
Knowledge discovery from web data

PROFESSORS

Juan D. Velásquez
Víctor Rebolledo L.

1. The KDD Process

2. Data sources and cleaning

3. Data consolidation and information
repositories

4. Data mining

5. Tools for mining data

6. Using data mining to extract knowledge

7. Validation of the extracted knowledge

8. Mining the web

Primavera 2009 2IN831 - http://wi.dii.uchile.cl

Tools for Data Mining

Primavera 2009 3IN831 - http://wi.dii.uchile.cl

 Artificial Neural Networks

 Self-Organizing Feature Maps

 K-Means

 Decisions Trees

 Bayesian network

 K-Nearest Neighbor

 Support Vector Machines

Primavera 2009 4IN831 - http://wi.dii.uchile.cl

Inspired on a biological model ...

 A simplified model of how natural neural systems
work. Neural Networks (NNs) simulate natural
information processing tasks from human brain.

 A NN model consists of neurons and connections
between neurons (synapses).

 Characteristics of Human Brain:
Contains 1011 neurons and 1015 connections

Each neuron may connect to other 10,000 neurons.

Human can perform a task of picture naming in about
500 miliseconds

Primavera 2009 6IN831 - http://wi.dii.uchile.cl

(Picture from G. Kendall, lect. notes Univ. of

Nottingham)

.

.
.

.
. outputs

1

2

m

1

2

n

inputs

f

An Artificial Neural Network is an
interconnected assembly of simple
processing elements, units or nodes
(neurons), whose functionality is inspired by
the functioning of the natural neuron from
brain.

The processing ability of the neural network
is stored in the inter-unit connection
strengths, or weights, obtained by a process
of learning from a set of training patterns.

Primavera 2009 9IN831 - http://wi.dii.uchile.cl

 The units (individual neurons) operate only locally
on the inputs they receive via connections.

 ANNs undergo some sort of "training" whereby the
connection weights are adjusted on the basis of
presented data. In other words, ANNs "learn" from
examples (as children learn to recognize dogs
from examples of dogs) and exhibit some
generalization capability beyond the training data
(for other data than those included in the training
set).

Primavera 2009 10IN831 - http://wi.dii.uchile.cl

f

McCulloch & Pitts (1943) recognised as the designers of the first

neuron (and neural network) model

A single neuron has 6 components:

1. Input “x”

2. Weights “w”

3. Bias “b” (Threshold = -b)
4. Activation function “f”

5. Input function σ

6. Output “y”

Primavera 2009 12IN831 - http://wi.dii.uchile.cl

OR

X1 X2 Y

1 1 1

1 0 1

0 1 1

0 0 0

Threshold = 1

Bias = -1 (Threshold = - Bias)

1.5

1.5

Y

X1

X2

Primavera 2009 13IN831 - http://wi.dii.uchile.cl

• Synonym for Single-
Layer, Feed-Forward
Network

• First Studied in the
50‟s (Rosenblatt)

• Other networks were
known about but the
Perceptron was the
only one capable of
learning and thus all
research was
concentrated in this
area

(from G. Kendall, lect. notes Univ. of Nottingham)

Primavera 2009 14IN831 - http://wi.dii.uchile.cl

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

AND XOR

• Functions that can be separated in this way are called Linearly
Separable (XOR is not Linearly Separable)

• A PERCEPTRON can learn (represent) only Linearly Separable
functions.

Primavera 2009 15IN831 - http://wi.dii.uchile.cl

Linear Separability is also possible in more than 3
dimensions – but it is harder to visualize

(from G. Kendall, lect. notes Univ. of Nottingham)Primavera 2009 16IN831 - http://wi.dii.uchile.cl

 XOR

X1 X2 Y

1 1 0

1 0 1

0 1 1

0 0 0

Y = X1 XOR X2 = (X2 AND NOT X1) OR (X1 AND NOT X2)

Threshold for all nodes = 1.5

X1

X2

Y

2

-1

-1

2

2

2

One neuron layer is not enough, we should introduce an
intermediate (hidden) layer.

Training Dataset { (x(i), d(i)), i=1,…,p}

p = 4

Training set = { ((1,1),1), ((1,0),0), ((0,1),0), ((0,0),0) }

The training technique is called Perceptron Learning
Rule.

AND

X1 X2 D

1 1 1

1 0 0

0 1 0

0 0 0

Primavera 2009 18IN831 - http://wi.dii.uchile.cl

0,0

0,1

1,0

1,1

I1

I2

After weight initialization

(First Epoch)

0,0

0,1

1,0

1,1

I1

I2

At Convergence

Separation line
w1X1 + w2X2 + b = 0

w1X1 + w2X2 + b > 0

w1X1 + w2X2 + b < 0

X2

X1

X2

X1

 Vectors from the training set are presented to the Perceptron
network one after another (cyclic or randomly):

(x(1), d(1)), (x(2), d(2)),…, (x(p), d(p)),

(x(p+1), d(p+1)),…

 If the network's output is correct, no change is made.

 Otherwise, the weights and biases are updated using the
Perceptron Learning Rule.

 An entire pass through all of the input training vectors is
called an Epoch.

 When such an entire pass of the training set has occurred
without error, training is complete

Primavera 2009IN831 - http://wi.dii.uchile.cl 20

1. Initialize the weights and threshold to small random numbers.

2. At time step t present a vector to the neuron inputs and calculate
the perceptron output y(t).

3. Update the weights and biases as follows:

◦ d(t) is the desired output

◦ y(t) is the computed output

◦ t is the step/iteration number

◦ η is the gain or step size (Learning Rate), where 0.0 < η <= 1.0

4. Repeat steps 2 and 3 until:
◦ The iteration error is less than a user-specified error threshold

◦ Or a predetermined number of iterations have been completed.

Primavera 2009IN831 - http://wi.dii.uchile.cl 21

The perceptron learning algorithm developed originally by
F. Rosenblatt in the late 1950s.

t = 0

t = 9

…

t
INPUTS

d(t) y(t) E
WEIGHTS

x1 x2 x3 x4 b(t) w1(t) w2(t) w3(t) w4(t)

0 0 0 0 0 0

1 0 0 0 1 -1 0 1 -1 0 0 0 -1

2 1 1 1 0 1 1 2 0 1 1 1 -1

3 1 1 1 1 1 2 0 0 1 1 1 -1

4 0 0 1 1 -1 0 1 -1 1 1 0 -2

5 0 0 0 0 1 -1 2 0 1 1 0 -2

6 0 1 0 1 -1 -1 0 0 1 1 0 -2

7 1 0 0 0 1 1 0 0 1 1 0 -2

8 1 0 1 1 1 -1 2 1 2 1 1 -1

9 0 1 0 0 -1 2 3 0 2 0 1 -1

η = 1
Y = f(σ) = Id(σ)

Primavera 2009 22IN831 - http://wi.dii.uchile.cl

Primavera 2009IN831 - http://wi.dii.uchile.cl 23

 Learning only occurs when an error is made, otherwise the weights
are left unchanged!!.

 During training, it is useful to measure the performance of the
network as it attempts to find the optimal weight set.

 A common error measure used is sum-squared errors (computed
over all of the input vector / output vector pairs in the training set):

 where “p” is the number of input/output vector pairs in the training
set.

 η - Learning rate - Dictates how quickly the network converges.

 It is set by a matter of experimentation (usually small – e.g. 0.1)

 Sequential mode
◦ on-line or per-pattern

◦ Weights updated after each pattern is presented
(Perceptron is in this class)

 Batch mode
◦ off-line or per-epoch

◦ Weights updated after all patterns are presented

Primavera 2009IN831 - http://wi.dii.uchile.cl 24

 Training from data set, adaptation
◦ Extracts principles from training data set in order to

generalize to other data

 The purpose of learning is to minimize error:
◦ on the training data set

◦ on the testing set (prediction errors)!!!

 Two main types of Neural Network LEARNING:
◦ Supervised learning

 have a teacher, telling you what is the output (target) for
a given input pattern (Perceptron, Delta, Back
propagation)

◦ Unsupervised learning

 no teacher, learn by itself (SOMs)

Primavera 2009IN831 - http://wi.dii.uchile.cl 25

 From it we can better understand the Perceptron
learning rule, and the more general
BackPropagation learning

 Adaline learning was developed by Widrow and
Hoff (1960).

 ADALINE is an acronym for ADAptive LInear Neuron
◦ neurons in the network have linear activation functions

 The Adaline learning rule
◦ also known as the Delta rule or the Widrow-Hoff rule

◦ It is a training rule that minimizes the output error using
(approximate) gradient descent method

Primavera 2009IN831 - http://wi.dii.uchile.cl 26

 The Perceptron training rule converges after a finite
number of iterations to a solution that perfectly

classifies the training data, provided the training
examples are linearly separable.

 The Delta rule converges only asimptotically toward the
minimum error solution, possibly requiring unbounded

time, but converges regardless of whether the training
data are linearly separable or not.

 The Perceptron rule updates weights based on the error

in the thresholded Perceptron output,

 whereas the Delta rule updates weights based on the
error considering a linear activation function for

neurons.

Primavera 2009IN831 - http://wi.dii.uchile.cl 27

 After all training pattern vectors xi (i=1,...,p) are presented,
the correction to apply to the weights is proportional to the
error E(t):

 Our purpose is to find the vector w which minimizes E(t). At
each step:

 In gradient descent techniques:

 η >0 learning rate

Primavera 2009IN831 - http://wi.dii.uchile.cl 28

 By analogy, gradient method can be compared with a ball rolling
down from a hill:
◦ the ball will roll down and finally stop at the valley.

◦ Gradient direction is the direction of uphill (in the Figure – E(w) one dimensional case)

 In a gradient descent algorithm, the ball goes in the opposite
direction to the gradient, i.e., we have

 therefore the ball goes downhill since – E‟(w(t)).

Primavera 2009IN831 - http://wi.dii.uchile.cl 29

Gradient direction

E(w)

Gradient direction

w(t+k)w(t+k)

E(w)

 Gradually the ball will stop at a (local or global)
minima where the gradient is zero

Primavera 2009 30IN831 - http://wi.dii.uchile.cl

xn

x1

x2

Input
Output

Hidden layers

3 proper neuron layers
the first (input layer) is dummy, only transmit the inputs to the next layer

 Training algorithm for multilayer neural networks

(or MLP – Multi-Layer Perceptron)

 Supervised learning algorithm based on gradient
descent

 Also named Generalized Delta Rule Introduced by
Rumelhart, Hinton & Williams (1986) Parker (1982),
Werbos (1974)

 Require differentiable “activation functions” for
neurons, such as sigmoid function

 BP neural networks are the most widely used neural
networks

 BP networks can learn any non-linear function.

Primavera 2009IN831 - http://wi.dii.uchile.cl 32

Set learning rate

Set initial weight values (including biases): W, b

Loop until stopping criteria satisfied:

For each of the patterns in the training set

present an input pattern to input units

compute output signal for hidden units

compute output signal for output units

present Target response to output units

compute error signal for this pattern

Compute an overall error for all the patterns

(e.g. mean squared err)

Update weights at output layer

Update weights at hidden layer

Increment t to t+1 (t –epoch number)

end loop

 Forward pass phase
◦ feed-forward propagation of input pattern signals

through the network, from inputs towards the
network outputs

 Backward pass phase
◦ computes „error signal‟ - propagation of error

(difference between actual and desired output
values) backwards through network, starting from
output units towards the input units

Primavera 2009IN831 - http://wi.dii.uchile.cl 34

 Each full presentation of all patterns = „epoch‟

 Usually better to randomize order of training
patterns presented for each epoch in order to
avoid correlation between consecutive training
pairs being learnt (order effects)

 Training set shown repeatedly until stopping
criteria are met

 Selecting initial weight values:
◦ Choice of initial weight values is important as this decides

starting position in weight space. That is, how far away
from global minimum

Primavera 2009IN831 - http://wi.dii.uchile.cl 35

 Aim is to minimise an error function over all
training patterns by adapting weights in MLP.

 Mean squared error is typically used:

 p : number of training patterns

 In single layer Perceptron with linear activation
functions (ADALINE), the error function is simple
and described by a smooth parabolic surface with a
single minimum.

Primavera 2009IN831 - http://wi.dii.uchile.cl 36

MLP with nonlinear activation functions have complex
error surfaces (e.g. plateaus, long valleys etc.) with
no single minimum

valleys

Picture from Jianfeng Feng, lect. notes Univ. of Sussex.
Primavera 2009 37IN831 - http://wi.dii.uchile.cl

 The values o, h are the gradients at output and respectively
hidden layers. For more details on how to calculate these
values please see “Machine Learning” - Tom Mitchell (1997)

 The big problem of BP algorithm:
◦ difficulty to cope with local minima and find a global minimum.

 Few improvements were reported:
◦ variable learning rate, momentum, weight decay, use of modified error

functions etc.

Primavera 2009IN831 - http://wi.dii.uchile.cl 38

for output layer

for hidden layer

 Method of reducing problems of instability
while increasing the rate of convergence

 Modified weight update equation is:

Primavera 2009IN831 - http://wi.dii.uchile.cl 39

α - Momentum coefficient, 0 <= α < 1

 If weight changes tend to have the same sign,
momentum term increases (gradient decreases) -
speed up convergence on shallow gradient

 If weight changes tend have opposing signs,
momentum term decreases and gradient descent
slows to reduce oscillations (stabilizes)

 Can help escape when being trapped in local
minima

 Increases the convergence speed with a factor of
/(1-)

Primavera 2009IN831 - http://wi.dii.uchile.cl 40

Primavera 2009IN831 - http://wi.dii.uchile.cl 41

xm

Input

x1

x2

Output

Three-layer network (or more)

Hidden layer
fwij

ai

≡ Universal Function
Approximation

Universal Approximation Theorem:
For any given constant and continuous function h (x1,...,xm) with
m inputs and n outputs, there exists a three layer MLP (which computes
the function H) with m inputs and n outputs with the property

| h (x1,...,xm) - H(x1,...,xm) |<

 Low accuracy of training or test data indicates that
a new hidden layer or more hidden nodes are
needed.
◦ if number of hidden nodes exceeds number of inputs and outputs,

then add another hidden layer

◦ decrease the total hidden nodes by 50% in each successive hidden
layer

◦ (e.g., if 10 nodes in first layer, then use 5 in the second layer and
2 in the third layer)

 If NN performs well on the Training set but poorly
on Testing set,
◦ then it is treating each record as a special case and has

“memorized” the data (lost generalization ability - over
fitting). Then use fewer hidden nodes or remove a hidden
layer.

Primavera 2009IN831 - http://wi.dii.uchile.cl 42

 Divide available data into 2 sets:

◦ Training data set

 used to train the weights and biases of NN

◦ Testing data set

 used to test the performance of the trained neural network

 If the network contains more hidden units (learning
parameters) than necessary to learn the training set
◦ then the network will memorize the training patterns

◦ and will exhibit poor classification abilities for data not contained in the
training set (testing set).

◦ That means the network lost generalization ability - over fitting.

Primavera 2009IN831 - http://wi.dii.uchile.cl 43

the appropriate number
of hidden nodes

Primavera 2009IN831 - http://wi.dii.uchile.cl44

the appropriate number
of hidden nodes

Number of hidden

nodes

Error

Error on testing set

Error on training set

Right Number of hidden

nodes

 Backpropagation Neural Networks
◦ supervised learning

 Kohonen Self Organizing Maps
◦ unsupervised learning

 Hopfield Neural Networks
◦ recurrent neural networks

 Radial Basis Function Neural Networks (RBF)

 Neuro-Fuzzy Networks (NF)

 Others: various architectures of recurrent neural
networks,
◦ networks with dynamic neurons,

◦ networks with competitive learning, etc.

Primavera 2009IN831 - http://wi.dii.uchile.cl 45

 McCulloch & Pitts (1943)

◦ neural networks and artificial intelligence were born, first well-
known model for a biological neuron

 Hebb(1949)

◦ Hebb learning rule

 Minsky(1954)

◦ Neural Networks (PhD Thesis)

 Rosenblatt(1957)

◦ Perceptron networks (Perceptron learning rule)

 Widrow and Hoff(1959)

◦ Delta rule for ADALINE networks

 Minsky & Papert(1969)

◦ Criticism on Perceptron networks (problem of linear separability)

 Kohonen(1982)

◦ Self-Organizing Maps

Primavera 2009IN831 - http://wi.dii.uchile.cl 46

 Hopfield(1982)

◦ Hopfield Networks

 Rumelhart, Hinton & Williams (1986)

◦ Back-Propagation algorithm

 Broomhead & Lowe (1988)

◦ Radial Basis Functions networks (RBF)

 Vapnik (1990)

◦ Support Vector Machine approach

 In the ‟90s

◦ massive interest in neural networks, many NN applications were
developed

◦ Neuro-Fuzzy networks emerged

Primavera 2009IN831 - http://wi.dii.uchile.cl 47

 Can learn directly from data.
◦ They exhibit good learning ability – better than other AI approaches

 Can learn from noisy or corrupted data

 Parallel information processing

 Computationally fast once trained

 Robustness to partial failure of the network

 Useful where data are available and difficult to acquire
symbolic knowledge

 Drawback of NN
◦ – knowledge captured by a NN through learning (in weights –real numbers)

is not in a familiar form for human beings, e.g. if-then rules (NNs are

black box structures).

 Over fitting issues.

Primavera 2009IN831 - http://wi.dii.uchile.cl 48

A competitive learning algorithm for pattern
discovery

 Neurons compete among themselves to
be activated.

 While in “Hebbian learning”, several
output neurons can be activated
simultaneously, in competitive learning,
only a single output neuron is active at
any time.

 The output neuron that wins the
“competition” is called the winner-takes-
all neuron.

Competitive learning

Primavera 2009 50IN831 - http://wi.dii.uchile.cl

 The basic idea of competitive learning was
introduced in the early 1970s.

 In the late 1980s, Teuvo Kohonen
introduced a special class of artificial neural
networks called Self-Organising feature
Maps.

 These maps are based on competitive
learning.

Primavera 2009IN831 - http://wi.dii.uchile.cl 51

 Our brain is dominated by the cerebral cortex
◦ a very complex structure of billions of neurons and

hundreds of billions of synapses.

◦ The cortex includes areas that are responsible for different
human activities (motor, visual, auditory, somatosensory,
etc.), and associated with different sensory inputs.

◦ We can say that each sensory input is mapped into a
corresponding area of the cerebral cortex.

◦ The cortex is a self-organising computational map in the
human brain.

Primavera 2009IN831 - http://wi.dii.uchile.cl 52

Input layer

Kohonen layer

(a)

Input layer

Kohonen layer

1 0
(b)

0 1

Primavera 2009 53IN831 - http://wi.dii.uchile.cl

 The Kohonen model provides a topological
mapping. It places a fixed number of input
patterns from the input layer into a higher-
dimensional output or Kohonen layer.

 Training in the Kohonen network begins
with the winner‟s neighbourhood of a fairly
large size. Then, as training proceeds, the
neighbourhood size gradually decreases.

The Kohonen network

Primavera 2009 54IN831 - http://wi.dii.uchile.cl

Architecture of the Kohonen Network

Primavera 2009 55IN831 - http://wi.dii.uchile.cl

 The lateral connections are used to create a competition
between neurons. The neuron with the largest

activation level among all neurons in the output layer
becomes the winner. This neuron is the only neuron
that produces an output signal. The activity of all other
neurons is suppressed in the competition.

 The lateral feedback connections produce excitatory or

inhibitory effects, depending on the distance from the
winning neuron. This is achieved by the use of a
Mexican hat function which describes synaptic weights
between neurons in the Kohonen layer.

Primavera 2009IN831 - http://wi.dii.uchile.cl 56

Primavera 2009 57IN831 - http://wi.dii.uchile.cl

 In the Kohonen network, a neuron learns by shifting its
weights from inactive connections to active ones. Only the
winning neuron and its neighbourhood are allowed to learn.
If a neuron does not respond to a given input pattern, then
learning cannot occur in that particular neuron.

 The competitive learning rule defines the change wij applied
to synaptic weight wij as

where xi is the input signal and is the learning rate
parameter.

Primavera 2009IN831 - http://wi.dii.uchile.cl 58

If neuron j wins the competition

If neuron j loses the competition

 The overall effect of the competitive learning rule
resides in moving the synaptic weight vector Wj of
the winning neuron j towards the input pattern X.
The matching criterion is equivalent to the
minimum Euclidean distance between vectors.

 The Euclidean distance between a pair of n-by-1
vectors X and Wj is defined by

where xi and wij are the ith elements of the vectors
X and Wj, respectively.

 To identify the winning neuron, jX, that best
matches the input vector X, we should apply
the following condition:

where m is the number of neurons in the
Kohonen layer.

 Suppose, for instance, that the 2-dimensional
input vector X is presented to the three-
neuron Kohonen network,

 The initial weight vectors, Wj, are given by

 We find the winning (best-matching) neuron jX
using the minimum-distance Euclidean criterion:

 Neuron 3 is the winner and its weight vector W3 is
updated according to the competitive learning rule.

Primavera 2009IN831 - http://wi.dii.uchile.cl62

 The updated weight vector W3 at iteration (p
+ 1) is determined as:

 The weight vector W3 of the wining neuron 3
becomes closer to the input vector X with
each iteration.

Primavera 2009IN831 - http://wi.dii.uchile.cl63

 Set initial synaptic weights to small random
values, say in an interval [0, 1], and assign a
small positive value to the learning rate
parameter α.

Primavera 2009IN831 - http://wi.dii.uchile.cl 64

 Activate the Kohonen network by applying
the input vector X, and find the winner-
takes-all (best matching) neuron jX at
iteration p, using the minimum-distance
Euclidean criterion

where n is the number of neurons in the input
layer, and m is the number of neurons in the
Kohonen layer.

Primavera 2009IN831 - http://wi.dii.uchile.cl 65

Update the synaptic weights

where Δwij(p) is the weight correction at iteration p.

The weight correction is determined by the competitive
learning rule:

where α is the learning rate parameter, and Λj(p) is the
neighbourhood function centred around the winner-takes-all
neuron jX at iteration p.

Primavera 2009IN831 - http://wi.dii.uchile.cl 66

 Increase iteration p by one

 Go back to Step 2 and continue until the
minimum-distance Euclidean criterion is
satisfied, or no noticeable changes occur in
the feature map.

Primavera 2009IN831 - http://wi.dii.uchile.cl 67

 To illustrate competitive learning, consider the
Kohonen network with 100 neurons arranged in the
form of a two-dimensional lattice with 10 rows and
10 columns.

 The network is required to classify two-
dimensional input vectors  each neuron in the
network should respond only to the input vectors
occurring in its region.

 The network is trained with 1000 two-dimensional
input vectors generated randomly in a square
region in the interval between –1 and +1. The
learning rate parameter α is equal to 0.1.

Primavera 2009IN831 - http://wi.dii.uchile.cl 68

Kohonen map Five clusters

Winner frequency

1

2

3
4 5

 Different neural network architectures and
learning algorithms:

 Supervised learning
◦ Perceptron (Perceptron learning rule)

◦ Adaline (Delta rule)

◦ Feed forward Multi-Layer Perceptron (Back
propagation).

 Unsupervised learning
◦ Competitive learning

◦ Kohonen Self-Organizing Maps

Primavera 2009IN831 - http://wi.dii.uchile.cl 75

 Partitioning methods
◦ Construct various partitions and then evaluate them by

some criterion

◦ k-Means (and EM), k-Medoids

 Hierarchical methods
◦ Create a hierarchical decomposition of the set of objects

using some criterion

◦ agglomerative, divisive

 Model-based clustering methods
◦ A model is hypothesized for each of the clusters and the

idea is to find the best fit of that model to each other

 Fuzzy clustering algorithms
◦ Fuzzy C-means is the most popular one

 Neural networks have been used for
clustering
◦ Self-Organizing Maps (SOMs – Kohonen, 1984)

◦ Adaptive Resonance Theory (ART) networks
(Carpenter & Grossberg, 1990)

 Evolutionary algorithms based clustering

 Simulated annealing based clustering

 First we should specify k

◦ the number of clusters we want to find out

◦ Each cluster will be represented by the center of the cluster.
Iteratively minimize the objective function (distance to
clusters).

 Algorithm:
1. Randomly pick k points (inside the hypervolume containing the

pattern set) as the “centroids” of the k clusters we want

2. For each pattern in the data set, assign the pattern to the cluster
with the closest centroid

3. Recompute the cluster centroids using the current cluster
memberships

4. If there is no (or minimal) change in the identified clusters
between two consecutive iterations stop, otherwise go to step 2

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrarily choose K
object as initial
cluster center

Assign
each
objects
to most
similar
center

Update
the
cluster
means

Update
the
cluster
means

reassignreassign

 Objects: 1, 2, 5, 6,7 (1-dimensional objects)

 We want to find 2 clusters (k=2). Numerical difference is
used as distance.

 K-means:

◦ Randomly select 5 and 6 as centroids;

◦ => Two clusters {1,2,5} and {6,7}; meanC1=8/3, meanC2=6.5

◦ => {1,2}, {5,6,7}; meanC1=1.5, meanC2=6

◦ => no change.

◦ Aggregate dissimilarity

 sum of squared distances between each point (in all
clusters) and its cluster center--(intra-cluster distance)

= 0.52+ 0.52+ 12+ 02+12 = 2.5

|1-1.5|2

 We need to specify k in advance!

◦ Solution: May need to try out several k

 Tends to go to local minima that depend on the selection of starting
centroids

◦ Solution: Run the algorithm with different starting
points

 Assumes clusters are spherical in vector space (Euclidean topology),
could be foils, donuts and others shapes!!

 Sensitive to coordinate changes, weighting, etc.

 K-means is sensitive to “outliers” (does not recognize them)

 an object with an extremely large value (outlier) may substantially
distort the distribution of the data

 Outlier problem can be handled by K-medoid or
neighborhood-based algorithms

 K-Medoids method:

◦ Use the medoids (the most centrally located object in a cluster) instead of

computing the mean value of the objects in a cluster (centroids) as a reference point

for that cluster. See for example PAM (Partitioning Around Medoids) algorithm -

(Kaufman & Rousseeuw, 1987 Wiley).

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

medoid

centroid

 Recompute the centroids after every change (or

few changes), rather than after all the patterns are

re-assigned

◦ Improves the convergence speed

 Starting centroids (seeds) may determine to

converge to local minima, as well as the rate of

convergence

◦ Use heuristics to pick good seeds

◦ Run K-means M times and pick the best clustering

obtained

