. p{A:W|2W}:LW’2W}
P{2w}
:P{A=w,B=w,C¢w}+P{A=w,B;tw,Czw}
P{2w}
123 111
_ 334 334  _ 7T
123 111 227711
234 334 334
10.  11/50
13, 31
1. (@) P(BlAy)= P(BA) 5221 5251 _ 1
P(4,) 2 17
52

Which could have been seen by noting that, given the ace of spades is chosen, the other
card is equally likely to be any of the remaining 51 cards, of which 3 are aces.

4 3
P(B) _ 5351 _ 1
b) P(B|A)= = =—
(b) P(B|4) P BT
52 51

2. (a) (.9)(.8)(.7)=.504

(b) Let F; denote the event that she failed the ith exam.
PUF) _ (9)(2)
1-.504 496

o (YY) e (L)
rlser-(J2))(X) Aslsse-
e

P(F, = 3629

R ) =

Chapter 3



15. Let E be the event that a randomly chosen pregnant women has an ectopic pregnancy and S
the event that the chosen person is a smoker. Then the problem states that

P(E|S)=2P(E|5), P(S) = .32
Hence,
P(S|E) = P(SE)/P(E)
P(E|S)P(S)
P(E|S)P(S)+ P(E|S)P(S)

2P(S)
2P(S)+ P(S°)
=32/66 ~ 4548

16. With S being survival and C being C section of a randomly chosen delivery, we have that

98 = P(S)=P(S| C).15+ P(S| C?) .85
= 96(.15) + P(S| C?) .85

Hence
P(S| ) ~ .9835.

17.  P(D)=.36, P(C)=.30, P(C| D)= 22

(a) P(DC) = P(D) P(C|D)=.0792
(b) P(D|C)=P(DC)/P(C) = .0792/.3 = 264

P(voted|Ind) P(Ind)
ZP(Voted|type)P(type)
~ 35(.46) -
35(46) +.62(.3) +.58(24)

18.  (a) P(Ind|voted) =

62(.30) . 383
35(.46)+.62(3) +.58(24)

(b) P{Lib |voted} =

58(.24) -

(¢) P{Con|voted} = 35(.46) +.62(.3) +.58(.24) N

(d) P{voted} = .35(.46) + .62(.3) +.58(.24) = .4862
That is, 48.62 percent of the voters voted.

22 Chapter 3



19. Choose a random member of the class. Let A be the event that this person attends the party
and let W be the event that this person is a woman.

where M = W°

DR UZy pp—C UL
P(AW)P(W )+ P(AM)P(M)

_A48(38)
48(38)+.37(.62)

Therefore, 44.3 percent of the attendees were women.
(b) P(4)=.48(.38) +.37(.62) = .4118
Therefore, 41.18 percent of the class attended.

P(FC) _

20.  (a) P(FlC)= o .02/.05 = .40

(b) P(C|F)=P(FC)/P(F)=.02/.52 = 1/26 ~ .038
21. (a) P{husband under 25} = (212 + 36)/500 = .496
(b) P{wife over | husband over} = P{both over}/P{husband over}

= (54/500)/(252/500)
—3/14~ 214

(c) P{wife over | husband under} = 36/248 ~ .145

22. a. mzé
666 9
b, +-1
316
51 5
c. ——=—
96 54
21 12 4
23.  P(w|w transferred! P{w tr.} + Pw|R trt PR tr) = =—+-==2.
33 33 9
21
Piwlw tr ) P{wtr}) 22
P{w transferred | w} = {WIW riPiwtr =33 —p.
P{w} 4
9
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24, (a) P{g—g|at leastone g } = Z—i =1/3.

(b) Since we have no information about the ball in the urn, the answer is 1/2.

26. Let M be the event that the person is male, and let C be the event that he or she is color blind.
Also, let p denote the proportion of the population that is male.

P(C|M)P(M 05
PM|C) = (ClM)P(M) _ (.05)p
P(CIM)P(M) + P(C‘M“)P(M“) (.05)p +(.0025)(1 - p)
27. Method (b) is correct as it will enable one to estimate the average number of workers per car.

Method (a) gives too much weight to cars carrying a lot of workers. For instance, suppose
there are 10 cars, 9 transporting a single worker and the other carrying 9 workers. Then 9 of
the 18 workers were in a car carrying 9 workers and so if you randomly choose a worker then
with probability 1/2 the worker would have been in a car carrying 9 workers and with
probability 1/2 the worker would have been in a car carrying 1 worker.

28. Let 4 denote the event that the next card is the ace of spades and let B be the event that it is
the two of clubs.

(a) P{4} = P{next card is an ace}P{4 | next card is an ace}
31 3

324 128
(b) Let C be the event that the two of clubs appeared among the first 20 cards.

P(B) = P(B| C)P(C) + P(B| C)P(CY)
o, 129 29
48 3248 1536

29. Let A be the event that none of the final 3 balls were ever used and let B; denote the event that
i of the first 3 balls chosen had previously been used. Then,

P(4) = P(4 | By)P(By) + P(4 | B))P(B\) + P(4| B,)P(B,) + P(4 | By)P(B;)
0Lk
3003 i\3—i
- ZO: 15 15
3 3

30. Let B and W be the events that the marble is black and white, respectively, and let B be the
event that box 7 is chosen. Then,

=.083

P(B) = P(B| B)P(B)) + P(B| B)P(By) = (1/2)(1/2) = (2/3)(1/2) = 7/12
_ P(W|BI)P(Bl) W2y _

3/5
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31.

32.

33.

34.

35.

Let C be the event that the tumor is cancerous, and let NV be the event that the doctor does not

call. Then

_ _ P(NC)
p=P(C|N) S0

P(N|C)P(C)
P(N|C)P(C)+ P(N|C*)P(C)

o

1
a+—(l-«a
2( )

_ 2a >
1+«

with strict inequality unless o = 1.

Let E be the event the child selected is the eldest, and let F; be the event that the family has j

children. Then,

P(EF))
P(E)
P(F,)P(E|F)
> P(F)P(E|F)
_ p,(1/J) o
A+.25(1/2)+.35(1/3) +.3(1/4)

P(F| E)=

Thus, P(F, | E) = .24, P(F4| E) = .18.

Let V' be the event that the letter is a vowel. Then

PE| ) = P(V|E)P(E) __ w2
P(V|E)P(E) + P(V|A)P(4) ~ (1/2)(2/5)+(2/5)(3/5)
P(G|C) = P(CIG)PG) = 54/62
P(C‘G)P(G) + P(C|G)P(G*)

P{A4 = superior | 4 fair, B poor}
_ P{Afair, B poor|A superior|A superior}
P{A fair, B poor}

10151
_ 30302 _3
10151 10571 4°

30302 30302

Chapter 3
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36.

37.

38.

39.

40.

26

P{women |C}P{C}

P{C|woman} =
P{women |4} P{A} + P{women |B}P{B} + P{women |C}P{C}
5100
_ 225 _1
.Sﬂ+.6£+.7@ 2
225 225 225
11
(a) Plfair|hy =22 -1
11T 1 3
ii_i_i
22 2
11
(b) Pifair|hn} = —42 1
11T 1 5
ii_i_i
42 2
(c) 1
31
152 36 36
Ptails|w = 152 = =
¢ ’ 31,51 36475 111
152 122

P ., acc.
P{acc. |no acc.} = %

3 7
_ B(.4)(.6)+E(.2)(.8) 46

3 7
SO+ (8

789

a —— ——
@ 121314
7-8-5

b) 3—
®) 12-13-14

5:6-7

C —_—
© 12-13-14

5:6-7

d) 3———
@ 12-13-14

_E.
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41.

42.

43.

45.

46.

. 1
P{ace} = P{ace ‘ interchanged selected} >

. 2
+P{ace | interchanged not selected} 2—3

L, 326 129
27 5127 51-27°

(.02)(.5) 10

P{A | failure} = =—
(.02)(.5)+(.03)(.3)+(.05)(2) 29

1
~ (@)
P{2 headed | heads} = — 311 57 ‘2‘ 3:%.
—-D+—=+-= et
37732 34

P{heads
> Pih

S 1
_ 1010 _ 1

Sth}P{Sth}
ith}P{ith}

P{5th| heads} =

IOLL_II
1010

Let M and F denote, respectively, the events that the policyholder is male and that the
policyholder is female. Conditioning on which is the case gives the following.

P(4,4,)
P(4)
P(A1A2|M)a + P(44|F)(1-a)
P(4|M)a + P(4|F)(1-a)
pao+ pr(l—a)
P+ p/(l-a)

P(4,] 4) =

Hence, we need to show that
pac+ pill=a) > (pua+p(l - @)’
or equivalently, that

pr@—a’)+pill-a-(1-a)’] >2a(1 - Qppu

Chapter 3
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47.

48.

49.

28

Factoring out (1 — ) gives the equivalent condition
P+ Py > 20/,
or

@n—p)* >0

which follows because p,, # p;. Intuitively, the inequality follows because given the
information that the policyholder had a claim in year 1 makes it more likely that it was a type
policyholder having a larger claim probability. That is, the policyholder is more likely to me
male if p,, > p;(or more likely to be female if the inequality is reversed) than without this
information, thus raising the probability of a claim in the following year.

. 1|5 54 543 5432 54321
P{all white} = —| —+ ——+— + — 4 —
615 1514 151413 15141312 1514131211

1543

P{3]all white} = 0151413

P{all white}

(a) P{silver in other | silver found}

_ P{S in other, S found}
P{S found} '

To compute these probabilities, condition on the cabinet selected.

1/2

P{S found|4}1/2 + P{S found|B} 1/2
__ 1 _2

1+1/2 3~

Let C be the event that the patient has cancer, and let £ be the event that the test indicates an
elevated PSA level. Then, with p = P(C),

P(E|C)P(C)
P(ClE)= .
P(E|C)P(C)+ P(E|C*)P(C)
Similarly,
P(C| ) = . P(E C)P(C) ' .
P(E°|C)P(C)+ P(E°|C)P(C*)
T32p

732p+.865(1- p)

Chapter 3



50. Choose a person at random

P{they have accident} = P{acc. | good}P{g} + P{acc. | ave.}P{ave.}
+ P{acc. | bad P(b)}
=(.05)(.2) + (.15)(.5) + (.30)(.3) = .175

95(2)
825
(.85)(.5)
825

P{A4is good| no accident} =

P{A4 is average | no accident} =

51. Let R be the event that she receives a job offer.

(a) P(R)=P(R | strong)P(strong) + P(R | moderate)P(moderate) + P(R | weak)P(weak)
=(.8)(.7) + (4)(.2)+ (.1).1)=.65

P(R| st P(st
(b)  P(strong|R) = (R| strong) P(strong)

P(R)
_ (87 _56
.65 65
Similarly,
8 1
P(moderate | R)= —, P(weak | R)=—
65 65
P(R|st P(st
© P(strong|R”)= (R°|strong) P(strong)
P(R°)
_(2(7) _14
35 35
Similarly,
P(moderate | R = 2, P(weak | R = =
35 35

52. Let M, T, W, Th, F be the events that the mail is received on that day. Also, let 4 be the event

that she is accepted and R that she is rejected.

(a) P(M)=P(M|A)P(4) + P(M| R)P(R) = (.15)(.6) + (.05)(.4) = .11

Chapter 3
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53.

55.

56.

30

P(T)
P(M®)
_ P(T|A)P(A) + P(T|R)P(R)
1- P(M)

_ (2)(6)+(D)(4) 16
.89 89

(b) P(T| M) =

P(MSTW<| A)P(A)
P(MTW)

() P(A|MTW) =

_ (1-.15-20-25)(6) 12
(A)(6)+(.75)(4) 27

P(Th|4)P(A)

P(Th)
- (156 3
CC15)(6)+(15)(4) 5

(d) P(4|Th) =

P(no mail| 4)P(A)

P(no mail)
B (.15)(.6) 9
T C15)(6)+(4)(4) 25

(e) P(4|no mail) =

Let W and F be the events that component 1 works and that the system functions.

P(Wm:P(WF)_ PW)  1/2
P(F) 1-P(F¢) 1-(1/2)""
4 _ 10 _ 10
PiBoy. By =y PBoy) =1 T

10-10
6+x

= 4x=36 orx=9.

so independence = 4 =

A direct check now shows that 9 sophomore girls (which the above shows is necessary) is
also sufficient for independence of sex and class.

P{new} = ZP{new| type i}p; = Z(] _pi)n—lpi

Chapter 3



57.

58.

59.

60.

@) 201 - p)
(b) @pz(l—p)

(c) P{up on first | up 1 after 3}
= P{up first, up 1 after 3}/[3p*(1 — p)]
=p2p(1 - p)/[3p*(1 - p)] = 2/3.

(a) All we know when the procedure ends is that the two most flips were either H, T, or T, H.
Thus,

P(heads) = P(H, T| H, T or T, H)
PHT)  _ p-p 1
P(H,T)+P(T,H) p(l-p)+(1-pp 2

(b) No, with this new procedure the result will be heads (tails) whenever the first flip is tails
(heads). Hence, it will be heads with probability 1 — p.

(a) 1/16
(b) 1/16

(c) The only way in which the pattern H, H, H, H can occur first is for the first 4 flips to all
be heads, for once a tail appears it follows that a tail will precede the first run of 4 heads
(and so T, H, H, H will appear first). Hence, the probability that T, H, H, H occurs first is
15/16.

From the information of the problem we can conclude that both of Smith’s parents have one
blue and one brown eyed gene. Note that at birth, Smith was equally likely to receive either a
blue gene or a brown gene from each parent. Let X denote the number of blue genes that
Smith received.

(a) P{Smith blue gene} =P{X=1|X<1}= 11/12/4 =2/3

(b) Condition on whether Smith has a blue-eyed gene.
P{child blue} = P{blue | blue gene}(2/3) + P{blue | no blue}(1/3)
=(1/2)2/3)=1/3

(c) First compute
P{child brown|Smith blue}2/3

P{Smith blue | child brown} = e

=1/2

Now condition on whether Smith has a blue gene given that first child has brown eyes.
P{second child brown} = P{brown | Smith blue}1/2 + P{brown | Smith no blue}1/2
=1/4+1/2=3/4

Chapter 3 31



61.

62.

63.

32

Because the non-albino child has an albino sibling we know that both its parents are carriers.
Hence, the probability that the non-albino child is not a carrier is

P(4, 4|4, aora, A orA,A)=%

Where the first gene member in each gene pair is from the mother and the second from the
father. Hence, with probability 2/3 the non-albino child is a carrier.

(a) Condition on whether the non-albino child is a carrier. With C denoting this event, and
O; the event that the i offspring is albino, we have:

P(01) = P(0,| OP(C) + PO, | C)P(C)
= (1/4)(2/3) + 0(1/3) = 1/6

(b) POyfor) = OO
P(Oy)
P(0;0,|C)P(C) + P(O; 0,|C*)P(C*)
- 5/6
_ (/91/4)(2/3)+0(1/3) 3
5/6 20
(a) P{both hit | at least one hit} = Piboth hit} -
P{at least one hit}

pip2/(1 = q1q2)

(b) P{Barb hit|at least one hit} = p/(1 — q1¢»)
0; =1 — p;, and we have assumed that the outcomes of the shots are independent.

Consider the final round of the duel. Letg,=1—p,

(a) P{A4 not hit} = P{4 not hit | at least one is hit}
= P{A not hit, B hit}/P{at least one is hit}

= qsp4/(1 — quqp)

(b) P{both hit} = P{both hit | at least one is hit}
= P{both hit}/P{at least one hit}

= paps/(1 — q4qp)
(©) (quB)n_l(l — 4493)

(d) P{n rounds| 4 unhit} = P{n rounds, 4 unhit}/P{4 unhit}
_ (‘IA‘]B)WIPA‘]B
qzP4/0—q,q5)

=(q498)" " '(1 = qq5)
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64.

65.

66.

67.

(e) P(n rounds | both hit} = P{n rounds both hit}/P{both hit}

_ (CIA‘]B)H_IPAPB
PP/ 1—q,495)

= (qAQB)n_l(l —q4q3)

Note that (c), (d), and (e) all have the same answer.
If use (a) will win with probability p. If use strategy (b) then

P{win} = P{win | both correct}p”® + P{win | exactly 1 correct}2p(1 — p)
+ P{win | neither correct} (1 — p)*
=p +p(l-p)+0=p

Thus, both strategies give the same probability of winning.
(a) P{correct | agree} = P{correct, agree}/P{agree}
=p’/p*+ (1 -p)]
=36/52=9/13 whenp=.6
(b) 172
(a) [[ (1—PP2)(1—P3P4)]P5 (PP2+P3P4—PP2P3P4)P5
(b) Let £, = {1 and 4 close}, F£> = {1, 3, 5 all close}
E;={2,5close}, Es= {2, 3, 4 close}. The desired probability is

P(E1© E> U E5 U Ey) = P(E)) + P(E>) + P(E3) + P(Ey) — P(E\E) — P(E\E5) — P(E\Ey)
— P(E>E3) — P(ELES) + P(ESE,) + P(EV\ELES) + P(EESEY)
+ P(E\ESEy) + P(ELESES) — P(E\E>ESES)

= P\Py+ P\P3Ps + P,Ps + P,P3Py — P\P3PsPs — P\P,P4Ps — P\P,P5P,
— P\P,P3Ps — PyP3P4Ps — 2P P,P3P,Ps + 3P\ P,P3P4Ps.

(@) P1Py(1 — P3)(1 = Py) + Pi(1 — Py)P5(1 — Py) + Pi(1 — Py(1 — P3)Py
+ PoPy(1 = Pi)(1 = Py) + (1 = P))Po(1 = P3)Py + (1 = P1)(1 = P2)P3Ps
+ PiPyPy(1 — Py) + P\Py(1 = P3)Py + Pi(1 — P2)P3Py + (1 — P\)P,P3Py + P\P,P3Py.

(©) Z( jp (1-
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68.

69.

70.

71.

34

Let C; denote the event that relay i is closed, and let F be the event that current flows from
Ato B.

P(C,iG, | F) = PCGF)
P(F)
_ P(F|C,C)P(CC,y)
DPs(p1Py + P3Py — PiD2P3Ps)
_ PsP\P>
Ps(P1Py + P3Py — PiD2P3Ps)

13131 9 11111 1
@ 3222 -2 2 @ oo -

24242 128 22222 32

13131 9 11111 1
0 2232 -2 ®) S -

24242 128 22222 32

18 1
c) — c) —
© 128 © 16

110 15
d — d —
@ 128 @ 16

(a) P{carrier|3 without}
_ U8z
1/81/2+11/2

(b) 1/18

P{Braves win} = P{B| B wins 3 of 3} 1/8 + P{B| B wins 2 of 3} 3/8
+P{B|B wins 1 of 3} 3/8 + P{B| B wins 0 of 3} 1/8
1 311 3| 3 31 38
S—t |+ |+= —=—
8 8142 4] 8 42 o4
where P{B | B wins i of 3} is obtained by conditioning on the outcome of the other series.
For instance

P{B|Bwin2 of 3} = P{B| D or Gwin 3 of 3, B win 2 of 3} 1/4
=P{B|D or Gwin2 of 3, B win 2 of 3} 3/4
11 3

+=.
24 4
By symmetry P{D win} = P{G win} and as the probabilities must sum to 1 we have.

P{D win} = P{G win} = g
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72. Let ' denote for and a against a certain place of legislature. The situations in which a given
steering committees vote is decisive are as follows:

given member other members of S.C.  other council members
for both for 3 or 4 against
for one for, one against at least 2 for
against one for, one against at least 2 for
against both for 3 of 4 against

P{decisive} = p*4p(1 - p)’ + p’p(1 — p)(6p*(1 - p)* +4p’(1 — p) + p*)
+(1=p)2p(1 = p)(6p*(1 = p)* +4p’(1 = p) + p°)
+(1-pp*4p(1 - p)’.

73, (a) 1/16, (b) 1/32, (c) 1032,  (d) 1/4, (e) 31/32.

74. Let P, be the probability that 4 wins when 4 rolls first, and let P be the probability that B
wins when B rolls first. Using that the sum of the dice is 9 with probability 1/9, we obtain
upon conditioning on whether 4 rolls a 9 that

1 8
Pi=—+—(1-P
A4 9 9( B)

Similarly,

5 31
Py=—+—(1-P
5= 3 36( 1)

Solving these equations gives that P, = 9/19 (and that Pz = 45/76.)

75. (a) The probability that a family has 2 sons is 1/4; the probability that a family has exactly 1
son is 1/2. Therefore, on average, every four families will have one family with 2 sons
and two families with 1 son. Therefore, three out of every four sons will be eldest sons.

Another argument is to choose a child at random. Letting E be the event that the
child is an eldest son, letting S be the event that it is a son, and letting 4 be the event that
the child’s family has at least one son,

PElS) = 0

=2P(E)

= 2[P(E|A)% +P(E

- 2[1§+01} —3/4
24 4

AC)ﬂ
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(b) Using the preceding notation

P(ES
p(Els = P2
P(S)
=2P(E)
7 o
= 2[P(E|A)— +P(E|A )—}
8 8
= 2[11} =7/12
38
76. Condition on outcome of initial trial

P(E before F)= P(Eb F| E)P(E) + P(E b F | F)P(F)
+ P(E b F | neither E or F)[1 - P(E) — P(F)]
= P(E) + P(Eb F)(1 - P(E) — P(F)].

Hence,

_ P
PED ) P(E)+P(F)’

77. (a) This is equal to the conditional probability that the first trial results in outcome 1 ()
given that it results in either 1 or 2, giving the result 1/2. More formally, with L; being
the event that outcome 3 is the last to occur

P(L|F)P(F)  (1/2)(1/3)
P(L)  1/3

P(F, | Ly) = =1/2

(b) With §; being the event that the second trial results in outcome 1, we have

P(L,|FS) P(ES,) _(1/2)(1/9)

P(FyS, | Ls) =
(71l Ly) P(L,) 1/3

=1/6

78. (a) Because there will be 4 games if each player wins one of the first two games and then one
of them wins the next two, P(4 games) = 2p(1 — p)[p* + (1 - p)*].

(b) Let 4 be the event that 4 wins. Conditioning on the outcome of the first two games gives

P(A=P(4|a, a)p* + P(4
=p* + P(A)2p(1 - p)

a, b)p(1 —p) + P(4 | b, a)(1 — p)p + P(4| b, b)(1 — p)’

where the notation a, b means, for instance, that 4 wins the first and B wins the second
game. The final equation used that P(4 | a, b) = P(4 | b, a) = P(4). Solving, gives

2
_ P
oo 1-2p(1-p)
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79.

80.

82.

Each roll that is either a 7 or an even number will be a 7 with probability

. N
PPy + Pleven)  1/6+1/2

Hence, from Example 47 we see that the desired probability is

1

7
(Zj(1/4)f(3/4)7—" =1—(3/4)" - 7(3/4)°(1/4)
=2

(a) P(4) = (1/2),ifi<n
=12y, ifi=n

DL/ +n(1/2)
zn _1 - 2n—1

(b)

(c) Condition on whether they initially play each other. This gives

2

1 2"-2(1

Pn:—+ - })n—l
2"—-1 2"-1\2

2
where (%) is the probability they both win given they do not play each other.

(d) There will be 2" — 1 losers, and thus that number of games.

(e) Since the 2 players in game i are equally likely to be any of the [; J pairs it follows that

_/[?
o)

(f) Since the events B; are mutually exclusive

PO B)= Y P(B) = (' —1)/ @] = (112"

1-(9/11)"
1-(9/11)*°

@ )= B - i eenfor e -
1 2 1+2

(c) similar to (a) with P’ replacing Pf.

1
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(b) and (d) Let Ej(f_}) denote the probability that 4 wins when 4 needs i more and B needs j
more and A(B) is to flip. Then

Py=P\Piy;+ (1-R)P,
Ej - sz_;,j—l +(1-B)F;.

These equations can be recursively solved starting with
P()1: 1,P1,0:0.

83. (a) Condition on the coin flip

P{throw n is red} = li+lg = 1
26 26 2
(3]0
(b) Pirly = LU _233) 203) 3
P} 12 A
2(3 23

[22}1

P{rr| A} P(4 3 )2

() Pidlm}= {r,;l{jr}( - 2V (1) (11 4
(3] Ez}@ 2

. 4 8764 8765434 87 6543
84. (b) PAwins) = —+———— +

12 1211109 1211109876 121110987
PBwing = 5.4, 87654 87654324

1211 12111098 12111098765
ACwingy= 514, 876544 87654321

121110 121110987 12111098765

85. Part (a) remains the same. The possibilities for part (b) become more numerous.
86. Using the hint
n . n n n .
P{4cB} = 22" 2" = 2'/4" =(3/4)"
uea=Zem(j)fr-3((s -om
where the final equality uses

i(?jziln—i — (2 + l)n

i=0
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&7.

88.

&89.

90.

(b) P(AB = ¢)=P(4 < B)=(3/4)", by part (a), since B is also equally likely to be any of the

subsets.

P{i*]all heads) = — K

D (ilkY"
Jj=0

No—they are conditionally independent given the coin selected.

(a) P(J; votes guilty | Jyand J vote guilty}

= P{J1, J», J; all vote guilty}/P{J, and J, vote guilty}

l(.7)3 +13O(.2)3 97

_ 10
T 0.3 o0 1427
(D) + (2
10() 10()

(b) P(J; guilty | one of J1, J, votes guilty}

7 3
) 1o (DD + 21228 15

3 26
E2(.2)(.8)

7
G2

(c) P{J guilty| J1, J, vote innocent}
7 2 3 2
— (D3 +—(2)(.8
:10()() 10()()=£‘
102

T3P+ (8)
(D)

E; are conditionally independent given the guilt or innocence of the defendant.

Let N; denote the event that none of the trials result in outcome i, i = 1, 2. Then

P(N] UNQ) :P(N1)+P(N2)—P(N1N2)

=(1-p)'+(1=p)' =1 ~=pi1-po)'

Hence, the probability that both outcomes occur at least once is

1= =p)'=1-p)"+(po).
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Theoretical Exercises

1.

40

P(AB) | P(AB)

P(AB| A) = > =P(4B| A4 U B)
P(4) ~ P(AUB)
IfAcB
_ P o _ o _ P(BA)
P(4]B) P(B),P(AIB) o, PBlo=1, P®BlL e

Let F be the event that a first born is chosen. Also, let S; be the event that the family chosen

in method a is of size i.

PyF)= Y P(FIS)P(S)) = Z% %

_ m
Pb(F) - ziini

Thus, we must show that
ZiniZni /i>m?
or, equivalently,
S ie Y,
i j i j
or,

RIS H XL

iz J i)

Considering the coefficients of the term n;n;, shows that it is sufficient to establish that

i+i22
j i

or equivalently
P+ > 2if

which follows since (i — j)* > 0.
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4.

10.

11.

Let N; denote the event that the ball is not found in a search of box 7, and let B; denote the
event that it is in box j.

P(N,|B))P(B))
P(N,[B)P(B,)+ P(N,|B{ )P(B)
_ b
 (I-@)B+1-P
_ (1-a)F,

(1-a)PR+1-P,

PB;|N) =

ifj#i

ifj=i
None are true.

P(liEiJ =1- P[rl\Efj =1- H[l - P(E))]

(a) They will all be white if the last ball withdrawn from the urn (when all balls are
withdrawn) is white. As it is equally likely to by any of the # + m balls the result follows.

(b) P(RBG)= —S——P(RBG | G last) = —5— b
r+b+g r+b+gr+b
bg L b g

Hence, the answer is .
(r+b)(r+b+g) r+b+gr+g

(a) P(4)=P(A| OP(C)+PA|CYP(C*) > PB| O)PC) + P(B| C*)P(C*) = P(B)

(b) For the events given in the hint
P(C|A)P(4) (@1/6)1/6
pua| )= PEIDPA _ 1/611/6)
3/36 3/36

=1/3

Because 1/6 = P(A4 is a weighted average of P(4 | C) and P(4 | ), it follows from the
result P(4 | C) > P(4) that P(4 | C%) < P(4). Similarly,

113=PB|C)> P(B)> P(B| C)
However, P(A4B| C) =0 < P(4B| C°).
P(A) = P(B) = P(C) = 1/2, P(AB) = P(AC) = P(BC) = 1/4. But, P(ABC) = 1/4.
P(A4;)) = 1/365. Fori#j#k, P(4;;4;,) = 365/(365)’ = 1/(365)*. Also, fori=j#k#r,
P(A4;jArr) = 1/(365)".

log(2)

1-(1-p)"212,0r,n> —
log1 - p)
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12.

13.

14.

15.

16.

17.

42

i—-1 ©

aiH(l —a;) is the probability that the first head appears on the i™ flip and H(l —a;) is the
j=1 i=1

probability that all flips land on tails.

Condition on the initial flip. If it lands on heads then 4 will win with probability P,y ,
whereas if it lands tails then B will win with probability P,,, (and so 4 will win with
probability 1 — P,, ).

Let N go to infinity in Example 4;.

P{r successes before m failures}
= P{r" success occurs before trial m + r}
m+r-1
n-1) ,
— 7 1_ n—r .
Z (r ~ Jp (1-p)

n=r
If the first trial is a success, then the remaining #» — 1 must result in an odd number of

successes, whereas if it is a failure, then the remaining #» — 1 must result in an even number of
successes.

P, =1/3

Py~ (1/3)(&/5) + (2/3)(1/5) = 2/5

Py = (173)(4/5)(6/7) + (2/3)(4/5)(1/7) + (1/3)(1/5)(1/7) = 3/7
P4 =4/9

n
2n+1

(b) P,=

(c) Condition on the result of trial n to obtain

1 2n
Pn: I_Pn— —+})n—
( Dol T

(d) Must show that

n_ |, n-l 1 L -1 2n
2n+1 2n—1]2n+1 2n—-12n+1
or equivalently, that

n_n 1 +n—l 2n
2n+1 2n-12n+1 2n-12n+1

But the right hand side is equal to

n+2n(n-1)  n
2n-D2n+1) 2n+1
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18. Condition on when the first tail occurs.
19. Pi= pf—l,i+l +(I=p)F,_,

20. Q1 = Oyp + (1 - an)(l _Pl)
P,=ap+(1-a)p'

nn-1) n-1
(n+n  n+1
P, ,=P{A4 receives first 2 and at least 1 of the next 2}

_n n-l - 21 | n-2
n+2n+1 n(n—1) n+2

(©) Pop= "
n

21. (b) P,1 = P{A receives first 2 votes} =

,n=m.
+m

(d) P, =P{A4 always ahead}

= P{4 always | 4 receives last vote}
n+m

+ P{A always | B receives last vote}
n+m

n m
= Pt Pn,m—l
n+m n+m

(e) The conjecture of (c) istrue whenn+m=1m=1,m=0).
Assume it when n + m = k. Now suppose that n + m =k + 1. By (d) and the induction
hypothesis we have that

n n—l—m+ m n-m+1l_n—-m

Pn,m: -
n+mn—-1+m n+mn+m-1 n+m

which completes the proof.

22. Pn :Pn—lp+ (1 _Pn—l)(l _p)
=2p-DPit(1-p)

1 1
=Q2p- 1){5 + 5(2 p-1 ”1} + 1 —p by the induction hypothesis

_ 2p-1

+%(2p—1)” +1-p

=—+—Q2p-1".

N |~
| =

Chapter 3 43



23.

24.

25.

27.

44

Py, =1/2. Assume that P,, = 1/2 when k > a + b and now suppose a+ b=k + 1. Now
1
a+b
(")
1
b+a
)

+ P{last is white | neither first ¢ are white nor first 5 are black}

P, = P{last is white | first a are white}

+ P{last is white | first b are black}

1 _ a1l albl albl | 1
(a+bj (b+aj (a+b)! 2| (a+b)! (a+b)| 2
a b

where the induction hypothesis was used to obtain the final conditional probability above.

The probability that a given contestant does not beat all the members of some given subset of
k other contestants is, by independence, 1 — (1/2)*. Therefore P(B;), the probability that none
of the other n — k contestants beats all the members of a given subset of k£ contestants, is

[1 - (1/2)"]"*. Hence, Boole’s inequality we have that

P(U B) < (Zj[l —(1/2)f

Hence, if (Zj[l —(1/2)F1"* <1 then there is a positive probability that none of the (Zj

events B; occur, which means that there is a positive probability that for every set of £
contestants there is a contestant who beats each member of this set.

P(E| F)=P(EF)/P(F)

P(EFG) P(FG) _ P(EFG)

P(E|FGP(G|F)= P(FG) P(F)  P(F)

P(EFG®)

PE|FGYP(G | F) = )

The result now follows since
P(EF) = P(EFG) + P(EFG®)

E\, E,, ..., E, are conditionally independent given F if for all subsets iy, ..., i, 0f 1,2, ..., n

P(E, ..E,|F)= HP( )

Chapter 3



28. Not true. Let F'= Ej.

29. P{next m heads | first n heads}
= P{first n + m are heads}/P(first n heads}

1 1
n+m n n+1
=jp*dp jpdp=—-
7 7 n+m+l

Chapter 3
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Chapter 4

Problems

VR
— A
N—
VR
— o0

) y

32 =) - 2) 28

14) 91

)

2. p()=136  p(5)=2/36  pO)=1/36  p(15)=2/36 p(24)=2/36
p(2)=236  p6)=436  p(10)=2/36 p(16)=1/36 p(25)=1/36

p(3)=2/36  p(7)=0 p(11)=0 p(18)=2/36  p(30)=2/36
p@)=3/36  p@8)=2/36  p(12)=4/36 p0)=2/36  p(36)=1/36

4
4, PIX=1} =12, P(X=2} = ~2-2 py=33=>23_5
109 18 1098 36
4 1 4.3.2
P{X=4}=i—§§=—O,P{X=5}= >:4-3 _ 3 ,
10987 168 10-9-8-76 252
prr—g = 54321 1
10-9-8-7-6 252
5. n-2ii=0,1,....n

6. P(X=3}=1/8, P{X=1}=3/8, P{X=—1}=3/8, P{X=-3}=1/8

8. (@) p(6)=1—-(5/6)*=11/36, p(5)=21/6 4/6 + (1/6)*=9/36
p(4)=21/6 3/6 + (1/6)*=17/36, p(3) =2 1/6 2/6 + (1/6)* = 5/36
p(2)=21/6 1/6 + (1/6)*=3/36, p(1) = 1/36

(d) p(5) = 1/36, p(4) = 2/36, p(3) = 3/36, p(2) = 4/36, p(1) = 5/36
p(0) =6/36, p(=)) = p(j),j >0
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333 9

142
P{divisible by 7} = ——
{ Y74 = 1000
66
P{divisible by 15} = ——
{ Y133 = 1000

In limiting cases, probabilities converge to 1/3, 1/7, 1/15, 1/10

(b) P{u(N)# 0} = P{N is not divisible by pl.2 ,i21}
= [ [PV is not divisible by p; }

=[Ja-1p})=6/7

13. p(0) = P{no sale on first and no sale on second}
=(7)(4)=.28
p(500) = P{1 sale and it is for standard}
= P{1 sale}/2
=[P{sale, no sale} + P{no sale, sale}]/2
=[(.3)(.4) + (.7)(.6)]/2 = .27

p(1000)= P{2 standard sales} + P{1 sale for deluxe}
= (.3)(.6)(1/4) + P{1 sale}/2
=.045+.27= 315

p(1500)= P{2 sales, one deluxe and one standard}
=(.3)(.6)(1/2) = .09

p(2000)= P{2 sales, both deluxe} = (.3)(.6)(1/4) = .045
14. P{X=0}=P{1 losesto2} =1/2

P{X=1}=P{of 1,2, 3: 3 has largest, then 1, then 2}
=(1/3)(1/2)=1/6

P{X=2}=P{of 1,2, 3,4: 4has largest and 1 has next largest}
=(1/4)(1/3) =1/12

P{X=3}=P{of1,2,3,4,5: 5has largest then 1}
=(1/5)(1/4) =1/20

P{X =4} = P{l has largest} = 1/5

Chapter 4
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15.

16.

20.

21.

22.

48

P{X=1}=11/66
oo N(12-4Y 1
pa=2 ZZ( 66 j[54+jj

o 12-7\ 12—k 11
Pix=3;= ,;]Z;‘( j[54+jj(42+j+kJ

k+#j

3
P{X=4}=1- Y P{X =1}
i=1
12-i
66

pir-iy - 32t 2]

J#l

o 12—\ 12—k 11
P{Y;=i} = ZZ( )(54+jj(42+k+J'J

k:’:/ J#i

P{Y,=i}=

All sums go from 1 to 11, except for prohibited values.

(a) P{x> 0} = P{win first bet} + P{lose, win, win}
= 18/38 + (20/38)(18/38)* ~ .5918

(b) No, because if the gambler wins then he or she wins $1.
However, a loss would either be $1 or $3.

(c) E[X]= 1[18/38 + (20/38)(18/38)*] — [(20/38)2(20/38)(18/38)] — 3(20/38)" ~ —.108

(a) E[X] since whereas the bus driver selected is equally likely to be from any of the 4 buses,
the student selected is more likely to have come from a bus carrying a large number of
students.

(b) P{X=1i} =i/148, i =40, 33,25, 50

E[X] = [(40)* + (33)* + (25)* + (50)*]/148 ~ 39.28
E[Y] = (40 + 33 + 25 + 50)/4 = 37

Let N denote the number of games played.

(@) E(N)=2[p* + (1 -p)’] +3[2p(1 —p)] =2+ 2p(1 ~ p)

The final equality could also have been obtained by using that N =2 + | where / is 0 if
two games are played and 1 if three are played. Differentiation yields that

iE [N]=2-4p

dp

and so the minimum occurs when 2 —4p =0 or p = 1/2.
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(b) E[N]=3[p’ + (1 —p)’ +4[3p°(1 —p)p + 3p(1 - p)’(1 - p)]

+5[6p*(1 —p)y' = 6p* —12p° +3p* +3p +3

Differentiation yields
iE[N] =24p® - 36p* + 6p+3
dp

Its value at p = 1/2 is easily seen to be 0.

23. (a) Use all your money to buy 500 ounces of the commodity and then sell after one week.

The expected amount of money you will get is

1 1
E[money] = 5500+§2000 =1250

(b) Do not immediately buy but use your money to buy after one week. Then

E[ounces of commodity] = %1000 +%250 =625

7 3 11

3
24. —(1-p)==Lp-3/4, b) ——p+(-p2=—p+2
@ p—( p)4 i (b) 27 (I-p) R4

%p—3/4=—%p+2:>p=11/18,maximumvalue=23.72

(c) g- %(1 -q) @ - %q +2(1-g) , minimax value = 23/72

1
25. a) —(1+2+..+10)=—
(a) 10( ) 5

attained when ¢ = 11/18

11

(b) after 2 questions, there are 3 remaining possibilities with probability 3/5 and 2 with

27. C-

probability 2/5. Hence.

2 3 1 2 17
E[Number]= —3)+—|2+—+2—|=—.
N ] 5() 5[ 3 3} 5

The above assumes that when 3 remain, you choose 1 of the 3 and ask if that is the one.

A I
dp=2 oA pr L
T (p 10}

28. 3. 4 3/5
20
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29.

30.

31.

32.

35.

36.

50

If check 1, then (if desired) 2: Expected Cost = C; + (1 —p)C, + pR; + (1 — p)Ry;
if check 2, then 1: Expected Cost = C, + pC, +pR; + (1 — p)Ry so 1, 2, best if

Ci+(1=p)C> < Cy +pC, or C, < ILC2
-p

E[X] = iz"a/z)" =

(a) probably not
(b) yes, if you could play an arbitrarily large number of games

E[score] = p*[1 — (1 — P)* + (1 — p*)(1 — p?)

d
—=2(1 =p)p* = 2p(1 = p*)
dp
If T is the number of tests needed for a group of 10 people, then
E[T]=(9)"+11[1-(9)"1=11-10(.9)"
If X is the amount that you win, then
P{X=1.10}=4/9=1-P{X=-1}
E[X]=(1.1)4/9 = 5/9 = -.6/9 = =067
Var(X) = (1.1)2(4/9) + 5/9 — (.6/9)> ~ 1.089
Using the representation
N=2+1
where /[ is 0 if the first two games are won by the same team and 1 otherwise, we have that
Var(N) = Var(l) = E[I}* - E{1]

Now, E[I’=E[l} =P{I=1}=2p{l —p} and so
Var(N) =2p(1 - p)[1 - 2p(1 - p)] = 8p> — 4p* — 6p* + 2p

Differentiation yields

diVar(N) =24p” —16p° — 12p+2
p

and it is easy to verify that this is equal to 0 when p = 1/2.
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37.

38.

39.

41.

42.

43.

44,

45.

47.

E[X?] = [(40)° + (33)° + (25)° + (50)°)/148 ~ 1625.4
Var(X = E[X*] - (E[X])* = 82.2
E[Y*] ==[(40)* + (33)* + (25)* + (50)*)/4 = 1453.5, Varr(Y) = 84.5

(a) E[(2+X)*]=Var(2 +X) + (E[2 + X])* = Var(X) + 9= 14

(b) Var(4 +3X) =9 Var(X) =45

@(1/2)4 =3/8 40. [jj(1/3)4(2/3)1 +(1/3)° = 11/243

i[lfja/z)‘“

i=7

Gjﬁ(l -p)’+ [jjp“(l -p)+p’ 2 @Jpz(l -p)+p’

S6p—15p"+12p-320
S6(p—1/2)p-1720
<Sp21/2

5V 3 on2 L [d 4 5
[3J(.2) (.8) +(4J(.2) (.8)+(.2)
azn:(}:)pll (1- pl)n_i +(1- a)zn:[?jplz (1- Pz)n_i

with 3: P{pass} = %{[;)(.8)2(,2) + (-8)3} + %{[;)(.4)2(,6) + (.4)3}
=.533

: 1 (5) o 25(5) i s
with 5: P{pass} = EZ(iJ(‘g)l(,Z) B +§Z(i j(.4)l(,6) -i

i=3 i=3

=.3038

9 8
@and (b): () Z[?Jp"(l—p)9-", (if) Z[f)p"(l—p)g"k

i=5

(iii) i(gp"(l — p)" where p=.7 in (a) and p = .3 in (b).
i=4

Chapter 4

51



48.

49.

50.

51.

52.

53.

54.

52

The probability that a package will be returned is p = 1 — (.99)'° — 10(.99)°(.01). Hence, if

someone buys 3 packages then the probability they will return exactly 1 is 3p(1 — p)*.

10 10
(a) N ye 0 775
20 7 2( 7

9
ee+lys
216 2

(b)

.55

(a) P{H, T, T|6 heads} =P(H, T, Tand 6 headsﬁ/P{6 heads}
=P{H, T, T} P{6 heads | H, T, T}/P{6 heads}

_ o T) s 2 [[10) 4 4
Pq (SJPQ/(6JP‘]

=1/10

(b) P{T, H, T| 6 heads} =P(T,H, Tand 6 headsﬁ/P{6 heads}
= P{T, H, T}P{6 heads | T, H, T}/P{6 heads}

— 2 7 5.2 10 6 4
qp[qu ¢ P4

=1/10

(a) e b) 1-e?-2e?=1-12¢"
Since each letter has a small probability of being a typo, the number of errors should
approximately have a Poisson distribution.

(@) 1—e? =357 =1-45¢7"
(b) 4.5¢73

Since each flight has a small probability of crashing it seems reasonable to suppose that
the number of crashes is approximately Poisson distributed.

(a) The probability that an arbitrary couple were both born on April 30 is, assuming
independence and an equal chance of having being born on any given date, (1/365)%.
Hence, the number of such couples is approximately Poisson with mean 80,000/(365)°
.6. Therefore, the probability that at least one pair were both born on this date is

approximately 1 — e~

4

(b) The probability that an arbitrary couple were born on the same day of the year is 1/365.
Hence, the number of such couples is approximately Poisson with mean 80,000/365 =
219.18. Hence, the probability of at least one such pairis 1 —e*"*'® ~ 1.

(a) e? (b) 1—e??*—22e*=1-32¢*

Chapter 4



55.

56.

57.

59.

60.

61.

62.

63.

The number of people in a random collection of size n that have the same birthday as yourself
is approximately Poisson distributed with mean n/365. Hence, the probability that at least
one person has the same birthday as you is approximately 1 — e "%, Now, e™ = 1/2 when
x=1og(2). Thus, 1 —e™*% >1/2 when n/365 > log(2). That is, there must be at least 365

log(2) people.

2
(@ 1-e’-3¢7 —6733— = 1—£€_3
2 2
17 4
Pix>3 17,¢

(b) P{X>3]x>1} = Pl 1oe

(a) l—e'2

1 -1/2
b) —e

1
Q) 1_el2= L2
(©) 5

P{2|beneficial} 3/4

P{beneficial | 2} = . .
P{2| beneficial}3/4 + P{2| not beneficial}l/4

5373 5%
——+e
2 4 24

e

l—e'*—14e"

If A4; is the event that couple number i are seated next to each other, then these events are,
when # is large, roughly independent. As P(4; =2/(2n — 1) it follows that, for n large, the
number of wives that sit next to their husbands is approximately Poisson with mean

2n/(2n — 1) = 1. Hence, the desired probability is ¢ ' = .368 which is not particularly close to
the exact solution of .2656 provided in Example 5# of Chapter 2, thus indicating that n = 10
is not large enough for the approximation to be a good one.

(a) e—2.5

25 25 (25 s

b) 1 — 2525025
() 1-e ¢ 2 31

Chapter 4 53



64.

65.

66.

67.

68.

69.

54

,
(@ 1- Y e*4'/il =p
i=0

(b) 1-(1-p)*~12p(1 -p)"

© (1-p'p
(@) 1-¢?
1—671/2—1671/2
(b) PIX>2]Xx>1) = 1_671/22
(c) 1-¢?

(d) 1T —exp {~500 —7)/1000}

Assume n > 1.
2

a

@ 2n—-1
2

b

®) 2n—-2

(c) exp{—2n/2n—1)} ="'

Assume n > 1.
2
(@) —
n
(b) Conditioning on whether the man of couple j sits next to the woman of couple i gives the
1 n—-2 2 2n—3

result: + = >
n—-ln-1 n-1n-1 (n-1)

(©) e’
exp(—10e™}

With P; equal to the probability that 4 consecutive heads occur within j flips of a fair coin, P,
=P,=P+3=0,and

Py=1/16

Ps=(1/2)Py+ 1/16 = 3/32

Ps=(1/2)Ps+ (1/4)Ps + 1/16 = 1/8

Py = (1/2)Pg + (1/4)Ps + (1/8)Ps + 1/16 = 5/32

Ps = (1/2)P; + (1/4)Ps + (1/8)Ps + (1/16)P; + 1/16 = 6/32

Py = (1/2)Ps + (1/4)P; + (1/8)P + (1/16)Ps + 1/16 = 111/512

Pio = (1/2)Ps + (1/4)Pg + (1/8)P; + (1/16)Ps + 1/16 = 251/1024 = 2451

The Poisson approximation gives

Pio~1—exp{—6/32-1/16} =1 —¢* = 2212

Chapter 4



70.  eM+(1-eMp

26\’
26Y' 12
(b) (QJ IR
72. P{wins in i games} = (i ; 1J(-6)4(-4)i_4

73. Let N be the number of games played. Then
P{N=4}=2(1/2)*=1/8, P{N=5}= 2(?)(1/2)(1/2)4 =1/4

P{N=6} = 2@(1/2)2(1/2)4 =5/16, P{N=17}=5/16

E[N]=4/8 +5/4+30/16 +35.16 = 93/16 = 5.8125

5
74, (a) %J

4SIORNHIBRRGIER!

26, (N1+N2—k

N +N, -k
N, N

2

J(l/z)NﬁNz—" (1/2) +( j(l/z)Nl”Vz—" (1/2)

2N -k IN-k
77. 2( v J(l/z)

2[2N—k—1

N1 j(l/Z)ZN‘k‘l(l/Z)

Chapter 4
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79.

80.

81.

56

)
10
(a) P{X— 0} = W
10
o L3
10 9 M1 8 \2
(b) PAX>2}=1- 100
10
P{rejected| 1 defective} =3/10
P{rejected |4 defective} =1 — (g)/[l??j =5/6

53

P{4 defective | rejected} = % =75/138

ii_l’_ii
610 1010

P{rejected} = 1 — (.9)*

Chapter 4



Theoretical Exercises

L.

Let £; = {no type i in first n selections}
N
P{T>n} = P(g_)lEij
=Y A=-P)" =YD A-P=P)'+> > > (1-p,-p)

1<J i<j<k

L EDYY R
P{T=n}=P{T>n-1} — P{T>n}
1- },ig(l)F(a_h)

Not true. Suppose P{X=5b} =€e>0and b,=b+ 1/n. Then bliran(X <b,} =P{X<b}#
P{X<b}.

When >0
PlaX+ fB<x) = P{xs x—ﬁ}:F(x—ﬂj
[24 o
When a< 0
P{aX + f<x) = P{Xz x_ﬂ}zl— lim F(ﬂ—lj.
o h—0" o
ZP{N> i} =Y > PIN=k
i=1 k=1
= > > PIN=K}
k=1 i=1
ikP{N k} = E[N].
k=1
iiP{N>i} = i ZP{N kY
i=0 i=0 k=i+1
= iP{N k}Zz

P{N ki(k —1)k /2

ikzP{N =k} — ZkP{N = k}j /2
k=1 k=1

Il
iMs 1

I
TN

Chapter 4



8.

10.

11.

12.

58

E[c]=cp+c(1-p)

Hence, 1 = E[¢"] if
ept+c'd-p) =1

or, equivalently
pt—c+1-p=0

or
(pc—1+p)c—1)=0

Thus, ¢ = (1 — p)/p.

E[Y|=EXo— yo]= lE[X] —pwo=yo—wo=0
(o2
Var(Y) = (1/0)* Var(X) = ¢°/c” = 1.

BUx e+ = YA

il_ n—i
iAot 4P

n

_ n! in_ n—i
“ 2 aopaen? P

i=0

1 ! n+1 i+1 i
— 1 1_ n—i
z(iﬂ =p)

(n+Dpiz
_ - +11)p ;(n jlj‘” i= pyii
:<n+11)p{1 (mj - )}
“a +1) [1-(1-p)™']

For any given arrangement of & successes and »n — k failures:
P{arrangement | total of & successes }

_ P{al‘rangement} _ pk (l_p)n—k ~ |

P{k successes} - (ijk(l—p)”k B (Zj

Condition on the number of functioning components and then use the results of Example 4c

of Chapter 1:

poo= 31 (173 7)]

i +1 . . :
where (;4- ) =0ifn—i>i+ 1. We are using the results of Exercise 11.
—1

Chapter 4



13. Easiest to first take log and then determine the p that maximizes log P{X = k}.
log P{X=k} = log(Zj +klogp+(m—k)log(1—p)
O jogPix =y =X _n=k

op p l-p

=0 = p = k/n maximizes

(b) Condition on the number of children: For k>0

P{kboys} = > P{k|n children}ap"
n=l

o0

_ n n_ . n
= (kj(l/z) ap

n=k

W N g
P{0boys} =1—- —+ 1/2
{0 boys} = ;ap()

17. (a) If Xis binomial (n, p) then, from exercise 15,

P{Xiseven} =[1+(1-2p)"]/2
=[1+ (1 —=2A/n)"}/2 when A=np
— (1 +e /2 as n approaches infinity

2n
(b) P{Xiseven} = e"ﬂz;t @m) — el +eh2

18.  log P{X=k} =—A+ klog A—log (k!)
0 k
—logP{X =k} =—-1+—
PYR { } P

=0=> A=k

Chapter 4
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19.

20.

21.

22.

60

E[X" =Y i"e "2 /il
i=0

i"e A /i)

Il
'MS

I
—_

i"e A (i —1)!

Il
.M8

G+ e A 1

Il
M

J

=AY (j+D)"e A !
0

Il
(=]

J
= JE[(X +1)"

Hence [X°] = AE(X + 1)7]
=AY i+ 2 /il

i=0

= A D et A iw2) et A i)y et A /i!}
i=0 i=0 i=0

= A[E[X*]+2E[X]+])

= A(Var(X) = E’[X] + 2E[X] + 1)
=AA+ 2420+ D)= +31+1)

Let S denote the number of heads that occur when all n coins are tossed, and note that S has a
distribution that is approximately that of a Poisson random variable with mean 4. Then,
because X is distributed as the conditional distribution of S given that S > 0,

P{S=1 e

PiX=1}=P{S=1|S>0! = TR

(i) 1/365
(i1) 1/365
(iii))1  The events, though independent in pairs, are not independent.

(i) Say that trial / is a success if the i pair selected have the same number. When 7 is large
trials 1, ..., k are roughly independent.

(i1) Since, P{trial i is a success} = 1/(2n — 1) it follows that, when # is large, M is
approximately Poisson distributed with mean £/(2n — 1). Hence,

P{M; =0} ~ exp[—k/(2n — 1)]

(iii) and (iv) P{T > an} = P{M,, = 0} ~ exp[-an/2n — 1)] - ¢ **

Chapter 4



23.

24,

25.

27.

28.

29.

Chapter 4

365 . y
(a) P(E)=1- Zio( : j(l/365)~’(364/365)365 j
L

(b) exp(-365P(E})}

(a) There will be a string of k consecutive heads within the first » trials either if there is one
within the first n — 1 trials, or if the first such string occurs at trial #; the latter case is
equivalent to the conditions of 2.

(b) Because cases 1 and 2 are mutually exclusive

P, =P+ (1= Py )(1 - Pt

P(m counted) = ZP(m‘n events)e 1" /n!

o0

n m n-m _—A an
1- A"/ n!
Z(m (1-p)" "X /n

— o (Ap)" i[ﬂ(l -p)I"™" o A1-p)
m! = (n—m)!
_ e
m!

Intuitively, the Poisson A random variable arises as the approximate number of successes in
(large) independent trials each having a small success probability a (and 4 na). Now if each
successful trial is counted with probability p, than the number counted is Binomial with

parameters 7 (large) and op (small) which is approximately Poisson with parameter opn = Ap.

P{X =n+k}
P{X > n}

n+k-1

_pd-p
(1-p)
=p(1-p)*"

PiX=n+klX>n} =

If the first » trials are fall failures, then it is as if we are beginning anew at that time.

The events {X > n} and {¥ <r} are both equivalent to the event that there are fewer than r
successes in the first # trials; hence, they are the same event.

Np \( N—np
P{X=k+1} \k+1\n-k-1

PX =k} [NpJ(N - NpJ

k n—k
_ (Np —k)(n—k)
k+D)(N-Np—n+k+1)

61



n (N+1
N (n+lj
("
n(N +1)
n+l

31. Let Y denote the largest of the remaining m chips. By exercise 28

P{Y=j}=(’i__llj/(m’;:nj,mﬁjﬁnwLm

Now, X=n+m — Y and so

PX=i=P{Y=m+n—i}= [”’*”"'_lj/(’"”j,mn

m-—1 m

k—l k,zn—i
32. P{X=k} = - L k>1
=k =—]5—

n
24 E[X] B n k(k) 2)1—1
“2" 1 2"—1

n (kj n-2
EX?] = 2 n(n +1)
e | "1
n2*" % —n(n+1)2"2
(2)1 _ 1)2
n22n—2 n

22)1 - Z

Var(X) = E[X” ] - {E[X])’ =

62
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35.

n n+l
E[Y] = ”zl,E[Y2]= it~ |
i=l1 1

n

n+1j2 n’

5 ~

2
Var(Y) ~ %—( B

hno12 1 1
@ X = T T
(b) P(X <oo} = lim P{X < i}
= lim(1-1/(i+1)) =1
(c) E[X]= ZiP{X =i}

= D i(P{X >i-1} - P{X > i}

Chapter 4
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Chapter S

Problems

—

(a) cI(l—xz)dx=1:C:3/4

37 5 3 X 2
b) Fx)=—|(0-x)dx=—| x——+—|,-1<x<1
(b) F(x) 4_11( ) 4{ : J
2. J.xe_)‘/ 2dx = —2xe*'* —4¢™*'* . Hence,

cJ.xe_’”zdx=1:>c=1/4
0
P{X>5}= lJ.xe_'”zdx =l[10e_5/2 +4e7'?]
44 4
14
4

3. No. f(5/2)<0

4, (a) j—dx_—j 1/2.

(b) F(y)—'[—dx—l—% y>10. F(y)=0 fory < 10.

6 i 6—i
2\(1 ) — o
(©) Z(f)(g} (EJ since F(15) = % . Assuming independence of the events that the
i=3
devices exceed 15 hours.

5. Must choose ¢ so that

1
0l = j5(1 —x)*de=(1—c¢)

soc=1-(01".

64 Chapter 5



NI

(a) E[X]= j e 2y =2 j Y2 dx =20(3) = 4
0 0

(b) By symmetry of f{x) about x= 0, E[X] =0

00

(c) E[X]= j%dx:oo

(a+bx*)dx =1or a+§=1

x(a+bx2)dx=g or Z+2=3/5. Hence,
5 2 4

JSY SRS S

PIE R
5 5

8. E[X] = sze—xczx -T3)=2

0

9. If 5 units are stocked and the demand is X, then the profit, P(s), is given by
P@)=bX—-(s—-X)P ifX<s
=sb ifX>s
Hence

E[P(s)] = j :(bx —(s—x)0) f (x)dx +j " sbf (x)dx
= (b+ 1) j :xf(x)dx st j 0 F(x)dx+ sb[l - jo f(x)dx}
—sh+ (b+ 1) j :(x —9) f(x)dx

Differentiation yields

j E[P(s)] = b+ (b + @%U ;xf(x)dx _p j 0 f(x)dx}

ds
b+ (bt é)[sf(s) ~s - ;f(s)dx}

—bh- (b+z)j;f(x)dx

Chapter 5 65



10.

11.

13.

14.

15.

66

Equating to zero shows that the maximal expected profit is obtained when s is chosen so that

where F(s) = ) (x)dx is the cumulative distribution of demand.
0

(a) P{goestoA} =P{5<X<150r20<X<30o0r35<X<45o0r50<X<60}.
=2/3 since X is uniform (0, 60).

(b) same answer as in (a).

X is uniform on (0, L).

Pmin( X ,ﬂj<1/4

L-X X

— 1= P)min[ X ,ﬂ >1/4
L-X X

=1-P L>1/4,L_X>1/4
L-X X

=1-P{X>L/5 X<4L/5}
= 1—P{§ <X< 4L/5}

1322
55

P{X>25 5/30 _
P{X >15} 15/30

2
P> 10} = 2, PX> 25| x> 15! =

where X is uniform (0, 30).

E[X"] = j "dx =

0
P{Xn <X} { <x } 1/n

1

x
E[X"]Ij % ("7 jdx—%j 1/”a’xzﬁ
0 0

(a) D(.8333)=.7977
(b) 2d(1) - 1 = .6827
(c) 1—d(.3333)=.3695
(d) (1.6667) =.9522
(e) 1—d(1)=.1587

Chapter 5



16.

17.

18.

19.

20.

22.

Chapter 5

X -40

P{X>50} = P{ > 14?} 1-®2.5)=1-.9938
Hence, (P{X < 50})"" = (.9938)"

E[Points] = 10(1/10) + 5(2/10) + 3(2/10) = 2.6

2= P{X > 9 — 5} = P{Z > 4/0} where Z is a standard normal. But from the normal
o o

table P{Z < .84) = .80 and so
B4 ~4/cor o~4.76
That is, the variance is approximately (4.76)* = 22.66.

Letting Z = (X — 12)/2 then Z is a standard normal. Now, .10 = P{Z > (¢ — 12)/2}. But from
Table 5.1, P{Z < 1.28} =.90 and so

(c—12)2=128 or c=14.56

Let X denote the number in favor. Then X is binomial with mean 65 and standard deviation
65(.35) ~4.77. Also let Z be a standard normal random variable.

(a) P{X>50} = P{X>49.5} = P{X—65}/4.77 > —15.5/4.77
~ P{Z>-3.25} ~ 9994

(b) P{59.5<X<70.5} ~P{-5.5/477<Z<55/4.77}
=2P{Z<1.15} - 1~.75

(c) P{X<74.5} ~ P{Z<9.5/4.77} ~ 977
(a) P{.9000 —.005 <X <.9000 + .005}
_ p_005 005
.003 003
=P{-1.67<Z<1.67}
=2d(1.67) — 1 =.9050.

Hence 9.5 percent will be defective (that is each will be defective with probability
1 —.9050 = .0950).

(b) P{—E <Z< 005} 2@( 005]—1=.99when
O o o

CI)('OOSJ— 995 = 005 —=2.575=0=.0019.
o o}
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23.

24.

25.

27.

68

149.5—m 200.5—m

6 <Z <—6
‘/IOOOlé ‘/100012
66 66

- 200.5—166.7}_ [149.5—166.7j

(a) P{149.5<X<200.5}= P

45000/36 45000/36

~ D(2.87) + D(1.46) — 1 = .9258.

149.5-800(1/5)

\/80014
55

=P{Z<-93}
=1-d(.93)=.1762.

(b) P{X<149.5} = P{Z <

With C denoting the life of a chip, and ¢ the standard normal distribution function we have

1.8x10° —1.4x10°
P{C<1.8x10% = ¢ —
R e

= K1.33)
= 9082

Thus, if N is the number of the chips whose life is less than 1.8 x 10° then N is a binomial
random variable with parameters (100, .9082). Hence,

19.5-90.82

j =1-g—247)~ 1

Let X denote the number of unacceptable items among the next 150 produced. Since Xis a
binomial random variable with mean 150(.05) = 7.5 and variance 150(.05)(.95) = 7.125, we
obtain that, for a standard normal random variable Z.

P{X<10} =P{X<10.5}
_ P{X—7.5S10.5—7.5}
V7125 47125

~ P{Z<1.1239}
= 8695

The exact result can be obtained by using the text diskette, and (to four decimal places) is
equal to .8678.

PIX>5,799.5) = Pz > 22
2,500

= P{Z>15.99} = negligible.
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28.

29.

30.

Let X equal the number of lefthanders. Assuming that X is approximately distributed as a
binomial random variable with parameters n = 200, p = .12, then, with Z being a standard
normal random variable,

X -200(12) _ 19.5-200(.12)
200(.12)(.88) ~ 1/200(.12)(.88)

~ P{Z>-9792}
~ 8363

PLY>195}=.P{

Let s be the initial price of the stock. Then, if X is the number of the 1000 time periods in
which the stock increases, then its price at the end is

X
X 71000-X 1000 U
su-d =sd (Zj

Hence, in order for the price to be at least 1.3s, we would need that

dwm(gJX>13

- log(1.3) —10001og(d)
log(u/d)

or

X =469.2

That is, the stock would have to rise in at least 470 time periods. Because X is binomial with
parameters 1000, .52, we have

p{X>>4695}::P{ X —1000(52) 4695——1000(52)}

J1000(.52)(:48) ~ 4/1000(.52)(.48)
~ P{Z>-3.196}

~.9993
P{5| black
P{in black} = { | aca :
P{5 | black}a + P{5 | white} (1 — @)
1 —(5-4)*/8
——e a
_ 2\27x
1 —(5-4)2/8 1 -(5-6)* /18
——e a+(l-a)——=ce
227 327w
a 18
_ 2
& s (1-a) o /8
2 3

a is the value that makes preceding equal 1/2
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31.

32.

33.

34.

35.

36.

37.

70

A a

dx dc A a2
@ Ex—d] - [0 %4 <a—x>—=__[a__J
x=d j 4 ! 4 2 4

i( )=2—a—1=0:>a=A/2
da A

(b) E[X -df] = T(a —xX)de Fdx + T(x —a)de Fdx
0 a
—Ja —Ja

= a(l—e™)+ae™ +67—%+ae_i“ +eT—ae_M

Differentiation yields that the minimum is attained at @ where
e ™ =1/2 ora =log2/A
(c) Minimizing ¢ = median of F

(a) e
(b) o2

-1
e

(a) P{X>20}=¢"

P{X >30} 1/4

(b) P{X>30|x>10= =
P{X >10} 3/4

=1/3

40

50
(a) exp{— J-/i(t)dz} =¥
(b) e—1.21
2
(a) 1-F2)= explZ— It%lt} =e*
0
(b) exp[—(.4)*/4] — exp[—(1.4)"/4]
2
(©) exp{—jfdt} =M

() P{|X|>12}=Px > 12} + PX<-112} =112

(b) P{|X| <a} =P{-a<X<a}=a,0<a<1. Therefore,
fy@=1,0<a<1

X/ is uniform on (0, 1).

That is,
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38.  For both roots to be real the discriminant (4Y)* — 44(Y + 2) must be > 0. That is, we need that
Y>> Y+ 2. Now in the interval 0 < Y < 5.

Y>Y+2< Y>2 andso
P{Y’>Y+2}=P{Y>2}=3/5.

39. Fy(y)=P{log X<y}
=P{X <} =Fxe)

H) =fle)e = e

40.  Fy(y)=P{*<y}
= Fx(logy)

F0)= felogy L~ =L 1<y<e
y oy

Chapter 5
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Theoretical Exercises

72

The integration by parts formula J.udv =uv— J.vdu with dv = —2bxe

that
) _ _pxt ® © R
J‘xzefbx dx = j+i e dx
) 26 4 263
- 13/2](‘)6}’2/261)} by y= xv2b
(2b)" "
_ N 27 1 B \/;
2 by ap?
where the above uses that > '[e’y ’ "2dy =1/2. Hence, a =
7%
jp{y <—y}dy = j [ £y (x)dx dy
0 —o
0 —x 0
= [ [0y dx == [ty (x)
-0 0 -0
Similarly,

TP{Y > yidy = Txfy(x) dx
0 0

Subtracting these equalities gives the result.

E[aX+b] = j (ax+b)f(x)dx = a j xf (x)dx +b j f(x)dx
=aE[X]+b

E[X"] P{X" > t}dt

P{X" > x"Inx"""dx by t=x", dt = nx""'dx

I
Ot 8 O 8 O]

P{X > x}nx""dx

4b3/2

Jrz

—bx?

, u=—x/2b yields

Let X be uniform on (0, 1) and define E, to be the event that X is unequal to a. Since NE, is

the empty set, it must have probability 0.

a
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10.

11.

12.

13.

SD(aX + b) = \[Var(aX +b) =Va’c” =|do
Since 0 < X < ¢, it follows that X* < cX. Hence,
Var(X) = E[X*] ~(E[X])’

< E[cX - (E[X])?
= cE[X] - (E[X])°

= E[X](c — E[X])
=ca(l — )] where a=E[X]/c
<4

where the last inequality first uses the hypothesis that P{0 < X < ¢} =1 to calculate that 0 <
<1 and then uses calculus to show that maximum (1 — &) = 1/4.

0<ac<l

The final step of parts (a) and (b) use that —Z is also a standard normal random variable.

(a) P{Z>x}=P{-Z<-x}=P{Z<-x}

(b) P{|Z| >x} =P{Z>x} + P{Z<—x} = P{Z>x} + P{-Z>x}
=2P{Z>x}

© P{lzl<x}=1-P{|Z] >x} =1-2P{Z>x} by (b)
=1-2(1-P{Z<x})

Withe=1/ («/ 2720') we have
f(x) _ ce—(x—,u)z/ZO'Z
fr(x) _ _Ce—()c—,u)2 /2062 ()C _ IU)/O'Z
f”(x) _ co_f4ef(x7y)2 /207 (x —,u)2 —CO'72€7(X7#)2 /207

Therefore,
f”(,u + G) :f”(,u_ (7) — CG—Ze—l/Z _ CO_—Ze—l/Z =0

E[X]= j PLX > x}2x* dx = 2jxe-*”dx = %E[X] =2/ P
0 0

b+a
2

(b) u

(a)

(©) l—em=1/20rm=%log2

(a) all values in (a, b)

(b) u
() 0
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14, Pl{cX<x}=P{X<x/c}=1-e™"

15, i) = /() __Va

== = ,0<t<a
F@®) (a@-t)/a a-t

16. If X has distribution function F' and density f, then for a > 0
F.(t)=P{laX <t} = F(t/a)

and

= LGt a)
a

Thus,

Yrwra
__a _ 1
Ay (t) = Fa ~Ax(t)a).

18, E[X]-= j e Fax = 1t j Ae™™ (x)* dx
0 0

= 2*T(k+1) =k AF

o0

19. E[Xk]=$ x e ™ (Ax) " dx
0
—k ©

-~ /le—/bc(/lx)t+k—ldx
ros

k
= Lr(z+k)

I'(7)
Therefore,

E[X]=1/2,
E[X|==AT(@t+2)/T() =+ )2

and thus

Var(X) = (t + Dt/2> = A7 =t/ 2
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20.

21.

22.
23.

24.

25.

26.

Chapter 5

r(1/2) = j e x 7V 2dx

0
= x/fjefyz/zdy by x=1%2, dx=ydy = V2x dy
0
— 2\/;j(2ﬂ)—1/26—y2/2dy
0

= 2\/;P{Z > 0} where Z is a standard normal

Vx

1/(s) jie-ﬂx(zx)f-ldx/ze%(zs)f-l

J‘e_’ux_s) (x/s) " dx
Je‘ly(l +y/s) 'dy by letting y=x —s

y=0

As the above, equal to the inverse of the hazard rate function, is clearly decreasing in s when
t > 1 and increasing when ¢ < 1 the result follows.

As) = c(s —v)? ", s > v which is clearly increasing when £> 1 and decreasing otherwise.
Fla)=1-¢"

Suppose X is Weibull with parameters v, o, . Then

2T o)

=P{X<v+ax'"F}
=1—-exp{—x}.

We use Equation (6.3).
_ _ I'a+1) F(a+b): a
EX1=Bla+ 1, byB(4, b) T(a+b+1) T(a) a+b
[(a+2) T(a+b) (a+1Da

T(a+b+2) T(a) (a+b+1)a+b)

E[X’]=B(a +2, b)/B(a, b) =
Thus,

2

_ (a+1a __a _ ab
Varl¥) (a+b+1)a+b) (a+b)* (a+b+1)(a+b)

X-a)(b—-a)
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28.  P{F(X<x}=P{X<F'(x)
= F(F(x))
=X

209. Fy(x) =P{aX+b<x}
= P{XS x—b} when a >0

a
= Fy((x — b)/a) when a > 0.

H0)= L A= bYla) ifa>0.
a

When a< 0, Fy(x)=P{X2 x_b}zl—FX(x_
a

) = —%{’“b)
a

a

30. Fy(x)=P{e* <x}
=P{X<logx}
Fx(log x)

J(x) = fi(log x)/x

1

_ o (log x—u)? /202
xN2rwo

76

a

b) and so
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Chapter 6

Problems
8.7
2. a) p(0,0)= —— =14/39,
(@) p(0, 0) TRE
0, 1)=p(1 0)=£ =10/39
P p5 13-12
5.4
1,1)= —— =5/39
P D 1312
8-7-6
b) p(0,0,0)= ————— =28/143
(®) A ) 13-12-11
(0,0, 1)=p(0, 1,0)=p(1,0 0)=8'7—‘5:70/429
p b b p b 2 p 2 b 13‘12.11
0,1, 1)=p(1,0,1)=p(, 1 0)=M=40/429
P P P 13-12-11
5.-4.3
,1,1)=——— =5/143
P ) 13-12-11
3. (a) p(0,0)=(10/13)(9/12) = 15/26

p(0, 1)=p(1, 0) = (10/13)(3/12) = 5/26
p(1, 1) = (3/13)(2/12) = 1126

(b) p(0, 0, 0) = (10/13)(9/12)(8/11) = 60/143
(0,0, 1)=p(0, 1,0)=p(1, 0, 0) = (10/13)(9/12)(3/11) = 45/286
pi,j, k) = (3/13)(2/12)(10/11) = 5/143 ifi+j+k=2
p(1, 1, 1) = (3/13)2/12)(1/11) = 1/286

4, (a) p(0, 0)=(8/13)% p(0, 1) = p(1, 0) = (5/13)(8/13), p(1, 1) =(5/13)

(b) p(0,0,0)=(8/13)’
pli,j, k)= (813’ (5/13) if i +j + k=1
p(i,j, k)= (8/13)(5/13)* if i+ j + k=2

5. (0, 0) = (12/13)°(11/12)°
p(0, 1)=p(1, 0) = (12/13)’[1 = (11/12)’]
p(1, 1) = (2/13)[(1/13) + (12.13)(1/13)] + (11/13)(2/13)(1/13)
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8.  f)=c j (* —x%)edx

10.

1.

12.

78

4
3

Tfy(y)dy =1 = ¢= 1/8 and s0 fy(y) = 2 2
0

1 T -y
filx) = 5! (= x)edy

| : _ _ _ _
= Ze | ‘(1+|x|) upon using —'[yze Y=yl +2ye +2e

2

cyle”?,-0<y<ow

3,-y

’O<y<oo

=S w2 gy = Sox?
(b) f(x) 7j(x T 2jdy S +x)

0

(c) PAX>Y} = g'[ji(xz +%dydxj =
00

(d) P{Y>12|X< 12} =P{Y>1/2, X< 1/2}/P{X < 1/2}

j

1/2

15
56

1/2

J

0

(xz + xzydxdyj

172
(2x% + x)dx
0

(@) i) =e ™ i) =e?, 0<x<m, 0<y<m

PX<Y =112

(b) PiX<a}=1-¢"

5—!(.45)2(.15)(.40)2

211121

52
e’ +5e7 + ;e‘s +

53
—e

3!

5
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14. Let X and Y denoted respectively the locations of the ambulance and the accident of the

moment the accident occurs.

P{|Y—X| <a}=P{Y<X<Y+a}+P{X<Y<X+a}

L min(y+a,L)

2
= — dxdy
L2 . !
2 L-ay+ta
= 7z I j dxdy + I jdxdy
0 L-ay

+—L—a— 2——|, 0<a<L
L L2( )L( LJ

15 (a) 1= j j F(x, y)dydx = j jc dydx = cA(R)
(x,y)eR
where A(R) is the area of the region R.

(d) fix,y)=1/4,-1<x,y<1
=ffy)
where f(v)=1/2,-1<v< 1.

©) PIX*+Y2<1)= i j j dydx = (area of circle)/4 = /4.

16.  (a) 4=uA,
(b) yes
(¢) PA)= Y P(4) =n(1/2)""

17. % since each of the 3 points is equally likely to be the middle one.

18.  P{Y-X>L/3)= j I%dydx

y-x>L/3
L
—<y<L
5 Yy
()<x<£
4 L/6 L L/2 L
=?“ Idydx+.[ J‘dydeI
0 L/2 L/6x+L/3
2 2 2
_ AL TR oy
12 24 72
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1 xl 1
19. J‘Oj.ozdydxzj.odx =1
1
(a) jy;dx=—1n<y),o<y<1
<1
(b) IO;dy=1, 0<y<l

1
(©) E

(d) Integrating by parts gives that
1 1
[ ¥ n()dy=—1-[ (yIn(y)-y)dy

yielding the result
1
EY]= =] yin(y)dy = 1/4

20. (a) yes: f(x)=xe ™, f(y)=e”,0<x<00,0<y<ow

1
(b) no: fi(x) = J.f(x,y)dy:2(1—x),0<x<1

y
f0)= [ £0ey)de=2y,0<y<1
0
21. (a) We must show that .[ ’ I N f(x,y)dxdy =1. Now,

J.OO Iw f(x,y)dxdy = J.lj. l_y24xy dxdy
—0d oo ’ 0J0
= [ 1200~ yyay
! 2, .3
= [ 120257+ ")dy
= 12(12-2/3 + 1/4)= 1
1
(b) EX) = [ xfy (x)dx
= jlxj 1_x24x dydx
X, 2w dy
1
= jolzxza—x)zdx = 2/5

(c) 2/5

80
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22. (a) No, since the joint density does not factor.

(b) fix) = jol(x+y)dy —x+1/2, 0<x<1.

1pl-x
(€) PIX+Y<1}= jojo (x+ y)dydx

- j;[x(l—x)+(1—x)2/2]dx =1/3

23. (a) yes
frx) = 12x(1 —x)J‘Olydy =6x(1-x), 0<x<1

fily) = 12yj01x(1—x)dx —2y,0<y<1

(b) EX] = [ 01 6x>(1—x)dx = 1/2

(©) BN - | 012y2dy -3
(d) Var(X) = jol6x3(1—x)dx—1/4 = 1/20

(e) Var(Y) = I;2y3dy—4/9 ~1/18

24, P{N=n}= py"'(1-p,)
(b) P{X =} =p/(1 - py)
(¢) PIN=n,X=j}= p"'p,

-1

25. eT by the Poisson approximation to the binomial.
l.

26. (a) Fypcla,b,c)=abc 0<a,b,c<1

(b) The roots will be real if B* > 44C. Now

P{AC<x) = j j dadc = decda+_i.xjilcda
00 0

c<x/a X

0<a<l
0<ce<1

=x—x log x.

Hence, Fc(x) =x —x log x and so
fac(x)=—logx,0<x<1

Chapter 6



b%/4

1 /
P{BY4> AC) = — j j log xdxdb
0 0

p* b?
~— —Zlog(b*/4) ldb
L 2 og( )}

_log2 5

6 36

I
[ S——

where the above uses the identity

x’logx x°

9

sz log xdx =
27. (@ PIX+Y<a}=| |e’dydx =a-1+e",a<]l

e’dydx =1-¢e(e—1),a>1

o!—,_‘ o'—.a

I
il

1 o
(b) P{Y> Xla} = j je—ydydx =a(l — e

0x/a

o ay

28, PXi/Xp<al= ”Ae—ﬁ%e*ﬂdxdy
00

= ]E(l —e M )lze%zydy

0

A Aa
L+Aa al+4,
P{XI/X2< 1} = L
+ A
29. P{PR<w)= j j 6x(1— x)2ydydx
x? y<w
0 x<1
0 y<1
\/;l 1 w/x?
= J- j 12x(1—x)ydydx+J- Jle(l—x)ydydx
00 Jw 0

=3w—2w"2 = 6w(1 + (log w)/2 — \w)
=4w*? - 3w(1 +logw), 0 <w<1

82 Chapter 6



30.

31.

32.

33.

(a) €’

(b) 1 —e?-2e?=1-3¢"
The number of typographical errors on each page should approximately be Poisson
distributed and the sum of independent Poisson random variables is also a Poisson
random variable.

(@) 1 —e*?—22e% - >2(2.2)/2!

5

4
(b) 1= D e 44y /i, (©) 1= > e*%(6.6)' /!
i=0

i=0
The reasoning is the same as in Problem 26.

(a) If W=X, + X; is the sales over the next two weeks, then W is normal with mean 4,400

and standard deviation 1/2(230)? = 325.27. Hence, with Z being a standard normal, we

have

P{W> 5000} = P{Z > M}

325.27
= P{Z> 1.8446} = .0326

(b) P{X>2000} = P{Z> (2000 — 2200)/230}
= P{Z>-87} = P{Z< 87} = 8078

Hence, the probability that weekly sales exceeds 2000 in at least 2 of the next 3 weeks
P>+ 3p*(1 — p) where p = .8078.

We have assumed that the weekly sales are independent.

Let X denote Jill’s score and let Y be Jack’s score. Also, let Z denote a standard normal
random variable.

(a) P{Y>X}=P{Y—-X>0}
~P{Y-X> 5}
_ P{Y—X—(l60—170) N .5—(160—170)}

JQOY¥ +(15°  4J(20) +(15)
~ P{Z> 42} ~ 3372

(b) P{X+Y>350} = P{X+Y>350.5}
:P{ X +Y-330 20.5 }

>
V20 + (157 {J(20) +(15)
~ P{Z> 82} ~ 2061
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34.

35.

36.

37.

38.

39.

84

Let X and Y denote, respectively, the number of males and females in the sample that never
eat breakfast. Since

E[X] = 50.4, Var(X) = 37.6992, E[Y]=47.2, Var(Y) = 36.0608

it follows from the normal approximation to the binomial that is approximately distributed as
a normal random variable with mean 50.4 and variance 37.6992, and that Y is approximately
distributed as a normal random variable with mean 47.2 and variance 36.0608. Let Z be a
standard normal random variable.

(a) P{X+Y>110} =P{X+Y>109.5}
{X+Y—97.6 109.5—97.6}
=p >
J73.76 J73.76
~ P{Z>1.3856} ~ .0829

(b) P{Y>X}=P{Y-X>-5}
_ P{Y—X—(—3.2) N —.5—(—3.2)}
J73.76 \73.76
~ P{Z> 3144} ~ 3766

(a) PIX,=1|X=11=4/12=1-PX,=0|X,=1}

(b) PIX,=1|X=01=5/12=1-P{X,=0| X, =0}

(a) PIX,=1|X=11=513=1-PX,=0|X,=1}

(b) same as in (a)

(a) P{Y,=1|Y,=11=2/12=1-P{Y;=0|YV,=1}

(b) P{Y,=1]¥,=0}=3/12=1-P{Y,=0| ¥, =0}

(a) P{Y,=1|Y,=1} =p(1, )/[1 - (12/13)']=1-P{¥,=0| Y, = 1}

(b) P{Y,=1]Y,=0} =p(1,0)/(12/13) =1 - P{Y, = 0| ¥, = O}
where p(1, 1) and p(1, 0) are given in the solution to Problem 5.

11
(a) P{X=/, Y=i}=g;,j=1,...,j,i=1,...,j

5 5
(b) P{X=j|Y=i}=; Zl/Sk:l M1k, 52/
JI k=i

J/ k=i

(c) No.
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PY =i, X =i} 1
P{X =it  36P{X =i}
2
36P{X =i}

40.  Forj=i: P{Y=ilX=i} =
Forj<i: P{Y=j|X=i} =

Hence

2=y 1

1= 2P{Y:]|X:i}—
Jj=1

2i—-1

and so, P{X =i} = and

1

P{Y=jlXx=i= 2i2‘i

2i—1

—x(y+1)
xe -
S eresniid (s 1)’xe™ ™, 0 <x

xe gy

2. (@ fxly = f

xefx(erl)

(®) frixv]x) = f— =xe™,0<y

xe—X(y+1)dy

walx

P{XY<a} = J‘ Ixe_x(y”)dydx
00
= j(l —e e dx=1-¢"
0

fi(a)=€e",0<a

43 fle(y|x): t(xZ_yz)e*x
S (x*—yH)eVdx

3
=S ), ey sx

_ 3 2 2
Frarlo = 5[ 600

= %(xzy—y3/3+2x3/3), —x <y<x
X

Chapter 6
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44,

45.

46.

47.

48.

49.

50.

86

P{N =nlA}g(A
Al = PN =l

P{N =n}
=Cie V' ae (ai)™
— Cze—(m-l)ﬂ/vﬁs—l

where C and C, do not depend on A. But from the preceding we can conclude that the
conditional density is the gamma density with parameters o+ 1 and n + 5. The conditional
expected number of accidents that the insured will have next year is just the expectation of
this distribution, and is thus equal to (n + s)/(a+ 1).

P{Xi> X+ X3) + P{XG > X + X6 + PG> X + X

= 3P{Xl >X2 +X3}

= 3 [ [ nx,d,
¥ > >3 (takea=0,b=1)

11-x3

f J.dxldxzdx3—3_|. I(l X, — X;)dx,dx,
0

Xy +X3

_ lx3

Iy =1/2.

|
g

Jxy, ()= 25" ‘ﬁxe xdx:l xe~ ﬁxe_xdx}

=30(x + 1)%e xe [l —e*(x+ D]

(L—zdf
L
3/4 3/4

j fr, () = jx (1—x)2dx

1/4 1/4

(a) P{min X;<a} =1-P{min X;>a} =1- [ [P{X, >a} =1-¢*

(b) P{max X;<a} = [[P{X, <a}=(1-e™)’

2
Y
41
Sxgxy 6Y) = —'ZX(J.ZZdzJ 2y, x<y
) X

= 48xy(y* — x°).
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51.

52.

53.

54.

l—aa+x
Py~ Xp<ab = [ [4800( - x*)dyax
0 0
11

+ jj48xy(y2—x2)dydx

1-a 0

fomO) =" =20 0<r<1,0<0<2x
: V4 2

Hence, R and @ are independent with &being uniformly distributed on (0, 27) and R having
density fz(r) =2r, 0 <r<1.

fodr,@)=r, 0<rsin <1, 0<rcos 0<1, 0<O<m2, 0<r<+2

I i | RYEN
—x '“cosuN2 —z '“sinu+2 .
=cos’u+sinfu=1

J=12
—~/2zsinu \522 cos u

1
Suu, z) - 2—6_2 . Butx*+)*=2zs0
T

1 2,2
Srerx,y)= ——e 12
2z

y ox
(@ fu=xy,v=xy,thenJ=|; _ | = X and

Sl ——" y

y oy

y=Aulv,x= \/E Hence,

(b)f”"/(u’v):LfXY(\/EaVu/V): 12,M21,1<v<u
v 2vu u

1 1
fu(u)=J- V2dv=710gu,u21.

1/u

Forv>1

71 1
0= [ =g

v

Forv<l1

Tl 1
fiv) = J.ﬁduza,0<v<l.

1/2
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55.

57.

58.

59.

60.

88

(@) u=x+yv= x/y:>y—L x:_uv
v+l v+1
B = 5+— =—2(x+y)=—(v )
/'y —x/y Yoy y U
Juy (U, v) = LO0<uv<l+v,0<u<l+v
(+1
: O TR
yi=xitx,m=e'. J =] | =—e" =y,
e' 0

x1=log y», x, =y, —log y»

fY Y (yl y2) = Lie_ll()ghle—l(yl—logyz)
1-12 >

Y

1

=— e 1 <y, 1 >logy,

Y2

U=x+ty, v=xtz, w=y+tz=z=

1 1 0
J=11 0 1 ==2
01 1
1 1
U, v, w) = —expy——
N ) 21){2

PY;=i,j= Sk+ 1} =P{Y;=

k\(n—k)! .
= —,P{n+1—ZYi=zk+l

ki(n = k)n!, if D i =n+1

v+w—u vV—w+u
X =

w—v+u

b

Ij,J = k} P(Yie1 = iknt |

n:

i=l
k+1

J=l

0, otherwise

(u+v+w)},u+v>w, utw>v, vtwtu

= l],

Thus, the joint mass function is symmetric, which proves the result.

The joint mass function is

PXi=x,i=1,...n}= 1/[2),)@- e{0,1},i=1,

As this is symmetric in xy, ..

., Xn the result follows.

=1, ...

Y, =i, =1,...k}

’k}
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Theoretical Exercises

1. P{Xﬁaz, YSb2}=P{a1<XSa2, b1<YSb2}
+P{X3a1, b1<YSb2}
+P{a1<XSa2, Yﬁbl}
+P{X<a, Y<b}.

The above following as the left hand event is the union of the 4 mutually exclusive right hand

events. Also,

P{XSCI], YSb2}=P{XSa1, b1<YSb2}
+P{X<ay, Y<b}

and similarly,

P{Xﬁaz, ngl}:P{CZISX S(lz,<Y§b1}
+P{XSa1, YSbl}

Hence, from the above

F(az, bz) = P{a1 <X< ay, bl <Y< bz} +F((11, bz) —F(al, bl)
+F((12, b]) —F(Cll, b]) +F(a1, b])

2. Let X; denote the number of type i events, i=1, ..., n.

Zn: 7 events}

1

P{X] =r, ...,X,,=rn} = P{Xl :rl""ﬂXn =r,

X e‘lini/(irl) !

“TTe G, fn
i=1

3. Throw a needle on a table, ruled with equidistant parallel lines a distance D apart, a large

. . 2
number of times. Let L, L < D, denote the length of the needle. Now estimate 7 by E

where f'is the fraction of times the needle intersects one of the lines.

Chapter 6
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90

(a) Fora>0
FAa)=P{X<Lal}

waly

= | [ £ fr(dxdy
= [Fe(@) fy )y
0
@)= [ (@), vy
0

(b) FAa)=P{XY<a}

waly

= [ [£e@)fr(dxdy
00
= [Fe(al» fy(»)dy
0
140 = [ frtal s
0

If X is exponential with rate 4 and Y is exponential with rate x then (a) and (b) reduce to

A
(8) FAa)= [2e™ yuedy
0

(b) FrAa)= J./ie_M/yéye_”ydy
0

Interpret X; as the number of trials needed after the (i — 1)* success until the i success
occurs, i = 1, ..., n, when each trial is independent and results in a success with probability p.

Then each X; is an identically distributed geometric random variable and ZX . , representing

i=1
the number of trials needed to amass n successes, is a negative binomial random variable.

(a) P{cX<a}=P{X<alc} and differentiation yields

fix(a) = lfX(a/c) _ L “Qale)y'T({1).
c c
Hence, cX is gamma with parameters (¢, A/c).

(b) A chi-squared random variable with 2n degrees of freedom can be regarded as being the
sum of n independent chi-square random variables each with 2 degrees of freedom
(which by Example is equivalent to an exponential random variable with parameter A).

Hence by Proposition X, is a gamma random variable with parameters (n, 1/2) and the
result now follows from part (a).
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10.

11.

12.

() PIW<tt=1-P{W>t=1-PX>t,Y>1 =1 —[1 - Fx(®)] [1 — Fx(®)]

() f(®) = O[] — FUO] + (@) [1 = Fx(9)]
Dividing by [1 — Fx(1)][1 — Fx(#)] now yields
A8) = fx(@)/[1 = Fx()] + 0)/[1 = F(#)] = Ax(?) + Ax(2)

P{min(X,, ..., X,) >t} =P{X, > 1, ..., X, > £}

- at_ nt
=e¥ et =e"

thus showing that the minimum is exponential with rate nA.

If we let X; denote the time between the /™ and (i + 1)™ failure, i =0, ..., n — 2, then it follows

from Exercise 9 that the X; are independent exponentials with rate 24. Hence, ZX . the

amount of time the light can operate is gamma distributed with parameters (n — 1, 21).

[l

I= X1) ... fixs)dx;...dx
x1<x2>x3<x4>x5f(l) foxs)ex ’
- .H.[.H du; ... dus by u;=F(x;), i=1,...,5
Uy <uy >uy <Uy >Us
0<M,‘<1

= [I§u,du,...du,
= [Ila-u)/2 dus...
= [[[u, —ul /31/ 2du,du,

1
- j[u2 —u*/3]/2du =215
0

Assume that the joint density factors as shown, and let

C = r g(x)dx, i=1,..,n

Since the n-fold integral of the joint density function is equal to 1, we obtain that

- 11e
i=1
Integrating the joint density over all x; except x; gives that

fr, ) =g, ]C =2,(x)/C,

i#j

Chapter 6
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13.

14.

15.

16.

92

If follows from the preceding that

S, ) =T [ fx, ()
Jj=1

which shows that the random variables are independent.

0

No. Let X, = {1 if trialiisa success  pon

fX\Xl seves X (X

n+m

and so given ZX . = n the conditional density is still beta with parameters n + 1, m + 1.

1

PX=i|X+Y=n=P{X=i,Y=n—-i}/P{X+Y=n}

PX=k|X+Y=m}

PX=n,Y=m)

xl""’anrm) =

_ pd-

P{xl,...,xn+m|X =X}
P{x X, )

_ Cxe; (1 _ x)11+m—2x,»

p) "' p(1—p)y " 1

Sy (x)

(” N 1)pz(l -p T

_PX =k X+Y=m

PIX+Y =m}
_PX=kY=m-k}

P{X+Y =m)

1

(

m

(2"}9’” (1-py™

2n
m

Y P(X =nY =m|X, =i))P(X, =i)

= e*(iﬁ%*%)

min(n,m) n—i A’jm—i i

= (n=D!(m-i)! !
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P{X, = max(X, X,, X5)} _ 1/3

17. a) PIXi> X | X1 > X3} = =2/3
(@) PX> XX > X5} LY > Y] 0
|
(b) PLX; >X2|X1<X3} _ P{X,;> X, > X,} _ 1/3! —1A
P{X, < X,} 1/2
|
© P> Xl x> xy = D> X0 > Xa) 18,
P{X, > X} 1/2
d) PX > X0 | Xo <X} = P, = minX Xp. X3} _ 13 _ )3

P{X, < X3} 1/2

18. P{U>s|U>al =P{U>s}/P{U>a}
-5

,a<s<l1
l1-a

P{U<s|U<al =P{U<s}/P{U<a}
=s/a,0<s<a

Hence, U | U> a is uniform on (a, 1), whereas U | U < a is uniform over 0, a).

P{N =n|W =w} f;(w)
P{N =n}

e ()
n.

e o Priw, ]

19 flwwln)=

=Ce"

where C and C; do not depend on w. Hence, given N = n, W is gamma with parameters

(n+t, p+1).
20. Swix et n(Wlxl,...,xn) = f(xl}"(;xn W))Cf)W(W)
15eees X,
= Cﬁwe_wxieiﬂw(ﬂw)’*l
-w| S+ N X;
= Ke [ Zl: annl

Chapter 6
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21.

22.

23.

94

Let X;; denote the element in row 7, column j.

P{X, is s saddle point}

.....

= PimkinXik > HES,XX"/;PiX” =mkinXik}

where the last equality follows as the events that every element in the i row is greater than
all elements in the /™ column excluding Xj; 1s clearly independent of the event that Xj; is the
smallest element in row i. Now each size ordering of the n + m — 1 elements under
consideration is equally likely and so the probability that the m smallest are the ones in row i

is l/(n +nn; _1) . Hence

“DI(n-1)
P{Xj is a saddlepoint} = ! ! = (m = Din=1)!

(n+’r1111—1jm (n+m-1)!

and so

P{there is a saddlepoint} = P(V{X jlsa saddlepoint})
] -
= ZP{X ; 1s a saddlepoint}
L]
_ mln!
(n+m-1)!
For0<x<1
P(X]=nX-[X]<x)=Pn<X<n+x)=e™ - "=l -
Because the joint distribution factors, they are independent. [X] + 1 has a geometric
distribution with parameter p = 1 — e *and x — [X] is distributed as an exponential with rate A

conditioned to be less than 1.

Let Y=max (Xi, ..., X)) , Z=min(X}, ..., Xy)

P{Y<x}=P{X;<x,i=1,..,n}= ﬁP{X,. <x}=F"(x)
1

P{Z>x}=P{X;>x,i=1,...,n} = ﬁP{Xl. >xy=[1-Fx)]".
1
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24, (a) Letd=D/L. Then the desired probability is

I-(n-)d 1~(n-2)d 1-2d 1-d 1
n! j J- j I jdxndx

0 xi+d  x, 3+dx,_,+d x,_+d

=[1—(n- 1)d]"

.dxydx,

n—1°

(b) 0
25, F, (0= Z@F (O[1= F()""
Sy, () = Z@’F @)1= Fx)]"™
- Y[ P)F @ - - F@rT e

n

— i-1 n—i
- Z—(n_l),( 0= F 0]

i=j
) k—t+1#ék—l)!lrk_l(x)f(x)[l_F(x)]n_k byk=i+1
mF ) S = Fr
2. frpn® = a1y
27. In order for X =x;, X;,=x, , i <j , we must have

(i) i—1 ofthe X’s less than x;

(i1) 1 of the X’s equal to x;

(iii)j — i — 1 of the X’s between x; and x;
(iv) 1 of the X’s equal to x;

(v) n—j of the X’s greater than x;

Hence,

fx(n X(j) (i, x_/)
n!
(-G —-i-Dl(n-j)!

Chapter 6
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29.

30.

33.

96

Let Xj, ..., X, be n independent uniform random variables over (0, a). We will show by
induction on # that

a-t ift < a
P{iXp — Xty > 8} = a

0

It is immediate when n = 1 so assume for n — 1. In the n case, consider

ift>a

P{Xuy— Xur) > 1| Xy = 5}

Now given X,y = s, X(1y , ..., X(-1) are distributed as the order statistics of a set of n — 1
uniform (0, 5) random variables. Hence, by the induction hypothesis

s=0)" ifr< s
P{Xgy — Xy > t| Xy = 53 = s
0

ift>s

and thus, for ¢t <a,

n-1
n

fs—t ns"! a-t)
P{)((k)_)((k])>t:j[ . j o dSZ( p j
t
l nSi’l*l

n—1
which completes the induction. (The above used that f Xon (s)= n[iJ = ).
! a a

n

(a) P{X> X} =P{Xislargestofn+1}=1/(n+1)
(b) P{X> X} =P{Xisnotsmallestofn+ 1} =1-1/(n+1)=n/(n+1)

(c) This is the probability that X is either the (i + 1)* or (i + 2)™ or ... /™ smallest of the n + 1
random variables, which is clearly equal to (j — 1)/(n + 1).

The Jacobian of the transformation is

J |_l =y’ /|x| . Therefore, as the solution of the equations u =x, v=x/yisx=u, y =

Hence,

u/v, we see that

. U 1 w2
ﬁ”"(u’ V): |V_2|f)(’y(u,U/V) =|V_Z|Ze (u”+u”/v7)

Chapter 6



Hence,

Chapter 6
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2

© 2 2
J‘ |u|ef" 12 g,

—0

© 2 2
J. |u|e’“ "2 du , where o =Vv/(1 +1%)
—0

00

2 2
—u?/2
ue ™ "% du
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Chapter 7

Problems

1. Let X =1 if the coin toss lands heads, and let it equal 0 otherwise. Also, let ¥ denote the
value that shows up on the die. Then, with p(i, j) = P{X =1, Y =}

6 6,
Efreturn] = > 2jp(1, /) + ZéP(O,])
j=1 J=1

%(42 +10.5) =52.5/12

2. (a) 6-6-9=324

(b) X=(6-S5)6-W)9-R)

(c) E[X]=6(6)(6)P{S=0, W=0,R=3}+6(3)(9)P{S=0, W=3,R=0}
+3(6)(9)PLS=3, W=0,R=0} +6(5)(7)P{S=0, W=1,R=2}
+5(6)(T)P{S=1,W=0,R=2} +6(4)8)P{S=0, W=2,R =1}
+A(6)8)P{S=2, W=0,R=1} +5(4)9)P{S=1, W=2,R=0}
+4(5)9)PLS=2, W=1,R=0} +5(5)8)PIS=1,W=1,R=1}

1 9 6 9 6 6
= @[216[ 3) + 324( 3) +420- 6[ 2) + 384( 2)9 + 360( 2j6 + 200(6)(6)(9)}

3
~ 198.8

3. E[|X -]

‘1= jj-|X—y|adydx. Now
00

1 x 1

hemsffdy = ey oo -

0 0 x

1-x

= J-u“du + ju“du
0 0
=[x+ (1 =x)""a+1)

Hence,
1 1
Ellx -v'1= — j [+ (1— %) Jdx
a+1 0
= ;
(a+1)(a+2)
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m m

4. E[lX-Y|] = %ZZV—A. Now,

i=1 j=1

l—J| Z(z N+ Z(J—l)

J=i+l

= [l(l -D+m-Dm-i+1)]2

Hence, using the identity Y /> = m(m + 1)(2m + 1)/6, we obtain that
j=1

Ellx-1]] [1 m(m+1)2m+1) m(m+1)} (m+1)(m—-1)

m 6 2 3m
5. The joint density of the point (X, ¥) at which the accident occurs is
f,y)=—=,-312<x,y<3/2
_f(X)f(y)
where

flay=1/3,-32<a<3/2.

Hence we may conclude that X and Y are independent and uniformly distributed on
(-3/2, 3/2) Therefore,

4372
E[|X|+|Y|]—2 J. gxdx——J‘xdx 3/2.

-3/2

6. {Zx} ZE[X] =10(7/2) = 35.

i=1

N N
8. E[number of occupied tables] = £ {Z X ,} = ZE [X;]
i=1 j=
Now,

E[X;] = P{i" arrival is not friends with any of first i — 1}
=(1-p)"

and so

N
E[number of occupied tables] = Z(l -p)!

i=1
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10.

100

Let X; equal 1 if both choose item i and let it be 0 otherwise; let Y; equal 1 if neither 4 nor B
chooses item i and let it be 0 otherwise. Also, let /; equal 1 if exactly one of 4 and B choose
item i and let it be 0 otherwise. Let

(a) E[X]= iE[Xi] = 10(3/10*= .9

10
(b) E[Y]= ) _E[Y]] =10(7/10)’ = 4.9

i=1
(¢) Since X+ Y+ W =10, we obtain from parts (a) and (b) that
E[W]=10-.9-49=42
Of course, we could have obtained E[ W] from
10
E[W] =Y E[W;] = 10(2)(3/10)(7/10) = 4.2
i=1

Let X; equal 1 if urnj is empty and 0 otherwise. Then
E[X;] = P{ball iis notinum j, i > j} = [ JA-1/i)
i=j

Hence,

n n

(a) E[number of empty urns] = ZZ(I —1/7)
j=li=j

(b) P{none are empty} = P{ball; is in urn j, for all j}
=]
j=1

Let X; equal 1 if trial i is a success and 0 otherwise.

(a) .6. This occurs when P{X|; =X, = X;} = 1. It is the largest possible since
1.8 = ) P{X, =1} =3P{X, =1}. Hence, P{X;=1} = .6 and so

PX=3}=PX,=X,=X;=1} <P{X,=1} = 6.

(b) 0. Letting

if U < if U < if U <
XlzllfU_.é XzzllfU_.4 ijllfU_.3

0 otherwise 0 otherwise 0 otherwise

Hence, it is not possible for all X; to equal 1.
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11. Let X; equal 1 if a changeover occurs on the i flip and 0 otherwise. Then

EX]=P{i—1isH,iisT}+P{i—1isT,iis H}
=2(1-p)p, i 22.

E[number of changeovers] = E[ZXI.] = Z”:E[Xi] =2(m—-1(1 -p)

i=1

12. (a) Let X;equal 1 if the person in position i is a man who has a woman next to him, and let it

equal 0 otherwise. Then
%2” - ifi=1,2n
n P
E[X;] = Y
2 2n-1D)(2n-2)

Therefore,
E{i)(,} = iE[Xi]
i=1

=1( 24 (an-2)-" j

i=1

2\ 2n-1 4n-2
_ 3n’—n
dn-2

(b) In the case of a round table there are no end positions and so the same argument as in part
(a) gives the result

11 (n—-D(n-2) | 3’
Qn-12n-2)| 4n-2

where the right side equality assumes that n > 1.

13. Let X; be the indicator for the event that person i is given a card whose number matches his
age. Because only one of the cards matches the age of the person i

1000

1000
E{ZXI} =Y E[X]=1
i=1 i=1

The number of stages is a negative binomial random variable with parameters m and 1 — p.

14.
Hence, its expected value is m/(1 — p).

101
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15.

16.

17.

18.

102

Let X;;, i #j equal 1 if i and j form a matched pair, and let it be 0 otherwise.

Then

E[X;;]1= P{i,j is a matched pair} =
n(n—1)

Hence, the expected number of matched pairs is

n 1 1
fon g ety

i<j i<j

1 -x2/2

ElX] = Iym

y>x

Let /; equal 1 if guess i is correct and 0 otherwise.

(a) Since any guess will be correct with probability 1/ it follows that
E[N]= Y E[I,]=n/n=1
i=1

(b) The best strategy in this case is to always guess a card which has not yet appeared. For
this strategy, the i™ guess will be correct with probability 1/(n —i + 1) and so

E[N] = il/(n —i+1)

(c) Suppose you will guess in the order 1, 2, ..., n. That is, you will continually guess card 1
until it appears, and then card 2 until it appears, and so on. LetJ; denote the indicator
variable for the event that you will eventually be correct when guessing card i; and note
that this event will occur if among cards 1 thru i, card 1 is first , card 2 is second, ..., and
card i is the last among these i cards. Since all i! orderings among these cards are equally
likely it follows that

E[J]=1/i! and thus E[N]= E[ZJI-} = 21/1'!
i1

i=1

1

{1 match on card i

52
E[number of matches] = E{ E I,}, I = 0
- S

= 52% =4 since E[[;]] = 1/13
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1 . .
19. (a) E[time of first type 1 catch] — 1 =— —1 using the formula for the mean of a geometric
b

random variable.

(b) Let

1 atype jiscaught beforea typel
710 otherwise.

Then

EliZXJzZE[Xj]

J#l Jj#l
= ZP{type Jj before type1}
J#l
=2 P /(P +R),

Jj#l

where the last equality follows upon conditioning on the first time either a type 1 or type j
is caught to give.

P.
P{type j before type 1} = P{j|jor 1} = —2
B +R

20. Similar to (b) of 19. Let

{1 ball j removed before ball 1
Y= ...

E{Z X_/] = > E[X,]= Piball j beforeballl}

J#1 Jj#l Jj#l

=ZP{j|jorl}

J#l

=Y WHIWO)+W())

Jj#l

100y 1 Y (364)”
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(b) Let X;= {0

365 365
E{ZXJ} :ZE[X].]:365
1 1

22. From Example 3g, 1 + é+§+§+E+6

23. E{ZS:X,. + ZSZY} = ZS:E[XI.]+ ZS:E(Yi)
1 1 1 1

23 .3 147

1 if day jis someones birthday

1120 120 110

24, Number the small pills, and let X; equal 1 if small pill 7 is still in the bottle after the last large
pill has been chosen and let it be 0 otherwise, i =1, ..., n. Also,let Y, i=1, ..., mequal 1 if
the i small pill created is still in the bottle after the last large pill has been chosen and its

smaller half returned.

Note that X = Zn:Xi +Zm:Yi. Now,

i=1 i=l1

E[X;] = P{small pill i is chosen after all m large pills}

= U(m+1)

E[Y;] = P{i" created small pill is chosen after m — i existing large pills}

=1/(m—-i+1)

Thus,

(a) E[X]=n/(m+ 1)+ Zmll/(m—iJrl)

i=l1
(b) Y=n+2m — X and thus

E[Y]=n +2m — E[X]

25. P{NZn}P{XIZXZZ...ZX,,}=l'
n.

o0 ch
El = P{N > n} = —=e

[V] Z,{ } Z‘n'

104
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26.

27.

28.

1
(a) E[max] = j Pi{max > 1}dt
0

(1- P{max < t)}dt

n

O ey = O —y —

A-¢"/dt =
n+l1

1
(b) E[min] = j pimin > £}4¢
0

1
n+1

=ja—0%h=
0

Let X denote the number of items in a randomly chosen box. Then, with X; equal to 1 if item
i is in the randomly chosen box

101 101 101
E[X] = E{ZX,} = E[X,]= T 10
i=1 i=l1

Hence, X can exceed 10, showing that at least one of the boxes must contain more than 10
items.

We must show that for any ordering of the 47 components there is a block of 12 consecutive
components that contain at least 3 failures. So consider any ordering, and randomly choose a
component in such a manner that each of the 47 components is equally likely to be chosen.
Now, consider that component along with the next 11 when moving in a clockwise manner
and let X denote the number of failures in that group of 12. To determine E[X], arbitrarily
number the 8 failed components and let, fori=1, ..., 8,

_ |1, if failed component i is among the group of 12 components
" 10, otherwise

Then,

and so

8
E[X]= X E[X/]

i=l1
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29.

30.

31.

106

Because X; will equal 1 if the randomly selected component is either failed component
number i or any of its 11 neighboring components in the counterclockwise direction, it
follows that E[.X;] = 12/47. Hence,

E[X] = 8(12/47) = 96/47

Because E[X] > 2 it follows that there is at least one possible set of 12 consecutive
components that contain at least 3 failures.

Let Xj;; be the number of coupons one needs to collect to obtain a type i. Then

E[X,]=8, i=12
E{X.]1=8/3, i=34
E[min(X,,X,)]=4
Elmin(X,, X )]=2, i=12, j=34
E[min(X;,X,)]=4/3
E[min(X, X,,X)]=8/5, j=34
E[min(X,;, X; X,)]=8/7, i=1,2
E[min(X,,X,,X;,X,]=1

(a) E[maxX,-]=2-8+2-8/3—(4+4-2+4/3)+(2‘8/5+2-8/7)—1=%

(b) E[max(X;, X3)]=8+8—-4=12
(¢c) Elmax(X;, X3)]=8/3+8/3-4/3=4
(d) Let Y} = max(Xy, X3), ¥ = max(X3, Xy). Then
E[max(Yy, Y,)] = E[Y1] + E[Y>] — E[min(Y;, 12)]
giving that

. 437 123
Elmin(Yy, 15)]=12+4 - —=—
[min(Y, Y>)] 35 35

E[(X - V)]’ = Var(X - Y) = Var(X) + Var(-Y) = 2¢°

10
Var[z X,.J =10 Var(X,). Now

i=1
Var(X)) = E[X]]-(7/2)°

=[1+4+9+16+25+36]/6—49/4
=35/12

10
and so Var(ZXiJ =350/12.
i=1
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32.

33.

34.

Use the notation in Problem 9,
x= ZX j
j=1

where Xj is 1 if box j is empty and 0 otherwise. Now, with

EX]=P{X;=1}= H(l —1/i), we have that
i=j
Var(X) = ELX)(1 - E[X)).
Also, forj <k
k—1 n
EXx]=[Ja-1n] Ja-2/i
i=j i=k
Hence, for j <k,

k— n n n
Cov(X;, X;) = l_i(l ~upJa-2/p-TJa-up] Ja-1/i
i=j i=k i=j i=k

Var(X) = Z":E[X_i](l — E[X,])+2Cov(X ,, X,)

j=1
(a) E[X*+4X +4]=E[X?] + 4E[X] + 4 = Var(X) + E}[X] + 4E[X] + 4 = 14

(b) Var(4 + 3X) = Var(3X) = 9Var(X) =45

Let X, = 1 if coupl'e Jj are seated next to each other
0 otherwise
(@) £ i)( 102 =2, PX;=1} = 2 ince there are 2 people seated next to wife j
=" 19 19 Y 19 peop J

and so the probability that one of them is her husband is % .

(b) Fori#j, E[XX]=P{X,=1,X=1}
=PX=1}PX=1]X=1}

- %% since given X; = 1 we can regard couple i as a single entity.

10 2
Var Z){ :103(1_3 +10-9 ii_ i
= 190 19 1918 (19
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35.

36.

37.

108

(a) Let X; denote the number of nonspades preceding the first ace and X, the number of
nonspades between the first 2 aces. It is easy to see that

P{Xlzi, Xzzj}:P{Xlzj, Xzzi}

. 4
and so X| and X, have the same distribution. Now E[X|] = ?8 by the results of Example
. 1
3jand so E[2 + X, + X5] = %

265

(b) Same method as used in (a) yields the answer 5[?—2 + lj = TR

(c) Starting from the end of the deck the expected position of the first (from the end) heart is,

from Example 3j, % . Hence, to obtain all 13 hearts we would expect to turn over

52 — ﬁ +1= E(53).
14 14
Let X, = 1 rolli lar?ds on 1’ Y, - 1 rolli lar.1d5 on?2
0 otherwise 0 otherwise
Cov(X,, Y)) = ELX; ¥]] - E[XE[Y]
_ L i=j(sinceX;Y; =0 wheni =
_ 36 :
R =0 i#j
36 36
Cov) X, D Y, =D > Cov(X,.Y))
i J i
__"n
36

Let W,, i =1, 2, denote the i"™ outcome.
Cov(X, Y)=Cov(W,+ W, , W, — W>)

= Cov(W,, Wy) — Cov(W,, W>)
= Var(W,) — Var(W,) =0
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39.

40.

41.

Chapter 7

@ x —2x
ELY] = [f. (v, £, = [ —dy = 2™
0

0

2 —2x
¢ dx
X

E[Y]= j Yy Ny, 1y () =f
0 0

—2x

dxdy

Cov(Y,, Y,) = Var(¥,) =30
Cov(Y,, Yir1) = Cov(X, + X1 + Xpia, X1 + Xoio + Xii3)
= Cov(Xyi1 + X2y X1 + Xo2) = Var(X,iy + X,i0) =20

COV(Ym Yn+2) = COV(Xn+25 Xn+2) = 02
Cov(Y,, Y,+;) =0 whenj >3

fy)=¢e? J.le_” “dx = ™. In addition, the conditional distribution of X given that ¥ =y is
y
exponential with mean y. Hence,
E[Y] = 1, E[X]= E[E[X| Y]] = £[Y] = |

Since, E[XY] = E[E[XY| Y]l= E[YE[X| Y]] = E[Y*] =2 (since Y is exponential with mean 1, it
follows that E[Y*] = 2). Hence, Cov(X, Y)=2—-1=1.

The number of carp is a hypergeometric random variable.

o

E[X] =
[ 10

_20(80) 3 7 336

= from Example 5c.
99 1010 99

Var(X)
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42. (a) Let.X;= 1 pairi c9n51sts of a man and a woman
0 otherwise

10

EX]=P{X;=1} = —

[Xi] = P{ T

E[XX]=PiX;=1,X 1}—P{X,»:1}P{Xj=1|X2=1}
109 .
1917°

i)z

Var ZX _102(1_Ej 110-9 Ei_(mj 900 18
190 19 1917 \19 19217

(b) X, = 1 pair i consists of a married couple
" 10 otherwise
E[X]=L E[X:X)]=P{X;,= 1}P{X—1|X—1}_iL izi
ST l 917”7/

2
Var ZX _10L1_5 10-9 ii_(LJ _ 18022
919 1917 \19 (19)> 17
43, E[R]=n(n+m+1)2

n+m

2.7 .
nm i=1 _(l’l‘f‘l’l’l‘i‘l}

Var(R) = :

n+m-1\n+m

The above follows from Example 3d since when F = G, all orderings are equally likely and
the problem reduces to randomly sampling n of the n + m values 1, 2, ..., n + m.

110 Chapter 7



nm
+

n+m n+m
computed by using

44. From Example 81 . Using the representation of Example 21 the variance can be

0 , j=1
E[I]IH/‘] = n m n—1
n+mn+m—-ln+m-2 , n-l<j<l
0 , j=1
E[Ll;) = mn(m—1)(n—1)
m+m(n+m-D)(n+m-2)(n+m-3) , n-1<;<I
45, (@) Cov(X, + X,,X, + X3) :l
JVar(X, + X,)/Var(X, + X;) 2
(b) 0

12
46. E[ILL]= ZE[1112| bank rolls 7/]P {bank rolls i}

i=2

= ) (P{rollis greater than i})* P{bank rolls i
g

= E[I]
> (E[1,])’
= E[Il] E[Iz]

47. (a) It is binomial with parameters » — 1 and p.

(b) Letx;; equal 1 if there is an edge between vertices i and j, and let it be 0 otherwise. Then,
D;= zkiiXi,k ,and so, for i #j

Cov(D;, D)) = COV{ZXi,kaZXr,jJ

k#i r#j
= 2.2 Cov(X, 1. X, )
k#i r#j
= Cov(X;;, X))
= Var(X; ))
=p(l-p)
where the third equality uses the fact that except when k= and r =i, X; , and X, ; are

independent and thus have covariance equal to 0. Hence, from part (a) and the preceding
we obtain that for i #J,

p(l-p) 1

Di,D/:
AAD:D) (n=Dp(l-p) n-1
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48.  (a) E[X]=6

(b) E[X|Y=1]=1+6=7

2 3 4
(©) 1l+ 2i1+3[iJ l+4[iJ (l)+[ij (5+06)
5 55 5)5 5)\5 5

49. Let C; be the event that coin i is being flipped (where coin 1 is the one having head
probability .4), and let 7 be the event that 2 of the first 3 flips land on heads. Then

P(T|C)P(C))
P(T|C)P(C))+ P(T|C,)P(C,)

_ 3(.4)*(.6) _
3(.4)°(.6)+3(.7)*(.3)

P(C | 1=

Now, with N; equal to the number of heads in the final ; flips, we have
E[N| T1=2+E[N, | 7]
Conditioning on which coin is being used, gives
E[N; | T] = E[N, | TC,]P(C\ T) + E[N;TC>]P(C; | T) = 2.8(.395) + 4.9(.605) = 4.0705

Thus, E[Nio | 7] = 6.0705.

-x/y =y 1
50. fX\y(x|y)=we e’ly =—eY, 0<x<w

J‘e_”ye_y/y dx
0

Hence, given Y =y, X is exponential with mean y, and so

EX|y=y]=2y’

SISl = 2L o<k
J‘e_y/ydx
0
T sl
E[X3|Y=y]=J.x3—dx=y3/4
y

0

52. The average weight, call it E[ W], of a randomly chosen person is equal to average weight of
all the members of the population. Conditioning on the subgroup of that person gives

E[W]= ZE{W| member of subgroupi]p, = Zwipi
i=1

i=1
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53.

54.

Let X denote the number of days until the prisoner is free, and let / denote the initial door
chosen. Then

E[X]=E[X|I=1](.5) + E[X|I=2](.3) + E[X| I=3](.2)
= (2 + E[X])(.5) + (4 + E[X])(.3) + .2

Therefore,

E[X]=12

Let R; denote the return from the policy that stops the first time a value at least as large as i
appears. Also, let X be the first sum, and let p; = P{X=i}. Conditioning on X yields

E[Rs]= D E[R| X =i}p,

i=2
12
= E[Rs)(p2+ps +pa) + zl'pi —Tp7
i=5
= %E[Rs] +5(4/36) + 6(5/36) + 8(5/36) + 9(4/36) + 10(3/36) + 11(2/36) + 12(1/36)
5
36
Hence, E[R5] = 19/3 = 6.33. In the same fashion, we obtain that

E[R,] + 190/36

1 1
E[Rs] = 3—2E[R6] +£[30 +40+36+30+22+12]

implying that
E[Rg] = 170/26 = 6.54
Also,

15

E[Rg] = g

1
E[R8]+£(140)

or,
E[Rg] = 140/21 = 6.67
In addition,

R
E[Ro] = 26E[R9]+36(100)

or

E[Ro] = 100/16 = 6.25
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55.

56.

57.

8.

114

And

24 1
E[Rio]= —E[R,]+—(64
[Rio] 36 [Ry] 36( )
or
E[R\0] =64/12~5.33
The maximum expected return is E[Rg].
Let N denote the number of ducks. Given N=n, let I, ..., I, be such that
_ J1 if duckiishit
' 0 otherwise

E[Number hit| N =n] = E{Z 1,}
i=1
" 6 10
= ZE[IZ.] = anl - [1 —'—j ], since given
i=1 n
N = n, each hunter will independently hit duck i with probability .6/n.

" 10
E[Number hit] = Zn(l ——6j e 6" /n!
n=0 n

1 elevator stops at floor i
Let/;= )
0 otherwise

N N N-1 k

E{;IJX—IC}—;E[IJX—IC]—N[l—(—N j }
Yol = (N-1)" _, (10)*
E{;@}_N—N;[ ~ je“’ -

= N— NV = N(1 — ')

E{ﬁ){l} = E[NJE[X] = 12.5
i=1

. Let X be the number that enter on the ground floor.

Let X denote the number of flips required. Condition on the outcome of the first flip to

obtain.

E[X] = E[X| heads]p + E[x| tails](1 — p)
=[1+1/1-p)lp+[1+1/pl(1-p)
=1+p/(1-p)+(1-p)p
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59.

60.

61.

n+l

(a) Eltotal prize shared] = P{someone wins} =1 — (1 —p)

(b) Let X; be the prize to player i. By part (a)
n+l
E{ZX,} =1-(1-p)"*
i=l1

But, by symmetry all E[X;] are equal and so

EX]=[1~(1-p)""Y(n+1)

(c) E[X]=p E[1/(1 + B)] where B, which is binomial with parameters » and p, represents the
number of other winners.

(a) Since the sum of their number of correct predictions is # (one for each coin) it follows
that one of them will have more than n/2 correct predictions. Now if V is the number of
correct predictions of a specified member of the syndicate, then the probability mass
function of the number of correct predictions of the member of the syndicate having more
than n/2 correct predictions is

P{icorrect} =P{N=i} +P(N=n—1i} i>n/2
=2P{N=1i}
=P{N=i|N>n2}

(b) Xis binomial with parameters m, 1/2.

(¢) Since all of the X + 1 players (including one from the syndicate) that have more than n/2
correct predictions have the same expected return we see that

(X+ 1) - Payoff to syndicate = m + 2
implying that

E[Payoff to syndicate] = (m + 2) E[(X+ 1)']

(d) This follows from part (b) above and (c) of Problem 56.
-5 o - PE(x)

(a) P(M<x)= ;P(M <x|N=n)P(N =n) :;F (x)p(1-p) TRy
(b) PM<x|N=1)=F(x)
(c) P(M<x|N>1)=Fx)P(M<x)

(d) PM<x)=PM<x|N=1)P(N=1)+PM<x|N>1PWN>1)
=Fp + Fx)P(M < x)(1 - p)

again giving the result

pF(x)

P = 1 F )
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62. The result is true when n = 0, so assume that
P{N(x)=>n} =x"/(n—-1)!

Now,
PING)>n+1} = J.P{N(x) >n+1|U, = yydy
0

P{N(x—-y)=n}dy

P{N(u) > n}du

O ey O C—

X

= Iu”’l /(n—1)! du by the induction hypothesis
0
=x"/n!

which completes the proof.
(b) EIN@®)]= D PIN(x)>n=Y P{N(x)2n+1}=) x"/nl=¢"
n=0 n=0 n=0

63. (a) Number the red balls and the blue balls and let X; equal 1 if the /" red ball is selected and
let it by 0 otherwise. Similarly, let ¥; equal 1 if the /™ blue ball is selected and let it be 0
otherwise.

COV(ZXI"ZYJJ = ZZCOV(Xi,Yj)

Now,
E[X;] = E[Y;] = 12/30

E[X;Y;] = P{red ball i and blue ball j are selected} = [1233 j / Gg j

Thus,

28) /(30
Cov(X, Y) = 80{(10)/(12j—(12/30)2} = _96/145
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(b) E[XY|X]=XE[Y|X]=X(12 - X)8/20
where the above follows since given X, there are 12-X additional balls to be selected from
among 8 blue and 12 non-blue balls. Now, since X is a hypergeometric random variable
it follows that
E[X]=12(10/30) = 4 and E[X?*] = 12(18)(1/3)(2/3)/29 + 4* = 512/29

As E[Y] = 8(12/30) = 16/5, we obtain

E[XY] = %(48 ~512/29) = 352/29,

and
Cov(X, Y)=352/29 — 4(16/5) = —96/145

64.  (a) E[X]=E[X|type 1]p + E[X | type 21(1 - p) = pas + (1 = p)aax

(b) Let I be the type.
EX| N = w, Varx|D= o}
Var(X) = E[o}]+ Var(x,)

= poi +(1=p)a; + ppi + (1= p)p ~[pay + (1= p)ps T’
65. Let X be the number of storms, and let G(B) be the events that it is a good (bad) year. Then
E[X] = E[X| GIP(G) + E[X| BIP(B) = 3(.4) + 5(.6) = 4.2
If Y is Poisson with mean A, then E[Y*] = A+ A*. Therefore,
E[X?] = E[X*| G]P(G) + E[X?| B]P(B) = 12(.4) + 30(.6) = 22.8
Consequently,

Var(X) =22.8 — (4.2)*=5.16

66.  E[X’]= %{E[Xz Y =11+ E[X?|Y = 2]+ E[X?|Y =3]}

9+ E[(5+ X)* 1+ E[(T+X)*]}

{83+ 24E[ X ]+ 2E[X*]}

{443+ 2E[X?]} since E[X] =15

Hence,

Var(X) = 443 — (15)* = 218.
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67.

68.

69.

70.

71.

118

Let F, denote the fortune after n gambles.

E[F,] = E[E[F, | F, 111 = E[2Qp - 1)Fyp + Fyy — (20 — 1)Fy1]

= (1 + (2p - 1)2)E[Fn—l]
~[1+(2p — 1YPEIF, 2]

=[1+@p - TEIF)

(a) .67+ 4e”

3 3
(b) 6022 + 4e>
3! 3!
3 3
P30 '66_26_23 " '46_36_3;
(c) P{3|0} = 300 _ » 3
P{0} 6e “ + 4de
K 1
a -Xx —xd -
() Je e X 5
0
© 3
®) [erEetde= 1 [eryay=T0 ]
L o 9 16
3
J‘e_xe_xfe “dx
2 2
c) 2 _c_“
© L 3* 81
je e Ydx

1

(@ [pdp=1/2
0
1

) [pldp=1/3
0

1 1
0 0

= ('7)—i!(” L LIy
1) (n+1)!
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72.

73.

75.

1 1
(a) PIN>i} = jP{N > i|pldp = j(l—p)"*ldp ~1/i
0 0

1

(b) PIN=i} =P{N>i} —P{N>i+1} = D
(1

(c) E[N] = iP{N >} = il/i — .
i=1 i=1

(a) E[R]=E[E[R|S]]=E[S]=u

(b) Var(R|S)=1,E[R|S]=S
Var(R) =1+ Var(S) =1 + &

(©) Jer) = [ f () (r] $)ds

_ Cje—(s—,u)z/ZO'Ze—(r—s)z/st

= Kj.exp{—[S—'tH-razzJ/Z( o QJ} ds exp {—~(ar’ + br)}
I+o 1+o

Hence, R is normal.

(d) E[RS] = E[E[RS| S]] = E[SE[R| S]) = E[S*] = 4 + &
Cov(R,S)=pl+ 0 — 1t =0
X is Poisson with mean A =2 and Y is Binomial with parameters 10, 3/4. Hence

(a) PIX+Y=2}=P{X=0)P{Y=2)+P{X=1}P{Y=1} + P{X=2}P{Y=0}

= ez(lzoj(sm)z(lm)g + 2e2[110j(3/4)(1/4)9 +2e72(1/4)"

(b) P{XY=0} =P{X=0} + P{Y=0} - P{X=Y=0}
=+ (1/4)" - e?(1/4)"°

(c) E[XY]=E[X]E[Y]=2-10- % =15
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T7.

78.

79.

120

tX+s Y]

The joint moment generating function, E[e can be obtained either by using

E[et)my] _ J'J’etxﬂyf(x’y)dy dx

or by noting that Y is exponential with rate 1 and, given Y, X is normal with mean ¥ and
variance 1. Hence, using this we obtain

E[etX+sY| Y= esYE[EtX| Y]= esYeYth /2
and so
E[etX+sY] _ etl /ZE[e(s+t)Y]
= P(U=s—t)" s+1<1
Setting first s and then ¢ equal to 0 gives

E[¢]= ¢ 2(1-1)", t<1
E[e"]=(1-5)""s<1
Conditioning on the amount of the initial check gives
E[Return] = E[Return | 4)/2 + E[Return | B]/2
= {AF(A) + B[1 — F(A)]}/2 + {BF(B) + A[1 — F(B)]}/2
={A+ B+ [B—-A]|[F(B) - F(A)]}/2
>(A+B)2
where the inequality follows since [B — A] and [F(B) — F(A4) both have the same sign.

(b) If x < A then the strategy will accept the first value seen: if x > B then it will reject the
first one seen; and if x lies between A4 and B then it will always yield return B. Hence,

B if A<x<B
E[Return of x-strategy] = (A+B)/2  otherwise

(c) This follows from (b) since there is a positive probability that X will lie between 4 and B.
Let X; denote sales in week i. Then
E[X1 +X2] =80
Var(X1 + Xz) = Var(Xl) + Var(Xz) +2 COV(X], Xz)
=172+ 2[.6(6)(6)] =93.6

(a) With Z being a standard normal

P(X, + X, >90) = P[Z > 90_80)

\93.6

= P(Z> 1.034) ~ .150
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(b) Because the mean of the normal X + X5 is less than 90 the probability that it exceeds 90
is increased as the variance of X; + X; increases. Thus, this probability is smaller when
the correlation is .2.

(c) In this case,

P(X1+X2>90)=P{Z> 20~ 80 }

72+ 2[.2(6)(6)]
=P(Z>1.076) ~ .141

Chapter 7 121



Theoretical Exercises

1.

122

Let 4= E[X]. Then for any a

E[(X-a)' = E[(X— u+ u —a)’]

=E[(X— w1+ (u—a)’ + 2E[(x — p)(u— a)]
= E[(X — p)’] + (- a)’ + 2(u— a)E[(X — p)]

= E[(X— )’ + (u—a)’

E[|X—a| = I(a—x)f(x)dx+ J‘(x—a)f(x)dx

x<a x>a

— aF(a) - J‘xf(x)dx + j xf (x)dx — a[l - F(a)]

x<a x>a

Differentiating the above yields
derivative = 2afla) + 2F(a) — af(a) — af(a) — 1

Setting equal to 0 yields that 2F(a) = 1 which establishes the result.

Elg(X, 1= [ Pig(X.Y) > ajda
0

g(x,y)

I
O ey 8

X,y
g(x,y)>a

= ”g(x,y)dydx

(X —p)’
2

(X —p)
2

gX) =g +g' (WX - ) +g" (1) ..

~g(w) + g (WX — )+ g"(w

Now take expectations of both sides.
If we let X equal 1 if 4; occurs and 0 otherwise then
X=>x,
k=1
Hence,

E[X]= Y ELX,1=) P(4)
k=1 k=1
But

EX]= Y P{X >k}=Y P(C,).
k=1 k=1

j j f(x, y)dydxda = j j j daf (x, y)dydx
0
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6. X= IX (¢t)dt and taking expectations gives
0
E[X] = j E[X(1)] dt = j PLX > thdt
0 0
7. (a) Use Exercise 6 to obtain that
E[X] = j PLX > tidt > jP{Y > }dt = E[Y]
0 1]

(b) Itis easy to verify that
X > Y and Y >, X
Now use part (a).
8. Suppose X > Y and f'is increasing. Then
P{fX)>a} = P{X>[\(a)}
> P{Y>f'(a)} sincex>,Y
- P> a)

Therefore, f(X) >, AY) and so, from Exercise 7,
E[fIX)] 2 E[AD)].

On the other hand, if E[f{X)] > E[f(Y)] for all increasing functions f, then by letting f'be the
increasing function

1 ifx>t¢
0 otherwise

Jx) =

then
P{X>1} = E[AX)] 2 E[AN] = P{Y>1}
and so X > Y.

9. Let

;= J1 if arunof size k begins at the J™ flip
0 otherwise

Then

n—k+1
Number of runs of size k = Zl ;

J=1
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10.

1.

12.

13.

124

n—k+1
E[Number of runs of size k= E{ ZI]}

J=1

=P(I,=1)+ gp(zj =1)+P(,_,, =1)

Jj=2

=P (1 =p)+ (k=11 =p)’+p (1 -p)
1= E{ZAZXI./Z”:XZ} = ZE{X/ZX} = nE{XI/Zn:Xl}
1 1 1 1 1
Hence,
E{i)(i/i)(,} = k/n
1 1

Let
_ [l outcome jnever occurs
710 otherwise

Then X = le and E[X] = I(l—Pj)n
1

j=l
Let
_ |1 successon trial j
/10 otherwise
E {Z 1/} = ZP/ independence not needed
1 1
Var [Z I‘]) = Z p;(1-p;) independence needed
1 1

Let

= 1 recordat j
/10 otherwise
1

E{Zn:lj} = iE[Ij] = iP{Xj is largestof X,..., X} = il/j
1 ] ]

Var(znllj] = Z”:Var(]j) = Zn:l(l —lJ
1 1 1 J J
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15. U= Zp,. by letting Number = ZX where X, =

1
i=1 i=1

1 iissuccess
0 ---

Var(Number) = Z p;1-p,)

i=l1
maximization of variance occur when p; = 1/n
minimization of variance whenp; =1,i=1, ..., [u], ppgs1 = 11— [14]

To prove the maximization result, suppose that 2 of the p; are unequal—say p; # p;. Consider

+p.
a new p-vector with all other py, k # i, j, as before and with p, = p; = % Then in the

variance formula, we must show

pitp; btp;
2( 5 ’](l— 5 ’j > pi(1—p;) +p(1-p)

or equivalently,
pi+pi-2pp; =(pi—p;) 0.
The maximization is similar.

16. Suppose that each element is, independently, equally likely to be colored red or blue. If we
let X; equal 1 if all the elements of A; are similarly colored, and let it be 0 otherwise, then

z;l X, is the number of subsets whose elements all have the same color. Because

E{Z‘X} = Zr:‘E[X,.] = Zrl“z(l/z)/*f

it follows that for at least one coloring the number of monocolored subsets is less than or
equal to Z::ZI(I/Z)‘A"‘_1

17.  Var(lX, +(1-A)X,) = Fol +(1- 1) o}
o5
ol +o;

As Var(AX; + (1 - )X;) = E[(/lX1 +(1-A)X, - ,u)z] we want this value to be small.

L )=2207 =201 =0= A=
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18. (a. Binomial with parameters m and P; + P;.

(b) Using (a) we have that Var(N; + N;) = m(P; + P;)(1 — P; — P;) and thus
m(P; + P)(1 = Pi— P)) = mP(1 — P;) + mP(1 — P;) + 2 Cov(N,, N))
Simplifying the above shows that

Cov(N;, N)) = —mPP;.
19. Cov(X+ Y, X—-Y)=Cov(X, X) + Cov(X, —-Y) + Cov(Y, X) + Cov(Y, -Y)
= Var(X) — Cov(X, Y) + Cov(Y, X) — Var(Y)
= Var(X) — Var(Y) =0.

20. (a) Cov(X,Y|Z)
= E[XY - E[x| 21 - XE[Y| 2] + Elx| 2)E[Y| 2] [Z]
= ElxY| 2 - Elx| Z) E[Y| 21 - EIX| Z)ETY | 2] + E[X| Z1E[ Y| 2]
= E[xY|Z] - Ex| Z)E[Y | Z]

where the next to last equality uses the fact that given Z, E[X | Z] and E[Y ’ Z] can be
treated as constants.

(b) From (a)
E[Cov(X, Y| 2)] = E[xY] - E[E[X| ZIE[Y | Z]]
On the other hand,
Cov(ELX | 2], E[Y| 21 = E[E[X | ZJE[Y | Z]] - ELXIE[Y]

and so

E[Cov(X, Y| 2)] + Cov(ELX] Z], E[ Y| Z]) = E[XY] - E[X]E[Y]
= Cov(X, )

(c) Noting that Cov(X, X | Z)=Var(X ‘ Z) we obtain upon setting ¥ = Z that
Var(X) = E[Var(X| 2)] + Var(E[X| Z])

21. (a) Using the fact that fintegrates to 1 we see that
1 .
c(n,i)= Ix’_l(l —x)"""dx = (i — 1)!(n — i)!/n!. From this we see that
0

EXyl=cn+1,i+ 1)c(n,i)=il(n+1)

2 _ . N ii+1)
E[X;)] =c(n+2,i+2)c(n, i) —(n )4 )
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22.

26.

27.

28.

29.

30.

and thus

i(n+1-1)

VarXo) = (n+1)2(n+2)

(b) The maximum of i(n + 1 — i) is obtained when i = (n + 1)/2  and the minimum when i is
either 1 or n.
Cov(X, Y) = b Var(X), Var(Y) = b* Var(X)

P(X.Y) = bVar(X) b

Vb var(x) M
Follows since, given X, g(X) is a constant and so
Elg0Y | X] = g0E[Y | X]

E[XY] = E[E[XY| X]]
= E[XE[Y | x]]

Hence, if E[Y | X] = E[Y], then E[XY] = E[X]E[Y]. The example in Section 3 of random
variables uncorrelated but not independent provides a counterexample to the converse.

The result follows from the identity
E[XY] = E[E[XY| X]] = E[XE[Y| X]] which is obtained by noting that, given X, X may be
treated as a constant.

5]

X=EX + X X+ X, =] =E[X1‘2Xi = x)e .+ Elx,

= nE[Xl‘ZXi .

Hence, E[X; |X1 +...+X,=x]=x/n

ELNN) | N = NN | V] = N = N 22

since each of the n — M, trials no resulting in

outcome i will independently result in j with probability p;/(1 — p;). Hence,

P

BVN] = 12BN = BN )= 2l g =t =1 )

i i

=n(n—1)pip,

and

Cov(N;, N)) = n(n — V)p,p; — n’p;p; = —np;p;
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31. By induction: true when ¢ = 0, so assume for t — 1. Let N(¢) denote the number after stage ¢.

E[N(®) | N(t —1)] = N(¢t — 1) — E[number selected]
=N(t-1)-Nt-1)——
b+w+r

EING) | NG - 1)] = Nt - l)bbﬁ

+w+r

32, EXXG | Y=y1=EX | Y=)1ELG | Y =y] =5

Therefore, E[X\.X> | Y]=7Y. As E[X,~| Y] =7, this gives that

E[X\X] = E[ELGX, | Y11 = Ei[Y?], E[X] = E[ELX;| Y]] = E[Y]

Consequently,
Cov(Xy, Xo) = E[X\.X7] — E[X1]E[X3] = Var(Y)
3. @ EIT|To] =T+ 1+ (1= p)E[T)
(b) Taking expectations of both sides of (a) gives
E[T]=E[T]+ 1+ -p)E[T]

or

Er)= L LT
2%

(c) Using the result of part (b) gives

Bl - Lo LEr )

p P

_ i+i(l+iE[7;_2]J
p pP\p P

1p + (1/p)* + (1/p)*E[T,-5]
=1/p+ (Up)’ + (1/p)’ + (1/p)’E[T,]

= >/ p) +(1/ p) E[T,]
i=1

= Zr:(l/p)i since E[Ty] = 0.

i=1

128
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35 PY>X)= Y P(Y>X|X=))p,
= Y P(Y>j|X=))p,
=2 P> ))p,

=2.(-p)'p,

36. Condition on the first ball selected to obtain

Ma,b: LMaflb +LMab715 a, b>0
a+b T oa+b 7

Ma,O =a, MO,b =b, Ma,b = Mb,a
4 7

Mz,l = g, M3,1 = Z, Mz,z =3/2

37. Let X, denote the number of white balls after the nh drawing

A (B (B
a+b a+b

1
a+b

an-i-l

Taking expectations now yields (a).
To prove (b), use (a) and the boundary condition M, = a

(c) P{(n+ 1)stis white} = E[P{(n + 1)st is white | X,}]

:E|: Xn j|: Mn
a+b a+b

40. For (a) and (¢), see theoretical Exercise 18 of Chapter 6. For (c)

E[XY] = E[E[XY | X]] = E[XE[Y| X]]

(o)
= E[X(/ly + pg—y(X —uxﬂ

O (o2
= bty = p22 gl 4 p2 (il + 07
o, o

X X
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41. (a) No

(b) Yes, since f4(x | 7= 1) = fi(x) = fil=x) = f(x | = 0)
(©) )= 5 e+ o0 = £(0)

(d) ELXY]= E[ELXY| X]) = E[XE[Y| X]] = 0
(e) No, since X and Y are not jointly normal.
42. IfE[Y | X] is linear in X, then it is the best linear predictor of ¥ with respect to X.

43.  Must show that E[Y?] = E[XY]. Now

E[XY] = E[XE[X| Z]]
= E[E[XE[X| 7] | 7]
= E[E[X| 711 = E[Y?]

44. Write X, = %Zi where Z; is the number of offspring of the ith individual of the (n — 1)st

generation. i}zllence,

E[X,] = ELELX, | X, 1] = E[uX,1] = HELX, 1]
S0,

E[X,) = pE[X, 1] = LLE[X,2] ... = flE[X] = /'
(c) Use the above representation to obtain

ELX, | X,oi] = 0, Var(X, | X, ) = 02X,

Hence, using the conditional Variance Formula,

Var(X,) = 17 Var(X,_)) + o° i/

(d) 7= P{dies out}
= " P{dies out| X, = j}p,
J

= Zﬂ'j p; » since each of the j members of the first generation can be thought of as
J
starting their own (independent) branching process.

130 Chapter 7



46. It is easy to see that the n™ derivative of Z:(t2 /2)7/ j! will, when evaluated at ¢ = 0, equal 0
J=0
whenever n is odd (because all of its terms will be constants multiplied by some power of 7).

n

When n = 2j the n™ derivative will equal {t"Y/(j127) plus constants multiplied by powers

dt"
of t. When evaluated at 0, this gives that

E[Z%] - @)('2)

47. Write X = oZ + p where Z is a standard normal random variable. Then, using the binomial
theorem,

n n . . .
E n — IE Zl n—i
[X"] ZO (l. }7 [Z']u
Now make use of theoretical exercise 46.

48.  $(t) = E[e""] = E["““"] = &"E["“¥] = € ¢\(ta)

49. Let Y =log(X). Since Y is normal with mean s and variance o it follows that its moment
generating function is

M(t) = E[e"] = e+ /2
Hence, since X = e’, we have that
EX] = M(1) = ¢ 2
and
E[X*]=MQ) = &>
Therefore,
Var(X) = QPRI _ gt _ gura’ (e"2 -1)
50. u(f) = log A1)
w'(O)= g0/ K1)

#(0)¢"(1) ~ (¢'1)’
¢’ ()

y'(0) =

v"(0)],-= E[X*]= (E[X])* = Var(X).
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51.

52.

53.

54.

55.

132

Gamma (n, A)

Let (s, £) = E[¢™™]

2
a8 $(5,0)| o= ELXYeX 7] o= E[XY]
sOt t=0 =0
0 0
—@(5,1)| o= E[X], —(s,0)|,_o= E[Y]
aS =0 6t =0

Follows from the formula for the joint moment generating function.
By symmetry, E[Z>]= E[Z] = 0 and so Cov(Z,Z%) = 0.

(a) This follows because the conditional distribution of Y + Z given that ¥ =y is normal with
mean y and variance 1, which is the same as the conditional distribution of X given that
Y=y.

(b) Because Y+ Zand Y are both linear combinations of the independent normal random
variables Y and Z, it follows that Y + Z, Y has a bivariate normal distribution.

() i =E[X] =E[Y+Z]=pu
o = Var(X) = Var(Y + Z) =Var(Y) + Var(Z) = &> + |
Cov(Y+2,Y) o

0'\/02+1 _\/02+1

p=Corr(X, ¥) =

(d) and (e) The conditional distribution of ¥ given X = x is normal with mean

2
o

o
EY|X=x]=p+ p=—(x— )= pr+——(x— )
o, I+o
and variance
2 2
Var(Y| X=x) = 6*| 1-—=— |2
o +1 o +1
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Chapter 8

Problems
1. P{0<X<40}=1-P{|X-20| >20} >1-20/400 = 19/20
2. (a) P{X =85} <E[X]/85=15/17

(b) P{65<X<85)=1-P{|X-75| >10} >1-25/100

(©) P{

3. Let Z be a standard normal random variable. Then,

{

20
4. (a) P{ZXZ. >15}320/15

i=1

iXi/n—75

= 25n

>5}££ soneed n =10

Zn:Xl./n—75

i=1

>5} ~P{|Z| >Jny<.1whenn=3

20

(b) P{ X, >15}=P{§:Xi >15.5}
i=1

15.5—20}
V20

= P{Z>-1.006}

~ .8428

i=1

zP{Z>

i=1

50
S. Letting X; denote the i roundoff error it follows that £ {z X 11 =0,

50
Var(z X l) =50 Var(X;) = 50/12, where the last equality uses that .5 + X is uniform (0, 1)
i=1

and so Var(X) = Var(.5 + X) = 1/12. Hence,

P{\ZX[\ >3 } ~ P{| N0, 1)| >3(12/50)"*} by the central limit theorem
—2P{N(0, 1) > 1.47 = .1416

6. If X; is the outcome of the i™ roll then E[X;] = 7/2 Var(X;) = 35/12 and so
79 79
P{ZXZ. < 300} = P{ZX,. < 300.5}
i=1 i=1
300.5-79(7/2)
(79%x35/12)"'2

= P{N(O,l) < } = P{N(0,]) < 1.58} =.9429
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10.

12.

134

100 _
P{Z X, > 525} ~ P{N(O,l) > M} = P{N(0,]) > .5} =.3085

i=1 4/ (100 25)

where the above uses that an exponential with mean 5 has variance 25.

If we let X; denote the life of bulb i and let R; be the time to replace bulb i then the desired
100 99

probability is P{ZXZ. +ZR1. < 550}. Since ZXZ. + ZRZ. has mean 100 x 5 + 99 x .25 =
i=1 i=1

524.75 and variance 2500 + 99/48 = 2502 it follows that the desired probability is

approximately equal to P{N(0, 1) < [550 — 524.75]/(2502)"*} = P{N(0, 1) < .505} = .693

It should be noted that the above used that

Var(R;) = Var (% Unif [0,1]) =1/48

Use the fact that a gamma (n, 1) random variable is the sum of » independent exponentials
with rate 1 and thus has mean and variance equal to 7, to obtain:

PHX_"
n

> .01} = P{x —n/\n > 01|

P{NOD|>.01Vn |
2PIN(0,1) > .01 |

Q

Now P{N(0, 1) >2.58} =.005 and so n = (258)°.
If W, is the total weight of n cars and 4 is the amount of weight that the bridge can withstand

then W, — A4 is normal with mean 3n — 400 and variance .09z + 1600. Hence, the probability
of structural damage is

P{W,— 4> 0} ~ P{Z > (400 -3n)/09n+1600 |
Since P{Z > 1.28} =.1 the probability of damage will exceed .1 when # is such that

400 - 3n < 1.28+/.097+1600

The above will be satisfied whenever n > 117.

Let L; denote the life of component i.

100
1
E| Y L | =1000+-—50(101) = 1505
{ } 1o°010D

i=1

100 100 i 2 , 1 o ,
Var L |= 10+— | =(100)" +(100)A101) +— > i
[Z ] Z( 10} (100)* + (100)(101) 100;

i=l

Now apply the central limit theorem to approximate.
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- X -74
13. a) P{X >80}=P
@ P } {14/5

> 15/7} ~ PPZ>2.14} = .0162

— Y - 74
(b) P{Y >80} —P{ s

> 24/7} ~ P{Z>3.43} ~ .0003

(¢) Using that SD(Y — X) =~/196/64+196/25 ~ 3.30 we have

P{Y - X >22} = P{Y —X}/3.30 >2.2/3.30}
~ P{Z> 67} ~ 2514

(d) same as in (c¢)

14. Suppose n components are in stock. The probability they will last for at least 2000 hours is

2000 — IOOn}

=PI X, 220000 = plz > 22100
b {z } { 304

i=1
where Z is a standard normal random variable. Since
.95 = P{Z >-1.64} it follows that p > .95 if

2000-100n

30vn

or, equivalently,

<-1.64

(2000 — 100n)/v/n < —49.2

and this will be the case if n > 23.

10,000
15. P{ > X, > 2,700,000} ~ P{Z > (2,700,000 — 2,400,000)/(800 - 100)} = P{Z>3.75} ~ 0

i=l1

18. Let Y; denote the additional number of fish that need to be caught to obtain a new type when

. . . i
there are at present i distinct types. Then Y; is geometric with parameter -
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20.

21.

22.

136

Hence,

pllr-2, 2 0] 1
3 3 9 10

25-4/1300 o 25 ++/1300
3 ’ '

and so we can take a =

3
Also,
P Y—§>a 3—130 5 _ L when a = 1170 .
3 130+9a~ 10 3
25++/11
Hence P{Y > %70} <.l
g(x) =x""" is convex. Hence, by Jensen’s Inequality

E[Y"" D1 > E[Y])"") Now set ¥Y=X""and so
E[Xn] 2 (E[anl])n/(n—l) or (E[Xn])l/l’l Z (E[Xﬂfl])l/(nfl)

No

(a) 20/26 =.769

(b) 20/(20 +36)=5/14 ~ .357

(d) p~P{Z>(255—- 20)/\/%} ~P{Z>123} ~.1093

(e) p=.112184
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Theoretical Exercises

L.

This follows immediately from Chebyshev’s inequality.

2
1
PiD>al =P{| X - ul > ou) < ajﬂz =

@ =i

by — P _ o=
()m np /(1= p)

(c) answer=1

1/2
@ NuvE V3

(e) answer =1

(d) answer = | ,u|/ o

For £> 0, let & > 0 be such that |g(x) —-g(c) | <& whenever |x—c| <& Also, let B be such

that |g(x) | <B. Then,

ElgZ)= [ e0dE,@+] | edF,®

%=

<(e+ge)P{|z,-c| <8 +BP{|Z,—c| > &

In addition, the same equality yields that

E[g(Z)] = (g(c) - &P{| Z,— c| < 8 - BP{|Z,~c| > &)

Upon letting n — oo , we obtain that

lim sup E[g(Z,)] < g(c) + €
lim inf E[g(Z,)] > g(c) — ¢

The result now follows since ¢ is arbitrary.

Use the notation of the hint. The weak law of large numbers yields that

lim P{|(X, +...+ X,)/n—d>¢&} =0
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Since X| + ... + X, is binomial with parameters n, x, we have

(et )| i oo

The result now follows from Exercise 4.

6.  E[X]= Zk:iP{Xzi}+ iiP{Xzi}
i=l1

i=k+1
k
21 P{X =k}
:P{ k}k(k+1)/2
2
> X pix=h
7. Take logs and apply the central limit theorem
8. It is the distribution of the sum of 7 independent exponentials each having rate A.
9. 1/2
10. Use the Chernoff bound: e “M(#) = ¢*“ ™"~ will obtain its minimal value when ¢ is chosen
to satisfy

Aé' = i, and this value of ¢ is negative provided i < A.
Hence, the Chernoff bound gives
P{X<iy <M Mi)

11. e "M(t) = (pe' + q)"e " and differentiation shows that the value of ¢ that minimizes it is such
that

npe' = i(pe' +q) or &' = .
(n=i)p

Using this value of ¢, the Chernoff bound gives that

P{X>i} < (—+qj (n—1) p' iq)'
n

_ (n@)"(n=0)'p'
i'q'(n—i)"

12. 1 = E[e™] > ¢*™ by Jensen’s inequality.

Hence, GE[X] < 0 and thus 8> 0.
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Chapter 9

Problems and Theoretical Exercises
1. (a) P(2 arrivals in (0, 5) | 2 arrivals in (0, 1)}

=P{21in (0, s), 0 in (s, 1)}/e *1*/2)
= [e M (As)*2][e (e 2*2) = s* = 1/9 when s = 1/3

(b) 1 — P{both in last 40 minutes) = 1 — (2/3)* = 5/9

7 35760
3 &0 1 (5/20)e73
8. The equations for the limiting probabilities are:

[1. =711 + 4Ll + .2[1,
[l =21 + 3I1 + 4l
[I;= 111+ 311 + 411,
[l+TL+1l,=1

and the solution is: [[. = 30/59, [ ], = 16/59, [ I, = 13/59. Hence, Bufty is cheerful 3000/59
percent of the time.

9. The Markov chain requires 4 states:
0 = RR = Rain today and rain yesterday
1 = RD = Dry today, rain yesterday
2 = DR = Rain today, dry yesterday
3 = DD = Dry today and dry yesterday

with transition probability matrix

P=

S o ©
v o W o
o © 9 O

.8
0
4
0
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10.

1.

140

The equations for the limiting probabilities are:

[To= 81y + 4IL
[T, = 2[1, + .6IL
[L =3I + .2[1
[ =711, + .81

[h+IL+IL+1=1
which gives
[To=4/15,11 =11, =2/15,11; = 7/15.
Since it rains today when the state is either O or 2 the probability is 2/5.

Let the state be the number of pairs of shoes at the door he leaves from in the morning.
Suppose the present state is i, where i > 0. Now after his return it is equally likely that one
door will have i and the other 5 — i pairs as it is that one will have i — 1 ant the other 6 — i.
Hence, since he is equally likely to choose either door when he leaves tomorrow it follows
that

Pi= Pi,s—i =P 1=Pgsi= 1/4

provided all the states i, 5 — i, i — 1, 6 — i are distinct. If they are not then the probabilities are
added. From this it is easy to see that the transition matrix Py, i,j =0, 1, ..., 5 is as follows:

/2 0 0 0 0 1/2
/4 174 0 0 1/4 1/4
0 1/4 1/4 1/4 1/4 0
0 o0 /212 0 O
0 1/4 1/4 1/4 1/4 0
1/4 1/4 0 0 1/4 1/4

P=

Since this chain is doubly stochastic (the column sums as well as the row sums all equal to
one) it follows that [[;=1/6,i=0, ..., 5, and thus he runs barefooted one-sixth of the time.

(b) 12
(c) Intuitively, they should be independent.

(d) From (b) and (¢) the (limiting) number of molecules in urn 1 should have a binomial
distribution with parameters (M, 1/2).
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Chapter 10

1. (a) After stage k the algorithm has generated a random permutation of 1, 2, ..., k. It then
puts element k£ + 1 in position £ + 1; randomly chooses one of the positions 1, ..., £+ 1
and interchanges the element in that position with element & + 1.

(b) The first equality in the hint follows since the permutation given will be the permutation

after insertion of element k if the previous permutation is iy, ..., ij_1, i, ij, ..., i and the
random choice of one of the & positions of this permutation results in the choice of
position j.
2. Integrating the density function yields that that distribution function is
/2, x>0
F(x) =

1-¢/2, x>0
which yields that the inverse function is given by

log(2u)/2 ifu<12
l =
FG) —log(2[1-u])/2 ifu>1/2

Hence, we can simulate X from F by simulating a random number U and setting X = F ' (V).

3. The distribution function is given by

x2/4—x+1, 2<x<3,
x—x"/12-2, 3<x<6

F(x)=
Hence, for u < 1/4, F~'(u) is the solution of

A -x+1=u
that falls in the region 2 < x < 3. Similarly, for u > 1/4, F"'(u) is the solution of

x—x/12-2=u

that falls in the region 3 < x < 6. We can now generate X from F' by generating a random
number U and setting X = F ' (D).

4. Generate a random number U and then set X = F'(U). If U< 1/2 then X = 6U — 3, whereas if
U > 1/2 then X is obtained by solving the quadratic 1/2 + X*/32 = U in the region 0 < X < 4.
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The inverse equation F = X is equivalent to
q q

or
- =U
X = {-log(1 - U)/a}""*

Since 1 — U has the same distribution as U we can generate from F by generating a random
number U and setting X = {—log(U)/a}'"”.

If A(¢) = ct" then the distribution function is given by
1 — F(f) = exp{—k""}, t>0 where k=c/(n+ 1)

Hence, using the inverse transform method we can generate a random number U and then set
X such that

exp{—kX"" =1-U
or
X = {-log(1 — U)/k} "D
Again U can be used for 1 — U.
(a) The inverse transform method shows that U"" works.
(b) P{MaxU;<v} =P{U,<x, ..., U, <x}
=[[P{U;<x} by independence
— xﬂ
(¢) Simulate n random numbers and use the maximum value obtained.
(a) If X; has distribution F;,i=1, ..., n, then, assuming independence, F is the distribution of
MaxJX;. Hence, we can simulate from F' by simulating X;, i = 1, ..., n and setting
X =MaxJX,.

(b) Use the method of (a) replacing Max by Min throughout.

(a) Simulate X; from F;, i = 1, 2. Now generate a random number U and set X equal to X if
U <p and equal to X, if U> p.

(b) Note that
1 2
F(x)= - F(x)+ = F,(x)
3 3
where

Fix)=1-¢e>, x>0, Fo(x)=x, 0<x<1
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Hence, using (a) let U}, U,, U; be random numbers and set

_ —log(U,)/3if Uy <1/3

X
U, ifU, >1/3

where the above uses that —log(U;)/3 is exponential with rate 3.

10.  Withg(x)=Ae™

2 -x2/2 2
QB ) ﬂ(zi)l/zebf "~ e exp{-{(x~24)" - 2']/2}
26/12/2

Wexp {—(X - 2)2 /2}

Hence, ¢ = 2¢ %) [A(27)""?] and simple calculus shows that this is minimized when 4= 1.

11. Calculus yields that the maximum value of f{x)/g(x) = 60x’(1 — x)* is attained when x = 3/5
and is thus equal to 1296/625. Hence, generate random numbers U, and U, and set X = U, if
U, <3125U; (1-U,)* /108 . If not, repeat.

12. Generate random numbers Uy, ..., U,, and approximate the integral by [k(U}) + ... + &(U,)]/n.

1
This works by the law of large numbers since E[A(U)] = Ik(x)dx.
0

16, Elfx0]= [0/ f(0If (x)dx = [ g(x)dx
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Corrections to Ross, A FIRST COURSE IN PROBABILITY, seventh ed.

p.79,line2: P(Y7 | R)) - PU}LR))
p. 95, centered eq. on line 12: P

n,m-1,m

— P

n,m-1
p. 288, I. 2: change “when j >r.” to “when j <0.”
p. 309, first line of Example 8b: change “let Y, denote the selection ” to “let Y,
denote the selection ”
p. 373, line -8: on the centered equation following “the preceding equation yields”
add a right paren at the very end. That is,
(1-(@-p)" > (1-(1- p)")
p. 416, line 1: change “Let X,, ... ,X be independent” to “Let X,, .. .be
independent”
p. 509, lines 6 and 7: 73. should be 83. and 74. should be 84.
p. 509, Solution to Problem 68 of Chapter 4: change
(l_e—s)so to (l_e—S)lO



