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Abstract

We study aggregation of information when voters can collect information of different pre-

cision, with increased precision entailing an increasing marginal cost. In order to properly

understand the incentives to collect information we introduce another dimension of het-

erogeneity: on top of the ideological dimension we allow for different levels of intensity in

preferences. Contrary to traditional models of endogenous information, in equilibrium, there

are voters that use signals of different qualities.

Our strategy to show existence allows us to deal with 1) different voting rules, 2) asym-

metric priors, and 3) asymmetric distribution of types. After characterizing all symmetric

Bayesian equilibria in pure strategies, we show that information aggregation implies a very

unique relation between the parameters of the electorate and the voting rule. In a sense,

information aggregation is a knife edge result: it is not robust to small changes in the elec-

torate. We also show that, under the same symmetric conditions in Martinelli’s (2006) more

specialized model, the Condorcet Jury Theorem holds under the same cost conditions.
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1 Introduction

The Condorcet Jury Theorem has attracted a lot of attention from political scientists and

economists. In its original form, it states that large democracies select the right candidate

when voters report truthfully their information and they are, on average, correctly informed.1

Most of the early work has been devoted to study the case where voters are exogenously

informed. For example, Young (1988) and Mueller (2003) assume that "the probability that

the opinion of each voter will be in conformity with the truth"(Condorcet (1976), page 47)

is the same for all voters while Berend and Paroush (1998) introduce exogenous differences

in the probability of selecting the right candidate among voters. The results are in line

with Condorcet’s: as long as an individual voter is more likely to be right than wrong,

an electorate that must choose between two candidates with voters that only care about

selecting the right candidate will select this candidate almost surely as the number of voters

grows.

Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1997) show that the

assumption that voters report the signal received is a rational behavior under very particular

circumstances. If voters behave strategically and consider that their vote is only relevant

when it is actually used to select the winner, they should incorporate more information into

their reports besides the one conferred by their own signal. This is a traditional rational

choice result: voters condition their behavior on the event that they are pivotal.

Moreover when voters differ on how much they suffer for making a mistake, informa-

tion aggregation might fail. Indeed, Feddersen and Pesendorfer (1997) show that too much

heterogeneity (uncertainty about the electorate) implies inefficient information aggregation.

They point out that is not the assumption of truthful reporting what matters for informa-

tion aggregation but how uncertain voters are about the environment. The Condorcet Jury

1We focus here in non costly voting models. There is a vast literature that studies voting behavior when
the act of voting reduces the voter’s utility. This literature discusses what is known as the "Paradox of
non-voting". See Borgers (2004) for private values analysis, Krishna and Morgan (2005) for common values
analysis, and Feddersen (2004) for a survey.
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Theorem is only partially valid when voters are strategic. The fact that homogeneity or cer-

tainty are crucial for some results in political economy is not new. For example, Palfrey and

Rosenthal (1985) show that introducing uncertainty about the other voters preferences might

destroy the large and positive turnout in large elections obtained in Palfrey and Rosenthal

(1983).

One relevant question that typical Condorcet Jury Theorem models do not address is

how voters get the information they use to vote. The larger the electorate, the smaller the

probability a vote will actually affect the outcome of the election; a rational voter will then

have less incentives to acquire information if this information is costly and, in the limit,

every voter should be rationally ignorant. Yariv (2004) uses this intuition and assume that,

when the electorate grows the signal that a voter receives is less precise.2 When voters

information worsens with the size of the electorate, the speed at which the precision of the

signal a voter receives decreases is crucial for information aggregation. In her model there

are two effects: more voters imply more sampling which is the driving force behind early

model of aggregation of information (Berend and Paroush (1998)) but each draw (a voter’s

signal) is not as good as it was in a smaller electorate.

Martinelli (2006) provides microfoundations for the results in Yariv (2004).3 He allows

each voter to select the quality of information they use to vote assuming an increasing mar-

ginal cost for the precision of the signal. His paper is the first one to study the rational

ignorance hypothesis in a continuous quality of information set up. Unfortunately, when he

introduces conflict in the electorate (voters suffer differently from mistaken decisions), his

results are only valid for the simple majority rule and a particular symmetric assumption

about the electorate. Indeed, if we change the voting function his existence and characteri-

zation results are no longer valid. In this set up (with conflict), he shows that information

aggregation is possible iff the first three derivatives of the cost function for information

2She allows for abstention.
3He does not study the case of abstention with endogenous information. The model is significantly more

complicated as Oliveros (2007) shows and aggregation results are not yet available.
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acquisition are nil.4 This result goes in line with Yariv (2004) results.

Martinelli (2006) provides sufficient conditions under very strict symmetric conditions

and for the simple majority rule5 when the electorate is not homogenous. In our paper we

show that when these symmetric conditions are relaxed information aggregation requires

a particular rule for each electorate. We show that no rule is robust to all electorates:

small changes in the electorate lead to different rules that must be used for aggregation of

information to have a chance: aggregation of endogenous information requires a particular

design of rules for each electorate.

When information is endogenous the assumption about preferences is crucial and simpli-

fications like the one presented in Martinelli (2006), Yariv (2004), Feddersen and Pesendorfer

(1997) and Austen-Smith and Banks (1996) significantly weakens the predictive power of the

model (see Oliveros (2007) for a discussion). We study an electorate in which each member

is allowed to select the quality (or level) of information she will receive before deciding how

to vote between two candidates. We model the conflict present in the electorate assuming

preferences with two dimensions of heterogeneity. In one dimension, voters differ on the

ideological axis: there is "right" and "left"; on the other dimension, voters differ on the level

of concern: there are irresponsible and responsible members.

In behavioral terms using two dimensions of heterogeneity enriches the interpretation of

voters’ preferences. For example, when preferences are restricted to one dimension, a voter

who suffers a high utility loss for selecting a democrat when a republican should have been

elected suffers a small utility loss if a republican is elected when a democrat should have. By

introducing the extra dimension (concern) we are able to generate voters that actually differ

on the overall level of care for any type of mistakes. Second, for the quality of information

to significantly differ across voters for any election rule and any level of asymmetry in the

4As it will become clear later, the first derivative of the cost function is related to the quality of information
through the first order conditions of the voter’s information acquisition problem, the second derivative is
related to the change and the third derivative is related to speed of change in the quality of information.

5The simple majority rule is the optimal rule when information decreases with the size of the elctorate
(see Yariv (2004)).

3



electorate it is not enough to use only ideological differences. Imagine a voter that suffers the

same utility loss for electing the wrong candidate (say for example x) and another one that

suffers y for any mistake. If x < y the first voter has little incentives to acquire information,

while the more concerned voter (second one) will be more willing to invest in order to receive

a highly precise signal.

When voters endogenously collect information of different qualities traditional fixed point

arguments require a particular restriction on the information technology.6 This restriction

rules out the aggregation conditions that Martinelli (2006) requires. Therefore, taking the

easy road on the existence problem invalidates our comparison with Martinelli (2006). Since

we are particularly interested in understanding how robust his results are to the introduc-

tion of more natural heterogeneity and asymmetric assumptions, we need to use a different

strategy to characterize the equilibrium.

The set of equilibria presents nice geometric properties and we can use the character-

ization result to overcome the existence problem. We use the best response functions to

construct a transformation with domain in a suitable finite dimensional space (Oliveros

(2007)). Since the best response functions are embedded in this transformation, we can

show that a fixed point of this transformation is an equilibrium of the game. After showing

existence and characterizing the equilibrium, we study information aggregation properties of

this committee under symmetric assumptions.

In equilibrium, three classes of voters emerge in the voting stage: supporters for each

candidate and independents. supporters do not collect information and always vote for the

same candidate: they are ideologically driven. Independents collect information and vote

according to the information received. Independent voters are not homogeneously informed:

in the voting stage there is a continuum of qualities of information. In contrast, all informed

6Each voter best response is characterized by a voting function and an investment function (C0 almost
everywhere). In order to search for a fixed point in the space of functions we require more powerful fixed
point theorems like Schauder’s (see Rudin (1973)). This theorem requires a strong notion of continuity in
the space of functions (equicontinuity) that imposes some sort of bounded variation on the collection of
candidate functions for information acquisition. In terms, this can be achieved by precluding the second
derivative of the cost function for information to be nil when no information is collected.
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voters in Martinelli (2006) are equally informed.

Although the model is significantly more complex, we are able to derive almost the same

aggregation results that Martinelli (2006) derives when we assume the same conditions he

assumes. This relates directly to our final contribution: our existence and characterization

results are valid for all q-majority rules without abstention and every distribution of types.

The rest of the Paper is organized as follows. We present our model in the next section.

Section 3 solves the model for arbitrary rules and a fairly arbitrary composition of the elec-

torate. We discuss the incentives to collect information and vote separately before presenting

the characterization and existence result. We then present the necessary conditions for ag-

gregation of information in Section 4 and the aggregation result in the Appendix. Section 5

concludes.

2 The model

There are n potential voters that must decide between two options A and Q. There are two

states of nature (ω ∈ {a, q}) and the probability of state a is given by φ = Pr (a) which is

common knowledge. Let X= {Q,A} stand for the set of available voting actions. We refer

to a generic voting rule as R.

There are three classes of voters: responsive, partisan for A and partisan for Q.

Partisan voters for A (Q) always vote for candidate A (Q), while responsive voters have

contingent preferences described by θ = {θq, θa} ∈ [0, 1]2. Let U (d | ω) be the utility derived

from candidate d ∈ {A,Q} winning in state ω ∈ {a, q}. The utility that a responsive voter

with preferences θ derives for different outcomes (winning candidates) is contingent in the

state and can be described by the four terms U (A | a) = U (Q | q) = 0, U (A | q) = −θq

and U (Q | a) = −θa. We refer to responsive voter i’s preferences (the pair θq and θa) as her

type, and to a "responsive voter type θ" simply as a "type θ".

A voter’s preferences are private information. A voter is responsive with probability
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(1− α) and partisan for A (Q) with probability αξA (α (1− ξA)), where α ∈ (0, 1) and

ξA ∈ (0, 1). If the voter is responsive, her preferences are drawn independently from a

distribution with cumulative distribution function F on [0, 1]2 with no mass points. We

assume that F , α and ξA are common knowledge.

Once nature selects a profile of types and preferences are assigned, a voter can invest in

collecting information. Each responsive voter i can select p ∈
£
1
2
, 1
¤
where p is the parameter

of a Bernoulli random variable S that takes values on the set {sq, sa}. We assume that the

probability of signal s = sω in state ω ∈ {a, q} is equal to p:

Pr (sω | p, ω) = p for ω ∈ {a, q}

The precision cost is given by C :
£
1
2
, 1
¤
→ R+ where we assume that:

Assumption 1 The cost function C is twice continuously differentiable everywhere in
£
1
2
, 1
¤

and satisfies 1) C 0 (p) > 0 and C 00 (p) > 0 for all p > 1
2
, 2) C

¡
1
2

¢
= C 0 ¡1

2

¢
= 0, 3)

C 00 ¡1
2

¢
≥ 0, and 4) lim

p→1
C 0 (p)→∞.

The last part of assumption (1) implies that there are no fully informed voters in equi-

librium. C 0 ¡1
2

¢
= 0 simplifies the analysis but allowing for C 0 ¡1

2

¢
> 0 would essentially

introduce a fixed cost of information acquisition.

Definition 1 A regular committee of size n is a committee with mandatory voting and

n members in which preferences are described by the parameters (α, ξA) ∈ (0, 1)2 and the

distribution function F over [0, 1]2 with no mass points, the prior probability of state a is

φ ∈ (0, 1), and the cost technology of information acquisition verifies assumption (1).

Definition 2 A pure strategy is an investment function P : [0, 1]2 →
£
1
2
, 1
¤
and a voting

function V : [0, 1]2×{sq, sa}→X, such that P (θ) is the investment level of responsive voter

type θ, and V (θ, S) = (V (θ, sq) , V (θ, sa)) is the contingent vote of responsive voter type θ
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who receives the signal s ∈ {sq, sa}.7

When we refer to a generic voting function, investment function or strategy, we omit the

superscript indicating types. We refer to the voter’s behavior (strategy) as V (θ, S) and to

an arbitrary pair of votes as (vq, va) ∈X2. V (θ, S) is part of an strategy while (vq, va) is

basically notation. When we want to refer to a particular vote we use just v.

We will refer to a profile of strategies as
³ eP, eV ´ where eP = (P 1, ...P n) and eV =

(V 1, ...V n) are the profile of investment functions and voting functions for the whole com-

mittee. Analogously
³ eP−i, eV −i´ is the profile of strategies for all players but player i. We

will say that, if V (θ, s) = v for all s ∈ {sq, sa} type θ uses an uninformed voting function,

and if V (θ, sq) 6= V (θ, sa) type θ uses an informed voting function. We therefore identify

strategies by the voting function they employ.

Conditional on the profile of strategies of all voters but i,
³ eP−i, eV −i´, we define the

probability that the winner is x ∈ {Q,A} in state ω ∈ {q, a}, when voter i casts vote v ∈X,

as

Pr
³
x | ω, v,

³ eP−i, eV −i´´ (1)

Since a voter selects the quality of information after observing her type but before ob-

serving the signal, while the vote is decided after observing the signal, we need to define

payoffs in different stages of the game. The expected utility of player i of type θ ∈ [0, 1]2

when she votes v ∈X , and the state is ω ∈ {q, a}, is

ui (v | θ, ω) ≡ −θω Pr
³
(−ω) | ω, v,

³ eP−i, eV −i´´ (2)

where we let (−ω) = Q if ω = a and (−ω) = A if ω = q. This expression is just the product

of the disutility of a mistake (−θω) and the probability of a mistake in the state ω ∈ {q, a},
7The reader may argue that voting rules should be contingent in the level of investment performed by

each voter so V : [0, 1]2×
£
1
2 , 1
¤2×{sq, sa}→X. This approach substantially complicates the model without

affecting any of the results. That results are unaffected follows by the fact that between the investment
decision and voting decision no other public information is revealed to the voters.
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given player i’s vote v. We define the expected utility of player i of type θ ∈ [0, 1]2 and

investment choice p ∈
£
1
2
, 1
¤
, when she votes v ∈X after receiving the signal s ∈ {sq, sa} as

U i (p, v | θ, s) ≡
X

ω∈{q,a}

ui (v | θ, ω) Pr (ω | s, p) (3)

Using (3), the expected utility of player i of type θ ∈ [0, 1]2 and investment choice

p ∈
£
1
2
, 1
¤
, for a voting function (vq, va) is

U i (p, (vq, va)) | θ) ≡
X

x∈{q,a}

U i (p, vx | θ, sx) Pr (sx | p) (4)

We study symmetric Bayesian equilibria in pure strategies.

Definition 3 A symmetric Bayesian equilibrium for the voting game in a regular committee

with voting rule R and voting alternatives X is a strategy (P ∗ (θ) , V ∗ (θ, S)) such that: 1)

all voters use (V ∗ (θ, S) , P ∗ (θ)), 2) for every θ ∈ [0, 1]2, for all s ∈ {sq, sa}, and for any

other feasible v0 ∈X, the strategy (P ∗ (θ) , V ∗ (θ, S)) satisfies

U i (P ∗ (θ) , V ∗ (θ, s) | θ, s) ≥ U i (P ∗ (θ) , v0 | θ, s) (5)

and 3) for every θ ∈ [0, 1]2, and for any other feasible (vq, va) and p, the strategy (P ∗ (θ) , V ∗ (θ, S))

satisfies

U i (P ∗ (θ) , V ∗ (θ, S) | θ)− C (P ∗ (θ)) ≥ U i (p, (vq, va) | θ)− C (p) (6)

From now on, we omit the strategy profile of all other players as an argument of endoge-

nous variables. Therefore, the probability of a particular outcome of the decision x ∈ {Q,A},

in state ω, after player i cast a vote v ∈X, is written as Pr (x | ω, v). Using the symmetry

assumption, the probability that an arbitrary voter j 6= i votes for v ∈X, in state ω, when
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all other players but i are using the strategy (P (θ) , V (θ, S)) is

Pr (v | ω) = (1− α)

Z
θ∈[0,1]2

X
s∈{sq,sa}

I (V (θ, s) = v) Pr (s | P (θ) , ω) dF (θ) + αξv (7)

The first part of the right side is just the probability that a voter is responsive multiplied

by the probability that a responsive voter votes for v ∈X. The second part is the probability

that a voter is partisan, multiplied by the probability that a partisan member votes for v ∈X.

This expression aggregates over the two sources of private information present in the model:

the type of player and the signal received after investment.8

Recalling the expression (1) and fixing all players’ strategies but i’s, we also define the

change in the probability of A winning when voter i switches her vote from Q to A in state

ω as,

∆Pr (ω,Q) ≡ Pr (A | ω,A)− Pr (A | ω,Q) (8)

Again, we must recall that ∆Pr (ω,Q) for ω ∈ {q, a} are conditioned on the actual profile

of strategies
³ eP−i, eV −i´ so they both depend on the behavior of all other players.

3 Solving the model

Let Tk stand for the total number of votes for A, when there are k voters. The voting rule is

defined as a pair R= (N, r) with n ≥ N ≥ n
2
9 and r ∈ [0, 1], such that A wins if Tn > N and

Q wins if Tn < N ; if Tn = N , A wins with probability 1− r and Q wins with probability r.10

8As the reader suspects Pr (x | ω, v) is a combination of Pr (v | ω), for v ∈X, x ∈ {Q,A} and ω ∈ {q, a}.
9The case with N < n

2 can be studied by reversing the roles of Q and A.
10The results are valid for all q-majority rules, such that A is the winner if the percentage of votes in favor

of A is at least N > qn.
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3.1 Voting Incentives

Responsive voters can use four possible voting functions: (Q,A), (A,Q), (A,A), and (Q,Q).

It is straightforward to see that the voting functions (A,A) and (Q,Q) can not induce

positive investment in information in equilibrium. Only (Q,A) and (A,Q) can induce positive

investment in equilibrium. As the reader suspects, (A,Q) can not be optimal.

The next lemma provides conditions for a vote v ∈ {Q,A} to satisfy the equilibrium

condition (5) after receiving the signal s ∈ {sq, sa} when the investment is p

Lemma 1 In any regular committee, a necessary condition for a responsive voter to vote

for A after receiving the signal s ∈ {sq, sa}, when she is type θ and the investment is p, is

θq∆Pr (q,Q) Pr (q | p, s) ≤ θa∆Pr (a,Q) Pr (a | p, s) (9)

A necessary condition for a responsive voter type θ with investment p to vote for Q after

receiving the signal s ∈ {sq, sa} is obtained by reversing the sign of (9). Strict inequalities

give sufficient conditions.

Proof. Using the definition of expected utility in (2) and (3), equation (5), and Bayes rule

gives the result.

θq∆Pr (q,Q) Pr (q | p, s) is the expected cost of making a mistake (making A the winner

in state q) when switching the vote from Q to A, while θa∆Pr (a,Q) Pr (a | p, s) is the

expected benefit of avoiding a mistake (Q winning in state a) when switching the vote from

Q to A. Therefore, (9) only states that the voter will vote in favor of A, when the expected

benefit of avoiding a mistake is higher than the expected loss of making one when changing

the vote from Q to A.

Responsive voters will consider how they affect the outcome of the election to decide

how they vote. The next lemma shows that changing the vote always has an impact in the

election so ∆Pr (ω,Q), ω ∈ {q, a} are strictly positive.11

11Why we use ∆Pr (ω,Q), ω ∈ {A,Q} instead of pivotal probabilities will be clear in the existence and
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Lemma 2 In any regular committee, for any n ≥ 2, there is some ζ (ω) > 0 for each

ω ∈ {q, a}, such that ∆Pr (ω,Q) ∈ [ζ (ω) , 1− ζ (ω)]. If n = 1, then ∆Pr (ω,Q) = 1 for

ω ∈ {q, a}

Proof. Assume that all players but i are using the strategy (P, V ) and player i uses (P i, V i).

Let Pr (Tm = k | ω) be the probability that there are k votes for A out of the m voters when

everybody uses the voting function V and the investment function P . Using the distribution

function of a binomial random variable

Pr (Tn−1 = k | ω) = (n− 1)!
(n− 1− k)!k!

(Pr (A | ω))k (1− Pr (A | ω))n−1−k (10)

where Pr (A | ω) is defined as in (7). The probability of candidate A being selected when

member i votes for x ∈ {Q,A} is just

Pr (A | ω,A) = Pr (Tn−1 = N − 1 | ω) (1− r) +
n−1X
k=N

Pr (Tn−1 = k | ω) (11)

and

Pr (A | ω,Q) = Pr (Tn−1 = N | ω) (1− r) +
n−1X

k=N+1

Pr (Tn−1 = k | ω) (12)

Therefore, using definition (8)

∆Pr (ω,Q) = Pr (Tn−1 = N − 1 | ω) (1− r) + Pr (Tn−1 = N | ω) r (13)

Since Pr (A | ω) ∈
£
αξA, 1− αξQ

¤
, Pr (A | ω, v) < 1 for v ∈ {Q,A}, then ∆Pr (ω,Q) ≤

1 − ζ1 (ω) for some ζ1 (ω) > 0 small enough. On the other hand, using (10), we conclude

that ∆Pr (ω,Q) is bigger than

max {Pr (Tn−1 = N − 1 | ω) ,Pr (Tn−1 = N | ω)}

characterization section.
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Again, using the fact that Pr (A | ω) ∈
£
αξA, 1− αξQ

¤
, there is some ζ2 (ω) > 0 such

that ∆Pr (ω,Q) ≥ ζ2 (ω). Finally, the result for n = 1 is straightforward.

Once we know that ∆Pr (ω,Q) > 0, ω ∈ {q, a} it is easy to see that there are no

equilibria in which all responsive voters vote for a particular candidate independently of

their preferences. That is, there exist θ1 and θ2 such that V (θ1, S) 6= V (θ2, S).

With Lemma (2) at hand, we can manipulate the expression (9) to show that A is optimal

after signal s ∈ {sq, sa} if
θq
θa

Pr (q | p, s)
Pr (a | p, s) ≤

∆Pr (a,Q)

∆Pr (q,Q)
(14)

Obviously, Q is optimal if the sign is reversed in expression (14). ∆Pr(a,Q)
∆Pr(q,Q)

is determined in

equilibrium, while θq
θa

Pr(q|p,s)
Pr(a|p,s) is the voter’s private information. (14) will allow us to construct

functions that separate types that prefer v = A over v = Q conditional on the signal and

the investment.

We proceed now to determine the responsive voters’ optimal voting function. There are

basically two informed strategies: the strategy with the voting function (A,Q), and the

strategy with the voting function (Q,A). If the signal is informative, it is not optimal for

a responsive voter to vote against the information that she receives in all circumstances. A

player using a strategy with the informed voting function (A,Q) is doing just that. Only

uninformed voters that are indifferent between option A and Q may use (A,Q). Therefore,

(A,Q) is not used in equilibrium with positive probability.

Lemma 3 In any regular committee, the voting function (A,Q) may be used in equilibrium

only by types that satisfy θa
θq
= ∆Pr(q,Q)

∆Pr(a,Q)
(1−φ)
φ
, and if they use it, they do not collect informa-

tion; for all other types it is not optimal. The set of types who do not acquire information

and use an informative strategy has measure 0 in equilibrium.

Proof. First note that Bayes rule gives that Pr(q|sa)
Pr(a|sa) =

(1−p)
p

(1−φ)
φ

and Pr(q|sq)
Pr(a|sq) =

p
(1−p)

(1−φ)
φ
.
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Using (9), the informed strategy with (A,Q) must satisfy

θq∆Pr (q,Q)
p

(1− p)

(1− φ)

φ
≤ θa∆Pr (a,Q) (15)

θq∆Pr (q,Q)
(1− p)

p

(1− φ)

φ
≥ θa∆Pr (a,Q)

we must have that θq
θa

p
(1−p) ≤

θq
θa

(1−p)
p
. If p > 1

2
, we reach a contradiction.

If p = 1
2
, it is necessary for (A,Q) that both inequalities in (15) hold which imply the

conditions stated in the hypothesis: θa
θq
= ∆Pr(q,Q)

∆Pr(a,Q)
(1−φ)
φ
.

If a responsive voter uses an uninformed strategy, this voter cannot be collecting infor-

mation. If a voter type θ invests, it must be the case that she is following an informed

strategy.

Now, we can separate the types in those that always vote for A, types that always vote for

Q, and types that collect information and change the vote according to the signal received.

We will refer to types that always vote for A (or Q) without performing any investment

as supporters for A (or Q), and types that invest and change their vote according to the

signal received as independents.

3.2 Information acquisition

In this section we derive the optimal investment function for independents. Using (4), the

optimal investment function of players that use the informed strategy with (Q,A) is defined

implicitly by12:

C 0 (P ∗ (θ)) = θq∆Pr (q,Q) (1− φ) + θa∆Pr (a,Q)φ (16)

When C 0 ¡1
2

¢
= 0,13 the fact that C 00 (p) > 0 for all p > 1

2
, and the implicit func-

tion theorem imply that P ∗ (θ) exists, is continuously differentiable, strictly increasing and

strictly concave for all θ 6= (0, 0). Recalling that ∆Pr (ω,Q) ≤ 1− ζ (ω), we conclude that

12Second order conditions follow directly by convexity of C.
13If C0

¡
1
2

¢
> 0, the set of types that may use the informed voting rule (Q,A) must satisfy min {θq, θa} > 0.
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C 0 (P ∗ (θ)) ≤ max
ω∈{q,a}

(1− ζ (ω)), and since lim
x→1

C 0 (x)→∞ we know that P ∗ (θ) ≤ η for some

η < 1.

The informed strategy (Q,A) is used whenever its expected utility, net of investment

costs, is higher than the expected utility derived from using any uninformed strategy (see

condition (6)). The next lemma introduces an expression to compare the informed strategy

with (Q,A) with the uninformed strategies.

Lemma 4 In any regular committee, a necessary condition for voter type θ, to use a strategy

with voting function V (θ, S) = (Q,A), and investment function P ∗ (θ) > 1
2
that satisfies

(16), is that

C 0 (P ∗ (θ))P ∗ (θ)− C (P ∗ (θ))− θω∆Pr (ω,Q) Pr (ω) ≥ 0 (17)

for all ω ∈ {q, a}. A sufficient condition is obtained if (17) holds with strict inequality.

Proof. Using condition (6), the informed strategy with voting function (Q,A), is as good

as an uninformed strategy (vq, va) = (X,X) for X ∈ {Q,A}, iff

C (P ∗ (θ)) ≤ U i (P ∗ (θ) , (Q,A) | θ)− U i

µ
1

2
, (X,X) | θ

¶
(18)

where U i
¡
1
2
, (vq, va) | θ

¢
is defined by (4). Using (4) and recalling∆Pr (a,Q) and∆Pr (q,Q),

(18) reduces to (17), and necessity follows. Sufficiency of (17) with strict inequality is

straightforward.

The informed strategy (Q,A) is preferred to the uninformed strategy (A,A) if we let

ω = a in condition (17), and the informed strategy (Q,A) is preferred to the uninformed

strategy (Q,Q) if we let ω = q in condition (17).

In order to determine which type prefers which strategy, we define implicitly the functions

gω : R→ R such that the pair (gω (θa) , θa) satisfies (17) with equality:

C 0 (P ∗ (ga (θa) , θa))P
∗ (ga (θa) , θa)− C (P ∗ (ga (θa) , θa)) = θa∆Pr (a,Q)φ

C 0 (P ∗ (gq (θa) , θa))P
∗ (gq (θa) , θa)− C (P ∗ (gq (θa) , θa)) = gq (θa)∆Pr (q,Q) (1− φ)

14



where P ∗ (gω (θa) , θa), ω ∈ {q, a} satisfies (16). Each function gω, ω ∈ {q, a} partitions the

space of types [0, 1]2 in two regions: gq separates types that prefer the informed strategy

(Q,A) to the uninformed strategy (Q,Q), and ga separates types that prefer the informed

strategy (Q,A) to the uninformed strategy (A,A).

Let ω = q in condition (17), and note that the left side of (17) is decreasing in θq.

Therefore, any θ ∈ [0, 1]2 such that θq > gq (θa), prefers the uninformed strategy with (Q,Q)

to the informed strategy with (Q,A). On the other hand, if θq < gq (θa) the informed

strategy is preferred. If ω = a in condition (17), any pair θ ∈ [0, 1]2 such that θq > ga (θa)

prefers the informed strategy with (Q,A) to the uninformed strategy with (A,A).

Using the implicit function theorem, each gω (θa) for ω ∈ {q, a} exists, is continuously

differentiable and strictly increasing for all θ 6= (0, 0). Moreover, gq (θa) is strictly convex

and ga (θa) is strictly concave for all θ 6= (0, 0), and gq (θa)− ga (θa) is strictly increasing for

all θa > 0, with lim
x→0

gω (x) = 0, for all ω ∈ {q, a}.

It is worth noting two features of these results used later for existence. First, P ∗ may

be defined for θ /∈ [0, 1]2. Indeed, as long as θ satisfies C 0 (1) >
X

ω∈{a,q}

θω∆Pr (ω,Q) Pr (ω),

P ∗ (θ) is well defined. Second, gq (θa) and ga (θa) are also properly defined for all θ that

satisfy C 0 (1) >
X

ω∈{a,q}

θω∆Pr (ω,Q) Pr (ω), even if θ /∈ [0, 1]2.

3.3 Characterization and existence of equilibrium

3.3.1 Characterization

The functions gq (θa) and ga (θa) separate the space of types in three groups that use different

strategies. All responsive voters type θ ∈ [0, 1]2 with θq < ga (θa) use a simple strategy

described by constant functions: P (θ) = 1
2
and V (θ, s) = A, for s ∈ {sq, sa}. The same can

be said for responsive voters with type θq > gq (θa) where V (θ, s) = Q, for s ∈ {sq, sa}. The

interesting group is the set of responsive voters θ ∈ [0, 1]2 that satisfy ga (θa) ≤ θq ≤ gq (θa)

(independents), since both the investment function and the voting function change with the

15



type and the signal.

The functions gq (θa) and ga (θa) ensure the strategies are optimal, and the backward

induction process ensures that the voting function is optimal when conditional on the optimal

investment level. This is formally stated in the next proposition

Proposition 1 In any regular committee of size n ≥ 1 in which the voting rule isR= (N, r),

the strategy (P ∗ (θ) , V ∗ (θ, S)) that prescribes

1. the investment function P ∗ (θ) as defined in (16) for every θ that satisfies ga (θa) ≤

θq ≤ gq (θa), and P ∗ (θ) = 1
2
otherwise,

2. the voting function V ∗ (θ, S) = (A,A) if θq < ga (θa), V ∗ (θ, S) = (Q,Q) if θq > gq (θa),

and V ∗ (θ, S) = (Q,A) if ga (θa) ≤ θq ≤ gq (θa),

is a symmetric Bayesian equilibrium.

Proof. By construction of the functions gq (θa) and ga (θa), all types satisfy the optimal

condition (6) when using the strategies defined in the proposition. It remains to show that it

is actually optimal to follow that voting function after the signal is realized (condition (5)).

For supporters for A, condition (9) is just

θq ≤ θa
∆Pr (a,Q)

∆Pr (q,Q)

φ

1− φ
(19)

for both signals. In the case of supporters for Q, we must reverse the sign of (19). In the

case of the informed strategy with (Q,A) we must satisfy that

θq ≥ θa
∆Pr (a,Q)

∆Pr (q,Q)

φ

1− φ

1− P ∗ (θ)

P ∗ (θ)
(20)

θq ≤ θa
∆Pr (a,Q)

∆Pr (q,Q)

φ

1− φ

P ∗ (θ)

1− P ∗ (θ)

16



Using the fact that gq (θa) is convex and ga (θa) is concave

∂gq (0)

∂θa
θa ≤ gq (θa) ≤

∂gq (θa)

∂θa
θa

∂ga (0)

∂θa
θa ≥ ga (θa) ≥

∂ga (θa)

∂θa
θa

where we used that gω (0) = 0 for ω ∈ {a, q}. An application of the implicit function

theorem gives that ∂gq(θa)
∂θa

= ∆Pr(a,Q)
∆Pr(q,Q)

φ
1−φ

P∗(gq(θa),θa)
1−P∗(gq(θa),θa) and

∂ga(θa)
∂θa

= ∆Pr(a,Q)
∆Pr(q,Q)

φ
1−φ

1−P∗(ga(θa),θa)
P∗(ga(θa),θa)

which implies

1 ≤ gq (θa)

θa

∆Pr (q,Q)

∆Pr (a,Q)

1− φ

φ
≤ P ∗ (gq (θa) , θa)

1− P ∗ (gq (θa) , θa)
(21)

1 ≥ ga (θa)

θa

∆Pr (q,Q)

∆Pr (a,Q)

1− φ

φ
≥ 1− P ∗ (ga (θa) , θa)

P ∗ (ga (θa) , θa)

Since supporters for A satisfy ga (θa) > θq, by the second equation in (21), condition

(19) holds for these voters. Using the first equation in (21) and the fact that supporters

for Q satisfy gq (θa) < θq, condition (19) does not hold for these voters. Therefore, both

uninformed strategies are consistent.

Using the right hand side of the second inequality in (21) and the fact that θq ≥ ga (θa)

for independents gives the first equation in (20). Because gq (θa) is monotone it is in-

vertible and θq ≤ gq (θa) is equal to θa ≥ (gq)−1 (θq). For any θa ≥ (gq)−1 (θq) we must

have that
P∗(θq ,(gq)−1(θq))
1−P ∗(θq ,(gq)−1(θq))

≤ P∗(θq,θa)
1−P∗(θq,θa) ; using the first equation in (21) we have that

θq
(gq)−1(θq)

∆Pr(q,Q)
∆Pr(a,Q)

≤ P∗(θq ,θa)
1−P∗(θq ,θa) . using that θa ≥ (gq)−1 (θq) we have that

θq
(gq)−1(θq)

≥ θq
θa

which gives the second equation in (20).

To show the characterization is complete, we need to show that no type θ ∈ [0, 1]2 belongs

to two different groups, and the union of independents and supporters covers all [0, 1]2. But

this is obvious, since ga (θa) and gq (θa) cross each other only at (0, 0) for θa ≥ 0.

In Figure (1) we illustrate the equilibrium in an election where the simple majority rule
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is in place for n odd, φ = 1
2
, F symmetric around the 45o degree line14, and ξA =

1
2
. In this

case the equilibrium is fully symmetric around the 45o degree line: ga (y) = x iff gq (x) = y

and P ∗ (θ) = P ∗ (θ0), for every θ = (x, y) and θ0 = (y, x).

1

1

qθ

aθ

( )a
ag θ

( )q
ag θ

''
aθ

'
aθ

Fixed investment

Fixed relative 
rankingSupporters of Q

Supporters of A

Independents

Figure 1: Equilibrium under the plurality rule and n is odd. Supporters of A (Q) always vote for A (Q) and
do not collect information. Independents collect information according to equation (16), and vote according
to the signal received: if S = sa then v = A and if S = sq then v = Q.

3.3.2 Existence

The fact that the equilibrium strategy is composed of an investment function that is only

C0 almost everywhere,15 complicates the direct use of standard fixed point theorems on the

space of best responses. In order to show existence we create a transformation that uses the

optimal investment function and the optimal voting strategies as arguments. In this manner,

14That is F (x, y) = F (y, x) for all (x, y) ∈ [0, 1]2.
15See the equicontinuity requirement for Schauder’s Fixed Point Theorem in Rudin (1973). In turns some

assumption abut the differentiability of P ∗ (θ) is required which can be translated into C 00
¡
1
2

¢
> 0. This

condition rules out any possible aggregation of information in the limit as shown by Martinelli (2006).
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the equilibrium can be described by the functions gω (θa), ω ∈ {q, a} and the investment

function P ∗ (θa) that are uniquely defined by ∆Pr (ω,Q)∗, ω ∈ {q, a}.

Proposition 2 In any regular committee of size n ≥ 1 in which the voting rule isR= (N, r),

there exists a symmetric Bayesian equilibrium. Moreover, this equilibrium is characterized

by the strategy (P ∗ (θ) , V ∗ (θ, S)) in Proposition (1).

Proof. P ∗ (θ) changes smoothly with ∆Pr (ω,Q), ω ∈ {q, a} for all θ 6= (0, 0); this is a

direct application of the implicit function theorem to (16). Using the definitions of gω (θa),

ω ∈ {q, a},

∂ga (θa)

∂∆Pr (a,Q)
=

θa
∆Pr (q,Q)

1− P ∗ (ga (θa) , θa)

P ∗ (ga (θa) , θa)

φ

(1− φ)

∂ga (θa)

∂∆Pr (q,Q)
= − ga (θa)

∆Pr (q,Q)

∂gq (θa)

∂∆Pr (a,Q)
=

θa
∆Pr (q,Q)

P ∗ (gq (θa) , θa)

1− P ∗ (gq (θa) , θa)

φ

(1− φ)

∂gq (θa)

∂∆Pr (q,Q)
= − gq (θa)

∆Pr (q,Q)

which implies that both ga (θa) and gq (θa) are continuous in ∆Pr (ω,Q), ω ∈ {q, a}. There-

fore Pr (A | ω), ω ∈ {q, a} are continuous in ∆Pr (ω,Q), ω ∈ {q, a} for all θ.

Let X =
£
αξA, 1− αξQ

¤2
and Y = [ζ (a) , 1− ζ (a)] × [ζ (q) , 1− ζ (q)]. Trivially X × Y

is compact and convex subset of an euclidean space. Let (x1, x2) ∈ X and (y1, y2) ∈ Y be

generic elements of these spaces.

In (16) replace ∆Pr (a,Q) for y1 and ∆Pr (q,Q) for y2 and define P ∗ (θ) implicitly for

all θ 6= (0, 0) in terms of y1 and y2 as P ∗ (θ | y1, y2). Now define first the cut off functions

ga (θa) and gq (θa) by replacing ∆Pr (a,Q) for y1 and ∆Pr (q,Q) for y2 in the corresponding

conditions (17) and using the function P ∗ (θ | y1, y2): ga (θa | y1, y2) and gq (θa | y1, y2).
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Let Ki : Y →
£
αξA, 1− αξQ

¤
for i = 1, 2 be such that

K1 (y1, y2)− αξA
1− α

≡
1Z
0

min{1,ga(θa|y1,y2)}Z
0

dF (θ) +

1Z
0

min{1,gq(θa|y1,y2)}Z
min{1,ga(θa|y1,y2)}

P ∗ (θ | y1, y2) dF (θ)

K2 (y1, y2)− αξA
1− α

≡
1Z
0

min{1,gq(θa|y1,y2)}Z
0

dF (θ)−
1Z
0

min{1,gq(θa|y1,y2)}Z
min{1,ga(θa|y1,y2)}

P ∗ (θ | y1, y2) dF (θ)

Ki, i = 1, 2 are continuous in (y1, y2). Here K1 plays the role of Pr (A | a) and K2 plays the

role of Pr (A | q)

Let K3 :
£
αξA, 1− αξQ

¤
→ [ζ (a) , 1− ζ (a)] and K4 :

£
αξA, 1− αξQ

¤
→ [ζ (q) , 1− ζ (q)]

be defined such that

K3 (x1) ≡
(n− 1)!

(n− 1−N)! (N − 1)! (x1)
N−1 (1− x1)

n−1−N χ (x1)

K4 (x2) ≡
(n− 1)!

(n− 1−N)! (N − 1)! (x2)
N−1 (1− x2)

n−1−N χ (x2)

where χ (x) =
³
(1−x)(1−r)
(n−N) + xr

N

´
. Trivially, Ki, i = 3, 4 are continuous in x1 and x2 respec-

tively. Note thatK3 (x1) plays the role of∆Pr (a,Q) andK4 (x2) plays the role of∆Pr (q,Q)

in (13).

Let Γ : X × Y → X × Y be defined as Γ ≡ (K1,K2, K3, K4) which is continuous. There-

fore, applying Brouwer fixed point theorem (see Border (1985)), there is some (x∗1, x
∗
2, y

∗
1, y

∗
2) ∈

X × Y such that Γ (x∗1, x
∗
2, y

∗
1, y

∗
2) = (x

∗
1, x

∗
2, y

∗
1, y

∗
2).

The fact that (x∗1, x
∗
2, y

∗
1, y

∗
2) is an equilibrium follows trivially. Let x∗1 = Pr (A | a), x∗2 =

Pr (A | q), y∗1 = ∆Pr (a,Q) and y∗2 = ∆Pr (q,Q). Since Γ has embedded the description of

the best response functions (ga (θa) , gq (θa)) and P ∗ (θ), for any pair ∆Pr (ω,Q), ω ∈ {q, a},

the transformation Γ gives the optimal probabilities of voting for A in each state ω ∈ {q, a}.

(x∗1, x
∗
2) only ensures that actually we have a fixed point in the probabilities of voting that

are constructed using ∆Pr (ω,Q), ω ∈ {q, a}.
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Although we can not prove that for each set of primitives (φ, n, (N, r), F (·), α, ξA, C (·))

there is a unique equilibrium (a unique set of gq (θa), ga (θa) and P ∗ (θ)), we know that every

symmetric Bayesian equilibrium is described by a set of cut off functions gq (θa) and ga (θa)

and a investment function P ∗ (θ). Therefore, our characterization is valid for all symmetric

Bayesian equilibria.

3.3.3 Intuitive characterization

Supporters for A are characterized by a high relative ratio of losses θa
θq
while supporters for

Q are characterized by a low relative ratio of losses θa
θq
. Independents present more balanced

preferences and invest in order to collect information.

There are two main forces that drive a voter’s behavior when information is endogenous:

the relative ranking of alternatives (θa
θq
) and the actual level of utility losses (min {θa, θq}).

When θa
θq
is high (biased towards A) a vote for Q is only possible if the evidence in favor

of state q is overwhelming. When information is endogenous, this information depends on

the level of losses through the function
X

ω∈{a,q}

θω∆Pr (ω,Q) Pr (ω), so the information level

increases as we move away from the origin. For a fixed level of θa
θq
, the higher θa, the higher

the precision selected if the informed strategy were used in equilibrium. For example, along

the "fixed relative ranking" line in Figure (1), θa
θq
is fixed; when θa < θ

00

a the information

collected if (Q,A) were used is not too strong. Because of this imprecise information, the

responsive voter cannot be too sure that the true state is q when the signal received is sq;

therefore, she prefers to save on the cost of information than buying reassurance that the

true state is q. When θa > θ
00

a, the precision of the information collected if (Q,A) were used

is high enough to induce the responsive voter to select Q when the signal is sq.

What would happen if the information were free and its precision were exactly P ∗ (θ)

for each type θ? For types (θq, θa) such that θq is much smaller than ga (θa), the free signal

does not alter their behavior: they would still be supporters for A. These voters decide

strategically to ignore their information. But for types (θq, θa) such that θq is close to
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ga (θa), if the information were free, they would vote in favor of Q instead of A. In essence,

the reason why some (θq, θa) with θq close but smaller than ga (θa) behave as a supporter

is due to information cost: a signal with the optimal precision makes her change her vote,

but that signal is too costly. Saving on informational costs is preferred to be able to select

the most accurate candidate according to the signal. These voters decide strategically not

to collect information (rational ignorance) and free ride on the information of other voters.

Alternatively, fix the precision of the information collected by informed voters along the

"fixed investment" line in Figure (1). When the type θ satisfies θa < θ
0

a, the precision of

the information collected when (Q,A) is used is not high enough to make the player vote in

favor of A. Then there is no reason to collect information. When θa is close to 0, any free

information would be disregarded, and if θa is close to θ
0

a, free information is welcome. When

θa ∈
³
θ
0

a, θ
00

a

´
, preferences are balanced enough for (Q,A) to be preferred given the optimal

p. In that case information is collected and the signal guides the voting function. When

θa > θ
00

a, the problem is the signal in favor of Q is not strong enough, and the responsive

voter becomes a supporter of A.

Besides the assume existence of partisan voters, there are supporters for A, supporters

for Q and independents in any equilibrium. This is basically driven by the fact that ∆Pr(a,Q)
∆Pr(q,Q)

is bounded by
h

ζ(a)
1−ζ(q) ,

1−ζ(q)
ζ(a)

i
and p

1−p is bounded by
h
1, 1−η

η

i
. Using (14), there are always

responsive voters with extreme types (θa
θq
big enough or small enough): the precision of the

signal that would have been collected if (Q,A) were used could not have overturned the

relative bias.

4 Information Aggregation?

Aggregation of information in general elections has been the focus of attention in political

economy for quite some time. Early models derived a variation of the Condorcet Jury Theo-

rem without considering strategic behavior and assuming exogenous information (see Berend
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and Paroush (1998)). These models are particularly appealing if there is no uncertainty (the

only issue is aggregating preferences) and players do not behave strategically (they truthfully

report their preferences). In these models, a voter is a random variable and larger electorates

are the aggregation of more draws of these random variables; varieties of the Law of Large

Numbers give the desired result.

Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1997) introduce the

problem of strategic behavior assuming that information is exogenous. Feddersen and Pe-

sendorfer (1997) show that the Condorcet Jury Theorem holds under some circumstances

and that strategic voting may affect the aggregating properties in the presence of uncer-

tainty about the composition of the electorate. They argue that heterogeneity might cause

failure of information aggregation.

There are very few papers that actually study information aggregation when increasing

the size of the electorate decreases the average level of information in the electorate. Yariv

(2004) assumes that individual information decreases exogenously with the number of voters.

This assumption is in line with the rational ignorance hypothesis and does not per se destroy

the aggregation result (Condorcet Jury Theorem ). She assumes that each voter exogenously

receives the same quality of information. She shows that the "speed" at which individuals

receive poorer information when the electorate grows large is relevant for elections to actually

aggregate information.

Martinelli (2006) allows for endogenous quality of information in national elections. It

is the first model studying both the Condorcet Jury Theorem and the rational ignorance

hypothesis in the same set up. He gives individual rationality to the exogenous process

that Yariv (2004) assumes, and he shows that the form of the cost function for information

acquisition determines whether there is aggregation of information or not. Full aggregation

is only possible in large electorates if C 0 ¡1
2

¢
= C 00 ¡1

2

¢
= C 000 ¡1

2

¢
= 0. If C 0 ¡1

2

¢
= C 00 ¡1

2

¢
= 0

and C 000 ¡1
2

¢
> 0, Martinelli (2006) obtains a specific limit (when the electorate grows) on the

probability of making the right choice. This limit is decreasing in C 000 ¡1
2

¢
and approaches 1
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when C 000 ¡1
2

¢
→ 0. If C 00 ¡1

2

¢
> C 0 ¡1

2

¢
= 0 both candidates have equal chances of winning

in any state of nature when the electorate is sufficiently large.16

Martinelli’s existence and characterization results crucially depend on the fact that pref-

erences are restricted, the simple majority rule is in place and φ = 1
2
. This is because under

the simple majority rule and φ = 1
2
, the restriction θq + θa = 1 (which he assumes) implies

that ∆Pr (a,Q) = ∆Pr (q,Q) and the investment function (16) reduces to

C 0 (P ∗ (1− θa, θa)) =
∆Pr (ω,Q)

2

As a consequence, in his model every informed responsive voter selects the same quality of

information.

A natural question arises: how general is the aggregation result given that all informed

voters collect the same quality of information? In Figure (1) Martinelli’s informed voters are

independents along the "fixed Investment" line (θq+ θa = 1). Independents with θq+ θa < 1

collect less information and independents with θq + θa > 1 collect more information. It

seems that the average level of information should be higher with flexible preferences (θq

and θa are not perfectly correlated) and it should be easier to aggregate information in the

limit. But it is not clear that the average voter is more informed under flexible preferences

than under restricted preferences. If the committee is actually making better decisions

under flexible preferences it might be that the average voter is collecting poor information

since his information is less valuable. Then, the requirements for aggregation of information

under flexible (two dimensional) preferences might be stronger than under restricted (one

dimensional) preferences.

We show in the appendix that the result in Martinelli (2006) is robust to using two

dimensional preferences that allow us to unleash all the incentives to collect information.

But our set up allows us to investigate how important is the symmetric assumption used for

16He also provides results for homogenous voters: it is sufficient for information aggregation that C0
¡
1
2

¢
=

C 00
¡
1
2

¢
= 0.
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that result. We now proceed to show that, for a given electorate (that is α, ξA, φ and F ),

there is only one rule that might aggregate information.

Note that (10) is just an event of a binomial distribution with parameter p in which there

are N ≤ n − 1 successes out of n − 1 trials so in the limit its mass vanishes. This implies

that ∆Pr (ω,Q)→ 0 when n→∞ so we have that P ∗ (θ)→ 1
2
.

Using that

Pr (A | a)− αξA
1− α

≡
1Z
0

min{1,ga(θa)}Z
0

dF (θ) +

1Z
0

min{1,gq(θa)}Z
min{1,ga(θa)}

P ∗ (θ) dF (θ) (22)

Pr (A | q)− αξA
1− α

≡
1Z
0

min{1,ga(θa)}Z
0

dF (θ) +

1Z
0

min{1,gq(θa)}Z
min{1,ga(θa)}

(1− P ∗ (θ)) dF (θ)

we have that Pr (A | a) → Pr (A | q) when n grows. The next result goes in line with

(Austen-Smith and Banks (1996)): the conditions for information aggregation are the same

conditions required for sincere voting.

Proposition 3 For information aggregation is necessary that lim
n→∞

N(n)
n
= lim

n→∞
Pr (A | q) =

lim
n→∞

Pr (A | a), 2) the rule is proportional, and 3) the unanimity rule can not aggregate

information so lim
n→∞

N(n)
n

< 1.

Proof. For the first part, let yn (ω) = Pr (A | ω)− 1
2
=
³
Pr(A|ω)−Pr(Q|ω)

2

´
. Note that yn (ω) <

1
2
because Pr (A | ω) < 1when we consider that α ∈ (0, 1).

Define the random variableMn
i (ω) such thatM

n
i (ω) ≡ 1

2
−yn (ω) if v = A andMn

i (ω) ≡

−1
2
− (yn (ω)) if v = Q. Note that E (Mn

i (ω)) = 0, E
£
(Mn

i (ω))
2¤ = ¡

1
4
− (yn (ω))2

¢
and

E
¡
|Mn

i (ω)|
3¢ = 2³¡1

2

¢4 − (yn (ω))4´ for ω ∈ {q, a}.
Therefore, M

n

i (ω) ≡
Mn
i (ω)

2 ( 14−(yn(ω))
2)
is a random variable with zero mean, variance equal
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to 1 and E
³¯̄
M

n

i (ω)
¯̄3´

=
2 ( 12)

2
+(yn(ω))

2

2 ( 14−(yn(ω))
2)
. Define Mn (ω) ≡

nX
i=1

M
n

i (ω) so we have that

Mn (ω) =
Tn (ω)−

¡
1
2
+ yn (ω)

¢
n

2

q¡
1
4
− (yn (ω))2

¢

where we used Tn =
nX
i=1

I (vi = A). We know that it is necessary for A to win that Tn ≥

N (n) and for Q to win it is necessary that Tn ≤ N (n); therefore a necessary condition for

information aggregation is that Mn (a) ≥ N(n)−( 12+yn(a))n
2 ( 14−(yn(a))

2)
and

N(n)−( 12+yn(q))n
2 ( 14−(yn(q))

2)
≥Mn (q).

LetMn (ω) ≡ Mn(ω)
2√n and FN (ω) be its distribution. Note that A is winner in state a if

Mn (a) ≥ 2
√
n

N(n)
n
−( 12+yn(a))

2 ( 14−(yn(a))
2)
and Q is the winner in state q if Mn (q) ≤ 2

√
n

N(n)
n
−( 12+yn(q))

2 ( 14−(yn(q))
2)
;

if we let Jn (yn (ω)) ≡Mn (ω) the probability of A being the winner in state a is bounded

above by 1 − Fn (Jn (yn (a))) and the probability that Q wins in state q is bounded above

by Fn (Jn (yn (q))); for information aggregation we must have that 2
√
n

N
n
−( 12+yn(a))

2 ( 14−(yn(a))
2)
→ −∞

and 2
√
n

N
n
−( 12+yn(q))

2 ( 14−(yn(q))
2)
→∞.

Let Φ be the cdf of a (0, 1) normal random variable, so we can apply the Berry-Esseen

Theorem17 to get that lim
n→∞

Fn (Jn (yn (ω))) → Φ (Jn (yn (ω))) if E
³¯̄
M

n

i (ω)
¯̄3´

is finite,

which is the case since yn (ω) <
1
2
. Now using that Φ is continuous we must have that

lim
n→∞

Φ (Jn (yn (ω)))→ Φ
³
lim
n→∞

Jn (yn (ω))
´
, which implies that lim

n→∞
Fn (Jn (yn (ω)))→ Φ

³
lim
n→∞

Jn (yn (ω))
´

Let lim
n→∞

N(n)
n
= λ and lim

n→∞
Pr (A | ω) = l1 so we must have that

lim
n→∞

⎛⎝ N(n)
n
−
¡
1
2
+ yn (ω)

¢
2

q¡
1
4
− (yn (ω))2

¢
⎞⎠ =

λ− l1
2
p
l1 (1− l1)

Note that if λ 6= l1 then lim
n→∞

Mn (ω) /∈ (−∞,∞) and therefore either A wins indepen-

17Let X1, ....Xn be i.i.d with mean μ = 0 and σ2 = 1. Then, for all n

sup

¯̄̄̄
¯̄̄̄
¯Pr

⎛⎜⎜⎜⎝
nX
i=1

Xi

2
√
n
≤ t

⎞⎟⎟⎟⎠− Φ (t)
¯̄̄̄
¯̄̄̄
¯ ≤

33
4
E|X1|3

2
√
n
. See Bickel and Doksum (2000).
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dently of the state or Q wins independently of the state. It must be then that λ = l1.

Corollary 1 For information aggregation is necessary that 1) the voting rule is proportional,

and 2) the unanimity rule can not aggregate information, so 3) lim
n→∞

N(n)
n

< 1.

Proof. Assume that the rule is not proportional, then Tn (ω) = n − h where h is a fixed

natural number and verifies h < n
2
, and note then that we require thatMn (a) ≥ ( 12−yn(a))n−h

2 ( 14−(yn(a))
2)

and the probability of A winning in state a is bounded above by 1−Fn

µ
2√n( 12−yn(a))−

h
2√n

2 ( 14−(yn(a))
2)

¶
.

Then, a necessary condition for A to win in state a is that yn (a) → 1
2
contradicting that

yn (ω) <
1
2
for all n.

The second and third part follows immediately since the unanimity rule is just that h = 0

and we know that it can not aggregate information so we must have λ < 1.

Using (22) and the fact that lim
n→∞

gω (θa) =
φ
1−φθa, we have that for a given electorate

described by φ, F (θ), ξA and α there is only one proportional rule that might aggregate

information and this rule is described by

N (n)

n
≡ αξA + (1− α)

1Z
0

min{1, φ
1−φθa}Z

0

dF (θ)

In particular, if the electorate is symmetric (F is symmetric around the 45o line and ξA =
1
2
)

a necessary condition for information aggregation is that φ = 1
2
.

Feddersen and Pesendorfer (1997) show that uncertainty about the electorate might break

aggregation results otherwise robust to asymmetric priors and rules of election. They assume

that information was exogenously provided to each voter. When information is endogenous

the rational ignorance hypothesis creates in the limit a committee in which almost nobody

is informed. If the priors are symmetric those informed end up deciding the winner although

their size is arbitrarily small compared to those uninformed.

If this particular symmetry in which uninformed voters cancel each other out is destroyed,
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the rational ignorance hypothesis creates a committee that ends up being exogenously bias.

This bias is enough for the committee to always select the same candidate. Austen-Smith

and Banks (1996) show that asymmetric priors are crucial for truthful voting while Feddersen

and Pesendorfer (1997) show that truthful voting is not crucial for information aggregation.

In our set up, the conditions for sincere voting play a crucial role because they restore the

balance between forces so that informed voters decide the election.

5 Conclusions

Allowing for endogenous information creates serious problems to well known established

results.18 For example, Stiglitz and Grossman (1980) show that efficiency and endogenous

information are not as easily paired in competitive markets as Hayek (1945) suggested.19

Even the existence of endogenous information equilibria is problematic20. Moreover, the

non-existence problem appears in much simpler set ups as the demand for information is not

well behaved.21 Given these results and the fact that most of the literature on committees

focuses on models with exogenous information we ask: are the exogenous information results

in committees robust to the introduction of endogenous information?

We develop a model of voting where voters endogenously select the quality of the infor-

mation they will use to vote.22 Voters who receive reports or memos need to expend time

and effort to understand the information. This decision is endogenous so there is no reason

18See Stiglitz (2002) for a broader survey of information economics discussing problems arising with en-
dogenous information and incentives to collect this information.
19For example, in Prat (2002) allowing for endogenous information in the electorate will kill voters’ in-

centives to collect private signals in the separating equilibrium (in Prat (2002) terms: z will not convey
any information). Voters will rely solely on campaign advertisement to decide the candidates’ valence and
interest groups are indifferent between contributing or not to campaigns (see point 1, page 1007 in Prat
(2002)).
20See Green (1977); see Dubey et al. (1987) for further developments departing from competitve markets.
21See Stiglitz and Radner (1984) for a seminal exposition in simple environments and Chade and Schlee

(2002) for an extension to continuous set ups and generalizations.
22For any rule besides the unanimity rule, if there are no partisans, there is always an equilibrium where

all voters vote for A (Q) and do not collect any information. Although we assume the existence of partisans
all our results hold when we assume away these voters and let all voters be responsive and use non-weakly
dominated strategies.
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to expect that different voters will be equally informed. Modelling information acquisition

in elections as a choice over a set of signals with different precision is more accurate than

assuming a common source of information for all voters. In line with this observation, we

allow voters to select the correlation between the signal they will receive and the true state of

nature.

We assume the level of conflict among committee members to be richer than it is usually

assumed in the literature. When information is exogenous, all the relevant interaction be-

tween the committee members can be represented by simple structures. Indeed, preferences

modelled as a relative ranking of alternatives capture all the proper incentives to study vot-

ing decisions: ideological heterogeneity is enough. This restriction on preferences imposes

correlation between the disutilities that a member derives from mistaken decisions. When

information is endogenous, this restriction does not capture all the relevant strategic inter-

action: voters with the same ranking of alternatives may have different incentives to collect

information. We assume that committee members’ preferences are flexible and introduce

another dimension of heterogeneity: committee members not only differ on their ideological

position but they also differ on the level of concern about the outcome of the election.

We provide existence and characterization results for arbitrary rules of election, arbi-

trary distribution of types and arbitrary level of conflict. We give a natural and intuitive

representation of the equilibrium behavior of committee members. This geometric represen-

tation of equilibrium is important in order to derive the existence result. In equilibrium,

our model predicts that informed voters endogenously select different levels of information.

Contrary to previous results in the literature, heterogenous preferences translate into het-

erogenous informed voters. This is directly related to the assumption about preferences and,

in particular, to the second dimension of heterogeneity.

When committee members select different quality of information in equilibrium, straight-

forward applications of standard fixed point arguments are not possible. We solve this prob-

lem by exploiting the geometric properties of the equilibrium. Indeed, we first characterize
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the equilibrium completely and then apply fixed point arguments to show its existence.

Our strategy is simply to transform the infinite dimensional space of players’ best response

functions into a more tractable object.

Aggregation results for symmetric electorates and priors are derived without imposing

that every informed member must collect the same quality of information in equilibrium.

Therefore, the aggregation of information derived in Martinelli (2006) does not depend on

the assumed preferences and the homogeneity of information among informed voters. The

"speed" at which information is lost due to the reduction in the probability of being decisive

is the key ingredient in the aggregation of information (Yariv (2004)).

Unfortunately we show that necessary conditions for aggregation are very restrictive.

Indeed, it is necessary that the proportional rule used to select the winner balances out

voters that do not collect information. Since in the limit no voter collects information, this

implies that, for a given electorate, there is only one and only one proportional rule that can

actually aggregate information. We see this as a negative result: aggregation of endogenous

information in democracies is a knife edge result.
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A Information aggregation under symmetry

We study aggregation properties of general elections under a particular assumption about prefer-

ences. As it is clear in the main text our result relies on the following symmetric assumption:

Definition 4 A symmetric committee of size n is a regular committee of size n in which both states

are equally likely (φ = 1
2), partisans vote for each candidate with equal probability (ξA =

1
2), and F

is symmetric around the 45◦.

In order to study information aggregation, first we need a characterization of the equilibrium

when the majority rule is in place and the number of members is odd.

Proposition 4 In any symmetric committee of size n = 2N+1 with simple majority rule, for every

N ≥ 0, there is a symmetric Bayesian equilibrium characterized by the pair (xN , yN) ∈ (0, 1)2, where

1) ∆Pr (ω,Q) = xN for ω ∈ {q, a}, 2) Pr (A | a) = 1
2 + yN (1− α), 3) Pr (A | a) = Pr (Q | q), and

4) P (θ) is such that C 0 (P ∗ (θ)) = (θq+θa)xN
2 .

Proof. First we are going to prove that Pr (Q | q) = Pr (A | a) iff ∆Pr (a,Q) = ∆Pr (q,Q). Using

(8) and (10),

∆Pr (ω,Q) =
2N !

N !N !
Pr (Q | ω)N (1− Pr (Q | ω))N (23)

If Pr (Q | q) = Pr (A | a) it is trivial to see that ∆Pr (a,Q) = ∆Pr (q,Q).

Now assume that ∆Pr (a,Q) = ∆Pr (q,Q). The first order condition for investment is just

C 0 (P ∗ (θ)) = (θq+θa)∆Pr(a,Q)
2 so P ∗ (θ1, θ2) = P ∗ (θ2, θ1). By definition,

C (P ∗ (ga (θa) , θa)) =
((θa + ga (θa))P

∗ (ga (θa) , θa)− θa)∆Pr (a,Q)

2
(24)

C (P ∗ (gq (θa) , θa)) =
((θa + gq (θa))P

∗ (gq (θa) , θa)− gq (θa))∆Pr (a,Q)

2

Let θa = θ1 and gq (θ1) = θ2 in the second equation of (24) to get

C (P ∗ (θ2, θ1)) =
((θ1 + θ2)P

∗ (θ2, θ1)− θ2)∆Pr (a,Q)

2
(25)

Using that P ∗ (θ1, θ2) = P ∗ (θ2, θ1) on (25), it follows that

C (P ∗ (θ1, θ2)) =
((θ1 + θ2)P (θ1, θ2)− θ2)∆Pr (a,Q)

2
(26)
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Let θ2 = θa in (26) and comparing with the first equation of (24) it follows that ga (θ2) = θ1. It

is easy to see the inverse also follows which implies that gq (θa) = θq ⇐⇒ ga (θq) = θa or ga = (gq)
−1

(geometric symmetry around the 45◦ line).

Now we have to calculate Pr (Q | q) and Pr (A | a). This expressions are:

Pr (Q | q)− α
2

1− α
=

1Z
0

1Z
min{gq(θa),1}

dF (θ) +

1Z
0

min{gq(θa),1}Z
min{ga(θa),1}

P ∗ (θ) dF (θ) (27)

Pr (A | a)− α
2

1− α
=

1Z
0

min{ga(θa),1}Z
0

dF (θ) +

1Z
0

min{gq(θa),1}Z
min{ga(θa),1}

P ∗ (θ) dF (θ)

Recall that ∂ga(θa)
∂θa

≤ ∆Pr(a,Q)
∆Pr(q,Q) ≤

∂gq(θa)
∂θa

, which implies that there is some θ∗∗a ≤ 1 such that

gq (θ∗∗a ) = 1, and the previous expressions are

Pr (Q | q)− α
2

1− α
=

θ∗∗aZ
0

1Z
gq(θa)

dF (θ) + T (28)

Pr (A | a)− α
2

1− α
=

1Z
0

ga(θa)Z
0

dF (θ) + T

where

T ≡
1Z
0

min{gq(θa),1}Z
min{ga(θa),1}

P ∗ (θ) dF (θ)

≡
1Z
0

θaZ
ga(θa)

P ∗ (θ) dF (θ) +

θ∗∗aZ
0

gq(θa)Z
θa

P ∗ (θ) dF (θ)

Reversing the order of integration, using that ga = (gq)−1 and F symmetric we have

θ∗∗aZ
0

⎛⎜⎝ gq(θa)Z
θa

P ∗ (θ) f (θ) dθq

⎞⎟⎠ dθa =

1Z
0

⎛⎜⎝ θqZ
(gq)−1(θq)

P ∗ (θ) f (θ) dθa

⎞⎟⎠ dθq

=

1Z
0

⎛⎜⎝ θqZ
ga(θq)

P ∗ (θ) f (θ) dθa

⎞⎟⎠ dθq
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so T = 2
1Z
0

θaZ
ga(θa)

P ∗ (θ) dF (θ). Using the same argument we have

1Z
0

ga(θa)Z
0

f (θ) dθadθq =

θ∗∗aZ
0

1Z
gq(θq)

f (θ) dθqdθa

which in turns implies that Pr (A | a) = Pr (Q | q). Now we are ready to show that there is such

equilibrium.

LetX 0 = {(x1, x2) ∈ X : x1 = x2} and Y 0 = {(y1, y2) ∈ Y : y1 = y2}where whereX =
£
αξA, 1− αξQ

¤2
and Y = [ζ (a) , 1− ζ (a)] × [ζ (q) , 1− ζ (q)] as in the Proof of Proposition (2). Since X 0 is closed

and convex in X and Y 0 is closed and convex in Y , the argument used in that proof with the

transformation Γ : X × Y → X × Y is valid and the Brouwer fixed point theorem gives that there

is (x1, x2, y1, y2) ∈ X 0 × Y 0 such that Γ (x1, x2, y1, y2) = (x1, x2, y1, y2) and x1 = x2, y1 = y2.

To complete the proof we define yN = 2

1Z
0

θaZ
ga(θa)

¡
P ∗ (θ)− 1

2

¢
dF (θ) and xN = 2N !

N !N !

³
1
4 − (yN )

2 (1− α)2
´N
.

Along any path of equilibria indexed by N , the probability of selecting A when the state is a is

equal to the probability of selecting Q when the state is q. From now on, when we refer to A being

selected in state a, it should be understood that we refer to the probability that the committee

selects the candidate that would have won if the true state of nature were common knowledge.

What is the effect of increasing the number of voters? Intuition suggests that the probability

of being pivotal decreases when the number of voters increases. This is straightforward only if the

level of information in the electorate is constant. Unfortunately, when the information collected

by each voter decreases (but the number of voters remains constant) the outcome of the election

becomes more random. This extra randomness translates into a higher probability of being pivotal.

Nevertheless, we can prove that under the simple majority rule the effect of more voters is dominant,

and investment decreases when the size of the electorate increases.

We prove this result in steps.

Lemma 5 In any symmetric committee with the simple majority rule Pr (A | a) is decreasing in

N .

Proof. We prove this by contradiction. Let ϕ (x) =
¡
1
2

¢2 − x2 (1− α)2. Assume that Pr (A | a) =

PN increases with N ; therefore, we must have that (ϕ (PN))
N ≥ (ϕ (PN+1))N . Using that 2N !

N !N ! >
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1
4

2N+2!
N+1!N+1! and ϕ (PN+1) ≤ 1

4 ,

2N !

N !N !
(ϕ (PN))

N ≥ 2N + 2!

N + 1!N + 1!
(ϕ (PN+1))

N+1

and, ∆Pr (ω,Q) in (23) decreases with N , which in turns imply that P ∗ (θ) must decrease with N

as well. Therefore 1−P ∗(θ)
P ∗(θ) increases with N and the slope of the function ga (θa) increases while

the slope of the function gq (θa) decreases. Then, the functions ga (θa) and gq (θa) get closer when

N increases.

Recalling the expression for
Pr(A|a)−α

2

1−α and using the symmetry of the equilibrium, and some

algebra gives,

Pr (A | a)− α
2

1− α
=
1

2
+ 2

1Z
0

θaZ
ga(θa)

µ
P ∗ (θ)− 1

2

¶
dF (θ) (29)

and because the slope of ga (θa) increases and P ∗ (θ) decreases, we must have that Pr (A | a) is also

decreasing with N .

Once we know that Pr (A | a) decreases with N , we must also have that investment decreases

and therefore, ∆Pr (ω,Q) must also be decreasing in N .

Corollary 2 In any symmetric committee with the simple majority rule, P ∗ (θ) and ∆Pr (ω,Q)

decrease with N .

Proof. Since P ∗ (θ) changes monotonically with ∆Pr (ω,Q), it must be the case that P ∗ (θ)

changes in the same way for all types (θq, θa) ∈ [0, 1]2. Using equation (29), the fact that ∂ga(θa)
∂θa

=

1−P ∗(ga(θa),θa)
P ∗(ga(θa),θa)

we have that if P ∗ (θ) increases with N , it must be the case that Pr (A | a) also

increases. A contradiction.

Using the investment function the result on ∆Pr (ω,Q) follows.

This proves that the rational ignorance hypothesis holds in our model.23 This does not imply

that information aggregation is not possible under any circumstances. The probability that a large

electorate makes the right choice depends on the speed at which information acquisition decreases

in the electorate when the number of voters increases (Yariv (2004)). Indeed

Proposition 5 In any symmetric committee of size n (odd) with the simple majority rule, if the

cost function is three times differentiable with C 000 ≥ 0 and F (θq, θa) = θqθa,24 then

23Benz and Stutzer (2004) find empirical support for the probability of being pivotal being positively
correlated with the quality of information.
24The uniform distribution of types and independence across parameters is a simplification: all results

hold if F is symmetric arounf the 45o degree line.
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1. if C 0
¡
1
2

¢
= 0 and C 00

¡
1
2

¢
> 0, the result of the election approaches a random variable that

makes A the winner with probability 1
2 in any state of nature when N grows arbitrarily large.

2. if C 0
¡
1
2

¢
= C 00

¡
1
2

¢
= 0 and C 000

¡
1
2

¢
> 0, when N grows arbitrarily large, the probability of

making the right choice is bounded away from 1
2 , and the bound is decreasing on the value of

C 000
¡
1
2

¢
.

3. if C 0
¡
1
2

¢
= C 00

¡
1
2

¢
= C 000

¡
1
2

¢
= 0, the probability of making the right choice converges to 1

when N grows arbitrarily large.

Proof. We follow Martinelli (2006) although we must consider a continuum of types of voters

instead of an homogeneously informed voter. First we are going to construct a random variable

that describes the difference between the probability of voting for one candidate and the other.

Then we are going to apply Berry-Esseen Theorem (see Bickel and Doksum (2000)).

Let yN = 2

1Z
0

θaZ
ga(θa)

¡
P ∗ (θ)− 1

2

¢
dθqdθa on (29). Define the random variable MN

i such that

MN
i ≡ 1

2 − yN (1− α) if v = A and MN
i ≡ −12 − yN (1− α) if v = Q. It is easy to see that

E
¡
MN

i

¢
= 0, E

³¡
MN

i

¢2´
= 1

4 − (yN (1− α))2 and E
³¯̄
MN

i

¯̄3´
= 2

³¡
1
2

¢4 − (yN (1− α))4
´
.

Therefore, M
N
i ≡

MN
i

2 ( 14−(yN(1−α))
2)
is a random variable with zero mean, variance equal to 1

and E

µ¯̄̄
M

N
i

¯̄̄3¶
=

2 ( 12)
2
+(yN(1−α))2

2 ( 14−(yN(1−α))
2)
. Define MN ≡

2N+1X
i=1

M
N
i =

T2N+1(A)− 2N+1

2
−(2N+1)yN(1−α)

2 ( 14−(yN(1−α))
2)

and recall that T2N+1 ≡
2N+1X
i=1

I (vi = A) is the number of votes for A out of 2N + 1 voters. We

know that A is the winner if T2N+1 > N and Q is the winner if T2N+1 ≤ N ; therefore we require

thatMN =
T2N+1(A)− 2N+1

2
−(2N+1)yN (1−α)

2 ( 14−(yN (1−α))
2)

>
− 1

2
−(2N+1)yN(1−α)

2 ( 14−(yN (1−α))
2)
for T2N+1 > N . LetMN ≡ MN

2
√
(2N+1)

and FN be its distribution. The probability of A being the winner is just the probability that

MN > −

1
2
+(2N+1)yN (1−α)

2 ( 14−(yN (1−α))2)
2
√
(2N+1)

; if we let JN (yN) ≡ −

1
2
+(2N+1)yN (1−α)

2 ( 14−(yN (1−α))2)
2
√
(2N+1)

the probability of A being the

winner is just 1− FN
¡
JN (yN)

¢
. Replacing, we get

JN (yN ) = −
1

2 2

r³
1
4 − (yN (1− α))2

´
(2N + 1)

−
2
p
(2N + 1)yN (1− α)

2

r³
1
4 − (yN (1− α))2

´ .
Let Φ be the cdf of a (0, 1) normal random variable, so we can apply the Berry-Esseen The-

orem25 to get that lim
N→∞

FN
¡
JN (yN )

¢
→ Φ

¡
JN (yN )

¢
if E

µ¯̄̄
M

N
i

¯̄̄3¶
is finite, which is the case

25Let X1, ....Xn be i.i.d with mean μ = 0 and σ2 = 1. Then, for all n
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for some N big enough so yN is close to 0 (see Lemma (5)).26 Now using that Φ is continuous we

must have that lim
N→∞

Φ
¡
JN (yN )

¢
→ Φ

µ
lim

N→∞
JN (yN)

¶
, which implies that lim

N→∞
FN

¡
JN (yN )

¢
→

Φ

µ
lim

N→∞
JN (yN)

¶
.

The problem is now the limit of JN (yN) or lim
N→∞

bJN (yN ) where bJN (yN ) = − 2
√
(2N+1)yN (1−α)

2 ( 14−(yN (1−α))
2)

since 1

2 2 ( 14−(yN (1−α))
2)(2N+1)

→ 0 as N grows. If 2
p
(2N + 1)yN (1− α) → ∞, it follows that

bJN (yN)→ −∞, and 1− FN
¡
JN (yN)

¢
→ 1 which makes A the winner almost surely in state a.

Recall that ∆Pr (a,Q) = (2N)!
N !N !

³
1
4 − (yN (1− α))2

´N
therefore

C 0 (P ∗ (x)) =
x

2

(2N)!

N !N !

µ
1

4
− (yN (1− α))2

¶N

(30)

yN = 2

1Z
0

⎛⎜⎝ 2θaZ
θa+ga(θa)

µ
P (x)− 1

2

¶
dx

⎞⎟⎠ dθa

Assume that C 00
¡
1
2

¢
= l > 0; since P ∗ (x) is concave we must have P ∗ (x) ≤ P ∗ (0)+ ∂P ∗(x)

∂x x=0
x

so

zN ≤
(1− α)

l

(2N)!

N !N !

2
√
N

22N

Ã
1− (2zN)

2

N

!N 1Z
0

⎛⎜⎝ 2θaZ
θa+ga(θa)

xdx

⎞⎟⎠ dθa (31)

where we used that ∂P ∗(x)
∂x = 1

2C00(P ∗(x))
(2N)!
N !N !

³
1
4 − (yN (1− α))2

´N
and define zN ≡ yN (1− α) 2

√
N .

Let (2N)!N !N !

2
√
N

22N

³
1− (2zN )

2

N

´N
≡ h (zN ,N) and note that e−4zN = lim

N→∞

³
1− (2zN)

2

N

´N
and lim

N→∞
(2N)!
N !N !

2
√
N

22N =

π−1 so h (zN ,N)→ e−4zNπ−1. Therefore, since

1Z
0

2θaZ
θa+ga(θa)

xdx→ 0 we must have that lim
N→∞

zN = 0.

This proves the first part of the proposition.

sup

¯̄̄̄
¯̄̄̄
¯Pr

⎛⎜⎜⎜⎝
nX
i=1

Xi

2
√
n
≤ t

⎞⎟⎟⎟⎠− Φ (t)
¯̄̄̄
¯̄̄̄
¯ ≤

33
4
E|X1|3

2
√
n
. See Bickel and Doksum (2000).

26Paradoxically, the fact that adding a new voter decreases the average informativeness of each vote is
helpful in order to prove aggregation.
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Now , for the case that C 00
¡
1
2

¢
= 0 and C 000

¡
1
2

¢
≥ 0 we have that

yN ≥ 2

1Z
0

⎛⎜⎝µP ∗ (θa + ga (θa))−
1

2

¶ 2θaZ
θa+ga(θa)

dx

⎞⎟⎠ dθa

≥ 2

1Z
0

µ
P ∗ (θa + ga (θa))−

1

2

¶
(θa − ga (θa)) dθa

Using concavity of P ∗: P ∗ (θa + ga (θa)) ≥ P ∗ (0) + ∂P ∗(x)
∂x x=θa+ga(θa)

(θa + ga (θa)) it follows

zN ≥ (1− α)h (zN , N)

1Z
0

³
(θa)

2 − (ga (θa))2
´

C 00 (P ∗ (ga (θa) + θa))
dθa

≥ (1− α)h (zN , N)

1Z
0

H1 (θa) dθa

where H1 (θa) ≡ (
(θa)

2−(ga(θa))2)
C00(P ∗(2θa))

and we used C 000 ≥ 0. Using L’Hopital’s rule we have that

lim
∆Pr(a,Q)→0

H1 (θa) = lim
∆Pr(a,Q)→0

−2 (ga (θa)) ∂ga(θa)
∂∆Pr(a,Q)

C 000 (P ∗ (2θa))
∂P ∗(2θa)
∂∆Pr(a,Q)

Using the system of equations for P ∗ (ga (θa) + θa) and ga (θa)

C (P ∗ (ga (θa) + θa)) =
((θa + ga (θa))P

∗ (ga (θa) + θa)− θa)∆Pr (a,Q)

2

C 0 (P ∗ (ga (θa) + θa)) =
(θa + ga (θa))∆Pr (a,Q)

2

we have

∂ga (θa)

∂∆Pr (a,Q)
= − H2 (θa)

P ∗ (ga (θa) + θa)∆Pr (a,Q)
(32)

∂P ∗ (ga (θa) + θa)

∂∆Pr (a,Q)
=

θa
2P ∗ (ga (θa) + θa)C 00 (P ∗ (ga (θa) + θa))

∂P ∗ (2θa)

∂∆Pr (a,Q)
=

θa
C 00 (P ∗ (2θa))
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where we define H2 (θa) = (θa + ga (θa))P
∗ (ga (θa) + θa)− θa. So

lim
∆Pr(a,Q)→0

H1 (θa) = lim
∆Pr(a,Q)→0

2 (ga (θa))
H2(θa)

P ∗(ga(θa)+θa)∆Pr(a,Q)

C 000 (P ∗ (2θa))
θa

C00(P ∗(2θa))

= lim
∆Pr(a,Q)→0

2
P ∗(ga(θa)+θa)

(ga(θa))
θa

H2(θa)
∆Pr(a,Q)

C000(P ∗(2θa))
C00(P ∗(2θa))

= 4 lim
∆Pr(a,Q)→0

H2 (θa)C 00 (P ∗ (2θa))
C 000 (P ∗ (2θa))∆Pr (a,Q)

L’Hopital again gives that lim
∆Pr(a,Q)→0

H2(θa)C00(P ∗(2θa))
∆Pr(a,Q) is equal to

lim
∆Pr(a,Q)→0

µ
H2 (θa)C 000 (P ∗ (2θa))

∂P ∗ (2θa)

∂∆Pr (a,Q)
+

∂H2 (θa)
∂∆Pr (a,Q)

C 00 (P ∗ (2θa))

¶

Using the expressions for ∂P ∗(ga(θa)+θa)
∂∆Pr(a,Q) and ∂ga(θa)

∂∆Pr(a,Q) to get
∂H2(θa)

∂∆Pr(a,Q) in (32) we have that

lim
∆Pr(a,Q)→0

H2(θa)C00(P ∗(2θa))
∆Pr(a,Q) is equal to

lim
∆Pr(a,Q)→0

θa (g
a (θa) + θa)C

00 (P ∗ (2θa))

2P ∗ (ga (θa) + θa)C 00 (P ∗ (ga (θa) + θa))
(33)

+ lim
∆Pr(a,Q)→0

µ
H2 (θa)C 000 (P ∗ (2θa)) θa

C00 (P ∗ (2θa))
− H2 (θa)C

00 (P ∗ (2θa))

∆Pr (a,Q)

¶

and some algebra gives that 2 lim
∆Pr(a,Q)→0

H2(θa)C00(P ∗(2θa))
∆Pr(a,Q) is equal to

lim
∆Pr(a,Q)→0

H2 (θa) θa
C 000 (P ∗ (2θa))

C 00 (P ∗ (2θa))

+ lim
∆Pr(a,Q)→0

θa (g
a (θa) + θa)C

00 (P ∗ (2θa))

2P ∗ (ga (θa) + θa)C 00 (P ∗ (ga (θa) + θa))

Since H2 (θa) ≥ 0 (see (15)) and lim
∆Pr(a,Q)→0

θa(ga(θa)+θa)
2P ∗(ga(θa)+θa)

= 2 (θa)
2

2 lim
∆Pr(a,Q)→0

H2 (θa)C 00 (P ∗ (2θa))
∆Pr (a,Q)

≥ 2 (θa)2 lim
∆Pr(a,Q)→0

C 00 (P ∗ (2θa))

C 00 (P ∗ (ga (θa) + θa))

using that C 000 ≥ 0 and ga (θa) < θa, it follows that

lim
∆Pr(a,Q)→0

H2 (θa)C 00 (P ∗ (θa + ga (θa)))

∆Pr (a,Q)
≥ (θa)2
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so using that C 00 (P ∗ (2θa)) ≥ C 00 (P ∗ (θa + ga (θa))) we have

lim
∆Pr(a,Q)→0

H1 (θa) ≥ 4 lim
∆Pr(a,Q)→0

(θa)
2

C 000 (P ∗ (θa + ga (θa)))

and therefore if lim
∆Pr(a,Q)→0

C 000 (P ∗ (θa + ga (θa)))→ 0 (as it is for C 000
¡
1
2

¢
= 0) we have lim

∆Pr(a,Q)→0
H1 (θa)→

∞, which proves that zN →∞. If C000
¡
1
2

¢
= l > C 00

¡
1
2

¢
= 0, a lower bound for zN is obtained.

Note that the aggregation result depends on the value of C 000
¡
1
2

¢
. Using that C 0 (P ∗ (θ)) =

(θq+θa)∆Pr(a,Q)
2 we have that the direct effect of ∆Pr (a,Q) on P ∗ (θ) is determined by the second

derivative of the cost function while the change in this change ( ∂2P ∗(θ)
∂(∆Pr(a,Q))2

) is affected by the third

derivative of the cost function. In our model increasing the number of voters increases the chances

of a vote being informative but reduces the incentives to collect information of all voters. When

the speed at which the average information decreases because new voters are added is slow enough,

aggregation of information is possible in the limit. The cost function for information acquisition

determines whether adding another member is desirable or not.
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