Propuestos Control 3 - CVV

Escuela de Ingeniería, Universidad de Chile

Pregunta 1. Se definen las funciones Beta y Gamma como:

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt \quad \Gamma(w) = \int_0^\infty t^{w-1} e^{-t} dt$$

Para x,y>0 y $w\in\mathbb{R}$. El objetivo de esta pregunta es probar la siguiente identidad:

$$B(x,y) = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x) + \Gamma(y)}$$

Para ello, siga los siguientes pasos:

- a) Pruebe que $B(x,y) = 2 \int_0^{\pi/2} (\sin \theta)^{2x-1} (\cos \theta)^{2y-1} d\theta$
- b) Utilice lo anterior apropiadamente para probar la identidad.

Pregunta 2. Considere $A = [-1, 1]^2$ y $f(x, y) = \frac{xy}{(x^2 + y^2)^2}$. Pruebe que:

a)
$$\int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) dx \right) dy = \int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) dy \right) dx = 0$$

b) $\iint_A |f(x,y)| dxdy = \infty$. Contradice esto al Teorema de Fubini? Explique.

Pregunta 3. Considere $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$. Pruebe que:

a)
$$\int_0^1 \int_0^1 f(x,y) dx dy = -\frac{\pi}{4}$$

b)
$$\int_0^1 \int_0^1 f(x,y) dy dx = \frac{\pi}{4}$$
 Contradice esto al Teorema de Fubini? Explique.

1