

ACULTAD DE CIENCIAS ÍSICAS Y MATEMÁTICAS INIVERSIDAD DE CHILE

Chapter 3

Knowledge discovery from web data

PROFESSORS

Juan D. Velásquez Víctor Rebolledo L.

Outline

- 1. The KDD Process
- 2. Data sources and cleaning
- 3. Data consolidation and information repositories
- 4. Data mining
- 5. Tools for mining data
- 6. Using data mining to extract knowledge
- 7. Validation of the extracted knowledge
- 8. Mining the web

Section 3.1

>>> The KDD Process

Introduction

• The data resume for **decision making** is a **traditional report of the statistics**.

 Today Information is a valuable resource that have important implication in the productivity of the company. It administration is called knowledge discovery.

• This process usually imply a large amount of data.

Introduction (2)

The Goal

- Find **knowledge valid, useful, relevant** and **new** over a phenomena or activity.
- A visual representation of the result in order for an easier interpretation.
- The usability must allow a flexible, dynamic and collaborative process.
- Scalability and efficiency are important requirement.

Knowledge Pyramid

Considerations

- Scientific Method:
 - Hypothesis-Experiment-Knowledge
- Knowledge Discovery:
 - Data-Hypothesis-Knowledge
- Expert support
- Space-Time dimension.
- Data Quality, Homogeneity

Asking the right question: Who is the right person?

Asking the right question (2)

- Have first a clear objective
- Understanding the goals of the process.
- Question oriented to generate knowledge.
- We don't want another statistical report.

Asking the right question (3)

Evaluating Point Of Sale

- Which POS has better/worst production level?
- Which **products** are **best selling** on some POS?
- Which **promotions** has been with the **best impact** in sales.

Evaluating promotion

- Which effect over the total sales had the last year marketing campaign?
- Has the **promotion** an **effective cost**?

Asking the right question (4)

- Sales and tendencies
 - Which product has top selling score and which ones doesn't moves?
 - How much **utility** are perceived by **each product**?
 - How affected are the pattern of purchases by a change in the price?
 - How affected are the **popularity of a product** in relation to **the time**?
 - Which special characteristics has the client that buy this product?
 - Which are the **best selling brand**?

Asking the right question (5)

The client preferences and sales

- How many **man bought** this product?
- How many **married women bought** in this store?
- What is the impact of the education on the family sales pattern?
- What is the impact the **change on the utility** by product on the **sales of men v/s women**?

Inventory

- Which warehouse had the **best usage ranking on special period**?
- What is the **behaviour of the inventory** level of the warehouses?
- What are the **most valuable warehouse**?

Data Selection

Operational Data

Data Selection

Data Selection (2)

•All data in a Data Warehouse.

- Huge amount of data, more time to process.

Data Marts, segmenting the study to an operational sector.

- More conventional amount of data, but less time to process.
- Oriented to a more global strategy for the business.

Preprocessing and data cleaning

Pre-processing and data cleaning (2)

Missing Values
 Dynamical data
 Distributed and big data bases.
 Noise

Data transforming

Data transforming (2)

- Dimensions (OLAP)
- Hierarchies
- Variables
- Rotations
- SegmentationDrill-Down

Dimension

Hierarchy on the business

Data Mining

Data Mining (2)

- Classification
- Clustering
- Regression

Dependency modelling

Tendencies and similarities of themRelations

Interpreting and verifying the results

Summarized critical factors,

 observing its impact on the business and try to explain them.

• The **Expert** identify the **knowledge**.

Store the knowledge generated, reuse it on a future KDD process.

The KDD Process

Conclusion

Tactical Value of large amount of data.

> Analysis capacities,

- Finding useful knowledge v/s Cost and time.
- The new knowledge MUST BE validated by the new data in order to plan the business.
- The expert must validate each step in the process.
- The correct interpretation of the result will generate the knowledge
- The new discovery must be stored in a structure that allows reuse in others KDD.

Section 3.2

>>> Data source and cleaning

Data Source and Cleanning

- The identification of real data sources are important step in the KDD process.
- Irrelevant data (noise) often leads to analytic errors.
- Different Data Format introduce a cost of interpretation/transformation.
 - Metadata allows us to standardize the data.

Most frequent data problem

- Data consistency: Operational system are constructed on base of the direct business requirements. That means any other requirement on them (like KDD) have been never implemented and tested.
 - That imply **inconsistency**.
- Data Manipulation Errors: usually occur when testing is avoided. Example: Client with name "Batman" that remains from the development process.

Irrelevant Data: Some data need to be filtered because is not part of the analysis

The Web Data

The problem

- Garbage-in, Garbage-out
- Web Data
 - Highly Variable in **Type**
 - Highly Variable in Format
- HTML includes:
 - Tags
 - Text
 - Multimedia
- Logs: have an standard but the information that we want (sessions) is not explicit.
- Web Sites Change over time and usually nobody track these changes.

Web Data in the KDD process

•We require:

- Pages transformed to Feature Vectors
 - (to be explain in further chapter)
- Clean individual Session from users.
- The Web site graph

 The web data cleaning and pre-processing activities should store the result in an information repository for further data mining process.

Section 3.3

>>> Data consolidation and information repositories

Data consolidation and information repositories

- Information architecture complexity depends on computing background resources.
- Usually:
 - Heterogeneous operational systems not designed to work together.
 - Not a single data storage convention
 - Data without explicit stored correlations
 - (like: owner-car-repair)
- In order to restore the suitable integrity we need to perform:
 - Integration Task
 - Consolidation Task

Data Staging Area DSA

Temporary Location for data.

Used for performing the intermediate transformation.

Usually in all data has already an **standard data type**.

Data is prepared for more complex transformations

The ETL Process:

Extraction, Transformation & Loading

Extraction

Data are extracted and stored in the DSA.

^o Some data standardization are performed and cleaning.

Transformation

^o More complex transform are made

^o For example: **sessionization**.

Loading

^o The clean (integrity, consistency) data are stored in the historic final repository

^o For example: webhouse and user sessions.

The Data Warehouse: The Web House

Data transforms resume:

- Cleaning: Avoiding null values.
- Pre-processing: Data type standardization
 Integration
- Consolidation

Store Historic information:

- Time is an important dimension.
- The business memory of web client behavior on the site
 - semantic content of the site hyperlink structure.

Is the **source for data mining**

Section 3.4 Data Mining: Machine Learning

Based on the Machine Learning Lecture by Vasile Palade, Oxford University. Co-Author of the book:

J.D. Velásquez and V. Palade "Adaptive Web Site". IOS Press, Netherland, 2008.

Traditional Motivation: Beer and Diaper

- Case large US supermarket
 - Customer purchase behaviour:
 - product linked with another
 - (bread -> butter, beer -> diapers)
 - Market segment:
 - young men married in the last three years with small children.
- Based on this information, we deduce:
 - place diaper and beer on the same place on Friday afternoons.
- data mining algorithm are key to pattern discovery.
- The business take the pattern and take some profitable actions.

What is Machine Learning (ML)?

 Shows how to build computer programs that improve their performance at some task through experience (Mitchell, 1997).

• ML paradigm can be viewed as

- "programming by examples". Construct models from data.
- The **goal of ML** is to develop algorithms that do
 - the learning automatically without human intervention or assistance.

• Useful when you have lots of data.

Programs that Construct Models for Data

Machine Learning

• It is a core sub-area of Artificial Intelligence

Intelligence = Learning + Reasoning [Learning is at the core of intelligence]

It is related also to

 Statistics, Computational Complexity Theory, Information Theory, Biology (Genetics, Neurobiology), Cognitive Science, Control Theory.

Approaches in Machine Learning

- Decision tree
- Instance/Case-based learning
- Bayesian learning
- Neural Networks
- Learning through fuzzy logic
- Genetic algorithms

- Multistrategy Learning
- Rule Induction (ILP)
- Analytical learning
- Reinforcement learning
- Support Vector Machines
- Multi-agent learning

data, you have to derive a relation (function/model) for an infinite domain predicted classification

Data set is divided into:

- Training set used for training
- Testing set used for validating the model

Examples

Training examples for the target concept PlayGolf

Day	Outlook	Temperature	Humidity	Wind	PlayGolf
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Sunny	Mild	Normal	Weak	Yes
6	Rain	Mild	High	Strong	No
7	Overcast	Hot	Normal	Weak	Yes

Predict

1						
	8	Rain	Hot	Normal	Strong	??????

Examples

Training examples for learning the 3 classes of Iris flower

	Sepal-length	Sepal-width	Petal-length	Petal-width	Class
1	6.8	3	6.3	2.3	Versicolour
2	7	3.9	2.4	1.1	Setosa
3	2	3	2.3	1.7	Verginica
4	3	3.4	1.5	1.5	Verginica
5	5.5	3.6	6.8	2.4	Versicolour
6	7.7	4.1	1.2	1.4	Setosa
7	6.3	4.3	1.6	1.2	Setosa
8	1	3.7	2.2	2	Verginica

Predict

4.5	3.0	6.3	1.5	??????

Some Definitions ...

- -Examples (Instances) -
 - objects that are being classified
- Attributes (Features/Variables)
 - are used for describing examples
- Label
 - category (class) that we are trying to learn and predict.
 - During training the learning algorithm is supplied with labeled examples, while during testing, unlabeled examples are provided.

Concept

mapping from examples to labels (classes)

Some Definitions (2)

***A learning method**

♦ utilizes a **set of training examples** $\{(x_1,y_1)...,(x_n,y_n)\}$ to approximate a function f(x). x values are usually vectors of the form $\langle x_{i1}, x_{i2}, ..., x_{im} \rangle$ (features). The y values are usually drawn from a discrete set of classes.

*****Purpose of learning

- approximate an input to output mapping
- approximate the function f(x) and produce a classifier or a model

*****Classification

process of assigning presented information into classes/categories of the same type.

***Classifier**

computer-based agent that can perform classification

Some Basic Distinction

Supervised Learning (prediction)

 Build models to predict a variable/class using data for other variables/features. There is a "teacher" who tells what is the right class of any given example in the training set (direct feedback).

Unsupervised Learning (description)

 Build models to describe a set of variables (or relations). Given a population of unclassified examples, invent reasonable concepts (clusters), and find definitions/meanings of those concepts. No teacher exists during training (no feedback

Reinforcement Learning (Adaptation)

• Indirect feedback after many examples, an agent that evolve according to its environment (Robotic Movement).

Some Basic Distinction (2)

Feature-based Learning (Memory Based learning)

- Supervised based, build models from data that are in the form of a single table of features and their values.
- These tables acts as **memory resource** for *relevant* instance found in the past for **reinforcing the learning**.

Relational Learning

- Build models from data that are in the form of several related tables (each table represents a relation).
- Requires data in some relational format like Relational DB.
- It's like Feature-Based but with an additional structure that the algorithm discover.

48

Applications of Machine Learning

- medical diagnosis
- industrial fault diagnosis
- text categorization
 - (text mining/web mining)
- information retrieval
- speech recognition
- natural language processing
- signal and image processing
- etc, etc

- industrial control/automation
- data mining
- business application
 - (stock market prediction)
- bioinformatics
- intelligent tutoring systems
- virtual reality
- decision support systems

Data mining techniques

Association Rules

If-then expressions

Classification

Classes of objects

Clustering

Finding similar objects

Association Rules

- Find significant correlations among a large data set.
 - An association rule is an implication of the form [X => Y]
 - Where X, Y are group of items.
- The meaning of [X = Y] is:
 - in "most of the cases" if we have the set of X items in a transaction then we will found also these others set Y of items.
- If we known the most probable rules [X=>Y]
 - then we could configure our business for efficiency and profitability.

Measuring Association Rules: Support and confidence

• We need some measure of **acceptability** of the rules.

• **Support** (α):

• The **probability of occurrence of X or Y in a transaction**. That means all the possible cases related with **X or Y**.

• Confidence (β):

 The probability that X => Y occur in a transaction. That mean the conditional probability P(Y|X)

• Example (Beer, Diaper):

- 5% of all transaction show or beer or Diaper.
- 53% of the consumer that consume beer also consume diaper.

Classification

Sort objects in different categories or classes

• The process:

- Learning (training):
 - Iterative process working with training data associated with known class.
 - The training stop where the % of correct prediction is superior to a given threshold.
- Classification:
 - Having a trained model we can measure the real classification ability by using it on an independent data test set.
- We could iterate testing the classification with a test set and training set, and changing parameters of the model in order to obtain better adjustment.

Clustering

 Is the process of grouping objects with similar characteristics.

- We need a similarity measure and a neighbourhood definition.
- A similarity measure is not a distance function!
- In a supervised learning process
 - the classification is known a priori.
- In a UNsupervised learning process
 - the classification is NOT known a priori.

Clustering

Cluster

- A collection of similar physical/abstract objects.
 - (Similar within the same cluster, dissimilar to objects in other clusters)

Clustering

- process of grouping a set of objects into clusters
 - It is an unsupervised learning method.
 - It is a common and important ML task
 - It has many applications:
 - stand-alone classification tool
 - preprocessing tool for other ML algorithms.

Clustering Approach: Partition Clustering

- 1. Divide n object into k group called partitions
- 2. A partition $P = \{p_1, \dots, p_k\}$ of a set $X = \{x_1, \dots, x_n\}$, satisfy:

a)
$$p_i \subseteq X, p_i != \emptyset$$

b)
$$X = U p_i$$

c)
$$p_i \cap p_j = ø i != j$$

Clustering Approach: Hierarchical clustering

- Same data but ...
 - there are a tree like structure to decide how to perform the aggregation.
- This involve more information than partition clustering
 - because we could split clusters in different types.
- The final clustering are perform by
 - the leaves of the tree structure.

Concepts in Clustering

- First we should define a
 - distance (similarity measure) between points
- A good clustering is one where:
 - high intra-cluster similarity
 - the sum of distances between objects in the same cluster are minimized,
 - low inter-cluster similarity
 - while the distances between different clusters are maximized
- Clusters can be evaluated using:
 - **"internal measures"** that are related to the inter/intra cluster distance
 - **"external measures"** that are related to how representative are the current clusters to "true" classes. This is typically highly subjective.
- Centroid centre of the cluster (i.e. mean point of the cluster)
- Medoid the most centrally located (or most representative) object in a cluster

Distance measures - Examples

Euclidean distance

$$d(x_{i}, x_{j}) = \sqrt{\sum_{f=1}^{nof} (x_{i,f} - x_{j,f})^{2}}$$

Minkowski distance

$$d(x_{i}, x_{j}) = \sqrt[p]{\sum_{f=1}^{nof} (x_{i,f} - x_{j,f})^{p}}$$

Manhattan distance

$$d(x_{i}, x_{j}) = \sum_{f=1}^{nof} |x_{i,f} - x_{j,f}|$$

where **nof** is the **number of features**

Inter/Intra Cluster Similarity Measures

Intra-cluster similarity measure

- Sum/Min/Max/Avg of the absolute/squared distances between:
 - All pairs of points in the cluster OR
 - Between the "centroid" and all points in the cluster OR
 - Between the "medoid" and all points in the cluster

Inter-cluster similarity measure

- Sum the (squared) distance between all pairs of clusters, where the distance between two clusters is defined as:
 - distance between their centroids/medoids

(i.e. spherical clusters)

 distance between the closest pair of points belonging to the clusters

(i.e., chain shaped clusters)

Is clustering a difficult problem?

Given n points, and say we would like to cluster them into k clusters

- How many possible cluster???

Answer: Too many

- \rightarrow exponential in terms of n and k
- \rightarrow we can not test exhaustively all possibilities.

Solution: Iterative optimization algorithms

- \rightarrow Start with an initial clustering and iteratively improve it
- \rightarrow (see K-means)

Classical clustering methods

Partitioning methods

- Construct various partitions and then evaluate them by some criterion
- k-Means (and EM), k-Medoids

Hierarchical methods

- create a hierarchical decomposition of the set of objects using some criterion
- agglomerative, divisive

Model-based clustering methods

 a model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Non-Classical clustering methods

- Fuzzy clustering algorithms
 - Fuzzy C-means is the most popular one
- Neural networks have been used for clustering
 - Self-Organizing Maps (SOMs Kohonen, 1984)
 - Adaptive Resonance Theory (ART) networks (Carpenter & Grossberg, 1990), unsupervised architecture.
- Evolutionary algorithms based clustering
- Simulated annealing based clustering