UChile	Cálculo Avanzado y Aplicaciones	Hector Ramirez
FCFM	$\mathbf{MA2002\text{-}4}$	Germán Ibarra
DIM	Prim'09	Víctor Riquelme

Clase Auxiliar 1

P1 Considere el campo vectorial:

$$\vec{F}(x,y,z) = \frac{x^2}{x^2 + y^2}\hat{i} + \frac{xy}{x^2 + y^2}\hat{j} + e^z\hat{k}$$

Expreselo en coordenadas cilindricas.

P2 Probar las siguientes identidades:

- (a) $div(rot(\vec{F})) = 0$.
- **(b)** $div(f\vec{F}) = fdiv(\vec{F}) + \vec{F} \cdot \nabla f$.
- **P3** (a) Sea $\varphi : \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$ funcion de clase \mathcal{C}^1 . Demuestre que

$$rot\left(\int_a^b \varphi(\vec{r},t)dt\right) = \int_a^b rot(\varphi)(\vec{r},t)dt$$

Hint: Puede usar la regla de Leibniz $\partial_u \int_a^b f(\vec{r},t)dt = \int_a^b \partial_u f(\vec{r},t)dt$, donde la variable u es cualquier variable cartesiana espacial (la integral es c/r al 'tiempo').

Considere ademas la definicion siguiente: si $\vec{F} = (F_x, F_y, F_z)$: $\Omega \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ es un campo vectorial, entonces $\int \vec{F} = (\int F_x, \int F_y, \int F_z)$, donde la integral es con respecto a variables espaciales o temporales).

(b) Considere el campo $\vec{F}(\vec{r}) = g(r)\hat{\theta}$, donde las coordenadas son esfericas, y $g : \mathbb{R} \to \mathbb{R}$ de clase \mathcal{C}^1 . Demuestre que $div(\vec{F}) = 0$, y pruebe que

$$rot(\vec{F}(t\vec{r}) \times t\vec{r}) = 2t\vec{F}(t\vec{r}) + t^2 \frac{d}{dt}\vec{F}(t\vec{r})$$
 (1)

- (c) Sea \vec{F} campo vectorial tal que $div(\vec{F}) = 0$ en una bola $B \subseteq \mathbb{R}^3$ centrada en 0. Se puede probar que la formula (1) es valida en B. Sea $\vec{G}(\vec{r}) = \int_0^1 (\vec{F}(t\vec{r}) \times t\vec{r}) dt$. Usando lo anterior concluya que $rot(\vec{G}) = \vec{F}$ en B.
- P4 Considere el siguiente sistema de coordenadas, dado por:

$$\vec{r}(x, \rho, \theta) = \begin{pmatrix} x \\ \rho \cos(\theta) \\ \rho \sin(\theta) \end{pmatrix}$$

- (a) Determinar el trio de vectores unitarios $\hat{x}, \hat{\rho}, \hat{\theta}$. Son ortogonales? Calcular $\hat{\theta} \times \hat{x}, \hat{\theta} \times \hat{\rho}$.
- (b) Encontrar expresiones para el gradiente, divergencia, laplaciano y rotor en este sistema de coordenadas (para las funciones que correspondan).
- (c) Dada $f:[a,b]\to\mathbb{R}_+$ diferenciable, bosqueje la superficie de ecuacion $y^2+z^2=f(x)^2$. Verifique que una parametrizacion de esta superficie es

$$\vec{r}_1(x,\theta) = x\hat{\imath} + f(x)\hat{\rho}(\theta)$$