Auxiliar 3: Álgebra Lineal

Profesor Auxiliar: Orlando Rivera Letelier Lunes 17 de Agosto de 2009

P1. (a) Determine si existe una matriz $M \in \mathcal{M}_{2,2}(\mathbb{R})$ de modo que para toda matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$ se cumpla

$$M \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ a+c & d \end{bmatrix}$$

- (b) Pruebe que si $A \in \mathcal{M}_{n,n}(\mathbb{R})$ verifica que $A^2 + A + I = 0$ entonces es invertible.
- (c) Suponga que A y $B \in \mathcal{M}_{n,n}(\mathbb{R})$ conmutan, es decir

$$AB = BA$$

Pruebe que

- i) $A^n B = B A^n \quad \forall n \in \mathbb{N},$
- ii) $A^tB^t = B^tA^t$, y
- iii) si además A y B son invertibles, entonces $A^{-1}B^{-1} = B^{-1}A^{-1}$.
- P2. Considere el sistema de ecuaciones

en las variables x_1, x_2, x_3 y x_4 , donde $\alpha, \beta \in \mathbb{R}$ son parámetros.

(a) Aplique el método de escalonamiento y determine los valores de α y β de modo que

1

- i) el sistema tenga una única solución,
- ii) el sistema no tenga solución, y
- iii) el sistema tenga infinitas soluciones.
- (b) Para $\alpha = -2$ y $\beta = 2$ encuentre el conjunto solución.

- **P3.** La matriz $U \in \mathcal{M}_{n,n}(\mathbb{R})$ se dice unitaria si $U^tU = I_n$.
 - (a) Sean $U, U_1, U_2 \in \mathcal{M}_{n,n}(\mathbb{R})$ matrices unitarias. Pruebe que U es invertible y que su inversa $U^{-1} = U^t$ es unitaria. Pruebe además que U_1U_2 es unitaria.
 - (b) Sea $u \in \mathbb{R}^n$ tal que $u^t u = 1$. Pruebe que $H = I_n 2uu^t$ es unitaria.
 - (c) Sea $\theta \in \mathbb{R}$ y $G(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Pruebe que $G(\theta)$ es unitaria y que cualquiera sea $A \in \mathcal{M}_{2,2}(\mathbb{R})$ existe $\theta \in \mathbb{R}$ de modo que $\left[G(\theta) \cdot A\right]_{2,1} = 0$.
 - (d) Sea $U \in \mathcal{M}_{n,n}(\mathbb{R})$ triangular superior y unitaria. Pruebe que U es diagonal y determine los valores de \mathbb{R} que pueden tomar los coeficientes en la diagonal de U.
- **P4.** Sean $\alpha, \beta \in \mathbb{R}$. Considere el siguiente sistema lineal en las variables reales x_1, x_2, x_3 y x_4

- (a) Determinar los valores $\alpha, \beta \in \mathbb{R}$ para los cuales el sistema lineal tiene solución única.
- (b) Determinar los valores $\alpha, \beta \in \mathbb{R}$ para los cuales el sistema lineal tiene infinitas soluciones.
- (c) Determinar los valores $\alpha, \beta \in \mathbb{R}$ para los cuales el sistema lineal no tiene solución.
- (d) Para $\alpha = 1$ y $\beta = 1$ encuente la inversa de la matriz de coeficientes del sistema lineal y determine la solución del sistema.