Auxiliar 4: Cálculo Avanzado y Aplicaciones

Profesor: Roberto Cominetti Auxiliares: Roberto Castillo - Mauro Escobar 28 de Agosto de 2009

P2. Considere

$$\vec{F} = (2r\sin\theta - \phi\sin(r\phi))\hat{r} + r\frac{\cos\theta}{\sin\phi}\hat{\theta} + (\frac{\cos\phi}{r} - \sin(r\phi))\hat{\phi}.$$

Verifique que $\operatorname{rot} \vec{F} = 0$ y calcule el trabajo de ir desde el punto (5,5,0) al punto (2,2,1).

Solución:

Buscamos $f = f(r, \theta, \phi)$ tal que $\nabla f = \vec{F}$. Si f existe, se tiene que

$$\nabla f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r\sin\phi} \frac{\partial f}{\partial\theta}\hat{\theta} + \frac{1}{r} \frac{\partial f}{\partial\phi}\hat{\phi}.$$

Imponemos que

$$\frac{\partial f}{\partial r} = 2r\sin\theta - \phi\sin(r\phi) \tag{\hat{r}}$$

$$\frac{1}{r\sin\phi} \frac{\partial r}{\partial \theta} = r \frac{\cos\theta}{\sin\phi} \tag{\hat{\theta}}$$

$$\frac{1}{r}\frac{\partial f}{\partial \phi} = \frac{\cos \phi}{r} - \sin(r\phi) \tag{\hat{\phi}}$$

Integrando la ecuación (\hat{r}) según r, obtenemos:

$$f(r, \theta, \phi) = \int [2r\sin\theta - \phi\sin(r\phi)]dr = r^2\sin\theta + \cos(r\phi) + c(\theta, \phi),$$

donde $c(\theta, \phi)$ es una función constante para r.

Derivando esta última expresión según θ y multiplicando por $\frac{1}{r\sin\phi}$, se tiene:

$$\frac{1}{r\sin\phi}\frac{\partial f}{\partial\theta} = \frac{1}{r\sin\phi}[r^2\cos\theta + \frac{\partial}{\partial\theta}c(\theta,\phi)],$$

imponiendo la condición $(\hat{\theta})$:

$$\frac{1}{r\sin\phi}[r^2\cos\theta + \frac{\partial}{\partial\theta}c(\theta,\phi)] = r\frac{\cos\theta}{\sin\phi}$$

con lo cual

$$\frac{\partial}{\partial \theta}c(\theta,\phi) = 0.$$

Así, $c(\theta, \phi)$ es constante en θ . Luego, $c(\theta, \phi) = c(\phi)$ y

$$f(r, \theta, \phi) = r^2 \sin \theta + \cos(r\phi) + c(\phi),$$

con esto, tenemos que

$$\frac{1}{r} \frac{\partial f}{\partial \phi} = \frac{1}{r} [-r \sin(r\phi) + \frac{\partial}{\partial \phi} c(\phi)],$$

imponiendo $(\hat{\phi})$:

$$\frac{1}{r}[-r\sin(r\phi) + \frac{\partial}{\partial\phi}c(\phi)] = \frac{\cos\phi}{r} - \sin(r\phi).$$

Luego,

$$\frac{\partial}{\partial \phi}c(\phi) = \cos \phi$$

$$c(\phi) = \sin \phi + K,$$

donde K es una constante real.

Con esto

$$f(r, \theta, \phi) = r^2 \sin \theta + \cos(r\phi) + \sin \phi + K.$$

Ahora, para el punto (5,5,0) se tiene $r=5\sqrt{2}, \theta=\pi/4$ y $\phi=\pi/2$. Y para el punto (2,2,1) se tiene $r=3, \theta=\pi/4$ y $\phi=\arccos(1/3)$.

Así, el trabajo realizado desde (5,5,0) a (2,2,1) es:

$$f(3, \pi/4, \arccos(1/3)) - f(5\sqrt{2}, \pi/4, \pi/2).$$

Obs: El enunciado original del problema pedía calcular el trabajo desde (5,5,0) al punto (0,0,5), sin embargo éste último punto no tiene valor para θ único (se encuentra en el eje z), luego el trabajo para realizar esa trayectoria no es único. Esto se debe a que el campo \vec{F} se indefine cuando $\sin \phi = 0$, es decir, cuando $\phi = 0$ y $\phi = \pi/2$, correspondiente al eje z. Luego, el trabajo dependerá del ángulo θ con que el camino se acerque al eje z. Podemos concluir que \vec{F} es conservativo en \mathbb{R}^3 \eje z.

Dudas a: mescobar@dim.uchile.cl