MA2001 - Cálculo en Varias Variables.

Profesor: Jorge Amaya. Auxiliares: Franco Basso, Mauricio Fuentes.

Control 1

19 de Agosto, 2009

P1. Considere una función $f: \mathbb{R}^n \to \mathbb{R}^m$.

- a) [1.0 ptos] Sea $y_0 \in \mathbb{R}^m$. Demuestre que $\{y_0\}$ es un conjunto cerrado de \mathbb{R}^m .
- b) [2.0 ptos] Sea $A \subseteq \mathbb{R}^m$ un conjunto cerrado y suponga que f es continua en \mathbb{R}^n . Demuestre que $f^{-1}(A)$ es un cerrado de \mathbb{R}^n .
- c) [1.5 ptos] Demuestre que si f es lineal y continua en cero, entonces es continua en todo \mathbb{R}^n .
- d) [1.5 ptos] Concluya que si f es lineal y continua en cero, entonces Ker(f) es cerrado.

- a) [1 pto] Dertermine A = Dom(f) y grafique.
- b) [1.5 ptos] Encuentre Adh(A), Int(A), Fr(A). Justifique su respuesta.
- c) [2.5 ptos] Encuentre los valores de a tal que f sea continua en su dominio.
- d) [1 pto] Demuestre que f alcanza sus extremos en A.
- P3. a) [2 ptos] Sea $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ una función continua y suponga además que Ω es cerrado. Defina $E = \{(x, y) \in \mathbb{R}^{n+1} \ con \ x \in \mathbb{R}^n, \ y \in \mathbb{R} \ / \ y \geq f(x)\}$. Demuestre que E es cerrado.
 - b) [2 ptos] Defina $h: \mathbb{R}^n \to \mathbb{R}$ tal que $h(x) = \|x\|_2 + \|x\|_{\infty}$. Demuestre que h es una norma en \mathbb{R}^n .
 - c) [2 ptos] Un productor fabrica un producto el cual requiere de 3 insumos con cantidades respectivas $x_1, x_2, x_3 \ge 0$. Se sabe que la ganancia del productor depende de la cantidad de insumos utilizados de la siguiente forma $G(x_1, x_2, x_3) = 3x_1 x_2 + x_3^2$. Además se sabe que por restricciones de mercado se debe cumplir que $\begin{cases} x_1 x_3 = 8 \\ x_2 + 3x_3 = 18 \end{cases}$ Encuentre los valores x_1^*, x_2^*, x_3^* que maximizan la ganancia.

Tiempo: 3 Horas