AUXILIAR # 2

P1. Consideremos el sistema de coordenadas dado por $\vec{r}(x, \rho, \theta) = (x, \rho \cos \theta, \rho \sin \theta)$, con $x \in \mathbb{R}$, $\theta \in [0, 2\pi[$ y $\rho \geq 0$.

- (a) Determinar el triedro de vectores unitarios $\hat{x}, \hat{\rho}, \hat{\theta}$. ¿Son ortogonales? Calcule $\hat{\theta} \times \hat{x}, th\hat{e}ta \times \hat{\rho}$.
- (b) Encuentre expresiones para el gradiente, divergencia, laplaciano y rotor en este sistema de coordenadas.
- (c) Dada una función no-negativa y diferenciable $f:[a,b]\to\mathbb{R}_+$, bosqueje la superficie de ecuación $y^2+z^2=f(x)^2$. Verifique que una parametrización de esta superficie es $r\vec{1}(x,\theta)=x\hat{i}+f(x)\hat{\rho}$

P2. Calcular el flujo del campo $\vec{F}(x,y,z) = (x,y,z)$ a través del disco definido por las ecuaciones $x^2 + y^2 \le 25$, z = 12, y orientado según la normal superior \hat{k} .

P3. Calcule el flujo del campo $\vec{F}(x,y,z)=(e^z\sin y+xy^2z,e^x\cos z+x^2yz,\frac{x}{\sqrt{x^2+y^2}})$ a través de la superficie lateral del cilindro de radio 1 que se encuentra entre los planos z=-1 y z=1.

Indicación: Calcule el flujo total que sale del cilindro (incluyendo las tapas y usando el teorema de la divergencia). Calcule el flujo a través de las tapas directamente.

P4. Sea $\vec{F}(x,y,z) = (x + \cos(x+y), y + \cos(x+y), \sqrt{x^2 + y^2} + 2z\sin(x+y))$. Calcule el flujo de este campo a través de la superficie de la semiesfera $x^2 + y^2 + z^2 = a^2$, $z \le 0$, orientada según la normal interior.

P5. Sea \vec{F} el campo vectorial dado por

$$\vec{F}(x,y,z) = \left(zx + \sin(x-y), y - \sin(x-y), \sqrt{x^2 + y^2} - \frac{1}{2}z^2 - 2z\cos(x-y)\right).$$

Calcule el flujo de \vec{F} a través del casquete semi-esférico (sin tapa) dado por $x^2 + y^2 + z^2 = 1$ con z > 0. Precise el sentido de orientación escogido para los cálculos.

 ${f P6.}$ Considere el campo vectorial dado en coordenadas cilíndricas por:

$$\vec{F} = \frac{1}{\rho}\hat{\rho} + e^{-\theta^2}\hat{k}$$

- (a) Determine el dominio de diferenciabilidad de \vec{F} y verifique que $div(\vec{F})=0$ sobre dicho dominio.
- (b) Sea $\Sigma \subset R^3$ la superficie dada por la porción del casquete esférico $x^2 + y^2 + z^2 = 4$ que se encuentra entre los planos z = -1 y z = 1 (sin considerar las tapas). Bosqueje Σ y calcule el flujo de \vec{F} a través de Σ orientada según la normal exterior a la esfera.

1

Nota: Puede usar el teorema de la divergencia utilizando un volumen adecuado. En tal caso tenga especial cuidado en verificar las hipótesis del teorema.

(c) Interprete el resultado obtenido en (b).