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Minimax Play at Wimbledon 

By MARK WALKER AND JOHN WOODERS* 

In many strategic situations it is important 
that one's actions not be predictable by one's 
opponent, or by one's opponents. Indeed, the 
origins of modem game theory lie in the attempt 
to understand such situations. The theory of 
mixed-strategy play, including von Neumann's 
Minimax Theorem and the more general notion 
of a Nash equilibrium in mixed strategies, re- 
mains the cornerstone of our theoretical under- 
standing of strategic situations that require 
unpredictability. 

Many experiments designed to test the theory 
of mixed-strategy play using human subjects 
have been carried out over the past 40 years or 
more. The theory has not fared well.' The the- 
ory's consistent failure in experimental tests 
raises the question whether there are any stra- 
tegic situations in which people behave as the 
theory predicts. 

We develop a test of the minimax hypothesis 
using field data from championship professional 
tennis matches, and we find that win rates in the 
serve and return play of top professional tennis 
players are consistent with the minimax hypoth- 
esis. However, the players' choices are not con- 
sistent with the serial independence implied by 
the minimax hypothesis: even the best tennis 
players tend to switch from one action to an- 
other too often. 

When we apply the same statistical tests to 
experimental data, both the equilibrium mixing 
proportions and serial independence of choices 

are soundly rejected. Our results therefore pro- 
vide some evidence that play by highly moti- 
vated and highly experienced players may 
conform more closely to the theory of mixed- 
strategy equilibrium than the play that has been 
observed in experiments. 

We begin from the observation that games 
are not easy to play, or at least to play well. This 
is especially true of games requiring unpredict- 
able play. Consider poker-say, five-card draw 
poker. The rules are so simple that they can be 
learned in a few minutes' time. Nevertheless, a 
player who knows the rules and the mechanics 
of the game but has little experience actually 
playing poker will not play well.2 Similarly, in 
experiments on minimax play the rules of the 
game have typically been simple, indeed trans- 
parently easy to understand. But subjects who 
have no experience actually playing the game 
are not likely to understand the game's strategic 
subtleties-they are likely to understand how to 
play the game, but not how to play the game 
well. Indeed, it may simply not be possible in 
the limited time frame of an experiment to be- 
come very skilled at playing a game that re- 
quires one to be unpredictable. 

Professional sports, on the other hand, pro- 
vide us with strategic competition in which the 
participants have devoted their lives to becom- 
ing experts at their games, and in which they are 
often very highly motivated as well. Moreover, 
situations that call for unpredictable play are 
nearly ubiquitous in sports: The pitcher who 
"tips" his pitches is usually hit hard, and batters 
who are known to "sit on" one pitch usually 
don't last long. Tennis players must mix their 
serves to the receiver's forehand and backhand 
sides; if the receiver knew where the serve was 
coming, his returns would be far more effective. 
Point guards who can only go to their right 
don't make it in the NBA. Thus, while the 
players' recognition of the "correct" way to mix 
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jwooders@bpa.arizona.edu). For their helpful comments we 
are indebted to Robert J. Aumann, William Horrace, 
Thomas R. Palfrey, Robert W. Rosenthal, Jason M. Shachat, 
and Vernon L. Smith, and to an anonymous referee. Ed 
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data, and Barry O'Neill graciously provided us with the data 
from his experiment. William Janss and Zeynep Kocabiyik 
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1 See, for example, Figure 1 in Ido Erev and Alvin E. 
Roth (1998), and their accompanying discussion, which 
describes 12 such experiments. 

2 The reader can verify this proposition by buying some 
chips and sitting down at a table at Binion's in Las Vegas. 
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in these situations may be only subconscious, 
any significant deviation from the correct mix- 
ture will generally be pounced upon by a so- 
phisticated opponent.3 

As empirical tests of the minimax hypothesis, 
however, sports are generally inferior to exper- 
iments. In the classic confrontation between 
pitcher and batter, for example, there are many 
actions available (fastball, curve, change-up, in- 
side, outside, etc.), and the possible outcomes 
are even more numerous (strike, ball, single, 
home run, fly ball, double-play grounder, etc.). 
Difficulties clearly arise in modeling such situ- 
ations theoretically, in observing players' ac- 
tions, and in obtaining sufficient data to conduct 
informative statistical tests. 

Tennis, however, provides a workable empir- 
ical example: although speed and spin on the 
serve are important choices, virtually every 
(first) serve is delivered as far toward one side 
or the other of the service court as the server 
feels is prudent, and the serve is for many 
players an extremely important factor in deter- 
mining the winner of the point. Moreover, the- 
oretical modeling is tractable (each point has 
only two possible outcomes: either the server 
wins the point, or the receiver does); the serv- 
er's actions are observable (it is easy to see 
whether he has served to the receiver's forehand 
or backhand); and data is relatively plentiful 
(long matches contain several hundred points 
played by the same two players). 

Following this idea, we use simple 2 X 2 
games as a theoretical model of the serve and its 
relation to the winning of points in a tennis 
match. We have constructed a data set that 
contains detailed information about every point 
played in ten professional tennis matches. Each 
match provides us with four 2 X 2 "point 
games" with which to test the minimax hypoth- 
esis, giving us a total of 40 point games. In each 
of the 40 point games we use the server's "win 
rates"-the observed relative frequencies with 
which he won points when serving to the re- 

ceiver's left or to his right-to test whether his 
winning probabilities are indeed the same for 
both serving directions, as the theory says they 
should be. In only one of the 40 point games is 
minimax play rejected at the 5-percent level. 
This rejection rate is actually slightly below the 
rate predicted by the random character of equi- 
librium play. 

In addition to equality of players' winning 
probabilities, equilibrium play also requires that 
each player's choices be independent draws 
from a random process. We conduct tests of 
randomness, and find that the tennis players 
switch their serves from left to right and vice 
versa too often to be consistent with random 
play. This is consistent with extensive experi- 
mental research in psychology which indicates 
that people who are attempting to behave truly 
randomly tend to "switch too often." The same 
tests reveal far greater deviation from random- 
ness in experimental data. 

I. A Model of the Serve in Tennis 

We model each point in a tennis match as a 
simple 2 X 2 normal-form game between two 
players.4 A typical such point game is depicted 
in Figure 1. Each point in a tennis match is 
begun by one of the players placing the ball in 
play, or "serving." We assume that the two 
actions available to the server are to serve either 
to the receiver's left (L) or to the receiver's right 
(R). Simultaneously with the server's decision, 
the receiver is assumed to guess whether the 
serve will be to the left or to the right-i.e., he 
makes a decision, perhaps only subconsciously, 
to "overplay" to one side or the other.5 

After the server and the receiver have both 
made their left-or-right choices for the serve, 
the winner of the point is determined-perhaps 
immediately (if the serve is not returned suc- 
cessfully), or perhaps after many subsequent 

3After a recent match, Venus Williams said she had 
shown her opponent, Monica Seles, several different types 
of serves. "You have to work on that, because it's very easy 
to become one-dimensional and just serve to your favorite 
space and the person is just waiting there." Seles responded 
"She mixed it up very well . . . I really love that part of her 
game." 

4 Essentially the same 2 X 2 model appears in Avinash 
Dixit and Barry Nalebuff (1991). 

5 The point game can be modeled differently. For exam- 
ple, the server can be given more choices (serve to the body; 
use a flat, slice, or kick serve), and the receiver, instead of 
"guessing," can choose a location across the baseline where 
he can position himself to await the serve. These alternative 
models of the point game make the same predictions as our 
2 X 2 point-game model. 
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The General Game An Example 

Receiver Receiver 
Server's 

L R L R Minimax 

Server L |7LL | LR Server L 0.58 0079 0.53 1/3 

R 7R tR R 0.73 0.49 0.46 2/3 

Rec's Minimax: 2/3 1/3 

Value = 0.65 

FIGURE 1. THE POINT GAME 

Note: Outcomes (cell entries) are the probability the Server wins the point. 

strokes by each player, or perhaps even after a 
second serve is played (if the first serve turns 
out to be a fault). We do not attempt to model 
the play after the serve, but instead adopt a 
reduced-form representation of it: each player's 
payoffs in the four cells of the game matrix are 
the respective probabilities that he will ulti- 
mately win the point, conditional on the left-or- 
right choices each of the players has made on 
the serve. 

The server's probabilities of winning the 
point are denoted by the four numbers w,sr' 
where s is the server's choice (L or R) and r is 
the receiver's choice (L or R). Since one player 
or the other must win the point, the receiver's 
probabilities of winning are the numbers 1 - 
7Trsr. We assume that each player cares only 
about winning the point; therefore the winning 
probabilities ws, and 1 - ws, are the players' 
payoffs in the 2 X 2 point game.6 Because the 
game is constant sum, it is completely deter- 
mined by the server's probabilities 7rsr, as in 
Figure 1. (Figure 1 includes a numerical exam- 
ple. The example's payoff numbers 7Tsr are hy- 
pothetical, but capture salient features of the 
data.) 

We assume that every point game we will 

encounter satisfies the inequalities 7LL < 7RL 

and 7RR < 7LR (i.e., the server is more likely to 
win the point if he serves away from the di- 
rection the receiver is overplaying) as well as 
the inequalities 7LL < 7TLR and 7TRR < 7TRL (the 
server is less likely to win the point if the 
receiver overplays in the direction the server has 
chosen). This is equivalent to the following 
assumption: 

ASSUMPTION 1: Every point in a tennis 
match is played as a 2 X 2 constant-sum 
normal-form game with a unique equilibrium in 
strictly mixed strategies. 

Both our theoretical and our empirical anal- 
ysis would be simpler if every point game in 
every tennis match were the same-i.e., if there 
were no variation in the four probability payoffs 

rsr, over the course of a match or across 
matches. This is highly unlikely, however. The 
probability payoffs in a point game clearly de- 
pend upon the abilities of the specific two peo- 
ple who are playing the roles of server and 
receiver. The probabilities will therefore vary in 
matches between different people, and perhaps 
even across matches involving the same pair of 
opponents but played on different surfaces or 
under different weather conditions. Moreover, 
the probabilities will typically vary even within 
a single match, because the serve alternates 
between the two players in successive games. 

6 The tennis match consists of repeated play of point 
games. We address below the relation between the point 
games and a player's strategy for the match. 
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Further, even when holding the server and re- 
ceiver fixed, as is done within a single game, the 
points that make up the game alternate between 
"deuce-court" points and "ad-court" points. Be- 
cause of the players' particular abilities, the 
probability payoffs for a deuce-court point will 
generally differ from the probabilities for an 
ad-court point. 

In a given match, then, there are typically at 
least four distinct point games, identified by 
which player has the serve and by whether it is 
a deuce-court point or an ad-court point. We 
assume that there is no further variability in the 
point games within a single match. 

ASSUMPTION 2: There are four point games 
in a tennis match, distinguished by which player 
is serving for the point, and by whether the point 
is a deuce-court point or an ad-court point. 

The Tennis Match as a Game. A player in a 
tennis match is presumably interested in win- 
ning points only as a means to his ultimate goal 
of winning the match. The fact that the point 
games are merely the elements of a larger 
(infinite-horizon, extensive-form) game raises 
an immediate question: is it appropriate to as- 
sume, as we are doing, that the players' payoffs 
in the point game are the probabilities they will 
win the point? The link between the point 
games and the "match game" is provided by the 
main result in Walker and Wooders (2000), 
where a class of games called binary Markov 
games is defined and analyzed. They show that 
equilibrium play in such games (of which tennis 
is an example) requires that a player play each 
point as if it were the only point: his play should 
be independent of the score (except to the extent 
that it directly affects the probability payoffs 
~sr)' and independent of the actions or out- 
comes on all previous points.7 

II. On Testing the Theory 

Our simple theoretical model of tennis, when 
combined with the equilibrium result from 

Walker and Wooders (2000), makes some pre- 
dictions about tennis players' behavior that we 
can subject to empirical testing. The theory's 
first implication is that for every point of a 
tennis match each of the players will make his 
left-or-right choice according to his minimax 
mixture for the associated point game. The ob- 
served choices in a given match will therefore 
be independent draws from a binomial process 
which depends upon (a) which player is serving 
and (b) whether the point is a deuce-court point 
or an ad-court point; and the binomial process is 
otherwise independently and identically distrib- 
uted (i.i.d.) across all serves in the match. Fur- 
thermore, if the four probability payoffs w,sr in 
a point game are known, then it is straightfor- 
ward to calculate each player's equilibrium 
mixture. It would seem to be straightforward, 
then, to simply test whether the observed fre- 
quencies of a player's left and right choices 
[separated according to (a) and (b)] could have 
been the result of his equilibrium i.i.d. binomial 
mixture process, in just the same way that tests 
of the minimax hypothesis have been performed 
with experimental data. 

However, in a tennis match the entries wsr, in 
the payoff matrix are not known, nor can we 
observe the receiver's choices, and therefore we 
cannot estimate the numbers wTsr. The only el- 
ements of the point game that are observable in 
an actual tennis match are (1) the server's action 
on each first serve (was the serve to the left or 
to the right?), and (2) which player ultimately 
won the point. In a given point game, if the 
players are playing according to the equilib- 
rium, which is in mixed strategies, then each 
player's expected payoff from playing left must 
be the same as his expected payoff from playing 
right-i.e., a player must have the same proba- 
bility of winning the point, whichever direction 
he serves, and his observed win rates can be 
used to test that hypothesis. 

III. The Data 

Our data set was obtained from videotapes of 
ten tennis matches between highly ranked pro- 
fessional players in the four so-called major, or 
Grand Slam, tournaments and the year-end 
Masters tournament. All but two of the matches 
were the final (championship) match of the re- 
spective tournament. There were several criteria 

7Martina Navratilova has said that on the night before 
she was to play in the 1990 Wimbledon final she condensed 
her strategy to just a few words: "I had to keep my mind off 
winning: ... Think about that point and that point only." 
(John Feinstein, 1991.) 



VOL. 91 NO. 5 WALKER AND WOODERS. MINIMAX PLAY AT WIMBLEDON 1525 

that we required the matches to satisfy for in- 
clusion in our data set: that winning the match 
be important to both players (hence the Grand 
Slam and Masters tournaments); that the players 
be well known to one another, so that each 
would enter the match with a good sense of the 
probability payoffs w,,.; and that the matches be 
long enough to contain many points,8 in order to 
have enough observations to make our statisti- 
cal tests informative-specifically, so that the 
tests would be likely to reject the minimax 
hypothesis in cases where it is false (in other 
words, so that the tests would have adequate 
power). 

Recall that every tennis match contains four 
point games, so in our ten matches we have 
data for 40 point games in all. Note that in 
Table 1, where the data are summarized, the 
matches are separated by horizontal lines, and 
there are four rows for each match. Each row 
corresponds to a point game. Indeed, it will be 
helpful to think of each row of Table 1 as the 
data from an "experiment," for which we model 
the data generating process as a 2 X 2 point 
game, as in Section I. We will want to test 
whether the data in these experiments could 
have been generated by equilibrium play of the 
relevant point game. 

The data set contains the following informa- 
tion for every point in every one of the ten 
matches: the direction of the point's first serve 
(left, center, or right), and whether or not the 
server ultimately won the point. The data are 
presented in Table 1 (with serves to the center 
omitted: only 6 percent of first serves were to 
the center, so they would have a negligible 
effect on our results). The columns labeled 
Serves in Table 1 indicate, for each match, 
server, and court (i.e., for each "experiment"), 
the number of times the direction of the first 
serve was left (L) or right (R). The columns 
labeled Points Won indicate, for each direction 
of first serve, the number of times the server 
ultimately won the point.9 The relative fre- 

quency of each direction of first serve (the ob- 
served mixture) is given in the Mixture 
columns, and the relative frequencies with 
which points were won (the "win rate") for each 
direction are given in the Win Rates columns. 
The winner of the match is indicated in 
boldface. 

In our data set the players had on average 160 
first serves but only 63 second serves. Since the 
number of second serves from either court is 
generally small (averaging just 33 from the 
deuce court and 30 from the ad court in our 
matches), we analyze only first serves. 

IV. Testing for Equality of Winning 
Probabilities 

We first test, for each of the 40 point-game 
"experiments" in our data set, the hypothesis 
that the server's winning probabilities were the 
same for left and right serves. We represent 
each experiment's data as having been gener- 
ated by random draws from two binomial 
processes-a left process, which determines the 
winner of the point if the server has served to 
the left; and a right process, which determines 
who wins the point if the serve was to the right. 
The processes' binomial parameters are not 
known, and they might differ across the 40 
experiments. We first consider each experiment 
in isolation: in each one, our null hypothesis is 
that the left and right processes' binomial pa- 
rameters are the same-i.e., that the server's 
winning probabilities in that point game were 
the same for left serves as for right serves. 

We use Karl Pearson's chi-square goodness- 
of-fit test of equality of two distributions (see, 
for example, p. 449 of Alexander M. Mood et 
al., 1974). We index the 40 point-game exper- 
iments by i (i = 1, . 40). For each exper- 
iment i, our null hypothesis is that pL = P 
or equivalently, that there is a number p' such 
that pL = p1 and pR = p1. If the null hypothesis 
is true, then the Pearson test statistic is dis- 
tributed asymptotically as chi-square with two 

8 There is some possibility that selecting only long (and 
thus close) matches could introduce a sample selection bias: 
matches might be long partly because both players are 
playing as the equilibrium predicts. 

9 We are interested in the relation between (first) serve 
direction and whether the server ultimately wins the point. 
Therefore, for example, each of the following cases would 

yield an increment in both the number of serves to L and the 
number of points won when the serve is to L: (a) when a 
first serve is to L and the serve is good and the server wins 
the point; and (b) when a first serve is to L and the serve is 
a fault and the server wins the point following the second 
serve, which could be in any direction. 



1526 THE AMERICAN ECONOMIC REVIEW DECEMBER 2001 

TABLE 1-TESTING FOR EQUALITY OF WINNING PROBABILITIES IN TENNIS DATA 

Win 
Serves Mixture Points Won Rates 

Pearson 
Match Server Court L R Total L R L R L R statistic p-value 

74Wimbldn Rosewall Ad 37 37 74 0.50 0.50 25 26 0.68 0.70 0.063 0.802 
74Wimbldn Rosewall Deuce 70 5 75 0.93 0.07 50 3 0.71 0.60 0.294 0.588 
74Wimbldn Smith Ad 66 10 76 0.87 0.13 45 7 0.68 0.70 0.013 0.908 
74Wimbldn Smith Deuce 53 29 82 0.65 0.35 33 14 0.62 0.48 1.499 0.221 

80Wimbldn Borg Ad 19 73 92 0.21 0.79 11 50 0.58 0.68 0.758 0.384 
80Wimbldn Borg Deuce 37 62 99 0.37 0.63 26 41 0.70 0.66 0.182 0.670 
80Wimbldn McEnroe Ad 45 40 85 0.53 0.47 27 26 0.60 0.65 0.226 0.635 
80Wimbldn McEnroe Deuce 44 44 88 0.50 0.50 28 32 0.64 0.73 0.838 0.360 

8OUSOpen McEnroe Ad 39 40 79 0.49 0.51 23 30 0.59 0.75 2.297 0.130 
8OUSOpen McEnroe Deuce 51 32 83 0.61 0.39 31 18 0.61 0.56 0.167 0.683 
8OUSOpen Borg Ad 29 47 76 0.38 0.62 17 30 0.59 0.64 0.206 0.650 
8OUSOpen Borg Deuce 30 50 80 0.38 0.63 20 26 0.67 0.52 1.650 0.199 

82Wimbldn Connors Ad 32 46 78 0.41 0.59 16 32 0.50 0.70 3.052 0.081** 
82Wimbldn Connors Deuce 76 15 91 0.84 0.16 51 8 0.67 0.53 1.042 0.307 
82Wimbldn McEnroe Ad 32 39 71 0.45 0.55 23 24 0.72 0.62 0.839 0.360 
82Wimbldn McEnroe Deuce 35 44 79 0.44 0.56 24 30 0.69 0.68 0.001 0.970 

84French Lendl Ad 33 34 67 0.49 0.51 18 21 0.55 0.62 0.359 0.549 
84French Lendl Deuce 26 45 71 0.37 0.63 19 31 0.73 0.69 0.139 0.710 
84French McEnroe Ad 38 29 67 0.57 0.43 23 18 0.61 0.62 0.016 0.898 
84French McEnroe Deuce 42 30 72 0.58 0.42 21 20 0.50 0.67 1.983 0.159 

87Australn Edberg Ad 47 22 69 0.68 0.32 29 12 0.62 0.55 0.318 0.573 
87Australn Edberg Deuce 19 56 75 0.25 0.75 12 40 0.63 0.71 0.456 0.499 
87Australn Cash Ad 38 27 65 0.58 0.42 19 14 0.50 0.52 0.022 0.883 
87Australn Cash Deuce 39 29 68 0.57 0.43 25 16 0.64 0.55 0.554 0.457 

88Australn Wilander Ad 32 36 68 0.47 0.53 20 25 0.63 0.69 0.365 0.546 
88Australn Wilander Deuce 20 56 76 0.26 0.74 16 35 0.80 0.63 2.045 0.153 
88Australn Cash Ad 40 23 63 0.63 0.37 22 13 0.55 0.57 0.014 0.907 
88Australn Cash Deuce 37 37 74 0.50 0.50 19 25 0.51 0.68 2.018 0.155 

88Masters Becker Ad 50 26 76 0.66 0.34 30 18 0.60 0.69 0.626 0.429 
88Masters Becker Deuce 53 31 84 0.63 0.37 38 20 0.72 0.65 0.472 0.492 
88Masters Lendl Ad 55 21 76 0.72 0.28 43 15 0.78 0.71 0.383 0.536 
88Masters Lendl Deuce 46 38 84 0.55 0.45 24 23 0.52 0.61 0.589 0.443 

95USOpen Sampras Ad 20 37 57 0.35 0.65 12 28 0.60 0.76 1.524 0.217 
95USOpen Sampras Deuce 33 26 59 0.56 0.44 20 22 0.61 0.85 4.087 0.043-1 
95USOpen Agassi Ad 39 16 55 0.71 0.29 29 13 0.74 0.81 0.298 0.585 
95USOpen Agassi Deuce 30 29 59 0.51 0.49 17 17 0.57 0.59 0.023 0.879 

97USOpen Korda Ad 55 19 74 0.74 0.26 42 16 0.76 0.84 0.513 0.474 
97USOpen Korda Deuce 52 30 82 0.63 0.37 38 19 0.73 0.63 0.852 0.356 
97USOpen Sampras Ad 33 51 84 0.39 0.61 21 32 0.64 0.63 0.007 0.934 
97USOpen Sampras Deuce 50 43 93 0.54 0.46 33 28 0.66 0.65 0.008 0.929 

Totals 1,622 1,404 3,026 0.54 0.46 1,040 918 0.64 0.65 30.801 0.852 

Indicates rejection at the 5-percent level of significance. 

* Indicates rejection at the 10-percent level of significance. 

degrees of freedom if p' is known, or with one 
degree of freedom if pi must be estimated from 
the data, as in our case. 

Table 1 reports the results of the Pearson 
test. For each of the 40 point-game experi- 
ments, the two columns labeled "Pearson sta- 
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FIGuRE 2. WIN RATES IN TENNIS: KOLMOGOROV TEST 

tistic" and "p-value," at the right-hand side of 
the table, report the value of the test statistic, 
Q1, along with its associated p-value. In only 
one of our 40 point-game experiments (Sam- 
pras serving to Agassi in the deuce court in 
1995) do we find the null hypothesis rejected 
at the 5-percent level (a p-value less that 
0.05), and for only one other point game 
(Connors serving to McEnroe in the ad court 
in 1982) do we reject at the 10-percent level. 
Note that with 40 point games, the expected 
number of individual rejections according to 
the theory (i.e., when the null hypothesis is 
true) is two rejections at the 5-percent level 
and four at the 10-percent level. Considering 
simply the number of 5-percent and 10-per- 
cent rejections, then, the tennis data appear 
quite consistent with the theory. 

This suggests a test of the joint hypothesis 
that the data from all 40 experiments were 
generated by equilibrium play. We apply 
Pearson's test to the joint hypothesis that pL 

pR for each one of the experiments i 
1, . 40 (but allowing the parameters pL 

and pR to vary across experiments i). The 
test statistic for the Pearson joint test is 
simply the sum of the test statistics Qi in the 
40 individual tests we have just described, 
which under the null hypothesis is distributed 
as chi-square with 40 degrees of freedom. For 
our tennis data, the value of this test sta- 
tistic is 30.801 and the associated p-value is 
0.852. Clearly, we cannot reject this joint 
hypothesis at any reasonable level of 
significance. 

We have observed, above, that in the 40 
individual tests, the data yield slightly fewer 
rejections of the null hypothesis than one 
would expect to obtain when the theory is 
correct-i.e., when the joint null hypothesis is 
true. We develop this idea further, to obtain a 
more informative assessment of the data' s 
conformity with the theory. We consider all 
40 point-game experiments, and we compare 
the observed distribution of the 40 Q' values 
with the distribution predicted by the theory. 
Recall that under the joint null hypothesis 
(PL p P for each experiment i) the Pearson 
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TABLE 2-TESTING FOR EQUALITY OF WINNING PROBABILITIES IN O'NEILL'S DATA 

Mixtures Win Rates 

Pair Player Joker Non-Joker Joker Non-Joker Pearson Q p-value 

1 1 0.181 0.819 0.211 0.430 3.156 0.076** 
2 0.352 0.648 0.892 0.456 19.139 0.000* 

2 1 0.438 0.562 0.391 0.220 3.631 0.057** 
2 0.552 0.448 0.690 0.723 0.142 0.706 

3 1 0.543 0.457 0.526 0.229 9.667 0.002* 
2 0.552 0.448 0.483 0.766 8.749 0.003* 

4 1 0.333 0.667 0.829 0.214 36.167 0.000* 
2 0.724 0.276 0.618 0.483 1.587 0.208 

5 1 0.467 0.533 0.388 0.304 0.822 0.365 
2 0.448 0.552 0.596 0.707 1.424 0.233 

6 1 0.390 0.610 0.463 0.391 0.544 0.461 
2 0.448 0.552 0.596 0.569 0.076 0.782 

7 1 0.305 0.695 0.531 0.452 0.559 0.454 
2 0.352 0.648 0.541 0.515 0.064 0.800 

8 1 0.324 0.676 0.412 0.493 0.609 0.435 
2 0.295 0.705 0.548 0.527 0.040 0.841 

9 1 0.295 0.705 0.290 0.392 0.976 0.323 
2 0.343 0.657 0.750 0.580 2.971 0.085** 

10 1 0.419 0.581 0.364 0.410 0.229 0.632 
2 0.410 0.590 0.628 0.597 0.103 0.748 

11 1 0.305 0.695 0.313 0.425 1.176 0.278 
2 0.371 0.629 0.744 0.530 4.686 0.030* 

12 1 0.486 0.514 0.490 0.593 1.108 0.292 
2 0.429 0.571 0.444 0.467 0.051 0.821 

13 1 0.267 0.733 0.536 0.364 2.514 0.113 
2 0.533 0.467 0.732 0.429 9.959 0.002* 

14 1 0.305 0.695 0.344 0.521 2.794 0.095** 
2 0.229 0.771 0.542 0.531 0.009 0.926 

15 1 0.457 0.543 0.313 0.333 0.052 0.820 
2 0.371 0.629 0.615 0.712 1.048 0.306 

16 1 0.438 0.562 0.304 0.373 0.539 0.463 
2 0.381 0.619 0.650 0.662 0.015 0.904 

17 1 0.362 0.638 0.368 0.358 0.011 0.917 
2 0.410 0.590 0.674 0.613 0.416 0.519 

18 1 0.390 0.610 0.488 0.484 0.001 0.973 
2 0.410 0.590 0.535 0.500 0.124 0.725 

19 1 0.324 0.676 0.500 0.338 2.534 0.111 
2 0.505 0.495 0.679 0.538 2.186 0.139 

20 1 0.429 0.571 0.600 0.317 8.386 0.004* 
2 0.495 0.505 0.481 0.642 2.755 0.097** 

21 1 0.371 0.629 0.436 0.500 0.404 0.525 
2 0.324 0.676 0.500 0.535 0.114 0.735 
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TABLE 2-Continued. 

Mixtures Win Rates 

Pair Player Joker Non-Joker Joker Non-Joker Pearson Q p-value 

22 1 0.457 0.543 0.354 0.439 0.774 0.379 
2 0.343 0.657 0.528 0.638 1.191 0.275 

23 1 0.162 0.838 0.471 0.443 0.043 0.835 
2 0.419 0.581 0.818 0.361 21.641 0.000* 

24 1 0.257 0.743 0.519 0.487 0.079 0.779 
2 0.371 0.629 0.641 0.424 4.609 0.032* 

25 1 0.333 0.667 0.486 0.257 5.486 0.019* 
2 0.590 0.410 0.726 0.581 2.383 0.123 

167.741 0.000* 

* 10 rejections at 5 percent. 
** 15 rejections at 10 percent. 

statistic Qi is asymptotically distributed as 
chi-square-1 for each i. In other words, each 
experiment yields an independent draw, Q1, 
from the chi-square-1 distribution, and thus 
(under the joint null hypothesis) the 40 Ql 
values in Table 1 should be 40 such chi- 
square draws. Equivalently, the p-values as- 
sociated with the realized Q1 values (also in 
Table 1) should have been 40 draws from the 
uniform distribution U[O, 1]. 

A simple visual comparison of the observed 
distribution with the theoretically predicted 
distribution is provided in Figure 2, in which 
the empirical cumulative distribution function 
(the c.d.f.) of the 40 observed p-values is 
juxtaposed with the theoretical c.d.f., the dis- 
tribution the p-values would have been drawn 
from if the data were generated according to 
the theory-i.e., the uniform distribution, for 
which the c.d.f. is the 450 line in Figure 
2. The empirical and the theoretically pre- 
dicted distributions depicted in Figure 2 are 
strikingly close to one another. 

We formalize this comparison of the two 
distributions via the Kolmogorov-Smimov (KS) 
test, which allows one to test the hypothesis that 
an empirical distribution of observed values 
was generated by draws from a specified 
("hypothesized") distribution. In addition to 
its appealing visual interpretation, as in Fig- 
ure 2, the KS test is also more powerful than 
the Pearson joint test against many alternative 

hypotheses about how the data were 
generated. 10 

In performing the KS test for the tennis data, 
the hypothesized c.d.f. for the p-values is the 
uniform distribution, F(x) = x for x E [0, 1]. 
Denoting the empirical distribution of the 40 
p-values in Table 1 by F(x), the KS test statis- 
tic is K = 40 supX[O, l]IF(x) - xl, which has 
a known distribution (see p. 509 of Mood et al., 
1974). For the tennis data in Table 1, we have 
K = 0.670, with a p-value of 0.76, far toward 
the opposite end of the distribution from the 
rejection region. This data, in other words, is 
typical of the data that minimax play would 
produce: minimax play would generate a value 
of K at least this large 76 percent of the time, 
and a "better" (smaller) value of K only 24 
percent of the time. 

A. Applying Our Tests to Experimental Data 

In experiments on mixed-strategy play, 
observed play adhered most closely to the 
equilibrium prediction in Barry O'Neill's 
(1987) experiment. 1 When we apply the 
same statistical tests to O'Neill's data as we 

10 See Walker and Wooders (1999 fn. 19) for a simple 
illustration of this. 

11 O'Neill's ingenious experimental design avoided 
several weaknesses he had identified in prior tests of the 
theory. 
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have to our tennis data, the difference is 
striking. 

In O'Neill's experiment 25 pairs of sub- 
jects repeatedly played a simple two-person 
game in which each player chooses one of 
four cards: Ace, Two, Three, or Joker. The 
game has a unique Nash equilibrium: each 
player chooses the Joker with probability 0.4 
and chooses each number card with probabil- 
ity 0.2. O'Neill's subjects all played the 
game 105 times, each subject always play- 
ing against the same opponent. 12 O'Neill 
awarded the winner of each play a nickel and 
the loser nothing (a total of $5.25 per pair of 
subjects). 

In order to compare our binary-choice data 
with O'Neill's data, we pool the three num- 
ber cards, which are strategically equivalent, 
into a single action, "non-Joker," and focus 
our analysis on the binary choice of a Joker 
or a non-Joker card. We index the subjects by 
i E {1,..., 50}. Of course each subject's 
choices were observable in O'Neill's experi- 
ment, so we can use each of the 50 subjects' 
win rates to test whether his winning proba- 
bilities were the same for his plays of the 
Joker and the non-Joker cards. We conduct 
the same tests as we have already carried out 
above for the tennis data. Table 2 contains the 
observed mixtures and win rates, and the cor- 
responding values of the test statistic and its 
p-values. 

In the 50 individual tests (in each of which 
the null hypothesis is that the subject's Joker 
and non-Joker winning probabilities are the 
same), we obtain 10 rejections at the 5-per- 
cent level and 15 rejections at the 10-percent 
level.'3 In order to test the joint hypothesis 
that the winning probability is the same for 
Joker and non-Joker cards for every subject 
(but possibly different across subjects), we 

simply sum the 50 values of the test statistic 
to obtain the statistic i=1 Q1, just as we 
described above for the tennis data. This sta- 
tistic is asymptotically distributed chi-square 
with 50 degrees of freedom under the null 
hypothesis. The value of the statistic is 
167.741 and the associated p-value is 1.239 X 
io104; hence the joint null hypothesis is re- 
jected at virtually any level of significance, in 
sharp contrast to the large p-value (0.852) 
obtained in the parallel test on the tennis data. 

Figure 3 is the analogue for O'Neill's data 
of Figure 2 for the tennis data: it depicts the 
empirical distribution and the hypothesized 
(i.e., uniform) distribution of the p-values for 
the tests of equality of winning probabilities 
in O'Neill's data. The value of the KS test 
statistic is K = 1.704, with a p-value of 
0.006. Hence the KS test rejects the null hy- 
pothesis at significance levels as low as 1 
percent, again a sharp contrast with the tennis 
data, in which the corresponding p-value is 
0.76. Comparison of Figures 2 and 3 provides 
a striking visual picture of the difference be- 
tween the two data sets' conformity with the 
theory of mixed-strategy equilibrium. The p- 
values in the tennis data are distributed almost 
exactly uniformly, as the theory predicts they 
should be, but the p-values are far from uni- 
form for O'Neill's data. 

B. The Power Of Our Tests 

In order to evaluate the power of our tests, 
we concentrate our attention on the Pearson 
joint test for equality of the server's left and 
right winning probabilities. Using the numer- 
ical example in Figure 1,14 we formulate a 
parametric class of plausible alternative hy- 
potheses and we conduct Monte Carlo simu- 
lations to evaluate the power of the Pearson 

12 Regardless of the players' risk attitudes, the unique 
equilibrium of the repeated O'Neill game consists of the 
players mixing independently at each stage according to the 
stage game's equilibrium mixture. This follows from results 
in Wooders and Jason Shachat (2001), who study sequential 
play of stage games in which each stage game has only two 
possible outcomes. 

13 James N. Brown and Robert W. Rosenthal (1990) 
have provided an extensive statistical analysis of O'Neill's 
data, including direct tests using subjects' empirical mix- 
tures, and they obtain similar levels of rejection. 

14 Of course, as we have already pointed out, the actual 
probability payoffs in the point games are not observable, 
and they surely differ from one "experiment" to another. 
However, the point-game example in Figure 1 captures 
some of the key aggregate features of the actual data in our 
tennis matches: in the game's equilibrium the server serves 
to the receiver's left with mixture probability 0.531/3, while 
in the data 53.5 percent of all first serves are to the left; and 
the game's value (i.e., the probability that the server will 
win the point) is 0.65, while in the data the servers won 64.7 
percent of all points. 
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FIGURE 3. WIN RATES IN O'NEILL: KOLMOGOROV TEST 

test to reject the null hypothesis when any of 
these alternative hypotheses is true. 

Our null hypothesis in each experiment (viz., 
that the server's left and right winning probabili- 
ties are the same) is a consequence of our assump- 
tion that the receiver is playing his minimax 
mixture. But the receiver may actually be mixing 
his choices in some other proportions. Let 0 de- 
note the proportion of the points on which the 
receiver chooses left; the null hypothesis for a 
given experiment is thus that 0 = -, and altema- 
tive values of 0 comprise the alternative hypotheses 
we will consider. For any value of 0, the server's 
winning probabilities PL and PR are given by 

PL(O) = 0.580 + 0.79(1 - 0) 

and 

PR(0) = 0.730 + 0.49(1 - 0). 

Under the joint null hypothesis that in a data 
set with 40 experiments each receiver follows 

his minimax mixture, the Pearson test statistic 
1i=l Qi is asymptotically distributed as chi- 

square with 40 degrees of freedom. 
At the 5-percent significance level, the Pear- 

son joint test consists of rejecting the null hy- 
pothesis if 1401 Qi exceeds the critical value 
55.75. The power of this test against an alter- 
native value of 0 is defined as the probability of 
rejecting the joint null hypothesis when the al- 
ternative value of 0 is the true value. But for 
values of 0 different from 00 = 2 we havepL + 

PR, and hence the distribution of the Pearson 
test statistic 140 1 Qi is not known. We have 
used Monte Carlo methods to estimate 
the power of the test against alternative values 
of 0.15 The power function is depicted in 

15 For a given, fixed value of 0, data was randomly 
generated for 40 experiments; the test statistic was com- 
puted and compared to the critical value 55.75, and the null 
hypothesis was thus either rejected or it was not. This 
process was repeated 100,000 times, with the empirical 
frequency of rejection then used as the estimate of the test's 
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Figure 4. One can see that the Pearson joint test 
has significant ability to reject the null hypoth- 
esis when the true value of 0 differs signifi- 

2 cantly from 00 = 3. For example, if 0 = 0.5 
i.e., if the receivers actually choose left and 
right with equal probability-the joint null hy- 
pothesis is rejected with probability 0.58. Thus, 
the test has fairly high power, even though the 
server's winning probabilities are not very dif- 
ferent (they are PL = 0.685 and PR = 0.610). 
Under the alternative hypothesis that 0 = 0.4, 
i.e., that the receiver chooses left with probabil- 
ity 0.4, the power of the test rises dramatically 
to 0.98. 

V. Serial Independence 

First we test individually, for each of the 40 
"experiments" in our data set, the hypothesis 

that the server's choices were serially indepen- 
dent. Let s' = . s ,S SIli) be the list of 
first-serve directions in experiment i, in the 
order in which they occurred, where si E {IL, RI 
is the direction of the nth first serve, and where 
nL and nR are the number of first serves to the 
left and to the right. Our test of serial indepen- 
dence is based on the number of runs in the list 
s , which we denote by r'. (A run is a maximal 
string of consecutive identical symbols, either 
all L's or all R's.16) We reject the hypothesis of 
serial independence if there are either "too 
many" runs or "too few" runs. Too many runs 
suggests negative correlation in the choice of 
direction: the runs tend to be too short, and thus 
the server is changing direction too often for his 
choices to have been randomly generated. Too 
few runs suggests that the server's choices are 
positively correlated: the server is not changing 
direction often enough to be consistent with 

power under 0, i.e., the probability of rejecting when 0 is 
true. This Monte Carlo estimation of the test's power was 
performed for many values of 0. 

16 For example, the sequence s = (L, L, R, L) has three 
runs. We omit serves to the center. 
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randomness, resulting in runs that tend to be too 
long. 

Under the null hypothesis of serial indepen- 
dence, the probability that there are exactly 
r runs in a list made up of nL and nR occur- 
rences of L and R is known (see, for example, 
Jean Dickinson Gibbons and Subhabrata 
Chakraborti, 1992). Denote this probability by 
f(r; nL, nR), and let F(r; nL, nR) denote the 
value of the associated c.d.f., i.e., F(r; nL, 

nR) = =1 f(k; nL, nR), the probability of 
obtaining r or fewer runs. At the 5-percent 
significance level, the null hypothesis of serial 
independence in experiment i is rejected if ei- 
ther F(r'; nL, n ) < 0.025 or 1 - F(r' - 1; nL, 
n ) < 0.025, i.e., if the probability of r' or 
fewer runs is less than 0.025 or the probability 
of r' or more runs is less than 0.025. 

Table 3 shows the data and the results for our 
tests of serial independence. For each of the 40 
point-game experiments, the columns L, R, and 
Total give the number of first serves in each 
direction and the total number of first serves. 
The Runs column indicates the number of runs, 
r', in the list si of first serves (the lists are not 
shown). The columns F(r - 1) and F(r) give 
the value of the c.d.f. in experiment i for r' - 1 
and r' runs, respectively. At the 5-percent sig- 
nificance level, the null hypothesis is rejected in 
five of the 40 experiments (the expected number 
of 5-percent rejections is only two). In three 
cases the null hypothesis is rejected because 
there are too many runs, and in two cases the 
rejection is because there are too few runs. 

To test the joint hypothesis that first serves 
are serially independent in each of the 40 ex- 
periments, we again employ the Kolmogorov- 
Smirnov goodness-of-fit test. The KS test 
requires that the sequence of random variables 
of interest be independently and identically dis- 
tributed, with a continuous cumulative distribu- 
tion function. Hence, the KS test cannot be 
applied directly to the values in either column 
F(r - 1) or column F(r), since these values 
are neither identically distributed (the distribu- 
tion of r' depends on nL and n') nor con- 
tinuously distributed. We circumvent these 
difficulties by constructing, for each experiment 
i, the (random) statistic t' given by a draw from 
the uniform distribution U[F(r' - 1; nj, n1), 

F(r'; n', nh)]. A particular realization of this 
statistic for each experiment is given in the 

right-most column of Table 3. Under the null 
hypothesis of serial independence in experiment 
i, the statistic t' is distributed U[0, 1].17 

The empirical c.d.f. of the realized values 
t', . . ., t40 in Table 3 is depicted in Figure 5. The 
value of the KS test statistic is K = 1.948,18 
with a p-value of 0.001. Hence, we reject the 
null hypothesis that in all 40 experiments the 
first serves were serially independent. Figure 5 
and Table 3 show that there tend to be too many 
large values of t', i.e., too many runs, relative to 
the null hypothesis. 

The finding that even the best tennis players 
typically switch from one action to another 
too often is perhaps not surprising. There is 
overwhelming experimental evidence that 
when people try to generate "random" se- 
quences they generally "switch too often" to be 
consistent with randomly generated choices 
(W. A. Wagenaar, 1972). 

A. Serial Independence in O'Neill's Data 

Table 4 shows the data and the results of tests 
for serial independence in O'Neill's experi- 
ment. We distinguish only between Jokers and 
non-Jokers when counting runs. For each of 
O'Neill's 50 subjects, the columns J and N in 
Table 4 indicate the number of times the subject 
chose Joker and non-Joker (out of 105 plays 
altogether), and the Runs column indicates the 
number of runs in the subject's list of choices. 
At the 5-percent significance level, the null hy- 
pothesis that play is serially independent is re- 
jected for 15 subjects (the expected number is 
only 2.5). In 13 of the 15 rejections there are too 
many runs, and in the other two there are too 
few runs. 

The values in the right-most column of Table 
4 are, for each subject i, a realized value of the 
test statistic t' constructed as described above. 
The empirical cumulative distribution of these t' 
values is shown in Figure 6. The value of the 
KS test statistic is K = 2.503, with a p-value of 
0.000007. Hence we reject the joint null hypoth- 

17 A proof is contained in footnote 24 of Walker and 
Wooders (1999). 

18 This "randomized" test was performed many times. 
While there was of course variation in the 40 t' values 
across trials, there was only slight variation in the value of 
K and in the p-value, at the third decimal place and beyond. 
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TABLE 3-RUNS TESTS ON TENNIS DATA 

Serves 
- Runs 

Match Server Court L R Total ri F(r - 1) F(r') U[F(r' - 1), F(r')] 

74Wimbldn Rosewall Ad 37 37 74 43 0.854 0.901 0.866 
74Wimbldn Rosewall Deuce 70 5 75 11 0.349 1.000 0.804 
74Wimbldn Smith Ad 66 10 76 21 0.812 1.000 0.823 
74Wimbldn Smith Deuce 53 29 82 43 0.832 0.892 0.852 

80Wimbldn Borg Ad 19 73 92 33 0.633 0.788 0.757 
80Wimbldn Borg Deuce 37 62 99 52 0.817 0.866 0.855 
80Wimbldn McEnroe Ad 45 40 85 44 0.512 0.599 0.553 
80Wimbldn McEnroe Deuce 44 44 88 49 0.774 0.832 0.818 

8OUSOpen McEnroe Ad 39 40 79 38 0.249 0.326 0.298 
8OUSOpen McEnroe Deuce 51 32 83 36 0.131 0.185 0.142 
8OUSOpen Borg Ad 29 47 76 42 0.873 0.916 0.912 
8OUSOpen Borg Deuce 30 50 80 43 0.829 0.887 0.844 

82Wimbldn Connors Ad 32 46 78 49 0.990* 0.995 0.994 
82Wimbldn Connors Deuce 76 15 91 31 0.958** 1.000 0.999 
82Wimbldn McEnroe Ad 32 39 71 36 0.437 0.533 0.520 
82Wimbldn McEnroe Deuce 35 44 79 36 0.152 0.212 0.183 

84French Lendi Ad 33 34 67 41 0.931 0.958 0.938 
84French Lendi Deuce 26 45 71 41 0.955** 0.976 0.963 
84French McEnroe Ad 38 29 67 40 0.921 0.952 0.947 
84French McEnroe Deuce 42 30 72 45 0.982* 0.991 0.984 

87Australn Edberg Ad 47 22 69 40 0.994* 0.997 0.997 
87Australn Edberg Deuce 19 56 75 29 0.374 0.519 0.505 
87Australn Cash Ad 38 27 65 40 0.964** 0.980 0.968 
87Australn Cash Deuce 39 29 68 37 0.711 0.791 0.725 

88Australn Wilander Ad 32 36 68 38 0.739 0.813 0.795 
88Australn Wilander Deuce 20 56 76 29 0.265 0.389 0.275 
88Australn Cash Ad 40 23 63 29 0.316 0.424 0.364 
88Australn Cash Deuce 37 37 74 28 0.007 0.013* 0.010 

88Masters Becker Ad 50 26 76 38 0.724 0.796 0.783 
88Masters Becker Deuce 53 31 84 45 0.847 0.900 0.890 
88Masters Lendl Ad 55 21 76 32 0.515 0.607 0.539 
88Masters Lendl Deuce 46 38 84 43 0.489 0.577 0.506 

95USOpen Sampras Ad 20 37 57 25 0.231 0.335 0.245 
95USOpen Sampras Deuce 33 26 59 22 0.011 0.021* 0.019 
95USOpen Agassi Ad 39 16 55 29 0.943 0.980 0.968 
95USOpen Agassi Deuce 30 29 59 24 0.032 0.058 0.052 

97USOpen Korda Ad 55 19 74 28 0.301 0.389 0.323 
97USOpen Korda Deuce 52 30 82 43 0.793 0.859 0.842 
97USOpen Sampras Ad 33 51 84 35 0.065 0.101 0.079 
97USOpen Sampras Deuce 50 43 93 41 0.079 0.114 0.087 

* Indicates rejection at the 5-percent level. 
** Indicates rejection at the 10-percent level. 

esis that each of the 50 subjects' choices were 
serially independent in O'Neill's experiment. 
Just as in the tennis data, there are generally too 
many runs for the joint null hypothesis to be 

true. Comparing the empirical cumulative dis- 
tribution functions in Figures 5 and 6 suggests 
that while play is negatively correlated in both 
the tennis data and O'Neill's experimental data 
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(generally too much switching between choices 
in both cases), the correlation is clearly less in 
the tennis data. 

Thus, just as with our tests using players' win 
rates, the tests for randomness (and serial cor- 
relation in particular) reveal a striking differ- 
ence between the theory's consistency with the 
data for top tennis players and its consistency 
with the data from experiments. 

VI. Concluding Remarks 

The theory of mixed-strategy equilibrium 
has not been consistent with the empirical 
evidence gathered through more than 40 years 
of experiments involving human subjects. 
Conversely, the theory has performed far 
better in explaining the play of top profes- 
sional tennis players in our data set. We do 
not view these results as an indictment of the 
many experiments that have been conducted 

to test for equilibrium play: the experiments 
have established convincingly that when un- 
predictable play is called for, inexperienced 
players will not generally mix in the equilib- 
rium proportions. Nor do we mean to suggest 
that the theory applies only to people who 
have developed years of experience in a par- 
ticular strategic situation. There is a spectrum 
of experience and expertise, with novices 
(such as typical experimental subjects) at 
one extreme and world-class tennis players at 
the other. The theory applies well (but not 
perfectly) at the "expert" end of the spectrum, 
in spite of its failure at the "novice" end. 
There is a very large gulf between the two 
extremes, and little, if anything, is presently 
known about how to place a given strategic 
situation along this spectrum or about how 
to divide the spectrum into the portions on 
which current theory applies and the portions 
where a more general, or even a new, theory 
must be developed. The last ten years or 
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TABLE 4-RuNS TESTS ON O'NEILL'S DATA 

Choices 
RUnS 

Pair Player J N r; F(r' - 1) F(r') U[F(r'- 1), F(r')] 

1 1 19 86 34 0.688 0.753 0.718 
2 37 68 47 0.297 0.381 0.337 

2 1 46 59 66 0.995* 0.997 0.995 
2 58 47 51 0.315 0.389 0.323 

3 1 57 48 57 0.748 0.807 0.750 
2 58 47 53 0.466 0.545 0.468 

4 1 35 70 50 0.659 0.728 0.714 
2 76 29 55 0.999 H 1.000 1.000 

5 1 49 56 55 0.596 0.670 0.613 
2 47 58 62 0.956** 0.972 0.963 

6 1 41 64 58 0.912 0.939 0.921 
2 47 58 34 0.000 0.000* 0.000 

7 1 32 73 48 0.682 0.748 0.734 
2 37 68 68 1.000* 1.000 1.000 

8 1 34 71 40 0.049 0.073 0.055 
2 31 74 54 0.985* 0.991 0.985 

9 1 31 74 40 0.114 0.158 0.139 
2 36 69 63 0.999* 1.000 0.999 

10 1 44 61 57 0.810 0.861 0.814 
2 43 62 57 0.830 0.878 0.866 

11 1 32 73 40 0.086 0.122 0.090 
2 39 66 59 0.963** 0.978 0.973 

12 1 51 54 58 0.786 0.839 0.831 
2 45 60 43 0.023 0.037** 0.027 

13 1 28 77 38 0.131 0.179 0.173 
2 56 49 53 0.440 0.518 0.508 

14 1 32 73 50 0.828 0.873 0.847 
2 24 81 46 0.990* 0.994 0.991 

15 1 48 57 57 0.748 0.807 0.749 
2 39 66 59 0.963** 0.978 0.968 

16 1 46 59 39 0.002 0.004* 0.003 
2 40 65 48 0.265 0.334 0.318 

17 1 38 67 57 0.931 0.958 0.940 
2 43 62 68 0.999* 1.000 0.999 

18 1 41 64 44 0.062 0.091 0.076 
2 43 62 45 0.070 0.102 0.080 

19 1 34 71 56 0.975* 0.985 0.978 
2 53 52 58 0.784 0.837 0.836 

20 1 45 60 70 1.000* 1.000 1.000 
2 52 53 79 1.000* 1.000 1.000 

21 1 39 66 63 0.996* 0.998 0.998 
2 34 71 48 0.548 0.625 0.619 
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TABLE 4-Continued. 

Choices 
Runs 

Pair Player J N r; F(r' - 1) F(r') U[F(r- 1), F(r')] 

22 1 48 57 67 0.996* 0.998 0.998 
2 36 69 48 0.149 0.200 0.193 

23 1 17 88 31 0.589 0.787 0.622 
2 44 61 65 0.994* 0.997 0.995 

24 1 27 78 45 0.796 0.879 0.821 
2 39 66 58 0.944 0.963 0.963 

25 1 35 70 52 0.804 0.854 0.824 
2 62 43 57 0.830 0.878 0.847 

* Indicates rejection at the 5-percent level. 
** Indicates rejection at the 10-percent level. 

1.00 

0.75- 

0.50 - 

k =2.503 
(p-value = 0.000007) 

0.25 - 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 6. RUNS IN O'NEILL'S DATA: KOLMOGOROV TEST 

so have seen the development of a large 
literature on out-of-equilibrium play, or 
"learning," in games, as well as alternative 
notions of equilibrium. This literature holds 
some promise for advancing our under- 
standing of human behavior in strategic 
situations. 
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