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Tools for Data Mining
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 Artificial Neural Networks

 Self-Organizing Feature Maps

 K-Means

 Decisions Trees

 Bayesian network

 K-Nearest Neighbor

 Support Vector Machines 
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Inspired on a biological model ...



 A simplified model of how natural neural systems 
work. Neural Networks (NNs) simulate natural 
information processing tasks from human brain.

 A NN model consists of neurons and connections 
between neurons (synapses).

 Characteristics of Human Brain: 
Contains 1011 neurons and 1015 connections

Each neuron may connect to other 10,000 neurons.

Human can perform a task of picture naming in about 
500 miliseconds
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(Picture from G. Kendall, lect. notes Univ. of  

Nottingham)
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An Artificial Neural Network is an 
interconnected assembly of simple 
processing elements, units or nodes 
(neurons), whose functionality is inspired by 
the functioning of the natural neuron from 
brain. 

The processing ability of the neural network 
is stored in the inter-unit connection 
strengths, or weights, obtained by a process 
of learning from a set of training patterns.
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 The units (individual neurons) operate only locally 
on the inputs they receive via connections. 

 ANNs undergo some sort of "training"  whereby the 
connection weights are adjusted on the basis of 
presented data. In other words, ANNs "learn" from 
examples (as children learn to recognize dogs 
from examples of dogs) and exhibit some 
generalization capability beyond the training data 
(for other data than those included in the training 
set).
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f

McCulloch & Pitts (1943)  recognised as the designers of the first 

neuron (and neural network) model

A single neuron has 6 components:

1. Input “x”

2. Weights “w”

3. Bias “b” (Threshold = -b)
4. Activation function “f”

5. Input function σ

6. Output “y”
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• Synonym for Single-
Layer, Feed-Forward 
Network

• First Studied in the 
50‟s (Rosenblatt)

• Other networks were 
known about but the 
Perceptron was the 
only one capable of 
learning and thus all 
research was 
concentrated in this 
area

( from G. Kendall, lect. notes Univ. of  Nottingham)
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AND XOR

• Functions that can be separated in this way are called Linearly 
Separable (XOR is not Linearly Separable)

• A PERCEPTRON can learn (represent) only Linearly Separable 
functions. 
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Linear Separability is also possible in more than 3 
dimensions – but it is harder to visualize

( from G. Kendall, lect. notes Univ. of  Nottingham)Primavera 2009 16IN831 - http://wi.dii.uchile.cl



 XOR   
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Y  = X1 XOR X2 = (X2 AND NOT X1) OR (X1 AND NOT X2)

Threshold for all nodes = 1.5
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One neuron layer is not enough, we should introduce an 
intermediate (hidden) layer.



Training Dataset  { (x(i), d(i)), i=1,…,p}

p = 4      

Training set = { ((1,1),1), ((1,0),0), ((0,1),0), ((0,0),0) }  

The training technique is called Perceptron Learning 
Rule.
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 Vectors from the training set are presented to the Perceptron 
network one after another (cyclic or randomly):

(x(1), d(1)), (x(2), d(2)),…, (x(p), d(p)),

(x(p+1), d(p+1)),…

 If the network's output is correct, no change is made.

 Otherwise, the weights and biases are updated using the 
Perceptron Learning Rule.

 An entire pass through all of the input training vectors is 
called an Epoch. 

 When such an entire pass of the training set has occurred 
without error, training is complete
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1. Initialize the weights and threshold to small random numbers. 

2. At time step t present a vector to the neuron inputs and calculate 
the perceptron output y(t).

3. Update the weights and biases as follows: 

◦ d(t) is the desired output 

◦ y(t) is the computed output

◦ t is the step/iteration number

◦ η is the gain or step size (Learning Rate), where 0.0 < η <= 1.0 

4. Repeat steps 2 and 3 until: 
◦ The iteration error is less than a user-specified error threshold  

◦ Or a predetermined number of iterations have been completed. 
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The perceptron learning algorithm developed originally by 
F. Rosenblatt in the late 1950s. 



t = 0

t = 9

…

t
INPUTS

d(t) y(t) E
WEIGHTS

x1 x2 x3 x4 b(t) w1(t) w2(t) w3(t) w4(t)

0 0 0 0 0 0

1 0 0 0 1 -1 0 1 -1 0 0 0 -1

2 1 1 1 0 1 1 2 0 1 1 1 -1

3 1 1 1 1 1 2 0 0 1 1 1 -1

4 0 0 1 1 -1 0 1 -1 1 1 0 -2

5 0 0 0 0 1 -1 2 0 1 1 0 -2

6 0 1 0 1 -1 -1 0 0 1 1 0 -2

7 1 0 0 0 1 1 0 0 1 1 0 -2

8 1 0 1 1 1 -1 2 1 2 1 1 -1

9 0 1 0 0 -1 2 3 0 2 0 1 -1

η = 1
Y = f(σ) = Id(σ)
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 Learning only occurs when an error is made, otherwise the weights 
are left unchanged!!.

 During training, it is useful to measure the performance of the 
network as it attempts to find the optimal weight set. 

 A common error measure used is sum-squared errors (computed 
over all of the input vector / output vector pairs in the training set): 

 where “p” is the number of input/output vector pairs in the training 
set.

 η - Learning rate - Dictates how quickly the network converges. 

 It is set by a matter of experimentation (usually small – e.g. 0.1)



 Sequential mode 
◦ on-line or per-pattern

◦ Weights updated after each pattern is presented 
(Perceptron is in this class) 

 Batch mode 
◦ off-line or per-epoch

◦ Weights updated after all patterns are presented
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 Training from data set, adaptation
◦ Extracts principles from training data set in order to 

generalize to other data

 The purpose of learning is to minimize error:
◦ on the training data set

◦ on the testing set (prediction errors)!!!

 Two main types of Neural Network LEARNING:
◦ Supervised learning

 have a teacher, telling you what is the output (target) for 
a given input pattern (Perceptron, Delta, Back 
propagation)

◦ Unsupervised learning

 no teacher, learn by itself  (SOMs)
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 From it we can better understand the Perceptron
learning rule, and the more general 
BackPropagation learning

 Adaline learning was developed by Widrow and 
Hoff (1960). 

 ADALINE is an acronym for ADAptive LInear Neuron
◦ neurons in the network have linear activation functions

 The Adaline learning rule 
◦ also known as the Delta rule or the Widrow-Hoff rule

◦ It is a training rule that minimizes the output error using 
(approximate) gradient descent method
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 The Perceptron training rule converges after a finite 
number of iterations to a solution that perfectly 

classifies the training data, provided the training 
examples are linearly separable.

 The Delta rule converges only asimptotically toward the 
minimum error solution, possibly requiring unbounded 

time, but converges regardless of whether the training 
data are linearly separable or not.

 The Perceptron rule updates weights based on the error 

in the thresholded Perceptron output, 

 whereas the Delta rule updates weights based on the 
error considering a linear activation function for 

neurons.
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 After all training pattern vectors xi  (i=1,...,p) are presented, 
the correction to apply to  the weights is proportional to the 
error E(t): 

 Our purpose is to find the vector w which minimizes E(t). At 
each step:

 In gradient descent techniques:

 η >0 learning rate
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 By analogy, gradient method can be compared with a ball rolling 
down from a hill: 
◦ the ball will roll down and finally stop at the valley. 

◦ Gradient direction is the direction of uphill (in the Figure – E(w) one dimensional case)

 In a gradient descent algorithm, the ball goes in the opposite 
direction to the gradient, i.e.,  we have

 therefore the ball goes downhill  since – E‟(w(t)).
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Gradient direction

E(w)



Gradient direction

w(t+k)w(t+k)

E(w)

 Gradually the ball will stop at a (local or global) 
minima where the gradient is zero
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xn

x1

x2

Input
Output

Hidden layers

3 proper neuron layers
the first (input layer) is dummy, only transmit the inputs to the next layer



 Training algorithm for multilayer neural networks 

(or MLP – Multi-Layer Perceptron)

 Supervised learning algorithm based on gradient 
descent

 Also named Generalized Delta Rule Introduced by 
Rumelhart, Hinton & Williams (1986) Parker (1982), 
Werbos (1974)

 Require differentiable “activation functions” for 
neurons, such as sigmoid function

 BP neural networks are the most widely used neural 
networks

 BP networks can learn any non-linear function. 

Primavera 2009IN831 - http://wi.dii.uchile.cl 32



Set learning rate 

Set initial weight values (including biases):  W, b

Loop until stopping criteria satisfied:

For each of the patterns in the training set

present an input pattern  to input units

compute output signal for hidden units

compute output signal for output units

present Target response to output units

compute error signal for this pattern

Compute an overall error for all the patterns 

(e.g. mean squared err )

Update weights at output layer

Update weights at hidden layer

Increment t  to t+1 (t –epoch number)

end loop



 Forward pass phase
◦ feed-forward propagation of input pattern signals 

through the network, from inputs towards the 
network outputs

 Backward pass phase
◦ computes „error signal‟ - propagation of error 

(difference between actual and desired output 
values) backwards through network, starting from 
output units towards the input units
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 Each full presentation of all patterns = „epoch‟

 Usually better to randomize order of training 
patterns presented for each  epoch in order to 
avoid correlation between consecutive training  
pairs being learnt (order effects)

 Training set shown repeatedly until stopping 
criteria are met

 Selecting initial weight values:  
◦ Choice of initial weight values is important as this decides 

starting position in weight space. That is, how far away 
from global minimum
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 Aim is to minimise an error function over all 
training patterns by adapting weights in MLP.

 Mean squared error is typically used:

 p : number of training patterns 

 In single layer Perceptron with linear activation 
functions (ADALINE), the error function is simple 
and described by a smooth parabolic surface with a 
single minimum. 
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MLP with nonlinear activation functions have complex 
error surfaces (e.g. plateaus, long valleys etc. ) with 
no single minimum

valleys

Picture from Jianfeng Feng, lect. notes Univ. of Sussex. 
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 The values o, h are the gradients at output and respectively 
hidden layers. For more details on how to calculate these 
values please see “Machine Learning” - Tom Mitchell (1997)

 The big problem of BP algorithm: 
◦ difficulty to cope with local minima and find a global minimum.

 Few improvements were reported: 
◦ variable learning rate, momentum, weight decay, use of modified error 

functions etc.
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 Method of reducing problems of instability 
while increasing the rate of convergence

 Modified weight update equation is: 
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α - Momentum coefficient, 0 <= α < 1



 If weight changes tend to have the same sign, 
momentum term increases (gradient decreases) -
speed up convergence on shallow gradient

 If weight changes tend have opposing signs, 
momentum term decreases and gradient descent 
slows to reduce oscillations (stabilizes) 

 Can help escape when being trapped in local 
minima

 Increases the convergence speed with a factor of 
/(1- )
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xm

Input

x1

x2

Output

Three-layer network (or more)

Hidden layer 
fwij

ai

≡ Universal Function 
Approximation

Universal Approximation Theorem:
For any given constant and continuous function h (x1,...,xm) with 
m inputs and  n outputs,  there  exists a three layer MLP (which computes
the function H) with m inputs and n outputs with the property

| h (x1,...,xm) - H(x1,...,xm) |< 



 Low accuracy of training or test data indicates that 
a new hidden layer or more hidden nodes are 
needed.
◦ if number of hidden nodes exceeds number of inputs and outputs, 

then add another hidden layer

◦ decrease the total hidden nodes by 50% in each successive hidden 
layer   

◦ (e.g., if 10 nodes in first layer, then use 5 in the second layer and 
2 in the third layer)

 If NN performs well on the Training set but poorly 
on Testing set,
◦ then it is treating each record as a special case and has 

“memorized” the data (lost generalization ability - over 
fitting). Then use fewer hidden nodes or remove a hidden 
layer.
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 Divide available data into 2 sets:

◦ Training data set

 used to train the weights and biases of NN

◦ Testing data set 

 used to test the performance of the trained neural network

 If the network contains more hidden units (learning 
parameters) than necessary to learn the training set
◦ then the network will memorize the training patterns 

◦ and will exhibit poor classification abilities for data not contained in the 
training set (testing set). 

◦ That means the network lost generalization ability - over fitting.
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of hidden nodes
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the appropriate number 
of hidden nodes

Number of hidden 

nodes

Error

Error on testing set

Error on training set

Right Number of hidden 

nodes



 Backpropagation Neural Networks
◦ supervised learning

 Kohonen Self Organizing Maps
◦ unsupervised learning

 Hopfield Neural Networks
◦ recurrent neural networks

 Radial Basis Function Neural Networks (RBF)

 Neuro-Fuzzy Networks (NF)

 Others: various architectures of recurrent neural 
networks,
◦ networks with dynamic neurons,

◦ networks with competitive learning, etc.
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 McCulloch & Pitts (1943)

◦ neural networks and artificial intelligence were born, first well-
known model for a biological neuron 

 Hebb(1949)

◦ Hebb learning rule

 Minsky(1954)

◦ Neural Networks (PhD Thesis)

 Rosenblatt(1957)

◦ Perceptron networks (Perceptron learning rule)

 Widrow and Hoff(1959)

◦ Delta rule for ADALINE networks

 Minsky & Papert(1969)

◦ Criticism on Perceptron networks (problem of linear separability)

 Kohonen(1982)

◦ Self-Organizing Maps
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 Hopfield(1982) 

◦ Hopfield Networks

 Rumelhart, Hinton & Williams (1986)

◦ Back-Propagation algorithm 

 Broomhead & Lowe  (1988)

◦ Radial Basis Functions networks (RBF)

 Vapnik (1990)

◦ Support Vector Machine approach

 In the ‟90s

◦ massive interest in neural networks, many NN applications were 
developed

◦ Neuro-Fuzzy networks emerged
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 Can learn directly from data. 
◦ They exhibit good learning ability – better than other AI approaches

 Can learn from noisy or corrupted data

 Parallel information processing

 Computationally fast once trained

 Robustness to partial failure of the network

 Useful where data are available and difficult to acquire 
symbolic knowledge

 Drawback of NN 
◦ – knowledge captured by a NN through learning (in weights –real numbers) 

is not in a familiar form for human beings, e.g. if-then rules (NNs are 

black box structures).

 Over fitting issues.
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A competitive learning algorithm for pattern 
discovery



 Neurons compete among themselves to 
be activated.  

 While in “Hebbian learning”, several 
output neurons can be activated 
simultaneously, in competitive learning, 
only a single output neuron is active at 
any time.  

 The output neuron that wins the 
“competition” is called the winner-takes-
all neuron.

Competitive learning
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 The basic idea of competitive learning was 
introduced in the early 1970s.  

 In the late 1980s, Teuvo Kohonen
introduced a special class of artificial neural 
networks called Self-Organising feature 
Maps.  

 These maps are based on competitive 
learning.
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 Our brain is dominated by the cerebral cortex
◦ a very complex structure of billions of neurons and 

hundreds of billions of synapses.  

◦ The cortex includes areas that are responsible for different 
human activities (motor, visual, auditory, somatosensory, 
etc.), and associated with different sensory inputs.  

◦ We can say that each sensory input is mapped into a 
corresponding area of the cerebral cortex. 

◦ The cortex is a self-organising computational map in the 
human brain.
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Input layer

Kohonen layer

(a)

Input layer

Kohonen layer

1 0
(b)

0 1
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 The Kohonen model provides a topological 
mapping.  It places a fixed number of input 
patterns from the input layer into a higher-
dimensional output or Kohonen layer. 

 Training in the Kohonen network begins 
with the winner‟s neighbourhood of a fairly 
large size.  Then, as training proceeds, the 
neighbourhood size gradually decreases.

The Kohonen network
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Architecture of the Kohonen Network
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 The lateral connections are used to create a competition 
between neurons.  The neuron with the largest 

activation level among all neurons in the output layer 
becomes the winner.  This neuron is the only neuron 
that produces an output signal.  The activity of all other 
neurons is suppressed in the competition.

 The lateral feedback connections produce excitatory or 

inhibitory effects, depending on the distance from the 
winning neuron.  This is achieved by the use of a 
Mexican hat function which describes synaptic weights 
between neurons in the Kohonen layer.
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 In the Kohonen network, a neuron learns by shifting its 
weights from inactive connections to active ones.  Only the 
winning neuron and its neighbourhood are allowed to learn.  
If a neuron does not respond to a given input pattern, then 
learning cannot occur in that particular neuron.

 The competitive learning rule defines the change wij applied 
to synaptic weight wij as

where xi is the input signal and is the learning rate
parameter.
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If neuron j wins the competition

If neuron j loses the competition



 The overall effect of the competitive learning rule 
resides in moving the synaptic weight vector Wj of 
the winning neuron j towards the input pattern X. 
The matching criterion is equivalent to the 
minimum Euclidean distance between vectors.

 The Euclidean distance between a pair of n-by-1 
vectors X and Wj is defined by

where xi and wij are the ith elements of the vectors 
X and Wj, respectively.



 To identify the winning neuron, jX, that best 
matches the input vector X, we should apply 
the following condition:

where m is the number of neurons in the 
Kohonen layer.



 Suppose, for instance, that the 2-dimensional 
input vector X is presented to the three-
neuron Kohonen network,

 The initial weight vectors, Wj, are given by



 We find the winning (best-matching) neuron jX
using the minimum-distance Euclidean criterion:

 Neuron 3 is the winner and its weight vector W3 is 
updated according to the competitive learning rule.
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 The updated weight vector W3 at iteration (p 
+ 1) is determined as:

 The weight vector W3 of the wining neuron 3 
becomes closer to the input vector X with 
each iteration.
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 Set initial synaptic weights to small random 
values, say in an interval [0, 1], and assign a 
small positive value to the learning rate 
parameter α.
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 Activate the Kohonen network by applying 
the input vector X, and find the winner-
takes-all (best matching) neuron jX at 
iteration p, using the minimum-distance 
Euclidean criterion

where n is the number of neurons in the input 
layer, and m is the number of neurons in the 
Kohonen layer.
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Update the synaptic weights

where Δwij(p) is the weight correction at iteration p.

The weight correction is determined by the competitive 
learning rule:

where α is the learning rate parameter, and Λj(p) is the 
neighbourhood function centred around the winner-takes-all 
neuron jX at iteration p.
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 Increase iteration p by one

 Go back to Step 2 and continue until the 
minimum-distance Euclidean criterion is 
satisfied, or no noticeable changes occur in 
the feature map.
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 To illustrate competitive learning, consider the 
Kohonen network with 100 neurons arranged in the 
form of a two-dimensional lattice with 10 rows and 
10 columns.  

 The network is required to classify two-
dimensional input vectors  each neuron in the 
network should respond only to the input vectors 
occurring in its region.

 The network is trained with 1000 two-dimensional 
input vectors generated randomly in a square 
region in the interval between –1 and +1. The 
learning rate parameter α is equal to 0.1.
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 Different neural network architectures and 
learning algorithms: 

 Supervised learning
◦ Perceptron (Perceptron learning rule)

◦ Adaline (Delta rule)

◦ Feed forward Multi-Layer Perceptron (Back 
propagation).

 Unsupervised learning
◦ Competitive learning

◦ Kohonen Self-Organizing Maps
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 Partitioning methods
◦ Construct various partitions and then evaluate them by 

some criterion

◦ k-Means (and EM), k-Medoids

 Hierarchical methods
◦ Create a hierarchical decomposition of the set of objects 

using some criterion

◦ agglomerative, divisive

 Model-based clustering methods
◦ A model is hypothesized for each of the clusters and the 

idea is to find the best fit of that model to each other



 Fuzzy clustering algorithms 
◦ Fuzzy C-means is the most popular one

 Neural networks have been used for 
clustering
◦ Self-Organizing Maps (SOMs – Kohonen, 1984)

◦ Adaptive Resonance Theory (ART) networks 
(Carpenter & Grossberg, 1990)

 Evolutionary algorithms based clustering

 Simulated annealing based clustering



 First we should specify k 

◦ the number of clusters we want to find out

◦ Each cluster will be represented by the center of the cluster. 
Iteratively minimize the objective function (distance to 
clusters).

 Algorithm:
1. Randomly pick k points (inside the hypervolume containing the 

pattern set) as the “centroids” of the k clusters we want

2. For each pattern in the data set, assign the pattern to the cluster 
with the closest centroid

3. Recompute the cluster centroids using the current cluster 
memberships

4. If there is no (or minimal) change in the identified clusters 
between two consecutive iterations stop, otherwise go to step 2
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 Objects: 1, 2,    5, 6,7 (1-dimensional objects)

 We want to find 2 clusters (k=2). Numerical difference is 
used as distance.

 K-means: 

◦ Randomly select 5 and 6 as centroids; 

◦ => Two clusters {1,2,5} and {6,7}; meanC1=8/3, meanC2=6.5

◦ => {1,2}, {5,6,7}; meanC1=1.5, meanC2=6

◦ => no change.

◦ Aggregate dissimilarity 

 sum of squared distances between each point (in all 
clusters) and its cluster center--(intra-cluster distance) 

= 0.52+ 0.52+ 12+ 02+12 = 2.5

|1-1.5|2



 We need to specify k in advance!

◦ Solution: May need to try out several k

 Tends to go to local minima that depend on the selection of starting 
centroids

◦ Solution: Run the algorithm with different starting 
points

 Assumes clusters are spherical in vector space (Euclidean topology), 
could be foils, donuts and others shapes!!

 Sensitive to coordinate changes, weighting, etc. 

 K-means is sensitive to “outliers” (does not recognize them)

 an object with an extremely large value (outlier) may substantially 
distort the distribution of the data



 Outlier problem can be handled by  K-medoid or 
neighborhood-based algorithms

 K-Medoids method:  

◦ Use the medoids ( the most centrally located object in a cluster) instead of 

computing the mean value of the objects in a cluster (centroids) as a reference point 

for that cluster. See for example PAM (Partitioning Around Medoids) algorithm -

(Kaufman & Rousseeuw, 1987 Wiley).
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 Recompute the centroids after every change (or 

few changes), rather than after all the patterns are 

re-assigned

◦ Improves the convergence speed

 Starting centroids (seeds) may determine to 

converge to local minima, as well as the rate of 

convergence

◦ Use heuristics to pick good seeds

◦ Run K-means M times and pick the best clustering 

obtained


