Auxiliar 2 - Cálculo en Varias Variables

Escuela de Ingeniería, Universidad de Chile

14 de Agosto 2009

Profesor Cátedra: Jaime H. Ortega Profesor Auxiliar: Matías Godoy Campbell

Pregunta 1.

- a) Pruebe que cualquier norma $||\cdot||$ en \mathbb{R}^n define una función continua. <u>Hint</u>: Pruebe que se tiene la siguiente desigualdad: $|||a|| - ||b||| \le ||a - b||$
- b) Pruebe que el conjunto $S = \{x \in \mathbb{R}^n : ||x|| = 1\}$ es cerrado en \mathbb{R}^n .

Pregunta 2. Sea A una matríz simétrica con coeficientes reales

- a) Sea $f: \mathbb{R}^n \to \mathbb{R}$ definida por $f(x) = x^t A x$. Pruebe que $\nabla f(x) = 2(Ax)^t$
- b) Determine $\nabla g(x)$ si $g(x) = x^t x$. Compare sus resultados a los que conoce en una variable

Pregunta 3.

a) Determine la existencia del siguiente límite:

$$\lim_{(x,y)\to(0,0)}\frac{\sin\left(2x\right)-2x+y}{x^3+y}$$

b) Pruebe que la siguiente función \underline{no} es diferenciable en (0,0):

$$F(x,y) = \begin{cases} \frac{x^2y}{y - x^2} & \text{si } x^2 \neq y \\ 0 & \text{si } x^2 = y \end{cases}$$

Pregunta 4.

Determine los valores de α para que la siguiente función sea diferenciable en (0,0)

$$f(x,y) = \begin{cases} \frac{|xy|^{\alpha}}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$