Introducción al Algebra

Profesora de Cátedra : Maya Stein Profesor Auxiliar : Víctor Carmi Matías Godoy

Lunes 17 de Agosto 2009

CLASE AUXILIAR

1. Sea $E \neq \phi$. Para un conjunto $A \subset E$ se define $\mathbb{1}_A : E \to \{0,1\}$ como 1 $\forall x \in A$ y como 0 si no.

- a) Demuestre que $\forall x \in E \quad \mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$
- b) Demuestre que $\forall x \in E \quad \mathbb{1}_{A \triangle B} = |\mathbb{1}_A \mathbb{1}_B|$
- c) Pruebe que si $A \neq E$ y $A \neq \phi \mathbb{1}_A$ es epiyectiva.
- 2. a) Sea $g: \mathcal{P}(A) \to \mathcal{P}(A)$, definida como $g(X) = X^c$. Pruebe que f es biyectiva.
 - b) Sea $f: A \to B$ y $F: \mathcal{P}(A) \to \mathcal{P}(B)$ definida como:

$$F(X) = \{ f(x) \in B : x \in X \}$$

Pruebe que f es epiyectiva $\Leftrightarrow F$ es epiyectiva.

Trabajo Dirigido

1. Para $a, b \in \mathbb{R}$, considere la recta $L_{a,b} = \{(x,y) \in \mathbb{R}^2 : y = ax + b\}$ y la colección de rectas $L = \{L_{a,b} \subset \mathbb{R}^2 : a, b \in \mathbb{R}\}$. Se define el conjunto de pares de rectas no paralelas:

$$H = \{(L, L') \in L^2 : L \cap L' \neq \phi, L \neq L'\}$$

- a) Escriba como recta de la forma $L_{a,b}$ el eje X. ¿Se puede hacer lo mismo con el eje Y?
- $b)\,$ Pruebe que H es no vacío encontrando un elemento que le pertenezca.
- c) Considere la función $\psi: H \to \mathbb{R}^2$ tal que $\psi((L, L')) = (x_0, y_0)$ donde (x_0, y_0) es el único punto de intersección de L y L'. Pruebe que ψ es sobreyectiva.
- 2. Considere las funciones $f: \mathbb{N} \setminus \{0\} \to \mathbb{Q}$ definida para cada $n \in \mathbb{N}$ por $f(n) = \frac{1}{2n}$ y $g: \mathbb{Q} \to \mathbb{Q}$ definida para cada $q \in \mathbb{Q}$ por $g(q) = \frac{q}{2}$. Determine si f, g son inyectivas, epiyectivas y biyectivas.