
Chapter 1

Regression Models

1.1 Introduction

Regression models form the core of the discipline of econometrics. Although
econometricians routinely estimate a wide variety of statistical models, using
many different types of data, the vast majority of these are either regression
models or close relatives of them. In this chapter, we introduce the concept of
a regression model, discuss several varieties of them, and introduce the estima-
tion method that is most commonly used with regression models, namely, least
squares. This estimation method is derived by using the method of moments,
which is a very general principle of estimation that has many applications in
econometrics.

The most elementary type of regression model is the simple linear regression
model, which can be expressed by the following equation:

yt = β1 + β2Xt + ut. (1.01)

The subscript t is used to index the observations of a sample. The total num-
ber of observations, also called the sample size, will be denoted by n. Thus,
for a sample of size n, the subscript t runs from 1 to n. Each observation
comprises an observation on a dependent variable, written as yt for observa-
tion t, and an observation on a single explanatory variable, or independent
variable, written as Xt.

The relation (1.01) links the observations on the dependent and the explana-
tory variables for each observation in terms of two unknown parameters, β1

and β2, and an unobserved error term, ut. Thus, of the five quantities that
appear in (1.01), two, yt and Xt, are observed, and three, β1, β2, and ut, are
not. Three of them, yt, Xt, and ut, are specific to observation t, while the
other two, the parameters, are common to all n observations.

Here is a simple example of how a regression model like (1.01) could arise in
economics. Suppose that the index t is a time index, as the notation suggests.
Each value of t could represent a year, for instance. Then yt could be house-
hold consumption as measured in year t, and Xt could be measured disposable
income of households in the same year. In that case, (1.01) would represent
what in elementary macroeconomics is called a consumption function.
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4 Regression Models

If for the moment we ignore the presence of the error terms, β2 is the marginal
propensity to consume out of disposable income, and β1 is what is sometimes
called autonomous consumption. As is true of a great many econometric mod-
els, the parameters in this example can be seen to have a direct interpretation
in terms of economic theory. The variables, income and consumption, do in-
deed vary in value from year to year, as the term “variables” suggests. In
contrast, the parameters reflect aspects of the economy that do not vary, but
take on the same values each year.

The purpose of formulating the model (1.01) is to try to explain the observed
values of the dependent variable in terms of those of the explanatory variable.
According to (1.01), for each t, the value of yt is given by a linear function
of Xt, plus what we have called the error term, ut. The linear (strictly speak-
ing, affine1) function, which in this case is β1 + β2Xt, is called the regression
function. At this stage we should note that, as long as we say nothing about
the unobserved quantity ut, (1.01) does not tell us anything. In fact, we can
allow the parameters β1 and β2 to be quite arbitrary, since, for any given β1

and β2, (1.01) can always be made to be true by defining ut suitably.

If we wish to make sense of the regression model (1.01), then, we must make
some assumptions about the properties of the error term ut. Precisely what
those assumptions are will vary from case to case. In all cases, though, it is
assumed that ut is a random variable. Most commonly, it is assumed that,
whatever the value of Xt, the expectation of the random variable ut is zero.
This assumption usually serves to identify the unknown parameters β1 and
β2, in the sense that, under the assumption, (1.01) can be true only for specific
values of those parameters.

The presence of error terms in regression models means that the explanations
these models provide are at best partial. This would not be so if the error
terms could be directly observed as economic variables, for then ut could be
treated as a further explanatory variable. In that case, (1.01) would be a
relation linking yt to Xt and ut in a completely unambiguous fashion. Given
Xt and ut, yt would be completely explained without error.

Of course, error terms are not observed in the real world. They are included
in regression models because we are not able to specify all of the real-world
factors that determine yt. When we set up our models with ut as a ran-
dom variable, what we are really doing is using the mathematical concept of
randomness to model our ignorance of the details of economic mechanisms.
What we are doing when we suppose that the mean of an error term is zero is
supposing that the factors determining yt that we ignore are just as likely to
make yt bigger than it would have been if those factors were absent as they
are to make yt smaller. Thus we are assuming that, on average, the effects
of the neglected determinants tend to cancel out. This does not mean that

1 A function g(x) is said to be affine if it takes the form g(x) = a + bx for two
real numbers a and b.
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those effects are necessarily small. The proportion of the variation in yt that
is accounted for by the error term will depend on the nature of the data and
the extent of our ignorance. Even if this proportion is large, as it will be in
some cases, regression models like (1.01) can be useful if they allow us to see
how yt is related to the variables, like Xt, that we can actually observe.

Much of the literature in econometrics, and therefore much of this book, is
concerned with how to estimate, and test hypotheses about, the parameters
of regression models. In the case of (1.01), these parameters are the constant
term, or intercept, β1, and the slope coefficient, β2. Although we will begin
our discussion of estimation in this chapter, most of it will be postponed until
later chapters. In this chapter, we are primarily concerned with understanding
regression models as statistical models, rather than with estimating them or
testing hypotheses about them.

In the next section, we review some elementary concepts from probability
theory, including random variables and their expectations. Many readers will
already be familiar with these concepts. They will be useful in Section 1.3,
where we discuss the meaning of regression models and some of the forms
that such models can take. In Section 1.4, we review some topics from matrix
algebra and show how multiple regression models can be written using matrix
notation. Finally, in Section 1.5, we introduce the method of moments and
show how it leads to ordinary least squares as a way of estimating regression
models.

1.2 Distributions, Densities, and Moments

The variables that appear in an econometric model are treated as what statis-
ticians call random variables. In order to characterize a random variable, we
must first specify the set of all the possible values that the random variable
can take on. The simplest case is a scalar random variable, or scalar r.v. The
set of possible values for a scalar r.v. may be the real line or a subset of the
real line, such as the set of nonnegative real numbers. It may also be the set
of integers or a subset of the set of integers, such as the numbers 1, 2, and 3.

Since a random variable is a collection of possibilities, random variables cannot
be observed as such. What we do observe are realizations of random variables,
a realization being one value out of the set of possible values. For a scalar
random variable, each realization is therefore a single real value.

If X is any random variable, probabilities can be assigned to subsets of the
full set of possibilities of values for X, in some cases to each point in that
set. Such subsets are called events, and their probabilities are assigned by a
probability distribution, according to a few general rules.
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6 Regression Models

Discrete and Continuous Random Variables

The easiest sort of probability distribution to consider arises when X is a
discrete random variable, which can take on a finite, or perhaps a countably
infinite number of values, which we may denote as x1, x2, . . . . The probability
distribution simply assigns probabilities, that is, numbers between 0 and 1,
to each of these values, in such a way that the probabilities sum to 1:

∞∑

i=1

p(xi) = 1,

where p(xi) is the probability assigned to xi. Any assignment of nonnega-
tive probabilities that sum to one automatically respects all the general rules
alluded to above.

In the context of econometrics, the most commonly encountered discrete ran-
dom variables occur in the context of binary data, which can take on the
values 0 and 1, and in the context of count data, which can take on the values
0, 1, 2, . . . ; see Chapter 11.

Another possibility is that X may be a continuous random variable, which, for
the case of a scalar r.v., can take on any value in some continuous subset of the
real line, or possibly the whole real line. The dependent variable in a regression
model is normally a continuous r.v. For a continuous r.v., the probability
distribution can be represented by a cumulative distribution function, or CDF.
This function, which is often denoted F (x), is defined on the real line. Its
value is Pr(X ≤ x), the probability of the event that X is equal to or less
than some value x. In general, the notation Pr(A) signifies the probability
assigned to the event A, a subset of the full set of possibilities. Since X is
continuous, it does not really matter whether we define the CDF as Pr(X ≤ x)
or as Pr(X < x) here, but it is conventional to use the former definition.

Notice that, in the preceding paragraph, we used X to denote a random
variable and x to denote a realization of X, that is, a particular value that the
random variable X may take on. This distinction is important when discussing
the meaning of a probability distribution, but it will rarely be necessary in
most of this book.

Probability Distributions

We may now make explicit the general rules that must be obeyed by proba-
bility distributions in assigning probabilities to events. There are just three
of these rules:
(i) All probabilities lie between 0 and 1;
(ii) The null set is assigned probability 0, and the full set of possibilities is

assigned probability 1;
(iii) The probability assigned to an event that is the union of two disjoint

events is the sum of the probabilities assigned to those disjoint events.
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1.2 Distributions, Densities, and Moments 7

We will not often need to make explicit use of these rules, but we can use
them now in order to derive some properties of any well-defined CDF for a
scalar r.v. First, a CDF F (x) tends to 0 as x → −∞. This follows because
the event (X ≤ x) tends to the null set as x → −∞, and the null set has
probability 0. By similar reasoning, F (x) tends to 1 when x → +∞, because
then the event (X ≤ x) tends to the entire real line. Further, F (x) must be
a weakly increasing function of x. This is true because, if x1 < x2, we have

(X ≤ x2) = (X ≤ x1) ∪ (x1 < X ≤ x2), (1.02)

where ∪ is the symbol for set union. The two subsets on the right-hand side
of (1.02) are clearly disjoint, and so

Pr(X ≤ x2) = Pr(X ≤ x1) + Pr(x1 < X ≤ x2).

Since all probabilities are nonnegative, it follows that the probability that
(X ≤ x2) must be no smaller than the probability that (X ≤ x1).

For a continuous r.v., the CDF assigns probabilities to every interval on the
real line. However, if we try to assign a probability to a single point, the result
is always just zero. Suppose that X is a scalar r.v. with CDF F (x). For any
interval [a, b] of the real line, the fact that F (x) is weakly increasing allows
us to compute the probability that X ∈ [a, b ]. If a < b,

Pr(X ≤ b) = Pr(X ≤ a) + Pr(a < X ≤ b),

whence it follows directly from the definition of a CDF that

Pr(a ≤ X ≤ b) = F (b)− F (a), (1.03)

since, for a continuous r.v., we make no distinction between Pr(a < X ≤ b)
and Pr(a ≤ X ≤ b). If we set b = a, in the hope of obtaining the probability
that X = a, then we get F (a)− F (a) = 0.

Probability Density Functions

For continuous random variables, the concept of a probability density func-
tion, or PDF, is very closely related to that of a CDF. Whereas a distribution
function exists for any well-defined random variable, a PDF exists only when
the random variable is continuous, and when its CDF is differentiable. For a
scalar r.v., the density function, often denoted by f, is just the derivative of
the CDF:

f(x) ≡ F ′(x).

Because F (−∞) = 0 and F (∞) = 1, every PDF must be normalized to
integrate to unity. By the Fundamental Theorem of Calculus,

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
F ′(x) dx = F (∞)− F (−∞) = 1. (1.04)

It is obvious that a PDF is nonnegative, since it is the derivative of a weakly
increasing function.
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Figure 1.1 The CDF and PDF of the standard normal distribution

Probabilities can be computed in terms of the PDF as well as the CDF. Note
that, by (1.03) and the Fundamental Theorem of Calculus once more,

Pr(a ≤ X ≤ b) = F (b)− F (a) =
∫ b

a

f(x) dx. (1.05)

Since (1.05) must hold for arbitrary a and b, it is clear why f(x) must always be
nonnegative. However, it is important to remember that f(x) is not bounded
above by unity, because the value of a PDF at a point x is not a probability.
Only when a PDF is integrated over some interval, as in (1.05), does it yield
a probability.

The most common example of a continuous distribution is provided by the
normal distribution. This is the distribution that generates the famous or
infamous “bell curve” sometimes thought to influence students’ grade distri-
butions. The fundamental member of the normal family of distributions is the
standard normal distribution. It is a continuous scalar distribution, defined
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Figure 1.2 The CDF of a binary random variable

on the entire real line. The PDF of the standard normal distribution is often
denoted φ(·). Its explicit expression, which we will need later in the book, is

φ(x) = (2π)−1/2 exp
(− 1−

2
x2

)
. (1.06)

Unlike φ(·), the CDF, usually denoted Φ(·), has no elementary closed-form
expression. However, by (1.05) with a = −∞ and b = x, we have

Φ(x) =
∫ x

−∞
φ(y) dy.

The functions Φ(·) and φ(·) are graphed in Figure 1.1. Since the PDF is the
derivative of the CDF, it achieves a maximum at x = 0, where the CDF is
rising most steeply. As the CDF approaches both 0 and 1, and consequently,
becomes very flat, the PDF approaches 0.

Although it may not be obvious at once, discrete random variables can be
characterized by a CDF just as well as continuous ones can be. Consider a
binary r.v. X that can take on only two values, 0 and 1, and let the probability
that X = 0 be p. It follows that the probability that X = 1 is 1−p. Then the
CDF of X, according to the definition of F (x) as Pr(X ≤ x), is the following
discontinuous, “staircase” function:

F (x) =

{ 0 for x < 0
p for 0 ≤ x < 1
1 for x ≥ 1.

This CDF is graphed in Figure 1.2. Obviously, we cannot graph a corre-
sponding PDF, for it does not exist. For general discrete random variables,
the discontinuities of the CDF occur at the discrete permitted values of X, and
the jump at each discontinuity is equal to the probability of the corresponding
value. Since the sum of the jumps is therefore equal to 1, the limiting value
of F , to the right of all permitted values, is also 1.
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10 Regression Models

Using a CDF is a reasonable way to deal with random variables that are
neither completely discrete nor completely continuous. Such hybrid variables
can be produced by the phenomenon of censoring. A random variable is said
to be censored if not all of its potential values can actually be observed. For
instance, in some data sets, a household’s measured income is set equal to 0 if
it is actually negative. It might be negative if, for instance, the household lost
more on the stock market than it earned from other sources in a given year.
Even if the true income variable is continuously distributed over the positive
and negative real line, the observed, censored, variable will have an atom, or
bump, at 0, since the single value of 0 now has a nonzero probability attached
to it, namely, the probability that an individual’s income is nonpositive. As
with a purely discrete random variable, the CDF will have a discontinuity
at 0, with a jump equal to the probability of a negative or zero income.

Moments of Random Variables

A fundamental property of a random variable is its expectation. For a discrete
r.v. that can take on m possible finite values x1, x2, . . . , xm, the expectation
is simply

E(X) ≡
m∑

i=1

p(xi)xi. (1.07)

Thus each possible value xi is multiplied by the probability associated with
it. If m is infinite, the sum above has an infinite number of terms.

For a continuous r.v., the expectation is defined analogously using the PDF:

E(X) ≡
∫ ∞

−∞
xf(x) dx. (1.08)

Not every r.v. has an expectation, however. The integral of a density function
always exists and equals 1. But since X can range from −∞ to∞, the integral
(1.08) may well diverge at either limit of integration, or both, if the density
f does not tend to zero fast enough. Similarly, if m in (1.07) is infinite, the
sum may diverge. The expectation of a random variable is sometimes called
the mean or, to prevent confusion with the usual meaning of the word as the
mean of a sample, the population mean. A common notation for it is µ.

The expectation of a random variable is often referred to as its first moment.
The so-called higher moments, if they exist, are the expectations of the r.v.
raised to a power. Thus the second moment of a random variable X is the
expectation of X2, the third moment is the expectation of X3, and so on. In
general, the k th moment of a continuous random variable X is

mk(X) ≡
∫ ∞

−∞
xkf(x) dx.

Observe that the value of any moment depends only on the probability distri-
bution of the r.v. in question. For this reason, we often speak of the moments
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1.2 Distributions, Densities, and Moments 11

of the distribution rather than the moments of a specific random variable. If
a distribution possesses a k th moment, it also possesses all moments of order
less than k.

The higher moments just defined are called the uncentered moments of a
distribution, because, in general, X does not have mean zero. It is often more
useful to work with the central moments, which are defined as the ordinary
moments of the difference between the random variable and its expectation.
Thus the k th central moment of the distribution of a continuous r.v. X is

µk ≡ E
(
X − E(X)

)k =
∫ ∞

−∞
(x− µ)kf(x) dx,

where µ ≡ E(X). For a discrete X, the k th central moment is

µk ≡ E
(
X − E(X)

)k =
m∑

i=1

p(xi)(xi − µ)k.

By far the most important central moment is the second. It is called the
variance of the random variable and is frequently written as Var(X). Another
common notation for a variance is σ2. This notation underlines the important
fact that a variance cannot be negative. The square root of the variance, σ,
is called the standard deviation of the distribution. Estimates of standard
deviations are often referred to as standard errors, especially when the random
variable in question is an estimated parameter.

Multivariate Distributions

A vector-valued random variable takes on values that are vectors. It can
be thought of as several scalar random variables that have a single, joint
distribution. For simplicity, we will focus on the case of bivariate random
variables, where the vector is of length 2. A continuous, bivariate r.v. (X1, X2)
has a distribution function

F (x1, x2) = Pr
(
(X1 ≤ x1) ∩ (X2 ≤ x2)

)
,

where ∩ is the symbol for set intersection. Thus F (x1, x2) is the joint proba-
bility that both X1 ≤ x1 and X2 ≤ x2. For continuous variables, the PDF, if
it exists, is the joint density function2

f(x1, x2) =
∂2F (x1, x2)

∂x1∂x2
. (1.09)

2 Here we are using what computer scientists would call “overloaded function”
notation. This means that F (·) and f(·) denote respectively the CDF and the
PDF of whatever their argument(s) happen to be. This practice is harmless
provided there is no ambiguity.
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This function has exactly the same properties as an ordinary PDF. In partic-
ular, as in (1.04), ∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1dx2 = 1.

More generally, the probability that X1 and X2 jointly lie in any region is the
integral of f(x1, x2) over that region. A case of particular interest is

F (x1, x2) = Pr
(
(X1 ≤ x1) ∩ (X2 ≤ x2)

)

=
∫ x1

−∞

∫ x2

−∞
f(y1, y2) dy1dy2,

(1.10)

which shows how to compute the CDF given the PDF.

The concept of joint probability distributions leads naturally to the impor-
tant notion of statistical independence. Let (X1, X2) be a bivariate random
variable. Then X1 and X2 are said to be statistically independent, or often
just independent, if the joint CDF of (X1, X2) is the product of the CDFs of
X1 and X2. In straightforward notation, this means that

F (x1, x2) = F (x1,∞)F (∞, x2). (1.11)

The first factor here is the joint probability that X1 ≤ x1 and X2 ≤ ∞. Since
the second inequality imposes no constraint, this factor is just the probability
that X1 ≤ x1. The function F (x1,∞), which is called the marginal CDF of
X1, is thus just the CDF of X1 considered by itself. Similarly, the second
factor on the right-hand side of (1.11) is the marginal CDF of X2.

It is also possible to express statistical independence in terms of the marginal
density of X1 and the marginal density of X2. The marginal density of X1 is,
as one would expect, the derivative of the marginal CDF of X1,

f(x1) ≡ F1(x1,∞),

where F1(·) denotes the partial derivative of F (·) with respect to its first
argument. It can be shown from (1.10) that the marginal density can also be
expressed in terms of the joint density, as follows:

f(x1) =
∫ ∞

−∞
f(x1, x2) dx2. (1.12)

Thus f(x1) is obtained by integrating X2 out of the joint density. Similarly,
the marginal density of X2 is obtained by integrating X1 out of the joint
density. From (1.09), it can be shown that, if X1 and X2 are independent, so
that (1.11) holds, then

f(x1, x2) = f(x1)f(x2). (1.13)

Thus, when densities exist, statistical independence means that the joint den-
sity factorizes as the product of the marginal densities, just as the joint CDF
factorizes as the product of the marginal CDFs.
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Figure 1.3 Conditional probability

Conditional Probabilities

Suppose that A and B are any two events. Then the probability of event A
conditional on B, or given B, is denoted as Pr(A |B) and is defined implicitly
by the equation

Pr(A ∩B) = Pr(B) Pr(A |B). (1.14)

For this equation to make sense as a definition of Pr(A |B), it is necessary that
Pr(B) 6= 0. The idea underlying the definition is that, if we know somehow
that the event B has been realized, this knowledge can provide information
about whether event A has also been realized. For instance, if A and B are
disjoint, and B is realized, then it is certain that A has not been. As we
would wish, this does indeed follow from the definition (1.14), since A ∩B is
the null set, of zero probability, if A and B are disjoint. Similarly, if B is a
subset of A, knowing that B has been realized means that A must have been
realized as well. Since in this case Pr(A ∩ B) = Pr(B), (1.14) tells us that
Pr(A |B) = 1, as required.

To gain a better understanding of (1.14), consider Figure 1.3. The bounding
rectangle represents the full set of possibilities, and events A and B are sub-
sets of the rectangle that overlap as shown. Suppose that the figure has been
drawn in such a way that probabilities of subsets are proportional to their
areas. Thus the probabilities of A and B are the ratios of the areas of the cor-
responding circles to the area of the bounding rectangle, and the probability
of the intersection A ∩B is the ratio of its area to that of the rectangle.

Suppose now that it is known that B has been realized. This fact leads us
to redefine the probabilities so that everything outside B now has zero prob-
ability, while, inside B, probabilities remain proportional to areas. Event B
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Figure 1.4 The CDF and PDF of the uniform distribution on [0, 1]

will now have probability 1, in order to keep the total probability equal to 1.
Event A can be realized only if the realized point is in the intersection A∩B,
since the set of all points of A outside this intersection have zero probability.
The probability of A, conditional on knowing that B has been realized, is thus
the ratio of the area of A ∩ B to that of B. This construction leads directly
to (1.14).

There are many ways to associate a random variable X with the rectangle
shown in Figure 1.3. Such a random variable could be any function of the
two coordinates that define a point in the rectangle. For example, it could be
the horizontal coordinate of the point measured from the origin at the lower
left-hand corner of the rectangle, or its vertical coordinate, or the Euclidean
distance of the point from the origin. The realization of X is the value of the
function it corresponds to at the realized point in the rectangle.

For concreteness, let us assume that the function is simply the horizontal
coordinate, and let the width of the rectangle be equal to 1. Then, since
all values of the horizontal coordinate between 0 and 1 are equally probable,
the random variable X has what is called the uniform distribution on the
interval [0, 1]. The CDF of this distribution is

F (x) =

{ 0 for x < 0
x for 0 ≤ x ≤ 1
1 for x > 1.

Because F (x) is not differentiable at x = 0 and x = 1, the PDF of the
uniform distribution does not exist at those points. Elsewhere, the derivative
of F (x) is 0 outside [0, 1] and 1 inside. The CDF and PDF are illustrated in
Figure 1.4. This special case of the uniform distribution is often denoted the
U(0, 1) distribution.

If the information were available that B had been realized, then the distri-
bution of X conditional on this information would be very different from the
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Figure 1.5 The CDF and PDF conditional on event B

U(0, 1) distribution. Now only values between the extreme horizontal limits
of the circle of B are allowed. If one computes the area of the part of the
circle to the left of a given vertical line, then for each event a ≡ (X ≤ x) the
probability of this event conditional on B can be worked out. The result is
just the CDF of X conditional on the event B. Its derivative is the PDF of
X conditional on B. These are shown in Figure 1.5.

The concept of conditional probability can be extended beyond probability
conditional on an event to probability conditional on a random variable. Sup-
pose that X1 is a r.v. and X2 is a discrete r.v. with permitted values z1, . . . , zm.
For each i = 1, . . . , m, the CDF of X1, and, if X1 is continuous, its PDF, can
be computed conditional on the event (X2 = zi). If X2 is also a continuous
r.v., then things are a little more complicated, because events like (X2 = x2)
for some real x2 have zero probability, and so cannot be conditioned on in the
manner of (1.14).

On the other hand, it makes perfect intuitive sense to think of the distribution
of X1 conditional on some specific realized value of X2. This conditional
distribution gives us the probabilities of events concerning X1 when we know
that the realization of X2 was actually x2. We therefore make use of the
conditional density of X1 for a given value x2 of X2. This conditional density,
or conditional PDF, is defined as

f(x1 |x2) =
f(x1, x2)

f(x2)
. (1.15)

Thus, for a given value x2 of X2, the conditional density is proportional to the
joint density of X1 and X2. Of course, (1.15) is well defined only if f(x2) > 0.
In some cases, more sophisticated definitions can be found that would allow
f(x1 |x2) to be defined for all x2 even if f(x2) = 0, but we will not need these
in this book. See, among others, Billingsley (1979).
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Conditional Expectations

Whenever we can describe the distribution of a random variable, X1, condi-
tional on another, X2, either by a conditional CDF or a conditional PDF,
we can consider the conditional expectation or conditional mean of X1. If it
exists, this conditional expectation is just the ordinary expectation computed
using the conditional distribution. If x2 is a possible value for X2, then this
conditional expectation is written as E(X1 |x2).

For a given value x2, the conditional expectation E(X1 |x2) is, like any other
ordinary expectation, a deterministic, that is, nonrandom, quantity. But we
can consider the expectation of X1 conditional on every possible realization
of X2. In this way, we can construct a new random variable, which we denote
by E(X1 |X2), the realization of which is E(X1 |x2) when the realization of
X2 is x2. We can call E(X1 |X2) a deterministic function of the random vari-
able X2, because the realization of E(X1 |X2) is unambiguously determined
by the realization of X2.

Conditional expectations defined as random variables in this way have a num-
ber of interesting and useful properties. The first, called the Law of Iterated
Expectations, can be expressed as follows:

E
(
E(X1 |X2)

)
= E(X1). (1.16)

If a conditional expectation of X1 can be treated as a random variable,
then the conditional expectation itself may have an expectation. According
to (1.16), this expectation is just the ordinary expectation of X1.

Another property of conditional expectations is that any deterministic func-
tion of a conditioning variable X2 is its own conditional expectation. Thus,
for example, E(X2 |X2) = X2, and E(X2

2 |X2) = X2
2 . Similarly, conditional

on X2, the expectation of a product of another random variable X1 and a
deterministic function of X2 is the product of that deterministic function and
the expectation of X1 conditional on X2:

E
(
X1h(X2) |X2

)
= h(X2) E(X1 |X2), (1.17)

for any deterministic function h(·). An important special case of this, which
we will make use of in Section 1.5, arises when E(X1 |X2) = 0. In that case,
for any function h(·), E(X1h(X2)) = 0, because

E
(
X1h(X2)

)
= E

(
E(X1h(X2) |X2)

)

= E
(
h(X2)E(X1 |X2)

)

= E(0) = 0.

The first equality here follows from the Law of Iterated Expectations, (1.16).
The second follows from (1.17). Since E(X1 |X2) = 0, the third line then fol-
lows immediately. We will present other properties of conditional expectations
as the need arises.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



1.3 The Specification of Regression Models 17

1.3 The Specification of Regression Models

We now return our attention to the regression model (1.01) and revert to the
notation of Section 1.1 in which yt and Xt respectively denote the dependent
and independent variables. The model (1.01) can be interpreted as a model
for the mean of yt conditional on Xt. Let us assume that the error term ut

has mean 0 conditional on Xt. Then, taking conditional expectations of both
sides of (1.01), we see that

E(yt |Xt) = β1 + β2Xt + E(ut |Xt) = β1 + β2Xt.

Without the key assumption that E(ut |Xt) = 0, the second equality here
would not hold. As we pointed out in Section 1.1, it is impossible to make
any sense of a regression model unless we make strong assumptions about
the error terms. Of course, we could define ut as the difference between
yt and E(yt |Xt), which would give E(ut |Xt) = 0 by definition. But if we
require that E(ut |Xt) = 0 and also specify (1.01), we must necessarily have
E(yt |Xt) = β1 + β2Xt.

As an example, suppose that we estimate the model (1.01) when in fact

yt = β1 + β2Xt + β3X
2
t + vt (1.18)

with β3 6= 0 and an error term vt such that E(vt |Xt) = 0. If the data were
generated by (1.18), the error term ut in (1.01) would be equal to β3X

2
t + vt.

By the results on conditional expectations in the last section, we see that

E(ut |Xt) = E
(
β3X

2
t + vt |Xt

)
= β3X

2
t ,

which we have assumed to be nonzero. This example shows the force of the
assumption that the error term has mean zero conditional on Xt. Unless the
mean of yt conditional on Xt really is a linear function of Xt, the regression
function in (1.01) is not correctly specified, in the precise sense that (1.01)
cannot hold with an error term that has mean zero conditional on Xt. It will
become clear in later chapters that estimating incorrectly specified models
usually leads to results that are meaningless or, at best, seriously misleading.

Information Sets

In a more general setting, what we are interested in is usually not the mean
of yt conditional on a single explanatory variable Xt but the mean of yt con-
ditional on a set of potential explanatory variables. This set is often called
an information set, and it is denoted Ωt. Typically, the information set will
contain more variables than would actually be used in a regression model. For
example, it might consist of all the variables observed by the economic agents
whose actions determine yt at the time they make the decisions that cause
them to perform those actions. Such an information set could be very large.
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18 Regression Models

As a consequence, much of the art of constructing, or specifying, a regression
model is deciding which of the variables that belong to Ωt should be included
in the model and which of the variables should be excluded.

In some cases, economic theory makes it fairly clear what the information set
Ωt should consist of, and sometimes also which variables in Ωt should make
their way into a regression model. In many others, however, it may not be
at all clear how to specify Ωt. In general, we want to condition on exogenous
variables but not on endogenous ones. These terms refer to the origin or
genesis of the variables: An exogenous variable has its origins outside the
model under consideration, while the mechanism generating an endogenous
variable is inside the model. When we write a single equation like (1.01), the
only endogenous variable allowed is the dependent variable, yt.

Recall the example of the consumption function that we looked at in Sec-
tion 1.1. That model seeks to explain household consumption in terms of
disposable income, but it makes no claim to explain disposable income, which
is simply taken as given. The consumption function model can be correctly
specified only if two conditions hold:

(i) The mean of consumption conditional on disposable income is a linear
function of the latter.

(ii) Consumption is not a variable that contributes to the determination of
disposable income.

The second condition means that the origin of disposable income, that is, the
mechanism by which disposable income is generated, lies outside the model for
consumption. In other words, disposable income is exogenous in that model.
If the simple consumption model we have presented is correctly specified, the
two conditions above must be satisfied. Needless to say, we do not claim that
this model is in fact correctly specified.

It is not always easy to decide just what information set to condition on. As
the above example shows, it is often not clear whether or not a variable is
exogenous. This sort of question will be discussed in Chapter 8. Moreover,
even if a variable clearly is exogenous, we may not want to include it in Ωt.
For example, if the ultimate purpose of estimating a regression model is to
use it for forecasting, there may be no point in conditioning on information
that will not be available at the time the forecast is to be made.

Error Terms

Whenever we specify a regression model, it is essential to make assumptions
about the properties of the error terms. The simplest assumption is that all
of the error terms have mean 0, come from the same distribution, and are
independent of each other. Although this is a rather strong assumption, it is
very commonly made in practice.

Mutual independence of the error terms, when coupled with the assumption
that E(ut) = 0, implies that the mean of ut is 0 conditional on all of the other
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error terms us, s 6= t. However, the implication does not work in the other di-
rection, because the assumption of mutual independence is stronger than the
assumption about the conditional means. A very strong assumption which
is often made is that the error terms are independently and identically dis-
tributed, or IID. According to this assumption, the error terms are mutually
independent, and they are in addition realizations from the same, identical,
probability distribution.

When the successive observations are ordered by time, it often seems plausible
that an error term will be correlated with neighboring error terms. Thus ut

might well be correlated with us when the value of |t− s| is small. This could
occur, for example, if there is correlation across time periods of random factors
that influence the dependent variable but are not explicitly accounted for in
the regression function. This phenomenon is called serial correlation, and it
often appears to be observed in practice. When there is serial correlation, the
error terms cannot be IID because they are not independent.

Another possibility is that the variance of the error terms may be systemat-
ically larger for some observations than for others. This will happen if the
conditional variance of yt depends on some of the same variables as the condi-
tional mean. This phenomenon is called heteroskedasticity, and it too is often
observed in practice. For example, in the case of the consumption function, the
variance of consumption may well be higher for households with high incomes
than for households with low incomes. When there is heteroskedasticity, the
error terms cannot be IID, because they are not identically distributed. It is
perfectly possible to take explicit account of both serial correlation and het-
eroskedasticity, but doing so would take us outside the context of regression
models like (1.01).

It may sometimes be desirable to write a regression model like the one we
have been studying as

E(yt |Ωt) = β1 + β2Xt, (1.19)

in order to stress the fact that this is a model for the mean of yt conditional
on a certain information set. However, by itself, (1.19) is just as incomplete
a specification as (1.01). In order to see this point, we must now state what
we mean by a complete specification of a regression model. Probably the
best way to do this is to say that a complete specification of any econometric
model is one that provides an unambiguous recipe for simulating the model
on a computer. After all, if we can use the model to generate simulated data,
it must be completely specified.

Simulating Econometric Models

Consider equation (1.01). When we say that we simulate this model, we
mean that we generate numbers for the dependent variable, yt, according
to equation (1.01). Obviously, one of the first things we must fix for the
simulation is the sample size, n. That done, we can generate each of the yt,
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t = 1, . . . , n, by evaluating the right-hand side of the equation n times. For
this to be possible, we need to know the value of each variable or parameter
that appears on the right-hand side.

If we suppose that the explanatory variable Xt is exogenous, then we simply
take it as given. So if, in the context of the consumption function example,
we had data on the disposable income of households in some country every
year for a period of n years, we could just use those data. Our simulation
would then be specific to the country in question and to the time period of
the data. Alternatively, it could be that we or some other econometricians
had previously specified another model, for the explanatory variable this time,
and we could then use simulated data provided by that model.

Besides the explanatory variable, the other elements of the right-hand side of
(1.01) are the parameters, β1 and β2, and the error term ut. The key feature
of the parameters is that we do not know their true values. We will have
more to say about this point in Chapter 3, when we define the twin concepts
of models and data-generating processes. However, for purposes of simulation,
we could use either values suggested by economic theory or values obtained
by estimating the model. Evidently, the simulation results will depend on
precisely what values we use.

Unlike the parameters, the error terms cannot be taken as given; instead, we
wish to treat them as random. Luckily, it is easy to use a computer to generate
“random” numbers by using a program called a random number generator; we
will discuss these programs in Chapter 4. The “random” numbers generated
by computers are not random according to some meanings of the word. For
instance, a computer can be made to spit out exactly the same sequence of
supposedly random numbers more than once. In addition, a digital computer
is a perfectly deterministic device. Therefore, if random means the opposite
of deterministic, only computers that are not functioning properly would be
capable of generating truly random numbers. Because of this, some people
prefer to speak of computer-generated random numbers as pseudo-random.
However, for the purposes of simulations, the numbers computers provide have
all the properties of random numbers that we need, and so we will call them
simply random rather than pseudo-random.

Computer-generated random numbers are mutually independent drawings,
or realizations, from specific probability distributions, usually the uniform
U(0, 1) distribution or the standard normal distribution, both of which were
defined in Section 1.2. Of course, techniques exist for generating drawings
from many other distributions as well, as do techniques for generating draw-
ings that are not independent. For the moment, the essential point is that we
must always specify the probability distribution of the random numbers we
use in a simulation. It is important to note that specifying the expectation of
a distribution, or even the expectation conditional on some other variables, is
not enough to specify the distribution in full.
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Let us now summarize the various steps in performing a simulation by giving
a sort of generic recipe for simulations of regression models. In the model
specification, it is convenient to distinguish between the deterministic spec-
ification and the stochastic specification. In model (1.01), the deterministic
specification consists of the regression function, of which the ingredients are
the explanatory variable and the parameters. The stochastic specification
(“stochastic” is another word for “random”) consists of the probability distri-
bution of the error terms, and the requirement that the error terms should be
IID drawings from this distribution. Then, in order to simulate the dependent
variable yt in (1.01), we do as follows:
• Fix the sample size, n;
• Choose the parameters (here β1 and β2) of the deterministic specification;
• Obtain the n successive values Xt, t = 1, . . . , n, of the explanatory vari-

able. As explained above, these values may be real-world data or the
output of another simulation;

• Evaluate the n successive values of the regression function β1 +β2Xt, for
t = 1, . . . , n;

• Choose the probability distribution of the error terms, if necessary spec-
ifying parameters such as its mean and variance;

• Use a random-number generator to generate the n successive and mutu-
ally independent values ut of the error terms;

• Form the n successive values yt of the dependent variable by adding the
error terms to the values of the regression function.

The n values yt, t = 1, . . . , n, thus generated are the output of the simulation;
they are the simulated values of the dependent variable.

The chief interest of such a simulation is that, if the model we simulate is
correctly specified and thus reflects the real-world generating process for the
dependent variable, our simulation mimics the real world accurately, because
it makes use of the same data-generating mechanism as that in operation in
the real world.

A complete specification, then, is anything that leads unambiguously to a
recipe like the one given above. We will define a fully specified parametric
model as a model for which it is possible to simulate the dependent variable
once the values of the parameters are known. A partially specified parametric
model is one for which more information, over and above the parameter values,
must be supplied before simulation is possible. Both sorts of models are
frequently encountered in econometrics.

To conclude this discussion of simulations, let us return to the specifications
(1.01) and (1.19). Both are obviously incomplete as they stand. In order
to complete either one, it is necessary to specify the information set Ωt and
the distribution of ut conditional on Ωt. In particular, it is necessary to
know whether the error terms us with s 6= t belong to Ωt. In (1.19), one
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aspect of the conditional distribution is given, namely, the conditional mean.
Unfortunately, because (1.19) contains no explicit error term, it is easy to
forget that it is there. Perhaps as a result, it is more common to write
regression models in the form of (1.01) than in the form of (1.19). However,
writing a model in the form of (1.01) does have the disadvantage that it
obscures both the dependence of the model on the choice of an information
set and the fact that the distribution of the error term must be specified
conditional on that information set.

Linear and Nonlinear Regression Models

The simple linear regression model (1.01) is by no means the only reasonable
model for the mean of yt conditional on Xt. Consider, for example, the models

yt = β1 + β2Xt + β3X
2
t + ut (1.20)

yt = γ1 + γ2 log Xt + ut, and (1.21)

yt = δ1 + δ2
1
Xt

+ ut. (1.22)

These are all models that might be plausible in some circumstances.3 In
equation (1.20), there is an extra parameter, β3, which allows E(yt |Xt) to
vary quadratically with Xt whenever β3 is nonzero. In effect, Xt and X2

t

are being treated as separate explanatory variables. Thus (1.20) is the first
example we have seen of a multiple linear regression model. It reduces to the
simple linear regression model (1.01) when β3 = 0.

In the models (1.21) and (1.22), on the other hand, there are no extra para-
meters. Instead, a nonlinear transformation of Xt is used in place of Xt itself.
As a consequence, the relationship between Xt and E(yt |Xt) in these two
models is necessarily nonlinear. Nevertheless, (1.20), (1.21), and (1.22) are all
said to be linear regression models, because, even though the mean of yt may
depend nonlinearly on Xt, it always depends linearly on the unknown para-
meters of the regression function. As we will see in Section 1.5, it is quite easy
to estimate a linear regression model. In contrast, genuinely nonlinear mod-
els, in which the regression function depends nonlinearly on the parameters,
are somewhat harder to estimate; see Chapter 6.

Because it is very easy to estimate linear regression models, a great deal
of applied work in econometrics makes use of them. It may seem that the
linearity assumption is very restrictive. However, as the examples (1.20),
(1.21), and (1.22) illustrate, this assumption need not be unduly restrictive
in practice, at least not if the econometrician is at all creative. If we are
willing to transform the dependent variable as well as the independent ones,

3 In this book, all logarithms are natural logarithms. Thus a = log x implies
that x = ea. Some authors use “ln” to denote natural logarithms and “log” to
denote base 10 logarithms. Since econometricians should never have any use
for base 10 logarithms, we avoid this aesthetically displeasing notation.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



1.3 The Specification of Regression Models 23

the linearity assumption can be made even less restrictive. As an example,
consider the nonlinear regression model

yt = eβ1Xβ2
t2 Xβ3

t3 + ut, (1.23)

in which there are two explanatory variables, Xt2 and Xt3, and the regression
function is multiplicative. If the notation seems odd, suppose that there is
implicitly a third explanatory variable, Xt1, which is constant and always
equal to e. Notice that the regression function in (1.23) can be evaluated only
when Xt2 and Xt3 are positive for all t. It is a genuinely nonlinear regression
function, since it is clearly linear neither in parameters nor in variables. For
reasons that will shortly become apparent, a nonlinear model like (1.23) is
very rarely estimated in practice.

A model like (1.23) is not as outlandish as may appear at first glance. It
could arise, for instance, if we wanted to estimate a Cobb-Douglas production
function. In that case, yt would be output for observation t, and Xt2 and Xt3

would be inputs, say labor and capital. Since eβ1 is just a positive constant,
it plays the role of the scale factor that is present in every Cobb-Douglas
production function.

As (1.23) is written, everything enters multiplicatively except the error term.
But it is easy to modify (1.23) so that the error term also enters multiplica-
tively. One way to do this is to write

yt = eβ1Xβ2
t2 Xβ3

t3 + ut ≡
(
eβ1Xβ2

t2 Xβ3
t3

)
(1 + vt), (1.24)

where the error factor 1 + vt multiplies the regression function. If we now
assume that the underlying errors vt are IID, it follows that the additive
errors ut are proportional to the regression function. This may well be a more
plausible specification than that in which the ut are supposed to be IID, as
was implicitly assumed in (1.23). To see this, notice first that the additive
error ut has the same units of measurement as yt. If (1.23) is interpreted as
a production function, then ut is measured in units of output. However, the
multiplicative error vt is dimensionless. In other words, it is a pure number,
like 0.02, which could be expressed as 2 percent. If the ut are assumed to be
IID, then we are assuming that the error in output is of the same order of
magnitude regardless of the scale of production. If, on the other hand, the vt

are assumed to be IID, then the error is proportional to total output. This
second assumption is almost always more reasonable than the first.

If the model (1.24) is a good one, the vt should be quite small, usually less than
about 0.05. For small values of the argument w, a standard approximation to
the exponential function gives us that ew ∼= 1 + w. As a consequence, (1.24)
will be very similar to the model

yt = eβ1Xβ2
t2 Xβ3

t3 evt , (1.25)

whenever the error terms are reasonably small.
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Now suppose we take logarithms of both sides of (1.25). The result is

log yt = β1 + β2 log Xt2 + β3 log Xt3 + vt, (1.26)

which is a loglinear regression model. This model is linear in the parameters
and in the logarithms of all the variables, and so it is very much easier to esti-
mate than the nonlinear model (1.23). Since (1.25) is at least as plausible as
(1.23), it is not surprising that loglinear regression models, like (1.26), are es-
timated very frequently in practice, while multiplicative models with additive
error terms, like (1.23), are very rarely estimated. Of course, it is important
to remember that (1.26) is not a model for the mean of yt conditional on Xt2

and Xt3. Instead, it is a model for the mean of log yt conditional on those
variables. If it is really the conditional mean of yt that we are interested in,
we will not want to estimate a loglinear model like (1.26).

1.4 Matrix Algebra

It is impossible to study econometrics beyond the most elementary level with-
out using matrix algebra. Most readers are probably already quite familiar
with matrix algebra. This section reviews some basic results that will be used
throughout the book. It also shows how regression models can be written very
compactly using matrix notation. More advanced material will be discussed
in later chapters, as it is needed.

An n × m matrix A is a rectangular array that consists of nm elements
arranged in n rows and m columns. The name of the matrix is conventionally
shown in boldface. A typical element of A might be denoted by either Aij or
aij , where i = 1, . . . , n and j = 1, . . . , m. The first subscript always indicates
the row, and the second always indicates the column. It is sometimes necessary
to show the elements of a matrix explicitly, in which case they are arrayed in
rows and columns and surrounded by large brackets, as in

B =
[

2 3 6
4 5 8

]
.

Here B is a 2× 3 matrix.

If a matrix has only one column or only one row, it is called a vector. There are
two types of vectors, column vectors and row vectors. Since column vectors
are more common than row vectors, a vector that is not specified to be a
row vector is normally treated as a column vector. If a column vector has
n elements, it may be referred to as an n--vector. Boldface is used to denote
vectors as well as matrices. It is conventional to use uppercase letters for
matrices and lowercase letters for column vectors. However, it is sometimes
necessary to ignore this convention.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



1.4 Matrix Algebra 25

If a matrix has the same number of columns and rows, it is said to be square.
A square matrix A is symmetric if Aij = Aji for all i and j. Symmetric
matrices occur very frequently in econometrics. A square matrix is said to
be diagonal if Aij = 0 for all i 6= j; in this case, the only nonzero entries are
those on what is called the principal diagonal. Sometimes a square matrix
has all zeros above or below the principal diagonal. Such a matrix is said to
be triangular. If the nonzero elements are all above the diagonal, it is said to
be upper-triangular; if the nonzero elements are all below the diagonal, it is
said to be lower-triangular. Here are some examples:

A =




1 2 4
2 3 6
4 6 5


 B =




1 0 0
0 4 0
0 0 2


 C =




1 0 0
3 2 0
5 2 6


.

In this case, A is symmetric, B is diagonal, and C is lower-triangular.

The transpose of a matrix is obtained by interchanging its row and column
subscripts. Thus the ij th element of A becomes the jith element of its trans-
pose, which is denoted A>. Note that many authors use A′ rather than A> to
denote the transpose of A. The transpose of a symmetric matrix is equal to
the matrix itself. The transpose of a column vector is a row vector, and vice
versa. Here are some examples:

A =
[

2 5 7
3 8 4

]
A>=




2 3
5 8
7 4


 b =




2
4
6


 b>= [ 2 4 6 ] .

Note that a matrix A is symmetric if and only if A = A>.

Arithmetic Operations on Matrices

Addition and subtraction of matrices works exactly the way it does for scalars,
with the proviso that matrices can be added or subtracted only if they are
conformable. In the case of addition and subtraction, this just means that
they must have the same dimensions, that is, the same number of rows and
the same number of columns. If A and B are conformable, then a typical
element of A + B is simply Aij + Bij , and a typical element of A − B is
Aij −Bij .

Matrix multiplication actually involves both additions and multiplications. It
is based on what is called the inner product, or scalar product, of two vectors.
Suppose that a and b are n--vectors. Then their inner product is

a>b = b>a =
n∑

i=1

aibi.

As the name suggests, this is just a scalar.
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When two matrices are multiplied together, the ij th element of the result is
equal to the inner product of the ith row of the first matrix with the j th

column of the second matrix. Thus, if C = AB,

Cij =
m∑

k=1

AikBkj . (1.27)

For (1.27) to make sense, we must assume that A has m columns and that
B has m rows. In general, if two matrices are to be conformable for multipli-
cation, the first matrix must have as many columns as the second has rows.
Further, as is clear from (1.27), the result has as many rows as the first matrix
and as many columns as the second. One way to make this explicit is to write
something like

A
n×m

B
m×l

= C
n×l

.

One rarely sees this type of notation in a book or journal article. However, it
is often useful to employ it when doing calculations, in order to verify that the
matrices being multiplied are indeed conformable and to derive the dimensions
of their product.

The rules for multiplying matrices and vectors together are the same as the
rules for multiplying matrices with each other; vectors are simply treated as
matrices that have only one column or only one row. For instance, if we
multiply an n--vector a by the transpose of an n--vector b, we obtain what is
called the outer product of the two vectors. The result, written as ab>, is an
n× n matrix with typical element aibj .

Matrix multiplication is, in general, not commutative. The fact that it is pos-
sible to premultiply B by A does not imply that it is possible to postmultiply
B by A. In fact, it is easy to see that both operations are possible if and only
if one of the matrix products is square, in which case the other matrix product
will be square also, although generally with different dimensions. Even when
both operations are possible, AB 6= BA except in special cases.

A special matrix that econometricians frequently make use of is I, which
denotes the identity matrix. It is a diagonal matrix with every diagonal
element equal to 1. A subscript is sometimes used to indicate the number of
rows and columns. Thus

I3 =




1 0 0
0 1 0
0 0 1


.

The identity matrix is so called because when it is either premultiplied or
postmultiplied by any matrix, it leaves the latter unchanged. Thus, for any
matrix A, AI = IA = A, provided, of course, that the matrices are con-
formable for multiplication. It is easy to see why the identity matrix has this
property. Recall that the only nonzero elements of I are equal to 1 and are
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on the principal diagonal. This fact can be expressed simply with the help of
the symbol known as the Kronecker delta, written as δij . The definition is

δij =
{

1 if i = j,
0 if i 6= j. (1.28)

The ij th element of I is just δij . By (1.27), the ij th element of AI is

m∑

k=1

AikIkj =
m∑

k=1

Aikδkj = Aij ,

since all the terms in the sum over k vanish except that for which k = j.

A special vector that we frequently use in this book is ι. It denotes a col-
umn vector every element of which is 1. This special vector comes in handy
whenever one wishes to sum the elements of another vector, because, for any
n--vector b,

ι>b =
n∑

i=1

bi. (1.29)

Matrix multiplication and matrix addition interact in an intuitive way. It
is easy to check from the definitions of the respective operations that the
distributive properties hold. That is, assuming that the dimensions of the
matrices are conformable for the various operations,

A(B + C) = AB + AC, and

(B + C)A = BA + CA.

In addition, both operations are associative, which means that

(A + B) + C = A + (B + C), and

(AB)C = A(BC).

The transpose of the product of two matrices is the product of the transposes
of the matrices with the order reversed. Thus

(AB)>= B>A>. (1.30)

The reversal of the order is necessary for the transposed matrices to be con-
formable for multiplication. The result (1.30) can be proved immediately by
writing out the typical entries of both sides and checking that

(AB)ij
> = (AB)ji =

m∑

k=1

AjkBki =
m∑

k=1

(B>)ik(A>)kj = (B>A>)ij ,

where m is the number of columns of A and the number of rows of B. It is
always possible to multiply a matrix by its own transpose: If A is n×m, then
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A> is m×n, A>A is m×m, and AA> is n×n. It follows directly from (1.30)
that both of these matrix products are symmetric:

A>A = (A>A)> and AA>= (AA>)>.

It is frequently necessary to multiply a matrix, say B, by a scalar, say α.
Multiplication by a scalar works exactly the way one would expect: Every
element of B is multiplied by α. Since multiplication by a scalar is commuta-
tive, we can write this either as αB or as Bα, but αB is the more common
notation.

Occasionally, it is necessary to multiply two matrices together element by
element. The result is called the direct product of the two matrices. The
direct product of A and B is denoted A∗B, and a typical element of it is
equal to AijBij .

A square matrix may or may not be invertible. If A is invertible, then it has
an inverse matrix A−1 with the property that

AA−1 = A−1A = I.

If A is symmetric, then so is A−1. If A is triangular, then so is A−1. Except
in certain special cases, it is not easy to calculate the inverse of a matrix by
hand. One such special case is that of a diagonal matrix, say D, with typical
diagonal element Dii. It is easy to verify that D−1 is also a diagonal matrix,
with typical diagonal element D−1

ii .

If an n× n square matrix A is invertible, then its rank is n. Such a matrix is
said to have full rank. If a square matrix does not have full rank, and therefore
is not invertible, it is said to be singular. If a square matrix is singular, its
rank must be less than its dimension. If, by omitting j rows and j columns
of A, we can obtain a matrix A′ that is invertible, and if j is the smallest
number for which this is true, the rank of A is n − j. More generally, for
matrices that are not necessarily square, the rank is the largest number m
for which an m×m nonsingular matrix can be constructed by omitting some
rows and some columns from the original matrix. The rank of a matrix is
closely related to the geometry of vector spaces, which will be discussed in
the next chapter.

Regression Models and Matrix Notation

The simple linear regression model (1.01) can easily be written in matrix
notation. If we stack the model for all the observations, we obtain

y1 = β1 + β2X1 + u1

y2 = β1 + β2X2 + u2

...
...

...
...

yn = β1 + β2Xn + un .

(1.31)
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Let y denote an n--vector with typical element yt, u an n--vector with typical
element ut, X an n× 2 matrix that consists of a column of 1s and a column
with typical element Xt, and β a 2--vector with typical element βi, i = 1, 2.
Thus we have

y =




y1

y2
...

yn


, u =




u1

u2
...

un


, X =




1 X1

1 X2
...

...
1 Xn


, and β =

[
β1

β2

]
.

Equations (1.31) can now be rewritten as

y = Xβ + u. (1.32)

It is easy to verify from the rules of matrix multiplication that a typical row
of (1.32) is a typical row of (1.31). When we postmultiply the matrix X by
the vector β, we obtain a vector Xβ with typical element β1 + β2Xt.

When a regression model is written in the form (1.32), the separate columns
of the matrix X are called regressors, and the column vector y is called
the regressand. In (1.31), there are just two regressors, corresponding to
the constant and one explanatory variable. One advantage of writing the
regression model in the form (1.32) is that we are not restricted to just one
or two regressors. Suppose that we have k regressors, one of which may or
may not correspond to a constant, and the others to a number of explanatory
variables. Then the matrix X becomes

X =




X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
...

Xn1 Xn2 · · · Xnk


, (1.33)

where Xti denotes the tth observation on the ith regressor, and the vector β
now has k elements, β1 through βk. Equation (1.32) remains perfectly valid
when X and β are redefined in this way. A typical row of this equation is

yt = Xtβ + ut =
k∑

i=1

βiXti + ut, (1.34)

where we have used Xt to denote the tth row of X.

In (1.32), we used the rules of matrix multiplication to write the regression
function, for the entire sample, in a very simple form. These rules make it
possible to find equally convenient expressions for other aspects of regression
models. The key fact is that every element of the product of two matrices is a
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summation. Thus it is often very convenient to use matrix algebra when deal-
ing with summations. Consider, for example, the matrix of sums of squares
and cross-products of the X matrix. This is a k × k symmetric matrix, of
which a typical element is either

n∑
t=1

X2
ti or

n∑
t=1

XtiXtj ,

the former being a typical diagonal element and the latter a typical off-
diagonal one. This entire matrix can be written very compactly as X>X.
Similarly, the vector with typical element

n∑
t=1

Xtiyt

can be written as X>y. As we will see in the next section, the least squares
estimates of β depend only on the matrix X>X and the vector X>y.

Partitioned Matrices

There are many ways of writing an n × k matrix X that are intermediate
between the straightforward notation X and the full element-by-element de-
composition of X given in (1.33). We might wish to separate the columns
while grouping the rows, as

X =
[

x1 x2 · · · xk

]
,

n× k n× 1 n× 1 . . . n× 1

or we might wish to separate the rows but not the columns, as

X =




X1

X2
...

Xn




1× k

1× k

1× k

n× k

.

To save space, we can also write this as X =
[
X1

.... X2
.... . . .

.... Xn

]
. There is no

restriction on how a matrix can be partitioned, so long as all the submatrices
or blocks fit together correctly. Thus we might have

X =
[ k1 k2

X11 X12 n1

X21 X22 n2

]

with the submatrix X11 of dimensions n1 × k1, X12 of dimensions n1 × k2,
X21 of dimensions n2 × k1, and X22 of dimensions n2 × k2, with n1 + n2 = n
and k1 + k2 = k. Thus X11 and X12 have the same number of rows, and
also X21 and X22, as required for the submatrices to fit together horizontally.
Similarly, X11 and X21 have the same number of columns, and also X12 and
X22, as required for the submatrices to fit together vertically as well.
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If two matrices A and B of the same dimensions are partitioned in exactly
the same way, they can be added or subtracted block by block. A simple
example is

A + B = [A1 A2 ] + [ B1 B2 ] = [ A1 + B1 A2 + B2 ] ,

where A1 and B1 have the same dimensions, as do A2 and B2.

More interestingly, as we now explain, matrix multiplication can sometimes
be performed block by block on partitioned matrices. If the product AB
exists, then A has as many columns as B has rows. Now suppose that the
columns of A are partitioned in the same way as the rows of B. Then

AB = [ A1 A2 · · · Ap ]




B1

B2
...

Bp


.

Here each Ai, i = 1, . . . , p, has as many columns as the corresponding Bi

has rows. The product can be computed following the usual rules for matrix
multiplication just as though the blocks were scalars, yielding the result

AB =
p∑

i=1

AiBi. (1.35)

To see this, it is enough to compute the typical element of each side of equation
(1.35) directly and observe that they are the same. Matrix multiplication
can also be performed block by block on matrices that are partitioned both
horizontally and vertically, provided all the submatrices are conformable; see
Exercise 1.17.

These results on multiplying partitioned matrices lead to a useful corollary.
Suppose that we are interested only in the first m rows of a product AB,
where A has more than m rows. Then we can partition the rows of A into
two blocks, the first with m rows, the second with all the rest. We need not
partition B at all. Then

AB =
[

A1

A2

]
B =

[
A1B

A2B

]
. (1.36)

This works because A1 and A2 both have the full number of columns of A,
which must be the same as the number of rows of B, since AB exists. It
is clear from the rightmost expression in (1.36) that the first m rows of AB
are given by A1B. In order to obtain any subset of the rows of a matrix
product of arbitrarily many factors, the rule is that we take the submatrix of
the leftmost factor that contains just the rows we want, and then multiply it
by all the other factors unchanged. Similarly, if we want to select a subset
of columns of a matrix product, we can just select them from the rightmost
factor, leaving all the factors to the left unchanged.
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1.5 Method of Moments Estimation

Almost all econometric models contain unknown parameters. For most of the
uses to which such models can be put, it is necessary to have estimates of these
parameters. To compute parameter estimates, we need both a model contain-
ing the parameters and a sample made up of observed data. If the model is
correctly specified, it describes the real-world mechanism which generated the
data in our sample.

It is common in statistics to speak of the “population” from which a sample
is drawn. Recall the use of the term “population mean” as a synonym for
the mathematical term “expectation”; see Section 1.2. The expression is a
holdover from the time when statistics was biostatistics, and the object of
study was the human population, usually that of a specific town or country,
from which random samples were drawn by statisticians for study. The av-
erage weight of all members of the population, for instance, would then be
estimated by the mean of the weights of the individuals in the sample, that
is, by the sample mean of individuals’ weights. The sample mean was thus an
estimate of the population mean. The underlying idea is just that the sample
represents the population from which it has been drawn.

In econometrics, the use of the term population is simply a metaphor. A better
concept is that of a data-generating process, or DGP. By this term, we mean
whatever mechanism is at work in the real world of economic activity giving
rise to the numbers in our samples, that is, precisely the mechanism that our
econometric model is supposed to describe. A data-generating process is thus
the analog in econometrics of a population in biostatistics. Samples may be
drawn from a DGP just as they may be drawn from a population. In both
cases, the samples are assumed to be representative of the DGP or population
from which they are drawn.

A very natural way to estimate parameters is to replace population means by
sample means. This technique is called the method of moments, and it is one
of the most widely-used estimation methods in statistics. As the name implies,
it can be used with moments other than the mean. In general, the method
of moments, sometimes called MM for short, estimates population moments
by the corresponding sample moments. In order to apply this method to
regression models, we must use the facts that population moments are expec-
tations, and that regression models are specified in terms of the conditional
expectations of the error terms.

Estimating the Simple Linear Regression Model

Let us now see how the principle of replacing population means by sample
means works for the simple linear regression model (1.01). The error term for
observation t is

ut = yt − β1 − β2Xt,
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and, according to our model, the expectation of this error term is zero. Since
we have n error terms for a sample of size n, we can consider the sample mean
of the error terms:

1−
n

n∑
t=1

ut = 1−
n

n∑
t=1

(yt − β1 − β2Xt). (1.37)

We would like to set this sample mean equal to zero.

Suppose to begin with that β2 = 0. This reduces the number of parameters
in the model to just one. In that case, there is just one value of β1 which will
allow (1.37) to be zero. The equation defining this value is

1−
n

n∑
t=1

(yt − β1) = 0. (1.38)

Since β1 is common to all the observations and thus does not depend on the
index t, (1.38) can be written as

1−
n

n∑
t=1

yt − β1 = 0.

We can easily solve this equation to obtain an estimate β̂1. This estimate is
just the mean of the observed values of the dependent variable,

β̂1 = 1−
n

n∑
t=1

yt. (1.39)

Thus, if we wish to estimate the population mean of the yt, which is what
β1 is in our model when β2 = 0, the method of moments tells us to use the
sample mean as our estimate.

It is not obvious at first glance how to use the method of moments if we put
the second parameter β2 back into the model. Equation (1.38) would become

1−
n

n∑
t=1

(yt − β1 − β2Xt) = 0, (1.40)

but this is just one equation, and there are two unknowns. In order to obtain
another equation, we can use the fact that our model specifies that the mean
of ut is 0 conditional on the explanatory variable Xt. Actually, it may well
specify that the mean of ut is 0 conditional on many other things as well,
depending on our choice of the information set Ωt, but we will ignore this for
now. The conditional mean assumption implies that not only is E(ut) = 0,
but that E(Xtut) = 0 as well, since, by (1.16) and (1.17),

E(Xtut) = E
(
E(Xtut |Xt)

)
= E

(
XtE(ut |Xt)

)
= 0. (1.41)
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Thus we can supplement (1.40) by the following equation, which replaces the
population mean in (1.41) by the corresponding sample mean,

1−
n

n∑
t=1

Xt(yt − β1 − β2Xt) = 0. (1.42)

The equations (1.40) and (1.42) are two linear equations in two unknowns,
β1 and β2. Except in rare conditions, which can easily be ruled out, they
will have a unique solution that is not difficult to calculate. Solving these
equations yields the MM estimates.

We could just solve (1.40) and (1.42) directly, but it is far more illuminating
to rewrite them in matrix form. Since β1 and β2 do not depend on t, these
two equations can be written as

β1 +
(

1−
n

n∑
t=1

Xt

)
β2 = 1−

n

n∑
t=1

yt

(
1−
n

n∑
t=1

Xt

)
β1 +

(
1−
n

n∑
t=1

X2
t

)
β2 = 1−

n

n∑
t=1

Xtyt.

Multiplying both equations by n and using the rules of matrix multiplication
that were discussed in the last section, we can also write them as

[
n

∑n
t=1 Xt∑n

t=1 Xt

∑n
t=1 X2

t

] [
β1

β2

]
=

[ ∑n
t=1 yt∑n

t=1 Xtyt

]
. (1.43)

Equations (1.43) can be rewritten much more compactly. As we saw in the
last section, the model (1.01) is simply a special case of the multiple linear
regression model

y = Xβ + u, (1.44)

where the n--vector y has typical element yt, the k --vector β has typical
element βi, and, in general, the matrix X is n× k. In this case, X is n× 2; it
can be written as X = [ι x], where ι denotes a column of 1s, and x denotes
a column with typical element Xt. Thus, recalling (1.29), we see that

X>y =
[ ∑n

t=1 yt∑n
t=1 Xtyt

]

and

X>X =
[

n
∑n

t=1 Xt∑n
t=1 Xt

∑n
t=1 X2

t

]
.

These are the principal quantities that appear in the equations (1.43). Thus
it is clear that we can rewrite those equations as

X>Xβ = X>y. (1.45)
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To find the estimator β̂ that solves (1.45), we simply multiply it by the inverse
of the matrix X>X, assuming that this inverse exists. This yields the famous
formula

β̂ = (X>X)−1X>y. (1.46)

The estimator β̂ given by this formula is generally called the ordinary least
squares, or OLS, estimator for the linear regression model.4 Why it is called
this, rather than the MM estimator, will be explained shortly.

Estimating the Multiple Linear Regression Model

The formula (1.46) gives us the OLS, and MM, estimator for the simple linear
regression model (1.01), but in fact it does far more than that. As we now
show, it also gives us the MM estimator for the multiple linear regression
model (1.44). Since each of the explanatory variables is required to be in the
information set Ωt, we have, for i = 1, . . . , k,

E(Xtiut) = 0;

which, in the corresponding sample mean form, yields

1−
n

n∑
t=1

Xti(yt −Xtβ) = 0. (1.47)

(Recall from (1.34) that Xt denotes the tth row of X.) As i varies from 1
to k, equation (1.47) yields k equations for the k unknown components of β.
In most cases, there will be a constant, which we may take to be the first
regressor. If so, Xt1 = 1, and the first of these equations simply says that the
sample mean of the error terms is 0.

In matrix form, after multiplying them by n, the k equations of (1.47) can be
written as

X>(y −Xβ) = 0. (1.48)

The notation 0 is used to signify a zero vector, here a k --vector, each element
of which is zero. Equations (1.48) are clearly equivalent to equations (1.45).
Thus solving them yields the estimator (1.46), which applies no matter what
the number of regressors.

It is easy to see that the OLS estimator (1.46) depends on y and X exclu-
sively through a number of scalar products. Each column xi of the matrix X
corresponds to one of the regressors, as does each row xi

> of the transposed

4 Econometricians generally make a distinction between an estimate, which is
simply a number used to estimate some parameter, normally based on a par-
ticular data set, and an estimator, which is a rule, such as (1.46), for obtaining
estimates from any set of data.
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matrix X>. Thus we can write X>y as

X>y =




x1
>

x2
>
...

xk
>


y =




x1
>y

x2
>y
...

xk
>y


.

The elements of the rightmost expression here are just the scalar products of
the regressors xi with the regressand y. Similarly, we can write X>X as

X>X =




x1
>

x2
>
...

xk
>


[ x1 x2 · · · xk ] =




x1
>x1 x1

>x2 · · · x1
>xk

x2
>x1 x2

>x2 · · · x2
>xk

...
...

. . .
...

xk
>x1 xk

>x2 · · · xk
>xk


.

Once more, all the elements of the rightmost expression are scalar products of
pairs of regressors. Since X>X can be expressed exclusively in terms of scalar
products of the variables of the regression, the same is true of its inverse, the
elements of which will be in general complicated functions of those scalar
products. Thus β̂ is a function solely of scalar products of pairs of variables.

Least Squares Estimation

We have derived the estimator (1.46) by using the method of moments. De-
riving it in this way has at least two major advantages. Firstly, the method
of moments is a very general and very powerful principle of estimation, one
that we will encounter again and again throughout this book. Secondly, by
using the method of moments, we were able to obtain (1.46) without making
any use of calculus. However, as we have already remarked, (1.46) is generally
referred to as the OLS estimator, not the MM estimator. It is interesting to
see why this is so.

For the multiple linear regression model (1.44), the expression yt − Xtβ is
equal to the error term for the tth observation, but only if the correct value
of the parameter vector β is used. If the same expression is thought of as a
function of β, with β allowed to vary arbitrarily, then it is called a residual,
more specifically, the residual associated with the tth observation. Similarly,
the n--vector y−Xβ is called the vector of residuals. The sum of the squares
of the components of the vector of residuals is called the sum of squared
residuals, or SSR. Since this sum is a scalar, the sum of squared residuals is
a scalar-valued function of the k --vector β:

SSR(β) =
n∑

t=1

(yt −Xtβ)2. (1.49)

The notation here emphasizes the fact that this function can be computed for
arbitrary values of the argument β purely in terms of the observed data y
and X.
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The idea of least squares estimation is to minimize the sum of squared resid-
uals associated with a regression model. At this point, it may not be at all
clear why we would wish to do such a thing. However, it can be shown that
the parameter vector β̂ which minimizes (1.49) is the same as the MM esti-
mator (1.46). This being so, we will regularly use the traditional terminology
associated with linear regressions, based on least squares. Thus, the parameter
estimates which are the components of the vector β̂ that minimizes the SSR
(1.49) are called the least squares estimates, and the corresponding vector of
residuals is called the vector of least squares residuals. When least squares
is used to estimate a linear regression model like (1.01), it is called ordinary
least squares, or OLS, to distinguish it from other varieties of least squares
that we will encounter later, such as nonlinear least squares (Chapter 6) and
generalized least squares (Chapter 7).

Consider briefly the simplest case of (1.01), in which β2 = 0 and the model
contains only a constant term. Expression (1.49) becomes

SSR(β1) =
n∑

t=1

(yt − β1)2 =
n∑

t=1

y2
t + nβ2

1 − 2β1

n∑
t=1

yt. (1.50)

Differentiating the rightmost expression in (1.50) with respect to β1 and set-
ting the derivative equal to zero gives the following first-order condition for a
minimum:

∂SSR
∂β1

= 2β1n− 2
n∑

t=1

yt = 0. (1.51)

For this simple model, the matrix X consists solely of the constant vector, ι.
Therefore, by (1.29), X>X = ι>ι = n, and X>y = ι>y =

∑n
t=1 yt. Thus, if

the first-order condition (1.51) is multiplied by one-half, it can be rewritten
as ι>ιβ1 = ι>y, which is clearly just a special case of (1.45). Solving (1.51)
for β1 yields the sample mean of the yt,

β̂1 = 1−
n

n∑
t=1

yt = (ι>ι)−1ι>y. (1.52)

We already saw, in (1.39), that this is the MM estimator for the model
with β2 = 0. The rightmost expression in (1.52) makes it clear that the
sample mean is just a special case of the famous formula (1.46).

Not surprisingly, the OLS and MM estimators are also equivalent in the mul-
tiple linear regression model. For this model,

SSR(β) = (y −Xβ)>(y −Xβ). (1.53)

If this inner product is written out in terms of the scalar components of y, X,
and β, it is easy enough to show that the first-order conditions for minimizing
the SSR (1.53) can be written as (1.45); see Exercise 1.20. Thus we conclude
that (1.46) provides a general formula for the OLS estimator β̂ in the multiple
linear regression model.
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Final Remarks

We have seen that it is perfectly easy to obtain an algebraic expression, (1.46),
for the OLS estimator β̂. With modern computers and appropriate software,
it is also easy to obtain OLS estimates numerically, even for regressions with
millions of observations and dozens of explanatory variables; the time-honored
term for doing so is “running a regression”. What is not so easy, and will
occupy us for most of the next four chapters, is to understand the properties
of these estimates.

We will be concerned with two types of properties. The first type, numerical
properties, arise as a consequence of the way that OLS estimates are obtained.
These properties hold for every set of OLS estimates, no matter how the data
were generated. That they hold for any data set can easily be verified by direct
calculation. The numerical properties of OLS will be discussed in Chapter 2.
The second type, statistical properties, depend on the way in which the data
were generated. They can be verified theoretically, under certain assumptions,
and they can be illustrated by simulation, but we can never prove that they
are true for any given data set. The statistical properties of OLS will be
discussed in detail in Chapters 3, 4, and 5.

Readers who seek a deeper treatment of the topics dealt with in the first two
sections may wish to consult Gallant (1997) or Mittelhammer (1996).

1.6 Notes on the Exercises

Each chapter of this book is followed by a set of exercises. These exercises are
of various sorts, and they have various intended functions. Some are, quite
simply, just for practice. Some serve chiefly to extend the material presented
in the chapter. In many cases, the new material in such exercises recurs
later in the book, and it is hoped that readers who have worked through
them will follow later discussions more easily. A case in point concerns the
bootstrap. Some of the exercises in this chapter and the next two are designed
to familiarize readers with the tools that are used to implement the bootstrap,
so that, when it is introduced formally in Chapter 4, the bootstrap will appear
as a natural development. Other exercises have a tidying-up function. Details
left out of the discussions in the main text are taken up, and conscientious
readers can check that unproved claims made in the text are in fact justified.

Many of the exercises require the reader to make use of a computer, sometimes
to compute estimates and test statistics using real or simulated data, and
sometimes for the purpose of doing simulations. There are a great many
computer packages that are capable of doing the things we ask for in the
exercises, and it seems unnecessary to make any specific recommendations as
to what software would be best. Besides, we expect that many readers will
already have developed their own personal preferences for software packages,
and we know better than to try to upset such preferences.
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Some exercises require, not only a computer, but also actual economic data.
It cannot be stressed enough that econometrics is an empirical discipline, and
that the analysis of economic data is its raison d’être. All of the data needed
for the exercises are available from the World Wide Web site for this book.
The address is

http://www.econ.queensu.ca/ETM/

This web site will ultimately contain corrections and updates to the book as
well as the data needed for the exercises.

1.7 Exercises

1.1 Consider a sample of n observations, y1, y2, . . . , yn, on some random vari-
able Y. The empirical distribution function, or EDF, of this sample is a dis-
crete distribution with n possible points. These points are just the n observed
points, y1, y2, . . . , yn. Each point is assigned the same probability, which is
just 1/n, in order to ensure that all the probabilities sum to 1.

Compute the expectation of the discrete distribution characterized by the
EDF, and show that it is equal to the sample mean, that is, the unweighted
average of the n sample points, y1, y2, . . . , yn.

1.2 A random variable computed as the ratio of two independent standard normal
variables follows what is called the Cauchy distribution. It can be shown that
the density of this distribution is

f(x) =
1

π(1 + x2)
.

Show that the Cauchy distribution has no first moment, which means that its
expectation does not exist.

Use your favorite random number generator to generate samples of 10, 100,
1,000, and 10,000 drawings from the Cauchy distribution, and as many in-
termediate values of n as you have patience or computer time for. For each
sample, compute the sample mean. Do these sample means seem to converge
to zero as the sample size increases? Repeat the exercise with drawings from
the standard normal density. Do these sample means tend to converge to zero
as the sample size increases?

1.3 Consider two events A and B such that A ⊂ B. Compute Pr(A |B) in terms
of Pr(A) and Pr(B). Interpret the result.

1.4 Prove Bayes’ Theorem. This famous theorem states that, for any two events
A and B with nonzero probabilities,

Pr(A |B) =
Pr(B |A) Pr(A)

Pr(B)
.

Another form of the theorem deals with two continuous random variables X1

and X2, which have a joint density f(x1, x2). Show that, for any values x1

and x2 that are permissible for X1 and X2, respectively,

f(x1 |x2) =
f(x2 |x1)f(x1)

f(x2)
.
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1.5 Suppose that X and Y are two binary random variables. Their joint distri-
bution is given in the following table.

Y = 0 Y = 1

X = 0 .16 .37

X = 1 .29 .18

What is the marginal distribution of Y ? What is the distribution of Y con-
ditional on X = 0? What is the distribution of Y conditional on X = 1?

Demonstrate the Law of Iterated Expectations explicitly by showing that
E(E(X |Y )) = E(X). Let h(Y ) = Y 3. Show explicitly that E(Xh(Y ) |Y ) =
h(Y )E(X |Y ) in this case.

1.6 Using expression (1.06) for the density φ(x) of the standard normal distribu-
tion, show that the derivative of φ(x) is the function −xφ(x), and that the
second derivative is (x2−1)φ(x). Use these facts to show that the expectation
of a standard normal random variable is 0, and that its variance is 1. These
two properties account for the use of the term “standard.”

1.7 A normally distributed random variable can have any mean µ and any positive
variance σ2. Such a random variable is said to follow the N(µ, σ2) distribution.
A standard normal variable therefore has the N(0, 1) distribution. Suppose
that X has the standard normal distribution. Show that the random variable
Z ≡ µ + σX has mean µ and variance σ2.

1.8 Compute the CDF of the N(µ, σ2) distribution in terms of Φ(·), the CDF of
the standard normal distribution. Differentiate your answer so as to obtain
the PDF of N(µ, σ2).

1.9 If two random variables X1 and X2 are statistically independent, show that
E(X1 |X2) = E(X1).

1.10 The covariance of two random variables X1 and X2, which is often written
as Cov(X1, X2), is defined as the expectation of the product of X1 − E(X1)
and X2−E(X2). Consider a random variable X1 with mean zero. Show that
the covariance of X1 and any other random variable X2, whether it has mean
zero or not, is just the expectation of the product of X1 and X2.

Show that the covariance of the random variables E(X1 |X2) and X1 −
E(X1 |X2) is zero. It is easiest to show this result by first showing that
it is true when the covariance is computed conditional on X2.

Show also that the variance of the random variable X1 − E(X1 |X2) cannot
be greater than the variance of X1, and that the two variances will be equal
if X1 and X2 are independent. This result shows how one random variable
can be informative about another: Conditioning on it reduces variance unless
the two variables are independent.

1.11 Prove that, if X1 and X2 are statistically independent, Cov(X1, X2) = 0.

1.12 Let a random variable X1 be distributed as N(0, 1). Now suppose that a
second random variable, X2, is constructed as the product of X1 and an
independent random variable Z, which equals 1 with probability 1/2 and −1
with probability 1/2.
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What is the (marginal) distribution of X2? What is the covariance between
X1 and X2? What is the distribution of X1 conditional on X2?

1.13 Consider the linear regression models

H1 : yt = β1 + β2Xt + ut and

H2 : log yt = γ1 + γ2 log Xt + ut.

Suppose that the data are actually generated by H2, with γ1 = 1.5 and
γ2 = 0.5, and that the value of Xt varies from 10 to 110 with an average
value of 60. Ignore the error terms and consider the deterministic relations
between yt and Xt implied by the two models. Find the values of β1 and β2

that make the relation given by H1 have the same level and the same value
of dyt/dXt as the level and value of dyt/dXt implied by the relation given
by H2 when it is evaluated at the average value of the regressor.

Using the deterministic relations, plot yt as a function of Xt for both models
for 10 ≤ Xt ≤ 110. Also plot log yt as a function of log Xt for both models for
the same range of Xt. How well do the two models approximate each other
in each of the plots?

1.14 Consider two matrices A and B of dimensions such that the product AB
exists. Show that the ith row of AB is the matrix product of the ith row of
A with the entire matrix B. Show that this result implies that the ith row of
a product ABC . . . , with arbitrarily many factors, is the product of the ith

row of A with BC . . . .

What is the corresponding result for the columns of AB? What is the corre-
sponding result for the columns of ABC . . .?

1.15 Consider two invertible square matrices A and B, of the same dimensions.
Show that the inverse of the product AB exists and is given by the formula

(AB)−1 = B−1A−1.

This shows that there is a reversal rule for inverses as well as for transposes;
see (1.30).

1.16 Show that the transpose of the product of an arbitrary number of factors is
the product of the transposes of the individual factors in completely reversed
order:

(ABC · · ·)>= · · ·C>B>A>.

Show also that an analogous result holds for the inverse of the product of an
arbitrary number of factors.

1.17 Consider the following example of multiplying partitioned matrices:

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

Check all the expressions on the right-hand side, verifying that all products
are well defined and that all sums are of matrices of the same dimensions.

1.18 Suppose that X = [ι X1 X2], where X is n × k, ι is an n--vector of 1s,
X1 is n × k1, and X2 is n × k2. What is the matrix X>X in terms of
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the components of X ? What are the dimensions of its component matrices?
What is the element in the upper left-hand corner of X>X equal to?

1.19 Fix a sample size of n = 100, and simulate the very simplest regression model,
namely, yt = β + ut. Set β = 1, and let the error terms ut be drawings from
the standard normal distribution. Compute the sample mean of the yt,

ȳ ≡ 1−
n

n∑
t=1

yt.

Use your favorite econometrics software package to run a regression with y,
the 100 × 1 vector with typical element yt, as the dependent variable, and a
constant as the sole explanatory variable. Show that the OLS estimate of the
constant is equal to the sample mean. Why is this a necessary consequence
of the formula (1.46)?

1.20 For the multiple linear regression model (1.44), the sum of squared residuals
can be written as

SSR(β) =

n∑
t=1

(yt −Xtβ)2 = (y −Xβ)>(y −Xβ).

Show that, if we minimize SSR(β) with respect to β, the minimizing value of
β is β̂, the OLS estimator given by (1.46). The easiest way is to show that
the first-order conditions for a minimum are exactly the equations (1.47),
or (1.48), that arise from MM estimation. This can be done without using
matrix calculus.

1.21 The file consumption.data contains data on real personal disposable income
and consumption expenditures in Canada, seasonally adjusted in 1986 dol-
lars, from the first quarter of 1947 until the last quarter of 1996. The sim-
plest imaginable model of the Canadian consumption function would have
consumption expenditures as the dependent variable, and a constant and
personal disposable income as explanatory variables. Run this regression for
the period 1953:1 to 1996:4. What is your estimate of the marginal propensity
to consume out of disposable income?

Plot a graph of the OLS residuals for the consumption function regression
against time. All modern regression packages will generate these residuals for
you on request. Does the appearance of the residuals suggest that this model
of the consumption function is well specified?

1.22 Simulate the consumption function model you have just estimated in exercise
1.21 for the same sample period, using the actual data on disposable income.
For the parameters, use the OLS estimates obtained in exercise 1.21. For
the error terms, use drawings from the N(0, s2) distribution, where s2 is the
estimate of the error variance produced by the regression package.

Next, run a regression using the simulated consumption data as the dependent
variable and the constant and disposable income as explanatory variables. Are
the parameter estimates the same as those obtained using the real data? Why
or why not?

Plot the residuals from the regression with simulated data. Does the plot look
substantially different from the one obtained using the real data? It should!
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Chapter 2

The Geometry of Linear Regression

2.1 Introduction

In Chapter 1, we introduced regression models, both linear and nonlinear,
and discussed how to estimate linear regression models by using the method
of moments. We saw that all n observations of a linear regression model with
k regressors can be written as

y = Xβ + u, (2.01)

where y and u are n--vectors, X is an n×k matrix, one column of which may
be a constant term, and β is a k --vector. We also saw that the MM estimates,
usually called the ordinary least squares or OLS estimates, of the vector β are

β̂ = (X>X)−1X>y. (2.02)

In this chapter, we will be concerned with the numerical properties of these
OLS estimates. We refer to certain properties of estimates as “numerical” if
they have nothing to do with how the data were actually generated. Such
properties hold for every set of data by virtue of the way in which β̂ is com-
puted, and the fact that they hold can always be verified by direct calculation.
In contrast, the statistical properties of OLS estimates, which will be discussed
in Chapter 3, necessarily depend on unverifiable assumptions about how the
data were generated, and they can never be verified for any actual data set.

In order to understand the numerical properties of OLS estimates, it is useful
to look at them from the perspective of Euclidean geometry. This geometrical
interpretation is remarkably simple. Essentially, it involves using Pythagoras’
Theorem and a little bit of high-school trigonometry in the context of fi-
nite-dimensional vector spaces. Although this approach is simple, it is very
powerful. Once one has a thorough grasp of the geometry involved in ordi-
nary least squares, one can often save oneself many tedious lines of algebra
by a simple geometrical argument. We will encounter many examples of this
throughout the book.

In the next section, we review some relatively elementary material on the
geometry of vector spaces and Pythagoras’ Theorem. In Section 2.3, we then
discuss the most important numerical properties of OLS estimation from a
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geometrical perspective. In Section 2.4, we introduce an extremely useful
result called the FWL Theorem, and in Section 2.5 we present a number of
applications of this theorem. Finally, in Section 2.6, we discuss how and to
what extent individual observations influence parameter estimates.

2.2 The Geometry of Vector Spaces

In Section 1.4, an n--vector was defined as a column vector with n elements,
that is, an n × 1 matrix. The elements of such a vector are real numbers.
The usual notation for the real line is R, and it is therefore natural to denote
the set of n--vectors as Rn. However, in order to use the insights of Euclidean
geometry to enhance our understanding of the algebra of vectors and matrices,
it is desirable to introduce the notion of a Euclidean space in n dimensions,
which we will denote as En. The difference between Rn and En is not that they
consist of different sorts of vectors, but rather that a wider set of operations
is defined on En. A shorthand way of saying that a vector x belongs to an
n--dimensional Euclidean space is to write x ∈ En.

Addition and subtraction of vectors in En is no different from the addition
and subtraction of n× 1 matrices discussed in Section 1.4. The same thing is
true of multiplication by a scalar in En. The final operation essential to En

is that of the scalar or inner product. For any two vectors x,y ∈ En, their
scalar product is

〈x,y〉 ≡ x>y.

The notation on the left is generally used in the context of the geometry of
vectors, while the notation on the right is generally used in the context of
matrix algebra. Note that 〈x, y〉 = 〈y,x〉, since x>y = y>x. Thus the scalar
product is commutative.

The scalar product is what allows us to make a close connection between
n--vectors considered as matrices and considered as geometrical objects. It
allows us to define the length of any vector in En. The length, or norm, of a
vector x is simply

‖x‖ ≡ (x>x)1/2.

This is just the square root of the inner product of x with itself. In scalar
terms, it is

‖x‖ ≡
( n∑

i=1

x2
i

)1/2

. (2.03)

Pythagoras’ Theorem

The definition (2.03) is inspired by the celebrated theorem of Pythagoras,
which says that the square on the longest side of a right-angled triangle is
equal to the sum of the squares on the other two sides. This longest side
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Figure 2.1 Pythagoras’ Theorem

is called the hypotenuse. Pythagoras’ Theorem is illustrated in Figure 2.1.
The figure shows a right-angled triangle, ABC, with hypotenuse AC, and two
other sides, AB and BC, of lengths x1 and x2 respectively. The squares on
each of the three sides of the triangle are drawn, and the area of the square
on the hypotenuse is shown as x2

1 + x2
2, in accordance with the theorem.

A beautiful proof of Pythagoras’ Theorem, not often found in geometry texts,
is shown in Figure 2.2. Two squares of equal area are drawn. Each square
contains four copies of the same right-angled triangle. The square on the left
also contains the squares on the two shorter sides of the triangle, while the
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Figure 2.2 Proof of Pythagoras’ Theorem
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Figure 2.3 A vector x in E2

square on the right contains the square on the hypotenuse. The theorem
follows at once.

Any vector x ∈ E2 has two components, usually denoted as x1 and x2. These
two components can be interpreted as the Cartesian coordinates of the vec-
tor in the plane. The situation is illustrated in Figure 2.3. With O as the
origin of the coordinates, a right-angled triangle is formed by the lines OA,
AB, and OB. The length of the horizontal side of the triangle, OA, is the
horizontal coordinate x1. The length of the vertical side, AB, is the vertical
coordinate x2. Thus the point B has Cartesian coordinates (x1, x2). The vec-
tor x itself is usually represented as the hypotenuse of the triangle, OB, that
is, the directed line (depicted as an arrow) joining the origin to the point B,
with coordinates (x1, x2). By Pythagoras’ Theorem, the length of the vector
x, the hypotenuse of the triangle, is (x2

1 +x2
2)

1/2. This is what (2.03) becomes
for the special case n = 2.

Vector Geometry in Two Dimensions

Let x and y be two vectors in E2, with components (x1, x2) and (y1, y2),
respectively. Then, by the rules of matrix addition, the components of x + y
are (x1 + y1, x2 + y2). Figure 2.4 shows how the addition of x and y can
be performed geometrically in two different ways. The vector x is drawn as
the directed line segment, or arrow, from the origin O to the point A with
coordinates (x1, x2). The vector y can be drawn similarly and represented
by the arrow OB. However, we could also draw y starting, not at O, but at
the point reached after drawing x, namely A. The arrow AC has the same
length and direction as OB, and we will see in general that arrows with the
same length and direction can be taken to represent the same vector. It is
clear by construction that the coordinates of C are (x1 + y1, x2 + y2), that is,
the coordinates of x+y. Thus the sum x+y is represented geometrically by
the arrow OC.
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Figure 2.4 Addition of vectors

The classical way of adding vectors geometrically is to form a parallelogram
using the line segments OA and OB that represent the two vectors as adjacent
sides of the parallelogram. The sum of the two vectors is then the diagonal
through O of the resulting parallelogram. It is easy to see that this classical
method also gives the result that the sum of the two vectors is represented
by the arrow OC, since the figure OACB is just the parallelogram required
by the construction, and OC is its diagonal through O. The parallelogram
construction also shows clearly that vector addition is commutative, since
y + x is represented by OB, for y, followed by BC, for x. The end result is
once more OC.

Multiplying a vector by a scalar is also very easy to represent geometrically.
If a vector x with components (x1, x2) is multiplied by a scalar α, then αx
has components (αx1, αx2). This is depicted in Figure 2.5, where α = 2. The
line segments OA and OB represent x and αx, respectively. It is clear that
even if we move αx so that it starts somewhere other than O, as with CD
in the figure, the vectors x and αx are always parallel. If α were negative,
then αx would simply point in the opposite direction. Thus, for α = −2, αx
would be represented by DC, rather than CD.

Another property of multiplication by a scalar is clear from Figure 2.5. By
direct calculation,

‖αx‖ = 〈αx, αx〉1/2 = |α|(x>x)1/2 = |α|‖x‖. (2.04)

Since α = 2, OB and CD in the figure are twice as long as OA.
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The Geometry of Scalar Products

The scalar product of two vectors x and y, whether in E2 or En, can be
expressed geometrically in terms of the lengths of the two vectors and the
angle between them, and this result will turn out to be very useful. In the
case of E2, it is natural to think of the angle between two vectors as the angle
between the two line segments that represent them. As we will now show, it
is also quite easy to define the angle between two vectors in En.

If the angle between two vectors is 0, they must be parallel. The vector y is
parallel to the vector x if y = αx for some suitable α. In that event,

〈x, y〉 = 〈x, αx〉 = αx>x = α‖x‖2.

From (2.04), we know that ‖y‖ = |α|‖x‖, and so, if α > 0, it follows that

〈x, y〉 = ‖x‖ ‖y‖. (2.05)

Of course, this result is true only if x and y are parallel and point in the same
direction (rather than in opposite directions).

For simplicity, consider initially two vectors, w and z, both of length 1, and
let θ denote the angle between them. This is illustrated in Figure 2.6. Suppose
that the first vector, w, has coordinates (1, 0). It is therefore represented by
a horizontal line of length 1 in the figure. Suppose that the second vector, z,
is also of length 1, that is, ‖z‖ = 1. Then, by elementary trigonometry, the
coordinates of z must be (cos θ, sin θ). To show this, note first that, if so,

‖z‖2 = cos2 θ + sin2 θ = 1, (2.06)

as required. Next, consider the right-angled triangle OAB, in which the hy-
potenuse OB represents z and is of length 1, by (2.06). The length of the
side AB opposite O is sin θ, the vertical coordinate of z. Then the sine of
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Figure 2.6 The angle between two vectors

the angle BOA is given, by the usual trigonometric rule, by the ratio of the
length of the opposite side AB to that of the hypotenuse OB. This ratio is
sin θ/1 = sin θ, and so the angle BOA is indeed equal to θ.

Now let us compute the scalar product of w and z. It is

〈w, z〉 = w>z = w1z1 + w2z2 = z1 = cos θ,

because w1 = 1 and w2 = 0. This result holds for vectors w and z of length 1.
More generally, let x = αw and y = γz, for positive scalars α and γ. Then
‖x‖ = α and ‖y‖ = γ. Thus we have

〈x,y〉 = x>y = αγw>z = αγ〈w, z〉.

Because x is parallel to w, and y is parallel to z, the angle between x and y
is the same as that between w and z, namely θ. Therefore,

〈x, y〉 = ‖x‖ ‖y‖ cos θ. (2.07)

This is the general expression, in geometrical terms, for the scalar product of
two vectors. It is true in En just as it is in E2, although we have not proved
this. In fact, we have not quite proved (2.07) even for the two-dimensional
case, because we made the simplifying assumption that the direction of x
and w is horizontal. In Exercise 2.1, we ask the reader to provide a more
complete proof.

The cosine of the angle between two vectors provides a natural way to measure
how close two vectors are in terms of their directions. Recall that cos θ varies
between −1 and 1; if we measure angles in radians, cos 0 = 1, cosπ/2 = 0,
and cos π = −1. Thus cos θ will be 1 for vectors that are parallel, 0 for vectors
that are at right angles to each other, and −1 for vectors that point in directly
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opposite directions. If the angle θ between the vectors x and y is a right angle,
its cosine is 0, and so, from (2.07), the scalar product 〈x,y〉 is 0. Conversely,
if 〈x,y〉 = 0, then cos θ = 0 unless x or y is a zero vector. If cos θ = 0, it
follows that θ = π/2. Thus, if two nonzero vectors have a zero scalar product,
they are at right angles. Such vectors are often said to be orthogonal, or,
less commonly, perpendicular. This definition implies that the zero vector is
orthogonal to everything.

Since the cosine function can take on values only between −1 and 1, a conse-
quence of (2.07) is that

|x>y| ≤ ‖x‖ ‖y‖. (2.08)

This result, which is called the Cauchy-Schwartz inequality, says that the
inner product of x and y can never be greater than the length of the vector x
times the length of the vector y. Only if x and y are parallel does the
inequality in (2.08) become the equality (2.05). Readers are asked to prove
this result in Exercise 2.2.

Subspaces of Euclidean Space

For arbitrary positive integers n, the elements of an n--vector can be thought
of as the coordinates of a point in En. In particular, in the regression model
(2.01), the regressand y and each column of the matrix of regressors X can be
thought of as vectors in En. This makes it possible to represent a relationship
like (2.01) geometrically.

It is obviously impossible to represent all n dimensions of En physically
when n > 3. For the pages of a book, even three dimensions can be too many,
although a proper use of perspective drawings can allow three dimensions to
be shown. Fortunately, we can represent (2.01) without needing to draw in
n dimensions. The key to this is that there are only three vectors in (2.01):
y, Xβ, and u. Since only two vectors, Xβ and u, appear on the right-hand
side of (2.01), only two dimensions are needed to represent it. Because y is
equal to Xβ + u, these two dimensions suffice for y as well.

To see how this works, we need the concept of a subspace of a Euclidean
space En. Normally, such a subspace will have a dimension lower than n. The
easiest way to define a subspace of En is in terms of a set of basis vectors. A
subspace that is of particular interest to us is the one for which the columns
of X provide the basis vectors. We may denote the k columns of X as x1,
x2, . . . xk. Then the subspace associated with these k basis vectors will be
denoted by S(X) or S(x1, . . . , xk). The basis vectors are said to span this
subspace, which will in general be a k --dimensional subspace.

The subspace S(x1, . . . , xk) consists of every vector that can be formed as a
linear combination of the xi, i = 1, . . . , k. Formally, it is defined as

S(x1, . . . , xk) ≡
{

z ∈ En
∣∣∣ z =

k∑

i=1

bixi, bi ∈ R
}

. (2.09)
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Figure 2.7 The spaces S(X) and S⊥(X)

The subspace defined in (2.09) is called the subspace spanned by the xi,
i = 1, . . . , k, or the column space of X; less formally, it may simply be referred
to as the span of X, or the span of the xi.

The orthogonal complement of S(X) in En, which is denoted S⊥(X), is the
set of all vectors w in En that are orthogonal to everything in S(X). This
means that, for every z in S(X), 〈w, z〉 = w>z = 0. Formally,

S⊥(X) ≡ {
w ∈ En | w>z = 0 for all z ∈ S(X)

}
.

If the dimension of S(X) is k, then the dimension of S⊥(X) is n− k.

Figure 2.7 illustrates the concepts of a subspace and its orthogonal comple-
ment for the simplest case, in which n = 2 and k = 1. The matrix X has
only one column in this case, and it is therefore represented in the figure by a
single vector, denoted x. As a consequence, S(X) is 1--dimensional, and, since
n = 2, S⊥(X) is also 1--dimensional. Notice that S(X) and S⊥(X) would be
the same if x were any vector, except for the origin, parallel to the straight
line that represents S(X).

Now let us return to En. Suppose, to begin with, that k = 2. We have two
vectors, x1 and x2, which span a subspace of, at most, two dimensions. It
is always possible to represent vectors in a 2--dimensional space on a piece of
paper, whether that space is E2 itself or, as in this case, the 2--dimensional
subspace of En spanned by the vectors x1 and x2. To represent the first
vector, x1, we choose an origin and a direction, both of which are entirely
arbitrary, and draw an arrow of length ‖x1‖ in that direction. Suppose that
the origin is the point O in Figure 2.8, and that the direction is the horizontal
direction in the plane of the page. Then an arrow to represent x1 can be
drawn as shown in the figure. For x2, we compute its length, ‖x2‖, and the
angle, θ, that it makes with x1. Suppose for now that θ 6= 0. Then we choose
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Figure 2.8 A 2-dimensional subspace

as our second dimension the vertical direction in the plane of the page, with
the result that we can draw an arrow for x2, as shown.

Any vector in S(x1, x2) can be drawn in the plane of Figure 2.8. Consider,
for instance, the linear combination of x1 and x2 given by the expression
z ≡ b1x1 + b2x2. We could draw the vector z by computing its length and
the angle that it makes with x1. Alternatively, we could apply the rules for
adding vectors geometrically that were illustrated in Figure 2.4 to the vectors
b1x1 and b2x2. This is illustrated in the figure for the case in which b1 = 2/3
and b2 = 1/2.

In precisely the same way, we can represent any three vectors by arrows in
3--dimensional space, but we leave this task to the reader. It will be easier to
appreciate the renderings of vectors in three dimensions in perspective that
appear later on if one has already tried to draw 3--dimensional pictures, or
even to model relationships in three dimensions with the help of a computer.

We can finally represent the regression model (2.01) geometrically. This is
done in Figure 2.9. The horizontal direction is chosen for the vector Xβ, and
then the other two vectors y and u are shown in the plane of the page. It
is clear that, by construction, y = Xβ + u. Notice that u, the error vector,
is not orthogonal to Xβ. The figure contains no reference to any system of
axes, because there would be n of them, and we would not be able to avoid
needing n dimensions to treat them all.

Linear Independence

In order to define the OLS estimator by the formula (1.46), it is necessary
to assume that the k × k square matrix X>X is invertible, or nonsingular.
Equivalently, as we saw in Section 1.4, we may say that X>X has full rank.
This condition is equivalent to the condition that the columns of X should be
linearly independent. This is a very important concept for econometrics. Note
that the meaning of linear independence is quite different from the meaning
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Figure 2.9 The geometry of the linear regression model

of statistical independence, which we discussed in Section 1.2. It is important
not to confuse these two concepts.

The vectors x1 through xk are said to be linearly dependent if we can write
one of them as a linear combination of the others. In other words, there is a
vector xj , 1 ≤ j ≤ k, and coefficients ci such that

xj =
∑

i 6=j

cixi. (2.10)

Another, equivalent, definition is that there exist coefficients bi, at least one
of which is nonzero, such that

k∑

i=1

bixi = 0. (2.11)

Recall that 0 denotes the zero vector, every component of which is 0. It is
clear from the definition (2.11) that, if any of the xi is itself equal to the zero
vector, then the xi are linearly dependent. If xj = 0, for example, then (2.11)
will be satisfied if we make bj nonzero and set bi = 0 for all i 6= j.

If the vectors xi, i = 1, . . . , k, are the columns of an n × k matrix X, then
another way of writing (2.11) is

Xb = 0, (2.12)

where b is a k --vector with typical element bi. In order to see that (2.11)
and (2.12) are equivalent, it is enough to check that the typical elements of
the two left-hand sides are the same; see Exercise 2.5. The set of vectors
xi, i = 1, . . . , k, is linearly independent if it is not linearly dependent, that
is, if there are no coefficients ci such that (2.10) is true, or (equivalently) no
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coefficients bi such that (2.11) is true, or (equivalently, once more) no vector
b such that (2.12) is true.

It is easy to show that if the columns of X are linearly dependent, the matrix
X>X is not invertible. Premultiplying (2.12) by X> yields

X>Xb = 0. (2.13)

Thus, if the columns of X are linearly dependent, there is a nonzero k --vector
b which is annihilated by X>X. The existence of such a vector b means that
X>X cannot be inverted. To see this, consider any vector a, and suppose
that

X>Xa = c.

If X>X could be inverted, then we could premultiply the above equation by
(X>X)−1 to obtain

(X>X)−1c = a. (2.14)

However, (2.13) also allows us to write

X>X(a + b) = c,

which would give
(X>X)−1c = a + b. (2.15)

But (2.14) and (2.15) cannot both be true, and so (X>X)−1 cannot exist.
Thus a necessary condition for the existence of (X>X)−1 is that the columns
of X should be linearly independent. With a little more work, it can be shown
that this condition is also sufficient, and so, if the regressors x1, . . . , xk are
linearly independent, X>X is invertible.

If the k columns of X are not linearly independent, then they will span a
subspace of dimension less than k, say k′, where k′ is the largest number of
columns of X that are linearly independent of each other. The number k′ is
called the rank of X. Look again at Figure 2.8, and imagine that the angle θ
between x1 and x2 tends to zero. If θ = 0, then x1 and x2 are parallel, and we
can write x1 = αx2, for some scalar α. But this means that x1−αx2 = 0, and
so a relation of the form (2.11) holds between x1 and x2, which are therefore
linearly dependent. In the figure, if x1 and x2 are parallel, then only one
dimension is used, and there is no need for the second dimension in the plane
of the page. Thus, in this case, k = 2 and k′ = 1.

When the dimension of S(X) is k′ < k, S(X) will be identical to S(X ′), where
X ′ is an n × k′ matrix consisting of any k′ linearly independent columns of
X. For example, consider the following X matrix, which is 5× 3:




1 0 1
1 4 0
1 0 1
1 4 0
1 0 1


. (2.16)
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The columns of this matrix are not linearly independent, since

x1 = .25x2 + x3.

However, any two of the columns are linearly independent, and so

S(X) = S(x1, x2) = S(x1, x3) = S(x2, x3);

see Exercise 2.8. For the remainder of this chapter, unless the contrary is
explicitly assumed, we will assume that the columns of any regressor matrix
X are linearly independent.

2.3 The Geometry of OLS Estimation

We studied the geometry of vector spaces in the last section because the nu-
merical properties of OLS estimates are easily understood in terms of that
geometry. The geometrical interpretation of OLS estimation, that is, MM es-
timation of linear regression models, is simple and intuitive. In many cases,
it entirely does away with the need for algebraic proofs.

As we saw in the last section, any point in a subspace S(X), where X is an
n×k matrix, can be represented as a linear combination of the columns of X.
We can partition X in terms of its columns explicitly, as follows:

X = [ x1 x2 · · · xk ] .

In order to compute the matrix product Xβ in terms of this partitioning, we
need to partition the vector β by its rows. Since β has only one column, the
elements of the partitioned vector are just the individual elements of β. Thus
we find that

Xβ = [ x1 x2 · · · xk ]




β1

β2
...

βk


= x1β1 + x2β2 + . . . + xkβk =

k∑

i=1

βixi,

which is just a linear combination of the columns of X. In fact, it is clear
from the definition (2.09) that any linear combination of the columns of X,
and thus any element of the subspace S(X) = S(x1, . . . , xk), can be written
as Xβ for some β. The specific linear combination (2.09) is constructed by
using β = [b1

.... . . .
.... bk]. Thus every n--vector Xβ belongs to S(X), which

is, in general, a k --dimensional subspace of En. In particular, the vector Xβ̂
constructed using the OLS estimator β̂ belongs to this subspace.

The estimator β̂ was obtained by solving the equations (1.48), which we
rewrite here for easy reference:

X>(y −Xβ̂) = 0. (1.48)
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Figure 2.10 Residuals and fitted values

These equations have a simple geometrical interpretation. Note first that each
element of the left-hand side of (1.48) is a scalar product. By the rule for
selecting a single row of a matrix product (see Section 1.4), the ith element is

xi
>(y −Xβ̂) = 〈xi, y −Xβ̂〉, (2.17)

since xi, the ith column of X, is the transpose of the ith row of X>. By (1.48),
the scalar product in (2.17) is zero, and so the vector y −Xβ̂ is orthogonal to
all of the regressors, that is, all of the vectors xi that represent the explanatory
variables in the regression. For this reason, equations like (1.48) are often
referred to as orthogonality conditions.

Recall from Section 1.5 that the vector y −Xβ, treated as a function of β,
is called the vector of residuals. This vector may be written as u(β). We
are interested in u(β̂), the vector of residuals evaluated at β̂, which is often
called the vector of least squares residuals and is usually written simply as û.
We have just seen, in (2.17), that û is orthogonal to all the regressors. This
implies that û is in fact orthogonal to every vector in S(X), the span of the
regressors. To see this, remember that any element of S(X) can be written
as Xβ for some β, with the result that, by (1.48),

〈Xβ, û〉 = (Xβ)>û = β>X>û = 0.

The vector Xβ̂ is referred to as the vector of fitted values. Clearly, it lies
in S(X), and, consequently, it must be orthogonal to û. Figure 2.10 is similar
to Figure 2.9, but it shows the vector of least squares residuals û and the
vector of fitted values Xβ̂ instead of u and Xβ. The key feature of this
figure, which is a consequence of the orthogonality conditions (1.48), is that
the vector û makes a right angle with the vector Xβ̂.

Some things about the orthogonality conditions (1.48) are clearer if we add
a third dimension to the picture. Accordingly, in panel a) of Figure 2.11,
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c) The vertical plane through y

Figure 2.11 Linear regression in three dimensions

we consider the case of two regressors, x1 and x2, which together span the
horizontal plane labelled S(x1,x2), seen in perspective from slightly above
the plane. Although the perspective rendering of the figure does not make it
clear, both the lengths of x1 and x2 and the angle between them are totally
arbitrary, since they do not affect S(x1, x2) at all. The vector y is intended
to be viewed as rising up out of the plane spanned by x1 and x2.

In the 3--dimensional setup, it is clear that, if û is to be orthogonal to the
horizontal plane, it must itself be vertical. Thus it is obtained by “dropping
a perpendicular” from y to the horizontal plane. The least-squares inter-
pretation of the MM estimator β̂ can now be seen to be a consequence of
simple geometry. The shortest distance from y to the horizontal plane is
obtained by descending vertically on to it, and the point in the horizontal
plane vertically below y, labeled A in the figure, is the closest point in the
plane to y. Thus ‖û‖ minimizes ‖u(β)‖, the norm of u(β), with respect to β.
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The squared norm, ‖u(β)‖2, is just the sum of squared residuals, SSR(β);
see (1.49). Since minimizing the norm of u(β) is the same thing as minimiz-
ing the squared norm, it follows that β̂ is the OLS estimator.

Panel b) of the figure shows the horizontal plane S(x1,x2) as a straightfor-
ward 2--dimensional picture, seen from directly above. The point A is the
point directly underneath y, and so, since y = Xβ̂ + û by definition, the
vector represented by the line segment OA is the vector of fitted values, Xβ̂.
Geometrically, it is much simpler to represent Xβ̂ than to represent just the
vector β̂, because the latter lies in Rk, a different space from the space En

that contains the variables and all linear combinations of them. However, it is
easy to see that the information in panel b) does indeed determine β̂. Plainly,
Xβ̂ can be decomposed in just one way as a linear combination of x1 and x2,
as shown. The numerical value of β̂1 can be computed as the ratio of the
length of the vector β̂1x1 to that of x1, and similarly for β̂2.

In panel c) of Figure 2.11, we show the right-angled triangle that corresponds
to dropping a perpendicular from y, labelled in the same way as in panel a).
This triangle lies in the vertical plane that contains the vector y. We can see
that y is the hypotenuse of the triangle, the other two sides being Xβ̂ and û.
Thus this panel corresponds to what we saw already in Figure 2.10. Since we
have a right-angled triangle, we can apply Pythagoras’ Theorem. It gives

‖y‖2 = ‖Xβ̂‖2 + ‖û‖2. (2.18)

If we write out the squared norms as scalar products, this becomes

y>y = β̂>X>Xβ̂ + (y −Xβ̂)>(y −Xβ̂). (2.19)

In words, the total sum of squares, or TSS, is equal to the explained sum
of squares, or ESS, plus the sum of squared residuals, or SSR. This is a
fundamental property of OLS estimates, and it will prove to be very useful in
many contexts. Intuitively, it lets us break down the total variation (TSS) of
the dependent variable into the explained variation (ESS) and the unexplained
variation (SSR), unexplained because the residuals represent the aspects of y
about which we remain in ignorance.

Orthogonal Projections

When we estimate a linear regression model, we implicitly map the regressand
y into a vector of fitted values Xβ̂ and a vector of residuals û = y − Xβ̂.
Geometrically, these mappings are examples of orthogonal projections. A
projection is a mapping that takes each point of En into a point in a subspace
of En, while leaving all points in that subspace unchanged. Because of this,
the subspace is called the invariant subspace of the projection. An orthogonal
projection maps any point into the point of the subspace that is closest to it.
If a point is already in the invariant subspace, it is mapped into itself.
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The concept of an orthogonal projection formalizes the notion of “dropping
a perpendicular” that we used in the last subsection when discussing least
squares. Algebraically, an orthogonal projection on to a given subspace can
be performed by premultiplying the vector to be projected by a suitable pro-
jection matrix. In the case of OLS, the two projection matrices that yield the
vector of fitted values and the vector of residuals, respectively, are

PX = X(X>X)−1X>, and

MX = I− PX = I−X(X>X)−1X>,
(2.20)

where I is the n × n identity matrix. To see this, recall (2.02), the formula
for the OLS estimates of β:

β̂ = (X>X)−1X>y.

From this, we see that

Xβ̂ = X(X>X)−1X>y = PXy. (2.21)

Therefore, the first projection matrix in (2.20), PX, projects on to S(X). For
any n--vector y, PXy always lies in S(X), because

PXy = X
(
(X>X)−1X>y

)
.

Since this takes the form Xb for b = β̂, it is a linear combination of the
columns of X, and hence it belongs to S(X).

From (2.20), it is easy to show that PXX = X. Since any vector in S(X)
can be written as Xb for some b ∈ Rk, we see that

PXXb = Xb. (2.22)

We saw from (2.21) that the result of acting on any vector y ∈ En with PX is
a vector in S(X). Thus the invariant subspace of the projection PX must be
contained in S(X). But, by (2.22), every vector in S(X) is mapped into itself
by PX. Therefore, the image of PX , which is a shorter name for its invariant
subspace, is precisely S(X).

It is clear from (2.21) that, when PX is applied to y, it yields the vector of
fitted values. Similarly, when MX, the second of the two projection matrices
in (2.20), is applied to y, it yields the vector of residuals:

MXy =
(
I−X(X>X)−1X>)

y = y − PXy = y −Xβ̂ = û.

The image of MX is S⊥(X), the orthogonal complement of the image of PX.
To see this, consider any vector w ∈ S⊥(X). It must satisfy the defining condi-
tion X>w = 0. From the definition (2.20) of PX, this implies that PXw = 0,
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the zero vector. Since MX = I−PX, we find that MXw = w. Thus S⊥(X)
must be contained in the image of MX. Next, consider any vector in the
image of MX. It must take the form MXy, where y is some vector in En.
From this, it will follow that MXy belongs to S⊥(X). Observe that

(MXy)>X = y>MXX, (2.23)

an equality that relies on the symmetry of MX. Then, from (2.20), we have

MXX = (I− PX)X = X −X = O, (2.24)

where O denotes a zero matrix, which in this case is n× k. The result (2.23)
says that any vector MXy in the image of MX is orthogonal to X, and thus
belongs to S⊥(X). We saw above that S⊥(X) was contained in the image
of MX, and so this image must coincide with S⊥(X). For obvious reasons,
the projection MX is sometimes called the projection off S(X).

For any matrix to represent a projection, it must be idempotent. An idem-
potent matrix is one that, when multiplied by itself, yields itself again. Thus,

PXPX = PX and MXMX = MX.

These results are easily proved by a little algebra directly from (2.20), but the
geometry of the situation makes them obvious. If we take any point, project
it on to S(X), and then project it on to S(X) again, the second projection
can have no effect at all, because the point is already in S(X), and so it is
left unchanged. Since this implies that PXPXy = PXy for any vector y, it
must be the case that PXPX = PX, and similarly for MX.

Since, from (2.20),
PX + MX = I, (2.25)

any vector y ∈ En is equal to PXy + MXy. The pair of projections PX and
MX are said to be complementary projections, since the sum of PXy and
MXy restores the original vector y.

The fact that S(X) and S⊥(X) are orthogonal subspaces leads us to say that
the two projection matrices PX and MX define what is called an orthogonal
decomposition of En, because the two vectors MXy and PXy lie in the two
orthogonal subspaces. Algebraically, the orthogonality depends on the fact
that PX and MX are symmetric matrices. To see this, we start from a
further important property of PX and MX, which is that

PXMX = O. (2.26)

This equation is true for any complementary pair of projections satisfy-
ing (2.25), whether or not they are symmetric; see Exercise 2.9. We may say
that PX and MX annihilate each other. Now consider any vector z ∈ S(X)
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and any other vector w ∈ S⊥(X). We have z = PXz and w = MXw. Thus
the scalar product of the two vectors is

〈PXz, MXw〉 = z>P>
XMXw.

Since PX is symmetric, P>
X = PX, and so the above scalar product is zero

by (2.26). In general, however, if two complementary projection matrices are
not symmetric, the spaces they project on to are not orthogonal.

The projection matrix MX annihilates all points that lie in S(X), and PX
likewise annihilates all points that lie in S⊥(X). These properties can be
proved by straightforward algebra (see Exercise 2.11), but the geometry of
the situation is very simple. Consider Figure 2.7. It is evident that, if we
project any point in S⊥(X) orthogonally on to S(X), we end up at the origin,
as we do if we project any point in S(X) orthogonally on to S⊥(X).

Provided that X has full rank, the subspace S(X) is k --dimensional, and so the
first term in the decomposition y = PXy +MXy belongs to a k --dimensional
space. Since y itself belongs to En, which has n dimensions, it follows that
the complementary space S⊥(X) must have n − k dimensions. The number
n− k is called the codimension of X in En.

Geometrically, an orthogonal decomposition y = PXy + MXy can be rep-
resented by a right-angled triangle, with y as the hypotenuse and PXy and
MXy as the other two sides. In terms of projections, equation (2.18), which
is really just Pythagoras’ Theorem, can be rewritten as

‖y‖2 = ‖PXy‖2 + ‖MXy‖2. (2.27)

In Exercise 2.10, readers are asked to provide an algebraic proof of this equa-
tion. Since every term in (2.27) is nonnegative, we obtain the useful result
that, for any orthogonal projection matrix PX and any vector y ∈ En,

‖PXy‖ ≤ ‖y‖. (2.28)

In effect, this just says that the hypotenuse is longer than either of the other
sides of a right-angled triangle.

In general, we will use P and M subscripted by matrix expressions to denote
the matrices that, respectively, project on to and off the subspaces spanned by
the columns of those matrix expressions. Thus PZ would be the matrix that
projects on to S(Z), MX,W would be the matrix that projects off S(X, W ), or,
equivalently, on to S⊥(X, W ), and so on. It is frequently very convenient to
express the quantities that arise in econometrics using these matrices, partly
because the resulting expressions are relatively compact, and partly because
the properties of projection matrices often make it easy to understand what
those expressions mean. However, projection matrices are of little use for
computation because they are of dimension n × n. It is never efficient to
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calculate residuals or fitted values by explicitly using projection matrices, and
it can be extremely inefficient if n is large.

Linear Transformations of Regressors

The span S(X) of the regressors of a linear regression can be defined in many
equivalent ways. All that is needed is a set of k vectors that encompass
all the k directions of the k --dimensional subspace. Consider what happens
when we postmultiply X by any nonsingular k × k matrix A. This is called
a nonsingular linear transformation. Let A be partitioned by its columns,
which may be denoted ai, i = 1, . . . , k :

XA = X [a1 a2 · · · ak ] = [ Xa1 Xa2 · · · Xak ] .

Each block in the product takes the form Xai, which is an n--vector that is
a linear combination of the columns of X. Thus any element of S(XA) must
also be an element of S(X). But any element of S(X) is also an element
of S(XA). To see this, note that any element of S(X) can be written as Xβ
for some β ∈ Rk. Since A is nonsingular, and thus invertible,

Xβ = XAA−1β = (XA)(A−1β).

Because A−1β is just a k --vector, this expression is a linear combination of
the columns of XA, that is, an element of S(XA). Since every element of
S(XA) belongs to S(X), and every element of S(X) belongs to S(XA), these
two subspaces must be identical.

Given the identity of S(X) and S(XA), it seems intuitively compelling to
suppose that the orthogonal projections PX and PXA should be the same.
This is in fact the case, as can be verified directly:

PXA = XA(A>X>XA)−1A>X>

= XAA−1(X>X)−1(A>)−1A>X>

= X(X>X)−1X>= PX.

When expanding the inverse of the matrix A>X>XA, we used the reversal
rule for inverses; see Exercise 1.15.

We have already seen that the vectors of fitted values and residuals depend
on X only through PX and MX. Therefore, they too must be invariant to
any nonsingular linear transformation of the columns of X. Thus if, in the
regression y = Xβ+u, we replace X by XA for some nonsingular matrix A,
the residuals and fitted values will not change, even though β̂ will change.
We will discuss an example of this important result shortly.

When the set of regressors contains a constant, it is necessary to express it as
a vector, just like any other regressor. The coefficient of this vector is then
the parameter we usually call the constant term. The appropriate vector is ι,
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the vector of which each element equals 1. Consider the n--vector β1ι + β2x,
where x is any nonconstant regressor, and β1 and β2 are scalar parameters.
The tth element of this vector is β1 + β2xt. Thus adding the vector β1ι to
β2x simply adds the scalar β1 to each component of β2x. For any regression
which includes a constant term, then, the fact that we can perform arbitrary
nonsingular transformations of the regressors without affecting residuals or
fitted values implies that these vectors are unchanged if we add any constant
amount to any one or more of the regressors.

Another implication of the invariance of residuals and fitted values under
nonsingular transformations of the regressors is that these vectors are un-
changed if we change the units of measurement of the regressors. Suppose,
for instance, that the temperature is one of the explanatory variables in a re-
gression with a constant term. A practical example in which the temperature
could have good explanatory power is the modeling of electricity demand:
More electrical power is consumed if the weather is very cold, or, in societies
where air conditioners are common, very hot. In a few countries, notably the
United States, temperatures are still measured in Fahrenheit degrees, while
in most countries they are measured in Celsius (centigrade) degrees. It would
be disturbing if our conclusions about the effect of temperature on electricity
demand depended on whether we used the Fahrenheit or the Celsius scale.

Let the temperature variable, expressed as an n--vector, be denoted as T in
Celsius and as F in Fahrenheit, the constant as usual being represented by ι.
Then F = 32ι + 9/5T , and, if the constant is included in the transformation,

[ ι F ] = [ ι T ]
[

1 32
0 9/5

]
. (2.29)

The constant and the two different temperature measures are related by a
linear transformation that is easily seen to be nonsingular, since Fahrenheit
degrees can be converted back into Celsius. This implies that the residuals
and fitted values are unaffected by our choice of temperature scale.

Let us denote the constant term and the slope coefficient as β1 and β2 if we
use the Celsius scale, and as α1 and α2 if we use the Fahrenheit scale. Then
it is easy to see that these parameters are related by the equations

β1 = α1 + 32α2 and β2 = 9/5α2. (2.30)

To see that this makes sense, suppose that the temperature is at freezing
point, which is 0◦ Celsius and 32◦ Fahrenheit. Then the combined effect of
the constant and the temperature on electricity demand is β1 + 0β2 = β1

using the Celsius scale, and α1 + 32α2 using the Fahrenheit scale. These
should be the same, and, according to (2.30), they are. Similarly, the effect of
a 1-degree increase in the Celsius temperature is given by β2. Now 1 Celsius
degree equals 9/5 Fahrenheit degrees, and the effect of a temperature increase
of 9/5 Fahrenheit degrees is given by 9/5α2. We are assured by (2.30) that the
two effects are the same.
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2.4 The Frisch-Waugh-Lovell Theorem

In this section, we discuss an extremely useful property of least squares esti-
mates, which we will refer to as the Frisch-Waugh-Lovell Theorem, or FWL
Theorem for short. It was introduced to econometricians by Frisch and Waugh
(1933), and then reintroduced by Lovell (1963).

Deviations from the Mean

We begin by considering a particular nonsingular transformation of variables
in a regression with a constant term. We saw at the end of the last section
that residuals and fitted values are invariant under such transformations of
the regressors. For simplicity, consider a model with a constant and just one
explanatory variable:

y = β1ι + β2x + u. (2.31)

In general, x is not orthogonal to ι, but there is a very simple transformation
which makes it so. This transformation replaces the observations in x by
deviations from the mean. In order to perform the transformation, one first
calculates the mean of the n observations of the vector x,

x̄ ≡ 1−
n

n∑
t=1

xt,

and then subtracts the constant x̄ from each element of x. This yields the
vector of deviations from the mean, z ≡ x − x̄ι. The vector z is easily seen
to be orthogonal to ι, because

ι>z = ι>(x− x̄ι) = nx̄− x̄ι>ι = nx̄− nx̄ = 0.

The operation of expressing a variable in terms of the deviations from its
mean is called centering the variable. In this case, the vector z is the centered
version of the vector x.

Since centering leads to a variable that is orthogonal to ι, it can be performed
algebraically by the orthogonal projection matrix Mι. This can be verified
by observing that

Mιx = (I− Pι)x = x− ι(ι>ι)−1ι>x = x− x̄ι = z, (2.32)

as claimed. Here, we once again used the facts that ι>ι = n and ι>x = nx̄.

The idea behind the use of deviations from the mean is that it makes sense
to separate the overall level of a dependent variable from its dependence on
explanatory variables. Specifically, if we write (2.31) in terms of z, we get

y = (β1 + β2 x̄)ι + β2z + u = α1ι + α2z + u,
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Figure 2.12 Adding a constant does not affect the slope coefficient

where we see that
α1 = β1 + β2 x̄, and α2 = β2.

If, for some observation t, the value of xt were exactly equal to the mean
value, x̄, then zt = 0. Thus we find that yt = α1 + ut. We interpret this as
saying that the expected value of yt, when the explanatory variable takes on
its average value, is the constant α1.

The effect on yt of a change of one unit in xt is measured by the slope coeffi-
cient β2. If we hold x̄ at its value before xt is changed, then the unit change
in xt induces a unit change in zt. Thus a unit change in zt, which is measured
by the slope coefficient α2, should have the same effect as a unit change in xt.
Accordingly, α2 = β2, just as we found above.

The slope coefficients α2 and β2 would be the same with any constant in the
place of x̄. The reason for this can be seen geometrically, as illustrated in
Figure 2.12. This figure, which is constructed in the same way as panel b) of
Figure 2.11, depicts the span of ι and x, with ι in the horizontal direction.
As before, the vector y is not shown, because a third dimension would be
required; the vector would extend from the origin to a point off the plane of
the page and directly above (or below) the point labelled ŷ.

The figure shows the vector of fitted values ŷ as the vector sum β̂1ι + β̂2x.
The slope coefficient β̂2 is the ratio of the length of the vector β̂2x to that
of x; geometrically, it is given by the ratio OA/OB. Then a new regressor z
is defined by adding the constant value c, which is negative in the figure, to
each component of x, giving z = x + cι. In terms of this new regressor, the
vector ŷ is given by α̂1ι + α̂2z, and α̂2 is given by the ratio OC/OD. Since
the ratios OA/OB and OC/OD are clearly the same, we see that α̂2 = β̂2. A
formal argument would use the fact that OAC and OBD are similar triangles.
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Figure 2.13 Orthogonal regressors may be omitted

When the constant c is chosen as x̄, the vector z is said to be centered, and,
as we saw above, it is orthogonal to ι. In this case, the estimate α̂2 is the
same whether it is obtained by regressing y on both ι and z, or just on z
alone. This is illustrated in Figure 2.13, which shows what Figure 2.12 would
look like when z is orthogonal to ι. Once again, the vector of fitted values ŷ
is decomposed as α̂1ι + α̂2z, with z now at right angles to ι.

Now suppose that y is regressed on z alone. This means that y is projected
orthogonally on to S(z), which in the figure is the vertical line through z. By
definition,

y = α̂1ι + α̂2z + û, (2.33)

where û is orthogonal to both ι and z. But ι is also orthogonal to z, and
so the only term on the right-hand side of (2.33) not to be annihilated by
the projection on to S(z) is the middle term, which is left unchanged by it.
Thus the fitted value vector from regressing y on z alone is just α̂2z, and so
the OLS estimate is the same α̂2 as given by the regression on both ι and z.
Geometrically, we obtain this result because the projection of y on to S(z) is
the same as the projection of ŷ on to S(z).

Incidentally, the fact that OLS residuals are orthogonal to all the regressors,
including ι, leads to the important result that the residuals in any regression
with a constant term sum to zero. In fact,

ι>û =
n∑

t=1

ût = 0;

recall (1.29). The residuals will also sum to zero in any regression for which
ι ∈ S(X), even if ι does not explicitly appear in the list of regressors. This
can happen if the regressors include certain sets of dummy variables, as we
will see in Section 2.5.
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Two Groups of Regressors

The results proved in the previous subsection are actually special cases of
more general results that apply to any regression in which the regressors can
logically be broken up into two groups. Such a regression can be written as

y = X1β1 + X2β2 + u, (2.34)

where X1 is n × k1, X2 is n × k2, and X may be written as the partitioned
matrix [X1 X2], with k = k1 + k2. In the case dealt with in the previous
subsection, X1 is the constant vector ι and X2 is either x or z. Several other
examples of partitioning X in this way will be considered in Section 2.5.

We begin by assuming that all the regressors in X1 are orthogonal to all the
regressors in X2, so that X2

>X1 = O. Under this assumption, the vector of
least squares estimates β̂1 from (2.34) is the same as the one obtained from
the regression

y = X1β1 + u1, (2.35)

and β̂2 from (2.34) is likewise the same as the vector of estimates obtained
from the regression y = X2β2 + u2. In other words, when X1 and X2 are
orthogonal, we can drop either set of regressors from (2.34) without affecting
the coefficients of the other set.

The vector of fitted values from (2.34) is PXy, while that from (2.35) is P1y,
where we have used the abbreviated notation

P1 ≡ PX1 = X1(X1
>X1)−1X1

>.

As we will show directly,

P1PX = PXP1 = P1; (2.36)

this is true whether or not X1 and X2 are orthogonal. Thus

P1y = P1PXy = P1(X1β̂1 + X2β̂2) = P1X1β̂1 = X1β̂1. (2.37)

The first equality above, which follows from (2.36), says that the projection
of y on to S(X1) is the same as the projection of ŷ ≡ PXy on to S(X1).
The second equality follows from the definition of the fitted value vector from
(2.34) as PXy; the third from the orthogonality of X1 and X2, which implies
that P1X2 = O; and the last from the fact that X1 is invariant under the
action of P1. Since P1y is equal to X1 postmultiplied by the OLS estimates
from (2.35), the equality of the leftmost and rightmost expressions in (2.37)
gives us the result that the same β̂1 can be obtained either from (2.34) or
from (2.35). The analogous result for β̂2 is proved in just the same way.
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We now drop the assumption that X1 and X2 are orthogonal and prove (2.36),
a very useful result that is true in general. In order to show that PXP1 = P1,
we proceed as follows:

PXP1 = PXX1(X1
>X1)−1X1

>= X1(X1
>X1)−1X1

>= P1.

The middle equality follows by noting that PXX1 = X1, because all the
columns of X1 are in S(X), and so are left unchanged by PX. The other
equality in (2.36), namely P1PX = P1, is obtained directly by transposing
PXP1 = P1 and using the symmetry of PX and P1. The two results in (2.36)
tell us that the product of two orthogonal projections, where one projects on
to a subspace of the image of the other, is the projection on to that subspace.
See also Exercise 2.14, for the application of this result to the complementary
projections MX and M1.

The general result corresponding to the one shown in Figure 2.12 can be
stated as follows. If we transform the regressor matrix in (2.34) by adding
X1A to X2, where A is a k1 × k2 matrix, and leaving X1 as it is, we have
the regression

y = X1α1 + (X2 + X1A)α2 + u. (2.38)

Then α̂2 from (2.38) is the same as β̂2 from (2.34). This can be seen imme-
diately by expressing the right-hand side of (2.38) as a linear combination of
the columns of X1 and of X2.

In the present general context, there is an operation analogous to that of
centering. The result of centering a variable x is a variable z that is orthogonal
to ι, the constant. We can create from X2 a set of variables orthogonal to X1

by acting on X2 with the orthogonal projection M1 ≡ I−P1, so as to obtain
M1X2. This allows us to run the regression

y = X1α1 + M1X2α2 + u

= X1α1 +
(
X2 −X1(X1

>X1)−1X1
>X2

)
α2 + u.

The first line above is a regression model with two groups of regressors, X1

and M1X2, which are mutually orthogonal. Therefore, α̂2 will be unchanged
if we omit X1. The second line makes it clear that this regression is a special
case of (2.38), which implies that α̂2 is equal to β̂2 from (2.34). Consequently,
we see that the two regressions

y = X1α1 + M1X2β2 + u and (2.39)

y = M1X2β2 + v (2.40)

must yield the same estimates of β2.

Although regressions (2.34) and (2.40) give the same estimates of β2, they
do not give the same residuals, as we have indicated by writing u for one
regression and v for the other. We can see why the residuals are not the same
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by looking again at Figure 2.13, in which the constant ι plays the role of X1,
and the centered variable z plays the role of M1X2. The point corresponding
to y can be thought of as lying somewhere on a line through the point ŷ
and sticking perpendicularly out from the page. The residual vector from
regressing y on both ι and z is thus represented by the line segment from ŷ,
in the page, to y, vertically above the page. However, if y is regressed on
z alone, the residual vector is the sum of this line segment and the segment
from α̂2z and ŷ, that is, the top side of the rectangle in the figure. If we want
the same residuals in regression (2.34) and a regression like (2.40), we need to
purge the dependent variable of the second segment, which can be seen from
the figure to be equal to α̂1ι.

This suggests replacing y by what we get by projecting y off ι. This projec-
tion would be the line segment perpendicular to the page, translated in the
horizontal direction so that it intersected the page at the point α̂2z rather
than ŷ. In the general context, the analogous operation replaces y by M1y,
the projection off X1 rather than off ι. When we perform this projection,
(2.40) is replaced by the regression

M1y = M1X2β2 + residuals, (2.41)

which will yield the same vector of OLS estimates β̂2 as (2.34), and also
the same vector of residuals. This regression is sometimes called the FWL
regression. We used the notation “+ residuals” instead of “+ u” in (2.41)
because, in general, the difference between M1y and M1X2β2 is not the same
thing as the vector u in (2.34). If u is interpreted as an error vector, then
(2.41) would not be true if “residuals” were replaced by u.

We can now formally state the FWL Theorem. Although the conclusions of
the theorem have been established gradually in this section, we also provide
a short formal proof.

Theorem 2.1. (Frisch-Waugh-Lovell Theorem)

1. The OLS estimates of β2 from regressions (2.34) and (2.41) are
numerically identical.

2. The residuals from regressions (2.34) and (2.41) are numerically
identical.

Proof: By the standard formula (1.46), the estimate of β2 from (2.41) is

(X2
>M1X2)−1X2

>M1y. (2.42)

Let β̂1 and β̂2 denote the two vectors of OLS estimates from (2.34). Then

y = PXy + MXy = X1β̂1 + X2β̂2 + MXy. (2.43)

Premultiplying the leftmost and rightmost expressions in (2.43) by X2
>M1,

we obtain
X2
>M1y = X2

>M1X2β̂2. (2.44)
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The first term on the right-hand side of (2.43) has dropped out because M1

annihilates X1. To see that the last term also drops out, observe that

MXM1X2 = MXX2 = O. (2.45)

The first equality follows from (2.36) (see also Exercise 2.14), and the second
from (2.24), which shows that MX annihilates all the columns of X, in par-
ticular those of X2. Premultiplying y by the transpose of (2.45) shows that
X2
>M1MXy = 0. We can now solve (2.44) for β̂2 to obtain

β̂2 = (X2
>M1X2)−1X2

>M1y,

which is expression (2.42). This proves the first part of the theorem.

If we had premultiplied (2.43) by M1 instead of by X2
>M1, we would have

obtained
M1y = M1X2β̂2 + MXy, (2.46)

where the last term is unchanged from (2.43) because M1MX = MX. The
regressand in (2.46) is the regressand from regression (2.41). Because β̂2 is the
estimate of β2 from (2.41), by the first part of the theorem, the first term on
the right-hand side of (2.46) is the vector of fitted values from that regression.
Thus the second term must be the vector of residuals from regression (2.41).
But MXy is also the vector of residuals from regression (2.34), and this
therefore proves the second part of the theorem.

2.5 Applications of the FWL Theorem

A regression like (2.34), in which the regressors are broken up into two groups,
can arise in many situations. In this section, we will study three of these. The
first two, seasonal dummy variables and time trends, are obvious applications
of the FWL Theorem. The third, measures of goodness of fit that take the
constant term into account, is somewhat less obvious. In all cases, the FWL
Theorem allows us to obtain explicit expressions based on (2.42) for subsets
of the parameter estimates of a linear regression.

Seasonal Dummy Variables

For a variety of reasons, it is sometimes desirable to include among the ex-
planatory variables of a regression model variables that can take on only two
possible values, which are usually 0 and 1. Such variables are called indicator
variables, because they indicate a subset of the observations, namely, those
for which the value of the variable is 1. Indicator variables are a special case
of dummy variables, which can take on more than two possible values.

Seasonal variation provides a good reason to employ dummy variables. It
is common for economic data that are indexed by time to take the form of
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quarterly data, where each year in the sample period is represented by four
observations, one for each quarter, or season, of the year. Many economic
activities are strongly affected by the season, for obvious reasons like Christ-
mas shopping, or summer holidays, or the difficulty of doing outdoor work
during very cold weather. This seasonal variation, or seasonality, in economic
activity is likely to be reflected in the economic time series that are used in
regression models. The term “time series” is used to refer to any variable the
observations of which are indexed by the time. Of course, time-series data are
sometimes annual, in which case there is no seasonal variation to worry about,
and sometimes monthly, in which case there are twelve “seasons” instead of
four. For simplicity, we consider only the case of quarterly data.

Since there are four seasons, there may be four seasonal dummy variables,
each taking the value 1 for just one of the four seasons. Let us denote these
variables as s1, s2, s3, and s4. If we consider a sample the first observation of
which corresponds to the first quarter of some year, these variables look like

s1 =




1
0
0
0
1
0
0
0
...




, s2 =




0
1
0
0
0
1
0
0
...




, s3 =




0
0
1
0
0
0
1
0
...




, s4 =




0
0
0
1
0
0
0
1
...




. (2.47)

An important property of these variables is that, since every observation must
correspond to some season, the sum of the seasonal dummies must indicate
every season. This means that this sum is a vector every component of which
equals 1. Algebraically,

s1 + s2 + s3 + s4 = ι, (2.48)

as is clear from (2.47). Since ι represents the constant in a regression, (2.48)
means that the five-variable set consisting of all four seasonal dummies plus
the constant is linearly dependent. Consequently, one of the five variables
must be dropped if all the regressors are to be linearly independent.

Just which one of the five is dropped makes no difference to the fitted values
and residuals of a regression, because it is easy to check that

S(s1, s2, s3, s4) = S(ι, s2, s3, s4) = S(ι, s1, s3, s4),

and so on. However the parameter estimates associated with the set of four
variables that we choose to keep have different interpretations depending on
that choice. Suppose first that we drop the constant and run the regression

y = α1s1 + α2s2 + α3s3 + α4s4 + Xβ + u, (2.49)
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where the n × k matrix X contains other explanatory variables. Consider a
single observation, indexed by t, that corresponds to the first season. The tth

observations of s2, s3, and s4 are all 0, and that of s1 is 1. Thus, if we write
out the tth observation of (2.49), we get

yt = α1 + Xtβ + ut.

From this it is clear that, for all t belonging to the first season, the constant
term in the regression is α1. If we repeat this exercise for t in the second,
third, or fourth season, we see at once that αi is the constant for season i.
Thus the introduction of the seasonal dummies gives us a different constant
for every season.

An alternative is to retain the constant and drop s1. This yields

y = α0ι + γ2s2 + γ3s3 + γ4s4 + Xβ + u.

It is clear that, in this specification, the overall constant α0 is really the
constant for season 1. For an observation belonging to season 2, the constant
is α0 + γ2, for an observation belonging to season 3, it is α0 + γ3, and so
on. The easiest way to interpret this is to think of season 1 as the reference
season. The coefficients γi, i = 2, 3, 4, measure the difference between α0,
the constant for the reference season, and the constant for season i. Since we
could have dropped any of the seasonal dummies, the reference season is, of
course, entirely arbitrary.

Another alternative is to retain the constant and use the three dummy vari-
ables defined by

s′1 = s1 − s4, s′2 = s2 − s4, s′3 = s3 − s4. (2.50)

These new dummy variables are not actually indicator variables, because their
components for season 4 are equal to −1, but they have the advantage that,
for each complete year, the sum of their components for that year is 0. Thus,
for any sample whose size is a multiple of 4, each of the s′i, i = 1, 2, 3, is
orthogonal to the constant. We can write the regression as

y = δ0ι + δ1s
′
1 + δ2s′2 + δ3s′3 + Xβ + u. (2.51)

It is easy to see that, for t in season i, i = 1, 2, 3, the constant term is δ0 + δi.
For t belonging to season 4, it is δ0 − δ1 − δ2 − δ3. Thus the average of
the constants for all four seasons is just δ0, the coefficient of the constant, ι.
Accordingly, the δi, i = 1, 2, 3, measure the difference between the average
constant δ0 and the constant specific to season i. Season 4 is a bit of a mess,
because of the arithmetic needed to ensure that the average does indeed work
out to δ0.
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Let S denote whatever n × 4 matrix we choose to use in order to span the
constant and the four seasonal variables si. Then any of the regressions we
have considered so far can be written as

y = Sδ + Xβ + u. (2.52)

This regression has two groups of regressors, as required for the application
of the FWL Theorem. That theorem implies that the estimates β̂ and the
residuals û can also be obtained by running the FWL regression

MSy = MSXβ + residuals, (2.53)

where, as the notation suggests, MS ≡ I− S(S>S)−1S>.

The effect of the projection MS on y and on the explanatory variables in the
matrix X can be considered as a form of seasonal adjustment. By making
MSy orthogonal to all the seasonal variables, we are, in effect, purging it of its
seasonal variation. Consequently, MSy can be called a seasonally adjusted,
or deseasonalized, version of y, and similarly for the explanatory variables. In
practice, such seasonally adjusted variables can be conveniently obtained as
the residuals from regressing y and each of the columns of X on the variables
in S. The FWL Theorem tells us that we get the same results in terms of
estimates of β and residuals whether we run (2.52), in which the variables are
unadjusted and seasonality is explicitly accounted for, or run (2.53), in which
all the variables are seasonally adjusted by regression. This was, in fact, the
subject of the famous paper by Lovell (1963).

The equivalence of (2.52) and (2.53) is sometimes used to claim that, in esti-
mating a regression model with time-series data, it does not matter whether
one uses “raw” data, along with seasonal dummies, or seasonally adjusted
data. Such a conclusion is completely unwarranted. Official seasonal adjust-
ment procedures are almost never based on regression; using official seasonally
adjusted data is therefore not equivalent to using residuals from regression on
a set of seasonal variables. Moreover, if (2.52) is not a sensible model (and
it would not be if, for example, the seasonal pattern were more complicated
than that given by Sα), then (2.53) is not a sensible specification either.
Seasonality is actually an important practical problem in applied work with
time-series data. We will discuss it further in Chapter 13. For more detailed
treatments, see Hylleberg (1986, 1992) and Ghysels and Osborn (2001).

The deseasonalization performed by the projection MS makes all variables
orthogonal to the constant as well as to the seasonal dummies. Thus the
effect of MS is not only to deseasonalize, but also to center, the variables
on which it acts. Sometimes this is undesirable; if so, we may use the three
variables s′i given in (2.50). Since they are themselves orthogonal to the
constant, no centering takes place if only these three variables are used for
seasonal adjustment. An explicit constant should normally be included in any
regression that uses variables seasonally adjusted in this way.
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Time Trends

Another sort of constructed, or artificial, variable that is often encountered
in models of time-series data is a time trend. The simplest sort of time trend
is the linear time trend, represented by the vector T , with typical element
Tt ≡ t. Thus T = [1 .... 2 .... 3 .... 4 .... . . .]. Imagine that we have a regression with
a constant and a linear time trend:

y = γ1ι + γ2T + Xβ + u.

For observation t, yt is equal to γ1 + γ2t + Xtβ + ut. Thus the overall level
of yt increases or decreases steadily as t increases. Instead of just a constant,
we now have the linear (strictly speaking, affine) function of time, γ1 + γ2t.
An increasing time trend might be appropriate, for instance, in a model of a
production function where technical progress is taking place. An explicit
model of technical progress might well be difficult to construct, in which
case a linear time trend could serve as a simple way to take account of the
phenomenon.

It is often desirable to make the time trend orthogonal to the constant by
centering it, that is, operating on it with Mι. If we do this with a sample
with an odd number of elements, the result is a variable that looks like

[ · · · .... −3 .... −2 .... −1 .... 0 .... 1 .... 2 .... 3 .... · · · ].

If the sample size is even, the variable is made up of the half integers ±1/2,
±3/2, ±5/2, . . . . In both cases, the coefficient of ι is the average value of the
linear function of time over the whole sample.

Sometimes it is appropriate to use constructed variables that are more com-
plicated than a linear time trend. A simple case would be a quadratic time
trend, with typical element t2. In fact, any deterministic function of the time
index t can be used, including the trigonometric functions sin t and cos t,
which could be used to account for oscillatory behavior. With such variables,
it is again usually preferable to make them orthogonal to the constant by
centering them.

The FWL Theorem applies just as well with time trends of various sorts as
it does with seasonal dummy variables. It is possible to project all the other
variables in a regression model off the time trend variables, thereby obtaining
detrended variables. The parameter estimates and residuals will be same as
if the trend variables were explicitly included in the regression. This was in
fact the type of situation dealt with by Frisch and Waugh (1933).

Goodness of Fit of a Regression

In equations (2.18) and (2.19), we showed that the total sum of squares (TSS)
in the regression model y = Xβ + u can be expressed as the sum of the
explained sum of squares (ESS) and the sum of squared residuals (SSR).
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This was really just an application of Pythagoras’ Theorem. In terms of the
orthogonal projection matrices PX and MX, the relation between TSS, ESS,
and SSR can be written as

TSS = ‖y‖2 = ‖PXy‖2 + ‖MXy‖2 = ESS + SSR.

This allows us to introduce a measure of goodness of fit for a regression model.
This measure is formally called the coefficient of determination, but it is
universally referred to as the R2. The R2 is simply the ratio of ESS to TSS.
It can be written as

R2 =
ESS
TSS

=
‖PXy‖2
‖y‖2 = 1− ‖MXy‖2

‖y‖2 = 1− SSR
TSS

= cos2θ, (2.54)

where θ is the angle between y and PXy; see Figure 2.10. For any angle θ,
we know that −1 ≤ cos θ ≤ 1. Consequently, 0 ≤ R2 ≤ 1. If the angle θ were
zero, y and Xβ̂ would coincide, the residual vector û would vanish, and we
would have what is called a perfect fit, with R2 = 1. At the other extreme, if
R2 = 0, the fitted value vector would vanish, and y would coincide with the
residual vector û.

As we will see shortly, (2.54) is not the only measure of goodness of fit. It is
known as the uncentered R2, and, to distinguish it from other versions of R2,
it is sometimes denoted as R2

u. Because R2
u depends on y only through the

residuals and fitted values, it is invariant under nonsingular linear transforma-
tions of the regressors. In addition, because it is defined as a ratio, the value
of R2

u is invariant to changes in the scale of y. For example, we could change
the units in which the regressand is measured from dollars to thousands of
dollars without affecting the value of R2

u.

However, R2
u is not invariant to changes of units that change the angle θ. An

example of such a change is given by the conversion between the Celsius and
Fahrenheit scales of temperature, where a constant is involved; see (2.29). To
see this, let us consider a very simple change of measuring units, whereby a
constant α, analogous to the constant 32 used in converting from Celsius to
Fahrenheit, is added to each element of y. In terms of these new units, the
regression of y on a regressor matrix X becomes

y + αι = Xβ + u. (2.55)

If we assume that the matrix X includes a constant, it follows that PXι = ι
and MXι = 0, and so we find that

y + αι = PX
(
y + αι

)
+ MX

(
y + αι

)
= PXy + αι + MXy.

This allows us to compute R2
u as

R2
u =

‖PXy + αι‖2
‖y + αι‖2 ,
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which is clearly different from (2.54). By choosing α sufficiently large, we can
in fact make R2

u as close as we wish to 1, because, for very large α, the term
αι will completely dominate the terms PXy and y in the numerator and
denominator respectively. But a large R2

u in such a case would be entirely
misleading, since the “good fit” would be accounted for almost exclusively by
the constant.

It is easy to see how to get around this problem, at least for regressions that
include a constant term. An elementary consequence of the FWL Theorem
is that we can express all variables as deviations from their means, by the
operation of the projection Mι, without changing parameter estimates or
residuals. The ordinary R2 from the regression that uses centered variables is
called the centered R2. It is defined as

R2
c ≡

‖PXMιy‖2
‖Mιy‖2 = 1− ‖MXy‖2

‖Mιy‖2 , (2.56)

and it is clearly unaffected by the addition of a constant to the regressand, as
in equation (2.55).

The centered R2 is much more widely used than the uncentered R2. When ι
is contained in the span S(X) of the regressors, R2

c certainly makes far more
sense than R2

u. However, R2
c does not make sense for regressions without a

constant term or its equivalent in terms of dummy variables. If a statistical
package reports a value for R2 in such a regression, one needs to be very
careful. Different ways of computing R2

c , all of which would yield the same,
correct, answer for regressions that include a constant, may yield quite differ-
ent answers for regressions that do not. It is even possible to obtain values of
R2

c that are less than 0 or greater than 1, depending on how the calculations
are carried out.

Either version of R2 is a valid measure of goodness of fit only when the least
squares estimates β̂ are used. If we used some other estimates of β, say β̃,
the triangle in Figure 2.10 would no longer be a right-angled triangle, and
Pythagoras’ Theorem would no longer apply. As a consequence, (2.54) would
no longer hold, and the different definitions of R2 would no longer be the
same:

1− ‖y −Xβ̃‖2
‖y‖2 6= ‖Xβ̃‖2

‖y‖2 .

If we chose to define R2 in terms of the residuals, using the first of these
expressions, we could not guarantee that it would be positive, and if we chose
to define it in terms of the fitted values, using the second, we could not
guarantee that it would be less than 1. Thus, when anything other than
least squares is used to estimate a regression, one should be very cautious
about interpreting a reported R2. It is not a sensible measure of fit in such
a case, and, depending on how it is actually computed, it may be seriously
misleading.
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Figure 2.14 An influential observation

2.6 Influential Observations and Leverage

One important feature of OLS estimation, which we have not stressed up to
this point, is that each element of the vector of parameter estimates β̂ is
simply a weighted average of the elements of the vector y. To see this, define
ci as the ith row of the matrix (X>X)−1X> and observe from (2.02) that
β̂i = ciy. This fact will prove to be of great importance when we discuss the
statistical properties of least squares estimation in the next chapter.
Because each element of β̂ is a weighted average, some observations may
affect the value of β̂ much more than others do. Consider Figure 2.14. This
figure is an example of a scatter diagram, a long-established way of graphing
the relation between two variables. Each point in the figure has Cartesian
coordinates (xt, yt), where xt is a typical element of a vector x, and yt of a
vector y. One point, drawn with a larger dot than the rest, is indicated, for
reasons to be explained, as a high leverage point. Suppose that we run the
regression

y = β1ι + β2x + u

twice, once with, and once without, the high leverage observation. For each
regression, the fitted values all lie on the so-called regression line, which is
the straight line with equation

y = β̂1 + β̂2x.

The slope of this line is just β̂2, which is why β2 is sometimes called the slope
coefficient; see Section 1.1. Similarly, because β̂1 is the intercept that the
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regression line makes with the y axis, the constant term β1 is sometimes called
the intercept. The regression line is entirely determined by the estimated
coefficients, β̂1 and β̂2.
The regression lines for the two regressions in Figure 2.14 are substantially
different. The high leverage point is quite distant from the regression line
obtained when it is excluded. When that point is included, it is able, by
virtue of its position well to the right of the other observations, to exert a
good deal of leverage on the regression line, pulling it down toward itself.
If the y coordinate of this point were greater, making the point closer to
the regression line excluding it, then it would have a smaller influence on
the regression line including it. If the x coordinate were smaller, putting
the point back into the main cloud of points, again there would be a much
smaller influence. Thus it is the x coordinate that gives the point its position
of high leverage, but it is the y coordinate that determines whether the high
leverage position will actually be exploited, resulting in substantial influence
on the regression line. In a moment, we will generalize these conclusions to
regressions with any number of regressors.
If one or a few observations in a regression are highly influential, in the sense
that deleting them from the sample would change some elements of β̂ sub-
stantially, the prudent econometrician will normally want to scrutinize the
data carefully. It may be that these influential observations are erroneous, or
at least untypical of the rest of the sample. Since a single erroneous obser-
vation can have an enormous effect on β̂, it is important to ensure that any
influential observations are not in error. Even if the data are all correct, the
interpretation of the regression results may change if it is known that a few ob-
servations are primarily responsible for them, especially if those observations
differ systematically in some way from the rest of the data.

Leverage

The effect of a single observation on β̂ can be seen by comparing β̂ with β̂(t),
the estimate of β that would be obtained if the tth observation were omitted
from the sample. Rather than actually omit the tth observation, it is easier
to remove its effect by using a dummy variable. The appropriate dummy
variable is et, an n--vector which has tth element 1 and all other elements 0.
The vector et is called a unit basis vector, unit because its norm is 1, basis
because the set of all the et, for t = 1, . . . , n, span, or constitute a basis for,
the full space En; see Exercise 2.20. Considered as an indicator variable, et

indexes the singleton subsample that contains only observation t.
Including et as a regressor leads to a regression of the form

y = Xβ + αet + u, (2.57)

and, by the FWL Theorem, this gives the same parameter estimates and
residuals as the FWL regression

Mty = MtXβ + residuals, (2.58)
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where Mt ≡ Met
= I − et(et

>et)−1et
> is the orthogonal projection off the

vector et. It is easy to see that Mty is just y with its tth component replaced
by 0. Since et

>et = 1, and since et
>y can easily be seen to be the tth component

of y,
Mty = y − etet

>y = y − ytet.

Thus yt is subtracted from y for the tth observation only. Similarly, MtX
is just X with its tth row replaced by zeros. Running regression (2.58) will
give the same parameter estimates as those that would be obtained if we
deleted observation t from the sample. Since the vector β̂ is defined exclusively
in terms of scalar products of the variables, replacing the tth elements of
these variables by 0 is tantamount to simply leaving observation t out when
computing those scalar products.

Let us denote by PZ and MZ , respectively, the orthogonal projections on to
and off S(X, et). The fitted values and residuals from regression (2.57) are
then given by

y = PZy + MZy = Xβ̂(t) + α̂et + MZy. (2.59)

Now premultiply (2.59) by PX to obtain

PXy = Xβ̂(t) + α̂PXet, (2.60)

where we have used the fact that MZPX = O, because MZ annihilates both
X and et. But PXy = Xβ̂, and so (2.60) gives

X(β̂(t) − β̂) = −α̂PXet. (2.61)

We can compute the difference between β̂(t) and β̂ from this if we can compute
the value of α̂.

In order to calculate α̂, we once again use the FWL Theorem, which tells us
that the estimate of α from (2.57) is the same as the estimate from the FWL
regression

MXy = α̂MXet + residuals.

Therefore, using (2.02) and the idempotency of MX,

α̂ =
et
>MXy

et
>MXet

. (2.62)

Now et
>MXy is the tth element of MXy, the vector of residuals from the

regression including all observations. We may denote this element as ût. In
like manner, et

>MXet, which is just a scalar, is the tth diagonal element
of MX. Substituting these into (2.62), we obtain

α̂ =
ût

1− ht
, (2.63)
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where ht denotes the tth diagonal element of PX, which is equal to 1 minus
the tth diagonal element of MX. The rather odd notation ht comes from the
fact that PX is sometimes referred to as the hat matrix, because the vector
of fitted values Xβ̂ = PXy is sometimes written as ŷ, and PX is therefore
said to “put a hat on” y.

Finally, if we premultiply (2.61) by (X>X)−1X> and use (2.63), we find that

β̂(t) − β̂ = −α̂(X>X)−1X>PXet =
−1
1− ht

(X>X)−1Xt
>ût. (2.64)

The second equality uses the facts that X>PX = X> and that the final factor
of et selects the tth column of X>, which is the transpose of the tth row, Xt.
Expression (2.64) makes it clear that, when either ût is large or ht is large, or
both, the effect of the tth observation on at least some elements of β̂ is likely
to be substantial. Such an observation is said to be influential.

From (2.64), it is evident that the influence of an observation depends on both
ût and ht. It will be greater if the observation has a large residual, which,
as we saw in Figure 2.14, is related to its y coordinate. On the other hand,
ht is related to the x coordinate of a point, which, as we also saw in the
figure, determines the leverage, or potential influence, of the corresponding
observation. We say that observations for which ht is large have high leverage
or are leverage points. A leverage point is not necessarily influential, but it
has the potential to be influential.

The Diagonal Elements of the Hat Matrix

Since the leverage of the tth observation depends on ht, the tth diagonal ele-
ment of the hat matrix, it is worth studying the properties of these diagonal
elements in a little more detail. We can express ht as

ht = et
>PXet = ‖PXet‖2. (2.65)

Since the rightmost expression here is a square, ht ≥ 0. Moreover, since
‖et‖ = 1, we obtain from (2.28) applied to et that ht = ‖PXet‖2 ≤ 1. Thus

0 ≤ ht ≤ 1. (2.66)

The geometrical reason for these bounds on the value of ht can be found in
Exercise 2.26.

The lower bound in (2.66) can be strengthened when there is a constant term.
In that case, none of the ht can be less than 1/n. This follows from (2.65),
because if X consisted only of a constant vector ι, et

>Pιet would equal 1/n.
If other regressors are present, then we have

1/n = ‖Pιet‖2 = ‖PιPXet‖2 ≤ ‖PXet‖2 = ht.
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Here we have used the fact that PιPX = Pι since ι is in S(X) by assumption,
and, for the inequality, we have used (2.28). Although ht cannot be 0 in normal
circumstances, there is a special case in which it equals 1. If one column of
X is the dummy variable et, ht = et

>PXet = et
>et = 1.

In a regression with n observations and k regressors, the average of the ht is
equal to k/n. In order to demonstrate this, we need to use some properties
of the trace of a square matrix. If A is an n × n matrix, its trace, denoted
Tr(A), is the sum of the elements on its principal diagonal. Thus

Tr(A) ≡
n∑

i=1

Aii.

A convenient property is that the trace of a product of two not necessarily
square matrices A and B is unaffected by the order in which the two matrices
are multiplied together. If the dimensions of A are n×m, then, in order for
the product AB to be square, those of B must be m×n. This implies further
that the product BA exists and is m×m. We have

Tr(AB) =
n∑

i=1

(AB)ii =
n∑

i=1

m∑

j=1

AijBji =
m∑

j=1

(BA)jj = Tr(BA). (2.67)

The result (2.67) can be extended. If we consider a (square) product of several
matrices, the trace is invariant under what is called a cyclic permutation of
the factors. Thus, as can be seen by successive applications of (2.67),

Tr(ABC) = Tr(CAB) = Tr(BCA). (2.68)

We now return to the ht. Their sum is

n∑
t=1

ht = Tr(PX) = Tr
(
X(X>X)−1X>)

= Tr
(
(X>X)−1X>X

)
= Tr(Ik) = k.

(2.69)

The first equality in the second line makes use of (2.68). Then, because we
are multiplying a k × k matrix by its inverse, we get a k × k identity matrix,
the trace of which is obviously just k. It follows from (2.69) that the average
of the ht equals k/n. When, for a given regressor matrix X, the diagonal
elements of PX are all close to their average value, no observation has very
much leverage. Such an X matrix is sometimes said to have a balanced design.
On the other hand, if some of the ht are much larger than k/n, and others
consequently smaller, the X matrix is said to have an unbalanced design.
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Figure 2.15 ht as a function of Xt

The ht tend to be larger for values of the regressors that are farther away
from their average over the sample. As an example, Figure 2.15 plots them
as a function of Xt for a particular sample of 100 observations for the model

yt = β1 + β2Xt + ut.

The elements Xt of the regressor are perfectly well behaved, being drawings
from the standard normal distribution. Although the average value of the ht

is 2/100 = 0.02, ht varies from 0.0100 for values of Xt near the sample mean to
0.0695 for the largest value of Xt, which is about 2.4 standard deviations above
the sample mean. Thus, even in this very typical case, some observations have
a great deal more leverage than others. Those observations with the greatest
amount of leverage are those for which xt is farthest from the sample mean,
in accordance with the intuition of Figure 2.14.

2.7 Final Remarks

In this chapter, we have discussed the numerical properties of OLS estimation
of linear regression models from a geometrical point of view. This perspective
often provides a much simpler way to understand such models than does a
purely algebraic approach. For example, the fact that certain matrices are
idempotent becomes quite clear as soon as one understands the notion of
an orthogonal projection. Most of the results discussed in this chapter are
thoroughly fundamental, and many of them will be used again and again
throughout the book. In particular, the FWL Theorem will turn out to be
extremely useful in many contexts.

The use of geometry as an aid to the understanding of linear regression has
a long history; see Herr (1980). One valuable reference on linear models that
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takes the geometric approach is Seber (1980). A good expository paper that
is reasonably accessible is Bryant (1984), and a detailed treatment is provided
by Ruud (2000).

It is strongly recommended that readers attempt the exercises which follow
this chapter before starting Chapter 3, in which we turn our attention to the
statistical properties of OLS estimation. Many of the results of this chapter
will be useful in establishing these properties, and the exercises are designed
to enhance understanding of these results.

2.8 Exercises

2.1 Consider two vectors x and y in E2. Let x = [x1
.... x2] and y = [y1

.... y2]. Show
trigonometrically that x>y ≡ x1y1 + x2y2 is equal to ‖x‖ ‖y‖ cos θ, where θ
is the angle between x and y.

2.2 A vector in En can be normalized by multiplying it by the reciprocal of its
norm. Show that, for any x ∈ En with x 6= 0, the norm of x/‖x‖ is 1.

Now consider two vectors x,y ∈ En. Compute the norm of the sum and of
the difference of x normalized and y normalized, that is, of

x

‖x‖ +
y

‖y‖ and
x

‖x‖ −
y

‖y‖ .

By using the fact that the norm of any nonzero vector is positive, prove the
Cauchy-Schwartz inequality (2.08):

|x>y| ≤ ‖x‖ ‖y‖. (2.08)

Show that this inequality becomes an equality when x and y are parallel.
Hint: Show first that x and y are parallel if and only if x/‖x‖ = ± y/‖y‖.

2.3 The triangle inequality states that, for x,y ∈ En,

‖x+ y‖ ≤ ‖x‖+ ‖y‖. (2.70)

Draw a 2--dimensional picture to illustrate this result. Prove the result alge-
braically by computing the squares of both sides of the above inequality, and
then using (2.08). In what circumstances will (2.70) hold with equality?

2.4 Suppose that x = [1.0
.... 1.5

.... 1.2
.... 0.7] and y = [3.2

.... 4.4
.... 2.5

.... 2.0]. What are
‖x‖, ‖y‖, and x>y? Use these quantities to calculate θ, the angle θ between
x and y, and cos θ.

2.5 Show explicitly that the left-hand sides of (2.11) and (2.12) are the same.
This can be done either by comparing typical elements or by using the results
in Section 2.3 on partitioned matrices.

2.6 Prove that, if the k columns of X are linearly independent, each vector z in
S(X) can be expressed asXb for one and only one k --vector b. Hint: Suppose
that there are two different vectors, b1 and b2, such that z = Xbi, i = 1, 2,
and show that this implies that the columns of X are linearly dependent.
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2.7 Consider the vectors x1 = [1
.... 2

.... 4], x2 = [2
.... 3

.... 5], and x3 = [3
.... 6

.... 12].
What is the dimension of the subspace that these vectors span?

2.8 Consider the example of the three vectors x1, x2, and x3 defined in (2.16).
Show that any vector z ≡ b1x1 + b2x2 in S(x1,x2) also belongs to S(x1,x3)
and S(x2,x3). Give explicit formulas for z as a linear combination of x1

and x3, and of x2 and x3.

2.9 Prove algebraically that PXMX = O. This is equation (2.26). Use only the
requirement (2.25) that PX and MX be complementary projections, and the
idempotency of PX.

2.10 Prove algebraically that equation (2.27), which is really Pythagoras’ Theorem
for linear regression, holds. Use the facts that PX and MX are symmetric,
idempotent, and orthogonal to each other.

2.11 Show algebraically that, if PX and MX are complementary orthogonal pro-
jections, then MX annihilates all vectors in S(X), and PX annihilates all
vectors in S⊥(X).

2.12 Consider the two regressions

y = β1x1 + β2x2 + β3x3 + u, and

y = α1z1 + α2z2 + α3z3 + u,

where z1 = x1 − 2x2, z2 = x2 + 4x3, and z3 = 2x1 − 3x2 + 5x3. Let
X = [x1 x2 x3] and Z = [z1 z2 z3]. Show that the columns of Z can be
expressed as linear combinations of the columns of X, that is, that Z = XA,
for some 3× 3 matrix A. Find the elements of this matrix A.

Show that the matrix A is invertible, by showing that the columns of X are
linear combinations of the columns of Z. Give the elements of A−1. Show
that the two regressions give the same fitted values and residuals.

Precisely how is the OLS estimate β̂1 related to the OLS estimates α̂i, for
i = 1, . . . , 3? Precisely how is α̂1 related to the β̂i, for i = 1, . . . , 3?

2.13 Let X be an n×k matrix of full rank. Consider the n×k matrix XA, where
A is a singular k × k matrix. Show that the columns of XA are linearly
dependent, and that S(XA) ⊂ S(X).

2.14 Use the result (2.36) to show that MXM1 = M1MX = MX, where X =
[X1 X2].

2.15 Consider the following linear regression:

y = X1β1 +X2β2 + u,

where y is n× 1, X1 is n× k1, and X2 is n× k2. Let β̂1 and β̂2 be the OLS
parameter estimates from running this regression.

Now consider the following regressions, all to be estimated by OLS:

y = X2β2 + u;a)

P1y = X2β2 + u;b)

P1y = P1X2β2 + u;c)

PXy = X1β1 +X2β2 + u;d)
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PXy = X2β2 + u;e)

M1y = X2β2 + u;f)

M1y = M1X2β2 + u;g)

M1y = X1β1 +M1X2β2 + u;h)

M1y = M1X1β1 +M1X2β2 + u;i)

PXy = M1X2β2 + u.j)

Here P1 projects orthogonally on to the span of X1, and M1 = I− P1. For
which of the above regressions will the estimates of β2 be the same as for the
original regression? Why? For which will the residuals be the same? Why?

2.16 Consider the linear regression

y = β1ι+X2β2 + u,

where ι is an n--vector of 1s, and X2 is an n× (k− 1) matrix of observations
on the remaining regressors. Show, using the FWL Theorem, that the OLS
estimators of β1 and β2 can be written as

[
β̂1

β̂2

]
=

[
n ι>X2

0 X2
>MιX2

]−1 [
ι>y

X2
>Mιy

]
,

where, as usual,Mι is the matrix that takes deviations from the sample mean.

2.17 Show, preferably using (2.36), that PX − P1 is an orthogonal projection
matrix. That is, show that PX − P1 is symmetric and idempotent. Show
further that

PX − P1 = PM1X2 ,

where PM1X2 is the projection on to the span of M1X2. This can be done
most easily by showing that any vector in S(M1X2) is invariant under the
action of PX −P1, and that any vector orthogonal to this span is annihilated
by PX − P1.

2.18 Let ι be a vector of 1s, and let X be an n×3 matrix, with full rank, of which
the first column is ι. What can you say about the matrix MιX? What can
you say about the matrix PιX? What is MιMX equal to? What is PιMX

equal to?

2.19 Express the four seasonal variables, si, i = 1, 2, 3, 4, defined in (2.47), as
functions of the constant ι and the three variables s′i, i = 1, 2, 3, defined
in (2.50).

2.20 Show that the full n--dimensional space En is the span of the set of unit basis
vectors et, t = 1, . . . , n, where all the components of et are zero except for
the tth, which is equal to 1.

2.21 The file tbrate.data contains data for 1950:1 to 1996:4 for three series: rt,
the interest rate on 90-day treasury bills, πt, the rate of inflation, and yt, the
logarithm of real GDP. For the period 1950:4 to 1996:4, run the regression

∆rt = β1 + β2πt−1 + β3∆yt−1 + β4∆rt−1 + β5∆rt−2 + ut, (2.71)
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where ∆ is the first-difference operator, defined so that ∆rt = rt− rt−1. Plot
the residuals and fitted values against time. Then regress the residuals on
the fitted values and on a constant. What do you learn from this second
regression? Now regress the fitted values on the residuals and on a constant.
What do you learn from this third regression?

2.22 For the same sample period, regress ∆rt on a constant, ∆yt−1, ∆rt−1, and
∆rt−2. Save the residuals from this regression, and call them êt. Then regress
πt−1 on a constant, ∆yt−1, ∆rt−1, and ∆rt−2. Save the residuals from this
regression, and call them v̂t. Now regress êt on v̂t. How are the estimated
coefficient and the residuals from this last regression related to anything that
you obtained when you estimated regression (2.71)?

2.23 Calculate the diagonal elements of the hat matrix for regression (2.71) and
use them to calculate a measure of leverage. Plot this measure against time.
On the basis of this plot, which observations seem to have unusually high
leverage?

2.24 Show that the tth residual from running regression (2.57) is 0. Use this fact
to demonstrate that, as a result of omitting observation t, the tth residual
from the regression y = Xβ + u changes by an amount

ût
ht

1− ht
.

2.25 Calculate a vector of “omit 1” residuals û(·) for regression (2.71). The tth ele-
ment of û(·) is the residual for the tth observation calculated from a regression
that uses data for every observation except the tth. Try to avoid running 185
regressions in order to do this! Regress û(·) on the ordinary residuals û. Is
the estimated coefficient roughly the size you expected it to be? Would it be
larger or smaller if you were to omit some of the high-leverage observations?

2.26 Show that the leverage measure ht is the square of the cosine of the angle
between the unit basis vector et and its projection on to the span S(X) of
the regressors.

2.27 Suppose the matrix X is 150 × 5 and has full rank. Let PX be the matrix
that projects on to S(X) and let MX = I−PX. What is Tr(PX)? What is
Tr(MX)? What would these be if X did not have full rank but instead had
rank 3?

2.28 Generate a figure like Figure 2.15 for yourself. Begin by drawing 100 observa-
tions of a regressor xt from the N(0, 1) distribution. Then compute and save
the ht for a regression of any regressand on a constant and xt. Plot the points
(xt, ht), and you should obtain a graph similar to the one in Figure 2.15.

Now add one more observation, x101. Start with x101 = x̄, the average value
of the xt, and then increase x101 progressively until x101 = x̄ + 20. For each
value of x101, compute the leverage measure h101. How does h101 change
as x101 gets larger? Why is this in accord with the result that ht = 1 if the
regressors include the dummy variable et?
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Chapter 3

The Statistical Properties of

Ordinary Least Squares

3.1 Introduction

In the previous chapter, we studied the numerical properties of ordinary least
squares estimation, properties that hold no matter how the data may have
been generated. In this chapter, we turn our attention to the statistical prop-
erties of OLS, ones that depend on how the data were actually generated.
These properties can never be shown to hold numerically for any actual data
set, but they can be proven to hold if we are willing to make certain as-
sumptions. Most of the properties that we will focus on concern the first two
moments of the least squares estimator.

In Section 1.5, we introduced the concept of a data-generating process, or
DGP. For any data set that we are trying to analyze, the DGP is simply
the mechanism that actually generated the data. Most real DGPs for econ-
omic data are probably very complicated, and economists do not pretend to
understand every detail of them. However, for the purpose of studying the sta-
tistical properties of estimators, it is almost always necessary to assume that
the DGP is quite simple. For instance, when we are studying the (multiple)
linear regression model

yt = Xtβ + ut, ut ∼ IID(0, σ2), (3.01)

we may wish to assume that the data were actually generated by the DGP

yt = Xtβ0 + ut, ut ∼ NID(0, σ2
0). (3.02)

The symbol “∼” in (3.01) and (3.02) means “is distributed as.” We intro-
duced the abbreviation IID, which means “independently and identically dis-
tributed,” in Section 1.3. In the model (3.01), the notation IID(0, σ2) means
that the ut are statistically independent and all follow the same distribution,
with mean 0 and variance σ2. Similarly, in the DGP (3.02), the notation
NID(0, σ2

0) means that the ut are normally , independently, and identically
distributed, with mean 0 and variance σ2

0 . In both cases, it is implicitly being
assumed that the distribution of ut is in no way dependent on Xt.
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88 The Statistical Properties of Ordinary Least Squares

The differences between the regression model (3.01) and the DGP (3.02) may
seem subtle, but they are important. A key feature of a DGP is that it
constitutes a complete specification, where that expression means, as in Sec-
tion 1.3, that enough information is provided for the DGP to be simulated on
a computer. For that reason, in (3.02) we must provide specific values for the
parameters β and σ2 (the zero subscripts on these parameters are intended
to remind us of this), and we must specify from what distribution the error
terms are to be drawn (here, the normal distribution).

A model is defined as a set of data-generating processes. Since a model is a
set, we will sometimes use the notation M to denote it. In the case of the
linear regression model (3.01), this set consists of all DGPs of the form (3.01)
in which the coefficient vector β takes some value in Rk, the variance σ2 is
some positive real number, and the distribution of ut varies over all possible
distributions that have mean 0 and variance σ2. Although the DGP (3.02)
evidently belongs to this set, it is considerably more restrictive.

The set of DGPs of the form (3.02) defines what is called the classical normal
linear model, where the name indicates that the error terms are normally
distributed. The model (3.01) is larger than the classical normal linear model,
because, although the former specifies the first two moments of the error
terms, and requires the error terms to be mutually independent, it says no
more about them, and in particular it does not require them to be normal.
All of the results we prove in this chapter, and many of those in the next,
apply to the linear regression model (3.01), with no normality assumption.
However, in order to obtain some of the results in the next two chapters, it
will be necessary to limit attention to the classical normal linear model.

For most of this chapter, we assume that whatever model we are studying,
the linear regression model or the classical normal linear model, is correctly
specified. By this, we mean that the DGP that actually generated our data
belongs to the model under study. A model is misspecified if that is not the
case. It is crucially important, when studying the properties of an estimation
procedure, to distinguish between properties which hold only when the model
is correctly specified, and properties, like those treated in the previous chapter,
which hold no matter what the DGP. We can talk about statistical properties
only if we specify the DGP.

In the remainder of this chapter, we study a number of the most important
statistical properties of ordinary least squares estimation, by which we mean
least squares estimation of linear regression models. In the next section, we
discuss the concept of bias and prove that, under certain conditions, β̂, the
OLS estimator of β, is unbiased. Then, in Section 3.3, we discuss the concept
of consistency and prove that, under considerably weaker conditions, β̂ is
consistent. In Section 3.4, we turn our attention to the covariance matrix
of β̂, and we discuss the concept of collinearity. This leads naturally to a
discussion of the efficiency of least squares estimation in Section 3.5, in which
we prove the famous Gauss-Markov Theorem. In Section 3.6, we discuss the
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estimation of σ2 and the relationship between error terms and least squares
residuals. Up to this point, we will assume that the DGP belongs to the
model being estimated. In Section 3.7, we relax this assumption and consider
the consequences of estimating a model that is misspecified in certain ways.
Finally, in Section 3.8, we discuss the adjusted R2 and other ways of measuring
how well a regression fits.

3.2 Are OLS Parameter Estimators Unbiased?

One of the statistical properties that we would like any estimator to have
is that it should be unbiased. Suppose that θ̂ is an estimator of some para-
meter θ, the true value of which is θ0. Then the bias of θ̂ is defined as E(θ̂)−θ0,
the expectation of θ̂ minus the true value of θ. If the bias of an estimator is
zero for every admissible value of θ0, then the estimator is said to be unbiased.
Otherwise, it is said to be biased. Intuitively, if we were to use an unbiased
estimator to calculate estimates for a very large number of samples, then the
average value of those estimates would tend to the quantity being estimated.
If their other statistical properties were the same, we would always prefer an
unbiased estimator to a biased one.

As we have seen, the linear regression model (3.01) can also be written, using
matrix notation, as

y = Xβ + u, u ∼ IID(0, σ2I), (3.03)

where y and u are n--vectors, X is an n× k matrix, and β is a k --vector. In
(3.03), the notation IID(0, σ2I) is just another way of saying that each element
of the vector u is independently and identically distributed with mean 0 and
variance σ2. This notation, which may seem a little strange at this point, is
convenient to use when the model is written in matrix notation. Its meaning
should become clear in Section 3.4. As we first saw in Section 1.5, the OLS
estimator of β can be written as

β̂ = (X>X)−1X>y. (3.04)

In order to see whether this estimator is biased, we need to replace y by
whatever it is equal to under the DGP that is assumed to have generated the
data. Since we wish to assume that the model (3.03) is correctly specified, we
suppose that the DGP is given by (3.03) with β = β0. Substituting this into
(3.04) yields

β̂ = (X>X)−1X>(Xβ0 + u)

= β0 + (X>X)−1X>u.
(3.05)

The expectation of the second line here is

E(β̂) = β0 + E
(
(X>X)−1X>u

)
. (3.06)
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It is obvious that β̂ will be unbiased if and only if the second term in (3.06) is
equal to a zero vector. What is not entirely obvious is just what assumptions
are needed to ensure that this condition will hold.

Assumptions about Error Terms and Regressors

In certain cases, it may be reasonable to treat the matrix X as nonstochastic,
or fixed. For example, this would certainly be a reasonable assumption to
make if the data pertained to an experiment, and the experimenter had chosen
the values of all the variables that enter into X before y was determined. In
this case, the matrix (X>X)−1X> is not random, and the second term in
(3.06) becomes

E
(
(X>X)−1X>u

)
= (X>X)−1X>E(u). (3.07)

If X really is fixed, it is perfectly valid to move the expectations operator
through the factor that depends on X, as we have done in (3.07). Then, if we
are willing to assume that E(u) = 0, we will obtain the result that the vector
on the right-hand side of (3.07) is a zero vector.

Unfortunately, the assumption that X is fixed, convenient though it may be
for showing that β̂ is unbiased, is frequently not a reasonable assumption
to make in applied econometric work. More commonly, at least some of the
columns of X correspond to variables that are no less random than y itself,
and it would often stretch credulity to treat them as fixed. Luckily, we can
still show that β̂ is unbiased in some quite reasonable circumstances without
making such a strong assumption.

A weaker assumption is that the explanatory variables which form the columns
of X are exogenous. The concept of exogeneity was introduced in Section 1.3.
When applied to the matrix X, it implies that any randomness in the DGP
that generated X is independent of the error terms u in the DGP for y. This
independence in turn implies that

E(u |X) = 0. (3.08)

In words, this says that the mean of the entire vector u, that is, of every one
of the ut, is zero conditional on the entire matrix X. See Section 1.2 for a
discussion of conditional expectations. Although condition (3.08) is weaker
than the condition of independence of X and u, it is convenient to refer to
(3.08) as an exogeneity assumption.

Given the exogeneity assumption (3.08), it is easy to show that β̂ is unbiased.
It is clear that

E
(
(X>X)−1X>u |X)

= 0, (3.09)

because the expectation of (X>X)−1X> conditional on X is just itself, and
the expectation of u conditional on X is assumed to be 0; see (1.17). Then,
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applying the Law of Iterated Expectations, we see that the unconditional
expectation of the left-hand side of (3.09) must be equal to the expectation
of the right-hand side, which is just 0.

Assumption (3.08) is perfectly reasonable in the context of some types of data.
In particular, suppose that a sample consists of cross-section data, in which
each observation might correspond to an individual firm, household, person,
or city. For many cross-section data sets, there may be no reason to believe
that ut is in any way related to the values of the regressors for any of the
observations. On the other hand, suppose that a sample consists of time-
series data, in which each observation might correspond to a year, quarter,
month, or day, as would be the case, for instance, if we wished to estimate a
consumption function, as in Chapter 1. Even if we are willing to assume that
ut is in no way related to current and past values of the regressors, it must
be related to future values if current values of the dependent variable affect
future values of some of the regressors. Thus, in the context of time-series
data, the exogeneity assumption (3.08) is a very strong one that we may often
not feel comfortable in making.

The assumption that we made in Section 1.3 about the error terms and the
explanatory variables, namely, that

E(ut |Xt) = 0, (3.10)

is substantially weaker than assumption (3.08), because (3.08) rules out the
possibility that the mean of ut may depend on the values of the regressors for
any observation, while (3.10) merely rules out the possibility that it may de-
pend on their values for the current observation. For reasons that will become
apparent in the next subsection, we refer to (3.10) as a predeterminedness
condition. Equivalently, we say that the regressors are predetermined with
respect to the error terms.

The OLS Estimator Can Be Biased

We have just seen that the OLS estimator β̂ is unbiased if we make assump-
tion (3.08) that the explanatory variables X are exogenous, but we remarked
that this assumption can sometimes be uncomfortably strong. If we are not
prepared to go beyond the predeterminedness assumption (3.10), which it is
rarely sensible to do if we are using time-series data, then we will find that β̂
is, in general, biased.

Many regression models for time-series data include one or more lagged vari-
ables among the regressors. The first lag of a time-series variable that takes
on the value zt at time t is the variable whose value at t is zt−1. Similarly,
the second lag of zt has value zt−2, and the pth lag has value zt−p. In some
models, lags of the dependent variable itself are used as regressors. Indeed,
in some cases, the only regressors, except perhaps for a constant term and
time trend or dummy variables, are lagged dependent variables. Such mod-
els are called autoregressive, because the conditional mean of the dependent
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variable depends on lagged values of the variable itself. A simple example of
an autoregressive model is

y = β1ι + β2y1 + u, u ∼ IID(0, σ2I). (3.11)

Here, as usual, ι is a vector of 1s, the vector y has typical element yt, the
dependent variable, and the vector y1 has typical element yt−1, the lagged
dependent variable. This model can also be written, in terms of a typical
observation, as

yt = β1 + β2yt−1 + ut, ut ∼ IID(0, σ2).

It is perfectly reasonable to assume that the predeterminedness condition
(3.10) holds for the model (3.11), because this condition amounts to saying
that E(ut) = 0 for every possible value of yt−1. The lagged dependent variable
yt−1 is then said to be predetermined with respect to the error term ut. Not
only is yt−1 realized before ut, but its realized value has no impact on the
expectation of ut. However, it is clear that the exogeneity assumption (3.08),
which would here require that E(u |y1) = 0, cannot possibly hold, because
yt−1 depends on ut−1, ut−2, and so on. Assumption (3.08) will evidently
fail to hold for any model in which the regression function includes a lagged
dependent variable.

To see the consequences of assumption (3.08) not holding, we use the FWL
Theorem to write out β̂2 explicitly as

β̂2 = (y1
>Mιy1)−1y1

>Mιy.

Here Mι denotes the projection matrix I−ι(ι>ι)−1ι>, which centers any vector
it multiplies; recall (2.32). If we replace y by β10ι+β20y1 +u, where β10 and
β20 are specific values of the parameters, and use the fact that Mι annihilates
the constant vector, we find that

β̂2 = (y1
>Mιy1)−1y1

>Mι(y1β20 + u)

= β20 + (y1
>Mιy1)−1y1

>Mιu.
(3.12)

This is evidently just a special case of (3.05).

It is clear that β̂2 will be unbiased if and only if the second term in the second
line of (3.12) has expectation zero. But this term does not have expectation
zero. Because y1 is stochastic, we cannot simply move the expectations op-
erator, as we did in (3.07), and then take the unconditional expectation of u.
Because E(u |y1) 6= 0, we also cannot take expectations conditional on y1,
in the way that we took expectations conditional on X in (3.09), and then
rely on the Law of Iterated Expectations. In fact, as readers are asked to
demonstrate in Exercise 3.1, the estimator β̂2 is biased.
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It seems reasonable that, if β̂2 is biased, so must be β̂1. The equivalent of the
second line of (3.12) is

β̂1 = β10 + (ι>My1ι)
−1ι>My1u, (3.13)

where the notation should be self-explanatory. Once again, because y1 de-
pends on u, we cannot employ the methods that we used in (3.07) or (3.09)
to prove that the second term on the right-hand side of (3.13) has mean zero.
In fact, it does not have mean zero, and β̂1 is consequently biased, as readers
are also asked to demonstrate in Exercise 3.1.

The problems we have just encountered when dealing with the autoregressive
model (3.11) will evidently affect every regression model with random regres-
sors for which the exogeneity assumption (3.08) does not hold. Thus, for all
such models, the least squares estimator of the parameters of the regression
function is biased. Assumption (3.08) cannot possibly hold when the regressor
matrix X contains lagged dependent variables, and it probably fails to hold
for most other models that involve time-series data.

3.3 Are OLS Parameter Estimators Consistent?

Unbiasedness is by no means the only desirable property that we would like
an estimator to possess. Another very important property is consistency. A
consistent estimator is one for which the estimate tends to the quantity being
estimated as the size of the sample tends to infinity. Thus, if the sample size
is large enough, we can be confident that the estimate will be close to the true
value. Happily, the least squares estimator β̂ will often be consistent even
when it is biased.

In order to define consistency, we have to specify what it means for the sam-
ple size n to tend to infinity or, in more compact notation, n → ∞. At first
sight, this may seem like a very odd notion. After all, any given data set
contains a fixed number of observations. Nevertheless, we can certainly imag-
ine simulating data and letting n become arbitrarily large. In the case of a
pure time-series model like (3.11), we can easily generate any sample size we
want, just by letting the simulations run on for long enough. In the case of
a model with cross-section data, we can pretend that the original sample is
taken from a population of infinite size, and we can imagine drawing more and
more observations from that population. Even in the case of a model with
fixed regressors, we can think of ways to make n tend to infinity. Suppose that
the original X matrix is of dimension m× k. Then we can create X matrices
of dimensions 2m×k, 3m×k, 4m×k, and so on, simply by stacking as many
copies of the original X matrix as we like. By simulating error vectors of the
appropriate length, we can then generate y vectors of any length n that is an
integer multiple of m. Thus, in all these cases, we can reasonably think of
letting n tend to infinity.
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Probability Limits

In order to say what happens to a stochastic quantity that depends on n
as n → ∞, we need to introduce the concept of a probability limit. The
probability limit, or plim for short, generalizes the ordinary concept of a limit
to quantities that are stochastic. If a(yn) is some vector function of the
random vector yn, and the plim of a(yn) as n →∞ is a0, we may write

plim
n→∞

a(yn) = a0. (3.14)

We have written yn here, instead of just y, to emphasize the fact that yn

is a vector of length n, and that n is not fixed. The superscript is often
omitted in practice. In econometrics, we are almost always interested in taking
probability limits as n →∞. Thus, when there can be no ambiguity, we will
often simply use notation like plim a(y) rather than more precise notation
like that of (3.14).

Formally, the random vector a(yn) tends in probability to the limiting random
vector a0 if, for all ε > 0,

lim
n→∞

Pr
(‖a(yn)− a0‖ < ε

)
= 1. (3.15)

Here ‖ · ‖ denotes the Euclidean norm of a vector (see Section 2.2), which
simplifies to the absolute value when its argument is a scalar. Condition
(3.15) says that, for any specified tolerance level ε, no matter how small, the
probability that the norm of the discrepancy between a(yn) and a0 will be
less than ε goes to unity as n →∞.

Although the probability limit a0 was defined above to be a random variable
(actually, a vector of random variables), it may in fact be an ordinary non-
random vector or scalar, in which case it is said to be nonstochastic. Many
of the plims that we will encounter in this book are in fact nonstochastic. A
simple example of a nonstochastic plim is the limit of the proportion of heads
in a series of independent tosses of an unbiased coin. Suppose that yt is a
random variable equal to 1 if the coin comes up heads, and equal to 0 if it
comes up tails. After n tosses, the proportion of heads is just

p(yn) ≡ 1−
n

n∑
t=1

yt.

If the coin really is unbiased, E(yt) = 1/2. Thus it should come as no surprise
to learn that plim p(yn) = 1/2. Proving this requires a certain amount of
effort, however, and we will therefore not attempt a proof here. For a detailed
discussion and proof, see Davidson and MacKinnon (1993, Section 4.2).

The coin-tossing example is really a special case of an extremely powerful
result in probability theory, which is called a law of large numbers, or LLN.
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Suppose that x̄ is the sample mean of xt, t = 1, . . . , n, a sequence of random
variables, each with expectation µ. Then, provided the xt are independent
(or at least, not too dependent), a law of large numbers would state that

plim
n→∞

x̄ = plim
n→∞

1−
n

n∑
t=1

xt = µ. (3.16)

In words, x̄ has a nonstochastic plim which is equal to the common expectation
of each of the xt.

It is not hard to see intuitively why (3.16) is true under certain conditions.
Suppose, for example, that the xt are IID, with variance σ2. Then we see at
once that

E(x̄) = 1−
n

n∑
t=1

E(xt) = 1−
n

n∑
t=1

µ = µ, and

Var(x̄) =
(

1−
n

)2 n∑
t=1

σ2 = 1−
n

σ2.

Thus x̄ has mean µ and a variance which tends to zero as n → ∞. In the
limit, we expect that, on account of the shrinking variance, x̄ will become a
nonstochastic quantity equal to its expectation µ. The law of large numbers
assures us that this is the case.

Another useful way to think about laws of large numbers is to note that, as
n → ∞, we are collecting more and more information about the mean of
the xt, with each individual observation providing a smaller and smaller frac-
tion of that information. Thus, eventually, the randomness in the individual
xt cancels out, and the sample mean x̄ converges to the population mean µ.
For this to happen, we need to make some assumption in order to prevent
any one of the xt from having too much impact on x̄. The assumption that
they are IID is sufficient for this. Alternatively, if they are not IID, we could
assume that the variance of each xt is greater than some finite nonzero lower
bound, but smaller than some finite upper bound. We also need to assume
that there is not too much dependence among the xt in order to ensure that
the random components of the individual xt really do cancel out.

There are actually many laws of large numbers, which differ principally in the
conditions that they impose on the random variables which are being averaged.
We will not attempt to prove any of these LLNs. Section 4.5 of Davidson and
MacKinnon (1993) provides a simple proof of a relatively elementary law of
large numbers. More advanced LLNs are discussed in Section 4.7 of that book,
and, in more detail, in Davidson (1994).

Probability limits have some very convenient properties. For example, sup-
pose that {xn}, n = 1, . . . ,∞, is a sequence of random variables which
has a nonstochastic plim x0 as n → ∞, and η(xn) is a smooth function
of xn. Then plim η(xn) = η(x0). This feature of plims is one that is em-
phatically not shared by expectations. When η(·) is a nonlinear function,
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E
(
η(x)

) 6= η
(
E(x)

)
. Thus, it is often very easy to calculate plims in circum-

stances where it would be difficult or impossible to calculate expectations.

However, working with plims can be a little bit tricky. The problem is that
many of the stochastic quantities we encounter in econometrics do not have
probability limits unless we divide them by n or, perhaps, by some power of n.
For example, consider the matrix X>X, which appears in the formula (3.04)
for β̂. Each element of this matrix is a scalar product of two of the columns
of X, that is, two n--vectors. Thus it is a sum of n numbers. As n →∞, we
would expect that, in most circumstances, such a sum would tend to infinity
as well. Therefore, the matrix X>X will generally not have a plim. However,
it is not at all unreasonable to assume that

plim
n→∞

1−
n
X>X = SX>X , (3.17)

where SX>X is a nonstochastic matrix with full rank k, since each element of
the matrix on the left-hand side of (3.17) is now an average of n numbers:

(
1−
n
X>X

)
ij

= 1−
n

n∑
t=1

XtiXtj .

In effect, when we write (3.17), we are implicitly making some assumption
sufficient for a LLN to hold for the sequences generated by the squares of
the regressors and their cross-products. Thus there should not be too much
dependence between XtiXtj and XsiXsj for s 6= t, and the variances of these
quantities should not differ too much as t and s vary.

The OLS Estimator is Consistent

We can now show that, under plausible assumptions, the least squares estima-
tor β̂ is consistent. When the DGP is a special case of the regression model
(3.03) that is being estimated, we saw in (3.05) that

β̂ = β0 + (X>X)−1X>u. (3.18)

To demonstrate that β̂ is consistent, we need to show that the second term
on the right-hand side here has a plim of zero. This term is the product of
two matrix expressions, (X>X)−1 and X>u. Neither X>X nor X>u has
a probability limit. However, we can divide both of these expressions by n
without changing the value of this term, since n · n−1 = 1. By doing so, we
convert them into quantities that, under reasonable assumptions, will have
nonstochastic plims. Thus the plim of the second term in (3.18) becomes

(
plim
n→∞

1−
n
X>X

)−1

plim
n→∞

1−
n
X>u =

(
SX>X

)−1plim
n→∞

1−
n
X>u = 0. (3.19)
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In writing the first equality here, we have assumed that (3.17) holds. To obtain
the second equality, we start with assumption (3.10), which can reasonably be
made even when there are lagged dependent variables among the regressors.
This assumption tells us that E(Xt

>ut |Xt) = 0, and the Law of Iterated
Expectations then tells us that E(Xt

>ut) = 0. Thus, assuming that we can
apply a law of large numbers,

plim
n→∞

1−
n
X>u = plim

n→∞
1−
n

n∑
t=1

Xt
>ut = 0.

Together with (3.18), (3.19) gives us the result that β̂ is consistent.

We have just seen that the OLS estimator β̂ is consistent under consider-
ably weaker assumptions about the relationship between the error terms and
the regressors than were needed to prove that it is unbiased; compare (3.10)
and (3.08). This may wrongly suggest that consistency is a weaker condition
than unbiasedness. Actually, it is neither weaker nor stronger. Consistency
and unbiasedness are simply different concepts. Sometimes, least squares
estimators may be biased but consistent, for example, in models where X
includes lagged dependent variables. In other circumstances, however, these
estimators may be unbiased but not consistent. For example, consider the
model

yt = β1 + β2
1−
t

+ ut, ut ∼ IID(0, σ2). (3.20)

Since both regressors here are nonstochastic, the least squares estimates β̂1

and β̂2 are clearly unbiased. However, it is easy to see that β̂2 is not consistent.
The problem is that, as n → ∞, each observation provides less and less
information about β2. This happens because the regressor 1/t tends to zero,
and hence varies less and less across observations as t becomes larger. As
a consequence, the matrix SX>X can be shown to be singular. Therefore,
equation (3.19) does not hold, and the second term on the right-hand side of
equation (3.18) does not have a probability limit of zero.

The model (3.20) is actually rather a curious one, since β̂1 is consistent even
though β̂2 is not. The reason β̂1 is consistent is that, as the sample size n
gets larger, we obtain an amount of information about β1 that is roughly
proportional to n. In contrast, because each successive observation gives us
less and less information about β2, β̂2 is not consistent.

An estimator that is not consistent is said to be inconsistent. There are
two types of inconsistency, which are actually quite different. If an unbiased
estimator, like β̂2 in the previous example, is inconsistent, it is so because
it does not tend to any nonstochastic probability limit. In contrast, many
inconsistent estimators do tend to nonstochastic probability limits, but they
tend to the wrong ones.

To illustrate the various types of inconsistency, and the relationship between
bias and inconsistency, imagine that we are trying to estimate the population
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mean, µ, from a sample of data yt, t = 1, . . . , n. A sensible estimator would
be the sample mean, ȳ. Under reasonable assumptions about the way the
yt are generated, ȳ will be unbiased and consistent. Three not very sensible
estimators are the following:

µ̂1 =
1

n + 1

n∑
t=1

yt,

µ̂2 =
1.01
n

n∑
t=1

yt, and

µ̂3 = 0.01y1 +
0.99
n− 1

n∑
t=2

yt.

The first of these estimators, µ̂1, is biased but consistent. It is evidently equal
to n/(n + 1) times ȳ. Thus its mean is

(
n/(n + 1)

)
µ, which tends to µ as

n →∞, and it will be consistent whenever ȳ is. The second estimator, µ̂2, is
clearly biased and inconsistent. Its mean is 1.01µ, since it is equal to 1.01 ȳ,
and it will actually tend to a plim of 1.01µ as n →∞. The third estimator, µ̂3,
is perhaps the most interesting. It is clearly unbiased, since it is a weighted
average of two estimators, y1 and the average of y2 through yn, each of which
is unbiased. The second of these two estimators is also consistent. However,
µ̂3 itself is not consistent, because it does not converge to a nonstochastic
plim. Instead, it converges to the random quantity 0.99µ + 0.01y1.

3.4 The Covariance Matrix of the OLS Parameter Estimates

Although it is valuable to know that the least squares estimator β̂ is either
unbiased or, under weaker conditions, consistent, this information by itself is
not very useful. If we are to interpret any given set of OLS parameter esti-
mates, we need to know, at least approximately, how β̂ is actually distributed.
For purposes of inference, the most important feature of the distribution of
any vector of parameter estimates is the matrix of its central second moments.
This matrix is the analog, for vector random variables, of the variance of a
scalar random variable. If b is any random vector, we will denote its matrix
of central second moments by Var(b), using the same notation that we would
use for a variance in the scalar case. Usage, perhaps somewhat illogically,
dictates that this matrix should be called the covariance matrix, although
the terms variance matrix and variance-covariance matrix are also sometimes
used. Whatever it is called, the covariance matrix is an extremely important
concept which comes up over and over again in econometrics.

The covariance matrix Var(b) of a random k --vector b, with typical element bi,
organizes all the central second moments of the bi into a k × k symmetric
matrix. The ith diagonal element of Var(b) is Var(bi), the variance of bi. The
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ij th off-diagonal element of Var(b) is Cov(bi, bj), the covariance of bi and bj .
The concept of covariance was introduced in Exercise 1.10. In terms of the
random variables bi and bj , the definition is

Cov(bi, bj) ≡ E
((

bi − E(bi)
)(

bj − E(bj)
))

. (3.21)

Many of the properties of covariance matrices follow immediately from (3.21).
For example, it is easy to see that, if i = j, Cov(bi, bj) = Var(bi). Moreover,
since from (3.21) it is obvious that Cov(bi, bj) = Cov(bj , bi), Var(b) must be a
symmetric matrix. The full covariance matrix Var(b) can be expressed readily
using matrix notation. It is just

Var(b) = E
((

b− E(b)
)(

b− E(b)
)>)

, (3.22)

as is obvious from (3.21). An important special case of (3.22) arises when
E(b) = 0. In this case, Var(b) = E(bb>).

The special case in which Var(b) is diagonal, so that all the covariances
are zero, is of particular interest. If bi and bj are statistically independent,
Cov(bi, bj) = 0; see Exercise 1.11. The converse is not true, however. It is per-
fectly possible for two random variables that are not statistically independent
to have covariance 0; for an extreme example of this, see Exercise 1.12.

The correlation between bi and bj is

ρ(bi, bj) ≡ Cov(bi, bj)(
Var(bi)Var(bj)

)1/2
. (3.23)

It is often useful to think in terms of correlations rather than covariances,
because, according to the result of Exercise 3.6, the former always lie between
−1 and 1. We can arrange the correlations between all the elements of b
into a symmetric matrix called the correlation matrix. It is clear from (3.23)
that all the elements on the principal diagonal of this matrix will be 1. This
demonstrates that the correlation of any random variable with itself equals 1.

In addition to being symmetric, Var(b) must be a positive semidefinite matrix;
see Exercise 3.5. In most cases, covariance matrices and correlation matrices
are positive definite rather than positive semidefinite, and their properties
depend crucially on this fact.

Positive Definite Matrices

A k × k symmetric matrix A is said to be positive definite if, for all nonzero
k --vectors x, the matrix product x>Ax, which is just a scalar, is positive. The
quantity x>Ax is called a quadratic form. A quadratic form always involves
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a k --vector, in this case x, and a k× k matrix, in this case A. By the rules of
matrix multiplication,

x>Ax =
k∑

i=1

k∑

j=1

xixjAij . (3.24)

If this quadratic form can take on zero values but not negative values, the
matrix A is said to be positive semidefinite.

Any matrix of the form B>B is positive semidefinite. To see this, observe
that B>B is symmetric and that, for any nonzero x,

x>B>Bx = (Bx)>(Bx) = ‖Bx‖2 ≥ 0. (3.25)

This result can hold with equality only if Bx = 0. But, in that case, since
x 6= 0, the columns of B are linearly dependent. We express this circumstance
by saying that B does not have full column rank. Note that B can have full
rank but not full column rank if B has fewer rows than columns, in which case
the maximum possible rank equals the number of rows. However, a matrix
with full column rank necessarily also has full rank. When B does have full
column rank, it follows from (3.25) that B>B is positive definite. Similarly, if
A is positive definite, then any matrix of the form B>AB is positive definite
if B has full column rank and positive semidefinite otherwise.

It is easy to see that the diagonal elements of a positive definite matrix must all
be positive. Suppose this were not the case and that, say, A22 were negative.
Then, if we chose x to be the vector e2, that is, a vector with 1 as its second
element and all other elements equal to 0 (see Section 2.6), we could make
x>Ax < 0. From (3.24), the quadratic form would just be e2

>Ae2 = A22 < 0.
For a positive semidefinite matrix, the diagonal elements may be 0. Unlike
the diagonal elements, the off-diagonal elements of A may be of either sign.

A particularly simple example of a positive definite matrix is the identity
matrix, I. Because all the off-diagonal elements are zero, (3.24) tells us that
a quadratic form in I is

x>Ix =
k∑

i=1

x2
i ,

which is certainly positive for all nonzero vectors x. The identity matrix was
used in (3.03) in a notation that may not have been clear at the time. There
we specified that u ∼ IID(0, σ2I). This is just a compact way of saying that
the vector of error terms u is assumed to have mean vector 0 and covariance
matrix σ2I.

A positive definite matrix cannot be singular, because, if A is singular, there
must exist a nonzero x such that Ax = 0. But then x>Ax = 0 as well, which
means that A is not positive definite. Thus the inverse of a positive definite
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matrix always exists. It too is a positive definite matrix, as readers are asked
to show in Exercise 3.7.

There is a sort of converse of the result that any matrix of the form B>B,
where B has full column rank, is positive definite. It is that, if A is a symmet-
ric positive definite k×k matrix, there always exist full-rank k×k matrices B
such that A = B>B. For any given A, such a B is not unique. In particular,
B can be chosen to be symmetric, but it can also be chosen to be upper or
lower triangular. Details of a simple algorithm (Crout’s algorithm) for finding
a triangular B can be found in Press et al. (1992a, 1992b).

The OLS Covariance Matrix

The notation we used in the specification (3.03) of the linear regression model
can now be understood in terms of the covariance matrix of the error terms,
or the error covariance matrix. If the error terms are IID, they all have the
same variance σ2, and the covariance of any pair of them is zero. Thus the
covariance matrix of the vector u is σ2I, and we have

Var(u) = E(uu>) = σ2I. (3.26)

Notice that this result does not require the error terms to be independent. It
is required only that they all have the same variance and that the covariance
of each pair of error terms is zero.

If we assume that X is exogenous, we can now calculate the covariance matrix
of β̂ in terms of the error covariance matrix (3.26). To do this, we need to
multiply the vector β̂ − β0 by itself transposed. From (3.05), we know that

β̂ − β0 = (X>X)−1X>u.

By (3.22), under the assumption that β̂ is unbiased, Var(β̂) is the expectation
of the k × k matrix

(β̂ − β0)(β̂ − β0)>= (X>X)−1X>uu>X(X>X)−1. (3.27)

Taking this expectation, conditional on X, and using (3.26) with the specific
value σ2

0 for the covariance matrix of the error terms, yields

(X>X)−1X>E(uu>)X(X>X)−1 = (X>X)−1X>σ2
0 IX(X>X)−1

= σ2
0(X>X)−1X>X(X>X)−1

= σ2
0(X>X)−1.

Thus we conclude that

Var(β̂) = σ2
0(X>X)−1. (3.28)

This is the standard result for the covariance matrix of β̂ under the assumption
that the data are generated by (3.01) and that β̂ is an unbiased estimator.
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Precision of the Least Squares Estimates

Now that we have an expression for Var(β̂), we can investigate what deter-
mines the precision of the least squares coefficient estimates β̂. There are
really only three things that matter. The first of these is σ2

0 , the true variance
of the error terms. Not surprisingly, Var(β̂) is proportional to σ2

0 . The more
random variation there is in the error terms, the more random variation there
is in the parameter estimates.

The second thing that affects the precision of β̂ is the sample size, n. It is
illuminating to rewrite (3.28) as

Var(β̂) =
(

1−
n

σ2
0

)(
1−
n

X>X
)−1

. (3.29)

If we make the assumption (3.17), the second factor on the right-hand side of
(3.29) will not vary much with the sample size n, at least not if n is reasonably
large. In that case, the right-hand side of (3.29) will be roughly proportional
to 1/n , because the first factor is precisely proportional to 1/n. Thus, if we
were to double the sample size, we would expect the variance of β̂ to be
roughly halved and the standard errors of the individual β̂i to be divided
by
√

2.

As an example, suppose that we are estimating a regression model with just a
constant term. We can write the model as y = ιβ1+u, where ι is an n--vector
of ones. Plugging in ι for X in (3.04) and (3.28), we find that

β̂1 = (ι>ι)−1ι>y = 1−
n

n∑
t=1

yt, and

Var(β̂1) = σ2
0(ι>ι)−1 = 1−

n
σ2

0 .

Thus, in this particularly simple case, the variance of the least squares esti-
mator is exactly proportional to 1/n .

The third thing that affects the precision of β̂ is the matrix X. Suppose that
we are interested in a particular coefficient which, without loss of generality,
we may call β1. Then, if β2 denotes the (k − 1)--vector of the remaining
coefficients, we can rewrite the regression model (3.03) as

y = x1β1 + X2β2 + u, (3.30)

where X has been partitioned into x1 and X2 to conform with the partition
of β. By the FWL Theorem, regression (3.30) will yield the same estimate of
β1 as the FWL regression

M2y = M2x1β1 + residuals,
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where, as in Section 2.4, M2 ≡ I−X2(X2
>X2)−1X2

>. This estimate is

β̂1 =
x1
>M2y

x1
>M2x1

,

and, by a calculation similar to that leading to (3.28), its variance is

σ2
0

(
x1
>M2x1

)−1 =
σ2

0

x1
>M2x1

. (3.31)

Thus Var(β̂1) is equal to the variance of the error terms divided by the squared
length of the vector M2x1.

The intuition behind (3.31) is simple. How much information the sample gives
us about β1 is proportional to the squared Euclidean length of the vector
M2x1, which is the denominator of the right-hand side of (3.31). When
‖M2x1‖ is big, either because n is large or because at least some elements of
M2x1 are large, β̂1 will be relatively precise. When ‖M2x1‖ is small, either
because n is small or because all the elements of M2x1 are small, β̂1 will be
relatively imprecise.

The squared Euclidean length of the vector M2x1 is just the sum of squared
residuals from the regression

x1 = X2c + residuals. (3.32)

Thus the variance of β̂1, expression (3.31), is proportional to the inverse of the
sum of squared residuals from regression (3.32). When x1 is well explained
by the other columns of X, this SSR will be small, and the variance of β̂1 will
consequently be large. When x1 is not well explained by the other columns
of X, this SSR will be large, and the variance of β̂1 will consequently be small.

As the above discussion makes clear, the precision with which β1 is estimated
depends on X2 just as much as it depends on x1. Sometimes, if we just
regress y on a constant and x1, we may obtain what seems to be a very
precise estimate of β1, but if we then include some additional regressors, the
estimate becomes much less precise. The reason for this is that the additional
regressors do a much better job of explaining x1 in regression (3.32) than does
a constant alone. As a consequence, the length of M2x1 is much less than the
length of Mιx1. This type of situation is sometimes referred to as collinearity,
or multicollinearity, and the regressor x1 is said to be collinear with some of
the other regressors. This terminology is not very satisfactory, since, if a
regressor were collinear with other regressors in the usual mathematical sense
of the term, the regressors would be linearly dependent. It would be better to
speak of approximate collinearity, although econometricians seldom bother
with this nicety. Collinearity can cause difficulties for applied econometric
work, but these difficulties are essentially the same as the ones caused by
having a sample size that is too small. In either case, the data simply do not
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contain enough information to allow us to obtain precise estimates of all the
coefficients.

The covariance matrix of β̂, expression (3.28), tells us all that we can possibly
know about the second moments of β̂. In practice, of course, we will rarely
know (3.28), but we can estimate it by using an estimate of σ2

0 . How to
obtain such an estimate will be discussed in Section 3.6. Using this estimated
covariance matrix, we can then, if we are willing to make some more or less
strong assumptions, make exact or approximate inferences about the true
parameter vector β0. Just how we can do this will be discussed at length in
Chapters 4 and 5.

Linear Functions of Parameter Estimates

The covariance matrix of β̂ can be used to calculate the variance of any linear
(strictly speaking, affine) function of β̂. Suppose that we are interested in
the variance of γ̂, where γ = w>β, γ̂ = w>β̂, and w is a k --vector of known
coefficients. By choosing w appropriately, we can make γ equal to any one
of the βi, or to the sum of the βi, or to any linear combination of the βi in
which we might be interested. For example, if γ = 3β1 − β4, w would be a
vector with 3 as the first element, −1 as the fourth element, and 0 for all the
other elements.

It is easy to show that

Var(γ̂) = w>Var(β̂)w = σ2
0 w>(X>X)−1w. (3.33)

This result can be obtained as follows. By (3.22),

Var(w>β̂ ) = E
(
w>(β̂ − β0)(β̂ − β0)>w

)

= w>E
(
(β̂ − β0)(β̂ − β0)>

)
w

= w>
(
σ2

0(X>X)−1
)
w,

from which (3.33) follows immediately. Notice that, in general, the variance
of γ̂ depends on every element of the covariance matrix of β̂; this is made
explicit in expression (3.68), which readers are asked to derive in Exercise 3.10.
Of course, if some elements of w are equal to 0, Var(γ̂) will not depend on
the corresponding rows and columns of σ2

0(X>X)−1.

It may be illuminating to consider the special case used as an example above,
in which γ = 3β1 − β4. In this case, the result (3.33) implies that

Var(γ̂) = w2
1 Var(β̂1) + w2

4 Var(β̂4) + 2w1w4Cov(β̂1, β̂4)

= 9Var(β̂1) + Var(β̂4)− 6Cov(β̂1, β̂4).

Notice that the variance of γ̂ depends on the covariance of β̂1 and β̂4 as well
as on their variances. If this covariance is large and positive, Var(γ̂) may be
small, even if Var(β̂1) and Var(β̂4) are both large.
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The Variance of Forecast Errors

The variance of the error associated with a regression-based forecast can be
obtained by using the result (3.33). Suppose we have computed a vector of
OLS estimates β̂ and wish to use them to forecast ys, for s not in 1, . . . , n,
using an observed vector of regressors Xs. Then the forecast of ys will simply
be Xsβ̂. For simplicity, let us assume that β̂ is unbiased, which implies that
the forecast itself is unbiased. Therefore, the forecast error has mean zero,
and its variance is

E(ys −Xsβ̂)2 = E(Xsβ0 + us −Xsβ̂)2

= E(u2
s) + E(Xsβ0 −Xsβ̂)2

= σ2
0 + Var(Xsβ̂).

(3.34)

The first equality here depends on the assumption that the regression model
is correctly specified, the second depends on the assumption that the error
terms are serially uncorrelated, which ensures that E(usXsβ̂) = 0, and the
third uses the fact that β̂ is assumed to be unbiased.

Using the result (3.33), and recalling that Xs is a row vector, we see that the
last line of (3.34) is equal to

σ2
0 + XsVar(β̂)Xs

>= σ2
0 + σ2

0Xs(X>X)−1Xs
>. (3.35)

Thus we find that the variance of the forecast error is the sum of two terms.
The first term is simply the variance of the error term us. If we knew the true
value of β, this would be the variance of the forecast error. The second term,
which makes the forecast error larger than σ2

0 , arises because we are using the
estimate β̂ instead of the true parameter vector β0. It can be thought of as
the penalty we pay for our ignorance of β. Of course, the result (3.35) can
easily be generalized to the case in which we are forecasting a vector of values
of the dependent variable; see Exercise 3.16.

3.5 Efficiency of the OLS Estimator

One of the reasons for the popularity of ordinary least squares is that, under
certain conditions, the OLS estimator can be shown to be more efficient than
many competing estimators. One estimator is said to be more efficient than
another if, on average, the former yields more accurate estimates than the
latter. The reason for the terminology is that an estimator which yields more
accurate estimates can be thought of as utilizing the information available in
the sample more efficiently.

For a scalar parameter, the accuracy of an estimator is often taken to be
proportional to the inverse of its variance, and this is sometimes called the
precision of the estimator. For an estimate of a parameter vector, the precision
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matrix is defined as the inverse of the covariance matrix of the estimator. For
scalar parameters, one estimator of the parameter is said to be more efficient
than another if the precision of the former is larger than that of the latter.
For parameter vectors, there is a natural way to generalize this idea. Suppose
that β̂ and β̃ are two unbiased estimators of a k --vector of parameters β, with
covariance matrices Var(β̂) and Var(β̃), respectively. Then, if efficiency is
measured in terms of precision, β̂ is said to be more efficient than β̃ if and
only if the difference between their precision matrices, Var(β̂)−1 −Var(β̃)−1,
is a nonzero positive semidefinite matrix.

Since it is more usual to work in terms of variance than precision, it is conven-
ient to express the efficiency condition directly in terms of covariance matrices.
As readers are asked to show in Exercise 3.8, if A and B are positive definite
matrices of the same dimensions, then the matrix A−B is positive semidef-
inite if and only if B−1 − A−1 is positive semidefinite. Thus the efficiency
condition expressed above in terms of precision matrices is equivalent to say-
ing that β̂ is more efficient than β̃ if and only if Var(β̃)−Var(β̂) is a nonzero
positive semidefinite matrix.

If β̂ is more efficient than β̃ in this sense, then every individual parameter in
the vector β, and every linear combination of those parameters, is estimated
at least as efficiently by using β̂ as by using β̃. Consider an arbitrary linear
combination of the parameters in β, say γ = w>β, for any k --vector w that
we choose. As we saw in the preceding section, Var(γ̂) = w>Var(β̂)w, and
similarly for Var(γ̃). Therefore, the difference between Var(γ̃) and Var(γ̂) is

w>Var(β̃)w −w>Var(β̂)w = w>
(
Var(β̃)−Var(β̂)

)
w. (3.36)

The right-hand side of (3.36) must be either positive or zero whenever the
matrix Var(β̃)−Var(β̂) is positive semidefinite. Thus, if β̂ is a more efficient
estimator than β̃, we can be sure that γ̂ will be estimated with less variance
than γ̃. In practice, when one estimator is more efficient than another, the dif-
ference between the covariance matrices is very often positive definite. When
that is the case, every parameter or linear combination of parameters will be
estimated more efficiently using β̂ than using β̃.

We now let β̂, as usual, denote the vector of OLS parameter estimates (3.04).
As we are about to show, this estimator is more efficient than any other
linear unbiased estimator. In section 3.3, we discussed what it means for an
estimator to be unbiased, but we have not yet discussed what it means for
an estimator to be linear. It simply means that we can write the estimator
as a linear (affine) function of y, the vector of observations on the dependent
variable. It is clear that β̂ itself is a linear estimator, because it is equal to
the matrix (X>X)−1X> times the vector y.

If β̃ now denotes any linear estimator that is not the OLS estimator, we can
always write

β̃ = Ay = (X>X)−1X>y + Cy, (3.37)
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where A and C are k×n matrices that depend on X. The first equality here
just says that β̃ is a linear estimator. To obtain the second equality, we make
the definition

C ≡ A− (X>X)−1X>. (3.38)

So far, least squares is the only estimator for linear regression models that
we have encountered. Thus it may be difficult to imagine what kind of esti-
mator β̃ might be. In fact, there are many estimators of this type, including
generalized least squares estimators (Chapter 7) and instrumental variables
estimators (Chapter 8) An alternative way of writing the class of linear unbi-
ased estimators is explored in Exercise 3.17.

The principal theoretical result on the efficiency of the OLS estimator is called
the Gauss-Markov Theorem. An informal way of stating this theorem is to
say that β̂ is the best linear unbiased estimator, or BLUE for short. In other
words, the OLS estimator is more efficient than any other linear unbiased
estimator.

Theorem 3.1. (Gauss-Markov Theorem)

If it is assumed that E(u |X) = 0 and E(uu>|X) = σ2I in the
linear regression model (3.03), then the OLS estimator β̂ is more
efficient than any other linear unbiased estimator β̃, in the sense
that Var(β̃)−Var(β̂) is a positive semidefinite matrix.

Proof: We assume that the DGP is a special case of (3.03), with parameters
β0 and σ2

0 . Substituting for y in (3.37), we find that

β̃ = A(Xβ0 + u) = AXβ0 + Au. (3.39)

Since we want β̃ to be unbiased, we require that the expectation of the right-
most expression in (3.39), conditional on X, should be β0. The second term in
that expression has conditional mean 0, and so the first term must have con-
ditional mean β0. This will be the case for all β0 if and only if AX = I, the
k × k identity matrix. From (3.38), this condition is equivalent to CX = O.
Thus requiring β̃ to be unbiased imposes a strong condition on the matrix C.

The unbiasedness condition that CX = O implies that Cy = Cu. Since,
from (3.37), Cy = β̃ − β̂, this makes it clear that β̃ − β̂ has conditional mean
zero. The unbiasedness condition also implies that the covariance matrix of
β̃ − β̂ and β̂ is a zero matrix. To see this, observe that

E
(
(β̂ − β0)(β̃ − β̂)>

)
= E

(
(X>X)−1X>uu>C>)

= (X>X)−1X>σ2
0 IC>

= σ2
0(X>X)−1X>C>= O.

(3.40)

Consequently, equation (3.37) says that the unbiased linear estimator β̃ is
equal to the least squares estimator β̂ plus a random component Cy which
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has mean zero and is uncorrelated with β̂. The random component simply
adds noise to the efficient estimator β̂. This makes it clear that β̂ is more
efficient than β̃. To complete the proof, we note that

Var(β̃) = Var
(
β̂ + (β̃ − β̂)

)

= Var
(
β̂ + Cy

)

= Var(β̂) + Var(Cy),

(3.41)

because, from (3.40), the covariance of β̂ and Cy is zero. Thus the difference
between Var(β̃) and Var(β̂) is Var(Cy). Since it is a covariance matrix, this
difference is necessarily positive semidefinite.

We will encounter many cases in which an inefficient estimator is equal to
an efficient estimator plus a random variable that has mean zero and is un-
correlated with the efficient estimator. The zero correlation ensures that the
covariance matrix of the inefficient estimator is equal to the covariance matrix
of the efficient estimator plus another matrix that is positive semidefinite, as
in the last line of (3.41). If the correlation were not zero, this sort of proof
would not work. Observe that, because everything is done in terms of second
moments, the Gauss-Markov Theorem does not require any assumption about
the normality of the error terms.

The Gauss-Markov Theorem that the OLS estimator is BLUE is one of the
most famous results in statistics. However, it is important to keep in mind
the limitations of this theorem. The theorem applies only to a correctly speci-
fied model with error terms that are homoskedastic and serially uncorrelated.
Moreover, it does not say that the OLS estimator β̂ is more efficient than
every imaginable estimator. Estimators which are nonlinear and/or biased
may well perform better than ordinary least squares.

3.6 Residuals and Error Terms

The vector of least squares residuals, û ≡ y−Xβ̂, is easily calculated once we
have obtained β̂. The numerical properties of û were discussed in Section 2.3.
These properties include the fact that û is orthogonal to Xβ̂ and to every
vector that lies in S(X). In this section, we turn our attention to the statistical
properties of û as an estimator of u. These properties are very important,
because we will want to use û for a number of purposes. In particular, we
will want to use it to estimate σ2, the variance of the error terms. We need
an estimate of σ2 if we are to obtain an estimate of the covariance matrix
of β̂. As we will see in later chapters, the residuals can also be used to test
some of the strong assumptions that are often made about the distribution
of the error terms and to implement more sophisticated estimation methods
that require weaker assumptions.
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The consistency of β̂ implies that û → u as n → ∞, but the finite-sample
properties of û differ from those of u. As we saw in Section 2.3, the vector of
residuals û is what remains after we project the regressand y off S(X). If we
assume that the DGP belongs to the model we are estimating, as the DGP
(3.02) belongs to the model (3.01), then

MXy = MXXβ0 + MXu = MXu.

The first term in the middle expression here vanishes because MX annihilates
everything that lies in S(X). The statistical properties of û as an estimator
of u follow directly from the fact that û = MXu when the model (3.01) is
correctly specified.

Each of the residuals is equal to a linear combination of every one of the
error terms. Consider a single row of the matrix product û = MXu. Since
the product has dimensions n × 1, this row has just one element, and this
element is one of the residuals. Recalling the result on partitioned matrices in
Exercise 1.14, which allows us to select rows of a matrix product by selecting
that row of the leftmost factor, we can write the tth residual as

ût = ut −Xt(X>X)−1X>u

= ut −
n∑

s=1

Xt(X>X)−1Xs
>us. (3.42)

Thus, even if each of the error terms ut is independent of all the other error
terms, as we have been assuming, each of the ût will not be independent of
all the other residuals. In general, there will be some dependence between
every pair of residuals. However, this dependence will generally diminish as
the sample size n increases.

Let us now assume that E(u |X) = 0. This is assumption (3.08), which we
made in Section 3.2 in order to prove that β̂ is unbiased. According to this
assumption, E(ut |X) = 0 for all t. All the expectations we will take in the
remainder of this section will be conditional on X. Since, by (3.42), ût is
just a linear combination of all the ut, the expectation of ût conditional on
X must be zero. Thus, in this respect, the residuals ût behave just like the
error terms ut.

In other respects, however, the residuals do not have the same properties as
the error terms. Consider Var(ût), the variance of ût. Since E(ût) = 0, this
variance is just E(û2

t ). As we saw in Section 2.3, the Euclidean length of the
vector of least squares residuals, û, is always smaller than that of the vector of
residuals evaluated at any other value, u(β). In particular, û must be shorter
than the vector of error terms u = u(β0). Thus we know that ‖û‖2 ≤ ‖u‖2.
This implies that E

(‖û‖2) ≤ E
(‖u‖2). If, as usual, we assume that the error
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variance is σ2
0 under the true DGP, we see that

n∑
t=1

Var(ût) =
n∑

t=1

E(û2
t ) = E

( n∑
t=1

û2
t

)
= E

(‖û‖2)

≤ E
(‖u‖2) = E

( n∑
t=1

u2
t

)
=

n∑
t=1

E(u2
t ) = nσ2

0 .

This suggests that, at least for most observations, the variance of ût must
be less than σ2

0 . In fact, we will see that Var(ût) is less than σ2
0 for every

observation.

The easiest way to calculate the variance of ût is to calculate the covariance
matrix of the entire vector û:

Var(û) = Var(MXu) = E(MXuu>MX)

= MXE(uu>)MX = MXVar(u)MX

= MX(σ2
0I)MX = σ2

0MXMX = σ2
0MX .

(3.43)

The second equality in the first line here uses the fact that MXu has mean 0.
The third equality in the last line uses the fact that MX is idempotent. From
the result (3.43), we see immediately that, in general, E(ûtûs) 6= 0 for t 6= s.
Thus, even though the original error terms are assumed to be uncorrelated,
the residuals will not be uncorrelated.

From (3.43), it can also be seen that the residuals will not have constant
variance, and that this variance will always be smaller than σ2

0 . Recall from
Section 2.6 that ht denotes the tth diagonal element of the projection matrix
PX. Thus a typical diagonal element of MX is 1 − ht. Therefore, it follows
from (3.43) that

Var(ût) = E(û2
t ) = (1− ht)σ2

0 . (3.44)

Since 0 ≤ 1 − ht < 1, (3.44) implies that E(û2
t ) will always be smaller than

σ2
0 . Just how much smaller will depend on ht. It is clear that high-leverage

observations, for which ht is relatively large, will have residuals with smaller
variance than low-leverage observations, for which ht is relatively small. This
makes sense, since high-leverage observations have more effect on the para-
meter values. As a consequence, the residuals for high-leverage observations
tend to be shrunk more, relative to the error terms, than the residuals for
low-leverage observations.

Estimating the Variance of the Error Terms

The method of least squares provides estimates of the regression coefficients,
but it does not directly provide an estimate of σ2, the variance of the error
terms. The method of moments suggests that we can estimate σ2 by using the
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corresponding sample moment. If we actually observed the ut, this sample
moment would be

1−
n

n∑
t=1

u2
t . (3.45)

We do not observe the ut, but we do observe the ût. Thus the simplest possible
MM estimator is

σ̂2 ≡ 1−
n

n∑
t=1

û2
t . (3.46)

This estimator is just the average of n squared residuals. It can be shown to
be consistent; see Exercise 3.13. However, because each squared residual has
expectation less than σ2

0 , by (3.44), σ̂2 must be biased downward.

It is easy to calculate the bias of σ̂2. We saw in Section 2.6 that
∑n

t=1 ht = k.
Therefore, from (3.44) and (3.46),

E(σ̂2) = 1−
n

n∑
t=1

E(û2
t ) = 1−

n

n∑
t=1

(1− ht)σ2
0 =

n− k

n
σ2

0 . (3.47)

Since û = MXu and MX is idempotent, the sum of squared residuals is just
u>MXu. The result (3.47) implies that

E
(
u>MXu

)
= E

(
SSR(β̂)

)
= E

( n∑
t=1

û2
t

)
= (n− k)σ2

0 . (3.48)

Readers are asked to show this in a different way in Exercise 3.14. Notice,
from (3.48), that adding one more regressor has exactly the same effect on
the expectation of the SSR as taking away one observation.

The result (3.47) suggests another MM estimator which will be unbiased:

s2 ≡ 1
n− k

n∑
t=1

û2
t . (3.49)

The only difference between σ̂2 and s2 is that the former divides the SSR by n
and the latter divides it by n−k. As a result, s2 will be unbiased whenever β̂
is. Ideally, if we were able to observe the error terms, our MM estimator would
be (3.45), which would be unbiased. When we replace the error terms ut by
the residuals ût, we introduce a downward bias. Dividing by n− k instead of
by n eliminates this bias.

Virtually all OLS regression programs report s2 as the estimated variance of
the error terms. However, it is important to remember that, even though s2

provides an unbiased estimate of σ2, s itself does not provide an unbiased
estimate of σ, because taking the square root of s2 is a nonlinear operation. If
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we replace σ2
0 by s2 in expression (3.28), we can obtain an unbiased estimate

of Var(β̂),
V̂ar(β̂) = s2(X>X)−1. (3.50)

This is the standard estimate of the covariance matrix of the OLS parameter
estimates under the assumption of IID errors.

3.7 Misspecification of Linear Regression Models

Up to this point, we have assumed that the DGP belongs to the model that
is being estimated, or, in other words, that the model is correctly specified.
This is obviously a very strong assumption indeed. It is therefore important
to know something about the statistical properties of β̂ when the model is not
correctly specified. In this section, we consider a simple case of misspecifica-
tion, namely, underspecification. In order to understand underspecification
better, we begin by discussing its opposite, overspecification.

Overspecification

A model is said to be overspecified if some variables that rightly belong to the
information set Ωt, but do not appear in the DGP, are mistakenly included
in the model. Overspecification is not a form of misspecification. Including
irrelevant explanatory variables in a model makes the model larger than it
need have been, but, since the DGP remains a special case of the model, there
is no misspecification. Consider the case of an overspecified linear regression
model. Suppose that we estimate the model

y = Xβ + Zγ + u, u ∼ IID(0, σ2I), (3.51)

when the data are actually generated by

y = Xβ0 + u, u ∼ IID(0, σ2
0I). (3.52)

It is assumed that Xt and Zt, the tth rows of X and Z, respectively, belong to
Ωt. Recall the discussion of information sets in Section 1.3. The overspecified
model (3.51) is not misspecified, since the DGP (3.52) is a special case of it,
with β = β0, γ = 0, and σ2 = σ2

0 .

Suppose now that we run the linear regression (3.51). By the FWL Theorem,
the estimates β̃ from (3.51) are the same as those from the regression

MZy = MZXβ + residuals,

where, as usual, MZ = I−Z(Z>Z)−1Z>. Thus we see that

β̃ = (X>MZX)−1X>MZy. (3.53)
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Since β̃ is part of the OLS estimator of a correctly specified model, it should
be unbiased. Indeed, if we replace y by Xβ0 + u, we find from (3.53) that

β̃ = β0 + (X>MZX)−1X>MZu. (3.54)

The conditional expectation of the second term on the right-hand side of
(3.54) is 0, provided we take expectations conditional on Z as well as on X;
see Section 3.2. Since Zt is assumed to belong to Ωt, it is perfectly legitimate
to do this.

If we had estimated (3.51) subject to the valid restriction that γ = 0, we
would have obtained the OLS estimate β̂, expression (3.04), which is unbiased
and has covariance matrix (3.28). We see that both β̃ and β̂ are unbiased
estimators, linear in y. Both are OLS estimators, and so it seems that we
should be able to apply the Gauss-Markov Theorem to both of them. This is
in fact correct, but we must be careful to apply the theorem in the context of
the appropriate model for each of the estimators.

For β̂, the appropriate model is the restricted model,

y = Xβ + u, u ∼ IID(0, σ2I), (3.55)

in which the restriction γ = 0 is explicitly imposed. Provided this restriction
is correct, as it will be if the true DGP takes the form (3.52), β̂ must be more
efficient than any other linear unbiased estimator of β. Thus we should find
that the matrix Var(β̃)−Var(β̂) is positive semidefinite.

For β̃, the appropriate model is the unrestricted model (3.51). In this context,
the Gauss-Markov Theorem says that, when we do not know the true value
of γ, β̃ is the best linear unbiased estimator of β. It is important to note here
that β̂ is not an unbiased estimator of β for the unrestricted model, and so
it cannot be included in the class of estimators covered by the Gauss-Markov
Theorem for that model. We will make this point more fully in the next
subsection, when we discuss underspecification.

It is illuminating to check these consequences of the Gauss-Markov Theorem
explicitly. From equation (3.54), it follows that

Var(β̃) = E
(
(β̃ − β0)(β̃ − β0)>

)

= (X>MZX)−1X>MZE(uu>)MZX(X>MZX)−1

= σ2
0(X>MZX)−1X>MZIMZX(X>MZX)−1

= σ2
0(X>MZX)−1.

(3.56)

The situation is clear in the case in which there is only one parameter, β,
corresponding to a single regressor, x. Since MZ is a projection matrix, the
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Euclidean length of MZx must be smaller (or at least, no larger) than the
Euclidean length of x; recall (2.28). Thus x>MZx ≤ x>x, which implies that

σ2
0(x>MZx)−1 ≥ σ2

0(x>x)−1. (3.57)

The inequality in (3.57) will almost always hold strictly. The only exception
is the special case in which x lies in S⊥(Z), which implies that the regression
of x on Z has no explanatory power at all.

In general, we wish to show that Var(β̃)−Var(β̂) is a positive semidefinite
matrix. As we saw in Section 3.5, this is equivalent to showing that the matrix
Var(β̂)−1 −Var(β̃)−1 is positive semidefinite. A little algebra shows that

X>X −X>MZX = X>(I−MZ)X

= X>PZX

= (PZX)>PZX.

(3.58)

Since X>X−X>MZX can be written as the transpose of a matrix times itself,
it must be positive semidefinite. Dividing by σ2

0 gives the desired result.

We have established that the OLS estimator of β in the overspecified regres-
sion model (3.51) is at most as efficient as the OLS estimator in the restricted
model (3.55), provided the restrictions are true. Therefore, adding additional
variables that do not really belong in a model normally leads to less accurate
estimates. Only in certain very special cases will there be no loss of efficiency.
In such cases, the covariance matrices of β̃ and β̂ must be the same, which
implies that the matrix difference computed in (3.58) must be zero.

The last expression in (3.58) will be a zero matrix whenever PZX = O. This
condition will hold when the two sets of regressors X and Z are mutually
orthogonal, so that Z>X = O. In this special case, β̃ will be as efficient as β̂.
In general, however, including regressors that do not belong in a model will
increase the variance of the estimates of the coefficients on the regressors that
do belong, and the increase can be very great in many cases. As can be seen
from the left-hand side of (3.57), the variance of the estimated coefficient β̃
associated with any regressor x is proportional to the inverse of the SSR from
a regression of x on all the other regressors. The more other regressors there
are, whether they truly belong in the model or not, the smaller will be this
SSR, and, in consequence, the larger will be the variance of β̃.

Underspecification

The opposite of overspecification is underspecification, in which we omit some
variables that actually do appear in the DGP. To avoid any new notation, let
us suppose that the model we estimate is (3.55), which yields the estimator β̂,
but that the DGP is really

y = Xβ0 + Zγ0 + u, u ∼ IID(0, σ2
0I). (3.59)
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Thus the situation is precisely the opposite of the one considered above. The
estimator β̃, based on regression (3.51), is now the “correct” one to use, while
the estimator β̂ is based on an underspecified model. It is clear that under-
specification, unlike overspecification, is a form of misspecification, because
the DGP (3.59) does not belong to the model (3.55).

The first point to recognize about β̂ is that it is now, in general, biased. Sub-
stituting the right-hand side of (3.59) for y in (3.04), and taking expectations
conditional on X and Z, we find that

E(β̂) = E
(
(X>X)−1X>(Xβ0 + Zγ0 + u)

)

= β0 + (X>X)−1X>Zγ0 + E
(
(X>X)−1X>u

)

= β0 + (X>X)−1X>Zγ0.

(3.60)

The second term in the last line of (3.60) will be equal to zero only when
X>Z = O or γ0 = 0. The first possibility arises when the two sets of
regressors are mutually orthogonal, the second when (3.55) is not in fact
underspecified. Except in these very special cases, β̂ will generally be biased.
The magnitude of the bias will depend on the parameter vector γ0 and on the
X and Z matrices. Because this bias does not vanish as n →∞, β̂ will also
generally be inconsistent.

Since β̂ is biased, we cannot reasonably use its covariance matrix to evaluate
its accuracy. Instead, we can use the mean squared error matrix, or MSE
matrix, of β̂. This matrix is defined as

MSE(β̂) ≡ E
(
(β̂ − β0)(β̂ − β0)>

)
. (3.61)

The MSE matrix is equal to Var(β̂) if β̂ is unbiased, but not otherwise. For
a scalar parameter β̂, the MSE is equal to the square of the bias plus the
variance:

MSE(β̂) =
(
E(β̂)− β0

)2 + Var(β̂).

Thus, when we use MSE to evaluate the accuracy of an estimator, we are
choosing to give equal weight to random errors and to systematic errors that
arise from bias.1

From (3.60), we can see that

β̂ − β0 = (X>X)−1X>Zγ0 + (X>X)−1X>u.

Therefore, β̂ − β0 times itself transposed is equal to

(X>X)−1X>Zγ0γ0
>Z>X(X>X)−1 + (X>X)−1X>uu>X(X>X)−1

+ (X>X)−1X>Zγ0u
>X(X>X)−1 + (X>X)−1X>uγ0

>Z>X(X>X)−1.

1 For a scalar parameter, it is common to report the square root of the MSE,
called the root mean squared error, or RMSE, instead of the MSE itself.
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The second term here has expectation σ2
0(X>X)−1, and the third and fourth

terms, one of which is the transpose of the other, have expectation zero. Thus
we conclude that

MSE(β̂) = σ2
0(X>X)−1 + (X>X)−1X>Zγ0γ0

>Z>X(X>X)−1. (3.62)

The first term is what the covariance matrix would be if we were estimating
a correctly specified model, and the second term arises from the bias of β̂.

We would like to compare MSE(β̂), expression (3.62), with MSE(β̃) = Var(β̃),
which is given by expression (3.56). However, no unambiguous comparison
is possible. The first term in (3.62) cannot be larger, in the matrix sense,
than (3.56). Thus, if the bias is small, the second term will be small, and
it may well be that β̂ is more efficient than β̃. However, if the bias is large,
the second term will necessarily be large, and β̂ will be less efficient than β̃.
Of course, it is quite possible that some parameters may be estimated more
efficiently by β̂ and others more efficiently by β̃.

Whether or not β̂ happens to be more efficient than β̃, the covariance matrix
for β̂ that will be calculated by a least squares regression program will be
incorrect. The program will attempt to estimate the first term in (3.62),
but it will ignore the second. However, s2 will typically be larger than σ2

0 if
some regressors have been incorrectly omitted. Thus, the program will yield
a biased estimate of the first term.

It is tempting to conclude from this discussion that underspecification is a
much more severe problem than overspecification. After all, the former con-
stitutes misspecification, but the latter does not. In consequence, as we have
seen, underspecification leads to biased estimates and an estimated covariance
matrix that may be severely misleading, while overspecification merely leads
to inefficiency. Therefore, it would seem that we should always err on the
side of overspecification. If all samples were extremely large, this might be
a reasonable conclusion. The bias caused by underspecification does not go
away as the sample size increases, but the variances of all consistent estima-
tors tend to zero. Therefore, in sufficiently large samples, it makes sense to
avoid underspecification at all costs. However, in samples of modest size, the
gain in efficiency from omitting some variables, even if their coefficients are
not actually zero, may be very large relative to the bias that is caused by their
omission.

3.8 Measures of Goodness of Fit

A natural question to ask about any regression is: How well does it fit? There
is more than one way to answer this question, and none of the answers may
be entirely satisfactory in every case.
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One possibility might be to use s, the estimated standard error of the regres-
sion. But s can be rather hard to interpret, since it depends on the scale of
the yt. When the regressand is in logarithms, however, s is meaningful and
easy to interpret. Consider the loglinear model

log yt = β1 + β2 log Xt2 + β3 log Xt3 + ut. (3.63)

As we saw in Section 1.3, this model can be obtained by taking logarithms of
both sides of the model

yt = eβ1Xβ2
t2 Xβ3

t3 eut . (3.64)

The error factor eut is, for ut small, approximately equal to 1 + ut. Thus the
standard deviation of ut in (3.63) is, approximately, the standard deviation of
the proportional error in the regression (3.64). Therefore, for any regression
where the dependent variable is in logs, we can simply interpret 100s, provided
it is small, as an estimate of the percentage error in the regression.

When the regressand is not in logarithms, we could divide s by ȳ, the average
of the yt, or perhaps by the average absolute value of yt if they were not all
of the same sign. This would provide a measure of how large are the errors in
the regression relative to the magnitude of the dependent variable. In many
cases, s/ȳ (for a model in levels) or s (for a model in logarithms) will provide
a useful measure of how well a regression fits. However, these measures are
not entirely satisfactory. They are bounded from below, since they cannot be
negative, but they are not bounded from above. Moreover, s/ȳ is very hard
to interpret if yt can be either positive or negative.

A much more commonly used (and misused) measure of goodness of fit is
the coefficient of determination, or R2, which we introduced in Section 2.5.
In that section, we discussed two versions of R2: the centered version, R2

c ,
and the uncentered version, R2

u. As we saw there, both versions are based
on Pythagoras’ Theorem, which allows the total sum of squares (TSS) to be
broken into two parts, the explained sum of squares (ESS) and the sum of
squared residuals (SSR). Both versions of R2 can be written as

R2 =
ESS
TSS

= 1− SSR
TSS

,

where ESS and TSS are calculated around zero for R2
u and around the mean of

the regressand for R2
c . The centered version is much more commonly encoun-

tered than the uncentered version, because it is invariant to changes in the
mean of the regressand. By adding a large enough constant to all the yt, we
could always make R2

u become arbitrarily close to 1, at least if the regression
included a constant, since the SSR would stay the same and the TSS would
increase without limit. We discussed an example of this in Section 2.5.

One important limitation of both versions of R2 is that they are valid only
if a regression model is estimated by least squares, since otherwise it will not
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be true that TSS = ESS + SSR. Moreover, as we saw in Section 2.5, the
centered version is not valid if the regressors do not include a constant term
or the equivalent, that is, if ι, the vector of 1s, does not belong to S(X).

Another, possibly undesirable, feature of both R2
u and R2

c as measures of
goodness of fit is that both increase whenever more regressors are added. To
demonstrate this, we argue in terms of R2

u, but the FWL Theorem can be
used to show that the same results hold for R2

c . Consider once more the
restricted and unrestricted models, (3.55) and (3.51), respectively. Since both
regressions have the same dependent variable, they have the same TSS. Thus
the regression with the larger ESS will also have the larger R2. The ESS from
(3.51) is ‖PX,Z y‖2 and that from (3.55) is ‖PXy‖2, and so the difference
between them is

y>(PX,Z − PX)y. (3.65)

Clearly, S(X) ⊂ S(X, Z). Thus PX projects on to a subspace of the image
of PX,Z . This implies that the matrix in the middle of (3.65), say Q, is an
orthogonal projection matrix; see Exercise 2.17. Consequently, (3.65) takes
the form y>Qy = ‖Qy‖2 ≥ 0. The ESS from (3.51) is therefore no less than
that from (3.55), and so the R2 from (3.51) is no less than that from (3.55).

The R2 can be modified so that adding additional regressors does not neces-
sarily increase its value. If ι ∈ S(X), the centered R2 can be written as

R2
c = 1−

∑n
t=1 û2

t∑n
t=1(yt − ȳ)2

. (3.66)

The numerator of the second term is just the SSR which, as we saw in Sec-
tion 3.6, has expectation (n−k)σ2

0 under standard assumptions. The denom-
inator can be thought of as an estimator of n times the variance of yt about
its true mean. As such, it will have expectation (n − 1)Var(y). Thus the
second term of (3.66) can be thought of as the ratio of two biased estimators.
If we replace these biased estimators by unbiased estimators, we obtain the
adjusted R2,

R̄2 ≡ 1−
1

n−k

∑n
t=1 û2

t

1
n−1

∑n
t=1(yt − ȳ)2

= 1− (n− 1)y>MXy

(n− k)y>Mιy
. (3.67)

The adjusted R2 is reported by virtually all regression packages, often in
preference to R2

c . However, R̄2 is really no more informative than R2
c . The

two will generally be very similar, except when (n− k)/(n− 1) is noticeably
less than 1.

One nice feature of R2
u and R2

c is that they are constrained to lie between 0
and 1. In contrast, R̄2 can actually be negative. If a model has very little
explanatory power, it is conceivable that (n− 1)/(n− k) may be greater than
TSS/SSR. When that happens, R̄2 < 0.
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The widespread use of R̄2 dates from the early days of econometrics, when
sample sizes were often small, and investigators were easily impressed by mod-
els that yielded large values of R2

c . We saw above that adding an extra regres-
sor to a linear regression will alway increase R2

c . This increase can be quite
noticeable when the sample size is small, even if the added regressor does not
really belong in the regression. In contrast, adding an extra regressor will
increase R̄2 only if the proportional reduction in the SSR is greater than the
proportional reduction in n− k. Therefore, a naive investigator who tries to
maximize R̄2 is less likely to end up choosing a severely overspecified model
than one who tries to maximize R2

c .
It can be extremely misleading to compare any form of R2 for models es-
timated using different data sets. Suppose, for example, that we estimate
Model 1 using a set of data for which the regressors, and consequently the
regressand, vary a lot, and we estimate Model 2 using a second set of data for
which both the regressors and the regressand vary much less. Then, even if
both models fit equally well, in the sense that their residuals have just about
the same variance, Model 1 will have a much larger R2 than Model 2. This
can most easily be seen from (3.66). Increasing the denominator of the second
term while holding the numerator constant will evidently increase the R2.

3.9 Final Remarks

In this chapter, we have dealt with many of the most fundamental, and best-
known, statistical properties of ordinary least squares. In particular, we have
discussed the properties of β̂ as an estimator of β and of s2 as an estimator
of σ2

0 . We have also derived Var(β̂), the covariance matrix of β̂, and shown
how to estimate it. However, we have not said anything about how to use β̂
and the estimate of Var(β̂) to make inferences about β. This important topic
will be taken up in the next chapter.

3.10 Exercises

3.1 Generate a sample of size 25 from the model (3.11), with β1 = 1 and β2 = 0.8.
For simplicity, assume that y0 = 0 and that the ut are NID(0, 1). Use this
sample to compute the OLS estimates β̂1 and β̂2. Repeat at least 100 times,
and find the averages of the β̂1 and the β̂2. Use these averages to estimate
the bias of the OLS estimators of β1 and β2.

Repeat this exercise for sample sizes of 50, 100, and 200. What happens to
the bias of β̂1 and β̂2 as the sample size is increased?

3.2 Consider a sequence of random variables xt, t = 1, . . . ,∞, such that E(xt) =
µt. By considering the centered variables xt − µt, show that the law of large
numbers can be formulated as

plim
n→∞

1−
n

n∑
t=1

xt = lim
n→∞

1−
n

n∑
t=1

µt.
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3.3 Using the data on consumption and personal disposable income in Canada for
the period 1947:1 to 1996:4 in the file consumption.data, estimate the model

ct = β1 + β2yt + ut, ut ∼ NID(0, σ2),

where ct = log Ct is the log of consumption and yt = log Yt is the log of
disposable income, for the entire sample period. Then use the estimates of
β1, β2, and σ to obtain 200 simulated observations on ct.

Begin by regressing your simulated log consumption variable on the log of
income and a constant using just the first 3 observations. Save the estimates
of β1, β2, and σ. Repeat this exercise for sample sizes of 4, 5, . . . , 200. Plot
your estimates of β2 and σ as a function of the sample size. What happens
to these estimates as the sample size grows?

Repeat the complete exercise with a different set of simulated consumption
data. Which features of the paths of the parameter estimates are common to
the two experiments, and which are different?

3.4 Plot the EDF (empirical distribution function) of the residuals from OLS
estimation using one of the sets of simulated data, for the entire sample period,
that you obtained in the last exercise; see Exercise 1.1 for a definition of the
EDF. On the same graph, plot the CDF of the N(0, σ2) distribution, where
σ2 now denotes the variance you used to simulate the log of consumption.

Show that the distributions characterized by the EDF and the normal CDF
have the same mean but different variances. How could you modify the resid-
uals so that the EDF of the modified residuals would have the same variance,
σ2, as the normal CDF?

3.5 In Section 3.4, it is stated that the covariance matrix Var(b) of any ran-
dom k --vector b is positive semidefinite. Prove this fact by considering arbi-
trary linear combinations w>b of the components of b with nonrandom w. If
Var(b) is positive semidefinite without being positive definite, what can you
say about b?

3.6 For any pair of random variables, b1 and b2, show, by using the fact that the
covariance matrix of b ≡ [b1

.... b2] is positive semidefinite, that

(Cov(b1, b2))
2 ≤ Var(b1)Var(b2).

Use this result to show that the correlation of b1 and b2 lies between −1 and 1.

3.7 If A is a positive definite matrix, show that A−1 is also positive definite.

3.8 If A is a symmetric positive definite k × k matrix, then I − A is positive
definite if and only if A−1− I is positive definite, where I is the k×k identity
matrix. Prove this result by considering the quadratic form x>(I−A)x and
expressing x as R−1z, where R is a symmetric matrix such that A = R2.

Extend the above result to show that, if A and B are symmetric positive
definite matrices of the same dimensions, then A − B is positive definite if
and only if B−1 −A−1 is positive definite.
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3.9 Show that the variance of a sum of random variables zt, t = 1, . . . , n, with
Cov(zt, zs) = 0 for t 6= s, equals the sum of their individual variances, what-
ever their expectations may be.

3.10 If γ ≡ w>β =
∑k

i=1 wiβi, show that Var(γ̂), which is given by (3.33), can
also be written as

k∑

i=1

w2
i Var(β̂i) + 2

k∑

i=2

i−1∑

j=1

wiwj Cov(β̂i, β̂j). (3.68)

3.11 Using the data in the file consumption.data, construct the variables ct, the
logarithm of consumption, and yt, the logarithm of income, and their first
differences ∆ct = ct − ct−1 and ∆yt = yt − yt−1. Use these data to estimate
the following model for the period 1953:1 to 1996:4:

∆ct = β1 + β2∆yt + β3∆yt−1 + β4∆yt−2 + β5∆yt−3 + β6∆yt−4. (3.69)

Let γ =
∑6

i=2 βi. Calculate γ̂ and its standard error in two different ways.
One method should explicitly use the result (3.33), and the other should use
a transformation of regression (3.69) which allows γ̂ and its standard error to
be read off directly from the regression output.

3.12 Starting from equation (3.42) and using the result proved in Exercise 3.9, but
without using (3.43), prove that, if E(u2

t ) = σ2
0 and E(usut) = 0 for all s 6= t,

then Var(ût) = (1− ht)σ
2
0 . This is the result (3.44).

3.13 Use the result (3.44) to show that the MM estimator σ̂2 of (3.46) is consistent.
You may assume that a LLN applies to the average in that equation.

3.14 Prove that E(û>û) = (n− k)σ2
0 . This is the result (3.48). The proof should

make use of the fact that the trace of a product of matrices is invariant to
cyclic permutations; see Section 2.6.

3.15 Consider two linear regressions, one restricted and the other unrestricted:

y = Xβ + u and

y = Xβ +Zγ + u.

Show that, in the case of mutually orthogonal regressors, with X>Z = O,
the estimates of β from the two regressions are identical.

3.16 Suppose that you use the OLS estimates β̂, obtained by regressing the n× 1
vector y on the n × k matrix X, to forecast the n∗ × 1 vector y∗ using the
n∗ × k matrix X∗. Assuming that the error terms, both within the sample
used to estimate the parameters β and outside the sample in the forecast
period, are IID(0, σ2), and that the model is correctly specified, what is the
covariance matrix of the vector of forecast errors?

3.17 The class of estimators considered by the Gauss-Markov Theorem can be
written as β̃ = Ay, with AX = I. Show that this class of estimators is in
fact identical to the class of MM estimators of the form

β̃ = (W>X)−1W>y,

where W is a matrix of exogenous variables such that W>X is nonsingular.
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3.18 Show that the difference between the unrestricted estimator β̃ of model (3.51)
and the restricted estimator β̂ of model (3.55) is given by

β̃ − β̂ = (X>MZX)−1X>MZMXy.

Hint: In order to prove this result, it is easiest to premultiply the difference
by X>MZX.

3.19 Consider the linear regression model

yt = β1 + β2Xt2 + β3Xt3 + ut.

Explain how you could estimate this model subject to the restriction that
β2 + β3 = 1 by running a regression that imposes the restriction. Also,
explain how you could estimate the unrestricted model in such a way that the
value of one of the coefficients would be zero if the restriction held exactly for
your data.

3.20 Prove that, for a linear regression model with a constant term, the uncentered
R2

u is always greater than the centered R2
c .

3.21 Consider a linear regression model for a dependent variable yt that has a
sample mean of 17.21. Suppose that we create a new variable y′t = yt + 10
and run the same linear regression using y′t instead of yt as the regressand.
How will R2

c , R2
u, and the estimate of the constant term be related in the two

regressions? What if instead y′t = yt − 10?

3.22 Using the data in the file consumption.data, construct the variables ct, the
logarithm of consumption, and yt, the logarithm of income. Use them to esti-
mate, for the period 1953:1 to 1996:4, the following autoregressive distributed
lag, or ADL, model:

ct = α + βct−1 + γ0yt + γ1yt−1 + ut. (3.70)

Such models are often expressed in first-difference form, that is, as

∆ct = δ + φct−1 + θ∆yt + ψyt−1 + ut, (3.71)

where the first-difference operator ∆ is defined so that ∆ct = ct − ct−1.
Estimate the first-difference model (3.71), and then, without using the results
of (3.70), rederive the estimates of α, β, γ0, and γ1 solely on the basis of your
results from (3.71).

3.23 Simulate model (3.70) of the previous question, using your estimates of α, β,
γ0, γ1, and the error variance σ2. Perform the simulation conditional on the
income series and the first observation c1 of consumption. Plot the residuals
from running (3.70) on the simulated data, and compare the plot with that
of the residuals from the real data. Comments?
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Chapter 4

Hypothesis Testing in

Linear Regression Models

4.1 Introduction

As we saw in Chapter 3, the vector of OLS parameter estimates β̂ is a random
vector. Since it would be an astonishing coincidence if β̂ were equal to the
true parameter vector β0 in any finite sample, we must take the randomness
of β̂ into account if we are to make inferences about β. In classical economet-
rics, the two principal ways of doing this are performing hypothesis tests and
constructing confidence intervals or, more generally, confidence regions. We
will discuss the first of these topics in this chapter, as the title implies, and the
second in the next chapter. Hypothesis testing is easier to understand than
the construction of confidence intervals, and it plays a larger role in applied
econometrics.

In the next section, we develop the fundamental ideas of hypothesis testing
in the context of a very simple special case. Then, in Section 4.3, we review
some of the properties of several distributions which are related to the nor-
mal distribution and are commonly encountered in the context of hypothesis
testing. We will need this material for Section 4.4, in which we develop a
number of results about hypothesis tests in the classical normal linear model.
In Section 4.5, we relax some of the assumptions of that model and introduce
large-sample tests. An alternative approach to testing under relatively weak
assumptions is bootstrap testing, which we introduce in Section 4.6. Finally,
in Section 4.7, we discuss what determines the ability of a test to reject a
hypothesis that is false.

4.2 Basic Ideas

The very simplest sort of hypothesis test concerns the (population) mean from
which a random sample has been drawn. To test such a hypothesis, we may
assume that the data are generated by the regression model

yt = β + ut, ut ∼ IID(0, σ2), (4.01)
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where yt is an observation on the dependent variable, β is the population
mean, which is the only parameter of the regression function, and σ2 is the
variance of the error term ut. The least squares estimator of β and its variance,
for a sample of size n, are given by

β̂ = 1−
n

n∑
t=1

yt and Var(β̂) = 1−
n

σ2. (4.02)

These formulas can either be obtained from first principles or as special cases
of the general results for OLS estimation. In this case, X is just an n--vector
of 1s. Thus, for the model (4.01), the standard formulas β̂ = (X>X)−1X>y
and Var(β̂) = σ2(X>X)−1 yield the two formulas given in (4.02).

Now suppose that we wish to test the hypothesis that β = β0, where β0 is
some specified value of β.1 The hypothesis that we are testing is called the
null hypothesis. It is often given the label H0 for short. In order to test H0,
we must calculate a test statistic, which is a random variable that has a known
distribution when the null hypothesis is true and some other distribution when
the null hypothesis is false. If the value of this test statistic is one that might
frequently be encountered by chance under the null hypothesis, then the test
provides no evidence against the null. On the other hand, if the value of the
test statistic is an extreme one that would rarely be encountered by chance
under the null, then the test does provide evidence against the null. If this
evidence is sufficiently convincing, we may decide to reject the null hypothesis
that β = β0.

For the moment, we will restrict the model (4.01) by making two very strong
assumptions. The first is that ut is normally distributed, and the second
is that σ is known. Under these assumptions, a test of the hypothesis that
β = β0 can be based on the test statistic

z =
β̂ − β0(

Var(β̂)
)1/2

=
n1/2

σ
(β̂ − β0). (4.03)

It turns out that, under the null hypothesis, z must be distributed as N(0, 1).
It must have mean 0 because β̂ is an unbiased estimator of β, and β = β0

under the null. It must have variance unity because, by (4.02),

E(z2) =
n

σ2
E

(
(β̂ − β0)2

)
=

n

σ2

σ2

n
= 1.

1 It may be slightly confusing that a 0 subscript is used here to denote the value
of a parameter under the null hypothesis as well as its true value. So long
as it is assumed that the null hypothesis is true, however, there should be no
possible confusion.
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Finally, to see that z must be normally distributed, note that β̂ is just the
average of the yt, each of which must be normally distributed if the corre-
sponding ut is; see Exercise 1.7. As we will see in the next section, this
implies that z is also normally distributed. Thus z has the first property that
we would like a test statistic to possess: It has a known distribution under
the null hypothesis.

For every null hypothesis there is, at least implicitly, an alternative hypothesis,
which is often given the label H1. The alternative hypothesis is what we are
testing the null against, in this case the model (4.01) with β 6= β0. Just as
important as the fact that z follows the N(0, 1) distribution under the null is
the fact that z does not follow this distribution under the alternative. Suppose
that β takes on some other value, say β1. Then it is clear that β̂ = β1 + γ̂,
where γ̂ has mean 0 and variance σ2/n; recall equation (3.05). In fact, γ̂
is normal under our assumption that the ut are normal, just like β̂, and so
γ̂ ∼ N(0, σ2/n). It follows that z is also normal (see Exercise 1.7 again), and
we find from (4.03) that

z ∼ N(λ, 1), with λ =
n1/2

σ
(β1 − β0). (4.04)

Therefore, provided n is sufficiently large, we would expect the mean of z to
be large and positive if β1 > β0 and large and negative if β1 < β0. Thus we
will reject the null hypothesis whenever z is sufficiently far from 0. Just how
we can decide what “sufficiently far” means will be discussed shortly.

Since we want to test the null that β = β0 against the alternative that β 6= β0,
we must perform a two-tailed test and reject the null whenever the absolute
value of z is sufficiently large. If instead we were interested in testing the
null hypothesis that β ≤ β0 against the alternative that β > β0, we would
perform a one-tailed test and reject the null whenever z was sufficiently large
and positive. In general, tests of equality restrictions are two-tailed tests, and
tests of inequality restrictions are one-tailed tests.

Since z is a random variable that can, in principle, take on any value on the
real line, no value of z is absolutely incompatible with the null hypothesis,
and so we can never be absolutely certain that the null hypothesis is false.
One way to deal with this situation is to decide in advance on a rejection rule,
according to which we will choose to reject the null hypothesis if and only if
the value of z falls into the rejection region of the rule. For two-tailed tests,
the appropriate rejection region is the union of two sets, one containing all
values of z greater than some positive value, the other all values of z less than
some negative value. For a one-tailed test, the rejection region would consist
of just one set, containing either sufficiently positive or sufficiently negative
values of z, according to the sign of the inequality we wish to test.

A test statistic combined with a rejection rule is sometimes called simply a
test. If the test incorrectly leads us to reject a null hypothesis that is true,

Copyright c© 1999, Russell Davidson and James G. MacKinnon



126 Hypothesis Testing in Linear Regression Models

we are said to make a Type I error. The probability of making such an error
is, by construction, the probability, under the null hypothesis, that z falls
into the rejection region. This probability is sometimes called the level of
significance, or just the level, of the test. A common notation for this is α.
Like all probabilities, α is a number between 0 and 1, although, in practice, it
is generally much closer to 0 than 1. Popular values of α include .05 and .01.
If the observed value of z, say ẑ, lies in a rejection region associated with a
probability under the null of α, we will reject the null hypothesis at level α,
otherwise we will not reject the null hypothesis. In this way, we ensure that
the probability of making a Type I error is precisely α.

In the previous paragraph, we implicitly assumed that the distribution of the
test statistic under the null hypothesis is known exactly, so that we have what
is called an exact test. In econometrics, however, the distribution of a test
statistic is often known only approximately. In this case, we need to draw a
distinction between the nominal level of the test, that is, the probability of
making a Type I error according to whatever approximate distribution we are
using to determine the rejection region, and the actual rejection probability,
which may differ greatly from the nominal level. The rejection probability is
generally unknowable in practice, because it typically depends on unknown
features of the DGP.2

The probability that a test will reject the null is called the power of the test.
If the data are generated by a DGP that satisfies the null hypothesis, the
power of an exact test is equal to its level. In general, power will depend on
precisely how the data were generated and on the sample size. We can see
from (4.04) that the distribution of z is entirely determined by the value of λ,
with λ = 0 under the null, and that the value of λ depends on the parameters
of the DGP. In this example, λ is proportional to β1 − β0 and to the square
root of the sample size, and it is inversely proportional to σ.

Values of λ different from 0 move the probability mass of the N(λ, 1) distribu-
tion away from the center of the N(0, 1) distribution and into its tails. This
can be seen in Figure 4.1, which graphs the N(0, 1) density and the N(λ, 1)
density for λ = 2. The second density places much more probability than the
first on values of z greater than 2. Thus, if the rejection region for our test
was the interval from 2 to +∞, there would be a much higher probability in
that region for λ = 2 than for λ = 0. Therefore, we would reject the null
hypothesis more often when the null hypothesis is false, with λ = 2, than
when it is true, with λ = 0.

2 Another term that often arises in the discussion of hypothesis testing is the size
of a test. Technically, this is the supremum of the rejection probability over all
DGPs that satisfy the null hypothesis. For an exact test, the size equals the
level. For an approximate test, the size is typically difficult or impossible to
calculate. It is often, but by no means always, greater than the nominal level
of the test.
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Figure 4.1 The normal distribution centered and uncentered

Mistakenly failing to reject a false null hypothesis is called making a Type II
error. The probability of making such a mistake is equal to 1 minus the
power of the test. It is not hard to see that, quite generally, the probability of
rejecting the null with a two-tailed test based on z increases with the absolute
value of λ. Consequently, the power of such a test will increase as β1 − β0

increases, as σ decreases, and as the sample size increases. We will discuss
what determines the power of a test in more detail in Section 4.7.

In order to construct the rejection region for a test at level α, the first step
is to calculate the critical value associated with the level α. For a two-tailed
test based on any test statistic that is distributed as N(0, 1), including the
statistic z defined in (4.04), the critical value cα is defined implicitly by

Φ(cα) = 1− α/2. (4.05)

Recall that Φ denotes the CDF of the standard normal distribution. In terms
of the inverse function Φ−1, cα can be defined explicitly by the formula

cα = Φ−1(1− α/2). (4.06)

According to (4.05), the probability that z > cα is 1− (1− α/2) = α/2, and
the probability that z < −cα is also α/2, by symmetry. Thus the probability
that |z| > cα is α, and so an appropriate rejection region for a test at level α
is the set defined by |z| > cα. Clearly, cα increases as α approaches 0. As
an example, when α = .05, we see from (4.06) that the critical value for a
two-tailed test is Φ−1(.975) = 1.96. We would reject the null at the .05 level
whenever the observed absolute value of the test statistic exceeds 1.96.

P Values

As we have defined it, the result of a test is yes or no: Reject or do not
reject. A more sophisticated approach to deciding whether or not to reject
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the null hypothesis is to calculate the P value, or marginal significance level,
associated with the observed test statistic ẑ. The P value for ẑ is defined as the
greatest level for which a test based on ẑ fails to reject the null. Equivalently,
at least if the statistic z has a continuous distribution, it is the smallest level
for which the test rejects. Thus, the test rejects for all levels greater than the
P value, and it fails to reject for all levels smaller than the P value. Therefore,
if the P value associated with ẑ is denoted p(ẑ), we must be prepared to accept
a probability p(ẑ) of Type I error if we choose to reject the null.

For a two-tailed test, in the special case we have been discussing,

p(ẑ) = 2
(
1− Φ(|ẑ|)). (4.07)

To see this, note that the test based on ẑ rejects at level α if and only if
|ẑ| > cα. This inequality is equivalent to Φ(|ẑ|) > Φ(cα), because Φ(·) is
a strictly increasing function. Further, Φ(cα) = 1 − α/2, by (4.05). The
smallest value of α for which the inequality holds is thus obtained by solving
the equation

Φ(|ẑ|) = 1− α/2,

and the solution is easily seen to be the right-hand side of (4.07).

One advantage of using P values is that they preserve all the information
conveyed by a test statistic, while presenting it in a way that is directly
interpretable. For example, the test statistics 2.02 and 5.77 would both lead
us to reject the null at the .05 level using a two-tailed test. The second of
these obviously provides more evidence against the null than does the first,
but it is only after they are converted to P values that the magnitude of the
difference becomes apparent. The P value for the first test statistic is .0434,
while the P value for the second is 7.93× 10−9, an extremely small number.

Computing a P value transforms z from a random variable with the N(0, 1)
distribution into a new random variable p(z) with the uniform U(0, 1) dis-
tribution. In Exercise 4.1, readers are invited to prove this fact. It is quite
possible to think of p(z) as a test statistic, of which the observed realization
is p(ẑ). A test at level α rejects whenever p(ẑ) < α. Note that the sign of
this inequality is the opposite of that in the condition |ẑ| > cα. Generally,
one rejects for large values of test statistics, but for small P values.

Figure 4.2 illustrates how the test statistic ẑ is related to its P value p(ẑ).
Suppose that the value of the test statistic is 1.51. Then

Pr(z > 1.51) = Pr(z < −1.51) = .0655. (4.08)

This implies, by equation (4.07), that the P value for a two-tailed test based
on ẑ is .1310. The top panel of the figure illustrates (4.08) in terms of the
PDF of the standard normal distribution, and the bottom panel illustrates it
in terms of the CDF. To avoid clutter, no critical values are shown on the
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Figure 4.2 P values for a two-tailed test

figure, but it is clear that a test based on ẑ will not reject at any level smaller
than .131. From the figure, it is also easy to see that the P value for a one-
tailed test of the hypothesis that β ≤ β0 is .0655. This is just Pr(z > 1.51).
Similarly, the P value for a one-tailed test of the hypothesis that β ≥ β0 is
Pr(z < 1.51) = .9345.

In this section, we have introduced the basic ideas of hypothesis testing. How-
ever, we had to make two very restrictive assumptions. The first is that the
error terms are normally distributed, and the second, which is grossly unreal-
istic, is that the variance of the error terms is known. In addition, we limited
our attention to a single restriction on a single parameter. In Section 4.4, we
will discuss the more general case of linear restrictions on the parameters of
a linear regression model with unknown error variance. Before we can do so,
however, we need to review the properties of the normal distribution and of
several distributions that are closely related to it.
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4.3 Some Common Distributions

Most test statistics in econometrics follow one of four well-known distribu-
tions, at least approximately. These are the standard normal distribution,
the chi-squared (or χ2) distribution, the Student’s t distribution, and the
F distribution. The most basic of these is the normal distribution, since the
other three distributions can be derived from it. In this section, we discuss the
standard, or central, versions of these distributions. Later, in Section 4.7, we
will have occasion to introduce noncentral versions of all these distributions.

The Normal Distribution

The normal distribution, which is sometimes called the Gaussian distribu-
tion in honor of the celebrated German mathematician and astronomer Carl
Friedrich Gauss (1777–1855), even though he did not invent it, is certainly
the most famous distribution in statistics. As we saw in Section 1.2, there
is a whole family of normal distributions, all based on the standard normal
distribution, so called because it has mean 0 and variance 1. The PDF of the
standard normal distribution, which is usually denoted by φ(·), was defined
in (1.06). No elementary closed-form expression exists for its CDF, which is
usually denoted by Φ(·). Although there is no closed form, it is perfectly easy
to evaluate Φ numerically, and virtually every program for doing econometrics
and statistics can do this. Thus it is straightforward to compute the P value
for any test statistic that is distributed as standard normal. The graphs of
the functions φ and Φ were first shown in Figure 1.1 and have just reappeared
in Figure 4.2. In both tails, the PDF rapidly approaches 0. Thus, although
a standard normal r.v. can, in principle, take on any value on the real line,
values greater than about 4 in absolute value occur extremely rarely.

In Exercise 1.7, readers were asked to show that the full normal family can be
generated by varying exactly two parameters, the mean and the variance. A
random variable X that is normally distributed with mean µ and variance σ2

can be generated by the formula

X = µ + σZ, (4.09)

where Z is standard normal. The distribution of X, that is, the normal
distribution with mean µ and variance σ2, is denoted N(µ, σ2). Thus the
standard normal distribution is the N(0, 1) distribution. As readers were
asked to show in Exercise 1.8, the PDF of the N(µ, σ2) distribution, evaluated
at x, is

1−σ φ
(x− µ

σ

)
=

1
σ
√

2π
exp

(
− (x− µ)2

2σ2

)
, (4.10)

In expression (4.10), as in Section 1.2, we have distinguished between the
random variable X and a value x that it can take on. However, for the
following discussion, this distinction is more confusing than illuminating. For
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the rest of this section, we therefore use lower-case letters to denote both
random variables and the arguments of their PDFs or CDFs, depending on
context. No confusion should result. Adopting this convention, then, we
see that, if x is distributed as N(µ, σ2), we can invert (4.09) and obtain
z = (x− µ)/σ, where z is standard normal. Note also that z is the argument
of φ in the expression (4.10) of the PDF of x. In general, the PDF of a
normal variable x with mean µ and variance σ2 is 1/σ times φ evaluated at
the corresponding standard normal variable, which is z = (x− µ)/σ.

Although the normal distribution is fully characterized by its first two mo-
ments, the higher moments are also important. Because the distribution is
symmetric around its mean, the third central moment, which measures the
skewness of the distribution, is always zero.3 This is true for all of the odd
central moments. The fourth moment of a symmetric distribution provides a
way to measure its kurtosis, which essentially means how thick the tails are.
In the case of the N(µ, σ2) distribution, the fourth central moment is 3σ4; see
Exercise 4.2.

Linear Combinations of Normal Variables

An important property of the normal distribution, used in our discussion in
the preceding section, is that any linear combination of independent normally
distributed random variables is itself normally distributed. To see this, it
is enough to show it for independent standard normal variables, because,
by (4.09), all normal variables can be generated as linear combinations of
standard normal ones plus constants. We will tackle the proof in several
steps, each of which is important in its own right.

To begin with, let z1 and z2 be standard normal and mutually independent,
and consider w ≡ b1z1 + b2z2. For the moment, we suppose that b2

1 + b2
2 = 1,

although we will remove this restriction shortly. If we reason conditionally
on z1, then we find that

E(w | z1) = b1z1 + b2E(z2 | z1) = b1z1 + b2E(z2) = b1z1.

The first equality follows because b1z1 is a deterministic function of the condi-
tioning variable z1, and so can be taken outside the conditional expectation.
The second, in which the conditional expectation of z2 is replaced by its un-
conditional expectation, follows because of the independence of z1 and z2 (see
Exercise 1.9). Finally, E(z2) = 0 because z2 is N(0, 1).

The conditional variance of w is given by

E
((

w − E(w | z1)
)2 ∣∣ z1

)
= E

(
(b2z2)2 | z1

)
= E

(
(b2z2)2

)
= b2

2,

3 A distribution is said to be skewed to the right if the third central moment is
positive, and to the left if the third central moment is negative.
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where the last equality again follows because z2 ∼ N(0, 1). Conditionally
on z1, w is the sum of the constant b1z1 and b2 times a standard normal
variable z2, and so the conditional distribution of w is normal. Given the
conditional mean and variance we have just computed, we see that the con-
ditional distribution must be N(b1z1, b

2
2). The PDF of this distribution is the

density of w conditional on z1, and, by (4.10), it is

f(w | z1) =
1
b2

φ
(w − b1z1

b2

)
. (4.11)

In accord with what we noted above, the argument of φ here is equal to z2,
which is the standard normal variable corresponding to w conditional on z1.

The next step is to find the joint density of w and z1. By (1.15), the density
of w conditional on z1 is the ratio of the joint density of w and z1 to the
marginal density of z1. This marginal density is just φ(z1), since z1 ∼ N(0, 1),
and so we see that the joint density is

f(w, z1) = f(z1) f(w | z1) = φ(z1)
1
b2

φ
(w − b1z1

b2

)
. (4.12)

If we use (1.06) to get an explicit expression for this joint density, then we
obtain

1
2πb2

exp
(
− 1

2b2
2

(
b2
2z

2
1 + w2 − 2b1z1w + b2

1z
2
1

))

=
1

2πb2
exp

(
− 1

2b2
2

(
z2
1 − 2b1z1w + w2

))
,

(4.13)

since we assumed that b2
1 + b2

2 = 1. The right-hand side of (4.13) is symmetric
with respect to z1 and w. Thus the joint density can also be expressed as
in (4.12), but with z1 and w interchanged, as follows:

f(w, z1) =
1
b2

φ(w)φ
(z1 − b1w

b2

)
. (4.14)

We are now ready to compute the unconditional, or marginal, density of w.
To do so, we integrate the joint density (4.14) with respect to z1; see (1.12).
Note that z1 occurs only in the last factor on the right-hand side of (4.14).
Further, the expression (1/b2)φ

(
(z1 − b1w)/b2

)
, like expression (4.11), is a

probability density, and so it integrates to 1. Thus we conclude that the
marginal density of w is f(w) = φ(w), and so it follows that w is standard
normal, unconditionally, as we wished to show.

It is now simple to extend this argument to the case for which b2
1 + b2

2 6= 1.
We define r2 = b2

1 + b2
2, and consider w/r. The argument above shows that

w/r is standard normal, and so w ∼ N(0, r2). It is equally simple to extend
the result to a linear combination of any number of mutually independent
standard normal variables. If we now let w be defined as b1z1 + b2z2 + b3z3,
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where z1, z2, and z3 are mutually independent standard normal variables, then
b1z1+b2z2 is normal by the result for two variables, and it is independent of z3.
Thus, by applying the result for two variables again, this time to b1z1 + b2z2

and z3, we see that w is normal. This reasoning can obviously be extended
by induction to a linear combination of any number of independent standard
normal variables. Finally, if we consider a linear combination of independent
normal variables with nonzero means, the mean of the resulting variable is
just the same linear combination of the means of the individual variables.

The Multivariate Normal Distribution

The results of the previous subsection can be extended to linear combina-
tions of normal random variables that are not necessarily independent. In
order to do so, we introduce the multivariate normal distribution. As the
name suggests, this is a family of distributions for random vectors, with the
scalar normal distributions being special cases of it. The pair of random
variables z1 and w considered above follow the bivariate normal distribution,
another special case of the multivariate normal distribution. As we will see
in a moment, all these distributions, like the scalar normal distribution, are
completely characterized by their first two moments.

In order to construct the multivariate normal distribution, we begin with a
set of m mutually independent standard normal variables, zi, i = 1, . . . , m,
which we can assemble into a random m--vector z. Then any m--vector x
of linearly independent linear combinations of the components of z follows
a multivariate normal distribution. Such a vector x can always be written
as Az, for some nonsingular m ×m matrix A. As we will see in a moment,
the matrix A can always be chosen to be lower-triangular.

We denote the components of x as xi, i = 1, . . . , m. From what we have seen
above, it is clear that each xi is normally distributed, with (unconditional)
mean zero. Therefore, from results proved in Section 3.4, it follows that the
covariance matrix of x is

Var(x) = E(xx>) = AE(zz>)A>= AIA>= AA>.

Here we have used the fact that the covariance matrix of z is the identity
matrix I. This is true because the variance of each component of z is 1,
and, since the zi are mutually independent, all the covariances are 0; see
Exercise 1.11.

Let us denote the covariance matrix of x by Ω. Recall that, according to
a result mentioned in Section 3.4 in connection with Crout’s algorithm, for
any positive definite matrix Ω, we can always find a lower-triangular A such
that AA> = Ω. Thus the matrix A may always be chosen to be lower-
triangular. The distribution of x is multivariate normal with mean vector 0
and covariance matrix Ω. We write this as x ∼ N(0, Ω). If we add an
m--vector µ of constants to x, the resulting vector must follow the N(µ, Ω)
distribution.
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σ1 = 1.5, σ2 = 1, ρ = −0.9

Figure 4.3 Contours of two bivariate normal densities

It is clear from this argument that any linear combination of random variables
that are jointly multivariate normal is itself normally distributed. Thus, if
x ∼ N(µ, Ω), any scalar a>x, where a is an m--vector of fixed coefficients, is
normally distributed with mean a>µ and variance a>Ωa.

We saw a moment ago that z ∼ N(0, I) whenever the components of the
vector z are independent. Another crucial property of the multivariate nor-
mal distribution is that the converse of this result is also true: If x is any
multivariate normal vector with zero covariances, the components of x are
mutually independent. This is a very special property of the multivariate
normal distribution, and readers are asked to prove it, for the bivariate case,
in Exercise 4.5. In general, a zero covariance between two random variables
does not imply that they are independent.

It is important to note that the results of the last two paragraphs do not hold
unless the vector x is multivariate normal, that is, constructed as a set of linear
combinations of independent normal variables. In most cases, when we have
to deal with linear combinations of two or more normal random variables, it is
reasonable to assume that they are jointly distributed as multivariate normal.
However, as Exercise 1.12 illustrates, it is possible for two or more random
variables not to be multivariate normal even though each one individually
follows a normal distribution.

Figure 4.3 illustrates the bivariate normal distribution, of which the PDF is
given in Exercise 4.5 in terms of the variances σ2

1 and σ2
2 of the two variables,

and their correlation ρ. Contours of the density are plotted, on the right for
σ1 = σ2 = 1.0 and ρ = 0.5, on the left for σ1 = 1.5, σ2 = 1.0, and ρ = −0.9.
The contours of the bivariate normal density can be seen to be elliptical. The
ellipses slope upward when ρ > 0 and downward when ρ < 0. They do so
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more steeply the larger is the ratio σ2/σ1. The closer |ρ| is to 1, for given
values of σ1 and σ2, the more elongated are the elliptical contours.

The Chi-Squared Distribution

Suppose, as in our discussion of the multivariate normal distribution, that
the random vector z is such that its components z1, . . . , zm are mutually
independent standard normal random variables. An easy way to express this
is to write z ∼ N(0, I). Then the random variable

y ≡ ‖z‖2 = z>z =
m∑

i=1

z2
i (4.15)

is said to follow the chi-squared distribution with m degrees of freedom. A
compact way of writing this is: y ∼ χ2(m). From (4.15), it is clear that
m must be a positive integer. In the case of a test statistic, it will turn out
to be equal to the number of restrictions being tested.

The mean and variance of the χ2(m) distribution can easily be obtained from
the definition (4.15). The mean is

E(y) =
m∑

i=1

E(z2
i ) =

m∑

i=1

1 = m. (4.16)

Since the zi are independent, the variance of the sum of the z2
i is just the sum

of the (identical) variances:

Var(y) =
m∑

i=1

Var(z2
i ) = mE

(
(z2

i − 1)2
)

= mE(z4
i − 2z2

i + 1) = m(3− 2 + 1) = 2m.

(4.17)

The third equality here uses the fact that E(z4
i ) = 3; see Exercise 4.2.

Another important property of the chi-squared distribution, which follows
immediately from (4.15), is that, if y1 ∼ χ2(m1) and y2 ∼ χ2(m2), and y1

and y2 are independent, then y1 + y2 ∼ χ2(m1 + m2). To see this, rewrite
(4.15) as

y = y1 + y2 =
m1∑

i=1

z2
i +

m1+m2∑

i=m1+1

z2
i =

m1+m2∑

i=1

z2
i ,

from which the result follows.

Figure 4.4 shows the PDF of the χ2(m) distribution for m = 1, m = 3,
m = 5, and m = 7. The changes in the location and height of the density
function as m increases are what we should expect from the results (4.16) and
(4.17) about its mean and variance. In addition, the PDF, which is extremely
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Figure 4.4 Various chi-squared PDFs

skewed to the right for m = 1, becomes less skewed as m increases. In fact, as
we will see in Section 4.5, the χ2(m) distribution approaches the N(m, 2m)
distribution as m becomes large.

In Section 3.4, we introduced quadratic forms. As we will see, many test
statistics can be written as quadratic forms in normal vectors, or as functions
of such quadratic forms. The following theorem states two results about
quadratic forms in normal vectors that will prove to be extremely useful.

Theorem 4.1.

1. If the m--vector x is distributed as N(0,Ω), then the quadratic
form x>Ω−1x is distributed as χ2(m);

2. If P is a projection matrix with rank r and z is an n--vector
that is distributed as N(0, I), then the quadratic form z>Pz is
distributed as χ2(r).

Proof: Since the vector x is multivariate normal with mean vector 0, so is the
vector A−1x, where, as before, AA>= Ω. Moreover, the covariance matrix
of A−1x is

E
(
A−1xx>(A>)−1

)
= A−1Ω (A>)−1 = A−1AA>(A>)−1 = Im.

Thus we have shown that the vector z ≡ A−1x is distributed as N(0, I).

The quadratic form x>Ω−1x is equal to x>(A>)−1A−1x = z>z. As we have
just shown, this is equal to the sum of m independent, squared, standard
normal random variables. From the definition of the chi-squared distribution,
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we know that such a sum is distributed as χ2(m). This proves the first part
of the theorem.

Since P is a projection matrix, it must project orthogonally on to some sub-
space of En. Suppose, then, that P projects on to the span of the columns of
an n× r matrix Z. This allows us to write

z>Pz = z>Z(Z>Z)−1Z>z.

The r --vector x ≡ Z>z evidently follows the N(0,Z>Z) distribution. There-
fore, z>Pz is seen to be a quadratic form in the multivariate normal r --vector
x and (Z>Z)−1, which is the inverse of its covariance matrix. That this
quadratic form is distributed as χ2(r) follows immediately from the the first
part of the theorem.

The Student’s t Distribution

If z ∼ N(0, 1) and y ∼ χ2(m), and z and y are independent, then the random
variable

t ≡ z

(y/m)1/2
(4.18)

is said to follow the Student’s t distribution with m degrees of freedom. A
compact way of writing this is: t ∼ t(m). The Student’s t distribution looks
very much like the standard normal distribution, since both are bell-shaped
and symmetric around 0.

The moments of the t distribution depend on m, and only the first m − 1
moments exist. Thus the t(1) distribution, which is also called the Cauchy
distribution, has no moments at all, and the t(2) distribution has no variance.
From (4.18), we see that, for the Cauchy distribution, the denominator of t
is just the absolute value of a standard normal random variable. Whenever
this denominator happens to be close to zero, the ratio is likely to be a very
big number, even if the numerator is not particularly large. Thus the Cauchy
distribution has very thick tails. As m increases, the chance that the denom-
inator of (4.18) is close to zero diminishes (see Figure 4.4), and so the tails
become thinner.

In general, if t is distributed as t(m) with m > 2, then Var(t) = m/(m − 2).
Thus, as m → ∞, the variance tends to 1, the variance of the standard
normal distribution. In fact, the entire t(m) distribution tends to the standard
normal distribution as m →∞. By (4.15), the chi-squared variable y can be
expressed as

∑m
i=1 z2

i , where the zi are independent standard normal variables.
Therefore, by a law of large numbers, such as (3.16), y/m, which is the average
of the z2

i , tends to its expectation as m → ∞. By (4.16), this expectation is
just m/m = 1. It follows that the denominator of (4.18), (y/m)1/2, also tends
to 1, and hence that t → z ∼ N(0, 1) as m →∞.

Figure 4.5 shows the PDFs of the standard normal, t(1), t(2), and t(5) distri-
butions. In order to make the differences among the various densities in the
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Figure 4.5 PDFs of the Student’s t distribution

figure apparent, all the values of m are chosen to be very small. However, it
is clear from the figure that, for larger values of m, the PDF of t(m) will be
very similar to the PDF of the standard normal distribution.

The F Distribution

If y1 and y2 are independent random variables distributed as χ2(m1) and
χ2(m2), respectively, then the random variable

F ≡ y1/m1

y2/m2
(4.19)

is said to follow the F distribution with m1 and m2 degrees of freedom. A
compact way of writing this is: F ∼ F (m1,m2). The notation F is used in
honor of the well-known statistician R. A. Fisher. The F (m1,m2) distribution
looks a lot like a rescaled version of the χ2(m1) distribution. As for the
t distribution, the denominator of (4.19) tends to unity as m2 → ∞, and
so m1F → y1 ∼ χ2(m1) as m2 → ∞. Therefore, for large values of m2, a
random variable that is distributed as F (m1,m2) will behave very much like
1/m1 times a random variable that is distributed as χ2(m1).

The F distribution is very closely related to the Student’s t distribution. It is
evident from (4.19) and (4.18) that the square of a random variable which is
distributed as t(m2) will be distributed as F (1,m2). In the next section, we
will see how these two distributions arise in the context of hypothesis testing
in linear regression models.
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4.4 Exact Tests in the Classical Normal Linear Model

In the example of Section 4.2, we were able to obtain a test statistic z that was
distributed as N(0, 1). Tests based on this statistic are exact. Unfortunately,
it is possible to perform exact tests only in certain special cases. One very
important special case of this type arises when we test linear restrictions on
the parameters of the classical normal linear model, which was introduced in
Section 3.1. This model may be written as

y = Xβ + u, u ∼ N(0, σ2I), (4.20)

where X is an n × k matrix of regressors, so that there are n observations
and k regressors, and it is assumed that the error vector u is statistically
independent of the matrix X. Notice that in (4.20) the assumption which in
Section 3.1 was written as ut ∼ NID(0, σ2) is now expressed in matrix notation
using the multivariate normal distribution. In addition, since the assumption
that u and X are independent means that the generating process for X is
independent of that for y, we can express this independence assumption by
saying that the regressors X are exogenous in the model (4.20); the concept
of exogeneity4 was introduced in Section 1.3 and discussed in Section 3.2.

Tests of a Single Restriction

We begin by considering a single, linear restriction on β. This could, in
principle, be any sort of linear restriction, for example, that β1 = 5 or β3 = β4.
However, it simplifies the analysis, and involves no loss of generality, if we
confine our attention to a restriction that one of the coefficients should equal 0.
If a restriction does not naturally have the form of a zero restriction, we can
always apply suitable linear transformations to y and X, of the sort considered
in Sections 2.3 and 2.4, in order to rewrite the model so that it does; see
Exercises 4.6 and 4.7.

Let us partition β as [β1
.... β2], where β1 is a (k − 1)--vector and β2 is a

scalar, and consider a restriction of the form β2 = 0. When X is partitioned
conformably with β, the model (4.20) can be rewritten as

y = X1β1 + β2x2 + u, u ∼ N(0, σ2I), (4.21)

where X1 denotes an n × (k − 1) matrix and x2 denotes an n--vector, with
X = [X1 x2].

By the FWL Theorem, the least squares estimate of β2 from (4.21) is the
same as the least squares estimate from the FWL regression

M1y = β2M1x2 + residuals, (4.22)

4 This assumption is usually called strict exogeneity in the literature, but, since
we will not discuss any other sort of exogeneity in this book, it is convenient
to drop the word “strict”.
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where M1 ≡ I−X1(X1
>X1)−1X1

> is the matrix that projects on to S⊥(X1).
By applying the standard formulas for the OLS estimator and covariance
matrix to regression (4.22), under the assumption that the model (4.21) is
correctly specified, we find that

β̂2 =
x2
>M1y

x2
>M1x2

and Var(β̂2) = σ2(x2
>M1x2)−1.

In order to test the hypothesis that β2 equals any specified value, say β0
2 , we

have to subtract β0
2 from β̂2 and divide by the square root of the variance. For

the null hypothesis that β2 = 0, this yields a test statistic analogous to (4.03),

zβ2 ≡
x2
>M1y

σ(x2
>M1x2)1/2

, (4.23)

which can be computed only under the unrealistic assumption that σ is known.

If the data are actually generated by the model (4.21) with β2 = 0, then

M1y = M1(X1β1 + u) = M1u.

Therefore, the right-hand side of (4.23) becomes

x2
>M1u

σ(x2
>M1x2)1/2

. (4.24)

It is now easy to see that zβ2 is distributed as N(0, 1). Because we can
condition on X, the only thing left in (4.24) that is stochastic is u. Since
the numerator is just a linear combination of the components of u, which is
multivariate normal, the entire test statistic must be normally distributed.
The variance of the numerator is

E(x2
>M1uu>M1x2) = x2

>M1E(uu>)M1x2

= x2
>M1σ

2 IM1x2 = σ2x2
>M1x2.

Since the denominator of (4.24) is just the square root of the variance of
the numerator, we conclude that zβ2 is distributed as N(0, 1) under the null
hypothesis.

The test statistic zβ2 defined in (4.23) has exactly the same distribution under
the null hypothesis as the test statistic z defined in (4.03). The analysis of
Section 4.2 therefore applies to it without any change. Thus we now know
how to test the hypothesis that any coefficient in the classical normal linear
model is equal to 0, or to any specified value, but only if we know the variance
of the error terms.

In order to handle the more realistic case in which we do not know the variance
of the error terms, we need to replace σ in (4.23) by s, the usual least squares
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standard error estimator for model (4.21), defined in (3.49). If, as usual, MX

is the orthogonal projection on to S⊥(X), we have s2 = y>MXy/(n−k), and
so we obtain the test statistic

tβ2 ≡
x2
>M1y

s(x2
>M1x2)1/2

=
(

y>MXy

n− k

)−1/2
x2
>M1y

(x2
>M1x2)1/2

. (4.25)

As we will now demonstrate, this test statistic is distributed as t(n−k) under
the null hypothesis. Not surprisingly, it is called a t statistic.

As we discussed in the last section, for a test statistic to have the t(n − k)
distribution, it must be possible to write it as the ratio of a standard normal
variable z to the square root of y/(n − k), where y is independent of z and
distributed as χ2(n− k). The t statistic defined in (4.25) can be rewritten as

tβ2 =
zβ2(

y>MXy/((n− k)σ2)
)1/2

, (4.26)

which has the form of such a ratio. We have already shown that zβ2 ∼ N(0, 1).
Thus it only remains to show that y>MXy/σ2 ∼ χ2(n − k) and that the
random variables in the numerator and denominator of (4.26) are independent.

Under any DGP that belongs to (4.21),

y>MXy

σ2
=

u>MXu

σ2
= ε>MXε, (4.27)

where ε ≡ u/σ is distributed as N(0, I). Since MX is a projection matrix
with rank n − k, the second part of Theorem 4.1 shows that the rightmost
expression in (4.27) is distributed as χ2(n− k).

To see that the random variables zβ2 and ε>MXε are independent, we note
first that ε>MXε depends on y only through MXy. Second, from (4.23), it
is not hard to see that zβ2 depends on y only through PXy, since

x2
>M1y = x2

>PXM1y = x2
>(PX − PXP1)y = x2

>M1PXy;

the first equality here simply uses the fact that x2 ∈ S(X), and the third
equality uses the result (2.36) that PXP1 = P1PX . Independence now follows
because, as we will see directly, PXy and MXy are independent.

We saw above that MXy = MXu. Further, from (4.20), PXy = Xβ+PXu,
from which it follows that the centered version of PXy is PXu. The n × n
matrix of covariances of components of PXu and MXu is thus

E(PXuu>MX) = σ2PXMX = O,

by (2.26), because PX and MX are complementary projections. These zero
covariances imply that PXu and MXu are independent, since both are mul-
tivariate normal. Geometrically, these vectors have zero covariance because
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they lie in orthogonal subspaces, namely, the images of PX and MX . Thus,
even though the numerator and denominator of (4.26) both depend on y, this
orthogonality implies that they are independent.

We therefore conclude that the t statistic (4.26) for β2 = 0 in the model (4.21)
has the t(n−k) distribution. Performing one-tailed and two-tailed tests based
on tβ2 is almost the same as performing them based on zβ2 . We just have to
use the t(n − k) distribution instead of the N(0, 1) distribution to compute
P values or critical values. An interesting property of t statistics is explored
in Exercise 14.8.

Tests of Several Restrictions

Economists frequently want to test more than one linear restriction. Let us
suppose that there are r restrictions, with r ≤ k, since there cannot be more
equality restrictions than there are parameters in the unrestricted model. As
before, there will be no loss of generality if we assume that the restrictions
take the form β2 = 0. The alternative hypothesis is the model (4.20), which
has been rewritten as

H1 : y = X1β1 + X2β2 + u, u ∼ N(0, σ2I). (4.28)

Here X1 is an n× k1 matrix, X2 is an n× k2 matrix, β1 is a k1--vector, β2 is
a k2--vector, k = k1 +k2, and the number of restrictions r = k2. Unless r = 1,
it is no longer possible to use a t test, because there will be one t statistic for
each element of β2, and we want to compute a single test statistic for all the
restrictions at once.

It is natural to base a test on a comparison of how well the model fits when
the restrictions are imposed with how well it fits when they are not imposed.
The null hypothesis is the regression model

H0 : y = X1β1 + u, u ∼ N(0, σ2I), (4.29)

in which we impose the restriction that β2 = 0. As we saw in Section 3.8,
the restricted model (4.29) must always fit worse than the unrestricted model
(4.28), in the sense that the SSR from (4.29) cannot be smaller, and will
almost always be larger, than the SSR from (4.28). However, if the restrictions
are true, the reduction in SSR from adding X2 to the regression should be
relatively small. Therefore, it seems natural to base a test statistic on the
difference between these two SSRs. If USSR denotes the unrestricted sum
of squared residuals, from (4.28), and RSSR denotes the restricted sum of
squared residuals, from (4.29), the appropriate test statistic is

Fβ2 ≡
(RSSR−USSR)/r

USSR/(n− k)
. (4.30)

Under the null hypothesis, as we will now demonstrate, this test statistic fol-
lows the F distribution with r and n−k degrees of freedom. Not surprisingly,
it is called an F statistic.
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The restricted SSR is y>M1y, and the unrestricted one is y>MXy. One
way to obtain a convenient expression for the difference between these two
expressions is to use the FWL Theorem. By this theorem, the USSR is the
SSR from the FWL regression

M1y = M1X2β2 + residuals. (4.31)

The total sum of squares from (4.31) is y>M1y. The explained sum of squares
can be expressed in terms of the orthogonal projection on to the r --dimensional
subspace S(M1X2), and so the difference is

USSR = y>M1y − y>M1X2(X2
>M1X2)−1X2

>M1y. (4.32)

Therefore,

RSSR−USSR = y>M1X2(X2
>M1X2)−1X2

>M1y,

and the F statistic (4.30) can be written as

Fβ2 =
y>M1X2(X2

>M1X2)−1X2
>M1y/r

y>MXy/(n− k)
. (4.33)

Under the null hypothesis, MXy = MXu and M1y = M1u. Thus, under
this hypothesis, the F statistic (4.33) reduces to

ε>M1X2(X2
>M1X2)−1X2

>M1ε/r

ε>MXε/(n− k)
, (4.34)

where, as before, ε ≡ u/σ. We saw in the last subsection that the quadratic
form in the denominator of (4.34) is distributed as χ2(n − k). Since the
quadratic form in the numerator can be written as ε>PM1X2ε, it is distributed
as χ2(r). Moreover, the random variables in the numerator and denominator
are independent, because MX and PM1X2 project on to mutually orthogonal
subspaces: MXM1X2 = MX(X2−P1X2) = O. Thus it is apparent that the
statistic (4.34) follows the F (r, n− k) distribution under the null hypothesis.

A Threefold Orthogonal Decomposition

Each of the restricted and unrestricted models generates an orthogonal de-
composition of the dependent variable y. It is illuminating to see how these
two decompositions interact to produce a threefold orthogonal decomposi-
tion. It turns out that all three components of this decomposition have useful
interpretations. From the two models, we find that

y = P1y + M1y and y = PXy + MXy. (4.35)
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In Exercise 2.17, it was seen that PX−P1 is an orthogonal projection matrix,
equal to PM1X2 . It follows that

PX = P1 + PM1X2 , (4.36)

where the two projections on the right-hand side are obviously mutually or-
thogonal, since P1 annihilates M1X2. From (4.35) and (4.36), we obtain the
threefold orthogonal decomposition

y = P1y + PM1X2y + MXy. (4.37)

The first term is the vector of fitted values from the restricted model, X1β̃1. In
this and what follows, we use a tilde (˜) to denote the restricted estimates, and
a hat (ˆ) to denote the unrestricted estimates. The second term is the vector
of fitted values from the FWL regression (4.31). It equals M1X2β̂2, where,
by the FWL Theorem, β̂2 is a subvector of estimates from the unrestricted
model. Finally, MXy is the vector of residuals from the unrestricted model.

Since PXy = X1β̂1 + X2β̂2, the vector of fitted values from the unrestricted
model, we see that

X1β̂1 + X2β̂2 = X1β̃1 + M1X2β̂2. (4.38)

In Exercise 4.9, this result is exploited to show how to obtain the restricted
estimates in terms of the unrestricted estimates.

The F statistic (4.33) can be written as the ratio of the squared norm of the
second component in (4.37) to the squared norm of the third, each normalized
by the appropriate number of degrees of freedom. Under both hypotheses, the
third component MXy equals MXu, and so it consists of random noise. Its
squared norm is a χ2(n − k) variable times σ2, which serves as the (unre-
stricted) estimate of σ2 and can be thought of as a measure of the scale of
the random noise. Since u ∼ N(0, σ2I), every element of u has the same
variance, and so every component of (4.37), if centered so as to leave only the
random part, should have the same scale.

Under the null hypothesis, the second component is PM1X2y = PM1X2u,
which just consists of random noise. But, under the alternative, PM1X2y =
M1X2β2 + PM1X2u, and it thus contains a systematic part related to X2.
The length of the second component will be greater, on average, under the
alternative than under the null, since the random part is there in all cases, but
the systematic part is present only under the alternative. The F test compares
the squared length of the second component with the squared length of the
third. It thus serves to detect the possible presence of systematic variation,
related to X2, in the second component of (4.37).

All this means that we want to reject the null whenever the numerator of
the F statistic, RSSR−USSR, is relatively large. Consequently, the P value
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corresponding to a realized F statistic F̂ is computed as 1−Fr,n−k(F̂ ), where
Fr,n−k(·) denotes the CDF of the F distribution with the appropriate numbers
of degrees of freedom. Thus we compute the P value as if for a one-tailed
test. However, F tests are really two-tailed tests, because they test equality
restrictions, not inequality restrictions. An F test for β2 = 0 will reject the
null hypothesis whenever β̂2 is sufficiently far from 0, whether the individual
elements of β̂2 are positive or negative.

There is a very close relationship between F tests and t tests. In the previous
section, we saw that the square of a random variable with the t(n− k) distri-
bution must have the F (1, n − k) distribution. The square of the t statistic
tβ2 , defined in (4.25), is

t2β2
=

y>M1x2(x2
>M1x2)−1x2

>M1y

y>MXy/(n− k)
.

This test statistic is evidently a special case of (4.33), with the vector x2

replacing the matrix X2. Thus, when there is only one restriction, it makes
no difference whether we use a two-tailed t test or an F test.

An Example of the F Test

The most familiar application of the F test is testing the hypothesis that all
the coefficients in a classical normal linear model, except the constant term,
are zero. The null hypothesis is that β2 = 0 in the model

y = β1ι + X2β2 + u, u ∼ N(0, σ2I), (4.39)

where ι is an n--vector of 1s and X2 is n× (k− 1). In this case, using (4.32),
the test statistic (4.33) can be written as

Fβ2 =
y>MιX2(X2

>MιX2)−1X2
>Mιy/(k − 1)(

y>Mιy − y>MιX2(X2
>MιX2)−1X2

>Mιy
)
/(n− k)

, (4.40)

where Mι is the projection matrix that takes deviations from the mean, which
was defined in (2.32). Thus the matrix expression in the numerator of (4.40)
is just the explained sum of squares, or ESS, from the FWL regression

Mιy = MιX2β2 + residuals.

Similarly, the matrix expression in the denominator is the total sum of squares,
or TSS, from this regression, minus the ESS. Since the centered R2 from (4.39)
is just the ratio of this ESS to this TSS, it requires only a little algebra to
show that

Fβ2 =
n− k

k − 1
× R2

c

1−R2
c

.

Therefore, the F statistic (4.40) depends on the data only through the cen-
tered R2, of which it is a monotonically increasing function.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



146 Hypothesis Testing in Linear Regression Models

Testing the Equality of Two Parameter Vectors

It is often natural to divide a sample into two, or possibly more than two,
subsamples. These might correspond to periods of fixed exchange rates and
floating exchange rates, large firms and small firms, rich countries and poor
countries, or men and women, to name just a few examples. We may then
ask whether a linear regression model has the same coefficients for both the
subsamples. It is natural to use an F test for this purpose. Because the classic
treatment of this problem is found in Chow (1960), the test is often called a
Chow test; later treatments include Fisher (1970) and Dufour (1982).

Let us suppose, for simplicity, that there are only two subsamples, of lengths
n1 and n2, with n = n1 + n2. We will assume that both n1 and n2 are
greater than k, the number of regressors. If we separate the subsamples by
partitioning the variables, we can write

y ≡
[

y1

y2

]
, and X ≡

[
X1

X2

]
,

where y1 and y2 are, respectively, an n1--vector and an n2--vector, while X1

and X2 are n1 × k and n2 × k matrices. Even if we need different para-
meter vectors, β1 and β2, for the two subsamples, we can nonetheless put the
subsamples together in the following regression model:

[
y1

y2

]
=

[
X1

X2

]
β1 +

[
O
X2

]
γ + u, u ∼ N(0, σ2I). (4.41)

It can readily be seen that, in the first subsample, the regression functions
are the components of X1β1, while, in the second, they are the components
of X2(β1 + γ). Thus γ is to be defined as β2 − β1. If we define Z as an
n × k matrix with O in its first n1 rows and X2 in the remaining n2 rows,
then (4.41) can be rewritten as

y = Xβ1 + Zγ + u, u ∼ N(0, σ2I). (4.42)

This is a regression model with n observations and 2k regressors. It has
been constructed in such a way that β1 is estimated directly, while β2 is
estimated using the relation β2 = γ + β1. Since the restriction that β1 = β2

is equivalent to the restriction that γ = 0 in (4.42), the null hypothesis has
been expressed as a set of k zero restrictions. Since (4.42) is just a classical
normal linear model with k linear restrictions to be tested, the F test provides
the appropriate way to test those restrictions.

The F statistic can perfectly well be computed as usual, by running (4.42)
to get the USSR and then running the restricted model, which is just the
regression of y on X, to get the RSSR. However, there is another way to
compute the USSR. In Exercise 4.10, readers are invited to show that it
is simply the sum of the two SSRs obtained by running two independent
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regressions on the two subsamples. If SSR1 and SSR2 denote the sums of
squared residuals from these two regressions, and RSSR denotes the sum of
squared residuals from regressing y on X, the F statistic becomes

Fγ =
(RSSR− SSR1 − SSR2)/k

(SSR1 + SSR2)/(n− 2k)
. (4.43)

This Chow statistic, as it is often called, is distributed as F (k, n− 2k) under
the null hypothesis that β1 = β2.

4.5 Large-Sample Tests in Linear Regression Models

The t and F tests that we developed in the previous section are exact only
under the strong assumptions of the classical normal linear model. If the
error vector were not normally distributed or not independent of the matrix
of regressors, we could still compute t and F statistics, but they would not
actually follow their namesake distributions in finite samples. However, like
a great many test statistics in econometrics which do not follow any known
distribution exactly, they would in many cases approximately follow known
distributions in large samples. In such cases, we can perform what are called
large-sample tests or asymptotic tests, using the approximate distributions to
compute P values or critical values.

Asymptotic theory is concerned with the distributions of estimators and test
statistics as the sample size n tends to infinity. It often allows us to obtain
simple results which provide useful approximations even when the sample size
is far from infinite. In this book, we do not intend to discuss asymptotic the-
ory at the advanced level of Davidson (1994) or White (1984). A rigorous
introduction to the fundamental ideas may be found in Gallant (1997), and a
less formal treatment is provided in Davidson and MacKinnon (1993). How-
ever, it is impossible to understand large parts of econometrics without having
some idea of how asymptotic theory works and what we can learn from it. In
this section, we will show that asymptotic theory gives us results about the
distributions of t and F statistics under much weaker assumptions than those
of the classical normal linear model.

Laws of Large Numbers

There are two types of fundamental results on which asymptotic theory is
based. The first type, which we briefly discussed in Section 3.3, is called a law
of large numbers, or LLN. A law of large numbers may apply to any quantity
which can be written as an average of n random variables, that is, 1/n times
their sum. Suppose, for example, that

x̄ ≡ 1−
n

n∑
t=1

xt,
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Figure 4.6 EDFs for several sample sizes

where the xt are independent random variables, each with its own bounded
finite variance σ2

t and with a common mean µ. Then a fairly simple LLN
assures us that, as n →∞, x̄ tends to µ.

An example of how useful a law of large numbers can be is the Fundamental
Theorem of Statistics, which concerns the empirical distribution function,
or EDF, of a random sample. The EDF was introduced in Exercises 1.1
and 3.4. Suppose that X is a random variable with CDF F (X) and that
we obtain a random sample of size n with typical element xt, where each
xt is an independent realization of X. The empirical distribution defined by
this sample is the discrete distribution that puts a weight of 1/n at each of
the xt, t = 1, . . . , n. The EDF is the distribution function of the empirical
distribution, and it can be expressed algebraically as

F̂ (x) ≡ 1−
n

n∑
t=1

I(xt ≤ x), (4.44)

where I(·) is the indicator function, which takes the value 1 when its argument
is true and takes the value 0 otherwise. Thus, for a given argument x, the
sum on the right-hand side of (4.44) counts the number of realizations xt that
are smaller than or equal to x. The EDF has the form of a step function: The
height of each step is 1/n, and the width is equal to the difference between two
successive values of xt. According to the Fundamental Theorem of Statistics,
the EDF consistently estimates the CDF of the random variable X.
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Figure 4.6 shows the EDFs for three samples of sizes 20, 100, and 500 drawn
from three normal distributions, each with variance 1 and with means 0, 2,
and 4, respectively. These may be compared with the CDF of the standard
normal distribution in the lower panel of Figure 4.2. There is not much
resemblance between the EDF based on n = 20 and the normal CDF from
which the sample was drawn, but the resemblance is somewhat stronger for
n = 100 and very much stronger for n = 500. It is a simple matter to
simulate data from an EDF, as we will see in the next section, and this type
of simulation can be very useful.

It is very easy to prove the Fundamental Theorem of Statistics. For any real
value of x, each term in the sum on the right-hand side of (4.44) depends only
on xt. The expectation of I(xt ≤ x) can be found by using the fact that it
can take on only two values, 1 and 0. The expectation is

E
(
I(xt ≤ x)

)
= 0 · Pr

(
I(xt ≤ x) = 0

)
+ 1 · Pr

(
I(xt ≤ x) = 1

)

= Pr
(
I(xt ≤ x) = 1

)
= Pr(xt ≤ x) = F (x).

Since the xt are mutually independent, so too are the terms I(xt ≤ x). Since
the xt all follow the same distribution, so too must these terms. Thus (4.44) is
the mean of n IID random terms, each with finite expectation. The simplest
of all LLNs (due to Khinchin) applies to such a mean, and we conclude that,
for every x, F̂ (x) is a consistent estimator of F (x).

There are many different LLNs, some of which do not require that the indi-
vidual random variables have a common mean or be independent, although
the amount of dependence must be limited. If we can apply a LLN to any
random average, we can treat it as a nonrandom quantity for the purpose of
asymptotic analysis. In many cases, this means that we must divide the quan-
tity of interest by n. For example, the matrix X>X that appears in the OLS
estimator generally does not converge to anything as n → ∞. In contrast,
the matrix n−1X>X will, under many plausible assumptions about how X is
generated, tend to a nonstochastic limiting matrix SX>X as n →∞.

Central Limit Theorems

The second type of fundamental result on which asymptotic theory is based
is called a central limit theorem, or CLT. Central limit theorems are crucial
in establishing the asymptotic distributions of estimators and test statistics.
They tell us that, in many circumstances, 1/

√
n times the sum of n centered

random variables will approximately follow a normal distribution when n is
sufficiently large.

Suppose that the random variables xt, t = 1, . . . , n, are independently and
identically distributed with mean µ and variance σ2. Then, according to the
Lindeberg-Lévy central limit theorem, the quantity

z ≡ 1√
n

n∑
t=1

xt − µ

σ
(4.45)
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is asymptotically distributed as N(0, 1). This means that, as n → ∞, the
random variable z tends to a random variable which follows the N(0, 1) dis-
tribution. It may seem curious that we divide by

√
n instead of by n in (4.45),

but this is an essential feature of every CLT. To see why, we calculate the var-
iance of z. Since the terms in the sum in (4.45) are independent, the variance
of z is just the sum of the variances of the n terms:

Var(z) = nVar
( 1√

n

xt − µ

σ

)
=

n

n
= 1.

If we had divided by n, we would, by a law of large numbers, have obtained a
random variable with a plim of 0 instead of a random variable with a limiting
standard normal distribution. Thus, whenever we want to use a CLT, we
must ensure that a factor of n−1/2 = 1/

√
n is present.

Just as there are many different LLNs, so too are there many different CLTs,
almost all of which impose weaker conditions on the xt than those imposed
by the Lindeberg-Lévy CLT. The assumption that the xt are identically dis-
tributed is easily relaxed, as is the assumption that they are independent.
However, if there is either too much dependence or too much heterogeneity,
a CLT may not apply. Several CLTs are discussed in Section 4.7 of David-
son and MacKinnon (1993), and Davidson (1994) provides a more advanced
treatment. In all cases of interest to us, the CLT says that, for a sequence of
random variables xt, t = 1, . . . ,∞, with E(xt) = 0,

plim
n→∞

n−1/2
n∑

t=1

xt = x0 ∼ N
(
0, lim

n→∞
1−
n

n∑
t=1

Var(xt)
)
.

We sometimes need vector, or multivariate, versions of CLTs. Suppose that we
have a sequence of random m--vectors xt, for some fixed m, with E(xt) = 0.
Then the appropriate multivariate version of a CLT tells us that

plim
n→∞

n−1/2
n∑

t=1

xt = x0 ∼ N
(
0, lim

n→∞
1−
n

n∑
t=1

Var(xt)
)
, (4.46)

where x0 is multivariate normal, and each Var(xt) is an m×m matrix.

Figure 4.7 illustrates the fact that CLTs often provide good approximations
even when n is not very large. Both panels of the figure show the densities
of various random variables z defined as in (4.45). In the top panel, the xt

are uniformly distributed, and we see that z is remarkably close to being
distributed as standard normal even when n is as small as 8. This panel does
not show results for larger values of n because they would have made it too
hard to read. In the bottom panel, the xt follow the χ2(1) distribution, which
exhibits extreme right skewness. The mode of the distribution is 0, there are
no values less than 0, and there is a very long right-hand tail. For n = 4
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Figure 4.7 The normal approximation for different values of n

and n = 8, the standard normal provides a poor approximation to the actual
distribution of z. For n = 100, on the other hand, the approximation is not
bad at all, although it is still noticeably skewed to the right.

Asymptotic Tests

The t and F tests that we discussed in the previous section are asymptotically
valid under much weaker conditions than those needed to prove that they
actually have their namesake distributions in finite samples. Suppose that
the DGP is

y = Xβ0 + u, u ∼ IID(0, σ2
0I), (4.47)

where β0 satisfies whatever hypothesis is being tested, and the error terms
are drawn from some specific but unknown distribution with mean 0 and
variance σ2

0 . We allow Xt to contain lagged dependent variables, and so we
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abandon the assumption of exogenous regressors and replace it with assump-
tion (3.10) from Section 3.2, plus an analogous assumption about the variance.
These two assumptions can be written as

E(ut |Xt) = 0 and E(u2
t |Xt) = σ2

0 . (4.48)

The first of these assumptions, which is assumption (3.10), can be referred
to in two ways. From the point of view of the error terms, it says that they
are innovations. An innovation is a random variable of which the mean is 0
conditional on the information in the explanatory variables, and so knowledge
of the values taken by the latter is of no use in predicting the mean of the in-
novation. From the point of view of the explanatory variables Xt, assumption
(3.10) says that they are predetermined with respect to the error terms. We
thus have two different ways of saying the same thing. Both can be useful,
depending on the circumstances.

Although we have greatly weakened the assumptions of the classical normal
linear model, we now need to make an additional assumption in order to be
able to use asymptotic results. We therefore assume that the data-generating
process for the explanatory variables is such that

plim
n→∞

1−
n
X>X = SX>X , (4.49)

where SX>X is a finite, deterministic, positive definite matrix. We made this
assumption previously, in Section 3.3, when we proved that the OLS estimator
is consistent. Although it is often reasonable, condition (4.49) is violated in
many cases. For example, it cannot hold if one of the columns of the X matrix
is a linear time trend, because

∑n
t=1 t2 grows at a rate faster than n.

Now consider the t statistic (4.25) for testing the hypothesis that β2 = 0 in
the model (4.21). The key to proving that (4.25), or any test statistic, has
a certain asymptotic distribution is to write it as a function of quantities to
which we can apply either a LLN or a CLT. Therefore, we rewrite (4.25) as

tβ2 =
(

y>MXy

n− k

)−1/2
n−1/2x2

>M1y

(n−1x2
>M1x2)1/2

, (4.50)

where the numerator and denominator of the second factor have both been
multiplied by n−1/2. Under the DGP (4.47), s2 ≡ y>MXy/(n−k) tends to σ2

0

as n →∞. This statement, which is equivalent to saying that the OLS error
variance estimator s2 is consistent under our weaker assumptions, follows from
a LLN, because s2 has the form of an average, and the calculations leading
to (3.49) showed that the mean of s2 is σ2

0 . It follows from the consistency
of s2 that the first factor in (4.50) tends to 1/σ0 as n → ∞. When the data
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are generated by (4.47) with β2 = 0, we have that M1y = M1u, and so (4.50)
is asymptotically equivalent to

n−1/2x2
>M1u

σ0(n−1x2
>M1x2)1/2

. (4.51)

It is now easy to derive the asymptotic distribution of tβ2 if for a moment we
reinstate the assumption that the regressors are exogenous. In that case, we
can work conditionally on X, which means that the only part of (4.51) that
is treated as random is u. The numerator of (4.51) is n−1/2 times a weighted
sum of the ut, each of which has mean 0, and the conditional variance of this
weighted sum is

E(x2
>M1uu>M1x2 |X) = σ2

0 x2
>M1x2.

Thus (4.51) evidently has mean 0 and variance 1, conditional on X. But
since 0 and 1 do not depend on X, these are also the unconditional mean
and variance of (4.51). Provided that we can apply a CLT to the numerator
of (4.51), the numerator of tβ2 must be asymptotically normally distributed,
and we conclude that, under the null hypothesis, with exogenous regressors,

tβ2

a∼ N(0, 1). (4.52)

The notation “ a∼” means that tβ2 is asymptotically distributed as N(0, 1).
Since the DGP is assumed to be (4.47), this result does not require that the
error terms be normally distributed.

The t Test with Predetermined Regressors

If we relax the assumption of exogenous regressors, the analysis becomes more
complicated. Readers not interested in the algebraic details may well wish to
skip to next section, since what follows is not essential for understanding the
rest of this chapter. However, this subsection provides an excellent example
of how asymptotic theory works, and it illustrates clearly just why we can
relax some assumptions but not others.

We begin by applying a CLT to the k --vector

v ≡ n−1/2X>u = n−1/2
n∑

t=1

utXt
>. (4.53)

By (3.10), E(ut |Xt) = 0. This implies that E(utXt
>) = 0, as required for

the CLT, which then tells us that

v
a∼ N

(
0, lim

n→∞
1−
n

n∑
t=1

Var(utXt
>)

)
= N

(
0, lim

n→∞
1−
n

n∑
t=1

E(u2
t Xt

>Xt)
)
;
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recall (4.46). Notice that, because Xt is a 1 × k row vector, the covariance
matrix here is k × k, as it must be. The second assumption in (4.48) allows
us to simplify the limiting covariance matrix:

lim
n→∞

1−
n

n∑
t=1

E(u2
t Xt

>Xt) = lim
n→∞

σ2
0

1−
n

n∑
t=1

E(Xt
>Xt)

= σ2
0 plim

n→∞
1−
n

n∑
t=1

Xt
>Xt

= σ2
0 plim

n→∞
1−
n

X>X = σ2
0 SX>X .

(4.54)

We applied a LLN in reverse to go from the first line to the second, and the
last equality follows from (4.49).

Now consider the numerator of (4.51). It can be written as

n−1/2x2
>u− n−1/2x2

>P1u. (4.55)

The first term of this expression is just the last, or k th, component of v, which
we can denote by v2. By writing out the projection matrix P1 explicitly, and
dividing various expressions by n in a way that cancels out, the second term
can be rewritten as

n−1x2
>X1(n−1X1

>X1)−1n−1/2X1
>u. (4.56)

By assumption (4.49), the first and second factors of (4.56) tend to determin-
istic limits. In obvious notation, the first tends to S21, which is a submatrix
of SX>X , and the second tends to S−1

11 , which is the inverse of a submatrix
of SX>X . Thus only the last factor remains random when n → ∞. It is just
the subvector of v consisting of the first k − 1 components, which we denote
by v1. Asymptotically, in partitioned matrix notation, (4.55) becomes

v2 − S21S
−1
11 v1 = [−S21S

−1
11 1 ]

[
v1

v2

]
.

Since v is asymptotically multivariate normal, this scalar expression is asymp-
totically normal, with mean zero and variance

σ2
0 [−S21S

−1
11 1 ] SX>X

[−S−1
11 S12

1

]
,

where, since SX>X is symmetric, S12 is just the transpose of S21. If we now
express SX>X as a partitioned matrix, the variance of (4.55) is seen to be

σ2
0 [−S21S

−1
11 1 ]

[
S11 S12

S21 S22

][−S−1
11 S12

1

]
= σ2

0

(
S22 − S21S

−1
11 S12

)
. (4.57)
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The denominator of (4.51) is, thankfully, easier to analyze. The square of the
second factor is

n−1x2
>M1x2 = n−1x2

>x2 − n−1x2
>P1x2

= n−1x2
>x2 − n−1x2

>X1

(
n−1X1

>X1

)−1
n−1X1

>x2.

In the limit, all the pieces of this expression become submatrices of SX>X ,
and so we find that

n−1x2
>M1x2 → S22 − S21S

−1
11 S12.

When it is multiplied by σ2
0 , this is just (4.57), the variance of the numerator

of (4.51). Thus, asymptotically, we have shown that tβ2 is the ratio of a normal
random variable with mean zero to its standard deviation. Consequently, we
have established that, under the null hypothesis, with regressors that are not
necessarily exogenous but merely predetermined, tβ2

a∼ N(0, 1). This result is
what we previously obtained as (4.52) when we assumed that the regressors
were exogenous.

Asymptotic F Tests

A similar analysis can be performed for the F statistic (4.33) for the null
hypothesis that β2 = 0 in the model (4.28). Under the null, Fβ2 is equal to
expression (4.34), which can be rewritten as

n−1/2ε>M1X2(n−1X2
>M1X2)−1n−1/2X2

>M1ε/r

ε>MXε/(n− k)
, (4.58)

where ε ≡ u/σ0. It is not hard to use the results we obtained for the t statistic
to show that, as n →∞,

rFβ2

a∼ χ2(r) (4.59)

under the null hypothesis; see Exercise 4.12. Since 1/r times a random vari-
able that follows the χ2(r) distribution is distributed as F (r,∞), we can also
conclude that Fβ2

a∼ F (r, n− k).

The results (4.52) and (4.59) justify the use of t and F tests outside the
confines of the classical normal linear model. We can compute P values using
either the standard normal or t distributions in the case of t statistics, and
either the χ2 or F distributions in the case of F statistics. Of course, if we
use the χ2 distribution, we have to multiply the F statistic by r.

Whatever distribution we use, these P values will be approximate, and tests
based on them will not be exact in finite samples. In addition, our theoretical
results do not tell us just how accurate they will be. If we decide to use a
nominal level of α for a test, we will reject if the approximate P value is
less than α. In many cases, but certainly not all, such tests will probably be
quite accurate, committing Type I errors with probability reasonably close
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to α. They may either overreject, that is, reject the null hypothesis more
than 100α% of the time when it is true, or underreject, that is, reject the
null hypothesis less than 100α% of the time. Whether they will overreject
or underreject, and how severely, will depend on many things, including the
sample size, the distribution of the error terms, the number of regressors
and their properties, and the relationship between the error terms and the
regressors.

4.6 Simulation-Based Tests

When we introduced the concept of a test statistic in Section 4.2, we specified
that it should have a known distribution under the null hypothesis. In the
previous section, we relaxed this requirement and developed large-sample test
statistics for which the distribution is known only approximately. In all the
cases we have studied, the distribution of the statistic under the null hypo-
thesis was not only (approximately) known, but also the same for all DGPs
contained in the null hypothesis. This is a very important property, and it is
useful to introduce some terminology that will allow us to formalize it.

We begin with a simple remark. A hypothesis, null or alternative, can always
be represented by a model , that is, a set of DGPs. For instance, the null and
alternative hypotheses (4.29) and (4.28) associated with an F test of several
restrictions are both classical normal linear models. The most fundamental
sort of null hypothesis that we can test is a simple hypothesis. Such a hypo-
thesis is represented by a model that contains one and only one DGP. Simple
hypotheses are very rare in econometrics. The usual case is that of a com-
pound hypothesis, which is represented by a model that contains more than
one DGP. This can cause serious problems. Except in certain special cases,
such as the exact tests in the classical normal linear model that we investi-
gated in Section 4.4, a test statistic will have different distributions under the
different DGPs contained in the model. In such a case, if we do not know
just which DGP in the model generated our data, then we cannot know the
distribution of the test statistic.

If a test statistic is to have a known distribution under some given null hy-
pothesis, then it must have the same distribution for each and every DGP
contained in that null hypothesis. A random variable with the property that
its distribution is the same for all DGPs in a model M is said to be pivotal,
or to be a pivot, for the model M. The distribution is allowed to depend on
the sample size, and perhaps on the observed values of exogenous variables.
However, for any given sample size and set of exogenous variables, it must be
invariant across all DGPs in M. Note that all test statistics are pivotal for a
simple null hypothesis.

The large sample tests considered in the last section allow for null hypotheses
that do not respect the rigid constraints of the classical normal linear model.
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The price they pay for this added generality is that t and F statistics now
have distributions that depend on things like the error distribution: They are
therefore not pivotal statistics. However, their asymptotic distributions are
independent of such things, and are thus invariant across all the DGPs of
the model that represents the null hypothesis. Such statistics are said to be
asymptotically pivotal, or asymptotic pivots, for that model.

Simulated P Values

The distributions of the test statistics studied in Section 4.3 are all thoroughly
known, and their CDFs can easily be evaluated by computer programs. The
computation of P values is therefore straightforward. Even if it were not,
we could always estimate them by simulation. For any pivotal test statistic,
the P value can be estimated by simulation to any desired level of accuracy.
Since a pivotal statistic has the same distribution for all DGPs in the model
under test, we can arbitrarily choose any such DGP for generating simulated
samples and simulated test statistics.

The theoretical justification for using simulation to estimate P values is the
Fundamental Theorem of Statistics, which we discussed in Section 4.5. It
tells us that the empirical distribution of a set of independent drawings of a
random variable generated by some DGP converges to the true CDF of the
random variable under that DGP. This is just as true of simulated drawings
generated by the computer as for random variables generated by a natural
random mechanism. Thus, if we knew that a certain test statistic was pivotal
but did not know how it was distributed, we could select any DGP in the
null model and generate simulated samples from it. For each of these, we
could then compute the test statistic. If the simulated samples are mutually
independent, the set of simulated test statistics thus generated constitutes a
set of independent drawings from the distribution of the test statistic, and
their EDF is a consistent estimate of the CDF of that distribution.

Suppose that we have computed a test statistic τ̂ , which could be a t statistic,
an F statistic, or some other type of test statistic, using some data set with n
observations. We can think of τ̂ as being a realization of a random variable τ .
We wish to test a null hypothesis represented by a model M for which τ is
pivotal, and we want to reject the null whenever τ̂ is sufficiently large, as in the
cases of an F statistic, a t statistic when the rejection region is in the upper
tail, or a squared t statistic. If we denote by F the CDF of the distribution
of τ under the null hypothesis, the P value for a test based on τ̂ is

p(τ̂) ≡ 1− F (τ̂). (4.60)

Since τ̂ is computed directly from our original data, this P value can be
estimated if we can estimate the CDF F evaluated at τ̂ .

The procedure we are about to describe is very general in its application, and
so we describe it in detail. In order to estimate a P value by simulation,
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we choose any DGP in M, and draw B samples of size n from it. How
to choose B will be discussed shortly; it will typically be rather large, and
B = 999 may often be a reasonable choice. We denote the simulated samples
as y∗j , j = 1, . . . , B. The star (∗) notation will be used systematically to
denote quantities generated by simulation. B is used to denote the number of
simulations in order to emphasize the connection with the bootstrap, which
we will discuss below.

Using the simulated sample, for each j we compute a simulated test statistic,
say τ∗j , in exactly the same way that τ̂ was computed from the original data y.
We can then construct the EDF of the τ∗j analogously to (4.44):

F̂ ∗(x) =
1
B

B∑

j=1

I(τ∗j ≤ x).

Our estimate of the true P value (4.60) is therefore

p̂∗(τ̂) = 1− F̂ ∗(τ̂) = 1− 1
B

B∑

j=1

I(τ∗j ≤ τ̂) =
1
B

B∑

j=1

I(τ∗j > τ̂). (4.61)

The third equality in (4.61) can be understood by noting that the rightmost
expression is the proportion of simulations for which τ∗j is greater than τ̂ , while
the second expression from the right is 1 minus the proportion for which τ∗j
is less than or equal to τ̂ . These proportions are obviously the same.

We can see that p̂∗(τ̂) must lie between 0 and 1, as any P value must. For
example, if B = 999, and 36 of the τ∗j were greater than τ̂ , we would have
p̂∗(τ̂) = 36/999 = 0.036. In this case, since p̂∗(τ̂) is less than 0.05, we would
reject the null hypothesis at the .05 level. Since the EDF converges to the true
CDF, it follows that, if B were infinitely large, this procedure would yield an
exact test, and the outcome of the test would be the same as if we computed
the P value analytically using the CDF of τ . In fact, as we will see shortly,
this procedure will yield an exact test even for certain finite values of B.

The sort of test we have just described, based on simulating a pivotal sta-
tistic, is called a Monte Carlo test. Simulation experiments in general are
often referred to as Monte Carlo experiments, because they involve generat-
ing random numbers, as do the games played in casinos. Around the time that
computer simulations first became possible, the most famous casino was the
one in Monte Carlo. If computers had been developed just a little later, we
would probably be talking now of Las Vegas tests and Las Vegas experiments.

Random Number Generators

Drawing a simulated sample of size n requires us to generate at least n random,
or pseudo-random, numbers. As we mentioned in Section 1.3, a random
number generator, or RNG, is a program for generating random numbers.
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Most such programs generate numbers that appear to be drawings from the
uniform U(0, 1) distribution, which can then be transformed into drawings
from other distributions. There is a large literature on RNGs, to which Press
et al. (1992a, 1992b, Chapter 7) provides an accessible introduction. See also
Knuth (1998, Chapter 3) and Gentle (1998).

Although there are many types of RNG, the most common are variants of the
linear congruential generator,

zi = λzi−1 + c [mod m] , ηi =
zi

m
, i = 1, 2, . . . , (4.62)

where ηi is the ith random number generated, and m, λ, c, and so also the zi,
are positive integers. The notation [mod m] means that we divide what pre-
cedes it by m and retain the remainder. This generator starts with a (generally
large) positive integer z0 called the seed, multiplies it by λ, and then adds c
to obtain an integer that may well be bigger than m. It then obtains z1 as
the remainder from division by m. To generate the next random number, the
process is repeated with z1 replacing z0, and so on. At each stage, the actual
random number output by the generator is zi/m, which, since 0 ≤ zi ≤ m,
lies in the interval [0, 1]. For a given generator defined by λ, m, and c, the
sequence of random numbers depends entirely on the seed. If we provide the
generator with the same seed, we will get the same sequence of numbers.

How well or badly this procedure works depends on how λ, m, and c are
chosen. On 32-bit computers, many commonly used generators set c = 0 and
use for m a prime number that is either a little less than 232 or a little less than
231. When c = 0, the generator is said to be multiplicative congruential. The
parameter λ, which will be large but substantially smaller than m, must be
chosen so as to satisfy some technical conditions. When λ and m are chosen
properly with c = 0, the RNG will have a period of m− 1. This means that
it will generate every rational number with denominator m between 1/m and
(m − 1)/m precisely once until, after m − 1 steps, z0 comes up again. After
that, the generator repeats itself, producing the same m − 1 numbers in the
same order each time.

Unfortunately, many random number generators, whether or not they are of
the linear congruential variety, perform poorly. The random numbers they
generate may fail to be independent in all sorts of ways, and the period may
be relatively short. In the case of multiplicative congruential generators, this
means that λ and m have not been chosen properly. See Gentle (1998) and
the other references cited above for discussion of bad random number genera-
tors. Toy examples of multiplicative congruential generators are examined in
Exercise 4.13, where the choice of λ and m is seen to matter.

There are several ways to generate drawings from a normal distribution if we
can generate random numbers from the U(0, 1) distribution. The simplest,
but not the fastest, is to use the fact that, if ηi is distributed as U(0, 1), then
Φ−1(ηi) is distributed as N(0, 1); this follows from the result of Exercise 4.14.
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Most of the random number generators available in econometrics software
packages use faster algorithms to generate drawings from the standard normal
distribution, usually in a way entirely transparent to the user, who merely
has to ask for so many independent drawings from N(0, 1). Drawings from
N(µ, σ2) can then be obtained by use of the formula (4.09).

Bootstrap Tests

Although pivotal test statistics do arise from time to time, most test statis-
tics in econometrics are not pivotal. The vast majority of them are, however,
asymptotically pivotal. If a test statistic has a known asymptotic distribution
that does not depend on anything unobservable, as do t and F statistics under
the relatively weak assumptions of Section 4.5, then it is certainly asymptot-
ically pivotal. Even if it does not follow a known asymptotic distribution, a
test statistic may be asymptotically pivotal.

A statistic that is not an exact pivot cannot be used for a Monte Carlo test.
However, approximate P values for statistics that are only asymptotically
pivotal, or even nonpivotal, can be obtained by a simulation method called
the bootstrap. This method can be a valuable alternative to the large sample
tests based on asymptotic theory that we discussed in the previous section.
The term bootstrap, which was introduced to statistics by Efron (1979), is
taken from the phrase “to pull oneself up by one’s own bootstraps.” Although
the link between this improbable activity and simulated P values is tenuous
at best, the term is by now firmly established. We will speak of bootstrapping
in order to obtain bootstrap samples, from which we compute bootstrap test
statistics that we use to perform bootstrap tests on the basis of bootstrap
P values, and so on.

The difference between a Monte Carlo test and a bootstrap test is that for
the former, the DGP is assumed to be known, whereas, for the latter, it is
necessary to estimate a bootstrap DGP from which to draw the simulated
samples. Unless the null hypothesis under test is a simple hypothesis, the
DGP that generated the original data is unknown, and so it cannot be used
to generate simulated data. The bootstrap DGP is an estimate of the unknown
true DGP. The hope is that, if the bootstrap DGP is close, in some sense,
to the true one, then data generated by the bootstrap DGP will be similar to
data that would have been generated by the true DGP, if it were known. If
so, then a simulated P value obtained by use of the bootstrap DGP will be
close enough to the true P value to allow accurate inference.

Even for models as simple as the linear regression model, there are many
ways to specify the bootstrap DGP. The key requirement is that it should
satisfy the restrictions of the null hypothesis. If this is assured, then how well a
bootstrap test performs in finite samples depends on how good an estimate the
bootstrap DGP is of the process that would have generated the test statistic
if the null hypothesis were true. In the next subsection, we discuss bootstrap
DGPs for regression models.
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Bootstrap DGPs for Regression Models

If the null and alternative hypotheses are regression models, the simplest
approach is to estimate the model that corresponds to the null hypothesis
and then use the estimates to generate the bootstrap samples, under the
assumption that the error terms are normally distributed. We considered
examples of such procedures in Section 1.3 and in Exercise 1.22.

Since bootstrapping is quite unnecessary in the context of the classical normal
linear model, we will take for our example a linear regression model with
normal errors, but with a lagged dependent variable among the regressors:

yt = Xtβ + Ztγ + δyt−1 + ut, ut ∼ NID(0, σ2), (4.63)

where Xt and β each have k1 − 1 elements, Zt and γ each have k2 elements,
and the null hypothesis is that γ = 0. Thus the model that represents the
null is

yt = Xtβ + δyt−1 + ut, ut ∼ NID(0, σ2). (4.64)

The observations are assumed to be indexed in such a way that y0 is observed,
along with n observations on yt, Xt, and Zt for t = 1, . . . , n. By estimating
the models (4.63) and (4.64) by OLS, we can compute the F statistic for
γ = 0, which we will call τ̂ . Because the regression function contains a lagged
dependent variable, however, the F test based on τ̂ will not be exact.

The model (4.64) is a fully specified parametric model, which means that
each set of parameter values for β, δ, and σ2 defines just one DGP. The
simplest type of bootstrap DGP for fully specified models is given by the
parametric bootstrap. The first step in constructing a parametric bootstrap
DGP is to estimate (4.64) by OLS, yielding the restricted estimates β̃, δ̃, and
s̃2 ≡ SSR(β̃, δ̃)/(n− k1). Then the bootstrap DGP is given by

y∗t = Xtβ̃ + δ̃y∗t−1 + u∗t , u∗t ∼ NID(0, s̃2), (4.65)

which is just the element of the model (4.64) characterized by the parameter
estimates under the null, with stars to indicate that the data are simulated.

In order to draw a bootstrap sample from the bootstrap DGP (4.65), we first
draw an n--vector u∗ from the N(0, s̃2I) distribution. The presence of a lagged
dependent variable implies that the bootstrap samples must be constructed
recursively. This is necessary because y∗t , the tth element of the bootstrap
sample, must depend on y∗t−1 and not on yt−1 from the original data. The
recursive rule for generating a bootstrap sample is

y∗1 = X1β̃ + δ̃y0 + u∗1
y∗2 = X2β̃ + δ̃y∗1 + u∗2

...
...

...
...

y∗n = Xnβ̃ + δ̃y∗n−1 + u∗n.

(4.66)
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Notice that every bootstrap sample is conditional on the observed value of y0.
There are other ways of dealing with pre-sample values of the dependent
variable, but this is certainly the most convenient, and it may, in many cir-
cumstances, be the only method that is feasible.

The rest of the procedure for computing a bootstrap P value is identical to
the one for computing a simulated P value for a Monte Carlo test. For each
of the B bootstrap samples, y∗j , a bootstrap test statistic τ∗j is computed
from y∗j in just the same way as τ̂ was computed from the original data, y.
The bootstrap P value p̂∗(τ̂) is then computed by formula (4.61).

A Nonparametric Bootstrap DGP

The parametric bootstrap procedure that we have just described, based on the
DGP (4.65), does not allow us to relax the strong assumption that the error
terms are normally distributed. How can we construct a satisfactory bootstrap
DGP if we extend the models (4.63) and (4.64) to admit nonnormal errors? If
we knew the true error distribution, whether or not it was normal, we could
always generate the u∗ from it. Since we do not know it, we will have to find
some way to estimate this distribution.

Under the null hypothesis, the OLS residual vector ũ for the restricted model
is a consistent estimator of the error vector u. This is an immediate conse-
quence of the consistency of the OLS estimator itself. In the particular case
of model (4.64), we have for each t that

plim
n→∞

ũt = plim
n→∞

(
yt −Xtβ̃ − δ̃yt−1

)
= yt −Xtβ0 − δ0yt−1 = ut,

where β0 and δ0 are the parameter values for the true DGP. This means that,
if the ut are mutually independent drawings from the error distribution, then
so are the residuals ũt, asymptotically.

From the Fundamental Theorem of Statistics, we know that the empirical dis-
tribution function of the error terms is a consistent estimator of the unknown
CDF of the error distribution. Because the residuals consistently estimate the
errors, it follows that the EDF of the residuals is also a consistent estimator
of the CDF of the error distribution. Thus, if we draw bootstrap error terms
from the empirical distribution of the residuals, we are drawing them from
a distribution that tends to the true error distribution as n → ∞. This is
completely analogous to using estimated parameters in the bootstrap DGP
that tend to the true parameters as n →∞.

Drawing simulated error terms from the empirical distribution of the residuals
is called resampling. In order to resample the residuals, all the residuals are,
metaphorically speaking, thrown into a hat and then randomly pulled out one
at a time, with replacement. Thus each bootstrap sample will contain some
of the residuals exactly once, some of them more than once, and some of them
not at all. Therefore, the value of each drawing must be the value of one of
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the residuals, with equal probability for each residual. This is precisely what
we mean by the empirical distribution of the residuals.

To resample concretely rather than metaphorically, we can proceed as follows.
First, we draw a random number η from the U(0, 1) distribution. Then we
divide the interval [0, 1] into n subintervals of length 1/n and associate each
of these subintervals with one of the integers between 1 and n. When η falls
into the l th subinterval, we choose the index l, and our random drawing is the
l th residual. Repeating this procedure n times yields a single set of bootstrap
error terms drawn from the empirical distribution of the residuals.

As an example of how resampling works, suppose that n = 10, and the ten
residuals are

6.45, 1.28, −3.48, 2.44, −5.17, −1.67, −2.03, 3.58, 0.74, −2.14.

Notice that these numbers sum to zero. Now suppose that, when forming
one of the bootstrap samples, the ten drawings from the U(0, 1) distribution
happen to be

0.631, 0.277, 0.745, 0.202, 0.914, 0.136, 0.851, 0.878, 0.120, 0.259.

This implies that the ten index values will be

7, 3, 8, 3, 10, 2, 9, 9, 2, 3.

Therefore, the error terms for this bootstrap sample will be

−2.03, −3.48, 3.58, −3.48, −2.14, 1.28, 0.74, 0.74, 1.28, −3.48.

Some of the residuals appear just once in this particular sample, some of them
(numbers 2, 3, and 9) appear more than once, and some of them (numbers 1,
4, 5, and 6) do not appear at all. On average, however, each of the residuals
will appear once in each of the bootstrap samples.

If we adopt this resampling procedure, we can write the bootstrap DGP as

y∗t = Xtβ̃ + δ̃y∗t−1 + u∗t , u∗t ∼ EDF(ũ), (4.67)

where EDF(ũ) denotes the distribution that assigns probability 1/n to each
of the elements of the residual vector ũ. The DGP (4.67) is one form of what
is usually called a nonparametric bootstrap, although, since it still uses the
parameter estimates β̃ and δ̃, it should really be called semiparametric rather
than nonparametric. Once bootstrap error terms have been drawn by resam-
pling, bootstrap samples can be created by the recursive procedure (4.66).

The empirical distribution of the residuals may fail to satisfy some of the
properties that the null hypothesis imposes on the true error distribution, and
so the DGP (4.67) may fail to belong to the null hypothesis. One case in which
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this failure has grave consequences arises when the regression (4.64) does not
contain a constant term, because then the sample mean of the residuals is
not, in general, equal to 0. The expectation of the EDF of the residuals is
simply their sample mean; recall Exercise 1.1. Thus, if the bootstrap error
terms are drawn from a distribution with nonzero mean, the bootstrap DGP
lies outside the null hypothesis. It is, of course, simple to correct this problem.
We just need to center the residuals before throwing them into the hat, by
subtracting their mean ū. When we do this, the bootstrap errors are drawn
from EDF(ũ− ūι), a distribution that does indeed have mean 0.

A somewhat similar argument gives rise to an improved bootstrap DGP. If
the sample mean of the restricted residuals is 0, then the variance of their
empirical distribution is the second moment n−1

∑n
t=1 ũ2

t . Thus, by using
the definition (3.49) of s̃2 in Section 3.6, we see that the variance of the
empirical distribution of the residuals is s̃2(n− k1)/n. Since we do not know
the value of σ2

0 , we cannot draw from a distribution with exactly that variance.
However, as with the parametric bootstrap (4.65), we can at least draw from
a distribution with variance s̃2. This is easy to do by drawing from the EDF
of the rescaled residuals, which are obtained by multiplying the OLS residuals
by (n/(n−k1))1/2. If we resample these rescaled residuals, the bootstrap error
distribution is

EDF
(( n

n− k1

)1/2

ũ

)
, (4.68)

which has variance s̃2. A somewhat more complicated approach, based on the
result (3.44), is explored in Exercise 4.15.

Although they may seem strange, these resampling procedures often work
astonishingly well, except perhaps when the sample size is very small or the
distribution of the error terms is very unusual; see Exercise 4.18. If the
distribution of the error terms displays substantial skewness (that is, a nonzero
third moment) or excess kurtosis (that is, a fourth moment greater than 3σ4

0),
then there is a good chance that the EDF of the recentered and rescaled
residuals will do so as well.

Other methods for bootstrapping regression models nonparametrically and
semiparametrically are discussed by Efron and Tibshirani (1993), Davison
and Hinkley (1997), and Horowitz (2001), which also discuss many other
aspects of the bootstrap. A more advanced book, which deals primarily with
the relationship between asymptotic theory and the bootstrap, is Hall (1992).

How Many Bootstraps?

Suppose that we wish to perform a bootstrap test at level α. Then B should
be chosen to satisfy the condition that α(B + 1) is an integer. If α = .05, the
values of B that satisfy this condition are 19, 39, 59, and so on. If α = .01,
they are 99, 199, 299, and so on. It is illuminating to see why B should be
chosen in this way.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



4.6 Simulation-Based Tests 165

Imagine that we sort the original test statistic τ̂ and the B bootstrap sta-
tistics τ∗j , j = 1, . . . , B, in decreasing order. If τ is pivotal, then, under the
null hypothesis, these are all independent drawings from the same distribu-
tion. Thus the rank r of τ̂ in the sorted set can have B + 1 possible values,
r = 0, 1, . . . , B, all of them equally likely under the null hypothesis if τ is
pivotal. Here, r is defined in such a way that there are exactly r simulations
for which τ∗j > τ̂ . Thus, if r = 0, τ̂ is the largest value in the set, and if r = B,
it is the smallest. The estimated P value p̂∗(τ̂) is just r/B.

The bootstrap test rejects if r/B < α, that is, if r < αB. Under the null,
the probability that this inequality will be satisfied is the proportion of the
B + 1 possible values of r that satisfy it. If we denote by [αB] the largest
integer that is smaller than αB, it is easy to see that there are exactly [αB]+1
such values of r, namely, 0, 1, . . . , [αB]. Thus the probability of rejection is
([αB] + 1)/(B + 1). If we equate this probability to α, we find that

α(B + 1) = [αB] + 1.

Since the right-hand side of this equality is the sum of two integers, this
equality can hold only if α(B+1) is an integer. Moreover, it will hold whenever
α(B + 1) is an integer. Therefore, the Type I error will be precisely α if and
only if α(B + 1) is an integer. Although this reasoning is rigorous only if τ is
an exact pivot, experience shows that bootstrap P values based on nonpivotal
statistics are less misleading if α(B + 1) is an integer.

As a concrete example, suppose that α = .05 and B = 99. Then there are 5
out of 100 values of r, namely, r = 0, 1, . . . , 4, that would lead us to reject the
null hypothesis. Since these are equally likely if the test statistic is pivotal, we
will make a Type I error precisely 5% of the time, and the test will be exact.
But suppose instead that B = 89. Since the same 5 values of r would still
lead us to reject the null, we would now do so with probability 5/90 = 0.0556.

It is important that B be sufficiently large, since two problems can arise
if it is not. The first problem is that the outcome of the test will depend
on the sequence of random numbers used to generate the bootstrap samples.
Different investigators may therefore obtain different results, even though they
are using the same data and testing the same hypothesis. The second problem,
which we will discuss in the next section, is that the ability of a bootstrap test
to reject a false null hypothesis declines as B becomes smaller. As a rule of
thumb, we suggest choosing B = 999. If calculating the τ∗j is inexpensive and
the outcome of the test is at all ambiguous, it may be desirable to use a larger
value, like 9999. On the other hand, if calculating the τ∗j is very expensive
and the outcome of the test is unambiguous, because p̂∗ is far from α, it may
be safe to use a value as small as 99.

It is not actually necessary to choose B in advance. An alternative approach,
which is a bit more complicated but can save a lot of computer time, has
been proposed by Davidson and MacKinnon (2000). The idea is to calculate

Copyright c© 1999, Russell Davidson and James G. MacKinnon



166 Hypothesis Testing in Linear Regression Models

a sequence of estimated P values, based on increasing values of B, and to
stop as soon as the estimate p̂∗ allows us to be very confident that p∗ is either
greater or less than α. For example, we might start with B = 99, then perform
an additional 100 simulations if we cannot be sure whether or not to reject the
null hypothesis, then perform an additional 200 simulations if we still cannot
be sure, and so on. Eventually, we either stop when we are confident that the
null hypothesis should or should not be rejected, or when B has become so
large that we cannot afford to continue.

Bootstrap versus Asymptotic Tests

Although bootstrap tests based on test statistics that are merely asymptotic-
ally pivotal are not exact, there are strong theoretical reasons to believe that
they will generally perform better than tests based on approximate asymp-
totic distributions. The errors committed by both asymptotic and bootstrap
tests diminish as n increases, but those committed by bootstrap tests dimin-
ish more rapidly. The fundamental theoretical result on this point is due to
Beran (1988). The results of a number of Monte Carlo experiments have pro-
vided strong support for this proposition. References include Horowitz (1994),
Godfrey (1998), and Davidson and MacKinnon (1999a, 1999b, 2002a).

We can illustrate this by means of an example. Consider the following simple
special case of the linear regression model (4.63)

yt = β1 + β2Xt + β3yt−1 + ut, ut ∼ N(0, σ2), (4.69)

where the null hypothesis is that β3 = 0.9. A Monte Carlo experiment to
investigate the properties of tests of this hypothesis would work as follows.
First, we fix a DGP in the model (4.69) by choosing values for the parameters.
Here β3 = 0.9, and so we investigate only what happens under the null hypo-
thesis. For each replication, we generate an artificial data set from our chosen
DGP and compute the ordinary t statistic for β3 = 0.9. We then compute
three P values. The first of these, for the asymptotic test, is computed using
the Student’s t distribution with n− 3 degrees of freedom, and the other two
are bootstrap P values from the parametric and semiparametric bootstraps,
with residuals rescaled using (4.68), for B = 199.5 We perform many replica-
tions and record the frequencies with which tests based on the three P values
reject at the .05 level. Figure 4.8 shows the rejection frequencies based on
500,000 replications for each of 31 sample sizes: n = 10, 12, 14, . . . , 60.

The results of this experiment are striking. The asymptotic test overrejects
quite noticeably, although it gradually improves as n increases. In contrast,

5 We used B = 199, a smaller value than we would ever recommend using in
practice, in order to reduce the costs of doing the Monte Carlo experiments.
Because experimental errors tend to cancel out across replications, this does
not materially affect the results of the experiments.
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Figure 4.8 Rejection frequencies for bootstrap and asymptotic tests

the two bootstrap tests overreject only very slightly. Their rejection frequen-
cies are always very close to the nominal level of .05, and they approach that
level quite quickly as n increases. For the very smallest sample sizes, the
parametric bootstrap seems to outperform the semiparametric one, but, for
most sample sizes, there is nothing to choose between them.

This example is, perhaps, misleading in one respect. For linear regression
models, asymptotic t and F tests generally do not perform as badly as the
asymptotic t test does here. For example, the t test for β3 = 0 in (4.69)
performs much better than the t test for β3 = 0.9; it actually underrejects
moderately in small samples. However, the example is not at all misleading in
suggesting that bootstrap tests will often perform extraordinarily well, even
when the corresponding asymptotic test does not perform well at all.

4.7 The Power of Hypothesis Tests

To be useful, hypothesis tests must be able to discriminate between the null
hypothesis and the alternative. Thus, as we saw in Section 4.2, the distribu-
tion of a useful test statistic under the null is different from its distribution
when the DGP does not belong to the null. Whenever a DGP places most of
the probability mass of the test statistic in the rejection region of a test, the
test will have high power, that is, a high probability of rejecting the null.

For a variety of reasons, it is important to know something about the power
of the tests we employ. If a test with high power fails to reject the null, this
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tells us more than if a test with lower power fails to do so. In practice, more
than one test of a given null hypothesis is usually available. Of two equally
reliable tests, if one has more power than the other against the alternatives
in which we are interested, then we would surely prefer to employ the more
powerful one.

The Power of Exact Tests

In Section 4.4, we saw that an F statistic is a ratio of the squared norms of two
vectors, each divided by its appropriate number of degrees of freedom. In the
notation of that section, these vectors are, for the numerator, PM1X2y, and,
for the denominator, MXy. If the null and alternative hypotheses are classical
normal linear models, as we assume throughout this subsection, then, under
the null, both the numerator and the denominator of this ratio are indepen-
dent χ2 variables, divided by their respective degrees of freedom; recall (4.34).
Under the alternative hypothesis, the distribution of the denominator is un-
changed, because, under either hypothesis, MXy = MXu. Consequently, the
difference in distribution under the null and the alternative that gives the test
its power must come from the numerator alone.

From (4.33), r/σ2 times the numerator of the F statistic Fβ2 is

1
σ2

y>M1X2(X2
>M1X2)−1X2

>M1y. (4.70)

The vector X2
>M1y is normal under both the null and the alternative. Its

mean is X2
>M1X2β2, which vanishes under the null when β2 = 0, and its

covariance matrix is σ2X2
>M1X2. We can use these facts to determine the

distribution of the quadratic form (4.70). To do so, we must introduce the
noncentral chi-squared distribution, which is a generalization of the ordinary,
or central, chi-squared distribution.

We saw in Section 4.3 that, if the m--vector z is distributed as N(0, I), then
‖z‖2 = z>z is distributed as (central) chi-squared with m degrees of freedom.
Similarly, if x ∼ N(0,Ω), then x>Ω−1x ∼ χ2(m). If instead z ∼ N(µ, I),
then z>z follows the noncentral chi-squared distribution with m degrees of
freedom and noncentrality parameter, or NCP, Λ ≡ µ>µ. This distribution
is written as χ2(m,Λ). It is easy to see that its expectation is m + Λ; see
Exercise 4.17. Likewise, if x ∼ N(µ, Ω), then x>Ω−1x ∼ χ2(m,µ>Ω−1µ).
Although we will not prove it, the distribution depends on µ and Ω only
through the quadratic form µ>Ω−1µ. If we set µ = 0, we see that the χ2(m, 0)
distribution is just the central χ2(m) distribution.

Under either the null or the alternative hypothesis, therefore, the distribution
of expression (4.70) is noncentral chi-squared, with r degrees of freedom, and
with noncentrality parameter given by

Λ ≡ 1
σ2

β2
>X2

>M1X2(X2
>M1X2)−1X2

>M1X2β2 =
1
σ2

β2
>X2

>M1X2β2.
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Figure 4.9 Densities of noncentral χ2 distributions

Under the null, Λ = 0. Under either hypothesis, the distribution of the
denominator of the F statistic, divided by σ2, is central chi-squared with n−k
degrees of freedom, and it is independent of the numerator. The F statistic
therefore has a distribution that we can write as

χ2(r, Λ)/r

χ2(n− k)/(n− k)
,

with numerator and denominator mutually independent. This distribution is
called the noncentral F distribution, with r and n− k degrees of freedom and
noncentrality parameter Λ. In any given testing situation, r and n − k are
given, and so the difference between the distributions of the F statistic under
the null and under the alternative depends only on the NCP Λ.

To illustrate this, we limit our attention to the expression (4.70), which is
distributed as χ2(r, Λ). As Λ increases, the distribution moves to the right
and becomes more spread out. This is illustrated in Figure 4.9, which shows
the density of the noncentral χ2 distribution with 3 degrees of freedom for
noncentrality parameters of 0, 2, 5, 10, and 20. The .05 critical value for the
central χ2(3) distribution, which is 7.81, is also shown. If a test statistic has
the noncentral χ2(3) distribution, the probability that the null hypothesis will
be rejected at the .05 level is the probability mass to the right of 7.81. It is
evident from the figure that this probability will be small for small values of
the NCP and large for large ones.

In Figure 4.9, the number of degrees of freedom r is held constant as Λ is
increased. If, instead, we held Λ constant, the density functions would move
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to the right as r was increased, as they do in Figure 4.4 for the special case
with Λ = 0. Thus, at any given level, the critical value of a χ2 or F test will
increase as r increases. It has been shown by Das Gupta and Perlman (1974)
that this rightward shift of the critical value has a greater effect than the
rightward shift of the density for any positive Λ. Specifically, Das Gupta and
Perlman show that, for a given NCP, the power of a χ2 or F test at any given
level is strictly decreasing in r, as well as being strictly increasing in Λ, as we
indicated in the previous paragraph.

The square of a t statistic for a single restriction is just the F test for that
restriction, and so the above analysis applies equally well to t tests. Things
can be made a little simpler, however. From (4.25), the t statistic tβ2 is 1/s
times

x2
>M1y

(x2
>M1x2)1/2

. (4.71)

The numerator of this expression, x2
>M1y, is normally distributed under both

the null and the alternative, with variance σ2x2
>M1x2 and mean x2

>M1x2β2.
Thus 1/σ times (4.71) is normal with variance 1 and mean

λ ≡ 1−σ(x2
>M1x2)1/2β2. (4.72)

It follows that tβ2 has a distribution which can be written as

N(λ, 1)
(
χ2(n− k)/(n− k)

)1/2
,

with independent numerator and denominator. This distribution is known as
the noncentral t distribution, with n−k degrees of freedom and noncentrality
parameter λ; it is written as t(n − k, λ). Note that λ2 = Λ, where Λ is
the NCP of the corresponding F test. Except for very small sample sizes,
the t(n − k, λ) distribution is quite similar to the N(λ, 1) distribution. It
is also very much like an ordinary, or central, t distribution with its mean
shifted from the origin to (4.72), but it has a bit more variance, because of
the stochastic denominator.

When we know the distribution of a test statistic under the alternative hy-
pothesis, we can determine the power of a test of given level as a function of
the parameters of that hypothesis. This function is called the power function
of the test. The distribution of tβ2 under the alternative depends only on the
NCP λ. For a given regressor matrix X and sample size n, λ in turn depends
on the parameters only through the ratio β2/σ; see (4.72). Therefore, the
power of the t test depends only on this ratio. According to assumption (4.49),
as n → ∞, n−1X>X tends to a nonstochastic limiting matrix SX>X . Thus,
as n increases, the factor (x2

>M1x2)1/2 will be roughly proportional to n1/2,
and so λ will tend to infinity with n at a rate similar to that of n1/2.
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Figure 4.10 Power functions for t tests at the .05 level

Figure 4.10 shows power functions for a very simple model, in which x2, the
only regressor, is a constant. Power is plotted as a function of β2/σ for three
sample sizes: n = 25, n = 100, and n = 400. Since the test is exact, all
the power functions are equal to .05 when β = 0. Power then increases as β
moves away from 0. As we would expect, the power when n = 400 exceeds
the power when n = 100, which in turn exceeds the power when n = 25, for
every value of β 6= 0. It is clear that, as n → ∞, the power function will
converge to the shape of a T, with the foot of the vertical segment at .05 and
the horizontal segment at 1.0. Thus, asymptotically, the test will reject the
null with probability 1 whenever it is false. In finite samples, however, we can
see from the figure that a false hypothesis is very unlikely to be rejected if
n1/2β/σ is sufficiently small.

The Power of Bootstrap Tests

As we remarked in Section 4.6, the power of a bootstrap test depends on B,
the number of bootstrap samples. The reason why it does so is illuminating.
If, to any test statistic, we add random noise independent of the statistic, we
inevitably reduce the power of tests based on that statistic. The bootstrap
P value p̂∗(τ̂) defined in (4.61) is simply an estimate of the ideal bootstrap
P value

p∗(τ̂) ≡ Pr(τ > τ̂) = plim
B→∞

p̂∗(τ̂),

where Pr(τ > τ̂) is evaluated under the bootstrap DGP. When B is finite, p̂∗

will differ from p∗ because of random variation in the bootstrap samples. This
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Figure 4.11 Power functions for tests at the .05 level

random variation is generated in the computer, and is therefore completely
independent of the random variable τ . The bootstrap testing procedure dis-
cussed in Section 4.6 incorporates this random variation, and in so doing it
reduces the power of the test.

Another example of how randomness affects test power is provided by the
tests zβ2 and tβ2 , which were discussed in Section 4.4. Recall that zβ2 follows
the N(0, 1) distribution, because σ is known, and tβ2 follows the t(n − k)
distribution, because σ has to be estimated. As equation (4.26) shows, tβ2 is
equal to zβ2 times the random variable σ/s, which has the same distribution
under the null and alternative hypotheses, and is independent of zβ2 . There-
fore, multiplying zβ2 by σ/s simply adds independent random noise to the
test statistic. This additional randomness requires us to use a larger critical
value, and that in turn causes the test based on tβ2 to be less powerful than
the test based on zβ2 .

Both types of power loss are illustrated in Figure 4.11. It shows power func-
tions for four tests at the .05 level of the null hypothesis that β = 0 in the
model (4.01) with normally distributed error terms and 10 observations. All
four tests are exact, as can be seen from the fact that, in all cases, power
equals .05 when β = 0. For all values of β 6= 0, there is a clear ordering of
the four curves in Figure 4.11. The highest curve is for the test based on zβ2 ,
which uses the N(0, 1) distribution and is available only when σ is known.
The next three curves are for tests based on tβ2 . The loss of power from using
tβ2 with the t(9) distribution, instead of zβ2 with the N(0, 1) distribution, is
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quite noticeable. Of course, 10 is a very small sample size; the loss of power
from not knowing σ would be very much less for more reasonable sample sizes.
There is a further loss of power from using a bootstrap test with finite B. This
further loss is quite modest when B = 99, but it is substantial when B = 19.

Figure 4.11 suggests that the loss of power from using bootstrap tests is gen-
erally modest, except when B is very small. However, readers should be
warned that the loss can be more substantial in other cases. A reasonable
rule of thumb is that power loss will very rarely be a problem when B = 999,
and that it will never be a problem when B = 9999.

4.8 Final Remarks

This chapter has introduced a number of important concepts, which we will
encounter again and again throughout this book. In particular, we will en-
counter many types of hypothesis test, sometimes exact but more commonly
asymptotic. Some of the asymptotic tests work well in finite samples, but
others do not. Many of them can easily be bootstrapped, and they will per-
form much better when bootstrapped, but others are difficult to bootstrap or
do not perform particularly well.

Although hypothesis testing plays a central role in classical econometrics, it
is not the only method by which econometricians attempt to make inferences
from parameter estimates about the true values of parameters. In the next
chapter, we turn our attention to the other principal method, namely, the
construction of confidence intervals and confidence regions.

4.9 Exercises

4.1 Suppose that the random variable z follows the N(0, 1) density. If z is a
test statistic used in a two-tailed test, the corresponding P value, according
to (4.07), is p(z) ≡ 2(1 − Φ(|z|)). Show that Fp(·), the CDF of p(z), is the
CDF of the uniform distribution on [0, 1]. In other words, show that

Fp(x) = x for all x ∈ [0, 1] .

4.2 Extend Exercise 1.6 to show that the third and fourth moments of the stan-
dard normal distribution are 0 and 3, respectively. Use these results in order
to calculate the centered and uncentered third and fourth moments of the
N(µ, σ2) distribution.

4.3 Let the density of the random variable x be f(x). Show that the density of
the random variable w ≡ tx, where t > 0, is t−1f(w/t). Next let the joint
density of the set of random variables xi, i = 1, . . . , m, be f(x1, . . . , xm). For
i = 1, . . . , m, let wi = tixi, ti > 0. Show that the joint density of the wi is

f(w1, . . . , wm) =
1∏m

i=1 ti
f
(

w1

t1
, . . . ,

wm

tm

)
.
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4.4 Consider the random variables x1 and x2, which are bivariate normal with
x1 ∼ N(0, σ2

1), x2 ∼ N(0, σ2
2), and correlation ρ. Show that the expectation

of x1 conditional on x2 is ρ(σ1/σ2)x2 and that the variance of x1 conditional
on x2 is σ2

1(1− ρ2). How are these results modified if the means of x1 and x2

are µ1 and µ2, respectively?

4.5 Suppose that, as in the previous question, the random variables x1 and x2

are bivariate normal, with means 0, variances σ2
1 and σ2

2 , and correlation ρ.
Starting from (4.13), show that f(x1, x2), the joint density of x1 and x2, is
given by

1

2π

1

(1− ρ2)1/2σ1σ2
exp

(
−1

2(1− ρ2)

(
x2
1

σ2
1

− 2ρ
x1x2

σ1σ2
+

x2
2

σ2
2

))
.

Then use this result to show that x1 and x2 are statistically independent
if ρ = 0.

4.6 Consider the linear regression model

yt = β1 + β2Xt1 + β3Xt2 + ut.

Rewrite this model so that the restriction β2 − β3 = 1 becomes a single zero
restriction.

4.7 Consider the linear regression model y = Xβ + u, where there are n obser-
vations and k regressors. Suppose that this model is potentially subject to r
restrictions which can be written as Rβ = r, where R is an r× k matrix and
r is an r --vector. Rewrite the model so that the restrictions become r zero
restrictions.

4.8 Show that the t statistic (4.25) is (n− k)1/2 times the cotangent of the angle
between the n--vectors M1y and M1x2.

Now consider the regressions

y = X1β1 + β2x2 + u, and

x2 = X1γ1 + γ2y + v.
(4.73)

What is the relationship between the t statistic for β2 = 0 in the first of these
regressions and the t statistic for γ2 = 0 in the second?

4.9 Show that the OLS estimates β̃1 from the model (4.29) can be obtained from
those of model (4.28) by the formula

β̃1 = β̂1 + (X1
>X1)

−1X1
>X2 β̂2.

Formula (4.38) is useful for this exercise.

4.10 Show that the SSR from regression (4.42), or equivalently, regression (4.41),
is equal to the sum of the SSRs from the two subsample regressions:

y1 = X1β1 + u1, u1 ∼ N(0, σ2I), and

y2 = X2β2 + u2, u2 ∼ N(0, σ2I).
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4.11 When performing a Chow test, one may find that one of the subsamples is
smaller than k, the number of regressors. Without loss of generality, assume
that n2 < k. Show that, in this case, the F statistic becomes

(RSSR− SSR1)/n2

SSR1/(n1 − k)
,

and that the numerator and denominator really have the degrees of freedom
used in this formula.

4.12 Show, using the results of Section 4.5, that r times the F statistic (4.58) is
asymptotically distributed as χ2(r).

4.13 Consider a multiplicative congruential generator with modulus m = 7, and
with all reasonable possible values of λ, that is, λ = 2, 3, 4, 5, 6. Show that,
for any integer seed between 1 and 6, the generator generates each number of
the form i/7, i = 1, . . . , 6, exactly once before cycling for λ = 3 and λ = 5,
but that it repeats itself more quickly for the other choices of λ. Repeat the
exercise for m = 11, and determine which choices of λ yield generators that
return to their starting point before covering the full range of possibilities.

4.14 If F is a strictly increasing CDF defined on an interval [a, b] of the real line,
where either or both of a and b may be infinite, then the inverse function F −1

is a well-defined mapping from [0, 1] on to [a, b]. Show that, if the random
variable X is a drawing from the U(0, 1) distribution, then F −1(X) is a
drawing from the distribution of which F is the CDF.

4.15 In Section 3.6, we saw that Var(ût) = (1−ht)σ
2
0 , where ût is the tth residual

from the linear regression model y = Xβ + u, and ht is the tth diagonal
element of the “hat matrix” PX; this was the result (3.44). Use this result to
derive an alternative to (4.68) as a method of rescaling the residuals prior to
resampling. Remember that the rescaled residuals must have mean 0.

4.16 Suppose that z is a test statistic distributed as N(0, 1) under the null hypo-
thesis, and as N(λ, 1) under the alternative, where λ depends on the DGP
that generates the data. If cα is defined by (4.06), show that the power of
the two-tailed test at level α based on z is equal to

Φ(λ− cα) + Φ(−cα − λ).

Plot this power function for λ in the interval [−5, 5] for α = .05 and α = .01.

4.17 Show that, if the m--vector z ∼ N(µ, I), the expectation of the noncentral
chi-squared variable z>z is m + µ>µ.

4.18 The file classical.data contains 50 observations on three variables: y, x2,
and x3. These are artificial data generated from the classical linear regression
model

y = β1ι+ β2x2 + β3x3 + u, u ∼ N(0, σ2I).

Compute a t statistic for the null hypothesis that β3 = 0. On the basis
of this test statistic, perform an exact test. Then perform parametric and
semiparametric bootstrap tests using 99, 999, and 9999 simulations. How do
the two types of bootstrap P values correspond with the exact P value? How
does this correspondence change as B increases?
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4.19 Consider again the data in the file consumption.data and the ADL model
studied in Exercise 3.22, which is reproduced here for convenience:

ct = α + βct−1 + γ0yt + γ1yt−1 + ut. (3.70)

Compute a t statistic for the hypothesis that γ0 +γ1 = 0. On the basis of this
test statistic, perform an asymptotic test, a parametric bootstrap test, and a
semiparametric bootstrap test using residuals rescaled according to (4.68).
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Chapter 5

Confidence Intervals

5.1 Introduction

Hypothesis testing, which we discussed in the previous chapter, is the foun-
dation for all inference in classical econometrics. It can be used to find out
whether restrictions imposed by economic theory are compatible with the
data, and whether various aspects of the specification of a model appear to
be correct. However, once we are confident that a model is correctly speci-
fied and incorporates whatever restrictions are appropriate, we often want to
make inferences about the values of some of the parameters that appear in
the model. Although this can be done by performing a battery of hypothesis
tests, it is usually more convenient to construct confidence intervals for the
individual parameters of specific interest. A less frequently used, but some-
times more informative, approach is to construct confidence regions for two
or more parameters jointly.

In order to construct a confidence interval, we need a suitable family of tests
for a set of point null hypotheses. A different test statistic must be calculated
for each different null hypothesis that we consider, but usually there is just
one type of statistic that can be used to test all the different null hypotheses.
For instance, if we wish to test the hypothesis that a scalar parameter θ in a
regression model equals 0, we can use a t test. But we can also use a t test
for the hypothesis that θ = θ0 for any specified real number θ0. Thus, in this
case, we have a family of t statistics indexed by θ0.

Given a family of tests capable of testing a set of hypotheses about a (scalar)
parameter θ of a model, all with the same level α, we can use them to construct
a confidence interval for the parameter. By definition, a confidence interval is
an interval of the real line that contains all values θ0 for which the hypothesis
that θ = θ0 is not rejected by the appropriate test in the family. For level α,
a confidence interval so obtained is said to be a 1− α confidence interval, or
to be at confidence level 1− α. In applied work, .95 confidence intervals are
particularly popular, followed by .99 and .90 ones.

Unlike the parameters we are trying to make inferences about, confidence
intervals are random. Every different sample that we draw from the same DGP
will yield a different confidence interval. The probability that the random
interval will include, or cover, the true value of the parameter is called the
coverage probability, or just the coverage, of the interval. Suppose that all the
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tests in the family have exactly level α, that is, they reject their corresponding
null hypotheses with probability exactly equal to α when the hypothesis is
true. Then the coverage of the interval constructed from this family of tests
will be precisely 1− α.

Confidence intervals may be either exact or approximate. When the exact
distribution of the test statistics used to construct a confidence interval is
known, the coverage will be equal to the confidence level, and the interval will
be exact. Otherwise, we have to be content with approximate confidence inter-
vals, which may be based either on asymptotic theory or on the bootstrap. In
the next section, we discuss both exact confidence intervals and approximate
ones based on asymptotic theory. Then, in Section 5.3, we discuss bootstrap
confidence intervals.

Like a confidence interval, a 1−α confidence region for a set of k model para-
meters, such as the components of a k--vector θ, is a region in a k --dimensional
space (often, the region is the k --dimensional analog of an ellipse) constructed
in such a way that, for every point represented by the k--vector θ0 in the
confidence region, the joint hypothesis that θ = θ0 is not rejected by the
appropriate member of a family of tests at level α. Thus confidence regions
constructed in this way will cover the true values of the parameter vector
100(1− α)% of the time, either exactly or approximately. In Section 5.4, we
show how to construct confidence regions and explain the relationship between
confidence regions and confidence intervals.

In previous chapters, we assumed that the error terms in regression models
are independently and identically distributed. This assumption yielded a sim-
ple form for the covariance matrix of a vector of OLS parameter estimates,
expression (3.28), and a simple way of estimating this matrix. In Section 5.5,
we show that it is possible to estimate the covariance matrix of a vector of
OLS estimates even when we abandon the assumption that the error terms are
identically distributed. Finally, in Section 5.6, we discuss a simple and widely-
used method for obtaining standard errors, covariance matrix estimates, and
confidence intervals for nonlinear functions of estimated parameters.

5.2 Exact and Asymptotic Confidence Intervals

A confidence interval for some scalar parameter θ consists of all values θ0 for
which the hypothesis θ = θ0 cannot be rejected at some specified level α.
Thus, as we will see in a moment, we can construct a confidence interval
by “inverting” a test statistic. If the finite-sample distribution of the test
statistic is known, we will obtain an exact confidence interval. If, as is more
commonly the case, only the asymptotic distribution of the test statistic is
known, we will obtain an asymptotic confidence interval, which may or may
not be reasonably accurate in finite samples. Whenever a test statistic based
on asymptotic theory has poor finite-sample properties, a confidence interval
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based on that statistic will have poor coverage: In other words, the interval
will not cover the true parameter value with the specified probability. In such
cases, it may well be worthwhile to seek other test statistics that will yield
different confidence intervals with better coverage.

To begin with, suppose that we wish to base a confidence interval for the
parameter θ on a family of test statistics that have a distribution or asymptotic
distribution like the χ2 or the F distribution under their respective nulls.
Statistics of this type are always positive, and tests based on them reject
their null hypotheses when the statistics are sufficiently large. Such tests are
often equivalent to two-tailed tests based on statistics distributed as standard
normal or Student’s t. Let us denote the test statistic for the hypothesis that
θ = θ0 by the random variable τ(y, θ0). Here y denotes the sample used to
compute the particular realization of the statistic. It is the random element
in the statistic, since τ(·) is just a deterministic function of its arguments.

For each θ0, the test consists of comparing the realized τ(y, θ0) with the level α
critical value of the distribution of the statistic under the null. If we write the
critical value as cα, then, for any θ0, we have by the definition of cα that

Prθ0

(
τ(y, θ0) ≤ cα

)
= 1− α. (5.01)

Here the subscript θ0 indicates that the probability is calculated under the
hypothesis that θ = θ0. If cα is a critical value for the asymptotic distribution
of τ(y, θ0), rather than for the exact distribution, then (5.01) is only approxi-
mately true. For θ0 to belong to the confidence interval obtained by inverting
the family of test statistics τ(y, θ0), it is necessary and sufficient that

τ(y, θ0) ≤ cα. (5.02)

Thus the limits of the confidence interval can be found by solving the equation

τ(y, θ) = cα (5.03)

for θ. This equation will normally have two solutions. One of these solutions
will be the upper limit, θu, and the other will be the lower limit, θl, of the
confidence interval that we are trying to construct.

If cα is an exact critical value for the test statistic τ(y, θ) at level α, then the
confidence interval [θl, θu] constructed in this way will have coverage 1− α,
as desired. To see this, observe first that, if we can find an exact critical
value cα, the random function τ(y, θ0) must be pivotal for the modelM under
consideration. In saying this, we are implicitly generalizing the definition of a
pivotal quantity (see Section 4.6) to include random variables that may depend
on the model parameters. A random function τ(y, θ) is said to be pivotal forM
if, when it is evaluated at the true value θ0 corresponding to some DGP in M,
the result is a random variable whose distribution does not depend on what
that DGP is. Pivotal functions of more than one model parameter are defined
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in exactly the same way. The function is merely asymptotically pivotal if only
the asymptotic distribution is invariant to the choice of DGP.
Suppose that τ(y, θ0) is an exact pivot. Then, for every DGP in the modelM,
(5.01) holds exactly. Since θ0 belongs to the confidence interval if and only if
(5.02) holds, this means that the confidence interval contains the true para-
meter value θ0 with probability exactly equal to 1 − α, whatever the true
parameter value may be.
Even if it is not an exact pivot, the function τ(y, θ0) must be asymptotically
pivotal, since otherwise the critical value cα would depend asymptotically on
the unknown DGP inM, and we could not construct a confidence interval with
the correct coverage, even asymptotically. Of course, if cα is only approximate,
then the coverage of the interval will differ from 1 − α to a greater or lesser
extent, in a manner that, in general, depends on the unknown true DGP.

Quantiles

When we speak of critical values, we are implicitly making use of the concept
of a quantile of the distribution that the test statistic follows under the null
hypothesis. If F (x) denotes the CDF of a random variable X, and if the PDF
f(x) ≡ F ′(x) exists and is strictly positive on the entire range of possible
values for X, then qα, the α quantile of F, for 0 ≤ α ≤ 1, satisfies the equation
F (qα) = α. The assumption of a strictly positive PDF means that F is strictly
increasing over its range. Therefore, the inverse function F−1 exists, and
qα = F−1(α). For this reason, F−1 is sometimes called the quantile function.
If F is not strictly increasing, or if the PDF does not exist, which, as we saw
in Section 1.2, is the case for a discrete distribution, the α quantile does not
necessarily exist, and is not necessarily uniquely defined, for all values of α.
The 0.5 quantile of a distribution is often called the median. For α = 0.25, 0.5,
and 0.75, the corresponding quantiles are called quartiles; for α = 0.2, 0.4,
0.6, and 0.8, they are called quintiles; for α = i/10 with i an integer between
1 and 9, they are called deciles; for α = i/20 with 1 ≤ i ≤ 19, they are called
vigintiles; and, for α = i/100 with 1 ≤ i ≤ 99, they are called centiles. The
quantile function of the standard normal distribution is shown in Figure 5.1.
All three quartiles, the first and ninth deciles, and the .025 and .975 quantiles
are shown in the figure.

Asymptotic Confidence Intervals

The discussion up to this point has deliberately been rather abstract, because
τ(y, θ0) can, in principle, be any sort of test statistic. To obtain more concrete
results, let us suppose that

τ(y, θ0) ≡
(

θ̂ − θ0

sθ

)2

, (5.04)

where θ̂ is an estimate of θ, and sθ is the corresponding standard error, that
is, an estimate of the standard deviation of θ̂. Thus τ(y, θ0) is the square
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Figure 5.1 The quantile function of the standard normal distribution

of the t statistic for the null hypothesis that θ = θ0. If θ̂ were an OLS
estimate of a regression coefficient, then, under conditions that were discussed
in Section 4.5, the test statistic defined in (5.04) would be asymptotically
distributed as χ2(1) under the null hypothesis. Therefore, the asymptotic
critical value cα would be the 1− α quantile of the χ2(1) distribution.

For the test statistic (5.04), equation (5.03) becomes

(
θ̂ − θ

sθ

)2

= cα.

Taking the square root of both sides and multiplying by sθ then gives

|θ̂ − θ| = sθ c1/2
α . (5.05)

As expected, there are two solutions to equation (5.05). These are

θl = θ̂ − sθ c1/2
α and θu = θ̂ + sθ c1/2

α ,

and so the asymptotic 1− α confidence interval for θ is
[
θ̂ − sθ c1/2

α , θ̂ + sθ c1/2
α

]
. (5.06)

This means that the interval consists of all values of θ between the lower limit
θ̂ − sθ c1/2

α and the upper limit θ̂ + sθ c1/2
α . For α = 0.05, the 1 − α quantile
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θθ
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Figure 5.2 A symmetric confidence interval

of the χ2(1) distribution is 3.8415, the square root of which is 1.9600. Thus
the confidence interval given by (5.06) becomes

[
θ̂ − 1.96sθ, θ̂ + 1.96sθ

]
. (5.07)

This interval is shown in Figure 5.2, which illustrates the manner in which
it is constructed. The value of the test statistic is on the vertical axis of the
figure. The upper and lower limits of the interval occur at the values of θ
where the test statistic (5.04) is equal to cα, which in this case is 3.8415.

We would have obtained the same confidence interval as (5.06) if we had
started with the asymptotic t statistic (θ̂ − θ0)/sθ and used the N(0, 1) dis-
tribution to perform a two-tailed test. For such a test, there are two critical
values, one the negative of the other, because the N(0, 1) distribution is sym-
metric about the origin. These critical values are defined in terms of the
quantiles of that distribution. The relevant ones are now the α/2 and the
1− (α/2) quantiles, since we wish to have the same probability mass in each
tail of the distribution. It is conventional to denote these quantiles of the
standard normal distribution by zα/2 and z1−(α/2), respectively. Note that
zα/2 is negative, since α/2 < 1/2, and the median of the N(0, 1) distribution
is 0. By symmetry, it is the negative of z1−(α/2). Equation (5.03), which has
two solutions for a χ2 test, is replaced by two equations, each with just one
solution, as follows:

τ(y, θ) = ±c.

Here τ(y, θ) denotes the (signed) t statistic rather than the χ2(1) statistic
used in (5.03), and the positive number c can be defined either as z1−(α/2)

or as −zα/2. The resulting confidence interval [θl, θu] can thus be written in
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two different ways:
[
θ̂ + sθ zα/2, θ̂ − sθ zα/2

]
and

[
θ̂ − sθ z1−(α/2), θ̂ + sθ z1−(α/2)

]
. (5.08)

When α = .05, we once again obtain the interval (5.07), since z.025 = −1.96
and z.975 = 1.96.

Asymmetric Confidence Intervals

The confidence interval (5.06), which is the same as the interval (5.08), is a
symmetric one, because θl is as far below θ̂ as θu is above it. Although many
confidence intervals are symmetric, not all of them share this property. The
symmetry of (5.06) is a consequence of the symmetry of the standard normal
distribution and of the form of the test statistic (5.04).

It is possible to construct confidence intervals based on two-tailed tests even
when the distribution of the test statistic is not symmetric. For a chosen
level α, we wish to reject whenever the statistic is too far into either the
right-hand or the left-hand tail of the distribution. Unfortunately, there are
many ways to interpret “too far” in this context. The simplest is probably
to define the rejection region in such a way that there is a probability mass
of α/2 in each tail. This is called an equal-tailed confidence interval. Two
critical values are needed for each level, a lower one, c−α , which will be the
α/2 quantile of the distribution, and an upper one, c+

α , which will be the
1 − (α/2) quantile. A realized statistic τ̂ will lead to rejection at level α
if either τ̂ < c−α or τ̂ > c+

α . This will lead to an asymmetric confidence
interval. We will discuss such intervals, where the critical values are obtained
by bootstrapping, in the next section.

It is also possible to construct confidence intervals based on one-tailed tests.
Such an interval will be open all the way out to infinity in one direction. Sup-
pose that, for each θ0, the null θ ≤ θ0 is tested against the alternative θ > θ0.
If the true parameter value is finite, we will never want to reject the null for
any θ0 that substantially exceeds the true value. Consequently, the confidence
interval will be open out to plus infinity. Formally, the null is rejected only
if the signed t statistic is algebraically greater than the appropriate critical
value. For the N(0, 1) distribution, this is z1−α for level α. The null θ ≤ θ0

will not be rejected if τ(y, θ0) ≤ z1−α, that is, if θ̂ − θ0 ≤ sθz1−α. The interval
over which θ0 satisfies this inequality is just

[
θ̂ − sθz1−α, +∞]

. (5.09)

P Values and Asymmetric Distributions

The above discussion of asymmetric confidence intervals raises the question of
how to calculate P values for two-tailed tests based on statistics with asym-
metric distributions. This is a little tricky, but it will turn out to be useful
when we discuss bootstrap confidence intervals in the next section.
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If the P value is defined, as usual, as the smallest level for which the test
rejects, then, if we denote by F the CDF used to calculate critical values or
P values, the P value associated with a statistic τ should be 2F (τ) if τ is
in the lower tail, and 2(1 − F (τ)) if it is in the upper tail. This can be seen
by the same arguments, based on Figure 4.2, that were used for symmetric
two-tailed tests. A slight problem arises as to the point of separation between
the left and right sides of the distribution. However, it is easy to see that
only one of the two possible P values is less than 1, unless F (τ) is exactly
equal to 0.5, in which case both are equal to 1, and there is no ambiguity. In
complete generality, then, we have that the P value is

p(τ) = 2 min
(
F (τ), 1− F (τ)

)
. (5.10)

Thus the point that separates the left and right sides of the distribution is
the median, q.50, since F (q.50) = .50 by definition. Any τ greater than the
median is in the right-hand tail of the distribution, and any τ less than the
median is in the left-hand tail.

Exact Confidence Intervals for Regression Coefficients

In Section 4.4, we saw that, for the classical normal linear model, exact tests
of linear restrictions on the parameters of the regression function are available,
based on the t and F distributions. This implies that we can construct exact
confidence intervals. Consider the classical normal linear model (4.21), in
which the parameter vector β has been partitioned as [β1

.... β2], where β1 is
a (k − 1)--vector and β2 is a scalar. The t statistic for the hypothesis that
β2 = β20 for any particular value β20 can be written as

β̂2 − β20

s2
, (5.11)

where s2 is the usual OLS standard error for β̂2.

Any DGP in the model (4.21) satisfies β2 = β20 for some β20. With the
correct value of β20, the t statistic (5.11) has the t(n− k) distribution, and so

Pr
(
tα/2 ≤

β̂2 − β20

s2
≤ t1−(α/2)

)
= 1− α, (5.12)

where tα/2 and t1−(α/2) denote the α/2 and 1− (α/2) quantiles of the t(n−k)
distribution. We can use equation (5.12) to find a 1 − α confidence interval
for β2. The left-hand side of the equation is equal to

Pr
(
s2 tα/2 ≤ β̂2 − β20 ≤ s2 t1−(α/2)

)

= Pr
(−s2 tα/2 ≥ β20 − β̂2 ≥ −s2 t1−(α/2)

)

= Pr
(
β̂2 − s2 tα/2 ≥ β20 ≥ β̂2 − s2 t1−(α/2)

)
.
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Therefore, the confidence interval we are seeking is
[
β̂2 − s2 t1−(α/2), β̂2 − s2 tα/2

]
. (5.13)

At first glance, this interval may look a bit odd, because the upper limit is
obtained by subtracting something from β̂2. What is subtracted is negative,
however, because tα/2 < 0, since it is in the lower tail of the t distribution.
Thus the interval does in fact contain the point estimate β̂2.

It may still seem strange that the lower and upper limits of (5.13) depend,
respectively, on the upper-tail and lower-tail quantiles of the t(n − k) distri-
bution. This actually makes perfect sense, however, as can be seen by looking
at the infinite confidence interval (5.09) based on a one-tailed test. There,
since the null is that θ ≤ θ0, the confidence interval must be open out to +∞,
and so only the lower limit of the confidence interval is finite. But the null is
rejected when the test statistic is in the upper tail of its distribution, and so
it must be the upper-tail quantile that determines the only finite limit of the
confidence interval, namely, the lower limit. Readers are strongly advised to
take some time to think this point through, since most people find it strongly
counter-intuitive when they first encounter it, and they can accept it only
after a period of reflection.

In the case of (5.13), it is easy to rewrite the confidence interval so that
it depends only on the positive, upper-tail, quantile, t1−(α/2). Because the
Student’s t distribution is symmetric, the interval (5.13) is the same as the
interval [

β̂2 − s2 t1−(α/2), β̂2 + s2 t1−(α/2)

]
; (5.14)

compare the two ways of writing the confidence interval (5.08). For con-
creteness, suppose that α = .05 and n − k = 32. In this special case,
t1−(α/2) = t.975 = 2.037. Thus the .95 confidence interval based on (5.14)
extends from 2.037 standard errors below β̂2 to 2.037 standard errors above
it. This interval is slightly wider than the interval (5.07), which is based on
asymptotic theory.

We obtained the interval (5.14) by starting from the t statistic (5.11) and
using the Student’s t distribution. As readers are asked to demonstrate in
Exercise 5.2, we would have obtained precisely the same interval if we had
started instead from the square of (5.11) and used the F distribution.

5.3 Bootstrap Confidence Intervals

When exact confidence intervals are not available, and they generally are not,
asymptotic ones are normally used. However, just as asymptotic tests do
not always perform well in finite samples, neither do asymptotic confidence
intervals. Since bootstrap P values and tests based on them often outperform
their asymptotic counterparts, it seems natural to base confidence intervals
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on bootstrap tests when asymptotic intervals give poor coverage. There are
a great many varieties of bootstrap confidence intervals; for a comprehensive
discussion, see Davison and Hinkley (1997).

When we construct a bootstrap confidence interval, we wish to treat a fam-
ily of tests, each corresponding to its own null hypothesis. Since, when we
perform a bootstrap test, we must use a bootstrap DGP that satisfies the
null hypothesis, it appears that we must use an infinite number of bootstrap
DGPs if we are to consider the full family of tests, each with a different null.
Fortunately, there is a clever trick that lets us avoid this difficulty completely.

It is, of course, essential for a bootstrap test that the bootstrap DGP should
satisfy the null hypothesis under test. However, when the distribution of the
test statistic does not depend on precisely which null is being tested, the same
bootstrap distribution can be used for a whole family of tests with different
nulls. If a family of test statistics is defined in terms of a pivotal random
function τ(y, θ0), then, by definition, the distribution of this function is inde-
pendent of θ0. Thus we could choose any value of θ0 that the model allows for
the bootstrap DGP, and the distribution of the test statistic, evaluated at θ0,
would always be the same. The important thing is to make sure that τ(·) is
evaluated at the same value of θ0 as the one used to generate the bootstrap
samples. Even if τ(·) is only asymptotically pivotal, the effect of the choice
of θ0 on the distribution of the statistic should be slight if the sample size is
reasonably large.

Suppose that we wish to construct a bootstrap confidence interval based on
the t statistic t̂(θ0) ≡ τ(y, θ0) = (θ̂ − θ0)/sθ. The first step is to compute θ̂
and sθ using the original data y. Then we generate bootstrap samples using a
DGP, which may be either parametric or semiparametric, characterized by θ̂
and by any other relevant estimates, such as the error variance, that may be
needed. The resulting bootstrap DGP is thus quite independent of θ0, but it
does depend on the estimate θ̂.

We can now generate B bootstrap samples, y∗j , j = 1, . . . , B. For each of
these, we compute an estimate θ∗j and its standard error s∗j in exactly the
same way that we computed θ̂ and sθ from the original data, and we then
compute the bootstrap “t statistic”

t∗j ≡ τ(y∗j , θ̂) =
θ∗j − θ̂

s∗j
. (5.15)

This is the statistic that tests the null hypothesis that θ = θ̂, because θ̂ is the
true value of θ for the bootstrap DGP. If τ(·) is an exact pivot, the change
of null from θ0 to θ̂ makes no difference. If τ(·) is an asymptotic pivot, there
should usually be only a slight difference for values of θ0 close to θ̂.

The limits of the bootstrap confidence interval will depend on the quantiles of
the EDF of the t∗j . We can choose to construct either a symmetric confidence
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interval, by estimating a single critical value that applies to both tails, or
an asymmetric one, by estimating two different critical values. When the
distribution of the underlying test statistic τ(y, θ0) is not symmetric, the
latter interval should be more accurate. For this reason, and because we did
not discuss asymmetric intervals based on asymptotic tests, we now discuss
asymmetric bootstrap confidence intervals in some detail.

Asymmetric Bootstrap Confidence Intervals

Let us denote by F̂ ∗ the EDF of the B bootstrap statistics t∗j . For given θ0,
the bootstrap P value is, from (5.10),

p̂
(
t̂(θ0)

)
= 2 min

(
F̂ ∗

(
t̂(θ0)

)
, 1− F̂ ∗

(
t̂(θ0)

))
. (5.16)

If this P value is greater than or equal to α, then θ0 belongs to the 1 − α
confidence interval. If F̂ ∗ were the CDF of a continuous distribution, we could
express the confidence interval in terms of the quantiles of this distribution,
just as in (5.13). In the limit as B → ∞, the limiting distribution of the τ∗j ,
which we call the ideal bootstrap distribution, is usually continuous, and its
quantiles define the ideal bootstrap confidence interval. However, since the
distribution of the t∗j is always discrete in practice, we must be a little more
careful in our reasoning.

Suppose, to begin with, that t̂(θ0) is on the left side of the distribution. Then
the bootstrap P value (5.16) is

2F̂ ∗
(
t̂(θ0)

)
=

2
B

B∑

j=1

I
(
t∗j ≤ t̂(θ0)

)
=

2r(θ0)
B

,

where r(θ0) is the number of bootstrap t statistics that are less than or equal
to t̂(θ0). Thus θ0 belongs to the 1 − α confidence interval if and only if
2r(θ0)/B ≥ α, that is, if r(θ0) ≥ αB/2. Since r(θ0) is an integer, while αB/2
is not an integer, in general, this inequality is equivalent to r(θ0) ≥ rα/2,
where rα/2 is the smallest integer not less than αB/2.

First, observe that r(θ0) cannot exceed rα/2 for θ0 sufficiently large. Since
t̂(θ0) = (θ̂ − θ0)/sθ, it follows that t̂(θ0) → −∞ as θ0 → ∞. Accordingly,
r(θ0) → 0 as θ0 →∞. Therefore, there exists a greatest value of θ0 for which
r(θ0) ≥ rα/2. This value must be the upper limit of the 1 − α bootstrap
confidence interval.

Suppose we sort the t∗j from smallest to largest and denote by c∗α/2 the entry
in the sorted list indexed by rα/2. Then, if t̂(θ0) = c∗α/2, the number of the t∗j
less than or equal to t̂(θ0) is precisely rα/2. But if t̂(θ0) is smaller than c∗α/2 by
however small an amount, this number is strictly less than rα/2. Thus θu, the
upper limit of the confidence interval, is defined implicitly by t̂(θu) = c∗α/2.
Explicitly, we have

θu = θ̂ − sθ c∗α/2.
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As in the previous section, we see that the upper limit of the confidence
interval is determined by the lower tail of the bootstrap distribution.

If the statistic is an exact pivot, then the probability that the true value of θ
is greater than θu is exactly equal to α/2 only if α(B + 1)/2 is an integer.
This follows by exactly the same argument as the one given in Section 4.6
for bootstrap P values. As an example, if α = .05 and B = 999, we see that
α(B + 1)/2 = 25. In addition, since αB/2 = 24.975, we see that rα/2 = 25.
The value of c∗α/2 is therefore the value of the 25th bootstrap t statistic when
they are sorted in ascending order.

In order to obtain the upper limit of the confidence interval, we began above
with the assumption that t̂(θ0) is on the left side of the distribution. If we
had begun by assuming that t̂(θ0) is on the right side of the distribution, we
would have found that the lower limit of the confidence interval is

θl = θ̂ − sθ c∗1−(α/2),

where c∗1−(α/2) is the entry indexed by r1−(α/2) when the t∗j are sorted in
ascending order. For the example with α = .05 and B = 999, this is the
975th entry in the sorted list, since there are precisely 25 integers in the range
975−999, just as there are in the range 1−25.

The asymmetric equal-tail bootstrap confidence interval can be written as
[
θl, θu

]
=

[
θ̂ − sθ c∗1−(α/2), θ̂ − sθ c∗α/2

]
. (5.17)

This interval bears a striking resemblance to the exact confidence inter-
val (5.13). Clearly, c∗1−(α/2) and c∗α/2, which are approximately the 1− (α/2)
and α/2 quantiles of the EDF of the bootstrap tests, play the same roles as
the 1− (α/2) and α/2 quantiles of the exact Student’s t distribution.

Because the Student’s t distribution is symmetric, the confidence interval
(5.13) is symmetric. In contrast, the interval (5.17) will almost never be sym-
metric. Even if the distribution of the underlying test statistic happened to be
symmetric, the bootstrap distribution based on finite B would almost never
be. It is, of course, possible to construct a symmetric bootstrap confidence
interval. We just need to invert a test for which the P value is not (5.10),
but rather something like (4.07), which is based on the absolute value, or,
equivalently, the square, of the t statistic. See Exercise 5.7.

The bootstrap confidence interval (5.17) is called a studentized bootstrap
confidence interval. The name comes from the fact that a statistic is said to
be studentized when it is the ratio of a random variable to its standard error,
as is the ordinary t statistic. This type of confidence interval is also sometimes
called a percentile-t or bootstrap-t confidence interval. Studentized bootstrap
confidence intervals have good theoretical properties, and, as we have seen,
they are quite easy to construct. If the assumptions of the classical normal
linear model are violated and the empirical distribution of the t∗j provides a
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better approximation to the actual distribution of the t statistic than does the
Student’s t distribution, then the studentized bootstrap confidence interval
should be more accurate than the usual interval based on asymptotic theory.

As we remarked above, there are a great many ways to compute bootstrap
confidence intervals, and there is a good deal of controversy about the rel-
ative merits of different approaches. For an introduction to the voluminous
literature, see DiCiccio and Efron (1996) and the associated discussion. Some
of the approaches in the literature appear to be obsolete, mere relics of the
way in which ideas about the bootstrap were developed, and others are too
complicated to explain here. Even if we limit our attention to studentized
bootstrap intervals, there will often be several ways to proceed. Different
methods of estimating standard errors inevitably lead to different confidence
intervals, as do different ways of parametrizing a model. Thus, in practice,
there will frequently be quite a number of reasonable ways to construct stu-
dentized bootstrap confidence intervals.

Note that specifying the bootstrap DGP is not at all trivial if the error terms
are not assumed to be IID. In fact, this topic is quite advanced and has
been the subject of much research: See Li and Maddala (1996) and Davison
and Hinkley (1997), among others. Later in the book, we will discuss a few
techniques that can be used with particular models.

Theoretical results discussed in Hall (1992) and Davison and Hinkley (1997)
suggest that studentized bootstrap confidence intervals will generally work
better than intervals based on asymptotic theory. However, their coverage
can be quite unsatisfactory in finite samples if the quantity (θ̂ − θ)/sθ is far
from being pivotal, as can happen if the distributions of either θ̂ or sθ de-
pend strongly on the true unknown value of θ or on any other parameters
of the model. When this is the case, the standard errors will often fluctuate
wildly among the bootstrap samples. Of course, the coverage of asymptotic
confidence intervals will generally also be unsatisfactory in such cases.

5.4 Confidence Regions

When we are interested in making inferences about the values of two or more
parameters, it can be quite misleading to look at the confidence intervals
for each of the parameters individually. By using confidence intervals, we are
implicitly basing our inferences on the marginal distributions of the parameter
estimates. However, if the estimates are not independent, the product of the
marginal distributions may be very different from the joint distribution. In
such cases, it makes sense to construct a confidence region.

The confidence intervals we have discussed are all obtained by inverting t tests,
whether exact, asymptotic, or bootstrap, based on families of statistics of the
form (θ̂ − θ0)/sθ. If we wish instead to construct a confidence region, we must
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invert joint tests for several parameters. These will usually be tests based on
statistics that follow the F or χ2 distributions, at least asymptotically.

A t statistic depends explicitly on a parameter estimate and its standard error.
Similarly, many tests for several parameters depend on a vector of parameter
estimates and an estimate of their covariance matrix. Even many statistics
that appear not to do so, such as F statistics, actually do so implicitly, as we
will see shortly. Suppose that we have a k --vector of parameter estimates θ̂,
of which the covariance matrix Var(θ̂) can be estimated by V̂ar(θ̂). Then, in
many circumstances, the statistic

(θ̂ − θ0)>
(
V̂ar(θ̂)

)−1(θ̂ − θ0) (5.18)

can be used to test the joint null hypothesis that θ = θ0.

The asymptotic distribution of (5.18) can be found by using Theorem 4.1. It
tells us that, if a k --vector x is distributed as N(0,Ω), then the quadratic
form x>Ω−1x is distributed as χ2(k). In order to use this result to show
that the statistic (5.18) is asymptotically distributed as χ2(k) under the null
hypothesis, we must study a little more asymptotic theory.

Asymptotic Normality and Root-n Consistency

Although the notion of asymptotic normality is very general, for now we will
introduce it for linear regression models only. Suppose, as in Section 4.5, that
the data were generated by the DGP

y = Xβ0 + u, u ∼ IID(0, σ2
0I), (5.19)

given in (4.47). We have seen that the random vector v = n−1/2X>u defined
in (4.53) follows the normal distribution asymptotically, with mean vector 0
and covariance matrix σ2

0 SX>X , where SX>X is the plim of n−1X>X as the
sample size n tends to infinity.

Consider now the estimation error of the vector of OLS estimates. For the
DGP (5.19), it is

β̂ − β0 = (X>X)−1X>u. (5.20)

As we saw in Section 3.3, β̂ will be consistent under fairly weak conditions.
If it is, expression (5.20) tends to a limit of 0 as the sample size n → ∞.
Therefore, its limiting covariance matrix is a zero matrix. Thus it would
appear that asymptotic theory has nothing to say about limiting variances for
consistent estimators. However, this is easily corrected by the usual device of
introducing a few well-chosen powers of n. If we rewrite (5.20) as

n1/2(β̂ − β0) =
(

1−
n

X>X
)−1

n−1/2X>u,

then the first factor on the right-hand side tends to S−1
X>X as n → ∞, and

the second factor, which is just v, tends to a random vector distributed as
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N(0, σ2
0 SX>X). Because SX>X is deterministic, we find that, asymptotically,

Var
(
n1/2(β̂ − β0)

)
= σ2

0 S−1
X>XS

X>XS−1
X>X = σ2

0 S−1
X>X.

Moreover, since the vector n1/2(β̂−β0) is, asymptotically, just a determinis-
tic linear combination of the components of the multivariate normal random
vector v, we conclude that

n1/2(β̂ − β0)
a∼ N(0, σ2

0 S−1
X>X). (5.21)

Thus, under the fairly weak conditions we used in Section 4.5, we see that the
vector β̂ is asymptotically normal, or exhibits asymptotic normality.

The result (5.21) tells us that the asymptotic covariance matrix of the vector
n1/2(β̂ − β0) is the limit of σ2

0(n−1X>X)−1 as n →∞. In practice, we divide
this by n and use s2(X>X)−1 to estimate Var(β̂), where s2 is the usual
OLS estimate of the error variance; recall (3.49). However, it is important
to remember that, whenever n−1X>X tends to SX>X as n →∞, the matrix
(X>X)−1, without the factor of n, simply tends to a zero matrix. As we saw a
moment ago, this is just a consequence of the fact that β̂ is consistent. Thus,
although it would be convenient if we could dispense with powers of n when
working out asymptotic approximations to covariance matrices, it would be
mathematically incorrect and very risky to do so.

The result (5.21) also gives us the rate of convergence of β̂ to its probability
limit of β0. Since multiplying the estimation error by n1/2 gives rise to an
expression of zero mean and finite covariance matrix, it follows that the esti-
mation error itself tends to zero at the same rate as n−1/2. This property is
expressed by saying that the estimator β̂ is root-n consistent.

Quite generally, let θ̂ be a root-n consistent, asymptotically normal, estimator
of a parameter vector θ. Any estimator of the covariance matrix of θ̂ must
tend to zero as n →∞. Let θ0 denote the true value of θ, and let V denote
the limiting covariance matrix of n1/2(θ̂ − θ0). Then an estimator V̂ar(θ̂) is
said to be a consistent estimator of the covariance matrix of θ̂ if

plim
n→∞

(
n V̂ar(θ̂)

)
= V . (5.22)

We are finally in a position to justify the use of (5.18) as a statistic distributed
as χ2(k) under the null hypothesis. If θ̂ is root-n consistent and asymptotically
normal, and if V̂ar(θ̂) is a consistent estimator of the variance of θ̂, then we
can write (5.18) as

n1/2(θ̂ − θ0)>
(
n V̂ar(θ̂)

)−1
n1/2(θ̂ − θ0). (5.23)

Since n1/2(θ̂ − θ0) is asymptotically normal under the null, with mean zero,
and since the middle factor above tends to the inverse of its limiting covariance
matrix, expression (5.23) is precisely in the form x>Ω−1x of Theorem 4.1, and
so (5.18) is asymptotically distributed under the null as χ2(k).
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Exact Confidence Regions for Regression Parameters

Suppose that we want to construct a confidence region for the elements of the
vector β2 in the classical normal linear model (4.28), which we rewrite here
for ease of exposition:

y = X1β1 + X2β2 + u, u ∼ N(0, σ2I), (5.24)

where β1 and β2 are a k1--vector and a k2--vector, respectively. The F statistic
that can be used to test the hypothesis that β2 = 0 is given in (4.33). If we
wish instead to test β2 = β20, then we can write (5.24) as

y −X2β20 = X1γ1 + X2γ2 + u, u ∼ N(0, σ2I), (5.25)

and test γ2 = 0. It is not hard to show that the F statistic for this hypothesis
takes the form

(β̂2 − β20)>X2
>M1X2(β̂2 − β20)/k2

y>MXy/(n− k)
, (5.26)

where k = k1 + k2; see Exercise 5.8. When multiplied by k2, this F statistic
is in the form of (5.18). For the purposes of inference on β2, regression (5.24)
is, by the FWL Theorem, equivalent to the regression

M1y = M1X2β2 + M1u.

Thus Var(β̂2) is equal to σ2(X2
>M1X2)−1. Since the denominator of (5.26) is

just s2, the OLS estimate of the error variance from running regression (5.24),
k2 times the F statistic (5.26) can be written in the form of (5.18), with

V̂ar
(
β̂2

)
= s2

(
X2
>M1X2

)−1

providing a consistent estimator of the variance of β̂2; compare (3.50).

Under the assumptions of the classical normal linear model, the F statistic
(5.26) follows the F (k2, n − k) distribution when the null hypothesis is true.
Therefore, we can use it to construct an exact confidence region. If cα denotes
the 1− α quantile of the F (k2, n− k) distribution, then the 1− α confidence
region is the set of all β20 for which

(β̂2 − β20)>X2
>M1X2(β̂2 − β20) ≤ cαk2s2. (5.27)

Since the left-hand side of this inequality is quadratic in β20, the confidence
region is, for k2 = 2, the interior of an ellipse and, for k2 > 2, the interior of
a k2--dimensional ellipsoid.
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Figure 5.3 Confidence ellipses and confidence intervals

Confidence Ellipses and Confidence Intervals

Figure 5.3 illustrates what a confidence ellipse can look like when there are
just two components in the vector β2, which we denote by β1 and β2, and the
parameter estimates are negatively correlated. The ellipse, which defines a
.95 confidence region, is centered at the parameter estimates (β̂1, β̂2), with its
major axis oriented from upper left to lower right. Confidence intervals for β1

and β2 are also shown. The .95 confidence interval for β1 is the line segment
AB, and the .95 confidence interval for β2 is the line segment EF. We would
make quite different inferences if we considered AB and EF, and the rectangle
they define, demarcated in Figure 5.3 by the lines drawn with long dashes,
rather than the confidence ellipse. There are many points, such as (β′′1 , β′′2 ),
that lie outside the confidence ellipse but inside the two confidence intervals.
At the same time, there are some points, like (β′1, β

′
2), that are contained in

the ellipse but lie outside one or both of the confidence intervals.

In the framework of the classical normal linear model, the estimates β̂1 and β̂2

are bivariate normal. The t statistics used to test hypotheses about just one
of β1 or β2 are based on the marginal univariate normal distributions of β̂1

and β̂2, respectively, but the F statistics used to test hypotheses about both
parameters at once are based on the joint bivariate normal distribution of the
two estimators. If β̂1 and β̂2 are not independent, as is the case in Figure 5.3,
then information about one of the parameters also provides information about
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the other. Only the confidence region, based on the joint distribution, allows
this to be taken into account.

An example may be helpful at this point. Suppose that we are trying to model
daily electricity demand during the summer months in an area where air con-
ditioning is prevalent. Since the use of air conditioners, and hence electricity
demand, is related to both temperature and humidity, we might want to use
measures of both of them as explanatory variables. In many parts of the
world, summer temperatures and humidity are strongly positively correlated.
Therefore, if we include both variables in a regression, they may be approx-
imately collinear. If so, as we saw in Section 3.4, the OLS estimates will be
relatively imprecise. This lack of precision implies that confidence intervals for
the coefficients of both temperature and humidity will be relatively long, and
that confidence regions for both parameters jointly will be long and narrow.
However, it does not necessarily imply that the area of a confidence region
will be particularly large. This is precisely the situation that is illustrated in
Figure 5.3. Think of β1 as the coefficient of the temperature and β2 as the
coefficient of the humidity.

In Exercise 5.9, readers are asked to show that, when there are two explana-
tory variables in a linear regression model, the correlation between the OLS
estimates of the parameters associated with these variables is the negative of
the correlation between the variables themselves. Thus, in the example we
have been discussing, a positive correlation between temperature and humid-
ity leads to a negative correlation between the estimates of the temperature
and humidity parameters, as shown in Figure 5.3. A point like (β′′1 , β′′2 ) is
excluded from the confidence region because the variation in electricity de-
mand cannot be accounted for if both coefficients are small. But β′′1 cannot be
excluded from the confidence interval for β1 alone, because β′′1 , which assigns
a small effect to the temperature, is perfectly compatible with the data if a
large effect is assigned to the humidity, that is, if β2 is substantially greater
than β′′2 . At the same time, even though β′1 is outside the confidence interval
for β1, the point (β′1, β

′
2) is inside the confidence region, because the very high

value of β′2 is enough to compensate for the very low value of β′1.

The relation between a confidence region for two parameters and confidence
intervals for each of the parameters individually is a subtle one. It is tempting
to think that the ends of the intervals should be given by the extreme points
of the confidence ellipse. This would imply, for example, that the confidence
interval for β1 in the figure is given by the line segment CD. Even without
the insight afforded by the temperature-humidity example, however, we can
see that this must be incorrect. The inequality (5.27) defines the confidence
region, for given parameter estimates β̂1 and β̂2, as a set of values in the
space of the vector β20. If instead we think of (5.27) as defining a region in
the space of β̂2 with β20 the true parameter vector, then we obtain a region
of exactly the same size and shape as the confidence region, because (5.27) is
symmetric in β20 and β̂2. We can assign a probability of 1 − α to the event
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that β̂2 belongs to the new region, because the inequality (5.27) states that
the F statistic is less than its 1−α quantile, an event of which the probability
is 1− α, by definition.

An exactly similar argument can be made for the confidence interval for β1.
In the two-dimensional framework of Figure 5.3, the entire infinitely high
rectangle bounded by the vertical lines through the points A and B has the
same size and shape as an area with probability 1 − α, since we are willing
to allow β2 to take on any real value. Because the infinite rectangle and the
confidence ellipse must contain the same probability mass, neither can contain
the other. Therefore, the ellipse must protrude outside the region defined by
the one-dimensional confidence interval.

It can be seen from (5.27) that the orientation of a confidence ellipse and
the relative lengths of its axes are determined by V̂ar(β̂2). When the two
parameter estimates are positively correlated, the ellipse will be oriented from
lower left to upper right. When they are negatively correlated, it will be
oriented from upper left to lower right, as in Figure 5.3. When the correlation
is zero, the axes of the ellipse will be parallel to the coordinate axes. The
variances of the two parameter estimates determine the height and width of
the ellipse. If the variances are equal and the correlation is zero, the confidence
ellipse will be a circle.

Asymptotic and Bootstrap Confidence Regions

When test statistics like (5.26), with known finite-sample distributions, are
not available, the easiest way to construct an approximate confidence region
is to base it on the statistic (5.18), which can be used with any k --vector of
parameter estimates θ̂ that is root-n consistent and asymptotically normal
and has a covariance matrix that can be consistently estimated by V̂ar(θ̂). If
cα denotes the 1− α quantile of the χ2(k) distribution, then an approximate
1− α confidence region is the set of all θ0 such that

(θ̂ − θ0)>
(
V̂ar(θ̂)

)−1(θ̂ − θ0) ≤ cα. (5.28)

Like the exact confidence region defined by (5.27), this asymptotic confidence
region will be elliptical or ellipsoidal.

We can also use the statistic (5.18) to construct bootstrap confidence regions,
making the same assumptions as were made above about θ̂ and V̂ar(θ̂). As we
did for bootstrap confidence intervals, we use just one bootstrap DGP, either
parametric or semiparametric, characterized by the parameter vector θ̂. For
each of B bootstrap samples, indexed by j, we obtain a vector of parameter
estimates θ∗j and an estimated covariance matrix Var∗(θ∗j ), in just the same
way as θ̂ and V̂ar(θ̂) were obtained from the original data. For each j, we
compute the bootstrap “test statistic”

τ∗j ≡ (θ∗j − θ̂)>
(
Var∗(θ∗j )

)−1(θ∗j − θ̂), (5.29)
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which is the multivariate analog of (5.15). We then find the bootstrap critical
value c∗α, which is the 1 − α quantile of the EDF of the τ∗j . This is done by
sorting the τ∗j from smallest to largest and then taking the entry numbered
(B + 1)(1− α), assuming of course that α(B + 1) is an integer. For example,
if B = 999 and α = .05, c∗α will be the 950th entry in the sorted list. Then
the bootstrap confidence region is defined as the set of all θ0 such that

(θ̂ − θ0)>
(
V̂ar(θ̂)

)−1(θ̂ − θ0) ≤ c∗α. (5.30)

It is no accident that the bootstrap confidence region defined by (5.30) looks
very much like the asymptotic confidence region defined by (5.28). The only
difference is that the critical value cα, which appears on the right-hand side
of (5.28), comes from the asymptotic distribution of the test statistic, while
the critical value c∗α, which appears on the right-hand side of (5.30), comes
from the empirical distribution of the bootstrap samples. Both confidence
regions will have the same elliptical shape. When c∗α > cα, the region defined
by (5.30) will be larger than the region defined by (5.28), and the opposite
will be true when c∗α < cα.

Although this procedure is similar to the studentized bootstrap procedure
discussed in Section 5.3, its true analog is the procedure for obtaining a sym-
metric bootstrap confidence interval that is the subject of Exercise 5.7. That
procedure yields a symmetric interval because it is based on the square of
the t statistic. Similarly, because this procedure is based on the quadratic
form (5.18), the bootstrap confidence region defined by (5.30) is forced to
have the same elliptical shape (but not the same size) as the asymptotic con-
fidence region defined by (5.28). Of course, such a confidence region cannot
be expected to work very well if the finite-sample distribution of θ̂ does not
in fact have contours that are approximately elliptical.

In view of the many ways in which bootstrap confidence intervals can be
constructed, it should come as no surprise to learn that there are also many
other ways to construct bootstrap confidence regions. See Davison and Hink-
ley (1997) for references and a discussion of some of these.

5.5 Heteroskedasticity-Consistent Covariance Matrices

All the testing procedures we have used in this chapter and the preceding
one make use, implicitly if not explicitly, of standard errors or estimated
covariance matrices. If we are to make reliable inferences about the values of
parameters, these estimates should be reliable. In our discussion of how to
estimate the covariance matrix of the OLS parameter vector β̂ in Sections 3.4
and 3.6, we made the rather strong assumption that the error terms of the
regression model are IID. This assumption is needed to show that s2(X>X)−1,
the usual estimator of the covariance matrix of β̂, is consistent in the sense
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of (5.22). However, even without the IID assumption, it is possible to obtain
a consistent estimator of the covariance matrix of β̂.

In this section, we treat the case in which the error terms are independent
but not identically distributed. We focus on the linear regression model with
exogenous regressors,

y = Xβ + u, E(u) = 0, E(uu>) = Ω, (5.31)

where Ω, the error covariance matrix, is an n × n matrix with tth diagonal
element equal to ω2

t and all the off-diagonal elements equal to 0. Since X
is assumed to be exogenous, the expectations in (5.31) can be treated as
conditional on X. Conditional on X, then, the error terms in (5.31) are
uncorrelated and have mean 0, but they do not have the same variance for all
observations. These error terms are said to be heteroskedastic, or to exhibit
heteroskedasticity, a subject of which we spoke briefly in Section 1.3. If,
instead, all the error terms do have the same variance, then, as one might
expect, they are said to be homoskedastic, or to exhibit homoskedasticity.
Here we assume that the investigator knows nothing about the ω2

t . In other
words, the form of the heteroskedasticity is completely unknown.

The assumption in (5.31) that X is exogenous is fairly strong, but it is often
reasonable for cross-section data, as we discussed in Section 3.2. We make
it largely for simplicity, since we would obtain essentially the same asymp-
totic results if we replaced it with the weaker assumption (3.10) that X is
predetermined, that is, the assumption that E(ut |Xt) = 0. When the data
are generated by a DGP that belongs to (5.31) with β = β0, the exogeneity
assumption implies that β̂ is unbiased; recall (3.09), which in no way depends
on assumptions about the covariance matrix of the error terms.

Whatever the form of the error covariance matrix Ω, the covariance matrix
of the OLS estimator β̂ is equal to

E
(
(β̂ − β0)(β̂ − β0)>

)
= (X>X)−1X>E(uu>)X(X>X)−1

= (X>X)−1X>ΩX(X>X)−1. (5.32)

This form of covariance matrix is often called a sandwich covariance matrix,
for the obvious reason that the matrix X>ΩX is sandwiched between the
two instances of the matrix (X>X)−1. The covariance matrix of an inefficient
estimator very often takes this sandwich form. We can see intuitively why the
OLS estimator is inefficient when there is heteroskedasticity by noting that
observations with low variance presumably convey more information about the
parameters than observations with high variance, and so the former should
be given greater weight in an efficient estimator.

If we knew the ω2
t , we could easily evaluate the sandwich covariance matrix

(5.32). In fact, as we will see in Chapter 7, we could do even better and
actually obtain efficient estimates of β. But it is assumed that we do not
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know the ω2
t . Moreover, since there are n of them, one for each observation,

we cannot hope to estimate the ω2
t consistently without making additional

assumptions. Thus, at first glance, the situation appears hopeless. However,
even though we cannot evaluate (5.32), we can estimate it without having to
attempt the impossible task of estimating Ω consistently.

For the purposes of asymptotic theory, we wish to consider the covariance
matrix, not of β̂, but rather of n1/2(β̂ − β0). This is just the limit of n times
the matrix (5.32). By distributing factors of n in such a way that we can take
limits of each of the factors in (5.32), we find that the asymptotic covariance
matrix of n1/2(β̂ − β0) is

lim
n→∞

(
1−
n

X>X
)−1

lim
n→∞

(
1−
n

X>ΩX
)

lim
n→∞

(
1−
n

X>X
)−1

. (5.33)

Under assumption (4.49), the factor lim(n−1X>X)−1, which appears twice in
(5.33) as the bread in the sandwich,1 tends to a finite, deterministic, positive
definite matrix (SX>X)−1. To estimate the limit, we can simply use the matrix
(n−1X>X)−1 itself. What is not so trivial is to estimate the middle factor,
lim(n−1X>ΩX), the filling in the sandwich. In a very famous paper, White
(1980) showed that, under certain conditions, including the existence of the
limit, this matrix can be estimated consistently by

1−
n

X>Ω̂X, (5.34)

where Ω̂ is an inconsistent estimator of Ω. As we will see, there are several
admissible versions of Ω̂. The simplest version, and the one suggested in
White (1980), is a diagonal matrix with tth diagonal element equal to û2

t , the
tth squared OLS residual.

The k×k matrix lim(n−1X>ΩX), which is the middle factor of (5.33), is sym-
metric. Therefore, it has only 1

2 (k2 + k) distinct elements. Since this number
is independent of the sample size, this matrix can be estimated consistently.
Its ij th element is

lim
n→∞

(
1−
n

n∑
t=1

ω2
t XtiXtj

)
. (5.35)

This is to be estimated by the ij th element of (5.34), which, for the simplest
version of Ω̂, is

1−
n

n∑
t=1

û2
t XtiXtj . (5.36)

1 It is a moot point whether to call this limit an ordinary limit, as we do here, or
a probability limit, as we do in Section 4.5. The difference reflects the fact that,
there, X is generated by some sort of DGP, usually stochastic, while here, we
do everything conditional on X. We would, of course, need probability limits
if X were merely predetermined rather than exogenous.
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Because β̂ is consistent for β0, ût is consistent for ut, and û2
t is therefore

consistent for u2
t . Thus, asymptotically, expression (5.36) is equal to

1−
n

n∑
t=1

u2
t XtiXtj = 1−

n

n∑
t=1

(ω2
t + vt)XtiXtj

= 1−
n

n∑
t=1

ω2
t XtiXtj + 1−

n

n∑
t=1

vtXtiXtj ,

(5.37)

where vt is defined to equal u2
t minus its mean of ω2

t . Under suitable assump-
tions about the Xti and the ω2

t , we can apply a law of large numbers to the
second term in the second line of (5.37); see White (1980, 1984) for details.
Since vt has mean 0 by construction, this term converges to 0, while the first
term converges to (5.35).

The above argument shows that (5.37) tends in probability to (5.35). Because
(5.37) is asymptotically equivalent to (5.36), the latter also tends in proba-
bility to (5.35). Consequently, we can use (5.34), the matrix with typical
element (5.36), to estimate lim(n−1X>ΩX) consistently, and the matrix

(n−1X>X)−1n−1X>Ω̂X(n−1X>X)−1 (5.38)

to estimate (5.33) consistently. Of course, in practice, we will ignore the
factors of n−1 and use the matrix

V̂arh(β̂) ≡ (X>X)−1X>Ω̂X(X>X)−1 (5.39)

directly to estimate the covariance matrix of β̂.2 It is not difficult to modify
the arguments on asymptotic normality of the previous section so that they
apply to the model (5.31). Therefore, we conclude that the OLS estimator is
root-n consistent and asymptotically normal, with (5.39) being a consistent
estimator of its covariance matrix.

The sandwich estimator (5.39) that we have just derived is an example of
a heteroskedasticity-consistent covariance matrix estimator, or HCCME for
short. It was introduced to econometrics by White (1980), although there
were some precursors in the statistics literature, notably Eicker (1963, 1967)
and Hinkley (1977). By taking square roots of the diagonal elements of (5.39),
we can obtain standard errors that are asymptotically valid in the presence
of heteroskedasticity of unknown form. These heteroskedasticity-consistent
standard errors, which may also be referred to as heteroskedasticity-robust,
are often enormously useful.

2 The HCCME (5.39) depends on Ω̂ only through X>Ω̂X, which is a symmetric
k × k matrix. Notice that we can compute the latter directly by calculating
k(k + 1)/2 quantities like (5.36) without the factor of n−1.
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Alternative Forms of HCCME

The original HCCME (5.39) that uses squared residuals to estimate the diag-
onals of Ω is often called HC0. However, it is not the best possible covariance
matrix estimator, because, as we saw in Section 3.6, least squares residuals
tend to be too small. There are several better estimators that inflate the
squared residuals slightly so as to offset this tendency. Three straightforward
ways of estimating the ω2

t are the following:

• Use û2
t

(
n/(n − k)

)
, thus incorporating a degrees-of-freedom correction.

In practice, this means multiplying the entire matrix (5.39) by n/(n−k).
The resulting HCCME is often called HC1.

• Use û2
t /(1− ht), where ht ≡ Xt(X>X)−1Xt

> is the tthdiagonal element of
the “hat” matrix PX that projects orthogonally on to the space spanned
by the columns of X. Recall the result (3.44) that, when the variance
of all the ut is σ2, the expectation of û2

t is σ2(1− ht). Therefore, the
ratio of û2

t to 1 − ht would have expectation σ2 if the error terms were
homoskedastic. The resulting HCCME is often called HC2.

• Use û2
t /(1 − ht)2. This is a slightly simplified version of what one gets

by employing a statistical technique called the jackknife. Dividing by
(1 − ht)2 may seem to be overcorrecting the residuals. However, when
the error terms are heteroskedastic, observations with large variances will
tend to influence the estimates a lot, and they will therefore tend to have
residuals that are very much too small. Thus, this estimator, which yields
an HCCME that is often called HC3, may be attractive if large variances
are associated with large values of ht.

The argument used in the preceding subsection for HC0 shows that all of
these procedures will give the correct answer asymptotically, but none of them
can be expected to do so in finite samples. In fact, inferences based on any
HCCME, especially HC0, may be seriously inaccurate even in samples of
moderate size.

It is not clear which of the more sophisticated procedures will work best in any
particular case, although they can all be expected to work better than simply
using the squared residuals without any adjustment. When some observations
have much higher leverage than others, the methods that use the ht might be
expected to work better than simply using a degrees-of-freedom correction.
These methods were first discussed by MacKinnon and White (1985), who
found some evidence that the jackknife seemed to work best. Later simulations
by Long and Ervin (2000) also support the use of HC3. However, theoretical
work by Chesher (1989) and Chesher and Austin (1991) gave more ambiguous
results and suggested that HC2 might sometimes outperform HC3. It appears
that the best procedure to use depends on the X matrix and on the form of
the heteroskedasticity.
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When Does Heteroskedasticity Matter?

Even when the error terms are heteroskedastic, there are cases in which we
do not necessarily have to use an HCCME. Consider the ij th element of
n−1X>ΩX, which is

1−
n

n∑
t=1

ω2
t XtiXtj . (5.40)

If the limit as n → ∞ of the average of the ω2
t , t = 1, . . . , n, exists and is

denoted σ2, then (5.40) can be written as

σ2 1−
n

n∑
t=1

XtiXtj + 1−
n

n∑
t=1

(ω2
t − σ2)XtiXtj .

The first term here is just the ij th element of σ2n−1X>X. Should it be the
case that

lim
n→∞

1−
n

n∑
t=1

(ω2
t − σ2)XtiXtj = 0 (5.41)

for i, j = 1, . . . , k, then we find that

lim
n→∞

(
1−
n

X>ΩX
)

= σ2 lim
n→∞

(
1−
n

X>X
)
. (5.42)

In this special case, we can replace the middle term of (5.33) by the right-
hand side of (5.42), and we find that the asymptotic covariance matrix of
n1/2(β̂ − β0) is just

lim
n→∞

(
1−
n

X>X
)−1

σ2 lim
n→∞

(
1−
n

X>X
)

lim
n→∞

(
1−
n

X>X
)−1

= σ2 lim
n→∞

(
1−
n

X>X
)−1

.

The usual OLS estimate of the error variance is

s2 =
1

n− k

n∑
t=1

û2
t ,

and, if we assume that we can apply a law of large numbers, the probability
limit of this is

lim
n→∞

1−
n

n∑
t=1

ω2
t = σ2, (5.43)

by definition. Thus we see that, in this special case, the usual OLS covariance
matrix estimator (3.50) will be valid asymptotically. This important result
was originally shown by White (1980).

Equation (5.41) always holds when we are estimating only a sample mean. In
that case, X = ι, a vector with typical element ιt = 1, and

1−
n

n∑
t=1

ω2
t XtiXtj = 1−

n

n∑
t=1

ω2
t ι2t = 1−

n

n∑
t=1

ω2
t → σ2 as n →∞.
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This shows that we do not have to worry about heteroskedasticity when cal-
culating the standard error of a sample mean. Of course, equation (5.41) also
holds when the error terms are homoskedastic. In that case, the σ2 given
by (5.43) is just the variance of each of the error terms.

Although equation (5.41) holds only in certain special cases, it does make
one thing clear. Any form of heteroskedasticity affects the efficiency of the
ordinary least squares parameter estimator, but only heteroskedasticity that
is related to the squares and cross-products of the Xti affects the validity of
the usual OLS covariance matrix estimator.

HAC Covariance Matrix Estimators

All HCCMEs depend on the assumption that Ω is diagonal. We are able to
compute them because we can consistently estimate the matrix n−1X>ΩX,
even though we cannot consistently estimate the matrix Ω itself. For essen-
tially the same reason, we can obtain valid covariance matrix estimators even
when Ω is not a diagonal matrix. However, in order for us to be able to
estimate n−1X>ΩX consistently when Ω is unknown and is not diagonal, all
the off-diagonal elements which are not close to the principal diagonal must
be sufficiently small.

When the error terms of a regression model are correlated among themselves,
then, as we mentioned in Section 1.3, they are said to display serial correla-
tion or autocorrelation. Serial correlation is frequently encountered in models
estimated using time series data. Often, observations that are close to each
other are strongly correlated, but observations that are far apart are uncor-
related or nearly so. In this situation, only the elements of Ω that are on
or close to the principal diagonal will be large. When this is the case, we
may be able to obtain an estimate of the covariance matrix of the parameter
estimates that is heteroskedasticity and autocorrelation consistent, or HAC.
Computing a HAC covariance matrix estimator is essentially similar to com-
puting an HCCME, but a good deal more complicated. HAC estimators will
be discussed in Chapter 9.

5.6 The Delta Method

Econometricians often want to perform inference on nonlinear functions of
model parameters. This requires them to estimate the standard error of a
nonlinear function of parameter estimates or, more generally, the covariance
matrix of a vector of such functions. One popular way to do so is called the
delta method. It is based on an asymptotic approximation.

For simplicity, let us start with the case of a single parameter. Suppose that we
have estimated a scalar parameter θ, which might be one of the coefficients of a
linear regression model, and that we are interested in the parameter γ = g(θ),
where g(·) is a monotonic function that is continuously differentiable. In this
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Figure 5.4 Taylor’s Theorem

situation, the obvious way to estimate γ is to use γ̂ = g(θ̂). Since θ̂ is a random
variable, so is γ̂. The problem is to estimate the variance of γ̂.

Since γ̂ is a function of θ̂, it seems logical that Var(γ̂) should be a function of
Var(θ̂). If g(θ) is a linear or affine function, then we already know how to cal-
culate Var(γ̂); recall the result (3.33). The idea of the delta method is to find
a linear approximation to g(θ) and then apply (3.33) to this approximation.

Taylor’s Theorem

It is frequently necessary in econometrics to obtain linear approximations
to nonlinear functions. The mathematical tool most commonly used for this
purpose is Taylor’s Theorem. In its simplest form, Taylor’s Theorem applies to
functions of a scalar argument that are differentiable at least once on some real
interval [a, b ], with the derivative a continuous function on [a, b ]. Figure 5.4
shows the graph of such a function, f(x), for x ∈ [a, b].

The coordinates of A are (a, f(a)), and those of B are (b, f(b)). Thus the
slope of the line AB is

(
f(b)− f(a)

)
/(b− a). What drives the theorem is the

observation that there must always be a value between a and b, like c in the
figure, at which the derivative f ′(c) is equal to the slope of AB. This is a
consequence of the continuity of the derivative. If it were not continuous, and
the graph of f(x) had a corner, the slope might always be greater than f ′(c)
on one side of the corner, and always be smaller on the other. But if f ′(x) is
continuous on [a, b], then there must exist c such that

f ′(c) =
f(b)− f(a)

b− a
.
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This can be rewritten as f(b) = f(a) + (b− a)f ′(c). If we let h = b− a, then,
since c lies between a and b, it must be the case that c = a + th, for some t
between 0 and 1. Thus we obtain

f(a + h) = f(a) + hf ′(a + th). (5.44)

Equation (5.44) is the simplest expression of Taylor’s Theorem.

Although (5.44) is an exact relationship, it involves the quantity t, which
is unknown. It is more usual just to set t = 0, so as to obtain a linear
approximation to the function f(x) for x in the neighborhood of a. This
approximation, called a first-order Taylor expansion around a, is

f(a + h) ∼= f(a) + hf ′(a),

where the symbol “∼=” means “is approximately equal to.” The right-hand
side of this equation is an affine function of h.

Taylor’s Theorem can be extended in order to provide approximations that
are quadratic or cubic functions, or polynomials of any desired order. The
exact statement of the theorem, with terms proportional to powers of h up
to hp, is

f(a + h) = f(a) +
p−1∑

i=1

hi

i!
f (i)(a) +

hp

p!
f (p)(a + th).

Here f (i) is the ith derivative of f , and once more 0 < t < 1. The approximate
version of the theorem sets t = 0 and gives rise to a pth-order Taylor expansion
around a. A commonly-encountered example of the latter is the second-order
Taylor expansion

f(a + h) ∼= f(a) + hf ′(a) + 1−
2
h2f ′′(a).

Both versions of Taylor’s Theorem require as a regularity condition that f(x)
should have a pth derivative that is continuous on [a, a + h].

There are also multivariate versions of Taylor’s Theorem, and we will need
them from time to time. If f(x) is now a scalar-valued function of the
m--vector x, then, for p = 1, Taylor’s Theorem states that, if h is also an
m--vector, then

f(x + h) = f(x) +
m∑

j=1

hjfj(x + th), (5.45)

where hj is the j th component of h, fj is the partial derivative of f with
respect to its j th argument, and, as before, 0 < t < 1.
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The Delta Method for a Scalar Parameter

If we assume that the estimator θ̂ is root-n consistent and asymptotically
normal, then

n1/2(θ̂ − θ0)
a∼ N

(
0, V∞(θ̂)

)
, (5.46)

where θ0 denotes the true value of θ. We will use V∞(θ̂) as a shorthand way
of writing the asymptotic variance of n1/2(θ̂ − θ0).

In order to find the asymptotic distribution of γ̂ = g(θ̂), we perform a first-
order Taylor expansion of g(θ̂) around θ0. We obtain:

γ̂ ∼= g(θ0) + g′(θ0)(θ̂ − θ0), (5.47)

where g′(θ0) is the first derivative of g(θ), evaluated at θ0. Given the root-n
consistency of θ̂, (5.47) can be rearranged into an asymptotic equality. Two
deterministic quantities are said to be asymptotically equal if they tend to
the same limits as n → ∞. Similarly, two random quantities are said to be
asymptotically equal if they tend to the same limits in probability. As usual,
we need a power of n to make things work correctly. Here, we multiply both
sides of (5.47) by n1/2. If we denote g(θ0), which is the true value of γ, by γ0,
then (5.47) becomes

n1/2(γ̂ − γ0)
a= g′0n1/2(θ̂ − θ0), (5.48)

where the symbol a= is used for asymptotic equality, and g′0 ≡ g′(θ0). In
Exercise 5.13, readers are asked to check that, if we perform a second-order
Taylor expansion, the last term of the expansion vanishes asymptotically. This
justifies (5.48) as an asymptotic equality.

Equation (5.48) shows that n1/2(γ̂−γ0) is asymptotically normal with mean 0,
since the right-hand side of (5.48) is just g′0 times a quantity that is asymp-
totically normal with mean 0; recall (5.46). The variance of n1/2(γ̂ − γ0) is
clearly (g′0)

2V∞(θ̂), and so we conclude that

n1/2(γ̂ − γ0)
a∼ N

(
0, (g′0)

2V∞(θ̂)
)
. (5.49)

This shows that γ̂ is root-n consistent and asymptotically normal when θ̂ is.

The result (5.49) leads immediately to a practical procedure for estimating
the standard error of γ̂. If the standard error of θ̂ is sθ, then the standard
error of γ̂ will be

sγ ≡
∣∣g′(θ̂)

∣∣ sθ. (5.50)

This procedure can be based on any asymptotically valid estimator of the
standard deviation of θ̂. For example, if θ were one of the coefficients of a
linear regression model, then sθ could be the square root of the corresponding
diagonal element of the usual estimated OLS covariance matrix, or it could
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be the square root of the corresponding diagonal element of an estimated
heteroskedasticity-consistent covariance matrix.

In practice, the delta method is usually very easy to use. For example, consider
the case in which γ = θ2. Then g′(θ) = 2θ, and the formula (5.50) tells us
that sγ = 2|θ̂|sθ. Notice that sγ depends on θ̂, something that is not true for
either the usual OLS standard error or the heteroskedasticity-consistent one
discussed in the preceding section.

Confidence Intervals and the Delta Method

Although the result (5.50) is simple and practical, it reveals some of the lim-
itations of asymptotic theory. Whenever the relationship between θ̂ and γ̂ is
nonlinear, it is impossible that both of them should be normally distributed in
finite samples. Suppose that θ̂ really did happen to be normally distributed.
Then, unless g(·) were linear, γ̂ could not possibly be normally, or even sym-
metrically, distributed. Similarly, if γ̂ were normally distributed, θ̂ could not
be. Moreover, as the example at the end of the last subsection showed, sγ

will generally depend on θ̂. This implies that the numerator of a t statistic
for γ will not be independent of the denominator. However, independence
was essential to the result, in Section 4.4, that the t statistic actually follows
the Student’s t distribution.

The preceding arguments suggest that confidence intervals and test statis-
tics based on asymptotic theory will often not be reliable in finite samples.
Asymptotic normality of the parameter estimates is an essential underpinning
of all asymptotic tests and confidence intervals or regions. When the finite-
sample distributions of estimates are far from the limiting normal distribution,
asymptotic procedures cannot be expected to perform well.

Despite these caveats, we may still wish to construct an asymptotic confidence
interval for γ based on (5.08). The result is

[
γ̂ − sγz1−(α/2), γ̂ + sγz1−(α/2)

]
, (5.51)

where sγ is the delta method estimate (5.50), and z1−(α/2) is the 1 − (α/2)
quantile of the standard normal distribution. This confidence interval can
be expected to work well whenever the finite-sample distribution of γ̂ is well
approximated by the normal distribution and sγ is a reliable estimator of its
standard deviation.

Using (5.08) is not the only way to obtain an asymptotic confidence interval
for γ, however. Another approach, which usually leads to an asymmetric
interval, is to transform the asymptotic confidence interval for the underlying
parameter θ. The latter interval, which is similar to (5.08), is

[
θ̂ − sθz1−(α/2), θ̂ + sθz1−(α/2)

]
.
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Transforming the endpoints of this interval by the function g gives the follow-
ing interval for γ:

[
g(θ̂ − sθz1−(α/2)), g(θ̂ + sθz1−(α/2))

]
. (5.52)

This assumes that g′(θ) > 0. If g′(θ) < 0, the two ends of the interval
would have to be interchanged. Whenever g(θ) is a nonlinear function, the
confidence interval (5.52) will be asymmetric. It can be expected to work
well if the finite-sample distribution of θ̂ is well approximated by the normal
distribution and sθ is a reliable estimator of the standard deviation of θ̂.

The bootstrap confidence interval for θ, (5.17), can also be transformed by g
in order to obtain a bootstrap confidence interval for γ. The result is

[
g(θ̂ − sθ c∗1−(α/2)), g(θ̂ − sθ c∗α/2)

]
, (5.53)

where c∗α/2 and c∗1−(α/2) are, as in (5.17), the entries indexed by (α/2)(B + 1)
and (1− (α/2))(B + 1) in the sorted list of bootstrap t statistics t∗j .

Yet another way to construct a bootstrap confidence interval is to bootstrap
the t statistic for γ directly. Using the original data, we compute θ̂ and sθ,
and then γ̂ and sγ in terms of them. The bootstrap DGP is the same as the
one used to obtain a bootstrap confidence interval for θ, but this time, for each
bootstrap sample j, j = 1, . . . , B, we compute γ∗j and (sγ)∗j . The bootstrap
“t statistics” (γ∗j − γ̂)/(sγ)∗j are then sorted. If (cγ)∗α/2 and (cγ)∗1−(α/2) denote
the entries indexed by (α/2)(B + 1) and (1− (α/2))(B + 1) in the sorted list,
then the (asymmetric) bootstrap confidence interval is

[
γ̂ − sγ(cγ)∗1−(α/2), γ̂ − sγ(cγ)∗α/2

]
. (5.54)

As readers are asked to check in Exercise 5.16, the intervals (5.53) and (5.54)
are not the same.

The Vector Case

The result (5.49) can easily be extended to the case in which both θ and γ are
vectors. Suppose that the former is a k --vector and the latter is an l --vector,
with l ≤ k. The relation between θ and γ is γ = g(θ), where g(θ) is an
l --vector of monotonic functions that are continuously differentiable. The
vector version of (5.46) is

n1/2(θ̂ − θ0)
a∼ N

(
0, V ∞(θ̂)

)
, (5.55)

where V ∞(θ̂) is the asymptotic covariance matrix of the vector n1/2(θ̂ − θ0).
Using the result (5.55) and a first-order Taylor expansion of g(θ) around θ0,
it can be shown that the vector analog of (5.49) is

n1/2(γ̂ − γ0)
a∼ N

(
0,G0V

∞(θ̂)G0
>)

, (5.56)
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where G0 is an l×k matrix with typical element ∂gi(θ)/∂θj , evaluated at θ0;
see Exercise 5.14. The asymptotic covariance matrix that appears in (5.56) is
an l × l matrix. It has full rank l if V ∞(θ̂) is nonsingular and the matrix of
derivatives G0 has full rank l.

In practice, the covariance matrix of γ̂ may be estimated by the matrix

V̂ar(γ̂) ≡ Ĝ V̂ar(θ̂)Ĝ>, (5.57)

where V̂ar(θ̂) is the estimated covariance matrix of θ̂, and Ĝ ≡ G(θ̂). This
result, which is similar to (3.33), can be very useful. However, like all results
based on asymptotic theory, it should be used with caution. As in the scalar
case discussed above, γ̂ cannot possibly be normally distributed if θ̂ is.

Bootstrap Standard Errors

The delta method is not the only way to obtain standard errors and covariance
matrices for functions of parameter estimates. The bootstrap can also be used
for this purpose. Indeed, much of the early work on the bootstrap, such as
Efron (1979), was largely concerned with bootstrap standard errors.

Suppose that, as in the previous subsection, we wish to calculate the covar-
iance matrix of the vector γ̂ = g(θ̂). A bootstrap procedure for doing this is:

1. Specify a bootstrap DGP, which may be parametric or semiparametric,
and use it to generate B bootstrap samples, y∗j .

2. For each bootstrap sample, use y∗j to compute the parameter vector θ∗j,
and then use θ∗j to compute γ∗j .

3. Calculate γ̄∗, the mean of the γ∗j . Then calculate the estimated bootstrap
covariance matrix,

V̂ar∗(γ̂) =
1
B

B∑

j=1

(γ∗j − γ̄∗)(γ∗j − γ̄∗)>.

If desired, bootstrap standard errors may be calculated as the square
roots of the diagonal elements of this matrix.

Bootstrap standard errors, which may or may not be more accurate than ones
based on asymptotic theory, can certainly be useful as descriptive statistics.
However, using them for inference generally cannot be recommended. In
many cases, calculating bootstrap standard errors is almost as much work as
calculating studentized bootstrap confidence intervals. As we noted at the
end of Section 5.3, there are theoretical reasons to believe that the latter will
yield more accurate inferences than confidence intervals based on asymptotic
theory, including asymptotic confidence intervals that use bootstrap standard
errors. Thus, if we are going to go to the trouble of calculating a large number
of bootstrap estimates anyway, we can do better than just using them to
compute bootstrap standard errors.
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5.7 Final Remarks

In this chapter, we have discussed a number of methods for constructing confi-
dence intervals. They are all based on the idea of inverting a test statistic, and
most of them are in no way restricted to OLS estimation. We first construct a
family of test statistics for the null hypotheses that the parameter of interest
is equal to a particular value, and then the limits of the confidence interval are
obtained by solving the equation that sets the statistic equal to the critical
values given by some appropriate distribution. The critical values may be
quantiles of a finite-sample distribution, such as the Student’s t distribution,
quantiles of an asymptotic distribution, such as the standard normal distribu-
tion, or quantiles of a bootstrap EDF. Procedures for constructing confidence
regions are very similar to those for constructing confidence intervals.

All of the methods for constructing confidence intervals and regions that we
have discussed require standard errors or, more generally, estimated covar-
iance matrices. The chapter therefore includes a good deal of material on
how to estimate these under weaker assumptions than were made in Chap-
ter 3. Much of this material is widely applicable. Methods for estimation of
covariance matrices in the presence of heteroskedasticity of unknown form,
similar to those discussed in Section 5.5, are useful in the context of many
different methods of estimation. The delta method, which was discussed in
Section 5.6, is even more general, since it can be used whenever one parameter,
or vector of parameters, is a nonlinear function of another.

5.8 Exercises

5.1 Find the .025, .05, .10, and .20 quantiles of the standard normal distribution.
Use these to obtain whatever quantiles of the χ2(1) distribution you can.

5.2 Starting from the square of the t statistic (5.11), and using the F (1, n − k)
distribution, obtain a .99 confidence interval for the parameter β2 in the
classical normal linear model (4.21).

5.3 The file earnings.data contains sorted data on four variables for 4266 indi-
viduals. One of the variables is income, y, and the other three are dummy
variables, d1, d2, and d3, which correspond to different age ranges. Regress y
on all three dummy variables. Then use the regression output to construct
a .95 asymptotic confidence interval for the mean income of individuals that
belong to age group 3.

5.4 Using the same data as Exercise 5.3, regress y on a constant for individuals
in age group 3 only. Use the regression output to construct a .95 asymptotic
confidence interval for the mean income of group 3 individuals. Explain why
this confidence interval is not the same as the one you constructed previously.

5.5 Generate 999 realizations of a random variable that follows the χ2(2) distri-
bution, and find the .95 and .99 “quantiles” of the EDF, that is the 950th

and 990th entries in the sorted list of the realizations. Compare these with
the .95 and .99 quantiles of the χ2(2) distribution.
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5.6 Using the data in the file earnings.data, construct a .95 studentized bootstrap
confidence interval for the mean income of group 3 individuals. Explain why
this confidence interval differs from the one you constructed in Exercise 5.4.

5.7 Explain in detail how to construct a symmetric bootstrap confidence interval
based on the possibly asymptotic t statistic (θ̂− θ0)/sθ. Express your answer
in terms of entries in a sorted list of bootstrap t statistics.

5.8 Show that the F statistic for the null hypothesis that β2 = β20 in the model
(5.24), or, equivalently, for the null hypothesis that γ2 = 0 in (5.25), can be
written as (5.26). Interpret the numerator of expression (5.26) as a random
variable constructed from the multivariate normal vector β̂2.

5.9 Consider a regression model with just two centered explanatory variables, x1

and x2:

y = β1x1 + β2x2 + u. (5.58)

Let ρ denote the sample correlation of x1 and x2. By the sample correlation,
we mean

ρ ≡
∑n

t=1 Xt1Xt2(
(
∑n

t=1 X2
t1)(

∑n
t=1 X2

t2)
)1/2

,

where Xt1 and Xt2 are typical elements of x1 and x2, respectively. This can
be interpreted as the correlation of the joint EDF of x1 and x2.

Show that, under the assumptions of the classical normal linear model, the
correlation between the OLS estimates β̂1 and β̂2 is equal to −ρ. Which, if
any, of the assumptions of this model can be relaxed without changing this
result?

5.10 Consider the .05 level confidence region for the parameters β1 and β2 of the
regression model (5.58). In the two-dimensional space S(x1,x2) generated by
the two regressors, consider the set of points of the form β10x1+β20x2, where
(β10, β20) belongs to the confidence region. Show that this set is a circular
disk with center at the OLS estimates (x1β̂1 + x2β̂2). What is the radius of
the disk?

5.11 Using the data in the file earnings.data, regress y on all three dummy variables,
and compute a heteroskedasticity-consistent standard error for the coefficient
of d3. Using these results, construct a .95 asymptotic confidence interval for
the mean income of individuals that belong to age group 3. Compare this
interval with the ones you constructed in Exercises 5.3, 5.4, and 5.6.

5.12 Generate N simulated data sets, where N is between 1000 and 1,000,000,
depending on the capacity of your computer, from each of the following two
data generating processes:

DGP 1: yt = β1 + β2Xt2 + β3Xt3 + ut, ut ∼ N(0, 1)

DGP 2: yt = β1 + β2Xt2 + β3Xt3 + ut, ut ∼ N(0, σ2
t ), σ2

t = (E(yt))
2
.

There are 50 observations, β = [1
.... 1

.... 1], and the data on the exogenous
variables are to be found in the file mw.data. These data were originally used
by MacKinnon and White (1985).

Copyright c© 1999, Russell Davidson and James G. MacKinnon



5.8 Exercises 211

For each of the two DGPs and each of the N simulated data sets, construct
.95 confidence intervals for β1 and β2 using the usual OLS covariance matrix
and the HCCMEs HC0, HC1, HC2, and HC3. The OLS interval should be
based on the Student’s t distribution with 47 degrees of freedom, and the
others should be based on the N(0, 1) distribution. Report the proportion of
the time that each of these confidence intervals included the true values of
the parameters.

On the basis of these results, which covariance matrix estimator would you
recommend using in practice?

5.13 Write down a second-order Taylor expansion of the nonlinear function g(θ̂)
around θ0, where θ̂ is an OLS estimator and θ0 is the true value of the
parameter θ. Explain why the last term is asymptotically negligible relative
to the second term.

5.14 Using a multivariate first-order Taylor expansion, show that, if γ = g(θ), the
asymptotic covariance matrix of the l --vector n1/2(γ̂ − γ0) is given by the
l × l matrix G0V

∞(θ̂)G0
>. Here θ is a k --vector with k ≥ l, G0 is an l × k

matrix with typical element ∂gi(θ)/∂θj , evaluated at θ0, and V∞(θ̂) is the
k × k asymptotic covariance matrix of n1/2(θ̂ − θ0).

5.15 Suppose that γ = exp(β) and β̂ = 1.324, with a standard error of 0.2432.
Calculate γ̂ = exp(β̂) and its standard error.

Construct two different .99 confidence intervals for γ. One should be based
on (5.51), and the other should be based on (5.52).

5.16 Construct two .95 bootstrap confidence intervals for the log of the mean in-
come (not the mean of the log of income) of group 3 individuals from the
data in earnings.data. These intervals should be based on (5.53) and (5.54).
Verify that these two intervals are different.

5.17 Use the DGP
yt = 0.8yt−1 + ut, ut ∼ NID(0, 1)

to generate a sample of 30 observations. Using these simulated data, obtain
estimates of ρ and σ2 for the model

yt = ρyt−1 + ut, E(ut) = 0, E(utus) = σ2δts,

where δts is the Kronecker delta introduced in Section 1.4. By use of the
parametric bootstrap with the assumption of normal errors, obtain two .95
confidence intervals for ρ, one symmetric, the other asymmetric.
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Chapter 6

Nonlinear Regression

6.1 Introduction

Up to this point, we have discussed only linear regression models. For each
observation t of any regression model, there is an information set Ωt and a
suitably chosen vector Xt of explanatory variables that belong to Ωt. A linear
regression model consists of all DGPs for which the expectation of the depen-
dent variable yt conditional on Ωt can be expressed as a linear combination
Xtβ of the components of Xt, and for which the error terms satisfy suitable
requirements, such as being IID. Since, as we saw in Section 1.3, the elements
of Xt may be nonlinear functions of the variables originally used to define Ωt,
many types of nonlinearity can be handled within the framework of the lin-
ear regression model. However, many other types of nonlinearity cannot be
handled within this framework. In order to deal with them, we often need to
estimate nonlinear regression models. These are models for which E(yt |Ωt)
is a nonlinear function of the parameters.

A typical nonlinear regression model can be written as

yt = xt(β) + ut, ut ∼ IID(0, σ2), t = 1, . . . , n, (6.01)

where, just as for the linear regression model, yt is the tth observation on
the dependent variable, and β is a k --vector of parameters to be estimated.
The scalar function xt(β) is a nonlinear regression function. It determines
the mean value of yt conditional on Ωt, which is made up of some set of
explanatory variables. These explanatory variables, which may include lagged
values of yt as well as exogenous variables, are not shown explicitly in (6.01).
However, the t subscript of xt(β) indicates that the regression function varies
from observation to observation. This variation usually occurs because xt(β)
depends on explanatory variables, but it can also occur because the functional
form of the regression function actually changes over time. The number of
explanatory variables, all of which must belong to Ωt, need not be equal to k.

The error terms in (6.01) are specified to be IID. By this, we mean something
very similar to, but not precisely the same as, the two conditions in (4.48). In
order for the error terms to be identically distributed, the distribution of each
error term ut, conditional on the corresponding information set Ωt, must be
the same for all t. In order for them to be independent, the distribution of ut,
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conditional not only on Ωt but also on all the other error terms, should be
the same as its distribution conditional on Ωt alone, without any dependence
on the other error terms.

Another way to write the nonlinear regression model (6.01) is

y = x(β) + u, u ∼ IID(0, σ2I), (6.02)

where y and u are n--vectors with typical elements yt and ut, respectively,
and x(β) is an n--vector of which the tth element is xt(β). Thus x(β) is the
nonlinear analog of the vector Xβ in the linear case.

As a very simple example of a nonlinear regression model, consider the model

yt = β1 + β2Zt1 +
1
β2

Zt2 + ut, ut ∼ IID(0, σ2), (6.03)

where Zt1 and Zt2 are explanatory variables. For this model,

xt(β) = β1 + β2Zt1 +
1
β2

Zt2.

Although the regression function xt(β) is linear in the explanatory variables,
it is nonlinear in the parameters, because the coefficient of Zt2 is constrained
to equal the inverse of the coefficient of Zt1. In practice, many nonlinear
regression models, like (6.03), can be expressed as linear regression models in
which the parameters must satisfy one or more nonlinear restrictions.

The Linear Regression Model with AR(1) Errors

We now consider a particularly important example of a nonlinear regression
model that is also a linear regression model subject to nonlinear restrictions
on the parameters. In Section 5.5, we briefly mentioned the phenomenon of
serial correlation, in which nearby error terms in a regression model are (or
appear to be) correlated. Serial correlation is very commonly encountered in
applied work using time-series data, and many techniques for dealing with it
have been proposed. One of the simplest and most popular ways of dealing
with serial correlation is to assume that the error terms follow the first-order
autoregressive, or AR(1), process

ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), |ρ| < 1. (6.04)

According to this model, the error at time t is equal to ρ times the error at
time t− 1, plus a new error term εt. The vector ε with typical component εt

satisfies the IID condition we discussed above. This condition is enough for εt

to be an innovation in the sense of Section 4.5. Thus the εt are homoskedastic
and independent of all past and future innovations. We see from (6.04) that,
in each period, part of the error term ut is the previous period’s error term,
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shrunk somewhat toward zero and possibly changed in sign, and part is the
innovation εt. We will discuss serial correlation, including the AR(1) process
and other autoregressive processes, in Chapter 7. At present, we are concerned
solely with the nonlinear regression model that results when the errors of a
linear regression model are assumed to follow an AR(1) process.

If we combine (6.04) with the linear regression model

yt = Xtβ + ut (6.05)

by substituting ρut−1 + εt for ut and then replacing ut−1 by yt−1 −Xt−1β,
we obtain the nonlinear regression model

yt = ρyt−1 + Xtβ − ρXt−1β + εt, εt ∼ IID(0, σ2
ε ). (6.06)

Since the lagged dependent variable yt−1 appears among the regressors, this
is a dynamic model. As with the other dynamic models that are treated
in the exercises, we have to drop the first observation, because y0 and X0

are assumed not to be available. The model is linear in the regressors but
nonlinear in the parameters β and ρ, and it therefore needs to be estimated
by nonlinear least squares or some other nonlinear estimation method.

In the next section, we study estimators for nonlinear regression models gen-
erated by the method of moments, and we establish conditions for asymptotic
identification, asymptotic normality, and asymptotic efficiency. Then, in Sec-
tion 6.3, we show that, under the assumption that the error terms are IID, the
most efficient MM estimator is nonlinear least squares, or NLS. In Section 6.4,
we discuss various methods by which NLS estimates may be computed. The
method of choice in most circumstances is some variant of Newton’s Method.
One commonly-used variant is based on an artificial linear regression called
the Gauss-Newton regression. We introduce this artificial regression in Sec-
tion 6.5 and show how to use it to compute NLS estimates and estimates of
their covariance matrix. In Section 6.6, we introduce the important concept
of one-step estimation. Then, in Section 6.7, we show how to use the Gauss-
Newton regression to compute hypothesis tests. Finally, in Section 6.8, we
introduce a modified Gauss-Newton regression suitable for use in the pres-
ence of heteroskedasticity of unknown form.

6.2 Method of Moments Estimators for Nonlinear Models

In Section 1.5, we derived the OLS estimator for linear models from the
method of moments by using the fact that, for each observation, the mean
of the error term in the regression model is zero conditional on the vector of
explanatory variables. This implied that

E(Xtut) = E
(
Xt(yt −Xtβ)

)
= 0. (6.07)
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The sample analog of the middle expression here is n−1X>(y−Xβ). Setting
this to zero and ignoring the factor of n−1, we obtained the vector of moment
conditions

X>(y −Xβ) = 0, (6.08)

and these conditions were easily solved to yield the OLS estimator β̂. We now
want to employ the same type of argument for nonlinear models.

An information set Ωt is typically characterized by a set of variables that
belong to it. But, since the realization of any deterministic function of these
variables is known as soon as the variables themselves are realized, Ωt must
contain not only the variables that characterize it but also all determinis-
tic functions of them. As a result, an information set Ωt contains precisely
those variables which are equal to their expectations conditional on Ωt. In
Exercise 6.1, readers are asked to show that the conditional expectation of a
random variable is also its expectation conditional on the set of all determin-
istic functions of the conditioning variables.

For the nonlinear regression model (6.01), the error term ut has mean 0 con-
ditional on all variables in Ωt. Thus, if Wt denotes any 1× k vector of which
all the components belong to Ωt,

E(Wtut) = E
(
Wt

(
yt − xt(β)

))
= 0. (6.09)

Just as the moment conditions that correspond to (6.07) are (6.08), the mo-
ment conditions that correspond to (6.09) are

W>(y − x(β)
)

= 0, (6.10)

where W is an n × k matrix with typical row Wt. There are k nonlinear
equations in (6.10). These equations can, in principle, be solved to yield an
estimator of the k --vector β. Geometrically, the moment conditions (6.10)
require that the vector of residuals should be orthogonal to all the columns
of the matrix W.

How should we choose W ? There are infinitely many possibilities. Almost
any matrix W, of which the tth row depends only on variables that belong
to Ωt, and which has full column rank k asymptotically, will yield a consis-
tent estimator of β. However, these estimators will in general have different
asymptotic covariance matrices, and it is therefore of interest to see if any
particular choice of W leads to an estimator with smaller asymptotic var-
iance than the others. Such a choice would then lead to an efficient estimator,
judged by the criterion of the asymptotic variance.

Identification and Asymptotic Identification

Let us denote by β̂ the MM estimator defined implicitly by (6.10). In order to
show that β̂ is consistent, we must assume that the parameter vector β in the
model (6.01) is asymptotically identified. In general, a vector of parameters
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is said to be identified by a given data set and a given estimation method if,
for that data set, the estimation method provides a unique way to determine
the parameter estimates. In the present case, β is identified by a given data
set if equations (6.10) have a unique solution.

For the parameters of a model to be asymptotically identified by a given es-
timation method, we require that the estimation method provide a unique
way to determine the parameter estimates in the limit as the sample size n
tends to infinity. In the present case, asymptotic identification can be for-
mulated in terms of the probability limit of the vector n−1W>(y − x(β)

)
as

n →∞. Suppose that the true DGP is a special case of the model (6.02) with
parameter vector β0. Then we have

1−
n
W>(y − x(β0)

)
= 1−

n

n∑
t=1

Wt
>ut. (6.11)

By (6.09), every term in the sum above has mean 0, and the IID assumption
in (6.02) is enough to allow us to apply a law of large numbers to that sum. It
follows that the right-hand side, and therefore also the left-hand side, of (6.11)
tends to zero in probability as n →∞.

Let us now define the k --vector of deterministic functions α(β) as follows:

α(β) = plim
n→∞

1−
n

W>(y − x(β)
)
, (6.12)

where we continue to assume that y is generated by (6.02) with β0. The law
of large numbers can be applied to the right-hand side of (6.12) whatever the
value of β, thus showing that the components of α are deterministic. In the
preceding paragraph, we explained why α(β0) = 0. The parameter vector β
will be asymptotically identified if β0 is the unique solution to the equations
α(β) = 0, that is, if α(β) 6= 0 for all β 6= β0.

Although most parameter vectors that are identified by data sets of reasonable
size are also asymptotically identified, neither of these concepts implies the
other. It is possible for an estimator to be asymptotically identified without
being identified by many data sets, and it is possible for an estimator to
be identified by every data set of finite size without being asymptotically
identified. To see this, consider the following two examples.

As an example of the first possibility, suppose that yt = β1 + β2zt, where zt

is a random variable which follows the Bernoulli distribution. Such a random
variable is often called a binary variable, because there are only two possible
values it can take on, 0 and 1. The probability that zt = 1 is p, and so
the probability that zt = 0 is 1 − p. If p is small, there could easily be
samples of size n for which every zt was equal to 0. For such samples, the
parameter β2 cannot be identified, because changing β2 can have no effect
on yt − β1 − β2zt. However, provided that p > 0, both parameters will be
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identified asymptotically. As n →∞, a law of large numbers guarantees that
the proportion of the zt that are equal to 1 will tend to p.

As an example of the second possibility, consider the model (3.20), discussed
in Section 3.3, for which yt = β1 + β21/t + ut, where t is a time trend. The
OLS estimators of β1 and β2 can, of course, be computed for any finite sample
of size at least 2, and so the parameters are identified by any data set with
at least 2 observations. But β2 is not identified asymptotically. Suppose that
the true parameter values are β0

1 and β0
2 . Let us use the two regressors for the

variables in the information set Ωt, so that Wt = [1 1/t] and the MM estimator
is the same as the OLS estimator. Then, using the definition (6.12), we obtain

α(β1, β2) = plim
n→∞

[
n−1

∑n
t=1

(
(β0

1 − β1) + 1/t(β0
2 − β2) + ut

)

n−1
∑n

t=1

(
1/t(β0

1 − β1) + 1/t2(β0
2 − β2) + 1/tut

)
]
. (6.13)

It is known that the deterministic sums n−1
∑n

t=1(1/t) and n−1
∑n

t=1(1/t2)
both tend to 0 as n →∞. Further, the law of large numbers tells us that the
limits in probability of n−1

∑n
t=1 ut and n−1

∑n
t=1(ut/t) are both 0. Thus the

right-hand side of (6.13) simplifies to

α(β1, β2) =
[

β0
1 − β1

0

]
.

Since α(β1, β2) vanishes for β1 = β0
1 and for any value of β2 whatsoever, we

see that β2 is not asymptotically identified. In Section 3.3, we showed that,
although the OLS estimator of β2 is unbiased, it is not consistent. The simult-
aneous failure of consistency and asymptotic identification in this example is
not a coincidence: It will turn out that asymptotic identification is a necessary
and sufficient condition for consistency.

Consistency

Suppose that the DGP is a special case of the model (6.02) with true parameter
vector β0. Under the assumption of asymptotic identification, the equations
α(β) = 0 have a unique solution, namely, β = β0. This can be shown to imply
that, as n →∞, the probability limit of the estimator β̂ defined by (6.10) is
precisely β0. We will not attempt a formal proof of this result, since it would
have to deal with a number of technical issues that are beyond the scope of
this book. See Amemiya (1985, Section 4.3) or Davidson and MacKinnon
(1993, Section 5.3) for more detailed treatments.

However, an intuitive, heuristic, proof is not at all hard to provide. If we
make the assumption that β̂ has a deterministic probability limit, say β∞,
the result follows easily. What makes a formal proof more difficult is showing
that β∞ exists. Let us suppose that β∞ 6= β0. We will derive a contradiction
from this assumption, and we will thus be able to conclude that β∞ = β0, in
other words, that β̂ is consistent.
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For all finite samples large enough for β to be identified by the data, we have,
by the definition (6.10) of β̂, that

1−
n

W>(y − x(β̂)
)

= 0. (6.14)

If we take the limit of this as n → ∞, we have 0 on the right-hand side. On
the left-hand side, because we assume that plim β̂ = β∞, the limit is the same
as the limit of

1−
n

W>(y − x(β∞)
)
.

By (6.12), the limit of this expression is α(β∞). We assumed that β∞ 6= β0,
and so, by the asymptotic identification condition, α(β∞) 6= 0. But this
contradicts the fact that the limits of both sides of (6.14) are equal, since the
limit of the right-hand side is 0.

We have shown that, if we assume that a deterministic β∞ exists, then asymp-
totic identification is sufficient for consistency. Although we will not attempt
to prove it, asymptotic identification is also necessary for consistency. The
key to a proof is showing that, if the parameters of a model are not asymp-
totically identified by a given estimation method, then no deterministic limit
like β∞ exists in general. An example of this is provided by the model (3.20);
see also Exercise 6.2.

The identifiability of a parameter vector, whether asymptotic or by a data set,
depends on the estimation method used. In the present context, this means
that certain choices of the variables in Wt may identify the parameters of a
model like (6.01), while others do not. We can gain some intuition about this
matter by looking a little more closely at the limiting functions α(β) defined
by (6.12). We have

α(β) = plim
n→∞

1−
n

W>(y − x(β)
)

= plim
n→∞

1−
n

W>(x(β0)− x(β) + u
)

= α(β0) + plim
n→∞

1−
n

W>(x(β0)− x(β)
)

= plim
n→∞

1−
n

W>(x(β0)− x(β)
)
.

(6.15)

Therefore, for asymptotic identification, and so also for consistency, the last
expression in (6.15) must be nonzero for all β 6= β0.

Evidently, a necessary condition for asymptotic identification is that there be
no β1 6= β0 such that x(β1) = x(β0). This condition is the nonlinear analog of
the requirement of linearly independent regressors for linear regression models.
We can now see that this requirement is in fact a condition necessary for the
identification of the model parameters, both by a data set and asymptotically.
Suppose that, for a linear regression model, the columns of the regressor
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matrix X are linearly dependent. This implies that there is a nonzero vector b
such that Xb = 0; recall the discussion in Section 2.2. Then it follows that
Xβ0 = X(β0 + b). For a linear regression model, x(β) = Xβ. Therefore,
if we set β1 = β0 + b, the linear dependence means that x(β1) = x(β0), in
violation of the necessary condition stated at the beginning of this paragraph.

For a linear regression model, linear independence of the regressors is both
necessary and sufficient for identification by any data set. We saw above that
it is necessary, and sufficiency follows from the fact, discussed in Section 2.2,
that X>X is nonsingular if the columns of X are linearly independent. If
X>X is nonsingular, the OLS estimator (X>X)−1X>y exists and is unique
for any y, and this is precisely what is meant by identification by any data set.

For nonlinear models, however, things are more complicated. In general, more
is needed for identification than the condition that no β1 6= β0 exist such that
x(β1) = x(β0). The relevant issues will be easier to understand after we have
derived the asymptotic covariance matrix of the estimator defined by (6.10),
and so we postpone study of them until later.

The MM estimator β̂ defined by (6.10) is actually consistent under consider-
ably weaker assumptions about the error terms than those we have made. The
key to the consistency proof is the requirement that the error terms satisfy
the condition

plim
n→∞

1−
n

W>u = 0. (6.16)

Under reasonable assumptions, it is not difficult to show that this condition
holds even when the ut are heteroskedastic, and it may also hold even when
they are serially correlated. However, difficulties can arise when the ut are
serially correlated and xt(β) depends on lagged dependent variables. In this
case, it will be seen later that the expectation of ut conditional on the lagged
dependent variable is nonzero in general. Therefore, in this circumstance, con-
dition (6.16) will not hold whenever W includes lagged dependent variables,
and such MM estimators will generally not be consistent.

Asymptotic Normality

The MM estimator β̂ defined by (6.10) for different possible choices of W
is asymptotically normal under appropriate conditions. As we discussed in
Section 5.4, this means that the vector n1/2(β̂ − β0) follows the multivariate
normal distribution with mean vector 0 and a covariance matrix that will be
determined shortly.

Before we start our analysis, we need some notation, which will be used exten-
sively in the remainder of this chapter. In formulating the generic nonlinear
regression model (6.01), we deliberately used xt(·) to denote the regression
function, rather than ft(·) or some other notation, because this notation makes
it easy to see the close connection between the nonlinear and linear regression
models. It is natural to let the derivative of xt(β) with respect to βi be de-
noted Xti(β). Then we can let Xt(β) denote a 1×k vector, and X(β) denote
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an n×k matrix, each having typical element Xti(β). These are the analogs of
the vector Xt and the matrix X for the linear regression model. In the linear
case, when the regression function is Xβ, it is easy to see that Xt(β) = Xt

and X(β) = X. The big difference between the linear and nonlinear cases is
that, in the latter case, Xt(β) and X(β) depend on β.

If we multiply (6.10) by n−1/2, replace y by what it is equal to under the
DGP (6.01) with parameter vector β0, and replace β by β̂, we obtain

n−1/2W>(u + x(β0)− x(β̂)
)

= 0. (6.17)

The next step is to apply Taylor’s Theorem to the components of the vec-
tor x(β̂); see the discussion of this theorem in Section 5.6. We apply the
formula (5.45), replacing x by the true parameter vector β0 and h by the
vector β̂ − β0, and obtain, for t = 1, . . . , n,

xt(β̂) = xt(β0) +
k∑

i=1

Xti(β̄t)(β̂i − β0i), (6.18)

where β0i is the ith element of β0, and β̄t, which plays the role of x + th
in (5.45), satisfies the condition

∥∥β̄t − β0

∥∥ ≤
∥∥β̂ − β0

∥∥. (6.19)

Substituting the Taylor expansion (6.18) into (6.17) yields

n−1/2W>u− n−1/2W>X(β̄)(β̂ − β0) = 0. (6.20)

The notation X(β̄) is convenient, but slightly inaccurate. According to (6.18),
we need different parameter vectors β̄t for each row of that matrix. But, since
all of these vectors satisfy (6.19), it is not necessary to make this fact explicit
in the notation. Thus here, and in subsequent chapters, we will refer to a
vector β̄ that satisfies (6.19), without implying that it must be the same
vector for every row of the matrix X(β̄). This is a legitimate notational
convenience, because, since β̂ is consistent, as we have seen that it is under
the requirement of asymptotic identification, then so too are all of the β̄t.
Consequently, (6.20) remains true asymptotically if we replace β̄ by β0. Doing
this, and rearranging factors of powers of n so as to work only with quantities
which have suitable probability limits, yields the result that

n−1/2W>u− n−1W>X(β0) n1/2(β̂ − β0)
a= 0, (6.21)

This result is the starting point for all our subsequent analysis.

We need to apply a law of large numbers to the first factor of the second term
of (6.21), namely, n−1W>X0, where for notational ease we write X0 ≡ X(β0).
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Under reasonable regularity conditions, not unlike those needed for (3.17) to
hold, we have

plim
n→∞

1−
n

W>X0 = lim
n→∞

1−
n

W>E
(
X(β0)

) ≡ SW>X ,

where SW>X is a deterministic k × k matrix. It turns out that a sufficient
condition for the parameter vector β to be asymptotically identified by the
estimator β̂ defined by the moment conditions (6.10) is that SW>X should
have full rank. To see this, observe that (6.21) implies that

SW>X n1/2(β̂ − β0)
a= n−1/2W>u. (6.22)

Because SW>X is assumed to have full rank, its inverse exists. Thus we can
multiply both sides of (6.22) by this inverse to obtain a well-defined expression
for the limit of n1/2(β̂ − β0):

n1/2(β̂ − β0)
a= (SW>X)−1n−1/2W>u. (6.23)

From this, we conclude that β is asymptotically identified by β̂. The condition
that SW>X be nonsingular is called strong asymptotic identification. It is a
sufficient but not necessary condition for ordinary asymptotic identification.

The second factor on the right-hand side of (6.23) is a vector to which we
should, under appropriate regularity conditions, be able to apply a central
limit theorem. Since, by (6.09), E(Wtut) = 0, we can show that n−1/2W>u
is asymptotically multivariate normal, with mean vector 0 and a finite covar-
iance matrix. To do this, we can use exactly the same reasoning as was used in
Section 4.5 to show that the vector v of (4.53) is asymptotically multivariate
normal. Because the components of n1/2(β̂ − β0) are, asymptotically, linear
combinations of the components of a vector that follows the multivariate nor-
mal distribution, we conclude that n1/2(β̂ − β0) itself must be asymptotically
normally distributed with mean vector zero and a finite covariance matrix.
This implies that β̂ is root-n consistent in the sense defined in Section 5.4.

Asymptotic Efficiency

The asymptotic covariance matrix of n−1/2W>u, the second factor on the
right-hand side of (6.23), is, by arguments exactly like those in (4.54),

σ2
0 plim

n→∞
1−
n

W>W = σ2
0SW>W , (6.24)

where σ2
0 is the error variance for the true DGP, and where we make the defini-

tion SW>W ≡ plim n−1W>W. From (6.23) and (6.24), it follows immediately
that the asymptotic covariance matrix of the vector n1/2(β̂ − β0) is

σ2
0(SW>X)−1SW>W (S>W>X)−1, (6.25)
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which has the form of a sandwich. By the definitions of SW>W and SW>X,
expression (6.25) can be rewritten as

σ2
0 plim

n→∞
(n−1W>X0)−1n−1W>W (n−1X0

>W )−1

= σ2
0 plim

n→∞

(
n−1X0

>W (W>W )−1W>X0

)−1

= σ2
0 plim

n→∞
(n−1X0

>PWX0)−1, (6.26)

where PW is the orthogonal projection on to S(W ), the subspace spanned by
the columns of W. Expression (6.26) is the asymptotic covariance matrix of
the vector n1/2(β̂ − β0). However, it is common to refer to it as the asymp-
totic covariance matrix of β̂, and we will allow ourselves this slight abuse of
terminology when no confusion can result.

It is clear from the result (6.26) that the asymptotic covariance matrix of
the estimator β̂ depends on the variables W used to obtain it. Most choices
of W will lead to an inefficient estimator by the criterion of the asymptotic
covariance matrix, as we would be led to suspect by the fact that (6.25) has the
form of a sandwich; see Section 5.5. An efficient estimator by that criterion is
given by the choice W = X0. To demonstrate this, we need to show that this
choice of W minimizes the asymptotic covariance matrix, in the sense used in
the Gauss-Markov theorem. Recall that one covariance matrix is said to be
“greater” than another if the difference between it and the other is a positive
semidefinite matrix.

If we set W = X0 to define the MM estimator, the asymptotic covariance
matrix (6.26) becomes σ2

0 plim(n−1X0
>X0)−1. As we saw in Section 3.5, it

is often easier to establish efficiency by reasoning in terms of the precision
matrix, that is, the inverse of the covariance matrix, rather than in terms of
the covariance matrix itself. Since

X0
>X0 −X0

>PWX0 = X0
>MWX0,

which is a positive semidefinite matrix, it follows at once that the precision
of the estimator obtained by setting W = X0 is greater than that of the
estimator obtained by using any other choice of W.

Of course, we cannot actually use X0 for W in practice, because X0 ≡ X(β0)
depends on the unknown true parameter vector β0. The MM estimator that
uses X0 for W is therefore said to be infeasible. In the next section, we will
see how to overcome this difficulty. The nonlinear least squares estimator that
we will obtain will turn out to have exactly the same asymptotic properties
as the infeasible MM estimator.
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6.3 Nonlinear Least Squares

There are at least two ways in which we can approximate the asymptotically
efficient, but infeasible, MM estimator that uses X0 for W. The first, and
perhaps the simpler of the two, is to begin by choosing any W for which Wt

belongs to the information set Ωt and using this W to obtain a preliminary
consistent estimate, say β́, of the model parameters. We can then estimate β
once more, setting W = X́ ≡ X(β́). The consistency of β́ ensures that X́
tends to the efficient choice X0 as n →∞.

A more subtle approach is to recognize that the above procedure estimates the
same parameter vector twice, and to compress the two estimation procedures
into one. Consider the moment conditions

X>(β)
(
y − x(β)

)
= 0. (6.27)

If the estimator β̂ obtained by solving the k equations (6.27) is consistent,
then X̂ ≡ X(β̂) tends to X0 as n → ∞. Therefore, it must be the case
that, for sufficiently large samples, β̂ is very close to the infeasible, efficient
MM estimator.

The estimator β̂ based on (6.27) is known as the nonlinear least squares, or
NLS, estimator. The name comes from the fact that the moment conditions
(6.27) are just the first-order conditions for the minimization with respect
to β of the sum-of-squared-residuals (or SSR) function. The SSR function is
defined just as in (1.49), but for a nonlinear regression function:

SSR(β) =
n∑

t=1

(
yt − xt(β)

)2 =
(
y − x(β)

)>(y − x(β)
)
. (6.28)

It is easy to check (see Exercise 6.4) that the moment conditions (6.27) are
equivalent to the first-order conditions for minimizing (6.28).

Equations (6.27), which define the NLS estimator, closely resemble equa-
tions (6.08), which define the OLS estimator. Like the latter, the former can
be interpreted as orthogonality conditions: They require that the columns of
the matrix of derivatives of x(β) with respect to β should be orthogonal to
the vector of residuals. There are, however, two major differences between
(6.27) and (6.08). The first difference is that, in the nonlinear case, X(β)
is a matrix of functions that depend on the explanatory variables and on β,
instead of simply a matrix of explanatory variables. The second difference is
that equations (6.27) are nonlinear in β, because both x(β) and X(β) are,
in general, nonlinear functions of β. Thus there is no closed-form expression
for β̂ comparable to the famous formula (1.46). As we will see in Section 6.4,
this means that it is substantially more difficult to compute NLS estimates
than it is to compute OLS ones.
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Consistency of the NLS Estimator

Since it has been assumed that every variable on which xt(β) depends belongs
to Ωt, it must be the case that xt(β) itself belongs to Ωt for any choice of β.
Therefore, the partial derivatives of xt(β), that is, the elements of the row
vector Xt(β), must belong to Ωt as well, and so

E
(
Xt(β)ut

)
= 0. (6.29)

If we define the limiting functions α(β) for the estimator based on (6.27)
analogously to (6.12), we have

α(β) = plim
n→∞

1−
n
X>(β)

(
y − x(β)

)
.

It follows from (6.29) and the law of large numbers that α(β0) = 0 if the true
parameter vector is β0. Thus the NLS estimator is consistent provided that
it is asymptotically identified. We will have more to say in the next section
about identification and the NLS estimator.

Asymptotic Normality of the NLS Estimator

The discussion of asymptotic normality in the previous section needs to be
modified slightly for the NLS estimator. Equation (6.20), which resulted from
applying Taylor’s Theorem to x(β̂), is no longer true, because the matrix W
is replaced by X(β), which, unlike W, depends on the parameter vector β.
When we take account of this fact, we obtain a rather messy additional term
in (6.20) that depends on the second derivatives of x(β). However, it can
be shown that this extra term vanishes asymptotically. Therefore, equation
(6.21) remains true, but with X0 ≡ X(β0) replacing W. This implies that,
for NLS, the analog of equation (6.23) is

n1/2(β̂ − β0)
a=

(
plim
n→∞

1−
n

X0
>X0

)−1

n−1/2X0
>u, (6.30)

from which the asymptotic normality of the NLS estimator follows by essen-
tially the same arguments as before.

Slightly modified versions of the arguments for MM estimators of the previous
section also yield expressions for the asymptotic covariance matrix of the
NLS estimator β̂. The consistency of β̂ means that

plim
n→∞

1−
n

X̂>X̂ = plim
n→∞

1−
n

X0
>X0 and plim

n→∞
1−
n

X̂>X0 = plim
n→∞

1−
n

X0
>X0.

Thus, on setting W = X̂, (6.26) gives for the asymptotic covariance matrix
of n1/2(β̂ − β0) the matrix

σ2
0 plim

n→∞

(
1−
n

X0
>PX̂X0

)−1

= σ2
0 plim

n→∞

(
1−
n

X0
>X0

)−1

. (6.31)
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It follows that a consistent estimator of the covariance matrix of β̂, in the
sense of (5.22), is

V̂ar(β̂) = s2(X̂>X̂)−1, (6.32)

where, by analogy with (3.49),

s2 ≡ 1
n− k

n∑
t=1

û2
t =

1
n− k

n∑
t=1

(
yt − xt(β̂)

)2
. (6.33)

Of course, s2 is not the only consistent estimator of σ2 that we might reason-
ably use. Another possibility is to use

σ̂2 ≡ 1−
n

n∑
t=1

û2
t . (6.34)

However, we will see shortly that (6.33) has particularly attractive properties.

NLS Residuals and the Variance of the Error Terms

Not very much can be said about the finite-sample properties of nonlinear
least squares. The techniques that we used in Chapter 3 to obtain the finite-
sample properties of the OLS estimator simply cannot be used for the NLS
one. However, it is easy to show that, if the DGP is

y = x(β0) + u, u ∼ IID(0, σ2
0I), (6.35)

which means that it is a special case of the model (6.02) that is being esti-
mated, then

E
(
SSR(β̂)

) ≤ nσ2
0 . (6.36)

The argument is just this. From (6.35), y − x(β0) = u. Therefore,

E
(
SSR(β0)

)
= E(u>u) = nσ2

0 .

Since β̂ minimizes the sum of squared residuals and β0 in general does not,
it must be the case that SSR(β̂) ≤ SSR(β0). The inequality (6.36) follows
immediately. Thus, just like OLS residuals, NLS residuals have variance less
than the variance of the error terms.

The consistency of β̂ implies that the NLS residuals ût converge to the error
terms ut as n → ∞. This means that it is valid asymptotically to use either
s2 from (6.33) or σ̂2 from (6.34) to estimate σ2. However, we see from (6.36)
that the NLS residuals are too small. Therefore, by analogy with the exact
results for the OLS case that were discussed in Section 3.6, it seems plausible
to divide by n − k instead of by n when we estimate σ2. In fact, as we now
show, there is an even stronger justification for doing this.
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If we apply Taylor’s Theorem to a typical residual, ût = yt−xt(β̂), expanding
around β0 and substituting ut + xt(β0) for yt, we obtain

ût = yt − xt(β0)− X̄t(β̂ − β0)

= ut + xt(β0)− xt(β0)− X̄t(β̂ − β0)

= ut − X̄t(β̂ − β0),

where X̄t denotes the tth row of X(β̄), for some β̄ that satisfies (6.19). This
implies that, for the entire vector of residuals, we have

û = u− X̄(β̂ − β0). (6.37)

For the NLS estimator β̂, the asymptotic result (6.23) becomes

n1/2(β̂ − β0)
a= (SX>X)−1n−1/2X0

>u, (6.38)

where
SX>X ≡ plim

n→∞
1−
n

X0
>X0. (6.39)

We have redefined SX>X here. The old definition, (3.17), applies only to
linear regression models. The new definition, (6.39), applies to both linear
and nonlinear regression models, since it reduces to the old one when the
regression function is linear. When we substitute SX>X into (6.37), noting
that β̄ tends asymptotically to β0, we find that

û
a= u− n−1/2X0(SX>X)−1n−1/2X0

>u
a= u− n−1X0(n−1X0

>X0)−1X0
>u

= u−X0(X0
>X0)−1X0

>u

= u− PX0u = MX0u,

(6.40)

where PX0 and MX0 project orthogonally on to S(X0) and S⊥(X0), respec-
tively. This asymptotic result for NLS looks very much like the exact result
that û = MXu for OLS. A more intricate argument can be used to show that
the difference between û>û and u>MX0u tends to zero as n → ∞; see Exer-
cise 6.8. Since X0 is an n× k matrix, precisely the same argument that was
used for the linear case in (3.48) shows that E(û>û) a= σ2

0(n− k). Thus we
see that, in the case of nonlinear least squares, s2 provides an approximately
unbiased estimator of σ2.
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6.4 Computing NLS Estimates

We have not yet said anything about how to compute nonlinear least squares
estimates. This is by no means a trivial undertaking. Computing NLS esti-
mates is always much more expensive than computing OLS ones for a model
with the same number of observations and parameters. Moreover, there is a
risk that the program may fail to converge or may converge to values that
do not minimize the SSR. However, with modern computers and well-written
software, NLS estimation is usually not excessively difficult.

In order to find NLS estimates, we need to minimize the sum-of-squared-
residuals function SSR(β) with respect to β. Since SSR(β) is not a quadratic
function of β, there is no analytic solution like the classic formula (1.46) for
the linear regression case. What we need is a general algorithm for minimizing
a sum of squares with respect to a vector of parameters. In this section, we
discuss methods for unconstrained minimization of a smooth function Q(β).
It is easiest to think of Q(β) as being equal to SSR(β), but much of the dis-
cussion will be applicable to minimizing any sort of criterion function. Since
minimizing Q(β) is equivalent to maximizing −Q(β), it will also be appli-
cable to maximizing any sort of criterion function, such as the loglikelihood
functions that we will encounter in Chapter 10.

We will give an overview of how numerical minimization algorithms work,
but we will not discuss many of the important implementation issues that can
substantially affect the performance of these algorithms when they are incor-
porated into computer programs. Useful references on the art and science of
numerical optimization, especially as it applies to nonlinear regression prob-
lems, include Bard (1974), Gill, Murray, and Wright (1981), Quandt (1983),
Bates and Watts (1988), Seber and Wild (1989, Chapter 14), and Press et al.
(1992a, 1992b, Chapter 10).

There are many algorithms for minimizing a smooth function Q(β). Most
of these operate in essentially the same way. The algorithm goes through a
series of iterations, or steps, at each of which it starts with a particular value
of β and tries to find a better one. It first chooses a direction in which to
search and then decides how far to move in that direction. After completing
the move, it checks to see whether the current value of β is sufficiently close to
a local minimum of Q(β). If it is, the algorithm stops. Otherwise, it chooses
another direction in which to search, and so on. There are three principal
differences among minimization algorithms: the way in which the direction
to search is chosen, the way in which the size of the step in that direction
is determined, and the stopping rule that is employed. Numerous choices for
each of these are available.

Newton’s Method

All of the techniques that we will discuss are based on Newton’s Method.
Suppose that we wish to minimize a function Q(β), where β is a k-vector and
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Q(β) is assumed to be twice continuously differentiable. Given any initial
value of β, say β(0), we can perform a second-order Taylor expansion of Q(β)
around β(0) in order to obtain an approximation Q∗(β) to Q(β):

Q∗(β) = Q(β(0)) + g>(0)(β − β(0)) + 1−
2
(β − β(0))>H(0)(β − β(0)), (6.41)

where g(β), the gradient of Q(β), is a column vector of length k with typ-
ical element ∂Q(β)/∂βi, and H(β), the Hessian of Q(β), is a k × k matrix
with typical element ∂2Q(β)/∂βi∂βl. For notational simplicity, g(0) and H(0)

denote g(β(0)) and H(β(0)), respectively.

It is easy to see that the first-order conditions for a minimum of Q∗(β) with
respect to β can be written as

g(0) + H(0)(β − β(0)) = 0.

Solving these yields a new value of β, which we will call β(1):

β(1) = β(0) −H−1
(0) g(0). (6.42)

Equation (6.42) is the heart of Newton’s Method. If the quadratic approxi-
mation Q∗(β) is a strictly convex function, which it will be if and only if the
Hessian H(0) is positive definite, β(1) will be the global minimum of Q∗(β).
If, in addition, Q∗(β) is a good approximation to Q(β), β(1) should be close
to β̂, the minimum of Q(β). Newton’s Method involves using equation (6.42)
repeatedly to find a succession of values β(1), β(2) . . . . When the original
function Q(β) is quadratic and has a global minimum at β̂, Newton’s Method
evidently finds β̂ in a single step, since the quadratic approximation is then
exact. When Q(β) is approximately quadratic, as all sum-of-squares func-
tions are when sufficiently close to their minima, Newton’s Method generally
converges very quickly.

Figure 6.1 illustrates how Newton’s Method works. It shows the contours of
the function Q(β) = SSR(β1, β2) for a regression model with two parameters.
Notice that these contours are not precisely elliptical, as they would be if
the function were quadratic. The algorithm starts at the point marked “0”
and then jumps to the point marked “1”. On the next step, it goes in almost
exactly the right direction, but it goes too far, moving to “2”. It then retraces
its own steps to “3”, which is essentially the minimum of SSR(β1, β2). After
one more step, which is too small to be shown in the figure, it has essentially
converged.

Although Newton’s Method works very well in this example, there are many
cases in which it fails to work at all, especially if Q(β) is not convex in the
neighborhood of β(j) for some j in the sequence. Some of the possibilities
are illustrated in Figure 6.2. The one-dimensional function shown there has
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Figure 6.1 Newton’s Method in two dimensions

a global minimum at β̂, but when Newton’s Method is started at points such
as β′ or β′′, it may never find β̂. In the former case, Q(β) is concave at β′

instead of convex, and this causes Newton’s Method to head off in the wrong
direction. In the latter case, the quadratic approximation at β′′, Q∗(β), which
is shown by the dashed curve, is extremely poor for values away from β′′,
because Q(β) is very flat near β′′. It is evident that Q∗(β) will have a minimum
far to the left of β̂. Thus, after the first step, the algorithm will be very much
further away from β̂ than it was at its starting point.

One important feature of Newton’s Method and algorithms based on it is that
they must start with an initial value of β. It is impossible to perform a Tay-
lor expansion around β(0) without specifying β(0). As Figure 6.2 illustrates,
where the algorithm starts may determine how well it performs, or whether it
converges at all. In most cases, it is up to the econometrician to specify the
starting values.

Quasi-Newton Methods

Most effective nonlinear optimization techniques for minimizing smooth crite-
rion functions are variants of Newton’s Method. These quasi-Newton methods
attempt to retain the good qualities of Newton’s Method while surmounting
problems like those illustrated in Figure 6.2. They replace (6.42) by the
slightly more complicated formula

β(j+1) = β(j) − α(j)D
−1
(j) g(j), (6.43)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



6.4 Computing NLS Estimates 229

...................................................................................................................................................................................................................................................................................................
..............................

.......................
...................
.................
...............
..............
.............
.............
..............
...............
...............
...............
...............
...............
...............
...............
...............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
.....

................................................................................................................................................................................................................................................................................................... .............................................................................................................................................................................................

............

....................................

..................................

β̂β′ β′′

Q(β)

Q∗(β)

Figure 6.2 Cases for which Newton’s Method will not work

which determines β(j+1), the value of β at step j + 1, as a function of β(j).
Here α(j) is a scalar which is determined at each step, and D(j) ≡ D(β(j))
is a matrix which approximates H(j) near the minimum but is constructed
so that it is always positive definite. In contrast to quasi-Newton methods,
modified Newton methods set D(j) = H(j), and Newton’s Method itself sets
D(j) = H(j) and α(j) = 1.

Quasi-Newton algorithms involve three operations at each step. Let us denote
the current value of β by β(j). If j = 0, this is the starting value, β(0);
otherwise, it is the value reached at iteration j. The three operations are

1. Compute g(j) and D(j) and use them to determine the direction D−1
(j) g(j).

2. Find α(j). Often, this is done by solving a one-dimensional minimization
problem. Then use (6.43) to determine β(j+1).

3. Decide whether β(j+1) provides a sufficiently accurate approximation
to β̂. If so, stop. Otherwise, return to 1.

Because they construct D(β) in such a way that it is always positive definite,
quasi-Newton algorithms can handle problems where the function to be mini-
mized is not globally convex. The various algorithms choose D(β) in a number
of ways, some of which are quite ingenious and may be tricky to implement
on a digital computer. As we will shortly see, however, for sum-of-squares
functions there is a very easy and natural way to choose D(β).

The scalar α(j) is often chosen so as to minimize the function

Q†(α) ≡ Q
(
β(j) − αD−1

(j) g(j)

)
,

regarded as a one-dimensional function of α. It is fairly clear that, for the
example in Figure 6.1, choosing α in this way would produce even faster
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convergence than setting α = 1. Some algorithms do not actually minimize
Q†(α) with respect to α, but merely choose α(j) so as to ensure that Q(β(j+1))
is less than Q(β(j)). It is essential that this be the case if we are to be
sure that the algorithm will always make progress at each step. The best
algorithms, which are designed to economize on computing time, may choose
α quite crudely when they are far from β̂, but they almost always perform an
accurate one-dimensional minimization when they are close to β̂.

Stopping Rules

No minimization algorithm running on a digital computer will ever find β̂
exactly. Without a rule telling it when to stop, the algorithm will just keep
on going forever. There are many possible stopping rules. We could, for
example, stop when Q(β(j−1)) − Q(β(j)) is very small, when every element
of g(j) is very small, or when every element of the vector β(j)−β(j−1) is very
small. However, none of these rules is entirely satisfactory, in part because
they depend on the magnitude of the parameters. This means that they will
yield different results if the units of measurement of any variable are changed
or if the model is reparametrized in some other way. A more logical rule is to
stop when

g>(j)D
−1
(j) g(j) < ε, (6.44)

where ε, the convergence tolerance, is a small positive number that is chosen
by the user. Sensible values of ε might range from 10−12 to 10−4. The
advantage of (6.44) is that it weights the various components of the gradient in
a manner inversely proportional to the precision with which the corresponding
parameters are estimated. We will see why this is so in the next section.

Of course, any stopping rule may work badly if ε is chosen incorrectly. If ε
is too large, the algorithm may stop too soon, when β(j) is still far away
from β̂. On the other hand, if ε is too small, the algorithm may keep going
long after β(j) is so close to β̂ that any differences are due solely to round-off
error. It may therefore be a good idea to experiment with the value of ε to see
how sensitive to it the results are. If the reported β̂ changes noticeably when ε
is reduced, then either the first value of ε was too large, or the algorithm is
having trouble finding an accurate minimum.

Local and Global Minima

Numerical optimization methods based on Newton’s Method generally work
well when Q(β) is globally convex. For such a function, there can be at most
one local minimum, which will also be the global minimum. When Q(β) is
not globally convex but has only a single local minimum, these methods also
work reasonably well in many cases. However, if there is more than one local
minimum, optimization methods of this type often run into trouble. They
will generally converge to a local minimum, but there is no guarantee that it
will be the global one. In such cases, the choice of the starting values, that
is, the vector β(0), can be extremely important.
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Figure 6.3 A criterion function with multiple minima

This problem is illustrated in Figure 6.3. The one-dimensional criterion func-
tion Q(β) shown in the figure has two local minima. One of these, at β̂, is
also the global minimum. However, if a Newton or quasi-Newton algorithm
is started to the right of the local maximum at β′′, it will probably converge
to the local minimum at β′ instead of to the global one at β̂.

In practice, the usual way to guard against finding the wrong local minimum
when the criterion function is known, or suspected, not to be globally convex
is to minimize Q(β) several times, starting at a number of different starting
values. Ideally, these should be quite dispersed over the interesting regions of
the parameter space. This is easy to achieve in a one-dimensional case like
the one shown in Figure 6.3. However, it is not feasible when β has more
than a few elements: If we want to try just 10 starting values for each of k
parameters, the total number of starting values will be 10k. Thus, in practice,
the starting values will cover only a very small fraction of the parameter
space. Nevertheless, if several different starting values all lead to the same
local minimum β̂, with Q(β̂) less than the value of Q(β) observed at any
other local minimum, then it is plausible, but by no means certain, that β̂ is
actually the global minimum.

Numerous more formal methods of dealing with multiple minima have been
proposed. See, among others, Veall (1990), Goffe, Ferrier, and Rogers (1994),
Dorsey and Mayer (1995), and Andrews (1997). In difficult cases, one or more
of these methods should work better than simply using a number of starting
values. However, they tend to be computationally expensive, and none of
them works well in every case.
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Many of the difficulties of computing NLS estimates are related to the iden-
tification of the model parameters by different data sets. The identification
condition for NLS is rather different from the identification condition for the
MM estimators discussed in Section 6.2. For NLS, it is simply the requirement
that the function SSR(β) should have a unique minimum with respect to β.
This is not at all the same requirement as the condition that the moment
conditions (6.27) should have a unique solution. In the example of Figure 6.3,
the moment conditions, which for NLS are first-order conditions, are satisfied
not only at the local minima β̂ and β′, but also at the local maximum β′′.
However, β̂ is the unique global minimum of SSR(β), and so β is identified
by the NLS estimator.

The analog for NLS of the strong asymptotic identification condition that
SW>X should be nonsingular is the condition that SX>X should be nonsingu-
lar, since the variables W of the MM estimator are replaced by X0 for NLS.
The strong condition for identification by a given data set is simply that the
matrix X̂>X̂ should be nonsingular, and therefore positive definite. It is easy
to see that this condition is just the sufficient second-order condition for a
minimum of the sum-of-squares function at β̂.

The Geometry of Nonlinear Regression

For nonlinear regression models, it is not possible, in general, to draw faithful
geometrical representations of the estimation procedure in just two or three
dimensions, as we can for linear models. Nevertheless, it is often useful to
illustrate the concepts involved in nonlinear estimation geometrically, as we
do in Figure 6.4. Although the vector x(β) lies in En, we have supposed for
the purposes of the figure that, as the scalar parameter β varies, x(β) traces
out a curve that we can visualize in the plane of the page. If the model were
linear, x(β) would trace out a straight line rather than a curve. In the same
way, the dependent variable y is represented by a point in the plane of the
page, or, more accurately, by the vector in that plane joining the origin to
that point.

For NLS, we seek the point on the curve generated by x(β) that is closest in
Euclidean distance to y. We see from the figure that, although the moment, or
first-order conditions, are satisfied at three points, only one of them yields the
NLS estimator. Geometrically, the sum-of-squares function is just the square
of the Euclidean distance from y to x(β). Its global minimum is achieved
at x(β̂), not at either x(β′) or x(β′′).

We can also use Figure 6.4 to see how MM estimation with a fixed matrix W
works. Since there is just one parameter, we need a single variable w that
does not depend on the model parameters, and such a variable is shown in the
figure. The moment condition defining the MM estimator is that the residuals
should be orthogonal to w. It can be seen that this condition is satisfied only
by the residual vector y−x(β̃). In the figure, a dotted line is drawn continuing
this residual vector so as to show that it is indeed orthogonal to w. There are
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Figure 6.4 NLS and MM estimation of a nonlinear model

cases, like the one in the figure, in which the NLS first-order conditions can be
satisfied for more than one value of β while the conditions for MM estimation
are satisfied for just one value, and there are cases in which the reverse is true.
Readers are invited to use their geometrical imaginations.

6.5 The Gauss-Newton Regression

When the function we are trying to minimize is a sum-of-squares function,
we can obtain explicit expressions for the gradient and the Hessian used in
Newton’s Method. It is convenient to write the criterion function itself as
SSR(β) divided by the sample size n :

Q(β) = n−1SSR(β) = 1−
n

n∑
t=1

(
yt − xt(β)

)2
.

Therefore, using the fact that the partial derivative of xt(β) with respect to βi

is Xti(β), we find that the ith element of the gradient is

gi(β) = − 2−
n

n∑
t=1

Xti(β)
(
yt − xt(β)

)
.

The gradient can be written more compactly in vector-matrix notation as

g(β) = −2n−1X>(β)
(
y − x(β)

)
. (6.45)
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Similarly, it can be shown that the Hessian H(β) has typical element

Hij(β) = − 2−
n

n∑
t=1

((
yt − xt(β)

)∂Xti(β)
∂βj

−Xti(β)Xtj(β)
)
. (6.46)

When this expression is evaluated at β0, it is asymptotically equivalent to

2−
n

n∑
t=1

Xti(β0)Xtj(β0). (6.47)

The reason for this asymptotic equivalence is that, since yt = xt(β0)+ut, the
first term inside the large parentheses in (6.46) becomes

− 2−
n

n∑
t=1

∂Xti(β)
∂βj

ut. (6.48)

Because xt(β) and all its first- and second-order derivatives belong to Ωt, the
expectation of each term in (6.48) is 0. Therefore, by a law of large numbers,
expression (6.48) tends to 0 as n →∞.

Gauss-Newton Methods

The above results make it clear that a natural choice for D(β) in a quasi-
Newton minimization algorithm based on (6.43) is

D(β) = 2n−1X>(β)X(β). (6.49)

By construction, this D(β) is positive definite whenever X(β) has full rank.
Substituting (6.49) and (6.45) into (6.43) yields

β(j+1) = β(j) + α(j)

(
2n−1X>

(j)X(j)

)−1(2n−1X>
(j)(y − x(j))

)

= β(j) + α(j)

(
X>

(j)X(j)

)−1
X>

(j)(y − x(j))
(6.50)

The classic Gauss-Newton method would set α(j) = 1, so that

β(j+1) = β(j) +
(
X>

(j)X(j)

)−1
X>

(j)(y − x(j)), (6.51)

but it is generally better to use a good one-dimensional search routine to
choose α optimally at each iteration. This modified type of Gauss-Newton
procedure often works quite well in practice.

The second term on the right-hand side of (6.51) can most easily be computed
by means of an artificial regression called the Gauss-Newton regression, or
GNR. This artificial regression can be expressed as follows:

y − x(β) = X(β)b + residuals. (6.52)
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This is the simplest version of the Gauss-Newton regression. It is called
“artificial” because the variables that appear in it are not the dependent and
explanatory variables of the nonlinear regression (6.02). Instead, they are
functions of these variables and of the model parameters. Before (6.52) can
be run as a regression, it is necessary to choose the parameter vector β at
which the regressand and regressors are to be evaluated.

The regressand in (6.52) is the difference between the actual values of the
dependent variable and the values predicted by the regression function x(β)
evaluated at the chosen β. There are k regressors, each of which is a vector
of derivatives of x(β) with respect to one of the elements of β. It therefore
makes sense to think of the ith regressor as being associated with βi. The
vector b is a vector of artificial parameters, and we write “+ residuals” rather
than the usual “+ u” to emphasize the fact that (6.52) is not a statistical
model in the usual sense.

The connection between the Gauss-Newton method of numerical optimiza-
tion and the Gauss-Newton regression should now be clear. If the variables
in (6.52) are evaluated at β(j), the OLS parameter estimates of the artificial
parameters are

b(j) =
(
X>

(j)X(j)

)−1
X>

(j)(y − x(j)),

from which it follows using (6.50) that the Gauss-Newton method gives

β(j+1) = β(j) + α(j)b(j).

Thus the GNR conveniently and cheaply performs two of the operations nec-
essary for a step of the Gauss-Newton method. It yields a matrix which
approximates the Hessian of SSR(β) and is always positive semidefinite. In
addition, it computes a vector of artificial parameter estimates which is equal
to −D−1

(j) g(j), the direction in which the algorithm looks at iteration j.

One potential difficulty with the Gauss-Newton method is that the matrix
X>(β)X(β) may sometimes be very close to singular, even though the model
is reasonably well identified by the data. If the strong identification condi-
tion is satisfied by a given data set, then X̂>X̂ is positive definite. However,
when X>(β)X(β) is evaluated far away from β̂, it may well be close to sin-
gular. When that happens, the algorithm gets into trouble, because b no
longer lies in the same k --dimensional space as β, but rather in a subspace of
dimension equal to the effective rank of X>(β)X(β). In this event, a Gauss-
Newton algorithm can cycle indefinitely without making any progress. The
best algorithms for nonlinear least squares check whether this is happening
and replace X>(β)X(β) with another estimate of H(β) whenever it does.
See the references cited at the beginning of Section 6.4.

Properties of the GNR

As we have seen, when x(β) is a linear regression model with X being the
matrix of independent variables, X(β) is simply equal to X. Thus, in the
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case of a linear regression model, the GNR will simply be a regression of the
vector y −Xβ on X. A special feature of the GNR for linear models is that
the classic Gauss-Newton method converges in one step from an arbitrary
starting point. To see this, let β(0) be the starting point. The GNR is

y −Xβ(0) = Xb + residuals,

and the artificial parameter estimates are

b̂ = (X>X)−1X>(y −Xβ(0)) = β̂ − β(0),

where β̂ is the OLS estimator. It follows at once that

β(1) = β(0) + b̂ = β̂. (6.53)

This property has a very useful analog for nonlinear models that we will
explore in the next section.

The properties of the GNR (6.52) depend on the choice of β. One interest-
ing choice is β̂, the vector of NLS parameter estimates. With this choice,
regression (6.52) becomes

y − x̂ = X̂b + residuals, (6.54)

where x̂ ≡ x(β̂) and X̂ ≡ X(β̂). The OLS estimate of b from (6.54) is

b̂ = (X̂>X̂)−1X̂>(y − x̂). (6.55)

Because β̂ must satisfy the first-order conditions (6.27), the factor X̂>(y− x̂)
must be a zero vector. Therefore, b̂ = 0, and the GNR (6.54) will have no
explanatory power whatsoever.

This may seem an uninteresting result. After all, why would anyone want to
run an artificial regression all the coefficients of which are known in advance
to be zero? There are in fact two very good reasons for doing so.

The first reason is to check that the vector β̂ reported by a program for NLS
estimation really does satisfy the first-order conditions (6.27). Computer pro-
grams use many different techniques for calculating NLS estimates, and many
programs do not yield reliable answers in every case; see McCullough (1999).
By running the GNR (6.54), we can see whether the first-order conditions
are satisfied reasonably accurately. If all the t statistics are less than about
10−4, and the R2 is less than about 10−8, then the value of β̂ reported by
the program should be reasonably accurate. If not, there may be a problem.
Possibly the estimation should be performed again using a tighter convergence
criterion, possibly we should switch to a more accurate program, or possibly
the model in question simply cannot be estimated reliably with the data set
we are using. Of course, some programs run the GNR (6.54) and perform
the requisite checks automatically. Once we have verified that they do so, we
need not bother doing it ourselves.
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Computing Covariance Matrices

The second reason to run the GNR (6.54) is to calculate an estimate of Var(β̂).
The usual OLS covariance matrix from this regression is, by (3.50),

V̂ar(b̂) = s2(X̂>X̂)−1, (6.56)

where, since the regressors have no explanatory power, s2 is the same as
the one defined in (6.33). It is equal to the SSR from the original nonlinear
regression, divided by n−k. Evidently, the right-hand side of (6.56) is identical
to the right-hand side of (6.32), which is the standard estimator of Var(β̂).
Thus running the GNR (6.54) provides an easy way to calculate V̂ar(β̂).

Good programs for NLS estimation will normally use (6.32) to estimate the
covariance matrix of β̂. Not all programs can be relied upon to do this,
however, and running the GNR (6.54) is a simple way to check whether they do
so and get better estimates if they do not. Sometimes, β̂ may be obtained by
a method other than fully nonlinear estimation. For example, the regression
function may be linear conditional on one parameter, and NLS estimates may
be obtained by searching over that parameter and performing OLS estimation
conditional on it. In such a case, it will be necessary to calculate (6.32)
explicitly, and running the GNR (6.54) is an easy way to do so.

The GNR (6.54) can also be used to compute a heteroskedasticity-consistent
covariance matrix estimate. Any HCCME for the parameters b̂ of the GNR
will also be perfectly valid for β̂. To see this, we start from the result (6.38).
If E(uu>) = Ω, this result implies that

Var
(

plim
n→∞

n1/2(β̂ − β0)
)

= (SX>X)−1n−1X>ΩX(SX>X)−1.

Therefore, from the results of Section 5.5, a reasonable way to estimate Var(β̂)
is to use the matrix

V̂arh(β̂) ≡ (X̂>X̂)−1X̂>Ω̂X̂(X̂>X̂)−1, (6.57)

where Ω̂ is an n× n diagonal matrix with the squared residual û2
t as the tth

diagonal element. This is precisely the HCCME (5.39) for the GNR (6.54).
Of course, as in Section 5.5, Ω̂ can, and probably should, be replaced by a
modified version with better finite-sample properties.
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6.6 One-Step Estimation

The result (6.53) for linear regression models has a counterpart for nonlinear
models: If we start with estimates that are root-n consistent but inefficient, a
single Newton, or quasi-Newton, step is all that is needed to obtain estimates
that are asymptotically equivalent to NLS estimates. This important result
may initially seem astonishing, but the intuition behind it is not difficult.

Let β́ denote the initial root-n consistent estimates; see Section 5.4. The GNR
(6.52) evaluated at these estimates is

y − x́ = X́b + residuals,

where x́ ≡ x(β́) and X́ ≡ X(β́). The estimate of b from this regression is

b́ = (X́>X́)−1X́>(y − x́). (6.58)

Then a one-step estimator is defined by the equation

β̀ = β́ + b́. (6.59)

This one-step estimator turns out to be asymptotically equivalent to the NLS
estimator β̂, by which we mean that the difference between n1/2(β̀−β0) and
n1/2(β̂ − β0) tends to zero as n →∞. In other words, after both are centered
and multiplied by n1/2, the one-step estimator β̀ and the NLS estimator β̂
tend to the same random variable asymptotically. In particular, this means
that the asymptotic covariance matrix of β̀ is the same as that of β̂. Thus β̀
shares with β̂ the property of asymptotic efficiency. For this reason, β̀ is
sometimes called a one-step efficient estimator.

In order to demonstrate the asymptotic equivalence of β̀ and β̂, we begin by
Taylor expanding the expression n−1/2X́>(y− x́) around β = β0. This yields

n−1/2X́>(y − x́) = n−1/2X0
>(y − x0) + ∆(β̄)n1/2(β́ − β0), (6.60)

where x0 ≡ x(β0), β̄ is a parameter vector that satisfies (6.19), in the sense
explained just after that equation, with β́ in place of β̂, and ∆(β) is the k×k
matrix with typical element

∆ij(β) ≡ ∂

∂βj

(
1−
n

n∑
t=1

Xti(β)
(
yt − xt(β)

))

= − 1−
n

n∑
t=1

Xti(β)Xtj(β) + 1−
n

n∑
t=1

∂Xti(β)
∂βj

(
yt − xt(β)

)
. (6.61)

It can be shown that, when (6.61) is evaluated at β̄, or at any root-n consistent
estimator of β0, the second term tends to zero but the first term does not.
We have seen why this is so if we evaluate (6.61) at β0. In that case, the
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second term, like expression (6.48), becomes an average of quantities each of
which has mean zero, while the first term is an average of quantities each of
which has a nonzero mean. Essentially the same result holds when we evaluate
(6.61) at any root-n consistent estimator. Thus we conclude that

∆(β̄) a= −n−1X̄>X̄ a= −n−1X0
>X0, (6.62)

where the second equality is also a consequence of the consistency of β̄.

Using the result (6.62) in (6.60) shows that

n−1/2X́>(y − x́) a= n−1/2X0
>u− n−1X0

>X0 n1/2(β́ − β0),

which can be solved to yield

n1/2(β́ − β0)
a= (n−1X0

>X0)−1
(
n−1/2X0

>u− n−1/2X́>(y − x́)
)

a= (SX>X)−1n−1/2X0
>u− (SX>X)−1n−1/2X́>(y − x́).

(6.63)

By (6.38), the first term in the second line here is equal to n1/2(β̂ − β0). By
(6.58), the second term is asymptotically equivalent to −n1/2b́. Thus (6.63)
implies that

n1/2(β́ − β0)
a= n1/2(β̂ − β0)− n1/2b́.

Rearranging this and using the definition (6.59), we see that

n1/2(β̀ − β0) = n1/2(β́ + b́− β0)
a= n1/2(β̂ − β0), (6.64)

which is the result that we wished to show.

Despite the rather complicated asymptotic theory needed to prove (6.64),
the fundamental reason that makes a one-step efficient estimator based on
the GNR asymptotically equivalent to the NLS estimator is really quite sim-
ple. The GNR minimizes a quadratic approximation to SSR(β) around β́.
Asymptotically, the function SSR(β) is quadratic in the neighborhood of β0.
If the sample size is large enough, the consistency of β́ implies that we will be
taking the quadratic approximation at a point very near β0. Therefore, the
approximation will coincide with SSR(β) itself asymptotically.

Although this result is of great theoretical interest, it is typically of limited
practical utility with modern computing equipment. Once the GNR, or some
other method for taking Newton or quasi-Newton steps, has been programmed
for a particular model, we might as well let it iterate to convergence, because
the savings in computer time from stopping after a single step are rarely
substantial. Moreover, a one-step estimator will be consistent if and only
if we start from an initial estimator that is consistent, while NLS will be
consistent no matter where we start from, provided we converge to a global
minimum of SSR(β). Therefore, it may well require more effort on the part
of the investigator to obtain one-step estimates than to obtain NLS ones.
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One-step estimators may be useful when the sample size is very large and each
step in the minimization process is, perhaps in consequence, very expensive.
The large sample size will often ensure that the initial, consistent estimates
are reasonably close to the NLS ones. If they are, the one-step estimates
should then be very close to the latter. One-step estimators can also be
useful when the estimation needs to be repeated many times, as will often be
required by the bootstrap and other simulation-based methods; see Davidson
and MacKinnon (1999a).

The Linear Regression Model with AR(1) Errors

An excellent example of one-step efficient estimation is provided by the model
(6.06), which is a linear regression model with AR(1) errors. The GNR that
corresponds to (6.06) is

yt − ρyt−1 −Xtβ + ρXt−1β

= (Xt − ρXt−1)b + bρ(yt−1 −Xt−1β) + residual,
(6.65)

where b corresponds to β and bρ corresponds to ρ. As with every GNR, the
regressand is yt minus the regression function for (6.06). The last regressor,
which is the derivative of the regression function with respect to ρ, looks very
much like a lagged residual from the original linear regression model (6.05).
The remaining k regressors are the derivatives of the regression function with
respect to the elements of β.

It is easy to obtain root-n consistent estimates of the parameters ρ and β of
the model (6.06), because it can be written as a linear regression subject to
nonlinear restrictions on its parameters. The linear regression is

yt = ρyt−1 + Xtβ + Xt−1γ + εt. (6.66)

If we impose the nonlinear restrictions that γ + ρβ = 0, this regression is
just (6.06). Thus the model (6.06) is a special case of the model (6.66).
Therefore, if (6.06) is a correctly specified model, that is, if the true DGP is a
special case of (6.06), then (6.66) must be a correctly specified model as well,
because every DGP in (6.06) automatically belongs to (6.66). Since (6.66) is
correctly specified, the standard theory of the linear regression with predeter-
mined regressors applies to it, with the consequence that the OLS estimates ρ́
and β́ obtained from (6.66) are root-n consistent.

If we evaluate the variables of the GNR (6.65) at ρ́ and β́, we obtain

yt − ρ́yt−1 −Xtβ́ + ρ́Xt−1β́

= (Xt − ρ́Xt−1)b + bρ(yt−1 −Xt−1β́) + residual.
(6.67)

We can run this regression to obtain the artificial parameter estimates b́ and b́ρ,
and the one-step efficient estimates are just β́ + b́ and ρ́ + b́ρ.
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6.7 Hypothesis Testing

Hypotheses about the parameters of nonlinear regression models can be for-
mulated in much the same way as hypotheses about the parameters of linear
regression models. Let us partition the parameter vector β as β = [β1

.... β2],
where β1 is k1 × 1, β2 is k2 × 1, and β is k × 1, with k = k1 + k2. Then the
generic nonlinear regression model (6.02) can be written as

y = x(β1,β2) + u, u ∼ IID(0, σ2I).

If we wish to test the hypothesis that β2 = 0, we can set up the models that
correspond to the null and alternative hypotheses as follows:

H0 : y = x(β1,0) + u; (6.68)

H1 : y = x(β1, β2) + u. (6.69)

Here, using notation introduced in Section 4.2, H0 denotes the null hypothesis,
and H1 denotes the alternative.

If the regression models (6.68) and (6.69) were linear, we could test the null
hypothesis by means of the F statistic (4.30). In fact, we can do this even
though they are nonlinear. The test statistic

Fβ2 ≡
(RSSR−USSR)/r

USSR/(n− k)
(6.70)

is computed in exactly the same way as (4.30), but with RSSR and USSR the
sums of squared residuals from NLS estimation of (6.68) and (6.69), respec-
tively. Here r = k2, since the hypothesis that β2 = 0 imposes k2 restrictions.
It is not difficult to show that (6.70) is asymptotically valid: Under the null
hypothesis, it follows the F (r,∞) distribution asymptotically.

First, we establish some notation. Let X(β) denote the n×k matrix of partial
derivatives of the vector of regression functions x(β) = x(β1, β2) of (6.69).
Similarly, let X1(β) and X2(β) denote the n× k1 and n× k2 submatrices of
partial derivatives with respect to the components of β1 and β2, respectively.
Finally, let M1 denote the orthogonal projection on to S⊥(X(β0)), which we
previously called MX0 , and let M0 denote the orthogonal projection on to
S⊥(X1(β0)). The projection M0 corresponds to the null hypothesis H0, and
the projection M1 corresponds to the alternative hypothesis H1.

By the result (6.40), under both the null and alternative hypotheses, the vector
of residuals û from NLS estimation of H1 is asymptotically equal to M1u.
By essentially the same argument, under the null hypothesis, the vector of
residuals ũ from NLS estimation of H0 is asymptotically equal to M0u. This
implies (see Exercise 6.8) that û>û a= u>M1u and ũ>ũ a= u>M0u. Therefore,
under H0, r times the numerator of (6.70) is asymptotically equal to

u>M0u− u>M1u = u>(M0 −M1)u = u>(P1 − P0)u,
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where P0 and P1 are the projections complementary to M0 and M1. By the
result of Exercise 2.16, P1 − P0 is an orthogonal projection matrix, which
projects on to a space of dimension k−k1 = k2. Thus the numerator of (6.70)
is σ2

0 times a χ2 variable with k2 degrees of freedom, divided by r = k2. The
denominator of (6.70) is just a consistent estimate of σ2

0 , and so, under H0,
(6.70) itself is asymptotically distributed as F (k2,∞) = χ2(k2)/k2.

For linear models, we saw in Section 5.4 that the F statistic could be written
as (5.26), which is a special case of the more general form (5.23). Not surpris-
ingly, it is also possible to calculate test statistics of the form (5.23) to test
the hypothesis that β2 = 0 in the nonlinear model (6.69). This type of test
statistic is often called a Wald statistic, because the approach was suggested
by Wald (1943). It can be written as

Wβ2 ≡ β̂2
>(V̂ar(β̂2)

)−1
β̂2, (6.71)

where β̂2 is a vector of NLS estimates from the unrestricted model (6.69), and
V̂ar(β̂2) is the NLS estimate of its covariance matrix. This is just a quadratic
form in the vector β̂2 and the inverse of an estimate of its covariance matrix.
When k2 = 1, the signed square root of (6.71) is equivalent to a t statistic.
We will see below that the Wald statistic (6.71) is asymptotically equivalent
to the F statistic (6.70), except for the factor of 1/k2.

Tests Based on the Gauss-Newton Regression

Since the GNR provides a one-step estimator asymptotically equivalent to
the NLS estimator, and it also provides the NLS estimate of the covariance
matrix of β̂2, a statistic asymptotically equivalent to (6.71) can be computed
by means of a GNR. This statistic will also turn out to be asymptotically
equivalent to the F statistic (6.70), except for the factor of 1/k2.

The Gauss-Newton regression corresponding to the model (6.69) is

y − x(β1, β2) = X1(β1,β2)b1 + X2(β1, β2)b2 + residuals, (6.72)

where the vector of artificial parameters b has been partitioned as [b1
.... b2],

conformably with the partition of X(β). If the GNR is to be used to test the
null hypothesis that β2 = 0, the regressand and regressors must be evaluated
at parameter estimates which satisfy the null. We will suppose that they are
evaluated at the point β́ ≡ [β́1,0], where β́1 may be any root-n consistent
estimator of β1. Then the one-step estimator of β can be written as

β́ + b́ =

[
β́1 + b́1

b́2

]
. (6.73)

By the results of Section 6.6, n1/2b́2 is asymptotically equivalent to n1/2β̂2,
where β̂2 is the NLS estimator of β2 from (6.69).
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In practice, the two estimators that are most likely to be used for β́1 are β̃1,
the restricted NLS estimator, and β̂1, a subvector of the unrestricted NLS
estimator. Here we are once more adopting the convention, previously used
in Chapter 4, whereby a tilde denotes restricted estimates and a hat denotes
unrestricted ones. Both these estimators are root-n consistent under the null
hypothesis, but β̃1 will generally be more efficient than β̂1. Whether we will
want to use β̃1, β̂1, or some other root-n consistent estimator when performing
GNR-based tests will depend on how difficult the various estimators are to
compute and on the finite-sample properties of the test statistics that result
from the various choices.

Now consider the vector of residuals ú from OLS estimation of the GNR (6.72)
evaluated at β́, when the true DGP is characterized by the parameter vector
β0 ≡ [β0

1
.... 0]. We have

ú = y − x(β́1,0)− X́1b́1 − X́2 b́2

= y − x(β0
1 ,0)−X1(β̄)(β́1 − β0

1)− X́1b́1 − X́2 b́2

a= u− X́1(β́1 + b́1 − β0
1)− X́2 b́2. (6.74)

Here, β̄ is a parameter vector between β0 and β́. To obtain the asymptotic
equality in the last line, we have used the fact that X1(β̄) a= X́1. The one-
step estimator (6.73) is consistent, and so the last two terms in (6.74) tend to
zero as n → ∞. Thus the residuals út are asymptotically equal to the error
terms ut, and so n−1ú>ú is asymptotically equal to σ2

0 , the true error variance.
In fact, because of the asymptotic equivalence of the one-step estimator β̀ and
the NLS estimator β̂, (6.74) tells us that ú

a= u− X́(β̂ − β0). An argument
like that of (6.40) then shows that ú is asymptotically equivalent to MX0u.
For the moment, however, we do not need this more refined result.

The GNR (6.72) evaluated at β́ is

y − x́ = X́1b1 + X́2b2 + residuals. (6.75)

Since this is a linear regression, we can apply the FWL Theorem to it. Writing
MX́1

for the projection on to S⊥(X́1), we see that the FWL regression can
be written as

MX́1
(y − x́) = MX́1

X́2b2 + residuals.

This FWL regression yields the same estimates b́2 as does (6.75). Thus,
inserting the factors of powers of n that are needed for asymptotic analysis,
we find that

n1/2 b́2 = (n−1X́2
>MX́1

X́2)−1n−1/2X́2
>MX́1

(y − x́). (6.76)

In addition to yielding the same parameter estimates b́2, the FWL regression
has the same residuals as regression (6.75) and the same estimated covariance
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matrix for b́2. The latter is σ́2(X́2
>MX́1

X́2)−1, where σ́2 is the error variance
estimator from (6.75), which, as we just saw, is asymptotically equal to σ2

0 .
If X1 and X2 denote X1(β0) and X2(β0), respectively, we see that

n−1X́2
>MX́1

X́2 = n−1X́2
>X́2 − n−1X́2

>X́1(n−1X́1
>X́1)−1n−1X́1

>X́2

a= n−1X2
>X2 − n−1X2

>X1(n−1X1
>X1)−1n−1X1

>X2

= n−1X2
>MX1X2,

where the asymptotic equality follows as usual from the consistency of β́.
Thus n times the covariance matrix estimator for b́2 given by the GNR (6.75)
provides a consistent estimate of the asymptotic covariance matrix of the
vector n1/2(β̂2 − β0

2), as given by (6.31).

The Wald test statistic (6.71) can be rewritten as

n1/2β̂2
>(nV̂ar(β̂2)

)−1
n1/2β̂2. (6.77)

This is asymptotically equivalent to the statistic

1
σ́2

n1/2 b́2
>(n−1X́2

>MX́1
X́2)n1/2b́2, (6.78)

which is based entirely on quantities from the GNR (6.75). That (6.77) and
(6.78) are asymptotically equal relies on (6.76) and the fact, which we have
just shown, that the covariance matrix estimator for b́2 is also valid for β̂2.

By (6.76), the GNR-based statistic (6.78) can also be expressed as

1
σ́2

n−1/2(y − x́)>MX́1
X́2(n−1X́2

>MX́1
X́2)−1n−1/2X́2

>MX́1
(y − x́). (6.79)

When this statistic is divided by r = k2, we can see by comparison with (4.33)
that it is precisely the F statistic for a test of the artificial hypothesis that
b = 0 in the GNR (6.75). In particular, σ́2 is just the sum of squared residuals
from equation (6.75), divided by n − k. Thus a valid test statistic can be
computed as an ordinary F statistic using the sums of squared residuals from
the “restricted” and “unrestricted” GNRs,

GNR0 : y − x́ = X́1b1 + residuals, and (6.80)

GNR1 : y − x́ = X́1b1 + X́2b2 + residuals. (6.81)

In Exercise 6.9, readers are invited to show that such an F statistic is asymp-
totically equivalent to the F statistic computed from the sums of squared
residuals from the two nonlinear regressions (6.68) and (6.69).

In the quite common event that β́1 = β̃1, the first-order conditions for β̃1

imply that regression (6.80) will have no explanatory power. There is no need
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to run regression (6.80) in this case, because its SSR will always be identical to
the SSR from NLS estimation of the restricted model. We will see an example
of this in the next subsection.

The principal advantage of tests based on the GNR is that they can be cal-
culated without computing two nonlinear regressions, one for each of the null
and alternative hypotheses. The principal disadvantage is that a number of
derivatives must be calculated, one for each parameter of the unrestricted
model. In many cases, it is necessary to run one nonlinear regression, so as to
obtain root-n consistent estimates of the parameters under the null. However,
it may sometimes happen that either the null or the alternative hypothesis
corresponds to a linear model. In such cases, no nonlinear estimation at all is
necessary to carry out a GNR-based test.

GNR-Based Tests for Autoregressive Errors

An example of a model which is linear under the null hypothesis is furnished by
the linear regression model with autoregressive errors. With time-series data,
serial correlation of the error terms is a frequent occurrence, and so one of the
most frequently performed tests in all of econometrics is a test in which the
null hypothesis is a linear regression model with serially uncorrelated errors
and the alternative is the same model with AR(1) errors. In this case, we may
think of H1 as being the model (6.06) and H0 as being the model

yt = Xtβ + ut, ut ∼ IID(0, σ2). (6.82)

When GNRs like (6.80) and (6.81) are used for testing, all the variables in
them must be evaluated at a parameter vector β́ which satisfies the null
hypothesis. In this case, the null hypothesis corresponds to the restriction
that ρ = 0. Therefore, we must set ρ́ = 0 in the GNRs corresponding to the
restricted model (6.82) and the unrestricted model (6.06). The natural choice
for β́ is then β̃, the vector of OLS parameter estimates for (6.82).

The GNR for (6.06) was given in (6.65). If this artificial regression is evaluated
at β = β̃ and ρ = 0, it becomes

yt −Xtβ̃ = Xtb + bρ(yt−1 −Xt−1β̃) + residual, (6.83)

where b corresponds to β and bρ corresponds to ρ. If we denote the OLS
residuals from (6.82) by ũt, the GNR (6.83) takes on the very simple form

ũt = Xtb + bρũt−1 + residual. (6.84)

This is just a linear regression of the residuals from (6.82) on the regressors
of (6.82) and one more regressor, namely, the residuals lagged once. Since
only one restriction is to be tested, a suitable test statistic is the t statistic
for the artificial parameter bρ in (6.84) to equal 0. This is the square root of
the F statistic, which we have seen to be asymptotically valid.
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Almost as simple as the above test is a test of the null hypothesis (6.82)
against an alternative in which the error terms follow the AR(2) process

ut = ρ1ut−1 + ρ2ut−2 + εt, εt ∼ IID(0, σ2).

It is not hard to show that an appropriate artificial regression for testing (6.82)
against the AR(2) alternative that is analogous to (6.06) is

ũt = Xtb + bρ1ũt−1 + bρ2ũt−2 + residual; (6.85)

see Exercise 6.10. Since, in this case, we have a test with two degrees of
freedom, we cannot use a t test. However, it is still not necessary to run two
regressions in order to compute an F statistic. Consider the form taken by
GNR0 in this case:

ũt = Xtb + residual. (6.86)

This is just the GNR corresponding to the linear regression (6.82). Since the
regressand is the vector of residuals from estimating (6.82), it is orthogonal
to the explanatory variables. Therefore, by (6.55), the artificial parameter
estimates b̃ are zero, and (6.86) has no explanatory power. As a result, the
SSR from (6.86) is equal to the total sum of squares (TSS). But this is also
the TSS from the GNR (6.85) corresponding to the alternative. Thus the
difference between the SSRs from (6.86) and (6.85) is the difference between
the TSS and the SSR from (6.85), or, more conveniently, the explained sum
of squares (ESS) from (6.85). The GNR-based F statistic can therefore be
computed by running (6.85) alone. In fact, since the denominator is just the
estimate s̃2 of the error variance from (6.85), the F statistic is simply1

F =
ESS
rs̃2 =

n− k

r
× ESS

SSR
, (6.87)

with r = 2 in this particular case.

Asymptotically, we can obtain a valid test statistic by using any consistent
estimate of the true error variance σ2

0 as the denominator. If we were to use
the estimate under the null rather than the estimate under the alternative, the
denominator of the test statistic would be (n−k1)−1

∑n
t=1 ũ2

t . Asymptotically,
it makes no difference whether we divide by n− k1 or n when we estimate σ2.
Therefore, if R2 is the uncentered R squared from (6.85), another perfectly
valid test statistic is

nR2 =
nESS
TSS

=
ESS

1−
n

∑n
t=1 ũ2

t

, (6.88)

1 We are assuming here that regression (6.85) is run over all n observations. This
requires either that data for observations 0 and −1 are available, or that the
unobserved residuals ũ0 and ũ−1 are replaced by zeros.
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which follows the χ2(2) distribution asymptotically. If the regressors include
a constant, the residuals ũt will have mean zero, and the uncentered R2 (6.88)
will be identical to the centered R2 that is printed by most regression packages.

Whether we use the F statistic (6.87) or the nR2 statistic (6.88), the GNR
provides a very easy way to test the null hypothesis that the error terms
are serially uncorrelated against all sorts of autoregressive alternatives. Of
course, neither statistic will follow its asymptotic distribution exactly in finite
samples. However, there is some evidence— for example, Kiviet (1986)—
that the former tends to have better finite-sample properties than the latter.
This evidence accords with theory, because, as (6.40) shows, the relationship
between NLS residuals and error terms is approximately the same as the
relationship between OLS residuals and error terms. Therefore, it makes
sense to use the F form of the statistic, which treats the estimate s̃2 based on
the GNR as if it were based on an ordinary OLS regression.

The above example generalizes to all cases in which β́ is taken to be β̃ from
estimating the null hypothesis, whether or not the restricted model is linear.
In such cases, because GNR0 has no explanatory power, its SSR is equal to
its TSS, which in turn is equal to the TSS of GNR1. In consequence, we only
need to run GNR1, which in this case is

y − x̃ = X̃1b1 + X̃2b2 + residuals.

Under the null hypothesis, nR2 from this test regression is asymptotically
distributed as χ2(r). This is not the case for GNR1 when β́ 6= β̃. However,
the F test of (6.80) against (6.81) is asymptotically valid even when β́ 6= β̃.
It is merely required that β́ should satisfy the null hypothesis and be root-n
consistent.

Most GNR-based tests are like the ones for serial correlation that we have just
discussed, in which the GNR is evaluated at least squares estimates under the
null hypothesis. However, it is also possible to evaluate the GNR at estimates
obtained under the alternative hypothesis. We will encounter tests of this
type when we discuss common factor restrictions in Chapter 7.

Bootstrap Tests

Because none of the tests discussed in this section is exact in finite samples,
it is often desirable to compute bootstrap P values, which, in most cases,
will be more accurate than ones based on asymptotic theory. The procedures
for computing bootstrap P values for nonlinear regression models are essen-
tially the same as the ones described in Section 4.6 for linear models. We
use estimates under the null to generate B bootstrap samples, usually either
generating the error terms from the N(0, s̃2) distribution or resampling the
rescaled residuals, and we then compute a bootstrap test statistic τ∗j using
each of the bootstrap samples. For a test that rejects when the test statistic τ̂
is large, the bootstrap P value is then 1 − F̂ ∗(τ̂), where F̂ ∗(τ̂) denotes the
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EDF of the τ∗j evaluated at τ̂ . Of course, this procedure can sometimes be
computationally expensive; see Davidson and MacKinnon (1999a) for a way
of making it somewhat less so.

6.8 Heteroskedasticity-Robust Tests

All of the tests dealt with in the preceding section are valid only under the
assumption that the error terms are IID. This assumption, which may be
uncomfortably strong in some cases, can be relaxed for GNR-based tests by
using a modified version of the GNR.

As in Section 5.5, let us suppose that the covariance matrix of the error terms
is Ω, an n×n diagonal matrix with tth diagonal element ω2

t . Then the matrix
(6.57) provides a heteroskedasticity-consistent estimate of Var(β̂), which can
be used in place of the usual estimate. The result will be a heteroskedasticity-
robust test statistic, the asymptotic distribution of which will be the same no
matter what the ω2

t happen to be, provided the regularity conditions needed
for the HCCME to be valid are satisfied.

For H0 and H1 as in (6.68) and (6.69), but with heteroskedastic errors, we wish
to construct a Wald test statistic, similar to (6.71), that uses an HCCME to
estimate the covariance matrix. Let β́ denote a vector of parameter estimates
that is root-n consistent and satisfies the null hypothesis. Often, β́ will be β̃,
the vector of NLS estimates under the null. By arguments similar to those
that led to (6.79), an appropriate Wald statistic can be written as

(y − x́)>Ḿ1X́2(X́2
>Ḿ1ΏḾ1X́2)−1X́2

>Ḿ1(y − x́), (6.89)

where Ώ is an n × n diagonal matrix with tth diagonal element equal to ú2
t .

Here út denotes the residual yt − xt(β́), and all quantities with an acute ac-
cent are evaluated at β́. The test statistic (6.89) is a quadratic form in the
vector X́2

>Ḿ1(y − x́) and a matrix that estimates the inverse of its covariance
matrix. It is easy to see that, given appropriate regularity conditions, it will
be asymptotically distributed as χ2(r) under the null hypothesis.

It is possible to compute (6.89) by means of a modified GNR. Let Ú be the
n×n diagonal matrix with tth diagonal element equal to út. This implies that
ÚÚ = Ú>Ú = Ώ. Then, for the alternative hypothesis (6.69), consider the
artificial regression

ι = PÚX́Ú−1X́b + residuals, (6.90)

where, as usual, ι is an n--vector each component of which equals 1, and
X́ = [X́1 X́2]. The matrix PÚX́ is the orthogonal projection on to the
k --dimensional space S(ÚX́). The matrix Ú−1 is a diagonal matrix with
tth diagonal element equal to ú−1

t . This will be undefined if út = 0. There-
fore, in that event, it will be necessary to replace út by a very small, positive
number when constructing Ú.
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The artificial regression (6.90) is called the heteroskedasticity-robust Gauss-
Newton regression, or HRGNR. It has essentially the same properties as
the ordinary GNR, except that it is valid when there is heteroskedasticity of
unknown form. If we set β́ equal to β̂, the vector of unrestricted estimates,
the regressand ι in (6.90) is seen to be orthogonal to all of the regressors. The
transpose of the regressand times the matrix of regressors is

ι>PÛX̂Û−1X̂ = ι>ÛX̂(X̂>ÛÛX̂)−1X̂>ÛÛ−1X̂

= û>X̂(X̂>Ω̂X̂)−1X̂>X̂

= 0.

The equality in the second line uses the facts that Ûι = û, ÛÛ = Ω̂, and
ÛÛ−1 = I. The one in the third line holds because the first-order conditions
for NLS estimation are just X̂>û = 0. Thus, like the ordinary GNR, the
HRGNR can be used to verify that parameter estimates satisfy the first-order
conditions for NLS estimation.

When it is evaluated at any β́ that is root-n consistent, the ordinary OLS
covariance matrix from the HRGNR is an asymptotically valid HCCME. The
TSS from regression (6.90) is ι>ι = n. Therefore, when β́ = β̂, the SSR will
also be n, and the OLS estimate of the error variance will be n/(n− k), which
is asymptotically equal to 1. Even when β́ 6= β̂, the usual sort of calculation
shows that the OLS estimate of the error variance from (6.90) is asymptot-
ically equal to 1. Thus, except for the asymptotically negligible difference
between σ́2 and 1, the covariance matrix estimator from (6.90) is

(X́>Ú−1PÚX́Ú−1X́)−1 =
(
X́>Ú−1ÚX́(X́>Ú2X́)−1X́>ÚÚ−1X́

)−1

=
(
X́>X́(X́>ΏX́)−1X́>X́

)−1

= (X́>X́)−1X́>ΏX́(X́>X́)−1,

which is just the HCCME (6.57) evaluated at β́ instead of at β̂.

The HRGNR (6.90) also allows one-step estimation. Although this is of no
practical interest, since it is easier to do one-step estimation with the ordinary
GNR, it is essential that (6.90) should allow one-step estimation for tests
based on it to be valid. Recall that the one-step property was necessary
for our proof that statistics based on the ordinary GNR are valid. To avoid
tedious asymptotic arguments, we will limit ourselves to showing that (6.90)
allows one-step estimation for linear models. Extending the argument to
nonlinear models is not difficult, but it would involve greater complication,
chiefly notational. If we consider the linear regression model y = Xβ + u,
and evaluate the HRGNR (6.90) at an arbitrary β́, we have

b́ = (X>Ú−1PÚXÚ−1X)−1X>Ú−1PÚXι.
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This can readily be seen to reduce to

b́ = (X>X)−1X>ú = (X>X)−1X>(y −Xβ́) = β̂ − β́,

where β̂ is the OLS estimator. It follows that the one-step estimator β́ + b́ is
equal to β̂, as we wished to show.

In order to use the HRGNR to test the null hypothesis (6.68) against the
alternative (6.69), we need to run two versions of it and compute the difference
between the two SSRs, which will be asymptotically distributed as χ2(k2).
The two HRGNRs that we need to run are

HRGNR0 : ι = PÚX́Ú−1X́1b1 + residuals, and (6.91)

HRGNR1 : ι = PÚX́Ú−1X́1b1 + PÚX́Ú−1X́2b2 + residuals, (6.92)

where β́ may be any root-n consistent estimator that satisfies the restrictions
being tested. In many cases, it will be convenient to set β́ = β̃, the OLS
estimates from (6.68). These equations are not hard to set up. The tth row of
ÚX́ is just the corresponding row of X́ multiplied by út, and the tth row of
Ú−1X́ is just the corresponding row of X́ divided by út. It is never necessary
to construct the n× n matrix Ú at all.

The second of the two artificial regressions, (6.92), is simply regression (6.90)
with the matrix X́ explicitly partitioned. The first one, however, is not the
HRGNR for the restricted model, because it uses the matrix PÚX́ rather
than the matrix PÚX́1

. In consequence, even if we set β́ = β̃, the regressand
in (6.91) will not be orthogonal to the regressors. This is why we need to run
two artificial regressions. We could compute an ordinary F statistic instead
of the difference between the SSRs from (6.91) and (6.92), but there would
be no advantage to doing so, since the F form of the test merely divides by a
stochastic quantity that tends to 1 asymptotically.

A different and more limited form of the HRGNR, which is applicable only to
hypothesis testing, was first proposed by Davidson and MacKinnon (1985a);
see Exercise 6.21. It was later rediscovered by Wooldridge (1990, 1991) and
extended to handle other cases, including regression models with error terms
that have autocorrelation as well as heteroskedasticity of unknown form.

6.9 Final Remarks

In this chapter, we have dealt only with the estimation of nonlinear regression
models by the method of moments and by nonlinear least squares. However,
many of the results will reappear, in slightly different forms, when we con-
sider estimation methods for other sorts of models. The NLS estimator is an
extremum estimator, that is, an estimator obtained by minimizing or maxi-
mizing a criterion function. In the next few chapters, we will encounter several
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other extremum estimators: generalized least squares (Chapter 7), general-
ized instrumental variables (Chapter 8), the generalized method of moments
(Chapter 9), and maximum likelihood (Chapter 10). Most of these estima-
tors, like the NLS estimator, can be derived from the method of moments. All
extremum estimators share a number of common features. Similar asymptotic
results, and similar methods of proof, apply to all of them.

6.10 Exercises

6.1 Let the expectation of a random variable Y conditional on a set of other ran-
dom variables X1, . . . , Xk be the deterministic function h(X1, . . . , Xk) of the
conditioning variables. Let Ω be the information set consisting of all determin-
istic functions of the Xi, i = 1, . . . , k. Show that E(Y |Ω) = h(X1, . . . , Xk).
Hint: Use the Law of Iterated Expectations for Ω and the information set
defined by the Xi.

6.2 Consider a model similar to (3.20), but with error terms that are normally
distributed:

yt = β1 + β21/t + ut, ut ∼ NID(0, σ2),

where t = 1, 2, . . . , n. If the true value of β2 is β0
2 and β̂2 is the OLS estimator,

show that the limit in probability of β̂2 − β0
2 is a normal random variable with

mean 0 and variance 6σ2/π2. In order to obtain this result, you will need to
use the results that

∑∞
t=1(1/t)2 = π2/6, and that, if s(n) =

∑n
t=1(1/t), then

limn→∞ n−1s(n) = 0, and limn→∞ n−1s2(n) = 0.

6.3 Show that the MM estimator defined by (6.10) depends on W only through
the span S(W ) of its columns. This is equivalent to showing that the estimator
depends on W only through the orthogonal projection matrix PW .

6.4 Show algebraically that the first-order conditions for minimizing the SSR func-
tion (6.28) have the same solutions as the moment conditions (6.27).

6.5 Apply Taylor’s Theorem to n−1 times the left-hand side of the moment con-
ditions (6.27), expanding around the true parameter vector β0. Show that
the extra term which appears here, but was absent in (6.20), tends to zero as
n → ∞. Make clear where and how you use a law of large numbers in your
demonstration.

6.6 For the nonlinear regression model

yt = β1zβ2
t + ut, ut ∼ IID(0, σ2),

write down the sum of squared residuals as a function of β1, β2, yt, and zt.
Then differentiate it to obtain two first-order conditions. Show that these
equations are equivalent to special cases of the moment conditions (6.27).

6.7 In each of the following regressions, yt is the dependent variable, xt and zt

are explanatory variables, and α, β, and γ are unknown parameters.

a) yt = α + βxt + γ/xt + ut

b) yt = α + βxt + xt/γ + ut

c) yt = α + βxt + zt/γ + ut
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d) yt = α + βxt + zt/β + ut

e) yt = α + βxtzt + ut

f) yt = α + βγxtzt + γzt + ut

g) yt = α + βγxt + γzt + ut

h) yt = α + βxt + βx2
t + ut

i) yt = α + βxt + γx2
t + ut

j) yt = α + βγx3
t + ut

k) yt = α + βxt + (1− β)zt + ut

l) yt = α + βxt + (γ − β)zt + ut

For each of these regressions, is it possible to obtain a least-squares estimator
of the parameters? In other words, is each of these models identified? If not,
explain why not. If so, can the estimator be obtained by ordinary (that is,
linear) least squares? If it can, write down the regressand and regressors for
the linear regression to be used.

6.8 Show that a Taylor expansion to second order of an NLS residual gives

ût = ut −Xt(β0)(β̂ − β0)− 1
2
(β̂ − β0)

>H̄t(β̂ − β0), (6.93)

where β0 is the parameter vector of the DGP, and the k × k matrix H̄t ≡
Ht(β̄) is the matrix of second derivatives with respect to β of the regression
function xt(β), evaluated at some β̄ that satisfies (6.19).

Define b = n1/2(β̂ − β0), so that, as n → ∞, b tends to the normal random

variable plimn→∞(n−1X0
>X0)

−1n−1/2X0
>u. By expressing equation (6.93)

in terms of b, show that the difference between û>û and u>MX0u tends to 0
as n → ∞. Here MX0 = I − PX0 , where PX0 = X0(X0

>X0)
−1X0

> is the
orthogonal projection on to S(X0).

6.9 Using the result (6.40) on NLS residuals, show that the F statistic computed
using the sums of squared residuals from the two GNRs (6.80) and (6.81)
is asymptotically equivalent to the F statistic computed using the sums of
squared residuals from the nonlinear regressions (6.68) and (6.69).

6.10 Consider a linear regression with AR(2) errors. This can be written as

yt = Xtβ + ut, ut = ρ1ut−1 + ρ2ut−2 + εt, εt ∼ IID(0, σ2).

Show how to test the null hypothesis that ρ1 = ρ2 = 0 by means of a GNR.

6.11 Consider again the ADL model (3.70) of Exercise 3.22, which is reproduced
here with a minor notational change:

ct = α + βct−1 + γ0yt + γ1yt−1 + εt. (6.94)

Recall that ct and yt are the logarithms of consumption and income, respec-
tively. Show that this model contains as a special case the following linear
model with AR(1) errors:

ct = δ0 + δ1yt + ut, with ut = ρut−1 + εt, (6.95)

where εt is IID. Write down the relation between the parameters δ0, δ1,
and ρ of this model and the parameters α, β, γ0, and γ1 of (6.94). How
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many and what restrictions are imposed on the latter set of parameters by
the model (6.95)?

6.12 Using the data in the file consumption.data, estimate the nonlinear model
defined implicitly by (6.95) for the period 1953:1 to 1996:4 by nonlinear least
squares. Since pre-sample data are available, you should use all 176 obser-
vations for the estimation. Do not use a specialized procedure for AR(1)
estimation. For starting values, use the estimates of δ0, δ1, and ρ implied by
the OLS estimates of equation (6.94). Finding them requires the solution to
the previous exercise.

Repeat this exercise, using 0 as the starting value for all three parameters.
Does the algorithm converge as rapidly as it did before? Do you obtain the
same estimates? If not, which ones are actually the NLS estimates?

Test the restrictions that the nonlinear model imposes on the model (6.94)
by means of an asymptotic F test.

6.13 Using the estimates of the model (6.95) from the previous question, generate a
single set of simulated data c∗t for the period 1953:1 to 1996:4. The simulation
should be conditional on the pre-sample value (that is, the value for 1952:4) of
log consumption. Do this in two different ways. First, generate error terms u∗t
that follow an AR(1) process, and then generate the c∗t in terms of these u∗t .
Next, perform the simulation directly in terms of the innovations ε∗t , using the
nonlinear model obtained by imposing the appropriate restrictions on (6.94).
Show that, if you use the same realizations for the ε∗t , the simulated values
c∗t are identical. Estimate the model (6.95) using your simulated data.

6.14 The nonlinear model obtained from (6.95) has just three parameters: δ0, δ1,
and ρ. It can therefore be estimated by the method of moments using three
exogenous or predetermined variables. Estimate the model using the constant
and the three possible choices of two variables from the set of nonconstant
explanatory variables in (6.94).

6.15 Formulate a GNR, based on estimates under the null hypothesis, that allows
you to use a t test to test the restriction imposed on the model (6.94) by the
model (6.95). Compare the P value for this (asymptotic) t test with the one
for the F test of Exercise 6.12.

6.16 Starting from the unconstrained estimates provided by (6.94), obtain one-
step efficient estimates of the parameters of (6.95) using the GNR associated
with that model. Use the GNR iteratively so as to approach the true NLS
estimates more closely, until such time as the sum of squared residuals from
the GNR is within 10−8 of the one obtained by NLS estimation. Compare
the number of iterations of this GNR-based procedure with the number used
by the NLS algorithm of your software package.

6.17 Formulate a GNR, based on estimates under the alternative hypothesis, to
test the restriction imposed on the model (6.94) by the model (6.95). Your
test procedure should just require two OLS regressions.

6.18 Using 199 bootstrap samples, compute a parametric bootstrap P value for
the test statistic obtained in Exercise 6.17. Assume that the error terms are
normally distributed.

6.19 Test the hypothesis that γ0 +γ1 = 0 in (6.94). Do this in three different ways,
two of which are valid in the presence of heteroskedasticity of unknown form.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



254 Nonlinear Regression

6.20 For the nonlinear regression model defined implicitly by (6.95) and estimated
using the data in the file consumption.data, perform three different tests of the
hypothesis that all the coefficients are the same for the two subsamples 1953:1
to 1970:4 and 1971:1 to 1996:4. Firstly, use an asymptotic F test based on
nonlinear estimation of both the restricted and unrestricted models. Secondly,
use an asymptotic F test based on a GNR which requires nonlinear estimation
only under the null. Finally, use a test that is robust to heteroskedasticity of
unknown form. Hint: See regressions (6.91) and (6.92).

6.21 The original HRGNR proposed by Davidson and MacKinnon (1985a) is

ι = ÚḾ1X́2b2 + residuals, (6.96)

where Ú, X́1, and X́2 are as defined in Section 6.8, b2 is a k2--vector, and Ḿ1

is the matrix that projects orthogonally on to S⊥(X́1). The test statistic for
the null hypothesis that β2 = 0 is n minus the SSR from regression (6.96).

Use regression (6.96), where all the matrices are evaluated at restricted NLS
estimates, to retest the hypothesis of the previous question. Comment on the
relationship between the test statistic you obtain and the heteroskedasticity-
robust test statistic of the previous question that was based on regressions
(6.91) and (6.92).

6.22 Suppose that P is a projection matrix with rank r. Without loss of generality,
we can assume that P projects on to the span of the columns of an n×r matrix
Z. Suppose further that the n--vector z is distributed as IID(0, σ2I). Show

that the quadratic form z>Pz follows the χ2(r) distribution asymptotically
as n →∞. (Hint: See the proof of Theorem 4.1.)
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Chapter 7

Generalized Least Squares

and Related Topics

7.1 Introduction

If the parameters of a regression model are to be estimated efficiently by least
squares, the error terms must be uncorrelated and have the same variance.
These assumptions are needed to prove the Gauss-Markov Theorem and to
show that the nonlinear least squares estimator is asymptotically efficient; see
Sections 3.5 and 6.3. Moreover, the usual estimators of the covariance matrices
of the OLS and NLS estimators are not valid when these assumptions do not
hold, although alternative “sandwich” covariance matrix estimators that are
asymptotically valid may be available (see Sections 5.5, 6.5, and 6.8). Thus
it is clear that we need new estimation methods to handle regression models
with error terms that are heteroskedastic, serially correlated, or both. We
develop some of these methods in this chapter.

Since heteroskedasticity and serial correlation affect both linear and nonlinear
regression models in the same way, there is no harm in limiting our attention
to the simpler, linear case. We will be concerned with the model

y = Xβ + u, E(uu>) = Ω, (7.01)

where Ω, the covariance matrix of the error terms, is a positive definite n×n
matrix. If Ω is equal to σ2I, then (7.01) is just the linear regression model
(3.03), with error terms that are uncorrelated and homoskedastic. If Ω is
diagonal with nonconstant diagonal elements, then the error terms are still
uncorrelated, but they are heteroskedastic. If Ω is not diagonal, then ui

and uj are correlated whenever Ωij , the ij th element of Ω, is nonzero. In
econometrics, covariance matrices that are not diagonal are most commonly
encountered with time-series data, and the correlations are usually highest for
observations that are close in time.

In the next section, we obtain an efficient estimator for the vector β in the
model (7.01) by transforming the regression so that it satisfies the conditions of
the Gauss-Markov theorem. This efficient estimator is called the generalized
least squares, or GLS, estimator. Although it is easy to write down the GLS
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estimator, it is not always easy to compute it. In Section 7.3, we therefore
discuss ways of computing GLS estimates, including the particularly simple
case of weighted least squares. In the following section, we relax the often
implausible assumption that the matrix Ω is completely known. Section 7.5
discusses some aspects of heteroskedasticity. Sections 7.6 through 7.9 deal
with various aspects of serial correlation, including autoregressive and moving
average processes, testing for serial correlation, GLS and NLS estimation of
models with serially correlated errors, and specification tests for models with
serially correlated errors. Finally, Section 7.10 discusses error-components
models for panel data.

7.2 The GLS Estimator

In order to obtain an efficient estimator of the parameter vector β of the lin-
ear regression model (7.01), we transform the model so that the transformed
model satisfies the conditions of the Gauss-Markov theorem. Estimating the
transformed model by OLS therefore yields efficient estimates. The transfor-
mation is expressed in terms of an n×n matrix Ψ , which is usually triangular,
that satisfies the equation

Ω−1 = Ψ Ψ>. (7.02)

As we discussed in Section 3.4, such a matrix can always be found, often by
using Crout’s algorithm. Premultiplying (7.01) by Ψ> gives

Ψ>y = Ψ>Xβ + Ψ>u. (7.03)

Because the covariance matrix Ω is nonsingular, the matrix Ψ must be as
well, and so the transformed regression model (7.03) is perfectly equivalent to
the original model (7.01). The OLS estimator of β from regression (7.03) is

β̂GLS = (X>Ψ Ψ>X)−1X>Ψ Ψ>y = (X>Ω−1X)−1X>Ω−1y. (7.04)

This estimator is called the generalized least squares, or GLS, estimator of β.

It is not difficult to show that the covariance matrix of the transformed error
vector Ψ>u is simply the identity matrix:

E(Ψ>uu>Ψ) = Ψ>E(uu>)Ψ = Ψ>ΩΨ

= Ψ>(Ψ Ψ>)−1Ψ = Ψ>(Ψ>)−1Ψ−1Ψ = I.

The second equality in the second line here uses a result about the inverse of
a product of square matrices that was proved in Exercise 1.15.

Since β̂GLS is just the OLS estimator from (7.03), its covariance matrix can
be found directly from the standard formula for the OLS covariance matrix,
expression (3.28), if we replace X by Ψ>X and σ2

0 by 1:

Var(β̂GLS) = (X>Ψ Ψ>X)−1 = (X>Ω−1X)−1. (7.05)
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In order for (7.05) to be valid, the conditions of the Gauss-Markov theorem
must be satisfied. Here, this means that Ω must be the covariance matrix
of u conditional on the explanatory variables X. It is thus permissible for Ω
to depend on X, or indeed on any other exogenous variables.

The generalized least squares estimator β̂GLS can also be obtained by mini-
mizing the GLS criterion function

(y −Xβ)>Ω−1(y −Xβ), (7.06)

which is just the sum of squared residuals from the transformed regres-
sion (7.03). This criterion function can be thought of as a generalization
of the SSR function in which the squares and cross products of the residuals
from the original regression (7.01) are weighted by the inverse of the matrix Ω.
The effect of such a weighting scheme is clearest when Ω is a diagonal matrix:
In that case, each observation is simply given a weight proportional to the
inverse of the variance of its error term.

Efficiency of the GLS Estimator

The GLS estimator β̂GLS defined in (7.04) is also the solution of the set of
moment conditions

X>Ω−1(y −Xβ̂GLS) = 0. (7.07)

These moment conditions are equivalent to the first-order conditions for the
minimization of the GLS criterion function (7.06).

Since the GLS estimator is a method of moments estimator, it is interesting to
compare it with other MM estimators. A general MM estimator for the linear
regression model (7.01) is defined in terms of an n × k matrix of exogenous
variables W, where k is the dimension of β, by the equations

W>(y −Xβ) = 0. (7.08)

These equations are a special case of the moment conditions (6.10) for the
nonlinear regression model. Since there are k equations and k unknowns, we
can solve (7.08) to obtain the MM estimator

β̂W ≡ (W>X)−1W>y. (7.09)

The GLS estimator (7.04) is evidently a special case of this MM estimator,
with W = Ω−1X.

Under certain assumptions, the MM estimator (7.09) is unbiased for the model
(7.01). Suppose that the DGP is a special case of that model, with parameter
vector β0 and known covariance matrix Ω. We assume that X and W are ex-
ogenous, which implies that E(u |X, W ) = 0. This rather strong assumption,
which is analogous to the assumption (3.08), is necessary for the unbiasedness
of β̂W and makes it unnecessary to resort to asymptotic analysis. If we merely
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wanted to prove that β̂W is consistent, we could, as in Section 6.2, get away
with the much weaker assumption that E(ut |Wt) = 0.

Substituting Xβ0 + u for y in (7.09), we see that

β̂W = β0 + (W>X)−1W>u.

Therefore, the covariance matrix of β̂W is

Var(β̂W ) = E
(
(β̂W − β0)(β̂W − β0)>

)

= E
(
(W>X)−1W>uu>W (X>W )−1

)

= (W>X)−1W>ΩW (X>W )−1.

(7.10)

As we would expect, this is a sandwich covariance matrix. When W = X,
we have the OLS estimator, and Var(β̂W ) reduces to expression (5.32).

The efficiency of the GLS estimator can be verified by showing that the differ-
ence between (7.10), the covariance matrix for the MM estimator β̂W defined
in (7.09), and (7.05), the covariance matrix for the GLS estimator, is a posi-
tive semidefinite matrix. As was shown in Exercise 3.8, this difference will be
positive semidefinite if and only if the difference between the inverse of (7.05)
and the inverse of (7.10), that is, the matrix

X>Ω−1X −X>W (W>ΩW )−1W>X, (7.11)

is positive semidefinite. In exercise 7.2, readers are invited to show that this
is indeed the case.

The GLS estimator β̂GLS is typically more efficient than the more general MM
estimator β̂W for all elements of β, because it is only in very special cases
that the matrix (7.11) will have any zero diagonal elements. Because the OLS
estimator β̂ is just β̂W when W = X, we conclude that the GLS estimator
β̂GLS will in most cases be more efficient, and will never be less efficient, than
the OLS estimator β̂.

7.3 Computing GLS Estimates

At first glance, the formula (7.04) for the GLS estimator seems quite simple.
To calculate β̂GLS when Ω is known, we apparently just have to invert Ω,
form the matrix X>Ω−1X and invert it, then form the vector X>Ω−1y, and,
finally, postmultiply the inverse of X>Ω−1X by X>Ω−1y. However, GLS
estimation is not nearly as easy as it looks. The procedure just described
may work acceptably when the sample size n is small, but it rapidly becomes
computationally infeasible as n becomes large. The problem is that Ω is an
n×n matrix. When n = 1000, simply storing Ω and its inverse will typically
require 16 MB of memory; when n = 10, 000, storing both these matrices
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will require 1600 MB. Even if enough memory were available, computing GLS
estimates in this naive way would be enormously expensive.

Practical procedures for GLS estimation require us to know quite a lot about
the structure of the covariance matrix Ω and its inverse. GLS estimation will
be easy to do if the matrix Ψ , defined in (7.02), is known and has a form that
allows us to calculate Ψ>x, for any vector x, without having to store Ψ itself
in memory. If so, we can easily formulate the transformed model (7.03) and
estimate it by OLS.

There is one important difference between (7.03) and the usual linear regres-
sion model. For the latter, the variance of the error terms is unknown, while
for the former, it is known to be 1. Since we can obtain OLS estimates without
knowing the variance of the error terms, this suggests that we should not need
to know everything about Ω in order to obtain GLS estimates. Suppose that
Ω = σ2∆, where the n × n matrix ∆ is known to the investigator, but the
positive scalar σ2 is unknown. Then if we replace Ω by ∆ in the definition
(7.02) of Ψ , we can still run regression (7.03), but the error terms will now
have variance σ2 instead of variance 1. When we run this modified regression,
we will obtain the estimate

(X>∆−1X)−1X>∆−1y = (X>Ω−1X)−1X>Ω−1y = β̂GLS,

where the equality follows immediately from the fact that σ2/σ2 = 1. Thus
the GLS estimates will be the same whether we use Ω or ∆, that is, whether
or not we know σ2. However, if σ2 is known, we can use the true covariance
matrix (7.05). Otherwise, we must fall back on the estimated covariance
matrix

V̂ar(β̂GLS) = s2(X>∆−1X)−1,

where s2 is the usual OLS estimate (3.49) of the error variance from the
transformed regression.

Weighted Least Squares

It is particularly easy to obtain GLS estimates when the error terms are
heteroskedastic but uncorrelated. This implies that the matrix Ω is diagonal.
Let ω2

t denote the tth diagonal element of Ω. Then Ω−1 is a diagonal matrix
with tth diagonal element ω−2

t , and Ψ can be chosen as the diagonal matrix
with tth diagonal element ω−1

t . Thus we see that, for a typical observation,
regression (7.03) can be written as

ω−1
t yt = ω−1

t Xtβ + ω−1
t ut. (7.12)

This regression is to be estimated by OLS. The regressand and regressors are
simply the dependent and independent variables multiplied by ω−1

t , and the
variance of the error term is clearly 1.
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For obvious reasons, this special case of GLS estimation is often called
weighted least squares, or WLS. The weight given to each observation when
we run regression (7.12) is ω−1

t . Observations for which the variance of the
error term is large are given low weights, and observations for which it is
small are given high weights. In practice, if Ω = σ2∆, with ∆ known but σ2

unknown, regression (7.12) remains valid, provided we reinterpret ω2
t as the

tth diagonal element of ∆ and recognize that the variance of the error terms
is now σ2 instead of 1.

There are various ways of determining the weights used in weighted least
squares estimation. In the simplest case, either theory or preliminary testing
may suggest that E(u2

t ) is proportional to z2
t , where zt is some variable that

we observe. For example, zt might be a variable like population or national
income. In this case, zt plays the role of ωt in equation (7.12). Another
possibility is that the data we actually observe were obtained by grouping data
on different numbers of individual units. Suppose that the error terms for the
ungrouped data have constant variance, but that observation t is the average
of Nt individual observations, where Nt varies. Special cases of standard
results, discussed in Section 3.4, on the variance of a sample mean imply that
the variance of ut will then be proportional to 1/Nt. Thus, in this case, N−1/2

t

plays the role of ωt in equation (7.12).

Weighted least squares estimation can easily be performed using any program
for OLS estimation. When one is using such a procedure, it is important to
remember that all the variables in the regression, including the constant term,
must be multiplied by the same weights. Thus if, for example, the original
regression is

yt = β1 + β2Xt + ut,

the weighted regression will be

yt/ωt = β1(1/ωt) + β2(Xt/ωt) + ut/ωt.

Here the regressand is yt/ωt, the regressor that corresponds to the constant
term is 1/ωt, and the regressor that corresponds to Xt is Xt/ωt.

It is possible to report summary statistics like R2, ESS, and SSR either in
terms of the dependent variable yt or in terms of the transformed regressand
yt/ωt. However, it really only makes sense to report R2 in terms of the
transformed regressand. As we saw in Section 2.5, R2 is valid as a measure
of goodness of fit only when the residuals are orthogonal to the fitted values.
This will be true for the residuals and fitted values from OLS estimation of
the weighted regression (7.12), but it will not be true if those residuals and
fitted values are subsequently multiplied by the ωt in order to make them
comparable with the original dependent variable.
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Generalized Nonlinear Least Squares

Although, for simplicity, we have focused on the linear regression model, GLS
is also applicable to nonlinear regression models. If the vector of regression
functions were x(β) instead of Xβ, we could obtain generalized nonlinear
least squares, or GNLS, estimates by minimizing the criterion function

(
y − x(β)

)>Ω−1
(
y − x(β)

)
, (7.13)

which looks just like the GLS criterion function (7.06) for the linear regression
model, except that x(β) replaces Xβ. If we differentiate (7.13) with respect
to β and divide the result by −2, we obtain the moment conditions

X>(β)Ω−1
(
y − x(β)

)
= 0, (7.14)

where, as in Chapter 6, X(β) is the matrix of derivatives of x(β) with respect
to β. These moment conditions generalize conditions (6.27) for nonlinear least
squares in the obvious way, and they are evidently equivalent to the moment
conditions (7.07) for the linear case.

Finding estimates that solve equations (7.14) will require some sort of non-
linear minimization procedure; see Section 6.4. For this purpose, and several
others, the GNR

Ψ>
(
y − x(β)

)
= Ψ>X(β)b + residuals. (7.15)

will often be useful. Equation (7.15) is just the ordinary GNR introduced
in equation (6.52), with the regressand and regressors premultiplied by the
matrix Ψ> implicitly defined in equation (7.02). It is the GNR associated with
the nonlinear regression model

Ψ>y = Ψ>x(β) + Ψ>u, (7.16)

which is analogous to (7.03). The error terms of (7.16) have covariance matrix
proportional to the identity matrix.

Let us denote the tth column of the matrix Ψ by ψt. Then the asymptotic
theory of Chapter 6 for the nonlinear regression model and the ordinary GNR
applies also to the transformed regression model (7.16) and its associated
GNR (7.15), provided that the transformed regression functions ψt

>x(β) are
predetermined with respect to the transformed error terms ψt

>u:

E
(
ψt
>u |ψt

>x(β)
)

= 0. (7.17)

If Ψ is not a diagonal matrix, this condition is different from the condition that
the regression functions xt(β) should be predetermined with respect to the ut.
Later in this chapter, we will see that this fact has serious repercussions in
models with serial correlation.
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7.4 Feasible Generalized Least Squares

In practice, the covariance matrix Ω is often not known even up to a scalar
factor. This makes it impossible to compute GLS estimates. However, in many
cases it is reasonable to suppose that Ω, or ∆ , depends in a known way on
a vector of unknown parameters γ. If so, it may be possible to estimate γ
consistently, so as to obtain Ω(γ̂), say. Then Ψ (γ̂) can be defined as in (7.02),
and GLS estimates computed conditional on Ψ(γ̂). This type of procedure is
called feasible generalized least squares, or feasible GLS, because it is feasible
in many cases when ordinary GLS is not.

As a simple example, suppose we want to obtain feasible GLS estimates of
the linear regression model

yt = Xtβ + ut, E(u2
t ) = exp(Ztγ), (7.18)

where β and γ are, respectively, a k --vector and an l --vector of unknown para-
meters, and Xt and Zt are conformably dimensioned row vectors of observa-
tions on exogenous or predetermined variables that belong to the information
set on which we are conditioning. Some or all of the elements of Zt may well
belong to Xt. The function exp(Ztγ) is an example of a skedastic function.
In the same way that a regression function determines the conditional mean
of a random variable, a skedastic function determines its conditional variance.
The skedastic function exp(Ztγ) has the property that it is positive for any
vector γ. This is a desirable property for any skedastic function to have, since
negative estimated variances would be highly inconvenient.

In order to obtain consistent estimates of γ, usually we must first obtain
consistent estimates of the error terms in (7.18). The obvious way to do so is
to start by computing OLS estimates β̂. This allows us to calculate a vector
of OLS residuals with typical element ût. We can then run the auxiliary linear
regression

log û2
t = Ztγ + vt, (7.19)

over observations t = 1, . . . , n to find the OLS estimates γ̂. These estimates
are then used to compute

ω̂t =
(
exp(Ztγ̂)

)1/2

for all t. Finally, feasible GLS estimates of β are obtained by using ordinary
least squares to estimate regression (7.12), with the estimates ω̂t replacing the
unknown ωt. This is an example of feasible weighted least squares.

Why Feasible GLS Works

Under suitable regularity conditions, it can be shown that this type of proce-
dure yields a feasible GLS estimator β̂F that is consistent and asymptotically
equivalent to the GLS estimator β̂GLS. We will not attempt to provide a
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rigorous proof of this proposition; for that, see Amemiya (1973a). However,
we will try to provide an intuitive explanation of why it is true.

If we substitute Xβ0 +u for y into expression (7.04), the formula for the GLS
estimator, we find that

β̂GLS = β0 + (X>Ω−1X)−1X>Ω−1u.

Taking β0 over to the left-hand side, multiplying each factor by an appropriate
power of n, and taking probability limits, we see that

n1/2(β̂GLS − β0)
a=

(
plim
n→∞

1−
n

X>Ω−1X
)−1(

plim
n→∞

n−1/2X>Ω−1u
)
. (7.20)

Under standard assumptions, the first matrix on the right-hand side is a
nonstochastic k×k matrix with full rank, while the vector that postmultiplies
it is a stochastic vector which follows the multivariate normal distribution.

For the feasible GLS estimator, the analog of (7.20) is

n1/2(β̂F − β0)
a=

(
plim
n→∞

1−
n

X>Ω−1(γ̂)X
)−1(

plim
n→∞

n−1/2X>Ω−1(γ̂)u
)
. (7.21)

The right-hand sides of expressions (7.21) and (7.20) look very similar, and it
is clear that the latter will be asymptotically equivalent to the former if

plim
n→∞

1−
n

X>Ω−1(γ̂)X = plim
n→∞

1−
n

X>Ω−1X (7.22)

and
plim
n→∞

n−1/2X>Ω−1(γ̂)u = plim
n→∞

n−1/2X>Ω−1u. (7.23)

A rigorous statement and proof of the conditions under which equations (7.22)
and (7.23) hold is beyond the scope of this book. If they are to hold, it is
desirable that γ̂ should be a consistent estimator of γ, and this requires that
the OLS estimator β̂ should be consistent. For example, it can be shown
that the estimator obtained by running regression (7.19) would be consistent
if the regressand depended on ut rather than ût. Since the regressand is
actually ût, it is necessary that the residuals ût should consistently estimate
the error terms ut. This in turn requires that β̂ should be consistent for β0.
Thus, in general, we cannot expect γ̂ to be consistent if we do not start with
a consistent estimator of β.

Unfortunately, as we will see later, if Ω(γ) is not diagonal, then the OLS
estimator β̂ is, in general, not consistent whenever any element of Xt is a
lagged dependent variable. A lagged dependent variable is predetermined with
respect to error terms that are innovations, but not with respect to error terms
that are serially correlated. With GLS or feasible GLS estimation, the problem
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does not arise, because, if the model is correctly specified, the transformed
explanatory variables are predetermined with respect to the transformed error
terms, as in (7.17). When the OLS estimator is inconsistent, we will have to
obtain a consistent estimator of γ in some other way.

Whether or not feasible GLS is a desirable estimation method in practice
depends on how good an estimate of Ω can be obtained. If Ω(γ̂) is a very
good estimate, then feasible GLS will have essentially the same properties as
GLS itself, and inferences based on the GLS covariance matrix (7.05), with
Ω(γ̂) replacing Ω, should be reasonably reliable, even though they will not
be exact in finite samples. Note that condition (7.22), in addition to being
necessary for the validity of feasible GLS, guarantees that the feasible GLS
covariance matrix estimator converges as n →∞ to the true GLS covariance
matrix. On the other hand, if Ω(γ̂) is a poor estimate, feasible GLS estimates
may have quite different properties from real GLS estimates, and inferences
may be quite misleading.

It is entirely possible to iterate a feasible GLS procedure. The estimator β̂F

can be used to compute new set of residuals, which can then be used to obtain
a second-round estimate of γ, which can be used to calculate second-round
feasible GLS estimates, and so on. This procedure can either be stopped after
a predetermined number of rounds or continued until convergence is achieved
(if it ever is achieved). Iteration does not change the asymptotic distribution
of the feasible GLS estimator, but it does change its finite-sample distribution.

Another way to estimate models in which the covariance matrix of the error
terms depends on one or more unknown parameters is to use the method of
maximum likelihood. This estimation method, in which β and γ are estimated
jointly, will be discussed in Chapter 10. In many cases, an iterated feasible
GLS estimator will be the same as a maximum likelihood estimator based on
the assumption of normally distributed errors.

7.5 Heteroskedasticity

There are two situations in which the error terms are heteroskedastic but seri-
ally uncorrelated. In the first, the form of the heteroskedasticity is completely
unknown, while, in the second, the skedastic function is known except for the
values of some parameters that can be estimated consistently. Concerning the
case of heteroskedasticity of unknown form, we saw in Sections 5.5 and 6.5
how to compute asymptotically valid covariance matrix estimates for OLS
and NLS parameter estimates. The fact that these HCCMEs are sandwich
covariance matrices makes it clear that, although they are consistent under
standard regularity conditions, neither OLS nor NLS is efficient when the
error terms are heteroskedastic.

If the variances of all the error terms are known, at least up to a scalar
factor, then efficient estimates can be obtained by weighted least squares,
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which we discussed in Section 7.3. For a linear model, we need to multiply
all of the variables by ω−1

t , the inverse of the standard error of ut, and then
use ordinary least squares. The usual OLS covariance matrix will be perfectly
valid, although it is desirable to replace s2 by 1 if the variances are completely
known, since in that case s2 → 1 as n →∞. For a nonlinear model, we need
to multiply the dependent variable and the entire regression function by ω−1

t

and then use NLS. Once again, the usual NLS covariance matrix will be
asymptotically valid.

If the form of the heteroskedasticity is known, but the skedastic function
depends on unknown parameters, then we can use feasible weighted least
squares and still achieve asymptotic efficiency. An example of such a pro-
cedure was discussed in the previous section. As we have seen, it makes
no difference asymptotically whether the ωt are known or merely estimated
consistently, although it can certainly make a substantial difference in finite
samples. Asymptotically, at least, the usual OLS or NLS covariance matrix
is just as valid with feasible WLS as with WLS.

Testing for Heteroskedasticity

In some cases, it may be clear from the specification of the model that the
error terms must exhibit a particular pattern of heteroskedasticity. In many
cases, however, we may hope that the error terms are homoskedastic but be
prepared to admit the possibility that they are not. In such cases, if we
have no information on the form of the skedastic function, it may be prudent
to employ an HCCME, especially if the sample size is large. In a number of
simulation experiments, Andrews (1991) has shown that, when the error terms
are homoskedastic, use of an HCCME, rather than the usual OLS covariance
matrix, frequently has little cost. However, as we saw in Exercise 5.12, this
is not always true. In finite samples, tests and confidence intervals based on
HCCMEs will always be somewhat less reliable than ones based on the usual
OLS covariance matrix when the latter is appropriate.

If we have information on the form of the skedastic function, we might well
wish to use weighted least squares. Before doing so, it is advisable to perform a
specification test of the null hypothesis that the error terms are homoskedastic
against whatever heteroskedastic alternatives may seem reasonable. There are
many ways to perform this type of specification test. The simplest approach
that is widely applicable, and the only one that we will discuss, involves
running an artificial regression in which the regressand is the vector of squared
residuals from the model under test.

A reasonably general model of conditional heteroskedasticity is

E(u2
t |Ωt) = h(δ + Ztγ), (7.24)

where the skedastic function h(·) is a nonlinear function that can take on
only positive values, Zt is a 1 × r vector of observations on exogenous or
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predetermined variables that belong to the information set Ωt, δ is a scalar
parameter, and γ is an r --vector of parameters. Under the null hypothesis
that γ = 0, the function h(δ + Ztγ) collapses to h(δ), a constant. One
plausible specification of the skedastic function is

h(δ + Ztγ) = exp(δ + Ztγ) = exp(δ) exp(Ztγ).

Under this specification, the variance of ut reduces to the constant σ2 ≡ exp(δ)
when γ = 0. Since, as we will see, one of the advantages of tests based on
artificial regressions is that they do not depend on the functional form of h(·),
there is no need for us to consider specifications less general than (7.24).

If we define vt as the difference between u2
t and its conditional expectation,

we can rewrite equation (7.24) as

u2
t = h(δ + Ztγ) + vt, (7.25)

which has the form of a regression model. While we would not expect the error
term vt to be as well behaved as the error terms in most regression models,
since the distribution of u2

t will almost always be skewed to the right, it does
have mean zero by definition, and we will assume that it has a finite, and
constant, variance. This assumption would probably be excessively strong if γ
were nonzero, but it seems perfectly reasonable to assume that the variance
of vt is constant under the null hypothesis that γ = 0.

Suppose, to begin with, that we actually observe the ut. Since (7.25) has the
form of a regression model, we can then test the null hypothesis that γ = 0 by
using a Gauss-Newton regression. Suppose the sample mean of the u2

t is σ̃2.
Then the obvious estimate of δ under the null hypothesis is just δ̃ ≡ h−1(σ̃2).
The GNR corresponding to (7.25) is

u2
t − h(δ + Ztγ) = h′(δ + Ztγ)bδ + h′(δ + Ztγ)Ztbγ + residual,

where h′(·) denotes the first derivative of h(·), bδ is the coefficient that cor-
responds to δ, and bγ is the r --vector of coefficients that corresponds to γ.
When it is evaluated at δ = δ̃ and γ = 0, this GNR simplifies to

u2
t − σ̃2 = h′(δ̃)bδ + h′(δ̃)Ztbγ + residual. (7.26)

Since h′(δ̃) is just a constant, its presence has no effect on the explanatory
power of the regression. Moreover, since regression (7.26) includes a constant
term, both the SSR and the centered R2 will be unchanged if we do not bother
to subtract σ̃2 from the left-hand side. Thus, for the purpose of testing the
null hypothesis that γ = 0, regression (7.26) is equivalent to the regression

u2
t = bδ + Ztbγ + residual, (7.27)
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with a suitable redefinition of the artificial parameters bδ and bγ . Observe
that regression (7.27) does not depend on the functional form of h(·). Stan-
dard results for tests based on the GNR imply that the ordinary F statistic
for bγ = 0 in this regression, which is printed by most regression packages,
will be asymptotically distributed as F (r,∞) under the null hypothesis; see
Section 6.7. Another valid test statistic is n times the centered R2 from this
regression, which will be asymptotically distributed as χ2(r).

In practice, of course, we do not actually observe the ut. However, as we
noted in Sections 3.6 and 6.3, least squares residuals converge asymptotically
to the corresponding error terms when the model is correctly specified. Thus
it seems plausible that the test will still be asymptotically valid if we replace
u2

t in regression (7.27) by û2
t , the tth squared residual from least squares

estimation of the model under test. The test regression then becomes

û2
t = bδ + Ztbγ + residual. (7.28)

It can be shown that replacing u2
t by û2

t does not change the asymptotic
distribution of the F and nR2 statistics for testing the hypothesis bγ = 0; see
Davidson and MacKinnon (1993, Section 11.5). Of course, since the finite-
sample distributions of these test statistics may differ substantially from their
asymptotic ones, it is a very good idea to bootstrap them when the sample
size is small or moderate. This will be discussed further in Section 7.7.

Tests based on regression (7.28) require us to choose Zt, and there are many
ways to do so. One approach is to include functions of some of the original
regressors. As we saw in Section 5.5, there are circumstances in which the
usual OLS covariance matrix is valid even when there is heteroskedasticity.
White (1980) showed that, in a linear regression model, if E(u2

t ) is constant
conditional on the squares and cross-products of all the regressors, then there
is no need to use an HCCME. He therefore suggested that Zt should consist of
the squares and cross-products of all the regressors, because, asymptotically,
such a test will reject the null whenever heteroskedasticity causes the usual
OLS covariance matrix to be invalid. However, unless the number of regressors
is very small, this suggestion will result in r, the dimension of Zt, being very
large. As a consequence, the test is likely to have poor finite-sample properties
and low power, unless the sample size is quite large.

If economic theory does not tell us how to choose Zt, there is no simple,
mechanical rule for choosing it. The more variables that are included in Zt,
the greater is likely to be their ability to explain any observed pattern of het-
eroskedasticity, but the more degrees of freedom the test statistic will have.
Adding a variable that helps substantially to explain the u2

t will surely increase
the power of the test. However, adding variables with little explanatory power
may simply dilute test power by increasing the number of degrees of freedom
without increasing the noncentrality parameter; recall the discussion in Sec-
tion 4.7. This is most easily seen in the context of χ2 tests, where the critical
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values increase monotonically with the number of degrees of freedom. For a
test with, say, r+1 degrees of freedom to have as much power as a test with r
degrees of freedom, the noncentrality parameter for the former test must be
a certain amount larger than the noncentrality parameter for the latter.

7.6 Autoregressive and Moving Average Processes

The error terms for nearby observations may be correlated, or may appear to
be correlated, in any sort of regression model, but this phenomenon is most
commonly encountered in models estimated with time-series data, where it is
known as serial correlation or autocorrelation. In practice, what appears to
be serial correlation may instead be evidence of a misspecified model, as we
discuss in Section 7.9. In some circumstances, though, it is natural to model
the serial correlation by assuming that the error terms follow some sort of
stochastic process. Such a process defines a sequence of random variables.
Some of the stochastic processes that are commonly used to model serial
correlation will be discussed in this section.

If there is reason to believe that serial correlation may be present, the first step
is usually to test the null hypothesis that the errors are serially uncorrelated
against a plausible alternative that involves serial correlation. Several ways of
doing this will be discussed in the next section. The second step, if evidence
of serial correlation is found, is to estimate a model that accounts for it.
Estimation methods based on NLS and GLS will be discussed in Section 7.8.
The final step, which is extremely important but is often omitted, is to verify
that the model which accounts for serial correlation is compatible with the
data. Some techniques for doing so will be discussed in Section 7.9.

The AR(1) Process

One of the simplest and most commonly used stochastic processes is the first-
order autoregressive process, or AR(1) process. We have already encountered
regression models with error terms that follow such a process in Sections 6.1
and 6.6. Recall from (6.04) that the AR(1) process can be written as

ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), |ρ| < 1. (7.29)

The error at time t is equal to some fraction ρ of the error at time t− 1, with
the sign changed if ρ < 0, plus the innovation εt. Since it is assumed that εt

is independent of εs for all s 6= t, εt evidently is an innovation, according to
the definition of that term in Section 4.5.

The condition in equation (7.29) that |ρ| < 1 is called a stationarity condition,
because it is necessary for the AR(1) process to be stationary. There are
several definitions of stationarity in time series analysis. According to the
one that interests us here, a series with typical element ut is stationary if the
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unconditional expectation E(ut) and the unconditional variance Var(ut) exist
and are independent of t, and if the covariance Cov(ut, ut−j) is also, for any
given j, independent of t. This particular definition is sometimes referred to
as covariance stationarity, or wide sense stationarity.

Suppose that, although we begin to observe the series only once t = 1, the
series has been in existence for an infinite time. We can then compute the
variance of ut by substituting successively for ut−1, ut−2, ut−3, and so on in
(7.29). We see that

ut = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3 + · · · . (7.30)

Using the fact that the innovations εt, εt−1, . . . are independent, and therefore
uncorrelated, the variance of ut is seen to be

σ2
u ≡ Var(ut) = σ2

ε + ρ2σ2
ε + ρ4σ2

ε + ρ6σ2
ε + · · · = σ2

ε

1− ρ2
. (7.31)

The last expression here is indeed independent of t, as required for a stationary
process, but the last equality can be true only if the stationarity condition
|ρ| < 1 holds, since that condition is necessary for the infinite series 1 + ρ2 +
ρ4 + ρ6 + · · · to converge. In addition, if |ρ| > 1, the last expression in (7.31)
is negative, and so cannot be a variance. In most econometric applications,
where ut is the error term appended to a regression model, the stationarity
condition is a very reasonable condition to impose, since, without it, the
variance of the error terms would increase without limit as the sample size
was increased.

It is not necessary to make the rather strange assumption that ut exists for
negative values of t all the way to −∞. If we suppose that the expectation
and variance of u1 are respectively 0 and σ2

ε /(1 − ρ2), then we see at once
that E(u2) = E(ρu1) + E(ε2) = 0, and that

Var(u2) = Var(ρu1 + ε2) = σ2
ε

(
ρ2

1− ρ2
+ 1

)
=

σ2
ε

1− ρ2
= Var(u1),

where the second equality uses the fact that ε2, because it is an innovation, is
uncorrelated with u1. A simple recursive argument then shows that Var(ut) =
σ2

ε /(1− ρ2) for all t.

The argument in (7.31) shows that σ2
u ≡ σ2

ε /(1 − ρ2) is the only admissible
value for Var(ut) if the series is stationary. Consequently, if the variance
of u1 is not equal to σ2

u, then the series cannot be stationary. However, if
the stationarity condition is satisfied, Var(ut) must tend to σ2

u as t becomes
large. This can be seen by repeating the calculation in (7.31), but recognizing
that the series has only a finite number of terms. As t grows, the number of
terms becomes large, and the value of the finite sum tends to the value of the
infinite series, which is the stationary variance σ2

u.
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It is not difficult to see that, for the AR(1) process (7.29), the covariance of
ut and ut−1 is independent of t if Var(ut) = σ2

u for all t. In fact,

Cov(ut, ut−1) = E(utut−1) = E
(
(ρut−1 + εt)ut−1

)
= ρσ2

u.

In order to compute the correlation of ut and ut−1, we divide Cov(ut, ut−1)
by the square root of the product of the variances of ut and ut−1, that is,
by σ2

u. We then find that the correlation of ut and ut−1 is just ρ.

More generally, as readers are asked to demonstrate in Exercise 7.4, under
the assumption that Var(u1) = σ2

u, the covariance of ut and ut−j , and also
the covariance of ut and ut+j , is equal to ρjσ2

u, independently of t. It follows
that the AR(1) process (7.29) is indeed covariance stationary if Var(u1) = σ2

u.
The correlation between ut and ut−j is of course just ρj. Since ρj tends
to zero quite rapidly as j increases, except when |ρ| is very close to 1, this
result implies that an AR(1) process will generally exhibit small correlations
between observations that are far removed in time, but it may exhibit large
correlations between observations that are close in time. Since this is precisely
the pattern that is frequently observed in the residuals of regression models
estimated using time-series data, it is not surprising that the AR(1) process
is often used to account for serial correlation in such models.

If we combine the result (7.31) with the result proved in Exercise 7.4, we see
that, if the AR(1) process (7.29) is stationary, the covariance matrix of the
vector u can be written as

Ω(ρ) =
σ2

ε

1− ρ2




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

ρn−1 ρn−2 ρn−3 · · · 1



. (7.32)

All the ut have the same variance, σ2
u, which by (7.31) is the first factor on

the right-hand side of (7.32). It follows that the other factor, the matrix in
square brackets, which we denote ∆(ρ), is the matrix of correlations of the
error terms. We will need to make use of (7.32) in Section 7.7 when we discuss
GLS estimation of regression models with AR(1) errors.

Higher-Order Autoregressive Processes

Although the AR(1) process is very useful, it is quite restrictive. A much
more general stochastic process is the pth order autoregressive process, or
AR(p) process,

ut = ρ1ut−1 + ρ2ut−2 + . . . + ρput−p + εt, εt ∼ IID(0, σ2
ε ). (7.33)

For such a process, ut depends on up to p lagged values of itself, as well as
on εt. The AR(p) process (7.33) can also be expressed as

(
1− ρ1L− ρ2L

2 − · · · − ρpLp
)
ut = εt, εt ∼ IID(0, σ2

ε ), (7.34)
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where L denotes the lag operator. The lag operator L has the property that
when L multiplies anything with a time subscript, this subscript is lagged
one period. Thus Lut = ut−1, L2ut = ut−2, L3ut = ut−3, and so on. The
expression in parentheses in (7.34) is a polynomial in the lag operator L, with
coefficients 1 and −ρ1, . . . ,−ρp. If we make the definition

ρ(z) ≡ ρ1z + ρ2z
2 + · · ·+ ρpz

p (7.35)

for arbitrary z, we can write the AR(p) process (7.34) very compactly as
(
1− ρ(L)

)
ut = εt, εt ∼ IID(0, σ2

ε ).

This compact notation is useful, but it does have two disadvantages: The
order of the process, p, is not apparent, and there is no way of expressing any
restrictions on the ρi.

The stationarity condition for an AR(p) process may be expressed in several
ways. One of them, based on the definition (7.35), is that all the roots of the
polynomial equation

1− ρ(z) = 0 (7.36)

must lie outside the unit circle. This simply means that all of the (possibly
complex) roots of equation (7.36) must be greater than 1 in absolute value.1

This condition can lead to quite complicated restrictions on the ρi for general
AR(p) processes. The stationarity condition that |ρ1| < 1 for an AR(1) pro-
cess is evidently a consequence of this condition. In that case, (7.36) reduces
to the equation 1−ρ1z = 0, the unique root of which is z = 1/ρ1, and this root
will be greater than 1 in absolute value if and only if |ρ1| < 1. As with the
AR(1) process, the stationarity condition for an AR(p) process is necessary
but not sufficient. Stationarity requires in addition that the variances and
covariances of u1, . . . , up should be equal to their stationary values. If not, it
remains true that Var(ut) and Cov(ut, ut−j) tend to their stationary values
for large t if the stationarity condition is satisfied.

In practice, when an AR(p) process is used to model the error terms of a re-
gression model, p is usually chosen to be quite small. By far the most popular
choice is the AR(1) process, but AR(2) and AR(4) processes are also encoun-
tered reasonably frequently. AR(4) processes are particularly attractive for
quarterly data, because seasonality may cause correlation between error terms
that are four periods apart.

Moving Average Processes

Autoregressive processes are not the only way to model stationary time series.
Another type of stochastic process is the moving average, or MA, process. The
simplest of these is the first-order moving average, or MA(1), process

ut = εt + α1εt−1, εt ∼ IID(0, σ2
ε ), (7.37)

1 For a complex number a + bi, a and b real, the absolute value is (a2 + b2)1/2.
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in which the error term ut is a weighted average of two successive innovations,
εt and εt−1.

It is not difficult to calculate the covariance matrix for an MA(1) process.
From (7.37), we see that the variance of ut is

σ2
u ≡ E

(
(εt + α1εt−1)2

)
= σ2

ε + α2
1σ

2
ε = (1 + α2

1)σ
2
ε ,

the covariance of ut and ut−1 is

E
(
(εt + α1εt−1)(εt−1 + α1εt−2)

)
= α1σ

2
ε ,

and the covariance of ut and ut−j for j > 1 is 0. Therefore, the covariance
matrix of the entire vector u is

σ2
ε ∆(α1) ≡ σ2

ε




1 + α2
1 α1 0 · · · 0 0

α1 1 + α2
1 α1 · · · 0 0

...
...

...
...

...
0 0 0 · · · α1 1 + α2

1


. (7.38)

It is evident from (7.38) that there is no correlation between error terms
which are more than one period apart. Moreover, the correlation between
successive error terms varies only between −0.5 and 0.5, the smallest and
largest possible values of α1/(1 + α2

1), which are achieved when α1 = −1
and α1 = 1, respectively. Therefore, an MA(1) process cannot be appropriate
when the observed correlation between successive residuals is large in absolute
value, or when residuals that are not adjacent are correlated.

Just as AR(p) processes generalize the AR(1) process, higher-order moving
average processes generalize the MA(1) process. The qth order moving aver-
age process, or MA(q) process, may be written as

ut = εt + α1εt−1 + α2εt−2 + · · ·+ αq εt−q, εt ∼ IID(0, σ2
ε ). (7.39)

Using lag-operator notation, the process (7.39) can also be written as

ut = (1 + α1L + · · ·+ αqL
q)εt ≡

(
1 + α(L)

)
εt, εt ∼ IID(0, σ2

ε ),

where α(L) is a polynomial in the lag operator.

Autoregressive processes, moving average processes, and other related stochas-
tic processes have many important applications in both econometrics and
macroeconomics. These processes will be discussed further in Chapter 13.
Their properties have been studied extensively in the literature on time-series
methods. A classic reference is Box and Jenkins (1976), which has been up-
dated as Box, Jenkins, and Reinsel (1994). Books that are specifically aimed
at economists include Granger and Newbold (1986), Harvey (1989), Hamilton
(1994), and Hayashi (2000).
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7.7 Testing for Serial Correlation

Over the decades, an enormous amount of research has been devoted to the
subject of specification tests for serial correlation in regression models. Even
though a great many different tests have been proposed, many of them no
longer of much interest, the subject is not really very complicated. As we show
in this section, it is perfectly easy to test the null hypothesis that the error
terms of a regression model are serially uncorrelated against the alternative
that they follow an autoregressive process of any specified order. Most of the
tests that we will discuss are straightforward applications of testing procedures
which were introduced in Chapters 4 and 6.

As we saw in Section 6.1, the linear regression model

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), (7.40)

in which the error terms follow an AR(1) process, can, if we ignore the first
observation, be rewritten as the nonlinear regression model

yt = ρyt−1 + Xtβ − ρXt−1β + εt, εt ∼ IID(0, σ2
ε ). (7.41)

The null hypothesis that ρ = 0 can then be tested using any procedure that is
appropriate for testing hypotheses about the parameters of nonlinear regres-
sion models; see Section 6.7.

One approach is just to estimate the model (7.41) by NLS and calculate the
ordinary t statistic for ρ = 0. Because the model is nonlinear, and because
it includes a lagged dependent variable, this t statistic will not follow the
Student’s t distribution in finite samples, even if the error terms happen to
be normally distributed. However, under the null hypothesis, it will follow
the standard normal distribution asymptotically. The F statistic computed
using the unrestricted SSR from (7.41) and the restricted SSR from an OLS
regression of y on X for the period t = 2 to n is also asymptotically valid.
Since the model (7.41) is nonlinear, this F statistic will not be numerically
equal to the square of the t statistic in this case, although the two will be
asymptotically equal under the null hypothesis.

Tests Based on the GNR

We can avoid having to estimate the nonlinear model (7.41) by using tests
based on the Gauss-Newton regression. Let β̃ denote the vector of OLS
estimates obtained from the restricted model

y = Xβ + u, (7.42)

and let ũ denote the vector of OLS residuals from this regression. Then, as
we saw in Section 6.7, the GNR for testing the null hypothesis that ρ = 0 is

ũ = Xb + bρũ1 + residuals, (7.43)
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where ũ1 is a vector with typical element ũt−1; recall (6.84). The ordinary
t statistic for bρ = 0 in this regression will be asymptotically distributed as
N(0, 1) under the null hypothesis.

It is worth noting that the t statistic for bρ = 0 in the GNR (7.43) is identical
to the t statistic for bρ = 0 in the regression

y = Xβ + bρũ1 + residuals. (7.44)

Regression (7.44) is just the original regression model (7.42) with the lagged
OLS residuals from that model added as an additional regressor. By use of
the FWL Theorem, it can readily be seen that (7.44) has the same SSR and
the same estimate of bρ as the GNR (7.43). Therefore, a GNR-based test for
serial correlation is formally the same as a test for omitted variables, where
the omitted variables are lagged residuals from the model under test.

Although regressions (7.43) and (7.44) look perfectly simple, it is not quite
clear how they should be implemented. Both the original regression (7.42)
and the test regression (7.43) or (7.44) may be estimated either over the entire
sample period or over the shorter period from t = 2 to n. If one of them is
run over the full sample period and the other is run over the shorter period,
then ũ will not be orthogonal to X. This does not affect the asymptotic
distribution of the t statistic, but it may affect its finite-sample distribution.
The easiest approach is probably to estimate both equations over the entire
sample period. If this is done, the unobserved value of ũ0 must be replaced
by 0 before the test regression is run. As Exercise 7.14 demonstrates, running
the GNR (7.43) in different ways results in test statistics that are numerically
different, even though they all follow the same asymptotic distribution under
the null hypothesis.

Tests based on the GNR have several attractive features in addition to ease of
computation. Unlike some other tests that will be discussed shortly, they are
asymptotically valid under the relatively weak assumption that E(ut |Xt) = 0,
which allows Xt to include lagged dependent variables. Moreover, they are
easily generalized to deal with nonlinear regression models. If the original
model is nonlinear, we simply need to replace Xt in the test regression (7.43)
by Xt(β̃), where, as usual, the ith element of Xt(β̃) is the derivative of the
regression function with respect to the ith parameter, evaluated at the NLS
estimates β̃ of the model being tested; see Exercise 7.5.

Another very attractive feature of GNR-based tests is that they can readily
be used to test against higher-order autoregressive processes and even moving
average processes. For example, in order to test against an AR(p) process, we
simply need to run the test regression

ũt = Xtb + bρ1 ũt−1 + . . . + bρp ũt−p + residual (7.45)

and use an asymptotic F test of the null hypothesis that the coefficients on
all the lagged residuals are zero; see Exercise 7.6. Of course, in order to run
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regression (7.45), we will either need to drop the first p observations or replace
the unobserved lagged values of ũt with zeros.

If we wish to test against an MA(q) process, it turns out that we can proceed
exactly as if we were testing against an AR(q) process. The reason is that an
autoregressive process of any order is locally equivalent to a moving average
process of the same order. Intuitively, this means that, for large samples, an
AR(q) process and an MA(q) process look the same in the neighborhood of
the null hypothesis of no serial correlation. Since tests based on the GNR
use information on first derivatives only, it should not be surprising that the
GNRs used for testing against both alternatives turn out to be identical; see
Exercise 7.7.

The use of the GNR (7.43) for testing against AR(1) errors was first suggested
by Durbin (1970). Breusch (1978) and Godfrey (1978a, 1978b) subsequently
showed how to use GNRs to test against AR(p) and MA(q) errors. For a more
detailed treatment of these and related procedures, see Godfrey (1988).

Older, Less Widely Applicable, Tests

Readers should be warned at once that the tests we are about to discuss are
not recommended for general use. However, they still appear often enough in
current literature and in current econometrics software for it to be necessary
that practicing econometricians be familiar with them. Besides, studying
them reveals some interesting aspects of models with serially correlated errors.

To begin with, consider the simple regression

ũt = bρũt−1 + residual, t = 1, . . . , n, (7.46)

where, as above, the ũt are the residuals from regression (7.42). In order to
be able to keep the first observation, we assume that ũ0 = 0. This regression
yields an estimate of bρ, which we will call ρ̃ because it is an estimate of ρ
based on the residuals under the null. Explicitly, we have

ρ̃ =
n−1

∑n
t=1 ũtũt−1

n−1
∑n

t=1 ũ2
t−1

, (7.47)

where we have divided numerator and denominator by n for the purposes
of the asymptotic analysis to follow. It turns out that, if the explanatory
variables X in (7.42) are all exogenous, then ρ̃ is a consistent estimator of the
parameter ρ in model (7.40), or, equivalently, (7.41), where it is not assumed
that ρ = 0. This slightly surprising result depends crucially on the assumption
of exogenous regressors. If one of the variables in X is a lagged dependent
variable, the result no longer holds.

Asymptotically, it makes no difference if we replace the sum in the denomina-
tor by n−1

∑n
t=1 ũ2

t , because we are effectively including just one more term,
namely, ũ2

n. Then we can write the denominator of (7.47) as n−1u>MXu,
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where, as usual, the orthogonal projection matrix MX projects on to S⊥(X).
If the vector u is generated by a stationary AR(1) process, it can be shown
that a law of large numbers can be applied to both the numerator and the
denominator of (7.47). Thus, asymptotically, both numerator and denomina-
tor can be replaced by their expectations. For a stationary AR(1) process,
the covariance matrix Ω of u is given by (7.32), and so we can compute the
expectation of the denominator as follows, making use of the invariance under
cyclic permutations of the trace of a matrix product that was first employed
in Section 2.6:

E
(
n−1u>MXu

)
= E

(
n−1Tr(MXuu>)

)

= n−1Tr
(
MXE(uu>)

)

= n−1Tr(MXΩ)

= n−1Tr(Ω)− n−1Tr(PXΩ). (7.48)

Note that, in the passage to the second line, we made use of the exogeneity
of X, and hence of MX . From (7.32), we see that n−1Tr(Ω) = σ2

ε /(1− ρ2).
For the second term in (7.48), we have that

Tr(PXΩ) = Tr
(
X(X>X)−1X>Ω

)
= Tr

(
(n−1X>X)−1n−1X>ΩX

)
,

where again we have made use of the invariance of the trace under cyclic per-
mutations. Our usual regularity conditions tell us that both n−1X>X and
n−1X>ΩX tend to finite limits as n → ∞. Thus, on account of the extra
factor of n−1 in front of the second term in (7.48), that term vanishes asymp-
totically. It follows that the limit of the denominator of (7.47) is σ2

ε /(1− ρ2).

The expectation of the numerator can be handled similarly. It is convenient to
introduce an n× n matrix L that can be thought of as the matrix expression
of the lag operator L. All the elements of L are zero except those on the
diagonal just beneath the principal diagonal, which are all equal to 1:

L =




0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0




. (7.49)

It is easy to see that (Lu)t = ut−1 for t = 2, . . . , n, and (Lu)1 = 0. With this
definition, the numerator of (7.47) becomes n−1ũ>Lũ = n−1u>MXLMXu,
of which the expectation, by a similar argument to that used above, is

n−1E
(
Tr(MXLMXuu>)

)
= n−1Tr(MXLMXΩ). (7.50)
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When MX is expressed as I−PX, the leading term in this expression is just
Tr(LΩ). By arguments similar to those used above, which readers are invited
to make explicit in Exercise 7.8, the other terms, which contain at least one
factor of PX, all vanish asymptotically.

It can be seen from (7.49) that premultiplying Ω by L pushes all the rows of
Ω down by one row, leaving the first row with nothing but zeros, and with
the last row of Ω falling off the end and being lost. The trace of LΩ is thus
just the sum of the elements of the first diagonal of Ω above the principal
diagonal. From (7.32), this sum is equal to n−1(n − 1)σ2

ε ρ/(1 − ρ2), which
is asymptotically equivalent to ρσ2

ε /(1− ρ2). Combining this result with the
earlier one for the denominator, we see that the limit of ρ̃ as n →∞ is just ρ.
This proves our result.

Besides providing a consistent estimator of ρ, regression (7.46) also yields
a t statistic for the hypothesis that bρ = 0. This t statistic provides what is
probably the simplest imaginable test for first-order serial correlation, and it is
asymptotically valid if the explanatory variables X are exogenous. The easiest
way to see this is to show that the t statistic from (7.46) is asymptotically
equivalent to the t statistic for bρ = 0 in the GNR (7.43). If ũ1 ≡ Lũ, the t
statistic from the GNR (7.43) may be written as

tGNR =
n−1/2 ũ>MX ũ1

s(n−1ũ1
>MX ũ1)1/2

, (7.51)

and the t statistic from the simple regression (7.46) may be written as

tSR =
n−1/2 ũ>ũ1

ś(n−1ũ1
>ũ1)1/2

, (7.52)

where s and ś are the square roots of the estimated error variances for (7.43)
and (7.46), respectively. Of course, the factors of n in the numerators and
denominators of (7.51) and (7.52) cancel out and may be ignored for any
purpose except asymptotic analysis.

Since ũ = MX ũ, it is clear that both statistics have the same numerator.
Moreover, s and ś are asymptotically equal under the null hypothesis that
ρ = 0, because (7.43) and (7.46) have the same regressand, and all the para-
meters tend to zero as n →∞ for both regressions. Therefore, the residuals,
and so also the SSRs for the two regressions, tend to the same limits. Under
the assumption that X is exogenous, the second factors in the denomina-
tors can be shown to be asymptotically equal by the same sort of reasoning
used above: Both have limits of σu. Thus we conclude that, when the null
hypothesis is true, the test statistics tGNR and tSR are asymptotically equal.

It is probably useful at this point to reissue a warning about the test based
on the simple regression (7.46). It is valid only if X is exogenous. If X
contains variables that are merely predetermined rather than exogenous, such
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as lagged dependent variables, then the test based on the simple regression is
not valid, although the test based on the GNR remains so. The presence of
the projection matrix MX in the second factor in the denominator of (7.51)
means that this factor is always smaller than the corresponding factor in the
denominator of (7.52). If X is exogenous, this does not matter asymptotically,
as we have just seen. However, when X contains lagged dependent variables,
it turns out that the limits as n → ∞ of tGNR and tSR, under the null that
ρ = 0, are the same random variable, except for a deterministic factor that is
strictly greater for tGNR than for tSR. Consequently, at least in large samples,
tSR rejects the null too infrequently. Readers are asked to investigate this
matter for a special case in Exercise 7.13.

The Durbin-Watson Statistic

The best-known test statistic for serial correlation is the d statistic proposed
by Durbin and Watson (1950, 1951) and commonly referred to as the DW
statistic. Like the estimate ρ̃ defined in (7.47), the DW statistic is completely
determined by the least squares residuals of the model under test:

d =

∑n
t=2(ũt − ũt−1)2∑n

t=1 ũ2
t

=
n−1ũ>ũ + n−1ũ1

>ũ1

n−1ũ>ũ
− n−1ũ2

1 + 2n−1ũ>ũ1

n−1ũ>ũ
.

(7.53)

If we ignore the difference between n−1ũ>ũ and n−1ũ1
>ũ1, and the term

n−1ũ2
1, both of which clearly tend to zero as n →∞, it can be seen that the

first term in the second line of (7.53) tends to 2 and the second term tends
to −2ρ̃. Therefore, d is asymptotically equal to 2 − 2ρ̃. Thus, in samples of
reasonable size, a value of d ∼= 2 corresponds to the absence of serial correlation
in the residuals, while values of d less than 2 correspond to ρ̃ > 0, and values
greater than 2 correspond to ρ̃ < 0. Just like the t statistic tSR based on the
simple regression (7.46), and for essentially the same reason, the DW statistic
is not valid when there are lagged dependent variables among the regressors.

In Section 3.6, we saw that, for a correctly specified linear regression model,
the residual vector ũ is equal to MXu. Therefore, even if the error terms are
serially independent, the residuals will generally display a certain amount of
serial correlation. This implies that the finite-sample distributions of all the
test statistics we have discussed, including that of the DW statistic, depend
on X. In practice, applied workers generally make use of the fact that the
critical values for d are known to fall between two bounding values, dL and
dU, which depend only on the sample size, n, the number of regressors, k, and
whether or not there is a constant term. These bounding critical values have
been tabulated for many values of n and k ; see Savin and White (1977).

The standard tables, which are deliberately not printed in this book, contain
bounds for one-tailed DW tests of the null hypothesis that ρ ≤ 0 against
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the alternative that ρ > 0. An investigator will reject the null hypothesis if
d < dL, fail to reject if d > dU , and come to no conclusion if dL < d < dU.
For example, for a test at the .05 level when n = 100 and k = 8, including the
constant term, the bounding critical values are dL = 1.528 and dU = 1.826.
Therefore, one would reject the null hypothesis if d < 1.528 and not reject it
if d > 1.826. Notice that, even for this not particularly small sample size, the
indeterminate region between 1.528 and 1.826 is quite large.

It should by now be evident that the Durbin-Watson statistic, despite its
popularity, is not very satisfactory. Using it with standard tables is relatively
cumbersome and often yields inconclusive results. Moreover, the standard
tables only allow us to perform one-tailed tests against the alternative that
ρ > 0. Since the alternative that ρ < 0 is often of interest as well, the inability
to perform a two-tailed test, or a one-tailed test against this alternative, using
standard tables is a serious limitation. Although exact P values for both one-
tailed and two-tailed tests, which depend on the X matrix, can be obtained
by using appropriate software, many computer programs do not offer this
capability. In addition, the DW statistic is not valid when the regressors
include lagged dependent variables, and it cannot easily be generalized to test
for higher-order processes. Happily, the development of simulation-based tests
has made the DW statistic obsolete.

Monte Carlo Tests for Serial Correlation

We discussed simulation-based tests, including Monte Carlo tests and boot-
strap tests, at some length in Section 4.6. The techniques discussed there can
readily be applied to the problem of testing for serial correlation in linear and
nonlinear regression models.

All the test statistics we have discussed, namely, tGNR, tSR, and d, are pivotal
under the null hypothesis that ρ = 0 when the assumptions of the classical
normal linear model are satisfied. This makes it possible to perform Monte
Carlo tests that are exact in finite samples. Pivotalness follows from two
properties shared by all these statistics. The first of these is that they depend
only on the residuals ũt obtained by estimation under the null hypothesis.
The distribution of the residuals depends on the exogenous explanatory vari-
ables X, but these are given and the same for all DGPs in a classical normal
linear model. The distribution does not depend on the parameter vector β of
the regression function, because, if y = Xβ + u, then MXy = MXu what-
ever the value of the vector β.

The second property that all the statistics we have considered share is scale
invariance. By this, we mean that multiplying the dependent variable by
an arbitrary scalar λ leaves the statistic unchanged. In a linear regression
model, multiplying the dependent variable by λ causes the residuals to be
multiplied by λ. But the statistics defined in (7.51), (7.52), and (7.53) are
clearly unchanged if all the residuals are multiplied by the same constant, and
so these statistics are scale invariant. Since the residuals ũ are equal to MXu,
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it follows that multiplying σ by an arbitrary λ multiplies the residuals by λ.
Consequently, the distributions of the statistics are independent of σ2 as well
as of β. This implies that, for the classical normal linear model, all three
statistics are pivotal.

We now outline how to perform Monte Carlo tests for serial correlation in the
context of the classical normal linear model. Let us call the test statistic we
are using τ and its realized value τ̂ . If we want to test for AR(1) errors, the
best choice for the statistic τ is the t statistic tGNR from the GNR (7.43), but
it could also be the DW statistic, the t statistic tSR from the simple regression
(7.46), or even ρ̃ itself. If we want to test for AR(p) errors, the best choice
for τ would be the F statistic from the GNR (7.45), but it could also be the
F statistic from a regression of ũt on ũt−1 through ũt−p.

The first step, evidently, is to compute τ̂ . The next step is to generate B sets
of simulated residuals and use each of them to compute a simulated test
statistic, say τ∗j , for j = 1, . . . , B. Because the parameters do not matter,
we can simply draw B vectors u∗j from the N(0, I) distribution and regress
each of them on X to generate the simulated residuals MXu∗j , which are then
used to compute τ∗j . This can be done very inexpensively. The final step is to
calculate an estimated P value for whatever null hypothesis is of interest. For
example, for a two-tailed test of the null hypothesis that ρ = 0, the P value
would be the proportion of the τ∗j that exceed τ̂ in absolute value:

p̂∗(τ̂) =
1
B

B∑

j=1

I
(|τ∗j | > |τ̂ |). (7.54)

We would then reject the null hypothesis at level α if p̂∗(τ̂) < α. As we saw
in Section 4.6, such a test will be exact whenever B is chosen so that α(B +1)
is an integer.

Bootstrap Tests for Serial Correlation

Whenever the regression function is nonlinear or contains lagged dependent
variables, or whenever the distribution of the error terms is unknown, none of
the standard test statistics for serial correlation will be pivotal. Nevertheless,
it is still possible to obtain very accurate inferences, even in quite small sam-
ples, by using bootstrap tests. The procedure is essentially the one described
in the previous subsection. We still generate B simulated test statistics and
use them to compute a P value according to (7.54) or its analog for a one-
tailed test. For best results, the test statistic used should be asymptotically
valid for the model that is being tested. In particular, we should avoid d and
tSR whenever there are lagged dependent variables.

It is extremely important to generate the bootstrap samples in such a way that
they are compatible with the model under test. Ways of generating bootstrap
samples for regression models were discussed in Section 4.6. If the model
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is nonlinear or includes lagged dependent variables, we need to generate y∗j
rather than just u∗j . For this, we need estimates of the parameters of the
regression function. If the model includes lagged dependent variables, we
must generate the bootstrap samples recursively, as in (4.66). Unless we are
going to assume that the error terms are normally distributed, we should
draw the bootstrap error terms from the EDF of the residuals for the model
under test, after they have been appropriately rescaled. Recall that there is
more than one way to do this. The simplest approach is just to multiply each
residual by (n/(n− k))1/2, as in expression (4.68).

We strongly recommend the use of simulation-based tests for serial correla-
tion, rather than asymptotic tests. Monte Carlo tests are appropriate only
in the context of the classical normal linear model, but bootstrap tests are
appropriate under much weaker assumptions. It is generally a good idea to
test for both AR(1) errors and higher-order autoregressive errors, at least
fourth-order in the case of quarterly data, and at least twelfth-order in the
case of monthly data.

Heteroskedasticity-Robust Tests

The tests for serial correlation that we have discussed are based on the assump-
tion that the error terms are homoskedastic. When this crucial assumption is
violated, the asymptotic distributions of all the test statistics will differ from
whatever distributions they are supposed to follow asymptotically. However,
as we saw in Section 6.8, it is not difficult to modify GNR-based tests to make
them robust to heteroskedasticity of unknown form.

Suppose we wish to test the linear regression model (7.42), in which the error
terms are serially uncorrelated, against the alternative that the error terms
follow an AR(p) process. Under the assumption of homoskedasticity, we could
simply run the GNR (7.45) and use an asymptotic F test. If we let Z denote
an n × p matrix with typical element Zti = ũt−i, where any missing lagged
residuals are replaced by zeros, this GNR can be written as

ũ = Xb + Zc + residuals. (7.55)

The ordinary F test for c = 0 in (7.55) is not robust to heteroskedasticity, but
a heteroskedasticity-robust test can easily be computed using the procedure
described in Section 6.8. This procedure works as follows:

1. Create the matrices ŨX and ŨZ by multiplying the tth row of X and
the tth row of Z by ũt for all t.

2. Create the matrices Ũ−1X and Ũ−1Z by dividing the tth row of X and
the tth row of Z by ũt for all t.

3. Regress each of the columns of Ũ−1X and Ũ−1Z on ŨX and ŨZ jointly.
Save the resulting matrices of fitted values and call them X̄ and Z̄,
respectively.
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4. Regress ι, a vector of 1s, on X̄. Retain the sum of squared residuals from
this regression, and call it RSSR. Then regress ι on X̄ and Z̄ jointly,
retain the sum of squared residuals, and call it USSR.

5. Compute the test statistic RSSR − USSR, which will be asymptotically
distributed as χ2(p) under the null hypothesis.

Although this heteroskedasticity-robust test is asymptotically valid, it will
not be exact in finite samples. In principle, it should be possible to obtain
more reliable results by using bootstrap P values instead of asymptotic ones.
However, none of the methods of generating bootstrap samples for regression
models that we have discussed so far (see Section 4.6) is appropriate for a
model with heteroskedastic error terms. Several methods exist, but they are
beyond the scope of this book, and there currently exists no method that we
can recommend with complete confidence; see Davison and Hinkley (1997)
and Horowitz (2001).

Other Tests Based on OLS Residuals

The tests for serial correlation that we have discussed in this section are by
no means the only scale-invariant tests based on least squares residuals that
are regularly encountered in econometrics. Many tests for heteroskedasticity,
skewness, kurtosis, and other deviations from the NID assumption also have
these properties. For example, consider tests for heteroskedasticity based
on regression (7.28). Nothing in that regression depends on y except for the
squared residuals that constitute the regressand. Further, it is clear that both
the F statistic for the hypothesis that bγ = 0 and n times the centered R2 are
scale invariant. Therefore, for a classical normal linear model with X and Z
fixed, these statistics are pivotal. Consequently, Monte Carlo tests based on
them, in which we draw the error terms from the N(0, 1) distribution, are
exact in finite samples.

When the normality assumption is not appropriate, we have two options. If
some other distribution that is known up to a scale parameter is thought to be
appropriate, we can draw the error terms from it instead of from the N(0, 1)
distribution. If the assumed distribution really is the true one, we obtain
an exact test. Alternatively, we can perform a bootstrap test in which the
error terms are obtained by resampling the rescaled residuals. This is also
appropriate when there are lagged dependent variables among the regressors.
The bootstrap test will not be exact, but it should still perform well in finite
samples no matter how the error terms actually happen to be distributed.

7.8 Estimating Models with Autoregressive Errors

If we decide that the error terms of a regression model are serially correlated,
either on the basis of theoretical considerations or as a result of specification
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testing, and we are confident that the regression function itself is not misspec-
ified, the next step is to estimate a modified model which takes account of
the serial correlation. The simplest such model is (7.40), which is the original
regression model modified by having the error terms follow an AR(1) process.
For ease of reference, we rewrite (7.40) here:

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ). (7.56)

In many cases, as we will discuss in the next section, the best approach may
actually be to specify a more complicated, dynamic, model for which the
error terms are not serially correlated. In this section, however, we ignore this
important issue and simply discuss how to estimate the model (7.56) under
various assumptions.

Estimation by Feasible GLS

We have seen that, if the ut follow a stationary AR(1) process, that is, if
|ρ| < 1 and Var(u1) = σ2

u = σ2
ε /(1 − ρ2), then the covariance matrix of

the entire vector u is the n × n matrix Ω(ρ) given in (7.32). In order to
compute GLS estimates, we need to find a matrix Ψ with the property that
Ψ Ψ>= Ω−1. This property will be satisfied whenever the covariance matrix
of Ψ>u is proportional to the identity matrix, which it will be if we choose Ψ
in such a way that Ψ>u = ε.

For t = 2, . . . , n, we know from (7.29) that

εt = ut − ρut−1, (7.57)

and this allows us to construct the rows of Ψ> except for the first row. The
tth row must have 1 in the tth position, −ρ in the (t − 1)st position, and 0s
everywhere else.

For the first row of Ψ>, however, we need to be a little more careful. Under
the hypothesis of stationarity of u, the variance of u1 is σ2

u. Further, since
the εt are innovations, u1 is uncorrelated with the εt for t = 2, . . . , n. Thus,
if we define ε1 by the formula

ε1 = (σε/σu)u1 = (1− ρ2)1/2u1, (7.58)

it can be seen that the n--vector ε, with the first component ε1 defined
by (7.58) and the remaining components εt defined by (7.57), has a covar-
iance matrix equal to σ2

ε I.

Putting together (7.57) and (7.58), we conclude that Ψ> should be defined
as an n× n matrix with all diagonal elements equal to 1 except for the first,
which is equal to (1 − ρ2)1/2, and all other elements equal to 0 except for
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the ones on the diagonal immediately below the principal diagonal, which are
equal to −ρ . In terms of Ψ rather than of Ψ>, we have:

Ψ(ρ) =




(1− ρ2)1/2 −ρ 0 · · · 0 0
0 1 −ρ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −ρ

0 0 0 · · · 0 1




, (7.59)

where the notation Ψ(ρ) emphasizes that the matrix depends on the usually
unknown parameter ρ . The calculations needed to show that the matrix Ψ Ψ>

is proportional to the inverse of Ω, as given by (7.32), are outlined in Exercises
7.9 and 7.10.

It is essential that the AR(1) parameter ρ either be known or be consistently
estimable. If we know ρ, we can obtain GLS estimates. If we do not know it
but can estimate it consistently, we can obtain feasible GLS estimates. For the
case in which the explanatory variables are all exogenous, the simplest way
to estimate ρ consistently is to use the estimator ρ̃ from regression (7.46),
defined in (7.47). Whatever estimate of ρ is used must satisfy the stationarity
condition that |ρ| < 1, without which the process would not be stationary, and
the transformation for the first observation would involve taking the square
root of a negative number. Unfortunately, the estimator ρ̃ is not guaranteed
to satisfy the stationarity condition, although, in practice, it is very likely to
do so when the model is correctly specified, even if the true value of ρ is quite
large in absolute value.

Whether ρ is known or estimated, the next step in GLS estimation is to form
the vector Ψ>y and the matrix Ψ>X. It is easy to do this without having to
store the n × n matrix Ψ in computer memory. The first element of Ψ>y is
(1 − ρ2)1/2y1, and the remaining elements have the form yt − ρyt−1. Each
column of Ψ>X has precisely the same form as Ψ>y and can be calculated in
precisely the same way.

The final step is to run an OLS regression of Ψ>y on Ψ>X. This regression
yields the (feasible) GLS estimates

β̂GLS = (X>Ψ Ψ>X)−1X>Ψ Ψ>y (7.60)

along with the estimated covariance matrix

V̂ar(β̂GLS) = s2(X>Ψ Ψ>X)−1, (7.61)

where s2 is the usual OLS estimate of the variance of the error terms. Of
course, the estimator (7.60) is formally identical to (7.04), since (7.60) is valid
for any Ψ matrix.
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Estimation by Nonlinear Least Squares

If we ignore the first observation, then (7.56), the linear regression model
with AR(1) errors, can be written as the nonlinear regression model (7.41).
Since the model (7.41) is written in such a way that the error terms are inno-
vations, NLS estimation is consistent whether the explanatory variables are
exogenous or merely predetermined. NLS estimates can be obtained by any
standard nonlinear minimization algorithm of the type that was discussed
in Section 6.4, where the function to be minimized is SSR(β, ρ), the sum of
squared residuals for observations 2 through n. Such procedures generally
work well, and they can also be used for models with higher-order autoregres-
sive errors; see Exercise 7.17. However, some care must be taken to ensure
that the algorithm does not terminate at a local minimum which is not also
the global minimum. There is a serious risk of this, especially for models with
lagged dependent variables among the regressors.2

Whether or not there are lagged dependent variables in Xt, a valid estimated
covariance matrix can always be obtained by running the GNR (6.67), which
corresponds to the model (7.41), with all variables evaluated at the NLS
estimates β̂ and ρ̂. This GNR is

yt − ρ̂yt−1 −Xtβ̂ + ρ̂Xt−1β̂

= (Xt − ρ̂Xt−1)b + bρ(yt−1 −Xt−1β̂) + residual.
(7.62)

Since the OLS estimates of b and bρ will be equal to zero, the sum of squared
residuals from regression (7.62) is simply SSR(β̂, ρ̂). Therefore, the estimated
covariance matrix V̂ar(β̂, ρ̂) is

SSR(β̂, ρ̂)
n− k − 2

[
(X − ρ̂X1)>(X − ρ̂X1) (X − ρ̂X1)>û1

û1
>(X − ρ̂X1) û1

>û1

]−1

, (7.63)

where the n×k matrix X1 has typical row Xt−1, and the vector û1 has typical
element yt−1 −Xt−1β̂. This is the estimated covariance matrix that a good
nonlinear regression package should print. The first factor in (7.63) is just
the NLS estimate of σ2

ε . The SSR is divided by n − k − 2 because there are
k+1 parameters in the regression function, one of which is ρ, and we estimate
using only n− 1 observations.

It is instructive to compute the limit in probability of the matrix (7.63) when
n →∞ for the case in which all the explanatory variables in Xt are exogenous.
The parameters are all estimated consistently by NLS, and so the estimates
converge to the true parameter values β0, ρ0, and σ2

ε as n →∞. In computing
the limit of the denominator of the simple estimator ρ̃ given by (7.47), we saw
that n−1û1

>û1 tends to σ2
ε /(1 − ρ2

0). The limit of n−1(X − ρ̂X1)>û1 is the

2 See Dufour, Gaudry, and Liem (1980) and Betancourt and Kelejian (1981).
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same as that of n−1(X−ρ0X1)>û1 by the consistency of ρ̂. In addition, given
the exogeneity of X, and thus also of X1, it follows at once from the law of
large numbers that n−1(X − ρ0X1)>û1 tends to zero. Thus, in this special
case, the asymptotic covariance matrix of n1/2(β̂ − β0) and n1/2(ρ̂− ρ0) is

σ2
ε

[
plim 1−

n
(X − ρ0X1)>(X − ρ0X1) 0

0> σ2
ε /(1− ρ2

0)

]−1

. (7.64)

Because the two off-diagonal blocks are zero, this matrix is said to be block-
diagonal. As can be verified immediately, the inverse of such a matrix is itself a
block-diagonal matrix, of which each block is the inverse of the corresponding
block of the original matrix. Thus the asymptotic covariance matrix (7.64) is
the limit as n →∞ of

[
nσ2

ε

(
(X − ρ0X1)>(X − ρ0X1)

)−1
0

0> 1− ρ2
0

]
. (7.65)

The block-diagonality of (7.65), which holds only if everything in Xt is exo-
genous, implies that the covariance matrix of β̂ can be estimated using the
GNR (7.62) without the regressor corresponding to ρ. The estimated covar-
iance matrix will just be (7.63) without its last row and column. It is easy to
see that n times this matrix tends to the top left block of (7.65) as n →∞.

The lower right-hand element of the matrix (7.65) tells us that, when all the
regressors are exogenous, the asymptotic variance of n1/2(ρ̂ − ρ0) is 1 − ρ2

0.
A sensible estimate of the variance is therefore V̂ar(ρ̂) = n−1(1− ρ̂2). It may
seem surprising that the variance of ρ̂ does not depend on σ2

ε . However, we saw
earlier that, with exogenous regressors, the consistent estimator ρ̃ of (7.47) is
scale invariant. The same is true, asymptotically, of the NLS estimator ρ̂, and
so its asymptotic variance is independent of σ2

ε .

Comparison of GLS and NLS

The most obvious difference between estimation by GLS and estimation by
NLS is the treatment of the first observation: GLS takes it into account, and
NLS does not. This difference reflects the fact that the two procedures are
estimating slightly different models. With NLS, all that is required is the
stationarity condition that |ρ| < 1. With GLS, on the other hand, the error
process must actually be stationary. Recall that the stationarity condition is
necessary but not sufficient for stationarity of the process. A sufficient con-
dition requires, in addition, that Var(u1) = σ2

u = σ2
ε /(1− ρ2), the stationary

value of the variance. Thus, if we suspect that Var(u1) 6= σ2
u, GLS estimation

is not appropriate, because the matrix (7.32) is not the covariance matrix of
the error terms.

The second major difference between estimation by GLS and estimation by
NLS is that the former method estimates β conditional on ρ, while the latter
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method estimates β and ρ jointly. Except in the unlikely case in which the
value of ρ is known, the first step in GLS is to estimate ρ consistently. If
the explanatory variables in the matrix X are all exogenous, there are several
procedures that will deliver a consistent estimate of ρ. The weak point is
that the estimate is not unique, and in general it is not optimal. One possible
solution to this difficulty is to iterate the feasible GLS procedure, as suggested
at the end of Section 7.4, and we will consider this solution below.

A more fundamental weakness of GLS arises whenever one or more of the
explanatory variables are lagged dependent variables, or, more generally, pre-
determined but not exogenous variables. Even with a consistent estimator
of ρ, one of the conditions for the applicability of feasible GLS, condition
(7.23), does not hold when any elements of Xt are not exogenous. It is not
simple to see directly just why this is so, but, in the next paragraph, we will
obtain indirect evidence by showing that feasible GLS gives an invalid estima-
tor of the covariance matrix. Fortunately, there is not much temptation to use
GLS if the non-exogenous explanatory variables are lagged variables, because
lagged variables are not observed for the first observation. In all events, the
conclusion is simple: We should avoid GLS if the explanatory variables are
not all exogenous.

The GLS covariance matrix estimator is (7.61), which is obtained by regressing
Ψ>(ρ̂)y on Ψ>(ρ̂)X for some consistent estimate ρ̂. Since Ψ>(ρ)u = ε by
construction, s2 is an estimator of σ2

ε . Moreover, the first observation has no
impact asymptotically. Therefore, the limit as n →∞ of n times (7.61) is the
matrix

σ2
ε plim

n→∞

(
1−
n
(X − ρX1)>(X − ρX1)

)−1

. (7.66)

In contrast, the NLS covariance matrix estimator is (7.63). With exogenous
regressors, n times (7.63) tends to the same limit as (7.65), of which the top
left block is just (7.66). But when the regressors are not all exogenous, the
argument that the off-diagonal blocks of n times (7.63) tend to zero no longer
works, and, in fact, the limits of these blocks are in general nonzero. When a
matrix that is not block-diagonal is inverted, the top left block of the inverse
is not the same as the inverse of the top left block of the original matrix;
see Exercise 7.11. In fact, as readers are asked to show in Exercise 7.12, the
top left block of the inverse is greater by a positive semidefinite matrix than
the inverse of the top left block. Consequently, the GLS covariance matrix
estimator underestimates the true covariance matrix asymptotically.

NLS has only one major weak point, which is that it does not take account of
the first observation. Of course, this is really an advantage if the error process
satisfies the stationarity condition without actually being stationary, or if
some of the explanatory variables are not exogenous. But with a stationary
error process and exogenous regressors, we wish to retain the information in
the first observation, because it appears that retaining the first observation
can sometimes lead to a noticeable efficiency gain in finite samples. The
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reason is that the transformation for observation 1 is quite different from the
transformation for all the other observations. In consequence, the transformed
first observation may well be a high leverage point; see Section 2.6. This
is particularly likely to happen if one or more of the regressors is strongly
trending. If so, dropping the first observation can mean throwing away a lot
of information. See Davidson and MacKinnon (1993, Section 10.6) for a much
fuller discussion and references.

Efficient Estimation by GLS or NLS

When the error process is stationary and all the regressors are exogenous, it
is possible to obtain an estimator with the best features of GLS and NLS by
modifying NLS so that it makes use of the information in the first observation
and therefore yields an efficient estimator. The first-order conditions (7.07)
for GLS estimation of the model (7.56) can be written as

X>Ψ Ψ>(y −Xβ) = 0.

Using (7.59) for Ψ , we see that these conditions are
n∑

t=2

(Xt − ρXt−1)>
(
yt −Xtβ − ρ(yt−1 −Xt−1β)

)

+ (1− ρ2)X1
>(y1 −X1β) = 0.

(7.67)

With NLS estimation, the first-order conditions that define the NLS estimator
are the conditions that the regressors in the GNR (7.62) should be orthogonal
to the regressand:

n∑
t=2

(Xt − ρXt−1)>
(
yt −Xtβ − ρ(yt−1 −Xt−1β)

)
= 0, and

n∑
t=2

(yt−1 −Xt−1β)
(
yt −Xtβ − ρ(yt−1 −Xt−1β)

)
= 0.

(7.68)

For given β, the second of the NLS conditions can be solved for ρ. If we write
u(β) = y − Xβ, and u1(β) = Lu(β), where L is the matrix lag operator
defined in (7.49), we see that

ρ(β) =
u>(β)u1(β)
u1
>(β)u1(β)

. (7.69)

This formula is similar to the estimator (7.47), except that β may take on
any value instead of just β̃.

In Section 7.4, we mentioned the possibility of using an iterated feasible GLS
procedure. We can now see precisely how such a procedure would work for
this model. In the first step, we obtain the OLS parameter vector β̃. In the
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second step, the formula (7.69) is evaluated at β = β̃ to obtain ρ̃, a consistent
estimate of ρ. In the third step, we use (7.60) to obtain the feasible GLS
estimate β̂F, thus solving the first-order conditions (7.67). At this point, we
go back to the second step and insert β̂F into (7.69) for an updated estimate
of ρ, which we subsequently use in (7.60) for the next estimate of β. The
iterative procedure may then be continued until convergence, assuming that
it does converge. If so, then the final estimates, which we will call β̂ and ρ̂,
must satisfy the two equations

n∑
t=2

(Xt − ρ̂Xt−1)>
(
yt −Xtβ̂ − ρ̂(yt−1 −Xt−1β̂)

)

+ (1− ρ̂2)X1
>(y1 −X1β̂) = 0, and

n∑
t=2

(yt−1 −Xt−1β̂)
(
yt −Xtβ̂ − ρ̂(yt−1 −Xt−1β̂)

)
= 0.

(7.70)

These conditions are identical to conditions (7.68), except for the term in the
first condition coming from the first observation. Thus we see that iterated
feasible GLS, without the first observation, is identical to NLS. If the first
observation is retained, then iterated feasible GLS improves on NLS by taking
account of the first observation.

We can also modify NLS to take account of the first observation. To do this,
we extend the GNR (6.67), which is given by (7.62) when evaluated at β̂
and ρ̂, by giving it a first observation. For this observation, the regressand
is (1 − ρ2)1/2(y1 −X1β), the regressors corresponding to β are given by the
row vector (1 − ρ2)1/2X1, and the regressor corresponding to ρ is zero. The
conditions that the extended regressand should be orthogonal to the extended
regressors are exactly the conditions (7.70).

Two asymptotically equivalent procedures can be based on this extended
GNR. Both begin by obtaining the NLS estimates of β and ρ without the
first observation and evaluating the extended GNR at those preliminary NLS
estimates. The OLS estimates from the extended GNR can be thought of as
a vector of corrections to the initial estimates. For the first procedure, the
final estimator is a one-step estimator, defined as in (6.59) by adding the cor-
rections to the preliminary estimates. For the second procedure, this process
is iterated. The variables of the extended GNR are evaluated at the one-step
estimates, another set of corrections is obtained, these are added to the pre-
vious estimates, and iteration continues until the corrections are negligible. If
this happens, the iterated estimates once more satisfy the conditions (7.70),
and so they are equal to the iterated GLS estimates.

Although the iterated feasible GLS estimator generally performs well, it does
have one weakness: There is no way to ensure that |ρ̂| < 1. In the unlikely
but not impossible event that |ρ̂| ≥ 1, the estimated covariance matrix (7.61)
will not be valid, the second term in (7.67) will be negative, and the first
observation will therefore tend to have a perverse effect on the estimates of β.
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In Chapter 10, we will see that maximum likelihood estimation shares the
good properties of iterated feasible GLS while also ensuring that the estimate
of ρ satisfies the stationarity condition.

The iterated feasible GLS procedure considered above has much in common
with a very old, but still widely-used, algorithm for estimating models with
stationary AR(1) errors. This algorithm, which is called iterated Cochrane-
Orcutt, was originally proposed in a classic paper by Cochrane and Orcutt
(1949). It works in exactly the same way as iterated feasible GLS, except that
it omits the first observation. The properties of this algorithm are explored
in Exercises 7.18-19.

7.9 Specification Testing and Serial Correlation

Models estimated using time-series data frequently appear to have error terms
which are serially correlated. However, as we will see, many types of misspec-
ification can create the appearance of serial correlation. Therefore, finding
evidence of serial correlation does not mean that it is necessarily appropriate
to model the error terms as following some sort of autoregressive or moving
average process. If the regression function of the original model is misspecified
in any way, then a model like (7.41), which has been modified to incorporate
AR(1) errors, will probably also be misspecified. It is therefore extremely
important to test the specification of any regression model that has been
“corrected” for serial correlation.

The Appearance of Serial Correlation

There are several types of misspecification of the regression function that can
incorrectly create the appearance of serial correlation. For instance, it may be
that the true regression function is nonlinear in one or more of the regressors
while the estimated one is linear. In that case, depending on how the data
are ordered, the residuals from a linear regression model may well appear to
be serially correlated. All that is needed is for the independent variables on
which the dependent variable depends nonlinearly to be correlated with time.

As a concrete example, consider Figure 7.1, which shows 200 hypothetical
observations on a regressor x and a regressand y, together with an OLS re-
gression line and the fitted values from the true, nonlinear model. For the
linear model, the residuals are always negative for the smallest and largest
values of x, and they tend to be positive for the intermediate values. As a
consequence, they appear to be serially correlated: If the observations are
ordered according to the value of x, the estimate ρ̃ obtained by regressing the
OLS residuals on themselves lagged once is 0.298, and the t statistic for ρ = 0
is 4.462. Thus, if the data are ordered in this way, there appears to be strong
evidence of serial correlation. But this evidence is misleading. Either plotting
the residuals against x or including x2 as an additional regressor will quickly
reveal the true nature of the misspecification.
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Figure 7.1 The appearance of serial correlation

The true regression function in this example contains a term in x2. Since
the linear model omits this term, it is underspecified, in the sense discussed
in Section 3.7. Any sort of underspecification has the potential to create
the appearance of serial correlation if the incorrectly omitted variables are
themselves serially correlated. Therefore, whenever we find evidence of serial
correlation, our first reaction should be to think carefully about the specifica-
tion of the regression function. Perhaps one or more additional independent
variables should be included among the regressors. Perhaps powers, cross-
products, or lags of some of the existing independent variables need to be
included. Or perhaps the regression function should be made dynamic by
including one or more lags of the dependent variable.

Common Factor Restrictions

It is very common for linear regression models to suffer from dynamic mis-
specification. The simplest example is failing to include a lagged dependent
variable among the regressors. More generally, dynamic misspecification oc-
curs whenever the regression function incorrectly omits lags of the dependent
variable or of one or more independent variables. A somewhat mechanical,
but often very effective, way to detect dynamic misspecification in models
with autoregressive errors is to test the common factor restrictions that are
implicit in such models. The idea of testing these restrictions was initially pro-
posed by Sargan (1964) and further developed by Hendry and Mizon (1978),
Mizon and Hendry (1980), Sargan (1980), and others. See Hendry (1995) for
a detailed treatment of dynamic specification in linear regression models.
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The easiest way to understand what common factor restrictions are and how
they got their name is to consider a linear regression model with errors that
apparently follow an AR(1) process. In this case, there are really three nested
models. The first of these is the original linear regression model with error
terms that are assumed to be serially independent:

H0 : yt = Xtβ + ut, ut ∼ IID(0, σ2). (7.71)

The second is the nonlinear model (7.41) that is obtained when the error
terms in (7.71) follow the AR(1) process (7.29). Although we have already
discussed this model extensively, we rewrite it here for convenience:

H1 : yt = ρyt−1 + Xtβ − ρXt−1β + εt, εt ∼ IID(0, σ2
ε ). (7.72)

The third is the linear model that can be obtained by relaxing the nonlinear
restrictions which are implicit in (7.72). This model is

H2 : yt = ρyt−1 + Xtβ + Xt−1γ + εt, εt ∼ IID(0, σ2
ε ), (7.73)

where γ, like β, is a k --vector. When all three of these models are estimated
over the same sample period, the original model, H0, is a special case of the
nonlinear model H1, which in turn is a special case of the unrestricted linear
model H2. Of course, in order to estimate H1 and H2, we need to drop the
first observation.

The nonlinear model H1 imposes on H2 the restrictions that γ = −ρβ. The
reason for calling these restrictions “common factor” restrictions can easily be
seen if we rewrite both models using lag operator notation (see Section 7.6).
When we do this, H1 becomes

(1− ρL)yt = (1− ρL)Xtβ + εt, (7.74)

and H2 becomes
(1− ρL)yt = Xtβ + LXtγ + εt. (7.75)

It is evident that in (7.74), but not in (7.75), the common factor 1 − ρL
appears on both sides of the equation. This is where the term “common
factor restrictions” comes from.

How Many Common Factor Restrictions Are There?

There is one feature of common factor restrictions that can be tricky: It is
often not obvious just how many restrictions there are. For the case of testing
H1 against H2, there appear to be k restrictions. The null hypothesis, H1,
has k + 1 parameters (the k --vector β and the scalar ρ), and the alternative
hypothesis, H2, seems to have 2k + 1 parameters (the k --vectors β and γ,
and the scalar ρ). Therefore, the number of restrictions appears to be the
difference between 2k + 1 and k + 1, which is k. In fact, however, the number
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of restrictions will almost always be less than k, because, except in rare cases,
the number of identifiable parameters in H2 will be less than 2k + 1. We now
show why this is the case.

Let us consider a simple example. Suppose the regression function for the
original model H0 is

β1 + β2zt + β3t + β4zt−1 + β5yt−1, (7.76)

where zt is the tth observation on some independent variable, and t is the tth

observation on a linear time trend. The regression function for the unrestricted
model H2 that corresponds to (7.76) is

β1 + β2zt + β3t + β4zt−1 + β5yt−1 + ρyt−1

+ γ1 + γ2zt−1 + γ3(t− 1) + γ4zt−2 + γ5yt−2.
(7.77)

At first glance, this regression function appears to have 11 parameters. How-
ever, it really has only 7, because 4 of them are unidentifiable. We cannot
estimate both β1 and γ1, because there cannot be two constant terms. Like-
wise, we cannot estimate both β4 and γ2, because there cannot be two coef-
ficients of zt−1, and we cannot estimate both β5 and ρ, because there cannot
be two coefficients of yt−1. We also cannot estimate γ3 along with β3 and
the constant, because t, t − 1, and the constant term are perfectly collinear,
since t − (t − 1) = 1. The version of H2 that can actually be estimated has
regression function

δ1 + β2zt + δ2t + δ3zt−1 + δ4yt−1 + γ4zt−2 + γ5yt−2, (7.78)

where

δ1 = β1 + γ1 − γ3, δ2 = β3 + γ3, δ3 = β4 + γ2, and δ4 = ρ + β5.

We see that (7.78) has only 7 identifiable parameters: β2, γ4, γ5, δ1, δ2,
δ3, and δ4, instead of the 11 parameters, many of them not identifiable, of
expression (7.77). In contrast, the regression function for the restricted model,
H1, has 6 parameters: β1 through β5, and ρ. Therefore, in this example, H1

imposes just one restriction on H2.

The phenomenon illustrated in this example arises, to a greater or lesser
extent, for almost every model with common factor restrictions. Constant
terms, many types of dummy variables (notably, seasonal dummies and time
trends), lagged dependent variables, and independent variables that appear
with more than one time subscript always lead to an unrestricted model H2

with some parameters that cannot be identified. The number of identifiable
parameters will almost always be less than 2k + 1, and, in consequence, the
number of restrictions will almost always be less than k.
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Testing Common Factor Restrictions

Any of the techniques discussed in Sections 6.7 and 6.8 can be used to test
common factor restrictions. In practice, if the error terms are believed to be
homoskedastic, the easiest approach is probably to use an asymptotic F test.
For the example of equations (7.72) and (7.73), the restricted sum of squared
residuals, RSSR, is obtained from NLS estimation of H1, and the unrestricted
one, USSR, is obtained from OLS estimation of H2. Then the test statistic is

(RSSR−USSR)/r

USSR/(n− k − r − 2)
a∼ F (r, n− k − r − 2), (7.79)

where r is the number of restrictions. The number of degrees of freedom in
the denominator reflects the fact that the unrestricted model has k + r + 1
parameters and is estimated using the n− 1 observations for t = 2, . . . , n.

Of course, since both the null and alternative models involve lagged dependent
variables, the test statistic (7.79) does not actually follow the F (r, n−k−r−2)
distribution in finite samples. Therefore, when the sample size is not large,
it is a good idea to bootstrap the test. As Davidson and MacKinnon (1999a)
have shown, highly reliable P values may be obtained in this way, even for
very small sample sizes. The bootstrap samples are generated recursively from
the restricted model, H1, using the NLS estimates of that model. As with
bootstrap tests for serial correlation, the bootstrap error terms may either be
drawn from the normal distribution or obtained by resampling the rescaled
NLS residuals; see the discussion in Sections 4.6 and 7.7.

Although this bootstrap procedure is conceptually simple, it may be quite
expensive to compute, because the nonlinear model (7.72) must be estimated
for every bootstrap sample. It may therefore be more attractive to follow the
idea in Exercises 6.17 and 6.18 by bootstrapping a GNR-based test statistic
that requires no nonlinear estimation at all. For the H1 model (7.72), the
corresponding GNR is (7.62), but now we wish to evaluate it, not at the NLS
estimates from (7.72), but at the estimates β́ and ρ́ obtained by estimating
the linear H2 model (7.73). These estimates are root-n consistent under H2,
and so also under H1, which is contained in H2 as a special case. Thus the
GNR for H1, which was introduced in Section 6.6, is

yt − ρ́yt−1 −Xtβ́ + ρ́Xt−1β́

= (Xt − ρ́Xt−1)b + bρ(yt−1 −Xt−1β́) + residual.
(7.80)

Since H2 is a linear model, the regressors of the GNR that corresponds to it
are just the regressors in (7.73), and the regressand is the same as in (7.80);
recall Section 6.5. However, in order to construct the GNR-based F statistic,
which has exactly the same form as (7.79), it is not necessary to run the
GNR for model H2 at all. Since the regressand of (7.80) is just the dependent
variable of (7.73) plus a linear combination of the independent variables, the

Copyright c© 1999, Russell Davidson and James G. MacKinnon



7.9 Specification Testing and Serial Correlation 295

residuals from (7.73) are the same as those from its GNR. Consequently, we
can evaluate (7.79) with USSR from (7.73) and RSSR from (7.80).

In Section 6.6, we gave the impression that β́ and ρ́ are simply the OLS es-
timates of β and ρ from (7.73). When X contains neither lagged dependent
variables nor multiple lags of any independent variable, this is true. How-
ever, when these conditions are not satisfied, the parameters of (7.73) do not
correspond directly to those of (7.72), and this makes it a little more compli-
cated to obtain consistent estimates of these parameters. Just how to do so
was discussed in Section 10.3 of Davidson and MacKinnon (1993) and will be
illustrated in Exercise 7.16.

Tests of Nested Hypotheses

The models H0, H1, and H2 defined in (7.71) through (7.73) form a sequence
of nested hypotheses. Such sequences occur quite frequently in many branches
of econometrics, and they have an interesting property. Asymptotically, the F
statistic for testing H0 against H1 is independent of the F statistic for testing
H1 against H2. This is true whether we actually estimate H1 or merely use
a GNR, and it is also true for other test statistics that are asymptotically
equivalent to F statistics. In fact, the result is true for any sequence of nested
hypotheses where the test statistics follow χ2 distributions asymptotically; see
Davidson and MacKinnon (1993, Supplement) and Exercise 7.21.

The independence property of tests in a nested sequence has a useful impli-
cation. Suppose that τij denotes the statistic for testing Hi, which has ki

parameters, against Hj , which has kj > ki parameters, where i = 0, 1 and
j = 1, 2, with j > i. Then, if each of the test statistics is asymptotically
distributed as χ2(kj − ki),

τ02
a= τ01 + τ12. (7.81)

This result implies that, at least asymptotically, each of the component test
statistics is bounded above by the test statistic for H0 against H2.

The result (7.81) is not particularly useful in the case of (7.71), (7.72), and
(7.73), where all of the test statistics are quite easy to compute. However, it
can sometimes come in handy. Suppose, for example, that it is easy to test
H0 against H2 but hard to test H0 against H1. Then, if τ02 is small enough
that it would not cause us to reject H0 against H1 when compared with the
appropriate critical value for the χ2(k1 − k0) distribution, we do not need to
bother calculating τ01, because it will be even smaller.
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7.10 Models for Panel Data

Many data sets are measured across two dimensions. One dimension is time,
and the other is usually called the cross-section dimension. For example, we
may have 40 annual observations on 25 countries, or 100 quarterly observations
on 50 states, or 6 annual observations on 3100 individuals. Data of this type
are often referred to as panel data. It is likely that the error terms for a model
using panel data will display certain types of dependence, which should be
taken into account when we estimate such a model.

For simplicity, we restrict our attention to the linear regression model

yit = Xitβ + uit, i = 1, . . . , m, t = 1, . . . , T, (7.82)

where Xit is a 1 × k vector of observations on explanatory variables. There
are assumed to be m cross-sectional units and T time periods, for a total
of n = mT observations. If each uit has expectation zero conditional on its
corresponding Xit, we can estimate equation (7.82) by ordinary least squares.
But the OLS estimator is not efficient if the uit are not IID, and the IID
assumption is rarely realistic with panel data.

If certain shocks affect the same cross-sectional unit at all points in time,
the error terms uit and uis will be correlated for all t 6= s. Similarly, if
certain shocks affect all cross-sectional units at the same point in time, the
error terms uit and ujt will be correlated for all i 6= j. In consequence, if
we use OLS, not only will we obtain inefficient parameter estimates, but we
will also obtain an inconsistent estimate of their covariance matrix; recall
the discussion of Section 5.5. If the expectation of uit conditional on Xit is
not zero, then, for reasons mentioned in Section 7.4, OLS will actually yield
inconsistent parameter estimates. This will happen, for example, when Xit

contains lagged dependent variables and the uit are serially correlated.

Error-Components Models

The two most popular approaches for dealing with panel data are both based
on what are called error-components models. The idea is to specify the error
term uit in (7.82) as consisting of two or three separate shocks, each of which
is assumed to be independent of the others. A fairly general specification is

uit = et + vi + εit. (7.83)

Here et affects all observations for time period t, vi affects all observations
for cross-sectional unit i, and εit affects only observation it. It is gener-
ally assumed that the et are independent across t, the vi are independent
across i, and the εit are independent across all i and t. Classic papers on error-
components models include Balestra and Nerlove (1966), Fuller and Battese
(1974), and Mundlak (1978).
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In order to estimate an error-components model, the et and vi can be regarded
as being either fixed or random, in a sense that we will explain. If the et

and vi are thought of as fixed effects, then they are treated as parameters
to be estimated. It turns out that they can then be estimated by OLS using
dummy variables. If they are thought of as random effects, then we must
figure out the covariance matrix of the uit as functions of the variances of
the et, vi, and εit, and use feasible GLS. Each of these approaches can be
appropriate in some circumstances but may be inappropriate in others.

In what follows, we simplify the error-components specification (7.83) by elim-
inating the et. Thus we assume that there are shocks specific to each cross-
sectional unit, or group, but no time-specific shocks. This assumption is often
made in empirical work, and it considerably simplifies the algebra. In addi-
tion, we assume that the Xit are exogenous. The presence of lagged dependent
variables in panel data models raises a number of issues that we do not wish
to discuss here; see Arellano and Bond (1991) and Arellano and Bover (1995).

Fixed-Effects Estimation

The model that underlies fixed-effects estimation, based on equation (7.82)
and the simplified version of equation (7.83), can be written as follows:

y = Xβ + Dη + ε, E(εε>) = σ2
ε In, (7.84)

where y and ε are n--vectors with typical elements yit and εit, respectively,
and D is an n × m matrix of dummy variables, constructed in such a way
that the element in the row corresponding to observation it, for i = 1, . . . , m
and t = 1, . . . , T, and column j, for j = 1, . . . , m, is equal to 1 if i = j
and equal to 0 otherwise.3 The m--vector η has typical element vi, and so
it follows that the n--vector Dη has element vi in the row corresponding to
observation it. Note that there is exactly one element of D equal to 1 in each
row, which implies that the n--vector ι with each element equal to 1 is a linear
combination of the columns of D. Consequently, in order to avoid collinear
regressors, the matrix X should not contain a constant.

The vector η plays the role of a parameter vector, and it is in this sense that
the vi are called fixed effects. They could in fact be random; the essential thing
is that they must be independent of the error terms εit. They may, however,
be correlated with the explanatory variables in the matrix X. Whether or
not this is the case, the model (7.84), interpreted conditionally on η, implies
that the moment conditions

E
(
Xit

>(yit −Xitβ − vi)
)

= 0 and E(yit −Xitβ − vi) = 0

3 If the data are ordered so that all the observations in the first group appear
first, followed by all the observations in the second group, and so on, the row
corresponding to observation it will be row T (i− 1) + t.
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are satisfied. The fixed-effects estimator, which is the OLS estimator of β
in equation (7.84), is based on these moment conditions. Because of the way
it is computed, this estimator is sometimes called the least squares dummy
variables, or LSDV, estimator.

Let MD denote the projection matrix I−D(D>D)−1D>. Then, by the FWL
Theorem, we know that the OLS estimator of β in (7.84) can be obtained
by regressing MDy, the residuals from a regression of y on D, on MDX,
the matrix of residuals from regressing each of the columns of X on D. The
fixed-effects estimator is therefore

β̂FE = (X>MDX)−1X>MDy. (7.85)

For any n--vector x, let x̄i denote the group mean T−1
∑T

t=1 xit. Then it
is easy to check that element it of the vector MDx is equal to xit − x̄i,
the deviation from the group mean. Since all the variables in (7.85) are
premultiplied by MD, it follows that this estimator makes use only of the
information in the variation around the mean for each of the m groups. For
this reason, it is often called the within-groups estimator. Because X and D
are exogenous, this estimator is unbiased. Moreover, since the conditions of
the Gauss-Markov theorem are satisfied, we can conclude that the fixed-effects
estimator is BLUE.

The fixed-effects estimator (7.85) has advantages and disadvantages. It is
easy to compute, even when m is very large, because it is never necessary to
make direct use of the n × n matrix MD. All that is needed is to compute
the m group means for each variable. In addition, the estimates η̂ of the fixed
effects may well be of interest in their own right. However, the estimator
cannot be used with an explanatory variable that takes on the same value for
all the observations in each group, because such a column would be collinear
with the columns of D. More generally, if the explanatory variables in the
matrix X are well explained by the dummy variables in D, the parameter
vector β will not be estimated at all precisely. It is of course possible to
estimate a constant, simply by taking the mean of the estimates η̂.

Random-Effects Estimation

It is possible to improve on the efficiency of the fixed-effects estimator if one
is willing to impose restrictions on the model (7.84). For that model, all we
require is that the matrix X of explanatory variables and the cross-sectional
errors vi should both be independent of the εit, but this does not rule out
the possibility of a correlation between them. The restrictions imposed for
random-effects estimation require that the vi should be independent of X.

This independence assumption is by no means always plausible. For example,
in a panel of observations on individual workers, an observed variable like
the hourly wage rate may well be correlated with an unobserved variable

Copyright c© 1999, Russell Davidson and James G. MacKinnon



7.10 Models for Panel Data 299

like ability, which implicitly enters into the individual-specific error term vi.
However, if the assumption is satisfied, it follows that

E(uit |X) = E(vi + εit |X) = 0, (7.86)

since vi and εit are then both independent of X. Condition (7.86) is precisely
the condition which ensures that OLS estimation of the model (7.82), rather
than the model (7.84), will yield unbiased estimates.

However, OLS estimation of equation (7.82) is not in general efficient, because
the uit are not IID. We can calculate the covariance matrix of the uit if we
assume that the vi are IID random variables with mean zero and variance σ2

v .
This assumption accounts for the term “random” effects. From (7.83), setting
et = 0 and using the assumption that the shocks are independent, it is easy
to see that

Var(uit) = σ2
v + σ2

ε ,

Cov(uituis) = σ2
v , and

Cov(uitujs) = 0 for all i 6= j.

These define the elements of the n × n covariance matrix Ω, which we need
for GLS estimation. If the data are ordered by the cross-sectional units in
m blocks of T observations each, this matrix has the form

Ω =




Σ 0 · · · 0
0 Σ · · · 0
...

...
...

0 0 · · · Σ


,

where
Σ ≡ σ2

ε IT + σ2
v ιι> (7.87)

is the T × T matrix with σ2
v + σ2

ε in every position on the principal diagonal
and σ2

v everywhere else. Here ι is a T --vector of 1s.

To obtain GLS estimates of β, we would need to know the values of σ2
ε and σ2

v ,
or, at least, the value of their ratio, since, as we saw in Section 7.3, GLS
estimation requires only that Ω should be specified up to a factor. To obtain
feasible GLS estimates, we need a consistent estimate of that ratio. However,
the reader may have noticed that we have made no use in this section so far
of asymptotic concepts, such as that of a consistent estimate. This is because,
in order to obtain definite results, we must specify what happens to both m
and T when n = mT tends to infinity.

Consider the fixed-effects model (7.84). If m remains fixed as T →∞, then the
number of regressors also remains fixed as n →∞, and standard asymptotic
theory applies. But if T remains fixed as m → ∞, then the number of
parameters to be estimated tends to infinity, and the m--vector η̂ of estimates
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of the fixed effects is not consistent, because each estimated effect depends
only on T observations. It is nevertheless possible to show that, even in this
case, β̂ remains consistent; see Exercise 7.23.

It is always possible to find a consistent estimate of σ2
ε by estimating the

model (7.84), because, no matter how m and T may behave as n →∞, there
are n residuals. Thus, if we divide the SSR from (7.84) by n−m− k, we will
obtain an unbiased and consistent estimate of σ2

ε , since the error terms for this
model are just the εit. But the natural estimator of σ2

v , namely, the sample
variance of the m elements of η̂, is not consistent unless m →∞. In practice,
therefore, it is probably undesirable to use the random-effects estimator when
m is small.

There is another way to estimate σ2
v consistently if m → ∞ as n → ∞. One

starts by running the regression

PDy = PDXβ + residuals, (7.88)

where PD ≡ I−MD, so as to obtain the between-groups estimator

β̂BG = (X>PDX)−1X>PDy. (7.89)

Although regression (7.88) appears to have n = mT observations, it really has
only m, because the regressand and all the regressors are the same for every
observation in each group. The estimator bears the name “between-groups”
because it uses only the variation among the group means. If m < k, note
that the estimator (7.89) does not even exist, since the matrix X>PDX can
have rank at most m.

If the restrictions of the random-effects model are not satisfied, the estimator
β̂BG, if it exists, is in general biased and inconsistent. To see this, observe
that unbiasedness and consistency require that the moment conditions

E
(
(PDX)>it(yit −Xitβ)

)
= 0 (7.90)

should hold, where (PDX)it is the row labelled it of the n× k matrix PDX.
Since yit − Xitβ = vi + εit, and since εit is independent of everything else
in condition (7.90), this condition is equivalent to the absence of correlation
between the vi and the elements of the matrix X.

As readers are asked to show in Exercise 7.24, the variance of the error terms
in regression (7.88) is σ2

v + σ2
ε /T. Therefore, if we run it as a regression

with m observations, divide the SSR by m− k, and then subtract 1/T times
our estimate of σ2

ε , we will obtain a consistent, but not necessarily positive,
estimate of σ2

v . If the estimate turns out to be negative, we probably should
not be estimating an error-components model.

As we will see in the next paragraph, both the OLS estimator of model (7.82)
and the feasible GLS estimator of the random-effects model are matrix-
weighted averages of the within-groups, or fixed-effects, estimator (7.85) and
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the between-groups estimator (7.89). For the former to be consistent, we need
only the assumptions of the fixed-effects model, but for the latter we need in
addition the restrictions of the random-effects model. Thus both the OLS
estimator of (7.82) and the feasible GLS estimator are consistent only if the
between-groups estimator is consistent.

For the OLS estimator of (7.82),

β̂ = (X>X)−1X>y

= (X>X)−1(X>MDy + X>PDy)

= (X>X)−1X>MDXβ̂FE + (X>X)−1X>PDXβ̂BG,

which shows that the estimator is indeed a matrix-weighted average of β̂FE

and β̂BG. As readers are asked to show in Exercise 7.25, the GLS estimator
of the random-effects model can be obtained by running the OLS regression

(I− λPD)y = (I− λPD)Xβ + residuals, (7.91)

where the scalar λ is defined by

λ ≡ 1−
(

Tσ2
v

σ2
ε

+ 1
)−1/2

. (7.92)

For feasible GLS, we need to replace σ2
ε and σ2

v by the consistent estimators
that were discussed earlier in this subsection.

Equation (7.91) implies that the random-effects GLS estimator is a matrix-
weighted average of the OLS estimator for equation (7.82) and the between-
groups estimator, and thus also of β̂FE and β̂BG. The GLS estimator is
identical to the OLS estimator when λ = 0, which happens when σ2

v = 0,
and equal to the within-groups, or fixed-effects, estimator when λ = 1, which
happens when σ2

ε = 0. Except in these two special cases, the GLS estimator
is more efficient, in the context of the random-effects model, than either the
OLS estimator or the fixed-effects estimator. But equation (7.91) also implies
that the random-effects estimator is inconsistent whenever the between-groups
estimator is inconsistent.

Unbalanced Panels

Up to this point, we have assumed that we are dealing with a balanced panel,
that is, a data set for which there are precisely T observations for each cross-
sectional unit. However, it is quite common to encounter unbalanced panels,
for which the number of observations is not the same for every cross-sectional
unit. The fixed-effects estimator can be used with unbalanced panels without
any real change. It is still based on regression (7.84), and the only change is
that the matrix of dummy variables D will no longer have the same number
of 1s in each column. The random-effects estimator can also be used with
unbalanced panels, but it needs to be modified slightly.
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Let us assume that the data are grouped by cross-sectional units. Let Ti

denote the number of observations associated with unit i, and partition y and
X as follows:

y = [y1
.... y2

.... · · · .... ym], X = [X1
.... X2

.... · · · .... Xm],

where yi and Xi denote the Ti rows of y and X that correspond to the ith

unit. By analogy with (7.92), make the definition

λi ≡ 1−
(

Tiσ
2
v

σ2
ε

+ 1
)−1/2

.

Let ȳi denote a Ti--vector, each element of which is the mean of the elements
of yi. Similarly, let X̄i denote a Ti × k matrix, each element of which is the
mean of the corresponding column of Xi. Then the random-effects estimator
can be computed by running the linear regression




y1 − λ1ȳ1

y2 − λ2ȳ2
...

ym − λmȳm


 =




X1 − λ1X̄1

X2 − λ2X̄2
...

Xm − λmX̄m


β + residuals. (7.93)

Note that PDy is just [ȳ1
.... ȳ2

.... · · · .... ȳm], and similarly for PDX. Therefore,
since all the λi are equal to λ when the panel is balanced, regression (7.93)
reduces to regression (7.91) in that special case.

Group Effects and Individual Data

Error-components models are also relevant for regressions on cross-section
data with no time dimension, but where the observations naturally belong to
groups. For example, each observation might correspond to a household living
in a certain state, and each group would then consist of all the households
living in a particular state. In such cases, it is plausible that the error terms for
individuals within the same group are correlated. An error-components model
that combines a group-specific error vi, with variance σ2

v , and an individual-
specific error εit, with variance σ2

ε , is a natural way to model this sort of
correlation. Such a model implies that the correlation between the error terms
for observations in the same group is ρ ≡ σ2

v/(σ2
v + σ2

ε ) and the correlation
between the error terms for observations in different groups is zero.

A fixed-effects model is often unsatisfactory for dealing with group effects. In
many cases, some explanatory variables are observed only at the group level,
so that they have no within-group variation. Such variables are perfectly
collinear with the group dummies used in estimating a fixed-effects model,
making it impossible to identify the parameters associated with them. On the
other hand, they are identified by a random-effects model for an unbalanced
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panel, because this model takes account of between-group variation. This
can be seen from equation (7.93): Collinearity of the transformed group-level
variables on the right-hand side occurs only if the explanatory variables are
collinear to begin with. The estimates of σ2

ε and σ2
v needed to compute the

λi may be obtained in various ways, some of which were discussed in the
subsection on random-effects estimation. As we remarked there, these work
well only if the number of groups m is not too small.

If it is thought that the within-group correlation ρ is small, it may be tempting
to ignore it and use OLS estimation, with the usual OLS covariance matrix.
This can be a serious mistake unless ρ is actually zero, since the OLS stan-
dard errors can be drastic underestimates even with small values of ρ, as
Kloek (1981) and Moulton (1986, 1990) have pointed out. The problem is
particularly severe when the number of observations per group is large, as
readers are asked to show in Exercise 7.26. The correlation of the error terms
within groups means that the effective sample size is much smaller than the
actual sample size when there are many observations per group.

In this section, we have presented just a few of the most basic ideas concerning
estimation with panel data. Of course, GLS is not the only method that can
be used to estimate models for data of this type. The generalized method of
moments (Chapter 9) and the method of maximum likelihood (Chapter 10)
are also commonly used. For more detailed treatments of various models
for panel data, see, among others, Chamberlain (1984), Hsiao (1986, 2001),
Baltagi (1995), Greene (2000, Chapter 14), Ruud (2000, Chapter 24), Arellano
and Honoré (2001), and Wooldridge (2001).

7.11 Final Remarks

Several important concepts were introduced in the first four sections of this
chapter, which dealt with the basic theory of generalized least squares esti-
mation. The concept of an efficient MM estimator, which we introduced in
Section 7.2, will be encountered again in the context of generalized instru-
mental variables estimation (Chapter 8) and generalized method of moments
estimation (Chapter 9). The key idea of feasible GLS estimation, namely, that
an unknown covariance matrix may in some circumstances be replaced by a
consistent estimate of that matrix without changing the asymptotic properties
of the resulting estimator, will also be encountered again in Chapter 9.

The remainder of the chapter dealt with the treatment of heteroskedasticity
and serial correlation in linear regression models, and with error-components
models for panel data. Although this material is of considerable practical
importance, most of the techniques we discussed, although sometimes compli-
cated in detail, are conceptually straightforward applications of feasible GLS
estimation, NLS estimation, and methods for testing hypotheses that were
introduced in Chapters 4 and 6.
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7.12 Exercises

7.1 Using the fact that E(uu>|X) = Ω for regression (7.01), show directly,
without appeal to standard OLS results, that the covariance matrix of the
GLS estimator β̂GLS is given by (7.05).

7.2 Show that the matrix (7.11), reproduced here for easy reference,

X>Ω−1X −X>W (W>ΩW )−1W>X,

is positive semidefinite. As in Section 6.2, this may be done by showing that
this matrix can be expressed in the form Z>MZ, for some n × k matrix Z
and some n×n orthogonal projection matrix M. It is helpful to express Ω−1

as ΨΨ>, as in (7.02).

7.3 Using the data in the file earnings.data, run the regression

yt = β1d1t + β2d2t + β3d3t + ut,

which was previously estimated in Exercise 5.3. Recall that the dit are dummy
variables. Then test the null hypothesis that E(u2

t ) = σ2 against the alterna-
tive that

E(u2
t ) = γ1d1t + γ2d2t + γ3d3t.

Report P values for F and nR2 tests.

7.4 If ut follows the stationary AR(1) process

ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), |ρ| < 1,

show that Cov(utut−j) = Cov(utut+j) = ρjσ2
ε /(1−ρ2). Then use this result

to show that the correlation between ut and ut−j is just ρj.

7.5 Consider the nonlinear regression model yt = xt(β)+ut. Derive the GNR for
testing the null hypothesis that the ut are serially uncorrelated against the
alternative that they follow an AR(1) process.

7.6 Show how to test the null hypothesis that the error terms of the linear regres-
sion model y = Xβ+u are serially uncorrelated against the alternative that
they follow an AR(4) process by means of a GNR. Derive the test GNR from
first principles.

7.7 Consider the following three models, where ut is assumed to be IID(0, σ2):

H0 : yt = β + ut

H1 : yt = β + ρ(yt−1 − β) + ut

H2 : yt = β + ut + αut−1

Explain how to test H0 against H1 by using a GNR. Then show that exactly
the same test statistic is also appropriate for testing H0 against H2.

7.8 Write the trace in (7.50) explicitly in terms of PX rather than MX, and show
that the terms containing one or more factors of PX all vanish asymptotically.
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7.9 By direct matrix multiplication, show that, if Ψ is given by (7.59), then ΨΨ>
is equal to the matrix




1 −ρ 0 · · · 0 0

−ρ 1 + ρ2 −ρ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 + ρ2 −ρ

0 0 0 · · · −ρ 1




.

Show further, by direct calculation, that this matrix is proportional to the
inverse of the matrix Ω given in (7.32).

7.10 Show that equation (7.30), relating u to ε, can be modified to take account
of the definition (7.58) of ε1, with the result that

ut = εt + ρεt−1 + ρ2εt−2 + · · ·+ ρt−1

(1− ρ2)1/2
ε1. (7.94)

The relation Ψ>u = ε implies that u = (Ψ>)−1ε. Use the result (7.94) to
show that Ψ−1 can be written as




θ ρθ ρ2θ · · · ρn−1θ

0 1 ρ · · · ρn−2

0 0 1 · · · ρn−3

...
...

...
...

0 0 0 · · · 1




,

where θ ≡ (1 − ρ2)−1/2. Verify by direct calculation that this matrix is the
inverse of the Ψ given by (7.59).

7.11 Consider a square, symmetric, nonsingular matrix partitioned as follows

H ≡
[
A C>
C B

]
, (7.95)

where A and B are also square symmetric nonsingular matrices. By using the
rules for multiplying partitioned matrices (see Section 1.4), show that H−1

can be expressed in partitioned form as

H−1 =

[
D E>
E F

]
,

where

D = (A−C>B−1C)−1,

E = −B−1C(A−C>B−1C)−1 = −(B −CA−1C>)−1CA−1, and

F = (B −CA−1C>)−1.
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7.12 Suppose that the matrix H of the previous question is positive definite. It
therefore follows (see Section 3.4) that there exists a square matrix X such

that H = X>X. Partition X as [X1 X2], so that

X>X =

[
X1
>X1 X1

>X2

X2
>X1 X2

>X2

]
,

where the blocks of the matrix on the right-hand side are the same as the
blocks in (7.95). Show that the top left block D of H−1 can be expressed

as (X1
>M2X1)

−1, where M2 = I − X2(X2
>X2)

−1X2
>. Use this result to

show that D−A−1 = (X1
>M2X1)

−1 − (X1
>X1)

−1 is a positive semidefinite
matrix.

7.13 Consider testing for first-order serial correlation of the error terms in the
regression model

y = βy1 + u, |β | < 1, (7.96)

where y1 is the vector with typical element yt−1, by use of the statistics
tGNR and tSR defined in (7.51) and (7.52), respectively. Show first that the
vector denoted as MX ũ1 in (7.51) and (7.52) is equal to −β̃MXy2, where
y2 is the vector with typical element yt−2, and β̃ is the OLS estimate of β
from (7.96). Then show that, as n → ∞, tGNR tends to the random vari-
able τ ≡ σ−2

u plim n−1/2(βy1 − y2)
>u, whereas tSR tends to the same random

variable times β. Show finally that tGNR, but not tSR, provides an asymptot-
ically correct test, by showing that the random variable τ is asymptotically
distributed as N(0, 1).

7.14 The file money.data contains seasonally adjusted quarterly data for the loga-
rithm of the real money supply, mt, real GDP, yt, and the 3-month Treasury
Bill rate, rt, for Canada for the period 1967:1 to 1998:4. A conventional
demand for money function is

mt = β1 + β2rt + β3yt + β4mt−1 + ut. (7.97)

Estimate this model over the period 1968:1 to 1998:4, and then test it for
AR(1) errors using two different GNRs that differ in their treatment of the
first observation.

7.15 Use nonlinear least squares to estimate, over the period 1968:1 to 1998:4,
the model that results if ut in (7.97) follows an AR(1) process. Then test
the common factor restrictions that are implicit in this model. Calculate an
asymptotic P value for the test.

7.16 Test the common factor restrictions of Exercise 7.15 again using a GNR.
Calculate both an asymptotic P value and a bootstrap P value based on at
least B = 99 bootstrap samples. Hint: To obtain a consistent estimate of ρ
for the GNR, use the fact that the coefficient of rt−1 in the unrestricted model
(7.73) is equal to −ρ times the coefficient of rt.

7.17 Use nonlinear least squares to estimate, over the period 1968:1 to 1998:4,
the model that results if ut in (7.97) follows an AR(2) process. Is there any
evidence that an AR(2) process is needed here?
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7.18 The algorithm called iterated Cochrane-Orcutt, alluded to in Section 7.8, is
just iterated feasible GLS without the first observation. This algorithm is
begun by running the regression y = Xβ + u by OLS, preferably omitting
observation 1, in order to obtain the first estimate of β. The residuals from this
equation are then used to estimate ρ according to equation (7.69). What is the
next step in this procedure? Complete the description of iterated Cochrane-
Orcutt as iterated feasible GLS, showing how each step of the procedure can
be carried out using an OLS regression.

Show that, when the algorithm converges, conditions (7.68) for NLS esti-
mation are satisfied. Also show that, unlike iterated feasible GLS including
observation 1, this algorithm must eventually converge, although perhaps only
to a local, rather than the global, minimum of SSR(β, ρ).

7.19 Consider once more the model that you estimated in Exercise 7.15. Estimate
this model using the iterated Cochrane-Orcutt algorithm, using a sequence of
OLS regressions, and see how many iterations are needed to achieve the same
estimates as those achieved by NLS. Compare this number with the number
of iterations used by NLS itself.

Repeat the exercise with a starting value of 0.5 for ρ instead of the value of 0
that is conventionally used.

7.20 Test the hypothesis that the error terms of the linear regression model (7.97)
are serially uncorrelated against the alternatives that they follow the simple
AR(4) process ut = ρ4ut−1+εt and that they follow a general AR(4) process.

Test the hypothesis that the error terms of the nonlinear regression model
you estimated in Exercise 7.15 are serially uncorrelated against the same two
alternative hypotheses. Use Gauss-Newton regressions.

7.21 Consider the linear regression model

y = X0β0 +X1β1 +X2β2 + u, u ∼ IID(0, σ2I), (7.98)

where there are n observations, and k0, k1, and k2 denote the numbers of
parameters in β0, β1, and β2, respectively. Let H0 denote the hypothesis
that β1 = 0 and β2 = 0, H1 denote the hypothesis that β2 = 0, and H2

denote the model (7.98) with no restrictions.

Show that the F statistics for testing H0 against H1 and for testing H1 against
H2 are asymptotically independent of each other.

7.22 This question uses data on daily returns for the period 1989–1998 for shares
of Mobil Corporation from the file daily-crsp.data. These data are made
available by courtesy of the Center for Research in Security Prices (CRSP);
see the comments at the bottom of the file. Regress these returns on a constant
and themselves lagged once, twice, three, and four times, dropping the first
four observations. Then test the null hypothesis that all coefficients except
the constant term are equal to zero, as they should be if market prices fully
reflect all available information. Perform a heteroskedasticity-robust test by
running two HRGNRs, and report P values for both tests.
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7.23 Consider the fixed-effects model (7.84). Show that, under mild regularity con-
ditions, which you should specify, the OLS estimator β̂FE tends in probability
to the true parameter vector β0 as m, the number of cross-sectional units,
tends to infinity, while T , the number of time periods, remains fixed.

7.24 Suppose that
y = Xβ + v + ε, (7.99)

where there are n = mT observations, y is an n--vector with typical element
yit, X is an n× k matrix with typical row Xit, ε is an n--vector with typical
element εit, and v is an n--vector with vi repeated in the positions that
correspond to yi1 through yiT . Let the vi have variance σ2

v and the εit have
variance σ2

ε . Given these assumptions, show that the variance of the error
terms in regression (7.88) is σ2

v + σ2
ε /T.

7.25 Show that, for Σ defined in (7.87),

Σ−1/2 =
1

σε
(IT − λPι),

where Pι ≡ ι(ι>ι)−1ι>= (1/T )ιι>, and

λ = 1−
(

Tσ2
v

σ2
ε

+ 1

)−1/2

.

Then use this result to show that the GLS estimates of β may be obtained
by running regression (7.91). What is the covariance matrix of the GLS
estimator?

7.26 Suppose that, in the error-components model (7.99), none of the columns ofX
displays any within-group variation. Recall that, for this model, the data are
balanced, with m groups and T observations per group. Show that the OLS
and GLS estimators are identical in this special case. Then write down the
true covariance matrix of both these estimators. How is this covariance matrix
related to the usual one for OLS that would be computed by a regression
package under classical assumptions? What happens to this relationship as
T and ρ, the correlation of the error terms within groups, change?
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Chapter 8

Instrumental Variables

Estimation

8.1 Introduction

In Section 3.3, the ordinary least squares estimator β̂ was shown to be consis-
tent under condition (3.10), according to which the expectation of the error
term ut associated with observation t is zero conditional on the regressors Xt

for that same observation. As we saw in Section 4.5, this condition can also
be expressed either by saying that the regressors Xt are predetermined or by
saying that the error terms ut are innovations. When condition (3.10) does
not hold, the consistency proof of Section 3.3 is not applicable, and the OLS
estimator will, in general, be biased and inconsistent.

It is not always reasonable to assume that the error terms are innovations.
In fact, as we will see in the next section, there are commonly encountered
situations in which the error terms are necessarily correlated with some of the
regressors for the same observation. Even in these circumstances, however, it
is usually possible, although not always easy, to define an information set Ωt

for each observation such that

E(ut |Ωt) = 0. (8.01)

Any regressor of which the value in period t is correlated with ut cannot
belong to Ωt.

In Section 6.2, method of moments (MM) estimators were discussed for both
linear and nonlinear regression models. Such estimators are defined by the
moment conditions (6.10) in terms of a matrix W of variables, with one row
for each observation. They were shown to be consistent provided that the tth

row Wt of W belongs to Ωt, and provided that an asymptotic identification
condition is satisfied. In econometrics, these MM estimators are usually called
instrumental variables estimators, or IV estimators. Instrumental variables
estimation is introduced in Section 8.3, and a number of important results
are discussed. Then finite-sample properties are discussed in Section 8.4, hy-
pothesis testing in Section 8.5, and overidentifying restrictions in Section 8.6.
Next, Section 8.7 introduces a procedure for testing whether it is actually
necessary to use IV estimation. Bootstrap testing is discussed in Section 8.8.
Finally, in Section 8.9, IV estimation of nonlinear regression models is dealt
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with briefly. A more general class of MM estimators, of which both OLS and
IV are special cases, will be the subject of Chapter 9.

8.2 Correlation Between Error Terms and Regressors

We now briefly discuss two common situations in which the error terms will
be correlated with the regressors and will therefore not have mean zero con-
ditional on them. The first one, usually referred to by the name errors in
variables, occurs whenever the independent variables in a regression model
are measured with error. The second situation, often simply referred to as
simultaneity, occurs whenever two or more endogenous variables are jointly
determined by a system of simultaneous equations.

Errors in Variables

For a variety of reasons, many economic variables are measured with error. For
example, macroeconomic time series are often based, in large part, on surveys,
and they must therefore suffer from sampling variability. Whenever there
are measurement errors, the values economists observe inevitably differ, to a
greater or lesser extent, from the true values that economic agents presumably
act upon. As we will see, measurement errors in the dependent variable of a
regression model are generally of no great consequence, unless they are very
large. However, measurement errors in the independent variables cause the
error terms to be correlated with the regressors that are measured with error,
and this causes OLS to be inconsistent.

The problems caused by errors in variables can be seen quite clearly in the
context of the simple linear regression model. Consider the model

y◦t = β1 + β2x◦t + u◦t, u◦t ∼ IID(0, σ2), (8.02)

where the variables x◦t and y◦t are not actually observed. Instead, we observe

xt ≡ x◦t + v1t, and

yt ≡ y◦t + v2t.
(8.03)

Here v1t and v2t are measurement errors which are assumed, perhaps not
realistically in some cases, to be IID with variances ω2

1 and ω2
2 , respectively,

and to be independent of x◦t , y◦t , and u◦t.

If we suppose that the true DGP is a special case of (8.02) along with (8.03),
we see from (8.03) that x◦t = xt− v1t and y◦t = yt− v2t. If we substitute these
into (8.02), we find that

yt = β1 + β2(xt − v1t) + u◦t + v2t

= β1 + β2xt + u◦t + v2t − β2v1t

= β1 + β2xt + ut, (8.04)
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where ut ≡ u◦t + v2t − β2v1t. Thus Var(ut) is equal to σ2 + ω2
2 + β2

2ω2
1 . The

effect of the measurement error in the dependent variable is simply to increase
the variance of the error terms. Unless the increase is substantial, this is
generally not a serious problem.

The measurement error in the independent variable also increases the variance
of the error terms, but it has another, much more severe, consequence as well.
Because xt = x◦t + v1t, and ut depends on v1t, ut will be correlated with xt

whenever β2 6= 0. In fact, since the random part of xt is v1t, we see that

E(ut |xt) = E(ut | v1t) = −β2v1t, (8.05)

because we assume that v1t is independent of u◦t and v2t. From (8.05), we can
see, using the fact that E(ut) = 0 unconditionally, that

Cov(xt, ut) = E(xtut) = E
(
xtE(ut |xt)

)

= −E
(
(x◦t + v1t)β2v1t

)
= −β2ω2

1.

This covariance is negative if β2 > 0 and positive if β2 < 0, and, since it does
not depend on the sample size n, it will not go away as n becomes large. An
exactly similar argument shows that the assumption that E(ut |Xt) = 0 is
false whenever any element of Xt is measured with error. In consequence, the
OLS estimator will be biased and inconsistent.

Errors in variables are a potential problem whenever we try to estimate a
consumption function, especially if we are using cross-section data. Many
economic theories (for example, Friedman, 1957) suggest that household con-
sumption will depend on “permanent” income or “life-cycle” income, but sur-
veys of household behavior almost never measure this. Instead, they typically
provide somewhat inaccurate estimates of current income. If we think of yt as
measured consumption, x◦t as permanent income, and xt as estimated current
income, then the above analysis applies directly to the consumption function.
The marginal propensity to consume is β2, which must be positive, causing
the correlation between ut and xt to be negative. As readers are asked to show
in Exercise 8.1, the probability limit of β̂2 is less than the true value β20. In
consequence, the OLS estimator β̂2 is biased downward, even asymptotically.

Of course, if our objective is simply to estimate the relationship between the
observed dependent variable yt and the observed independent variable xt,
there is nothing wrong with using ordinary least squares to estimate equation
(8.04). In that case, ut would simply be defined as the difference between
yt and its expectation conditional on xt. But our analysis shows that the
OLS estimators of β1 and β2 in equation (8.04) are not consistent for the
corresponding parameters of equation (8.02). In most cases, it is parameters
like these that we want to estimate on the basis of economic theory.

There is an extensive literature on ways to avoid the inconsistency caused by
errors in variables. See, among many others, Hausman and Watson (1985),
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Leamer (1987), and Dagenais and Dagenais (1997). The simplest and most
widely-used approach is just to use an instrumental variables estimator.

Simultaneous Equations

Economic theory often suggests that two or more endogenous variables are
determined simultaneously. In this situation, as we will see shortly, all of the
endogenous variables will necessarily be correlated with the error terms in all
of the equations. This means that none of them may validly appear in the
regression functions of models that are to be estimated by least squares.

A classic example, which well illustrates the econometric problems caused by
simultaneity, is the determination of price and quantity for a commodity at
the partial equilibrium of a competitive market. Suppose that qt is quantity
and pt is price, both of which would often be in logarithms. A linear (or
loglinear) model of demand and supply is

qt = γd pt + Xd
t βd + ud

t (8.06)

qt = γs pt + Xs
t βs + us

t , (8.07)

where equation (8.06) is the demand function and equation (8.07) is the supply
function. Here Xd

t and Xs
t are row vectors of observations on exogenous or

predetermined variables that appear, respectively, in the demand and supply
functions, βd and βs are corresponding vectors of parameters, γd and γs are
scalar parameters, and ud

t and us
t are the error terms in the demand and

supply functions. Economic theory predicts that, in most cases, γd < 0 and
γs > 0, which is equivalent to saying that the demand curve slopes downward
and the supply curve slopes upward.

Equations (8.06) and (8.07) are a pair of linear simultaneous equations for
the two unknowns pt and qt. For that reason, these equations constitute what
is called a linear simultaneous equations model. In this case, there are two
dependent variables, quantity and price. For estimation purposes, the key
feature of the model is that quantity depends on price in both equations.

Since there are two equations and two unknowns, it is straightforward to solve
equations (8.06) and (8.07) for pt and qt. This is most easily done by rewriting
them in matrix notation as

[
1 −γd

1 −γs

][
qt

pt

]
=

[
Xd

t βd

Xs
t βs

]
+

[
ud

t

us
t

]
. (8.08)

The solution to (8.08), which will exist whenever γd 6= γs, so that the matrix
on the left-hand side of (8.08) is nonsingular, is

[
qt

pt

]
=

[
1 −γd

1 −γs

]−1
([

Xd
t βd

Xs
t βs

]
+

[
ud

t

us
t

])
. (8.09)
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It can be seen from this solution that pt and qt will depend on both ud
t and us

t ,
and on every exogenous and predetermined variable that appears in either the
demand function, the supply function, or both. Therefore, pt, which appears
on the right-hand side of equations (8.06) and (8.07), must be correlated with
the error terms in both of those equations. If we rewrote one or both equations
so that pt was on the left-hand side and qt was on the right-hand side, the
problem would not go away, because qt is also correlated with the error terms
in both equations.

It is easy to see that, whenever we have a linear simultaneous equations model,
there will be correlation between all of the error terms and all of the endo-
genous variables. If there are g endogenous variables and g equations, the
solution will look very much like (8.09), with the inverse of a g × g matrix
premultiplying the sum of a g --vector of linear combinations of the exogenous
and predetermined variables and a g --vector of error terms. If we want to esti-
mate the full system of equations, there are many options, some of which will
be discussed in Chapter 12. If we simply want to estimate one equation out
of such a system, the most popular approach is to use instrumental variables.

We have discussed two important situations in which the error terms will
necessarily be correlated with some of the regressors, and the OLS estimator
will consequently be inconsistent. This provides a strong motivation to employ
estimators that do not suffer from this type of inconsistency. In the remainder
of this chapter, we therefore discuss the method of instrumental variables.
This method can be used whenever the error terms are correlated with one
or more of the explanatory variables, regardless of how that correlation may
have arisen.

8.3 Instrumental Variables Estimation

For most of this chapter, we will focus on the linear regression model

y = Xβ + u, E(uu>) = σ2I, (8.10)

where at least one of the explanatory variables in the n × k matrix X is
assumed not to be predetermined with respect to the error terms. Suppose
that, for each t = 1, . . . , n, condition (8.01) is satisfied for some suitable
information set Ωt, and that we can form an n × k matrix W with typical
row Wt such that all its elements belong to Ωt. The k variables given by
the k columns of W are called instrumental variables, or simply instruments.
Later, we will allow for the possibility that the number of instruments may
exceed the number of regressors.

Instrumental variables may be either exogenous or predetermined, and, for a
reason that will be explained later, they should always include any columns
of X that are exogenous or predetermined. Finding suitable instruments may
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be quite easy in some cases, but it can be extremely difficult in others. Many
empirical controversies in economics are essentially disputes about whether or
not certain variables constitute valid instruments.

The Simple IV Estimator

For the linear model (8.10), the moment conditions (6.10) simplify to

W>(y −Xβ) = 0. (8.11)

Since there are k equations and k unknowns, we can solve equations (8.11)
directly to obtain the simple IV estimator

β̂IV ≡ (W>X)−1W>y. (8.12)

This well-known estimator has a long history (see Morgan, 1990). Whenever
Wt ∈ Ωt,

E(ut |Wt) = 0, (8.13)

and Wt is seen to be predetermined with respect to the error term. Given
(8.13), it was shown in Section 6.2 that β̂IV is consistent and asymptotically
normal under an identification condition. For asymptotic identification, this
condition can be written as

SW>X ≡ plim
n→∞

1−
n
W>X is deterministic and nonsingular. (8.14)

For identification by any given sample, the condition is just that W>X should
be nonsingular. If this condition were not satisfied, equations (8.11) would
have no unique solution.

It is easy to see directly that the simple IV estimator (8.12) is consistent,
and, in so doing, to see that condition (8.13) can be weakened slightly. If
the model (8.10) is correctly specified, with true parameter vector β0, then it
follows that

β̂IV = (W>X)−1W>Xβ0 + (W>X)−1W>u

= β0 + (n−1W>X)−1n−1W>u.
(8.15)

Given the assumption (8.14) of asymptotic identification, it is clear that β̂IV

is consistent if and only if

plim
n→∞

1−
n
W>u = 0, (8.16)

which is precisely the condition (6.16) that was used in the consistency proof
in Section 6.2. We usually refer to this condition by saying that the error
terms are asymptotically uncorrelated with the instruments. Condition (8.16)
follows from condition (8.13) by the law of large numbers, but it may hold
even if condition (8.13) does not. The weaker condition (8.16) is what is
required for the consistency of the IV estimator.
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Efficiency Considerations

If the model (8.10) is correctly specified with true parameter vector β0 and
true error variance σ2

0 , the results of Section 6.2 show that the asymptotic
covariance matrix of n1/2(β̂IV − β0) is given by (6.25) or (6.26):

Var
(

plim
n→∞

n1/2(β̂IV − β0)
)

= σ2
0(SW>X)−1SW>W (S>W>X)−1

= σ2
0 plim

n→∞
(n−1X>PWX)−1, (8.17)

where SW>W ≡ plim n−1W>W. If we have some choice over what instru-
ments to use in the matrix W, it makes sense to choose them so as to minimize
the above asymptotic covariance matrix.

First of all, notice that, since (8.17) depends on W only through the orthogo-
nal projection matrix PW , all that matters is the space S(W ) spanned by the
instrumental variables. In fact, as readers are asked to show in Exercise 8.2,
the estimator β̂IV itself depends on W only through PW . This fact is closely
related to the result that, for ordinary least squares, fitted values and residuals
depend only on the space S(X) spanned by the regressors.

Suppose first that we are at liberty to choose for instruments any variables at
all that satisfy the predeterminedness condition (8.13). Then, under reason-
able and plausible conditions, we can characterize the optimal instruments
for IV estimation of the model (8.10). By this, we mean the instruments that
minimize the asymptotic covariance matrix (8.17), in the usual sense that any
other choice of instruments leads to an asymptotic covariance matrix that
differs from the optimal one by a positive semidefinite matrix.

In order to determine the optimal instruments, we must know the data-
generating process. In the context of a simultaneous equations model, a single
equation like (8.10), even if we know the values of the parameters, cannot be a
complete description of the DGP, because at least some of the variables in the
matrix X are endogenous. For the DGP to be fully specified, we must know
how all the endogenous variables are generated. For the demand-supply model
given by equations (8.06) and (8.07), both of those equations are needed to
specify the DGP. For a more complicated simultaneous equations model with
g endogenous variables, we would need g equations. For the simple errors-in-
variables model discussed in Section 8.2, we need equations (8.03) as well as
equation (8.02) in order to specify the DGP fully.

Quite generally, we can suppose that the explanatory variables in (8.10) satisfy
the relation

X = X̄ + V , E(Vt |Ωt) = 0, (8.18)

where the tth row of X̄ is X̄t = E(Xt |Ωt), and Xt is the tth row of X. Thus
equation (8.18) can be interpreted as saying that X̄t is the expectation of Xt

conditional on the information set Ωt. It turns out that the n × k matrix
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X̄ provides the optimal instruments for (8.10). Of course, in practice, this
matrix is never observed, and we will need to replace X̄ by something that
estimates it consistently.

To see that X̄ provides the optimal matrix of instruments, it is, as usual, easier
to reason in terms of precision matrices rather than covariance matrices. For
any valid choice of instruments, the precision matrix corresponding to (8.17)
is σ2

0 times

plim
n→∞

1−
n

X>PWX = plim
n→∞

(
n−1X>W (n−1W>W )−1n−1W>X

)
. (8.19)

Using (8.18) and a law of large numbers, we see that

plim
n→∞

n−1X>W = lim
n→∞

n−1E(X>W )

= lim
n→∞

n−1E(X̄>W ) = plim
n→∞

n−1X̄>W.
(8.20)

The second equality holds because E(V >W ) = O, since, by the construction
in (8.18), Vt has mean zero conditional on Wt. The last equality is just a LLN
in reverse. Similarly, we find that plimn−1W>X = plim n−1W>X̄. Thus
(8.19) becomes

plim
n→∞

1−
n

X̄>PW X̄. (8.21)

If we make the choice W = X̄, then (8.21) reduces to plim n−1X̄>X̄. The
difference between this and (8.21) is just plim n−1X̄>MWX̄, which is a pos-
itive semidefinite matrix. This shows that X̄ is indeed the optimal choice of
instrumental variables by the criterion of asymptotic variance.

We mentioned earlier that all the explanatory variables in (8.10) that are exo-
genous or predetermined should be included in the matrix W of instrumental
variables. It is now clear why this is so. If we denote by Z the submatrix
of X containing the exogenous or predetermined variables, then Z̄ = Z, be-
cause the row Zt is already contained in Ωt. Thus Z is a submatrix of the
matrix X̄ of optimal instruments. As such, it should always be a submatrix
of the matrix of instruments W used for estimation, even if W is not actually
equal to X̄.

The Generalized IV Estimator

In practice, the information set Ωt is very frequently specified by providing
a list of l instrumental variables that suggest themselves for various reasons.
Therefore, we now drop the assumption that the number of instruments is
equal to the number of parameters and let W denote an n×l matrix of instru-
ments. Often, l is greater than k, the number of regressors in the model (8.10).
In this case, the model is said to be overidentified, because, in general, there
is more than one way to formulate moment conditions like (8.11) using the
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available instruments. If l = k, the model (8.10) is said to be just identified
or exactly identified, because there is only one way to formulate the moment
conditions. If l < k, it is said to be underidentified, because there are fewer
moment conditions than parameters to be estimated, and equations (8.11)
will therefore have no unique solution.

If any instruments at all are available, it is normally possible to generate
an arbitrarily large collection of them, because any deterministic function of
the l components of the tth row Wt of W can be used as the tth component
of a new instrument.1 If (8.10) is underidentified, some such procedure is
necessary if we wish to obtain consistent estimates of all the elements of β.
Alternatively, we would have to impose at least k − l restrictions on β so as
to reduce the number of independent parameters that must be estimated to
no more than the number of instruments.

For models that are just identified or overidentified, it is often desirable to
limit the set of potential instruments to deterministic linear functions of the
instruments in W, rather than allowing arbitrary deterministic functions. We
will see shortly that this is not only reasonable but optimal for linear simult-
aneous equation models. This means that the IV estimator is unique for a
just identified model, because there is only one k --dimensional linear space
S(W ) that can be spanned by the k = l instruments, and, as we saw earlier,
the IV estimator for a given model depends only on the space spanned by the
instruments.

We can always treat an overidentified model as if it were just identified by
choosing exactly k linear combinations of the l columns of W. The challenge
is to choose these linear combinations optimally. Formally, we seek an l × k
matrix J such that the n × k matrix WJ is a valid instrument matrix and
such that the use of J minimizes the asymptotic covariance matrix of the
estimator in the class of IV estimators obtained using an n × k instrument
matrix of the form WJ∗ with arbitrary l × k matrix J∗.

There are three requirements that the matrix J must satisfy. The first of
these is that it should have full column rank of k. Otherwise, the space
spanned by the columns of WJ would have rank less than k, and the model
would be underidentified. The second requirement is that J should be at
least asymptotically deterministic. If not, it is possible that condition (8.16)
applied to WJ could fail to hold. The last requirement is that J be chosen
to minimize the asymptotic covariance matrix of the resulting IV estimator,
and we now explain how this may be achieved.

If the explanatory variables X satisfy (8.18), then it follows from (8.17) and
(8.20) that the asymptotic covariance matrix of the IV estimator computed

1 This procedure would not work if, for example, all of the original instruments
were binary variables.
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using WJ as instrument matrix is

σ2
0 plim

n→∞
(n−1X̄>PWJX̄)−1. (8.22)

The tth row X̄t of X̄ belongs to Ωt by construction, and so each element of X̄t

is a deterministic function of the elements of Wt. However, the deterministic
functions are not necessarily linear with respect to Wt. Thus, in general, it
is impossible to find a matrix J such that X̄ = WJ , as would be needed for
WJ to constitute a set of truly optimal instruments. A natural second-best
solution is to project X̄ orthogonally on to the space S(W ). This yields the
matrix of instruments

WJ = PWX̄ = W (W>W )−1W>X̄, (8.23)

which implies that
J = (W>W )−1W>X̄. (8.24)

We now show that these instruments are indeed optimal under the constraint
that the instruments should be linear in Wt.

By substituting PWX̄ for WJ in (8.22), the asymptotic covariance matrix
becomes

σ2
0 plim

n→∞
(n−1X̄>PPWX̄X̄)−1.

If we write out the projection matrix PPWX̄ explicitly, we find that

X̄>PPWX̄X̄ = X̄>PWX̄(X̄>PWX̄)−1X̄>PWX̄ = X̄>PWX̄. (8.25)

Thus, the precision matrix for the estimator that uses instruments PWX̄ is
proportional to X̄>PWX̄. For the estimator with WJ as instruments, the
precision matrix is proportional to X̄>PWJX̄. The difference between the
two precision matrices is therefore proportional to

X̄>(PW − PWJ )X̄. (8.26)

The k --dimensional subspace S(WJ), which is the image of the orthogonal
projection PWJ , is a subspace of the l--dimensional space S(W ), which is the
image of PW . Thus, by the result in Exercise 2.16, the difference PW−PWJ is
itself an orthogonal projection matrix. This implies that the difference (8.26)
is a positive semidefinite matrix, and so we can conclude that (8.23) is indeed
the optimal choice of instruments of the form WJ .

At this point, we come up against the same difficulty as that encountered at
the end of Section 6.2, namely, that the optimal instrument choice is infeasible,
because we do not know X̄. But notice that, from the definition (8.24) of the
matrix J, we have that

plim
n→∞

J = plim
n→∞

(n−1W>W )−1n−1W>X̄

= plim
n→∞

(n−1W>W )−1n−1W>X, (8.27)
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by (8.20). This suggests, correctly, that we can use PWX instead of PWX̄
without changing the asymptotic properties of the estimator.

If we use PWX as the matrix of instrumental variables, the moment conditions
(8.11) that define the estimator become

X>PW (y −Xβ) = 0, (8.28)

which can be solved to yield the generalized IV estimator, or GIV estimator,

β̂IV = (X>PWX)−1X>PWy, (8.29)

which is sometimes just abbreviated as GIVE. The estimator (8.29) is indeed
a generalization of the simple estimator (8.12), as readers are asked to verify
in Exercise 8.3. For this reason, we will usually refer to the IV estimator
without distinguishing the simple from the generalized case.

The generalized IV estimator (8.29) can also be obtained by minimizing the
IV criterion function, which has many properties in common with the sum
of squared residuals for models estimated by least squares. This function is
defined as follows:

Q(β, y) = (y −Xβ)>PW (y −Xβ). (8.30)

Minimizing Q(β,y) with respect to β yields the estimator (8.29), as readers
are asked to show in Exercise 8.4.

Identifiability and Consistency of the IV Estimator

In Section 6.2, we defined in (6.12) a k --vector α(β) of deterministic functions
as the probability limits of the functions used in the moment conditions that
define an estimator, and we saw that the parameter vector β is asymptotically
identified if two asymptotic identification conditions are satisfied. The first
condition is that α(β0) = 0, and the second is that α(β) 6= 0 for all β 6= β0.

The analogous vector of functions for the IV estimator is

α(β) = plim
n→∞

1−
n

X>PW (y −Xβ)

= SX>W (SW>W )−1plim
n→∞

1−
n
W>(y −Xβ),

(8.31)

where SX>W ≡ S>W>X , which was defined in (8.14), and SW>W was de-
fined just after (8.17). For asymptotic identification, we assume that both
these matrices exist and have full rank. This assumption is analogous to the
assumption that 1/n times the matrix X>X has probability limit SX>X, a
matrix with full rank, which we originally made in Section 3.3 when we proved
that the OLS estimator is consistent. If SW>W does not have full rank, then
at least one of the instruments is perfectly collinear with the others, asymp-
totically, and should therefore be dropped. If SW>X does not have full rank,
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then the asymptotic version of the moment conditions (8.28) has fewer than k
linearly independent equations, and these conditions therefore have no unique
solution.

If β0 is the true parameter vector, then y−Xβ0 = u, and the right-hand side
of (8.31) vanishes under the assumption (8.16) used to show the consistency
of the simple IV estimator. Thus α(β0) = 0, and the first condition for
asymptotic identification is satisfied.

The second condition requires that α(β) 6= 0 for all β 6= β0. It is easy to see
from (8.31) that

α(β) = SX>W (SW>W )−1SW>X(β0 − β).

For this to be nonzero for all nonzero β0 − β, it is necessary and sufficient
that the matrix SX>W (SW>W )−1SW>X should have full rank k. This will
be the case if the matrices SW>W and SW>X both have full rank, as we
have assumed. If l = k, the conditions on the two matrices SW>W and
SW>X simplify, as we saw when considering the simple IV estimator, to the
single condition (8.14). The condition that SX>W (SW>W )−1SW>X has full
rank can also be used to show that the probability limit of 1/n times the IV
criterion function (8.30) has a unique global minimum at β = β0, as readers
are asked to show in Exercise 8.5.

The two asymptotic identification conditions are sufficient for consistency.
Because we are dealing here with linear models, there is no need for a sophis-
ticated proof of this fact; see Exercise 8.6. The key assumption is, of course,
(8.16). If this assumption did not hold, because any of the instruments was
asymptotically correlated with the error terms, the first of the asymptotic
identification conditions would not hold either, and the IV estimator would
not be consistent.

Asymptotic Distribution of the IV Estimator

Like every estimator that we have studied, the IV estimator is asymptot-
ically normally distributed with an asymptotic covariance matrix that can
be estimated consistently. The asymptotic covariance matrix for the simple
IV estimator, expression (8.17), turns out to be valid for the generalized IV
estimator as well. To see this, we replace W in (8.17) by the asymptotically
optimal instruments PWX. As in (8.25), we find that

X>PPWXX = X>PWX(X>PWX)−1X>PWX = X>PWX,

from which it follows that (8.17) is unchanged if W is replaced by PWX.

It can also be shown directly that (8.17) is the asymptotic covariance matrix
of the generalized IV estimator. From (8.29), it follows that

n1/2(β̂IV − β0) = (n−1X>PWX)−1n−1/2X>PWu. (8.32)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



8.3 Instrumental Variables Estimation 321

Under reasonable assumptions, a central limit theorem can be applied to
the expression n−1/2W>u, which allows us to conclude that the asymptotic
distribution of this expression is multivariate normal, with mean zero and
covariance matrix

lim
n→∞

1−
n
W>E(uu>)W = σ2

0 SW>W , (8.33)

since we assume that E(uu>) = σ2
0I. With this result, it can be shown quite

simply that (8.17) is the asymptotic covariance matrix of β̂IV; see Exercise 8.7.

In practice, since σ2
0 is unknown, we use

V̂ar(β̂IV) = σ̂2(X>PWX)−1 (8.34)

to estimate the covariance matrix of β̂IV. Here σ̂2 is 1/n times the sum of the
squares of the components of the residual vector y −Xβ̂. In contrast to the
OLS case, there is no good reason to divide by anything other than n when
estimating σ2. Because IV estimation minimizes the IV criterion function and
not the sum of squared residuals, IV residuals are not necessarily too small.
Nevertheless, many regression packages divide by n− k instead of by n.

The choice of instruments will usually affect the asymptotic covariance matrix
of the IV estimator. If some or all of the columns of X̄ are not contained in
the span S(W ) of the instruments, an efficiency gain is potentially available
if that span is made larger. Readers are asked in Exercise 8.8 to demonstrate
formally that adding an extra instrument by appending a new column to W
will, in general, reduce the asymptotic covariance matrix. Of course, it cannot
be made smaller than the lower bound σ2

0(X̄>X̄)−1, which is attained if the
optimal instruments X̄ are available.

When all the regressors can validly be used as instruments, we have X̄ = X,
and the efficient IV estimator coincides with the OLS estimator, as the Gauss-
Markov Theorem predicts.

Two-Stage Least Squares

The IV estimator (8.29) is commonly known as the two-stage least squares,
or 2SLS, estimator, because, before the days of good econometrics software
packages, it was often calculated in two stages using OLS regressions. In the
first stage, each column xi, i = 1, . . . , k, of X is regressed on W, if necessary.
If a regressor xi is a valid instrument, it is already (or should be) one of the
columns of W. In that case, since PWxi = xi, no first-stage regression is
needed, and we say that such a regressor serves as its own instrument.

The fitted values from the first-stage regressions, plus the actual values of
any regressors that serve as their own instruments, are collected to form the
matrix PWX. Then the second-stage regression,

y = PWXβ + u, (8.35)
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is used to obtain the 2SLS estimates. Because PW is an idempotent matrix,
the OLS estimate of β from this second-stage regression is

β̂2sls = (X>PWX)−1X>PWy,

which is identical to (8.29), the generalized IV estimator β̂IV.

If this two-stage procedure is used, some care must be taken when estimating
the standard error of the regression and the covariance matrix of the parameter
estimates. The OLS estimate of σ2 from regression (8.35) is

s2 =
‖y − PWXβ̂IV‖2

n− k
. (8.36)

In contrast, the estimate that was used in the estimated IV covariance matrix
(8.34) is

σ̂2 =
‖y −Xβ̂IV‖2

n
. (8.37)

These two estimates of σ2 are not asymptotically equivalent, and s2 is not
consistent. The reason is that the residuals from regression (8.35) do not
tend to the corresponding error terms as n → ∞, because the regressors in
(8.35) are not the true explanatory variables. Therefore, 1/(n− k) times the
sum of squared residuals is not a consistent estimator of σ2. Of course, no
regression package providing IV or 2SLS estimation would ever use (8.36)
to estimate σ2. Instead, it would use (8.37), or at least something that is
asymptotically equivalent to it.

Two-stage least squares was invented by Theil (1953) and Basmann (1957)
at a time when computers were very primitive. Consequently, despite the
classic papers of Durbin (1954) and Sargan (1958) on instrumental variables
estimation, the term “two-stage least squares” came to be very widely used
in econometrics, even when the estimator is not actually computed in two
stages. We prefer to think of two-stage least squares as simply a particular
way to compute the generalized IV estimator, and we will use β̂IV rather than
β̂2sls to denote that estimator.

8.4 Finite-Sample Properties of IV Estimators

Unfortunately, the finite-sample distributions of IV estimators are much more
complicated than the asymptotic ones. Indeed, except in very special cases,
these distributions are unknowable in practice. Although it is consistent, the
IV estimator for just identified models has a distribution with such thick tails
that its expectation does not even exist. With overidentified models, the
expectation of the estimator exists, but it is in general different from the true
parameter value, so that the estimator is biased, often very substantially so.
In consequence, investigators can easily make serious errors of inference when
interpreting IV estimates.
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The biases in the OLS estimates of a model like (8.10) arise because the
error terms are correlated with some of the regressors. The IV estimator
solves this problem asymptotically, because the projections of the regressors
on to S(W ) are asymptotically uncorrelated with the error terms. However,
there will always still be some correlation in finite samples, and this causes
the IV estimator to be biased.

Systems of Equations

In order to understand the finite-sample properties of the IV estimator, we
need to consider the model (8.10) as part of a system of equations. We
therefore change notation somewhat and rewrite (8.10) as

y = Zβ1 + Yβ2 + u, E(uu>) = σ2I, (8.38)

where the matrix of regressors X has been partitioned into two parts, namely,
an n× k1 matrix of exogenous and predetermined variables, Z, and an n× k2

matrix of endogenous variables, Y, and the vector β has been partitioned
conformably into two subvectors β1 and β2. There are assumed to be l ≥ k
instruments, of which k1 are the columns of the matrix Z.

The model (8.38) is not fully specified, because it says nothing about how the
matrix Y is generated. For each observation t, t = 1, . . . , n, the value yt of
the dependent variable and the values Yt of the other endogenous variables
are assumed to be determined by a set of linear simultaneous equations. The
variables in the matrix Y are called current endogenous variables, because
they are determined simultaneously, row by row, along with y. Suppose that
all the exogenous and predetermined explanatory variables in the full set of
simultaneous equations are included in the n × l instrument matrix W, of
which the first k1 columns are those of Z. Then, as can easily be seen by
analogy with the explicit result (8.09) for the demand-supply model, we have
for each endogenous variable yi, i = 0, 1, . . . , k2, that

yi = Wπi + vi, E(vi |W ) = 0. (8.39)

Here y0 ≡ y, and the yi, for i = 1, . . . , k2, are the columns of Y. The πi

are l --vectors of unknown coefficients, and the vi are n--vectors of error terms
that are innovations with respect to the instruments.

Equations like (8.39), which have only exogenous and predetermined variables
on the right-hand side, are called reduced form equations, in contrast with
equations like (8.38), which are called structural equations. Writing a model
as a set of reduced form equations emphasizes the fact that all the endogenous
variables are generated by similar mechanisms. In general, the error terms for
the various reduced form equations will display contemporaneous correlation:
If vti denotes a typical element of the vector vi, then, for observation t, the
reduced form error terms vti will generally be correlated among themselves
and correlated with the error term ut of the structural equation.
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A Simple Example

In order to gain additional intuition about the properties of the IV estimator in
finite samples, we consider the very simplest nontrivial example, in which the
dependent variable y is explained by only one variable, which we denote by x.
The regressor x is endogenous, and there is available exactly one exogenous
instrument, w. In order to keep the example reasonably simple, we suppose
that all the error terms, for both y and x, are normally distributed. Thus the
DGP that simultaneously determines x and y can be written as

y = xβ0 + σuu, x = wπ0 + σvv, (8.40)

analogously to (8.39). By explicitly writing σu and σv as the standard devia-
tions of the error terms, we can define the vectors u and v to be multivariate
standard normal, that is, distributed as N(0, I). There is contemporaneous
correlation of u and v, so that we have E(utvt) = ρ, for some correlation
coefficient ρ such that −1 < ρ < 1. The result of Exercise 4.4 shows that the
expectation of ut conditional on vt is ρvt, and so we can write u = ρv + u1,
where u1 has mean zero conditional on v.

In this simple, just identified, setup, the IV estimator of the parameter β is

β̂IV = (w>x)−1w>y = β0 + σu(w>x)−1w>u. (8.41)

This expression is clearly unchanged if the instrument w is multiplied by an
arbitrary scalar, and so we can, without loss of generality, rescale w so that
w>w = 1. Then, using the second equation in (8.40), we find that

β̂IV − β0 =
σuw>u

π0 + σvw>v
=

σuw>(ρv + u1)
π0 + σvw>v

.

Let us now compute the expectation of this expression conditional on v. Since,
by construction, E(u1 |v) = 0, we obtain

E(β̂IV − β0) =
ρσu

σv

z

a + z
, (8.42)

where we have made the definitions a ≡ π0/σv, and z ≡ w>v. Given our
rescaling of w, it is easy to see that z ∼ N(0, 1).

If ρ = 0, the right-hand side of (8.42) vanishes, and so the unconditional
expectation of β̂IV − β0 vanishes as well. Therefore, in this special case, β̂IV

is unbiased. This is as expected, since, if ρ = 0, the regressor x is uncorrelated
with the error vector u. If ρ 6= 0, however, (8.42) is equal to a nonzero factor
times the random variable z/(a + z). Unless a = 0, it turns out that this
random variable has no expectation. To see this, we can try to calculate it.
If it existed, it would be

E
( z

a + z

)
=

∫ ∞

−∞

x

a + x
φ(x) dx, (8.43)
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where, as usual, φ(·) is the density of the standard normal distribution. It is
a fairly simple calculus exercise to show that the integral in (8.43) diverges in
the neighborhood of x = −a.

If π0 = 0, then a = 0. In this rather odd case, x = σvv is just noise, as though
it were an error term. Therefore, since z/(a+z) reduces to 1, the expectation
exists, but it is not zero, and β̂IV is therefore biased.

When a 6= 0, which is the usual case, the IV estimator (8.41) is neither biased
nor unbiased, because it has no expectation for any finite sample size n. This
may seem to contradict the result according to which β̂IV is asymptotically
normal, since all the moments of the normal distribution exist. However,
the fact that a sequence of random variables converges to a limiting ran-
dom variable does not necessarily imply that the moments of the variables
in the sequence converge to those of the limiting variable; see Davidson and
MacKinnon (1993, Section 4.5). The estimator (8.41) is a case in point. For-
tunately, this possible failure to converge of the moments does not extend to
the CDFs of the random variables, which do indeed converge to that of the
limit. Consequently, P values and the upper and lower limits of confidence
intervals computed with the asymptotic distribution are legitimate approxi-
mations, in the sense that they become more and more accurate as the sample
size increases.

A less simple calculation can be used to show that, in the overidentified case,
the first l − k moments of β̂IV exist; see Kinal (1980). This is consistent
with the result we have just obtained for an exactly identified model, where
l − k = 0, and the IV estimator has no moments at all. When the mean of
β̂IV exists, it is almost never equal to β0. Readers will have a much clearer
idea of the impact of the existence or nonexistence of moments, and of the
bias of the IV estimator, if they work carefully through Exercises 8.10 to 8.13,
in which they are asked to generate by simulation the EDFs of the estimator
in different situations.

The General Case

We now return to the general case, in which the structural equation (8.38)
is being estimated, and the other endogenous variables are generated by the
reduced form equations (8.39) for i = 1, . . . , k2, which correspond to the first-
stage regressions for 2SLS. We can group the vectors of fitted values from
these regressions into an n × k2 matrix PWY . The generalized IV estima-
tor is then equivalent to a simple IV estimator that uses the instruments
PWX = [Z PWY ]. By grouping the l --vectors πi, i = 1, . . . , k2 into an
l× k2 matrix Π2 and the vectors of error terms vi into an n× k2 matrix V2,
we see that

PWX = [Z PWY ] = [Z PW (WΠ2 + V2)]

= [Z WΠ2 + PWV2] = WΠ + PWV .
(8.44)
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Here V is an n × k matrix of the form [O V2], where the zero block has
dimension n × k1, and Π is an l × k matrix, which can be written as Π =
[Π1 Π2], where the l × k1 matrix Π1 is a k1 × k1 identity matrix sitting on
top of an (l − k1)× k1 zero matrix. It is easily checked that these definitions
make the last equality in (8.44) correct. Thus PWX has two components:
WΠ, which by assumption is uncorrelated with u, and PWV , which will
almost always be correlated with u.

If we substitute the rightmost expression of (8.44) into (8.32), eliminating the
factors of powers of n, which are unnecessary in the finite-sample context, we
find that

β̂IV − β0 =
(
Π>W>WΠ + Π>W>V + V >WΠ + V >PWV

)−1

× (
Π>W>u + V >PWu

)
.

(8.45)

To make sense of this rather messy expression, first set V = O. The result is

β̂IV − β0 = (Π>W>WΠ)−1Π>W>u. (8.46)

If V = O, the supposedly endogenous variables Y are in fact exogenous or
predetermined, and it can be checked (see Exercise 8.14) that, in this case,
β̂IV is just the OLS estimator for model (8.10).

If V is not zero, but is independent of u, then we see immediately that the
expectation of (8.45) conditional on V is zero. This case is the analog of the
case with ρ = 0 in (8.42). Note that we require the full independence of V
and u for this to hold. If instead V were just predetermined with respect
to u, the IV estimator would still have a finite-sample bias, for exactly the
same reasons as those leading to finite-sample bias of the OLS estimator with
predetermined but not exogenous explanatory variables.

When V and u are contemporaneously correlated, it can be shown that all
the terms in (8.45) which involve V do not contribute asymptotically; see
Exercise 8.15. Thus we can see that any discrepancy between the finite-
sample and asymptotic distributions of β̂IV − β0 must arise from the terms
in (8.45) that involve V . In fact, in the absence of other features of the model
that could give rise to finite-sample bias, such as lagged dependent variables,
the poor finite-sample properties of the IV estimator arise solely from the
contemporaneous correlation between PWV and u. In particular, the second
term in the second factor of (8.45) will generally have a nonzero mean, and
this term can be a major source of bias when the correlation between u and
some of the columns of V is high.

If the terms involving V in (8.45) are relatively small, the finite-sample distri-
bution of the IV estimator is likely to be well approximated by its asymptotic
distribution. However, if these terms are not small, the asymptotic approxi-
mation may be poor. Thus our analysis suggests that there are three situations
in which the IV estimator is likely to have poor finite-sample properties.
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• When l, the number of instruments, is large, W will be able to explain
much of the variation in V ; recall from Section 3.8 that adding additional
regressors can never reduce the R2 of a regression. With large l, conse-
quently, PWV will be relatively large. When the number of instruments
is extremely large relative to the sample size, the first-stage regressions
may fit so well that PWY is very similar to Y. In this situation, the
IV estimates may be almost as biased as the OLS ones.

• When at least some of the reduced-form regressions (8.39) fit poorly,
in the sense that the R2 is small or the F statistic for all the slope
coefficients to be zero is insignificant, the model is said to suffer from
weak instruments. In this situation, even if PWV is no larger than usual,
it may nevertheless be large relative to WΠ. When the instruments are
very weak, the finite-sample distribution of the IV estimator may be very
far from its asymptotic distribution even in samples with many thousands
of observations. An example of this is furnished by the case in which a = 0
in (8.42) in our simple example with one regressor and one instrument.
As we saw, the distribution of the estimator is quite different when a = 0
from what it is when a 6= 0; the distribution when a ∼= 0 may well be
similar to the distribution when a = 0.

• When the correlation between u and some of the columns of V is very
high, V >PWu will tend to be relatively large. Whether it will be large
enough to cause serious problems for inference will depend on the sample
size, the number of instruments, and how well the instruments explain
the endogenous variables.

It may seem that adding additional instruments will always increase the finite-
sample bias of the IV estimator, and Exercise 8.13 illustrates a case in which
it does. In that case, the additional instruments do not really belong in the
reduced-form regressions. However, if the instruments truly belong in the
reduced-form regressions, adding them will alleviate the weak instruments
problem, and that can actually cause the bias to diminish.

Finite-sample inference in models estimated by instrumental variables is a
subject of active research in econometrics. Relatively recent papers on this
topic include Nelson and Startz (1990a, 1990b), Buse (1992), Bekker (1994),
Bound, Jaeger, and Baker (1995), Dufour (1997), Staiger and Stock (1997),
Wang and Zivot (1998), Zivot, Startz, and Nelson (1998), Angrist, Imbens,
and Krueger (1999), Blomquist and Dahlberg (1999), Donald and Newey
(2001), Hahn and Hausman (2002), Kleibergen (2002), and Stock, Wright,
and Yogo (2002). There remain many unsolved problems.
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8.5 Hypothesis Testing

Because the finite-sample distributions of IV estimators are almost never
known, exact tests of hypotheses based on such estimators are almost never
available. However, large-sample tests can be performed in a variety of ways.
Since many of the methods of performing these tests are very similar to meth-
ods that we have already discussed in Chapters 4 and 6, there is no need to
discuss them in detail.

Asymptotic t and Wald Statistics

When there is just one restriction, the easiest approach is simply to compute
an asymptotic t test. For example, if we wish to test the hypothesis that
βi = β0i, where βi is one of the regression parameters, then a suitable test
statistic is

tβi
=

β̂i − βi0(
V̂ar(β̂i)

)1/2
, (8.47)

where β̂i is the IV estimate of βi, and V̂ar(β̂i) is the ith diagonal element
of the estimated covariance matrix, (8.34). This test statistic will not follow
the Student’s t distribution in finite samples, but it will be asymptotically
distributed as N(0, 1) under the null hypothesis.

For testing restrictions on two or more parameters, the natural analog of
(8.47) is a Wald statistic. Suppose that β is partitioned as [β1 β2], and we
wish to test the hypothesis that β2 = β20. Then, as in (6.71), the appropriate
Wald statistic is

Wβ2 = (β̂2 − β20)>
(
V̂ar(β̂2)

)−1(β̂2 − β20), (8.48)

where V̂ar(β̂2) is the submatrix of (8.34) that corresponds to the vector β2.
This Wald statistic can be thought of as a generalization of the asymptotic t
statistic: When β2 is a scalar, the square root of (8.48) is (8.47).

The IV Variant of the GNR

In many circumstances, the easiest way to obtain asymptotically valid test
statistics for models estimated using instrumental variables is to use a variant
of the Gauss-Newton regression. For the model (8.10), this variant, called the
IVGNR, takes the form

y −Xβ = PWXb + residuals. (8.49)

As with the usual GNR, the variables of the IVGNR must be evaluated at
some prespecified value of β before the regression can be run, in the usual
way, using ordinary least squares.

The IVGNR has the same properties relative to model (8.10) as the ordinary
GNR has relative to linear and nonlinear regression models estimated by least
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squares. The first property is that, if (8.49) is evaluated at β = β̂IV, then the
regressors PWX are orthogonal to the regressand, because the orthogonality
conditions, namely,

X>PW (y −Xβ̂IV) = 0,

are just the moment conditions (8.28) that define β̂IV.

The second property is that, if (8.49) is again evaluated at β = β̂IV, the
estimated OLS covariance matrix is asymptotically valid. This matrix is

s2(X>PWX)−1. (8.50)

Here s2 is the sum of squared residuals from (8.49), divided by n − k. Since
b̂ = 0 because of the orthogonality of the regressand and the regressors, those
residuals are the components of the vector y−Xβ̂IV, that is, the IV residuals
from (8.10). It follows that (8.50), which has exactly the same form as (8.34),
is a consistent estimator of the covariance matrix of β̂IV, where “consistent
estimator” is used in the sense of (5.22). As with the ordinary GNR, the
estimator ś2 obtained by running (8.49) with β = β́ is consistent for the error
variance σ2 if β́ is root-n consistent; see Exercise 8.16.

The third property is that, like the ordinary GNR, the IVGNR permits one-
step efficient estimation. For linear models, this is true if any value of β
is used in (8.49). If we set β = β́, then running (8.49) gives the artificial
parameter estimates

b́ = (X>PWX)−1X>PW(y −Xβ́) = β̂IV − β́,

from which it follows that β́ + b́ = β̂IV for all β́. In the context of nonlinear
IV estimation (see Section 8.9), this result, like the one above for σ́2, becomes
an approximation that is asymptotically valid only if β́ is a root-n consistent
estimator of the true β0.

Tests Based on the IVGNR

If the restrictions to be tested are all linear restrictions, there is no further
loss of generality if we suppose that they are all zero restrictions. Thus the
null and alternative hypotheses can be written as

H0 : y = X1β1 + u, and (8.51)

H1 : y = X1β1 + X2β2 + u, (8.52)

where the matrices X1 and X2 are, respectively, n × k1 and n × k2, β1 is a
k1--vector, and β2 is a k2 --vector. As elsewhere in this chapter, it is assumed
that E(uu>) = σ2I. Any or all of the columns of X = [X1 X2] may be
correlated with the error terms. It is assumed that there exists an n × l
matrix W of instruments, which are asymptotically uncorrelated with the
error terms, and that l ≥ k = k1 + k2.
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The same matrix of instruments is assumed to be used for the estimation of
both H0 and H1. While this assumption is natural if we start by estimating
H1 and then impose restrictions on it, it may not be so natural if we start
by estimating H0 and then estimate a less restricted model. A matrix of
instruments that would be entirely appropriate for estimating H0 may be
inappropriate for estimating H1, either because it omits some columns of X2

that are known to be uncorrelated with the errors, or because the number of
instruments is greater than k1 but less than k1 + k2. It is essential that the
W matrix used should be appropriate for estimating H1 as well as H0.

Exactly the same reasoning as that used in Section 6.7, based on the three
properties of the IVGNR established in the previous subsection, shows that
an asymptotically valid test of H0 against the alternative H1 is provided by
the artificial F statistic obtained from running the following two IVGNRs,
which correspond to H0 and H1, respectively:

IVGNR0 : y −X1β́1 = PWX1b1 + residuals, and (8.53)

IVGNR1 : y −X1β́1 = PWX1b1 + PWX2b2 + residuals. (8.54)

As in Section 6.7, it is necessary to evaluate both IVGNRs at the same para-
meter values. Since these values must satisfy the null hypothesis, β́2 = 0.
This is why the regressand, which is the same for both IVGNRs, does not
depend on X2. The artificial F statistic is

F =
(SSR0 − SSR1)/k2

SSR1/(n− k)
, (8.55)

where SSR0 and SSR1 denote the sums of squared residuals from (8.53) and
(8.54), respectively.

Because both H0 and H1 are linear models, the value of β́ used to evaluate
the regressands of (8.53) and (8.54) has no effect on the difference between
the SSRs of the two regressions, which, when divided by k2, is the numerator
of the artificial F statistic. To see this, we need to write the SSRs from the
two IVGNRs as quadratic forms in the vector y −X1β́1 and the projection
matrices MPWX1 and MPWX, respectively. Thus

SSR0 − SSR1 = (y −X1β́1)>(MPWX1 −MPWX)(y −X1β́1)

= (y −X1β́1)>(PPWX − PPWX1)(y −X1β́1), (8.56)

where PPWX1 and PPWX project orthogonally on to S(PWX1) and S(PWX),
respectively, and MPWX1 and MPWX are the complementary projections. In
Exercise 8.17, readers are asked to show that expression (8.56) is equal to the
much simpler expression

y>(PPWX − PPWX1)y, (8.57)

which does not depend in any way on β́.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



8.5 Hypothesis Testing 331

It is important to note that, although the difference between the SSRs of (8.53)
and (8.54) does not depend on β́, the same is not true of the individual SSRs.
Thus, if different values of β́ were used for (8.53) and (8.54), we would get a
wrong answer. Similarly, it is essential that the same instrument matrix W
should be used in both regressions, since otherwise none of the above analysis
would go through. It is essential that β́ be a consistent estimator under
the null hypothesis. Otherwise, the denominator of the test statistic (8.55)
will not estimate σ2 consistently, and (8.55) will not follow the F (k2, n − k)
distribution asymptotically. If (8.53) and (8.54) are correctly formulated,
with the same β́ and the same instrument matrix W, it can be shown that k2

times the artificial F statistic (8.55) is equal to the Wald statistic (8.48) with
β20 = 0, except for the estimate of the error variance in the denominator; see
Exercise 8.18.

Although the theory presented in Section 6.7 is enough to justify the test
based on the IVGNR that we have developed above, it is instructive to check
that k2 times the F statistic is indeed asymptotically distributed as χ2(k2)
under the null hypothesis H0. Because the numerator expression (8.56) does
not depend on β́, it is perfectly valid to evaluate it with β́ equal to the true
parameter vector β0. Since y −Xβ0 is equal to u, the vector of error terms,
expression (8.56) becomes

u>(PPWX − PPWX1)u. (8.58)

This is a quadratic form in the vector u and the difference of two projection
matrices, one of which projects on to a subspace of the image of the other.
Using the result of Exercise 2.16, we see that the difference is itself an orthog-
onal projection matrix, projecting on to a space of dimension k − k1 = k2.
If the vector u were assumed to be normally distributed, and X and W
were fixed, we could use Theorem 4.1 to show that 1/σ2

0 times (8.58) is dis-
tributed as χ2(k2). In Exercise 8.19, readers are invited to show that, when
the error terms are asymptotically uncorrelated with the instruments, (8.58)
is asymptotically distributed as σ2

0 times a variable that follows the χ2(k2)
distribution. Since the denominator of the F statistic (8.55) is a consistent
estimator of σ2

0 , we see that k2 times the F statistic is indeed asymptotically
distributed as χ2(k2).

Tests Based on Criterion Functions

It may appear strange to advocate using the IVGNR to compute an artificial
F statistic when one can more easily compute a real F statistic from the
SSRs obtained by IV estimation of (8.51) and (8.52). However, such a “real”
F statistic is not valid, even asymptotically. This can be seen by evaluating the
IVGNRs (8.53) and (8.54) at the restricted estimates β̃, where β̃ is a k --vector
with the first k1 components equal to the IV estimates β̃1 from (8.51) and
the last k2 components zero. The residuals from the IVGNR (8.53) are then
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exactly the same as those from IV estimation of (8.51). For (8.54), we can
use the result of Exercise 8.16 to see that the residuals can be written as

y −Xβ̂ + MWX(β̂ − β̃), (8.59)

where β̂ is the unrestricted IV estimator for (8.52). If all the regressors could
serve as their own instruments, we would have MWX = O, and the last
term in expression (8.59) would vanish, leaving just y − Xβ̂, the residuals
from (8.52). But, when some of the regressors are not used as instruments,
the two vectors of residuals are not the same. The analysis of the previous
subsection shows clearly that the correct residuals to use for testing purposes
are the ones from the two IVGNRs.

The heart of the problem is that IV estimates are not obtained by minimizing
the SSR, but rather the IV criterion function (8.30). The proper IV analog
for the F statistic is a statistic based on the difference between the values of
this criterion function evaluated at the restricted and unrestricted estimates.
At the unrestricted estimates β̂, we obtain

Q(β̂, y) = (y −Xβ̂)>PW (y −Xβ̂). (8.60)

Using the explicit expression (8.29) for the IV estimator, we see that (8.60) is
equal to

y>
(
I− PWX(X>PWX)−1X>)

PW
(
I−X(X>PWX)−1X>PW

)
y

= y>
(
PW − PWX(X>PWX)−1X>PW

)
y (8.61)

= y>(PW − PPWX)y.

If Q is now evaluated at the restricted estimates β̃, an exactly similar calcu-
lation shows that

Q(β̃, y) = y>(PW − PPWX1)y. (8.62)

The difference between (8.62) and (8.61) is thus

Q(β̃,y)−Q(β̂, y) = y>(PPWX − PPWX1)y. (8.63)

This is precisely the difference (8.57) between the SSRs of the two IVGNRs
(8.53) and (8.54). Thus we can obtain an asymptotically correct test statistic
by dividing (8.63) by any consistent estimate of the error variance σ2.

The only practical difficulty in computing (8.63) is that some regression pack-
ages do not report the minimized value of the IV criterion function. However,
this value is very easy to compute, since for any IV regression, restricted or
unrestricted, it is equal to the explained sum of squares from a regression
of the vector of IV residuals on the instruments W, as can be seen at once
from (8.60).
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Heteroskedasticity-Robust Tests

The test statistics discussed so far are valid only under the assumptions that
the error terms are serially uncorrelated and homoskedastic. The second of
these assumptions can be relaxed if we are prepared to use an HCCME. If
E(uu>) = Ω, where Ω is a diagonal, n × n matrix, then it can be readily
seen from (8.32) that the asymptotic covariance matrix of n1/2(β̂IV − β0) is

(
plim
n→∞

1−
n

X>PWX
)−1(

plim
n→∞

1−
n

X>PWΩPWX
)(

plim
n→∞

1−
n

X>PWX
)−1

. (8.64)

Not surprisingly, this looks very much like expression (5.33) for OLS esti-
mation, except that PWX replaces X, and (8.64) involves probability limits
rather than ordinary limits because the matrices X, and possibly also W, are
now assumed to be stochastic.

It is not difficult to estimate the asymptotic covariance matrix (8.64). The
outside factors can be estimated consistently in the obvious way, and the
middle factor can be estimated consistently by using the matrix

1−
n
X>PW Ω̂PWX,

where Ω̂ is an n × n diagonal matrix, the tth diagonal element of which is
equal to û2

t , the square of the tth IV residual. In practice, since the factors
of n are needed only for asymptotic analysis, we will use the matrix

V̂arh(β̂IV) ≡ (X>PWX)−1X>PW Ω̂PWX(X>PWX)−1 (8.65)

to estimate the covariance matrix of β̂IV. This covariance matrix estimator
has exactly the same form as the HCCME (5.39) for the OLS case. The only
difference is that PWX replaces X.

Once (8.65) has been calculated, we can compute Wald tests that are robust
to heteroskedasticity of unknown form. We simply use (8.47) for a test of a
single linear restriction, or (8.48) for a test of two or more restrictions, with
(8.65) replacing the ordinary covariance matrix estimator. Alternatively, we
can use the IV variant of the HRGNR introduced in Section 6.8. To obtain
this variant, all we need do is to use PWX in place of X́ in (6.90); see
Exercise 8.20. Of course, it must be remembered that all these tests are
based on asymptotic theory, and there is good reason to believe that this
theory may often provide a poor guide to their performance in finite samples.
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8.6 Testing Overidentifying Restrictions

The degree of overidentification of an overidentified linear regression model
is defined to be l − k, where, as usual, l is the number of instruments, and
k is the number of regressors. Such a model implicitly incorporates l − k
overidentifying restrictions. These arise because the generalized IV estimator
implicitly uses only k effective instruments, namely, the k columns of PWX.
It does this because it is not possible, in general, to solve the l moment
conditions (8.11) for only k unknowns.

In order for a set of instruments to be valid, a sufficient condition is (8.13),
according to which the error term ut has mean zero conditional on Wt, the
l --vector of current instruments. When this condition is not satisfied, the
IV estimator risks being inconsistent. But, if we use for estimation only the
k effective instruments in the matrix PWX, it is only those k instruments
that need to satisfy condition (8.13). Let W ∗ be an n × (l − k) matrix
of extra instruments such that S(W ) = S(PWX, W ∗). This means that
the l--dimensional span of the full set of instruments is generated by linear
combinations of the effective instruments, PWX, and the extra instruments,
W ∗. The overidentifying restrictions require that the extra instruments should
also satisfy (8.13). Unlike the conditions for the effective instruments, the
overidentifying restrictions can, and always should, be tested.

The matrix W ∗ is not uniquely determined, but we will see in a moment that
this does not matter. For any specific choice of W ∗, what we wish to test is
the set of conditions

E(W ∗
t ut) = 0. (8.66)

Although we do not observe the ut, we can estimate the vector u by the vector
of IV residuals û. Thus, in order to make our test operational, we form the
sample analog of condition (8.66), which is

1−
n

(W ∗)>û, (8.67)

and check whether this quantity is significantly different from zero.

The model we wish to test is

y = Xβ + u, u ∼ IID(0, σ2I), E(W>u) = 0. (8.68)

Testing the overidentifying restrictions implicit in this model is equivalent to
testing it against the alternative model

y = Xβ + W ∗γ + u, u ∼ IID(0, σ2I), E(W>u) = 0. (8.69)

This alternative model is constructed in such a way that it is just identified:
There are precisely l coefficients to estimate, the k elements of β and the
l − k elements of γ, and there are precisely l instruments.
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To see why testing (8.68) against (8.69) also tests whether the quantity (8.67)
is significantly different from zero, consider the numerator of the artificial
IVGNR F test for (8.68) against (8.69). Under the null hypothesis, the generic
form of this numerator is given by (8.58). For present purposes, the ma-
trix X1 of regressors in the restricted regression becomes X, and the matrix
X in (8.58) is replaced by [X W ∗], the regressor matrix for (8.69). Since
PW [X W ∗] = [PWX W ∗], and the span of the columns of this matrix is
just S(W ), it follows that the first of the two projection matrices in (8.58)
becomes simply PW . The second projection matrix is PPWX. One possible
choice for W ∗ would be a matrix the columns of which were all orthogonal
to those of PWX. Such a matrix could be constructed from an arbitrary W ∗

by multiplying it by MPWX. With such a choice, the orthogonality of PWX
and W ∗ means that, by the result in Exercise 2.16,

PW − PPWX = PW∗.

The numerator of the F statistic is thus just

u>PW∗u = u>W ∗((W ∗)>W ∗)−1(W ∗)>u.

Since the middle matrix on the right-hand side of this equation is positive
definite by construction, it can be seen that the F test is testing whether
(8.67) is significantly different from zero.

As we claimed above, implementing a test of the overidentifying restrictions
does not require a specific choice of W ∗, and in fact it does not require us to
construct W ∗ explicitly at all. To see why, consider the two IVGNRs for the
test, evaluated at β̂IV. They are

û = PWXb1 + residuals, and (8.70)

û = PWXb1 + W ∗b2 + residuals. (8.71)

The numerator of the F statistic is the difference of the two SSRs, which
is equal to minus the difference of the two explained sums of squares. The
explained sum of squares from (8.70) is zero, because the regressand is or-
thogonal to the regressors. The explained sum of squares from (8.71) is the
same as that from the regression

û = Wb + residuals, (8.72)

because, however W ∗ is chosen, we always have S(PWX,W ∗) = S(W ). The
test statistic is therefore equal to the explained sum of squares from (8.72)
divided by a consistent estimate of the error variance. One such estimate
is n−1û>û. Thus one way to compute the test statistic is to regress the
residuals û from IV estimation of the original model (8.68) on the full set of
instruments, and use n times the uncentered R2 from this regression as the
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test statistic. If (8.68) is correctly specified, the asymptotic distribution of
the statistic is χ2(l − k).

Another very easy way to test the overidentifying restrictions is to use a test
statistic based on the IV criterion function. Since the alternative model (8.69)
is just identified, the minimized IV criterion function for it is exactly zero.
To see this, note that, for any just identified model, the IV residuals are
orthogonal to the full set of instruments by the moment conditions (8.11) used
with just identified models. Therefore, when the criterion function (8.30) is
evaluated at the IV estimates β̂IV, it becomes û>PW û, which is zero because
of the orthogonality of W and û. Thus an appropriate test statistic is just
the criterion function Q(β̂IV,y) for the original model (8.68), divided by the
estimate of the error variance from this same model. A test based on this
statistic is often called a Sargan test, after Sargan (1958). The test statistic
is numerically identical to the one based on (8.72), as readers are asked to
show in Exercise 8.21.

Although (8.69) is a simple enough model, it actually represents two con-
ceptually different alternatives, because there are two situations in which the
“true” parameter vector γ in (8.69) could be nonzero. One possibility is
that the model (8.68) is correctly specified, but some of the instruments are
asymptotically correlated with the error terms and are therefore not valid
instruments. The other possibility is that (8.68) is not correctly specified,
and some of the instruments (or, possibly, other variables that are correlated
with them) have incorrectly been omitted from the regression function. In
either case, the overidentification test statistic will lead us to reject the null
hypothesis whenever the sample size is large enough.

Even if we do not know quite how to interpret a significant value of the over-
identification test statistic, it is always a good idea to compute it. If it is
significantly larger than it should be by chance under the null hypothesis,
one should be extremely cautious in interpreting the estimates, because it is
quite likely either that the model is specified incorrectly or that some of the
instruments are invalid.

8.7 Durbin-Wu-Hausman Tests

In many cases, we do not know whether we actually need to use instrumental
variables. For example, we may suspect that some variables are measured
with error, but we may not know whether the errors are large enough to
cause enough inconsistency for us to worry about. Or we may suspect that
certain explanatory variables are endogenous, but we may not be at all sure of
our suspicions, and we may not know how much inconsistency would result if
they were justified. In such a case, it may or may not be perfectly reasonable
to employ OLS estimation.
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If the regressors are valid instruments, then, as we saw in Section 8.3, they
are also the optimal instruments. Consequently, the OLS estimator, which
is consistent in this case, is preferable to an IV estimator computed with
some other valid instrument matrix W. In view of this, it would evidently
be very useful to be able to test the null hypothesis that the error terms
are uncorrelated with all the regressors against the alternative that they are
correlated with some of the regressors, although not with the instruments W.
In this section, we discuss a simple procedure that can be used to perform
such a test. This procedure dates back to a famous paper by Durbin (1954),
and it was subsequently extended by Wu (1973) and Hausman (1978). We
will therefore refer to all tests of this general type as Durbin-Wu-Hausman
tests, or DWH tests.

The null and alternative hypotheses for the DWH test can be expressed as

H0 : y = Xβ + u, u ∼ IID(0, σ2I), E(X>u) = 0, and (8.73)

H1 : y = Xβ + u, u ∼ IID(0, σ2I), E(W>u) = 0. (8.74)

Under H1, the IV estimator β̂IV is consistent, but the OLS estimator β̂OLS is
not. Under H0, both are consistent. Thus, plim (β̂IV − β̂OLS) is zero under
the null and nonzero under the alternative. The idea of the DWH test is to
check whether the difference β̂IV − β̂OLS is significantly different from zero in
the available sample. This difference, which is sometimes called the vector of
contrasts, can be written as

β̂IV − β̂OLS = (X>PWX)−1X>PWy − (X>X)−1X>y. (8.75)

Expression (8.75) is not very useful as it stands, but it can be converted into
a much more useful expression by means of a trick that is often useful in
econometrics. We pretend that the first factor of β̂IV is common to both
estimators, and take it out as a common factor. This gives

β̂IV − β̂OLS = (X>PWX)−1
(
X>PWy −X>PWX(X>X)−1X>y

)
.

Now we can find some genuinely common factors in the two terms of the
rightmost factor of this expression. Taking them out yields

β̂IV − β̂OLS = (X>PWX)−1X>PW
(
I−X(X>X)−1X>)

y

= (X>PWX)−1X>PWMXy. (8.76)

The first factor in expression (8.76) is a positive definite matrix, by the iden-
tification condition. Therefore, testing whether β̂IV − β̂OLS is significantly
different from zero is equivalent to testing whether the vector X>PWMXy is
significantly different from zero.

Under H0, the preferred estimation technique is OLS, and the OLS residu-
als are given by the vector MXy. Therefore, we wish to test whether the
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k columns of the matrix PWX are orthogonal to this vector of residuals. Let
us partition the matrix of regressors X as in (8.38), so that X = [Z Y ],
where the k1 columns of Z are included in the matrix of instruments W, and
the k2 = k− k1 columns of Y are treated as potentially endogenous. By con-
struction, OLS residuals are orthogonal to all the columns of X, in particular
to those of Z. For these regressors, there is therefore nothing to test: The
relation

Z>PWMXy = Z>MXy = 0

holds identically, because PWZ = Z and MXZ = O. The test is thus
concerned only with the k2 elements of Y>PWMXy, which will not in general
be identically zero, but should not differ from it significantly under H0.

The easiest way to test whether Y>PWMXy is significantly different from
zero is to use an F test for the k2 restrictions δ = 0 in the OLS regression

y = Xβ + PWY δ + u. (8.77)

The OLS estimates of δ from (8.77) are, by the FWL Theorem, the same as
those from the FWL regression of MXy on MXPWY , that is,

δ̂ = (Y>PWMXPWY )−1Y>PWMXy.

Since the inverted matrix is positive definite, we see that testing whether
δ = 0 is equivalent to testing whether Y>PWMXy = 0, as desired. This
conclusion could have been foreseen by considering the threefold orthogonal
decomposition that is implicitly performed by an F test; recall Section 4.4.
The DWH test can also be implemented by means of another F test, which
yields exactly the same test statistic; see Exercise 8.22 for details.

The F test based on (8.77) has k2 and n− k − k2 degrees of freedom. Under
H0, if we assume that X and W are not merely predetermined but also
exogenous, and that the error terms u are multivariate normal, the F statistic
will indeed have the F (k2, n−k−k2) distribution. Under H0 as it is expressed
in (8.73), its asymptotic distribution is F (k2,∞), and k2 times the statistic is
asymptotically distributed as χ2(k2).

If the null hypothesis (8.73) is rejected, we are faced with the same sort of
ambiguity of interpretation as for the test of overidentifying restrictions. One
possibility is that at least some columns of Y are indeed endogenous, but in
such a way that the alternative model (8.74) is correctly specified. But we can
equally well take (8.77) literally as a model with exogenous or predetermined
regressors. In that case, the nature of the misspecification of (8.73) is not that
Y is endogenous, but rather that the linear combinations of the instruments
given by the columns of PWY have explanatory power for the dependent
variable y over and above that of X. Without further investigation, there is
no way to choose between these alternative interpretations.
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Tests Based on Vectors of Contrasts

DWH tests are much more widely applicable than we have indicated so far.
They can be used whenever there are two estimators, one of which, like β̂IV,
is inefficient but consistent under relatively weak conditions, while the other,
like β̂OLS, is efficient, but only if the stronger conditions required for it to
be consistent are satisfied. For example, for the panel data case discussed in
Section 7.10, a DWH test can be used to see whether it is valid to employ the
random-effects estimator rather than the less efficient fixed-effects estimator;
see Hausman (1978) and Hausman and Taylor (1981) for details.

In this case, and many others, it is convenient to base a test directly on the
vector of contrasts, that is, the difference between the two vectors of estimates.
Suppose we are trying to estimate a k --vector θ of which the true value is θ0.
Let θ̂E denote an efficient estimator, and let θ̂I denote an inefficient estimator
that is consistent under weaker conditions. Under mild regularity conditions,
an inefficient estimator is always asymptotically equal to an efficient estimator
plus a random vector that is uncorrelated with the efficient estimator. We
saw an example of this in Section 3.5 when we discussed the Gauss-Markov
Theorem; see also Exercise 8.23. Thus, in a broad range of cases, we can write

n1/2(θ̂I − θ0)
a= n1/2(θ̂E − θ0) + v, (8.78)

where v is a random k --vector that is uncorrelated with n1/2(θ̂E − θ0). This
vector is asymptotically equal to n1/2 times the vector of contrasts, which is
just θ̂I − θ̂E.

In this situation, a DWH test may be based on a quadratic form in the vector
of contrasts and the inverse of an estimate of its covariance matrix. From
(8.78) and the fact that v is uncorrelated with n1/2(θ̂E − θ0), we see that

Var(v) a= Var
(
n1/2(θ̂I − θ0)

)−Var
(
n1/2(θ̂E − θ0)

)
.

Whenever standard asymptotic results apply, the vector n1/2(θ̂I − θ̂E) will be
asymptotically normally distributed. Therefore, by Theorem 4.1, a suitable
test statistic is

(θ̂I − θ̂E)>
(
V̂ar(θ̂I)− V̂ar(θ̂E)

)−1(θ̂I − θ̂E), (8.79)

where V̂ar(θ̂I) and V̂ar(θ̂E) are consistent estimates of the covariance matrices
of the two estimators. Tests based on quadratic forms like (8.79) are often
called Hausman tests.

A problem arises as to the degrees of freedom for the test statistic (8.79).
As we have already seen, the DWH test based on regression (8.77) has k2

degrees of freedom, where k2 is the number of possibly endogenous variables
on the right-hand side of equation (8.73). This is smaller than k, the dimen-
sion of the vector β. A similar phenomenon occurs whenever the covariance
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matrix Var(v) does not have full rank. It may be hard to check for such a
phenomenon, since the rank of the difference between the estimates V̂ar(θ̂I)
and V̂ar(θ̂E) usually has full rank even if Var(v) does not. Worse, this differ-
ence may or may not be guaranteed to be a positive definite matrix, in which
case the statistic (8.79) cannot be used without modification.

In some such cases, a test statistic can be based on a subvector of the vector
of contrasts. This is what would have to be done if θ̂I were an IV estimator
and θ̂E were an OLS estimator. Then a DWH statistic of the form (8.79)
would have to be based solely on the coefficients of the possibly endogenous
variables. This would yield a Hausman test asymptotically equivalent to the
F test based on regression (8.77) that we have already discussed.

8.8 Bootstrap Tests

The difficulty with using the bootstrap for models estimated by IV is that
there is more than one endogenous variable. The bootstrap DGP must there-
fore be formulated in such a way as to generate samples containing bootstrap
realizations of both the main dependent variable y and the endogenous ex-
planatory variables, which we denote by Y in the notation of (8.38).

As we saw in Section 8.4, the single equation (8.38) is not a complete specifi-
cation of a model. We can complete it in various ways, of which the easiest is
to use equations (8.39) for i = 1, . . . , k2. This introduces k2 vectors πi, each
containing l parameters. In addition, we must specify the joint distribution
of the error terms u in the equation for y and the vi in the equations for Y .
If we use the notation of (8.44), we can write the reduced form equations for
the endogenous explanatory variables in matrix form as

Y = WΠ2 + V2, (8.80)

where Π2 is an l× k2 matrix, the columns of which are the πi of (8.39), and
V2 is an n×k2 matrix of error terms, the columns of which are the vi of (8.39).
It is convenient to group all the error terms together into one matrix, and so
we define the n × (k2 + 1) matrix V as [u V2]. Note that this matrix V is
not the same as the one used in Section 8.4. If Vt denotes a typical row of V ,
then we will assume that

E(VtV
>

t ) = Σ, (8.81)

where Σ is a (k2+1)×(k2+1) covariance matrix, the upper left-hand element
of which is σ2, the variance of the error terms in u. Together, (8.38), (8.80),
and (8.81) constitute a model that, although not quite fully specified (because
the distribution of the error terms is not stated), can serve as a basis for various
bootstrap procedures.

Suppose that we wish to develop bootstrap versions of the tests considered
in Section 8.5, where the null and alternative hypotheses are given by (8.51)
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and (8.52), respectively. For concreteness, we consider the test implemented
by use of the IVGNRs (8.53) and (8.54), although the same principles apply to
other forms of test, such as the asymptotic t and Wald tests (8.47) and (8.48),
or tests based on the IV criterion function. Note that we now have two
different partitions of the matrix X of explanatory variables. First, there is the
partition X = [Z Y ], in which Z contains the exogenous or predetermined
variables, and Y contains the endogenous ones that are modeled explicitly
by (8.80). Then there is the partition X = [X1 X2], in which we separate
the variables X1 included under the null from the variables X2 that appear
only under the alternative. In general, these two partitions are not related.
We can expect that, in most cases, some columns of Y are contained in X1

and some in X2, and similarly for Z.

The first step, as usual, is the estimation by IV of the model (8.51) that
represents the null hypothesis. From this we obtain the constrained parameter
estimates β̃1 and residuals ũ. Next, we formulate and run the two IVGNRs
(8.53) and (8.54), evaluated at β1 = β̃1, and compute the F statistic. Then, in
order to estimate all the other parameters of the extended model, we run the
k2 reduced form regressions represented by (8.80), obtaining OLS estimates
and residuals that we denote respectively by Π̂2 and V̂2. We will write V̂ to
denote [ũ V̂2].

For the bootstrap DGP, suppose first that all the instruments are exogenous.
In that case, they are used unchanged in the bootstrap DGP. At this point,
we must choose between a parametric and a semiparametric bootstrap. Since
the latter is slightly easier, we discuss it first. In most cases, X and W will
include a constant, and the residuals ũ and V̂ will be centered. If not, as
we discussed in Section 4.6, they must be centered before proceeding further.
Because we wish the bootstrap DGP to retain the contemporaneous covariance
structure of V , the bootstrap error terms will be drawn as complete rows V ∗

t

by resampling entire rows of V̂ . In this way, we draw our bootstrap error
terms from the joint empirical distribution of the V̂t. With models estimated
by least squares, it is desirable to rescale residuals before they are resampled;
again see Section 4.6. Since the columns of V̂2 are least squares residuals, it
is probably desirable to rescale them. However, there is no justification for
rescaling the vector ũ.

For the parametric bootstrap, we must actually estimate Σ. The easiest way
to do so is to form the matrix

Σ̂ = 1−
n

V̂ >V̂ .

Since β̃1 and Π̂2 are consistent estimators, it follows that V̂ is also consistent
for V . We can then apply a law of large numbers to each element of Σ̂ in
order to show that it converges as n → ∞ to the corresponding element of
the true Σ. The row vectors of parametric bootstrap error terms V ∗

t will
then be independent drawings from the multivariate normal distribution with
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mean zero and covariance matrix Σ̂. In order to make these drawings, the
easiest method is to form a (k2 +1)× (k2 +1) matrix Â such that ÂÂ>= Σ̂.
Usually, Â is chosen to be upper or lower triangular; recall the discussion of
the multivariate normal distribution in Section 4.3. Then, if a random number
generator is used to draw (k2 + 1)--vectors v∗ from N(0, I), we see that Âv∗

is a drawing from N(0, Σ̂), as desired.

The rest of the implementation is the same for both the parametric and the
semiparametric bootstrap. For each bootstrap replication, the endogenous
explanatory variables are first generated by the bootstrap reduced form

Y ∗ = WΠ̂2 + V ∗
2 , (8.82)

where Π̂2 and V ∗
2 are just the matrices Π̂ and V ∗ without their first columns.

Then the main dependent variable is generated so as to satisfy the null hypo-
thesis:

y∗ = X∗
1 β̃1 + u∗.

Here the star on X∗
1 indicates that some of the regressors in X1 may be

endogenous, and so will have been simulated using (8.82). The bootstrap
error terms u∗ are just the first column of V ∗. For each bootstrap sample, the
two IVGNRs are estimated, and a bootstrap F statistic is computed. Then,
as usual, the bootstrap P value is the proportion of bootstrap F statistics
greater than the F statistic computed from the original data.

Bootstrapping tests of overidentifying restrictions follows the same lines. Since
the null hypothesis for such a test is just the model being estimated, the only
extra work needed is the estimation of the reduced form model (8.80) for the
endogenous explanatory variables. Bootstrap error terms are generated by a
parametric or semiparametric bootstrap, and the residuals from the IV esti-
mation using the bootstrap data are regressed on the full set of instruments.
The simplest test statistic is just the nR2 from this regression.

It is particularly easy to bootstrap DWH tests, because for them the null
hypothesis is that none of the explanatory variables is endogenous. It is
therefore quite unnecessary to model them by (8.80), and bootstrap data are
generated as for any other model to be estimated by least squares. Note that,
if we are prepared to make the strong assumptions of the classical normal
linear model under the null, the bootstrap is quite unnecessary, because, as
we saw in the previous section, the test statistic has a known finite-sample
distribution.

If some of the non-endogenous explanatory variables are lagged dependent
variables, or lags of the endogenous explanatory variables, bootstrap samples
must be generated recursively, as for the case of the ordinary regression model
with a lagged dependent variable, for which the recursive bootstrap DGP
was (4.66). Especially if lags of endogenous explanatory variables are involved,
this may become quite complicated.
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It is worth issuing a warning that, for a number of reasons well beyond the
scope of this chapter, the bootstrap method outlined above cannot be expected
to work as well as the bootstrap methods for regression models discussed
in earlier chapters. Some reasons for this are discussed in Dufour (1997).
Bootstrapping of simultaneous equations models is still an active topic of
research, and new methods are constantly being developed.

8.9 IV Estimation of Nonlinear Models

In this section, we extend the results of this chapter beyond the linear model
(8.10) dealt with up to this point by very briefly discussing instrumental
variables estimation of the nonlinear regression model

y = x(β) + u, E(uu>) = σ2I, (8.83)

where the notation is that of Chapter 6. Some of the results that we will
obtain are formally the same as ones previously obtained in Section 6.2 in the
context of MM estimation. However, in contrast to what we assumed there,
we now assume that at least some of the variables on which the regression
functions xt(β) depend are not contained in whatever information sets, Ωt,
with respect to which the error terms are innovations. This leads the error
terms to be correlated with the regression functions and at least some of their
derivatives. In consequence, for essentially the same reasons as in the linear
case, the NLS parameter estimates will be inconsistent.

If the vector β in (8.83) is k --dimensional, consistent MM estimates based
on an n × k matrix of exogenous or predetermined instruments, W, can be
obtained by solving the moment conditions (6.10):

W>(y − x(β)
)

= 0.

By using arguments similar to those employed in Sections 6.3 and 8.3, it can
be shown that the optimal instruments, by the criterion of the asymptotic
variance, are given by X̄0 ≡ X̄(β0). Here, β0 denotes the true parameter
vector, and the n × k matrix X(β), is defined, as in Section 6.2, to be the
matrix of partial derivatives of the nonlinear regression functions with respect
to the parameters. As in (8.18), the bar signifies expectations conditional on
the relevant information sets: The tth row of X̄0 is E

(
Xt(β0) |Ωt

)
, while the

tth row of X0 is just Xt(β0).

If we restrict our attention to instruments that can be expressed as linear
combinations of the l columns of a given instrument matrix W, with l ≥ k,
the analog of the result that the optimal instruments in this class are given
by (8.23) is that they are given by PWX̄0. Since β0 is not known, it is
convenient to use the same trick as that used for nonlinear least squares by
solving the set of moment conditions

X>(β)PW
(
y − x(β)

)
= 0. (8.84)
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These moment conditions are the analog in the IV context of conditions (6.27)
for the least-squares case. If it exists, the solution to equations (8.84) is the
nonlinear instrumental variables estimator, or NLIV estimator.

The NLIV estimates also minimize the nonlinear IV criterion function

Q(β,y) =
(
y − x(β)

)>PW
(
y − x(β)

)
, (8.85)

which generalizes the ordinary IV criterion function (8.30) in the obvious way.
As usual, the first-order conditions for minimizing (8.85) are equivalent to the
moment conditions (8.84), but it is usually easier to minimize Q(β,y) than it
is to solve the moment conditions directly. In contrast to the situation with
linear models, minimizing (8.85) is, in general, not equivalent to replacing the
current endogenous regressors Y by PWY and then minimizing the sum of
squared residuals. The two procedures will be equivalent only if x(β) is a
linear function of Y . Thus, even though it is quite common to refer to NLIV
estimation as nonlinear two-stage least squares, it is incorrect and misleading
to do so, because NLIV estimates are never actually computed in two stages.

The strong asymptotic identification condition for the NLIV estimator is that
the matrix SX0>W (SW>W )−1SW>X0 is positive definite, where SX0>W and
SW>X0 are defined, analogously to SX>W and SW>X, as plim n−1X0

>W
and plim n−1W>X0, respectively. As with nonlinear models estimated by
least squares, the strong asymptotic identification condition is sufficient, but
not necessary, for ordinary asymptotic identification; see Section 6.2.

If the strong asymptotic identification condition is satisfied, the NLIV esti-
mator can be shown to be consistent by the usual sort of reasoning. It is also
asymptotically normal, and it satisfies the equation

n1/2(β̂NLIV − β0)
a= (n−1X0

>PWX0)−1n−1/2X0
>PWu, (8.86)

from which it follows that the asymptotic covariance matrix is

Var
(

plim
n→∞

n1/2(β̂NLIV − β0)
)

= plim
n→∞

σ2
0 (n−1X0

>PWX0)−1, (8.87)

where σ2
0 is the true error variance. We previously obtained this result in

(6.26) under stronger assumptions about the error terms. Based on (8.87), a
suitable estimator of the actual covariance matrix is

V̂ar(β̂NLIV) = σ̂2(X̂>PWX̂)−1, (8.88)

where X̂ ≡ X(β̂NLIV), and σ̂2 is 1/n times the SSR from IV estimation
of regression (8.83). Readers may find it instructive to compare (8.88) with
expression (8.34), the covariance matrix of the generalized IV estimator for a
linear regression model.
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The nonlinear version of the IVGNR is a simple extension of (8.49). It can
be written as

y − x(β) = PWX(β)b + residuals. (8.89)

In Exercise 8.24, readers are invited to show that this artificial regression has
the properties necessary for its use in hypothesis testing, and to develop a
heteroskedasticity-robust version of it. Hypothesis testing can also be carried
out on the basis of the nonlinear IV criterion function (8.85), in precisely the
same way as for linear models.

Tests of overidentifying restrictions and DWH tests for nonlinear models are
likewise simple and obvious extensions of those for linear models. The mini-
mized value of (8.85), when divided by any consistent estimate of σ2, is asymp-
totically distributed as χ2(l − k) and may be used to test the overidentifying
restrictions. Although bootstrapping of nonlinear models estimated by NLIV
can be carried out just as in Section 8.8, with the endogenous explanatory
variables generated by the set of linear equations (8.80), the requirement that
these equations should be linear may often be uncomfortably strong. In such
cases, it would be unwise in the present state of the art to make any specific
recommendations.

8.10 Final Remarks

Although it is formally very similar to other MM estimators that we have
studied, the IV estimator does involve several important new concepts. These
include the idea of an instrumental variable, the notion of forming a set of
instruments optimally as weighted combinations of a larger number of instru-
ments when that number exceeds the number of parameters, and the concept
of overidentifying restrictions.

The optimality of the generalized IV estimator depends critically on the fairly
strong assumption that the error terms are homoskedastic and serially uncor-
related. When this assumption is relaxed, it may be possible to obtain MM
estimators that are more efficient than the GIV estimator. These “generalized
method of moments” estimators will be the topic of the next chapter.

8.11 Exercises

8.1 Consider a very simple consumption function, of the form

ci = β1 + β2y∗i + u∗i , u∗i ∼ IID(0, σ2),

where ci is the logarithm of consumption by household i, and y∗i is the per-
manent income of household i, which is not observed. Instead, we observe
current income yi, which is equal to y∗i +vi, where vi ∼ IID(0, ω2) is assumed
to be uncorrelated with y∗i and ui. Therefore, we run the regression

ci = β1 + β2yi + ui.
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Under the plausible assumption that the true value β20 is positive, show that
yi is negatively correlated with ui. Using this result, evaluate the plim of the
OLS estimator β̂2, and show that this plim is less than β20.

8.2 Consider the simple IV estimator (8.12), computed first with an n×k matrix
W of instrumental variables, and then with another n×k matrix WJ, where
J is a k×k nonsingular matrix. Show that the two estimators coincide. Why
does this fact show that (8.12) depends on W only through the orthogonal
projection matrix PW ?

8.3 Show that, if the matrix of instrumental variables W is n× k, with the same
dimensions as the matrix X of explanatory variables, then the generalized
IV estimator (8.29) is identical to the simple IV estimator (8.12).

8.4 Show that minimizing the criterion function (8.30) with respect to β yields
the generalized IV estimator (8.29).

8.5 Under the usual assumptions of this chapter, including (8.16), show that the
probability limit of

1−
nQ(β0,y) =

1−
n (y −Xβ0)

>PW (y −Xβ0)

is zero if y = Xβ0 +u. Under the same assumptions, along with the asymp-
totic identification condition that SX>W (SW>W )−1SW>X has full rank,
show further that plim n−1Q(β,y) is strictly positive for β 6= β0.

8.6 Under assumption (8.16) and the asymptotic identification condition that
SX>W (SW>W )−1SW>X has full rank, show that the GIV estimator β̂IV is
consistent by explicitly computing the probability limit of the estimator for
a DGP such that y = Xβ0 + u.

8.7 Suppose that you can apply a central limit theorem to the vector n−1/2W>u,
with the result that it is asymptotically multivariate normal, with mean 0
and covariance matrix (8.33). Use (8.32) to demonstrate explicitly that, if
y = Xβ0 + u, then n1/2(β̂IV − β0) is asymptotically normal with mean 0
and covariance matrix (8.17).

8.8 Suppose that W1 and W2 are, respectively, n × l1 and n × l2 matrices of
instruments, and that W2 consists of W1 plus l2 − l1 additional columns.
Prove that the generalized IV estimator using W2 is asymptotically more
efficient than the generalized IV estimator using W1. To do this, you need to
show that the matrix (X>PW1X)−1−(X>PW2X)−1 is positive semidefinite.
Hint: see Exercise 3.8.

8.9 Show that the simple IV estimator defined in (8.41) is unbiased when the data
are generated by (8.40) with σv = 0. Interpret this result.

8.10 Use the DGP (8.40) to generate at least 1000 sets of simulated data for x
and y with sample size n = 10, using normally distributed error terms and
parameter values σu = σv = 1, π0 = 1, β0 = 0, and ρ = 0.5. For the
exogenous instrument w, use independent drawings from the standard normal
distribution, and then rescale w so that w>w is equal to n, rather than 1 as
in Section 8.4.
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For each simulated data set, compute the IV estimator (8.41). Then draw the
empirical distribution of the realizations of the estimator on the same plot
as the CDF of the normal distribution with mean zero and variance σ2

u/nπ2
0 .

Explain why this is an appropriate way to compare the finite-sample and
asymptotic distributions of the estimator.

In addition, for each simulated data set, compute the OLS estimator, and plot
the EDF of the realizations of this estimator on the same axes as the EDF of
the realizations of the IV estimator.

8.11 Redo Exercise 8.10 for a sample size of n = 100. If you have enough computer
time available, redo it yet again for n = 1000, in order to see how quickly or
slowly the finite-sample distribution tends to the asymptotic distribution.

8.12 Redo the simulations of Exercise 8.10, for n = 10, generating the exogenous
instrument w as follows. For the first experiment, use independent drawings
from the uniform distribution on [−1, 1]. For the second, use drawings from
the AR(1) process wt = αwt−1 + εt, where w0 = 0, α = 0.8, and the εt are
independent drawings from N(0, 1). In all cases, rescale w so that w>w = n.
To what extent does the empirical distribution of β̂IV appear to depend on
the properties of w? What theoretical explanation can you think of for your
results?

8.13 Include one more instrument in the simulations of Exercise 8.10. Continue
to use the same DGP for y and x, but replace the simple IV estimator by
the generalized one, based on two instruments w and z, where z is generated
independently of everything else in the simulation. See if you can verify the
theoretical prediction that the overidentified estimator computed with two
instruments is more biased, but has thinner tails, than the just identified
estimator.

Repeat the simulations twice more, first with two additional instruments and
then with four. What happens to the distribution of the estimator as the
number of instruments increases?

8.14 Verify that β̂IV is the OLS estimator for model (8.10) when the regressor
matrix is X = [Z Y ] = WΠ, with the matrix V in (8.44) equal to O. Is
this estimator consistent? Explain.

8.15 Verify, by use of the assumption that the instruments in the matrix W are
exogenous or predetermined, and by use of a suitable law of large numbers,
that all the terms in (8.45) that involve V do not contribute to the probability
limit of (8.45) as the sample size tends to infinity.

8.16 Show that the vector of residuals obtained by running the IVGNR (8.49) with
β = β́ is equal to y −Xβ̂IV +MWX(β̂IV − β́). Use this result to show that
σ́2, the estimate of the error variance given by the IVGNR, is consistent for
the error variance of the underlying model (8.10) if β́ is root-n consistent.

8.17 Prove that expression (8.56) is equal to expression (8.57). Hint: Use the facts
that PPWX1X1 = PWX1 and PPWXPPWX1 = PPWX1.

8.18 Show that k2 times the artificial F statistic from the pair of IVGNRs (8.53)
and (8.54) is asymptotically equal to the Wald statistic (8.48), using reasoning
similar to that employed in Section 6.7. Why are these two statistics not
numerically identical? Show that the asymptotic equality does not hold if
different matrices of instruments are used in the two IVGNRs.
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8.19 Sketch a proof of the result that expression (8.58),

1

σ2
0

u>(PPWX − PPWX1)u,

is asymptotically distributed as χ2(k2) when the vector u is IID(0, σ2
0I) and

is asymptotically uncorrelated with the instruments W. Here k2 = k − k1,
where X has k columns and X1 has k1 columns.

8.20 The IV variant of the HRGNR (6.90), evaluated at β = β́, can be written as

ι = P
ÚPWX

Ú−1PWXb + residuals, (8.90)

where ι is an n--vector of which every component equals 1, and Ú is an n×n
diagonal matrix with tth diagonal element equal to the tth element of the
vector y −Xβ́.

Verify that this artificial regression possesses all the requisite properties for
hypothesis testing, namely, that:

• The regressand in (8.90) is orthogonal to the regressors when β́ = β̂IV;

• The estimated OLS covariance matrix from (8.90) evaluated at β́ = β̂IV is
equal to n/(n− k) times the HCCME V̂arh(β̂IV) given by (8.65);

• The HRGNR (8.90) allows one-step estimation: The OLS parameter esti-
mates b́ from (8.90) are such that β̂IV = β́ + b́.

8.21 Show that nR2 from the modified IVGNR (8.72) is equal to the Sargan test
statistic, that is, the minimized IV criterion function for model (8.68) divided
by the IV estimate of the error variance for that model.

8.22 Consider the following OLS regression, where the variables have the same
interpretation as in Section 8.7 on DWH tests:

y = Xβ +MWYζ + u. (8.91)

Show that an F test of the restrictions ζ = 0 in (8.91) is numerically identical
to the F test for δ = 0 in (8.77). Show further that the OLS estimator of β
from (8.91) is identical to the estimator β̂IV obtained by estimating (8.74)
by instrumental variables.

8.23 Show that the difference between the generalized IV estimator β̂IV and the
OLS estimator β̂OLS, for which an explicit expresion is given in equation
(8.76), has zero covariance with β̂OLS itself. For simplicity, you may treat
the matrix X as fixed.

8.24 Using the same methods as those in Sections 6.5 and 6.6, show that the
nonlinear version (8.89) of the IVGNR satisfies the three conditions, analogous
to those set out in Exercise 8.20, which are necessary for the use of the
IVGNR in hypothesis testing. What is the nonlinear version of the IV variant
of the HRGNR? Show that it, too, satisfies the three conditions under the
assumption of possibly heteroskedastic error terms.
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8.25 The data in the file money.data are described in Exercise 7.14. Using these
data, estimate the model

mt = β1 + β2rt + β3yt + β4mt−1 + β5mt−2 + ut (8.92)

by OLS for the period 1968:1 to 1998:4. Then perform a DWH test for the
hypothesis that the interest rate, rt, can be treated as exogenous, using rt−1

and rt−2 as additional instruments.

8.26 Estimate equation (8.92) by generalized instrumental variables, treating rt

as endogenous and using rt−1 and rt−2 as additional instruments. Are the
estimates much different from the OLS ones? Verify that the IV estimates
may also be obtained by OLS estimation of equation (8.91). Are the reported
standard errors the same? Explain why or why not.

8.27 Perform a Sargan test of the overidentifying restrictions for the IV estimation
you performed in Exercise 8.26. How do you interpret the results of this test?

8.28 The file demand-supply.data contains 120 artificial observations on a demand-
supply model similar to equations (8.06)–(8.07). The demand equation is

qt = β1 + β2Xt2 + β3Xt3 + γpt + ut, (8.93)

where qt is the log of quantity, pt is the log of price, Xt2 is the log of income,
and Xt3 is a dummy variable that accounts for regular demand shifts.

Estimate equation (8.93) by OLS and 2SLS, using the variables Xt4 and Xt5

as additional instruments. Does OLS estimation appear to be valid here?
Does 2SLS estimation appear to be valid here? Perform whatever tests are
appropriate to answer these questions.

Reverse the roles of qt and pt in equation (8.93) and estimate the new equation
by OLS and 2SLS. How are the two estimates of the coefficient of qt in the
new equation related to the corresponding estimates of γ from the original
equation? What do these results suggest about the validity of the OLS and
2SLS estimates?

Copyright c© 1999, Russell Davidson and James G. MacKinnon



Chapter 9

The Generalized

Method of Moments

9.1 Introduction

The models we have considered in earlier chapters have all been regression
models of one sort or another. In this chapter and the next, we introduce
more general types of models, along with a general method for performing
estimation and inference on them. This technique is called the generalized
method of moments, or GMM, and it includes as special cases all the methods
we have so far developed for regression models.

As we explained in Section 3.1, a model is represented by a set of DGPs.
Each DGP in the model is characterized by a parameter vector, which we
will normally denote by β in the case of regression functions and by θ in the
general case. The starting point for GMM estimation is to specify functions,
which, for any DGP in the model, depend both on the data generated by that
DGP and on the model parameters. When these functions are evaluated at
the parameters that correspond to the DGP that generated the data, their
expectation must be zero.

As a simple example, consider the linear regression model yt = Xtβ + ut.
An important part of the model specification is that the error terms have
mean zero. These error terms are unobservable, because the parameters β
of the regression function are unknown. But we can define the residuals
ut(β) ≡ yt −Xtβ as functions of the observed data and the unknown model
parameters, and these functions provide what we need for GMM estimation.
If the residuals are evaluated at the parameter vector β0 associated with the
true DGP, they have mean zero under that DGP, but if they are evaluated at
some β 6= β0, they do not have mean zero. In Chapter 1, we used this fact
to develop a method of moments (MM) estimator for the parameter vector β
of the regression function. As we will see in the next section, the various
GMM estimators of β include as a special case the MM (or OLS) estimator
developed in Chapter 1.

In Chapter 6, when we dealt with nonlinear regression models, and again in
Chapter 8, we used instrumental variables along with residuals in order to
develop MM estimators. The use of instrumental variables is also an essential
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aspect of GMM, and in this chapter we will once again make use of the various
kinds of optimal instruments that were useful in Chapters 6 and 8 in order
to develop a wide variety of estimators that are asymptotically efficient for a
wide variety of models.

We begin by considering, in the next section, a linear regression model with
endogenous explanatory variables and an error covariance matrix that is not
proportional to the identity matrix. Such a model requires us to combine
the insights of both Chapters 7 and 8 in order to obtain asymptotically effi-
cient estimates. In the process of doing so, we will see how GMM estimation
works more generally, and we will be led to develop ways to estimate models
with both heteroskedasticity and serial correlation of unknown form. In Sec-
tion 9.3, we study in some detail the heteroskedasticity and autocorrelation
consistent, or HAC, covariance matrix estimators that we briefly mentioned
in Section 5.5. Then, in Section 9.4, we introduce a set of tests, based on
GMM criterion functions, that are widely used for inference in conjunction
with GMM estimation. In Section 9.5, we move beyond regression models
to give a more formal and advanced presentation of GMM, and we postpone
to this section most of the proofs of consistency, asymptotic normality, and
asymptotic efficiency for GMM estimators. In Section 9.6, which depends
heavily on the more advanced treatment of the preceding section, we consider
the Method of Simulated Moments, or MSM. This method allows us to obtain
GMM estimates by simulation even when we cannot analytically evaluate the
functions that play the same role as residuals for a regression model.

9.2 GMM Estimators for Linear Regression Models

Consider the linear regression model

y = Xβ + u, E(uu>) = Ω, (9.01)

where there are n observations, and Ω is an n × n covariance matrix. As in
the previous chapter, some of the explanatory variables that form the n× k
matrix X may not be predetermined with respect to the error terms u. How-
ever, there is assumed to exist an n× l matrix of predetermined instrumental
variables, W, with n > l and l ≥ k, satisfying the condition E(ut |Wt) = 0 for
each row Wt of W, t = 1, . . . , n. Any column of X that is predetermined will
also be a column of W. In addition, we assume that, for all t, s = 1, . . . , n,
E(utus |Wt,Ws) = ωts, where ωts is the tsth element of Ω. We will need this
assumption later, because it allows us to see that

Var(n−1/2W>u) = 1−
n

E(W>uu>W ) = 1−
n

n∑
t=1

n∑
s=1

E(utusWt
>Ws)

= 1−
n

n∑
t=1

n∑
s=1

E
(
E(utusWt

>Ws |Wt, Ws)
)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



352 The Generalized Method of Moments

= 1−
n

n∑
t=1

n∑
s=1

E(ωtsWt
>Ws) = 1−

n
E(W>ΩW ). (9.02)

The assumption that E(ut |Wt) = 0 implies that, for all t = 1, . . . , n,

E
(
Wt

>(yt −Xtβ)
)

= 0. (9.03)

These equations form a set of what we may call theoretical moment conditions.
They were used in Chapter 8 as the starting point for MM estimation of the
regression model (9.01). Each theoretical moment condition corresponds to a
sample moment, or empirical moment, of the form

1−
n

n∑
t=1

Wti
>(yt −Xtβ) = 1−

n
wi
>(y −Xβ), (9.04)

where wi, i = 1, . . . , l, is the ith column of W. When l = k, we can set these
sample moments equal to zero and solve the resulting k equations to obtain the
simple IV estimator (8.12). When l > k, we must do as we did in Chapter 8
and select k independent linear combinations of the sample moments (9.04)
in order to obtain an estimator.

Now let J be an l × k matrix with full column rank k, and consider the
MM estimator obtained by using the k columns of WJ as instruments. This
estimator solves the k equations

J>W>(y −Xβ) = 0, (9.05)

which are referred to as sample moment conditions, or just moment conditions
when there is no ambiguity. They are also sometimes called orthogonality
conditions, since they require that the vector of residuals should be orthogonal
to the columns of WJ. Let us assume that the data are generated by a DGP
which belongs to the model (9.01), with coefficient vector β0 and covariance
matrix Ω0. Under this assumption, we have the following explicit expression,
suitable for asymptotic analysis, for the estimator β̂ that solves (9.05):

n1/2(β̂ − β0) =
(
n−1J>W>X

)−1
n−1/2J>W>u. (9.06)

From this, recalling (9.02), we find that the asymptotic covariance matrix
of β̂, that is, the covariance matrix of the plim of n1/2(β̂ − β0), is

(
plim
n→∞

1−
n

J>W>X
)−1(

plim
n→∞

1−
n

J>W>Ω0WJ
)(

plim
n→∞

1−
n
X>WJ

)−1

. (9.07)

This matrix has the familiar sandwich form that we expect to see when an
estimator is not asymptotically efficient.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



9.2 GMM Estimators for Linear Regression Models 353

The next step, as in Section 8.3, is to choose J so as to minimize the covariance
matrix (9.07). We may reasonably expect that, with such a choice of J, the
covariance matrix will no longer have the form of a sandwich. The simplest
choice of J that eliminates the sandwich in (9.07) is

J = (W>Ω0W )−1W>X; (9.08)

notice that, in the special case in which Ω0 is proportional to I, this expression
will reduce to the result (8.24) that we found in Section 8.3 as the solution
for that special case. We can see, therefore, that (9.08) is the appropriate
generalization of (8.24) when Ω is not proportional to an identity matrix.
With J defined by (9.08), the covariance matrix (9.07) becomes

plim
n→∞

(
1−
n

X>W (W>Ω0W )−1W>X
)−1

, (9.09)

and the efficient GMM estimator is

β̂GMM =
(
X>W (W>Ω0W )−1W>X

)−1
X>W (W>Ω0W )−1W>y. (9.10)

When Ω0 = σ2I, this estimator reduces to the generalized IV estimator (8.29).
In Exercise 9.1, readers are invited to show that the difference between the
covariance matrices (9.07) and (9.09) is a positive semidefinite matrix, thereby
confirming (9.08) as the optimal choice for J.

The GMM criterion function

With both GLS and IV estimation, we showed that the efficient estimators
could also be derived by minimizing an appropriate criterion function; this
function was (7.06) for GLS and (8.30) for IV. Similarly, the efficient GMM
estimator (9.10) minimizes the GMM criterion function

Q(β, y) ≡ (y −Xβ)>W (W>Ω0W )−1W>(y −Xβ), (9.11)

as can be seen at once by noting that the first-order conditions for minimiz-
ing (9.11) are

X>W (W>Ω0W )−1W>(y −Xβ) = 0.

If Ω0 = σ2
0I, (9.11) reduces to the IV criterion function (8.30), divided by σ2

0 .
In Section 8.6, we saw that the minimized value of the IV criterion func-
tion, divided by an estimate of σ2, serves as the statistic for the Sargan test
for overidentification. We will see in Section 9.4 that the GMM criterion
function (9.11), with the usually unknown matrix Ω0 replaced by a suitable
estimate, can also be used as a test statistic for overidentification.

The criterion function (9.11) is a quadratic form in the vector W>(y−Xβ) of
sample moments and the inverse of the matrix W>Ω0W. Equivalently, it is a
quadratic form in n−1/2W>(y −Xβ) and the inverse of n−1W>Ω0W, since
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the powers of n cancel. Under the sort of regularity conditions we have used
in earlier chapters, n−1/2W>(y −Xβ0) satisfies a central limit theorem, and
so tends, as n → ∞, to a normal random variable, with mean vector 0 and
covariance matrix the limit of n−1W>Ω0W. It follows that (9.11) evaluated
using the true β0 and the true Ω0 is asymptotically distributed as χ2 with
l degrees of freedom; recall Theorem 4.1, and see Exercise 9.2.

This property of the GMM criterion function is simply a consequence of its
structure as a quadratic form in the sample moments used for estimation and
the inverse of the asymptotic covariance matrix of these moments evaluated
at the true parameters. As we will see in Section 9.4, this property is what
makes the GMM criterion function useful for testing. The argument leading
to (9.10) shows that this same property of the GMM criterion function leads
to the asymptotic efficiency of the estimator that minimizes it.

Provided the instruments are predetermined, so that they satisfy the condition
that E(ut |Wt) = 0, we still obtain a consistent estimator, even when the
matrix J used to select linear combinations of the instruments is different
from (9.08). Such a consistent, but in general inefficient, estimator can also
be obtained by minimizing a quadratic criterion function of the form

(y −Xβ)>WΛW>(y −Xβ), (9.12)

where the weighting matrix Λ is l × l, positive definite, and must be at least
asymptotically nonrandom. Without loss of generality, Λ can be taken to be
symmetric; see Exercise 9.3. The inefficient GMM estimator is

β̂ = (X>WΛW>X)−1X>WΛW>y, (9.13)

from which it can be seen that the use of the weighting matrix Λ corresponds
to the implicit choice J = ΛW>X. For a given choice of J, there are various
possible choices of Λ that give rise to the same estimator; see Exercise 9.4.

When l = k, the model is exactly identified, and J is a nonsingular square
matrix which has no effect on the estimator. This is most easily seen by
looking at the moment conditions (9.05), which are equivalent, when l = k, to
those obtained by premultiplying them by (J>)−1. Similarly, if the estimator
is defined by minimizing a quadratic form, it does not depend on the choice
of Λ whenever l = k. To see this, consider the first-order conditions for
minimizing (9.12), which, up to a scalar factor, are

X>WΛW>(y −Xβ) = 0.

If l = k, X>W is a square matrix, and the first-order conditions can be
premultiplied by Λ−1(X>W )−1. Therefore, the estimator is the solution to
the equations W>(y − Xβ) = 0, independently of Λ. This solution is just
the simple IV estimator defined in (8.12).
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When l > k, the model is overidentified, and the estimator (9.13) depends
on the choice of J or Λ. The efficient GMM estimator, for a given set of
instruments, is defined in terms of the true covariance matrix Ω0, which is
usually unknown. If Ω0 is known up to a scalar multiplicative factor, so
that Ω0 = σ2∆0, with σ2 unknown and ∆0 known, then ∆0 can be used in
place of Ω0 in either (9.10) or (9.11). This is true because multiplying Ω0

by a scalar leaves (9.10) invariant, and it also leaves invariant the β that
minimizes (9.11).

GMM Estimation with Heteroskedasticity of Unknown Form

The assumption that Ω0 is known, even up to a scalar factor, is often too
strong. What makes GMM estimation practical more generally is that, in
both (9.10) and (9.11), Ω0 appears only through the l × l matrix product
W>Ω0W. As we saw first in Section 5.5, in the context of heteroskedasticity
consistent covariance matrix estimation, n−1 times such a matrix can be esti-
mated consistently if Ω0 is a diagonal matrix. What is needed is a preliminary
consistent estimate of the parameter vector β, which furnishes residuals that
are consistent estimates of the error terms.

The preliminary estimates of β must be consistent, but they need not be
asymptotically efficient, and so we can obtain them by using any convenient
choice of J or Λ. One choice that is often convenient is Λ = (W>W )−1,
in which case the preliminary estimator is the generalized IV estimator
(8.29). We then use the preliminary estimates β̂ to calculate the residuals
ût ≡ yt −Xβ̂. A typical element of the matrix n−1W>Ω0W can then be
estimated by

1−
n

n∑
t=1

û2
t WtiWtj . (9.14)

This estimator is very similar to (5.36), and the estimator (9.14) can be proved
to be consistent by using arguments just like those employed in Section 5.5.

The matrix with typical element (9.14) can be written as n−1W>Ω̂W, where
Ω̂ is an n × n diagonal matrix with typical diagonal element û2

t . Then the
feasible efficient GMM estimator is

β̂FGMM =
(
X>W (W>Ω̂W )−1W>X

)−1
X>W (W>Ω̂W )−1W>y, (9.15)

which is just (9.10) with Ω0 replaced by Ω̂. Since n−1W>Ω̂W consistently
estimates n−1W>Ω0W, it follows that β̂FGMM is asymptotically equivalent
to (9.10). It should be noted that, in calling (9.15) efficient, we mean that
it is asymptotically efficient within the class of estimators that use the given
instrument set W.

Like other procedures that start from a preliminary estimate, this one can
be iterated. The GMM residuals yt − Xβ̂FGMM can be used to calculate a
new estimate of Ω, which can then be used to obtain second-round GMM
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estimates, which can then be used to calculate yet another estimate of Ω,
and so on. This iterative procedure was investigated by Hansen, Heaton,
and Yaron (1996), who called it continuously updated GMM. Whether we
stop after one round or continue until the procedure converges, the estimates
will have the same asymptotic distribution if the model is correctly specified.
However, there is evidence that performing more iterations improves finite-
sample performance. In practice, the covariance matrix will be estimated by

V̂ar(β̂FGMM) =
(
X>W (W>Ω̂W )−1W>X

)−1
. (9.16)

It is not hard to see that n times the estimator (9.16) tends to the asymptotic
covariance matrix (9.09) as n →∞.

Fully Efficient GMM Estimation

In choosing to use a particular matrix of instrumental variables W, we are
choosing a particular representation of the information sets Ωt appropriate
for each observation in the sample. It is required that Wt ∈ Ωt for all t,
and it follows from this that any deterministic function, linear or nonlinear,
of the elements of Wt also belongs to Ωt. It is quite clearly impossible to
use all such deterministic functions as actual instrumental variables, and so
the econometrician must make a choice. What we have established so far is
that, once the choice of W is made, (9.08) gives the optimal set of linear
combinations of the columns of W to use for estimation. What remains to be
seen is how best to choose W out of all the possible valid instruments, given
the information sets Ωt.

In Section 8.3, we saw that, for the model (9.01) with Ω = σ2I, the best
choice, by the criterion of the asymptotic covariance matrix, is the matrix X̄
given in (8.18) by the defining condition that E(Xt |Ωt) = X̄t, where Xt and
X̄t are the tth rows of X and X̄, respectively. However, it is easy to see that
this result does not hold unmodified when Ω is not proportional to an identity
matrix. Consider the GMM estimator (9.10), of which (9.15) is the feasible
version, in the special case of exogenous explanatory variables, for which the
obvious choice of instruments is W = X. If, for notational ease, we write Ω
for the true covariance matrix Ω0, (9.10) becomes

β̂GMM =
(
X>X(X>ΩX)−1X>X

)−1
X>X(X>ΩX)−1X>y

= (X>X)−1X>ΩX(X>X)−1X>X(X>ΩX)−1X>y

= (X>X)−1X>ΩX(X>ΩX)−1X>y

= (X>X)−1X>y = β̂OLS.

However, we know from the results of Section 7.2 that the efficient estimator
is actually the GLS estimator

β̂GLS = (X>Ω−1X)−1X>Ω−1y, (9.17)

which, except in special cases, is different from β̂OLS.
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The GLS estimator (9.17) can be interpreted as an IV estimator, in which
the instruments are the columns of Ω−1X. Thus it appears that, when Ω is
not a multiple of the identity matrix, the optimal instruments are no longer
the explanatory variables X, but rather the columns of Ω−1X. This suggests
that, when at least some of the explanatory variables in the matrix X are
not predetermined, the optimal choice of instruments is given by Ω−1X̄. This
choice combines the result of Chapter 7 about the optimality of the GLS es-
timator with that of Chapter 8 about the best instruments to use in place of
explanatory variables that are not predetermined. It leads to the theoretical
moment conditions

E
(
X̄>Ω−1(y −Xβ)

)
= 0. (9.18)

Unfortunately, this solution to the optimal instruments problem does not
always work, because the moment conditions in (9.18) may not be correct. To
see why not, suppose that the error terms are serially correlated, and that Ω
is consequently not a diagonal matrix. The ith element of the matrix product
in (9.18) can be expanded as

n∑
t=1

n∑
s=1

X̄ti ωts(ys −Xsβ), (9.19)

where ωts is the tsth element of Ω−1. If we evaluate at the true parameter
vector β0, we find that ys − Xsβ0 = us. But, unless the columns of the
matrix X̄ are exogenous, it is not in general the case that E(us | X̄t) = 0 for
s 6= t, and, if this condition is not satisfied, the expectation of (9.19) is not
zero in general. This issue was discussed at the end of Section 7.3, and in
more detail in Section 7.8, in connection with the use of GLS when one of the
explanatory variables is a lagged dependent variable.

Choosing Valid Instruments

As in Section 7.2, we can construct an n× n matrix Ψ , which will usually be
triangular, that satisfies the equation Ω−1 = Ψ Ψ>. As in equation (7.03) of
Section 7.2, we can premultiply regression (9.01) by Ψ> to get

Ψ>y = Ψ>Xβ + Ψ>u, (9.20)

with the result that the covariance matrix of the transformed error vector,
Ψ>u, is just the identity matrix. Suppose that we propose to use a matrix Z
of instruments in order to estimate the transformed model, so that we are led
to consider the theoretical moment conditions

E
(
Z>Ψ>(y −Xβ)

)
= 0. (9.21)

If these conditions are to be correct, then what we need is that, for each t,
E

(
(Ψ>u)t |Zt

)
= 0, where the subscript t is used to select the tth row of the

corresponding vector or matrix.
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If X is exogenous, the optimal instruments are given by the matrix Ω−1X, and
the moment conditions for efficient estimation are E

(
X>Ω−1(y −Xβ)

)
= 0,

which can also be written as

E
(
X>Ψ Ψ>(y −Xβ)

)
= 0. (9.22)

Comparison with (9.21) shows that the optimal choice of Z is Ψ>X. Even if
X is not exogenous, (9.22) is a correct set of moment conditions if

E
(
(Ψ>u)t | (Ψ>X)t

)
= 0. (9.23)

But this is not true in general when X is not exogenous. Consequently, we
seek a new definition for X̄, such that (9.23) becomes true when X is replaced
by X̄.

In most cases, it is possible to choose Ψ so that (Ψ>u)t is an innovation in
the sense of Section 4.5, that is, so that E

(
(Ψ>u)t |Ωt

)
= 0. As an example,

see the analysis of models with AR(1) errors in Section 7.8, especially the
discussion surrounding (7.57). What is then required for condition (9.23) is
that (Ψ>X̄)t should be predetermined in period t. If Ω is diagonal, and so
also Ψ , the old definition of X̄ will work, because (Ψ>X̄)t = ΨttX̄t, where Ψtt

is the tth diagonal element of Ψ, and this belongs to Ωt by construction. If
Ω contains off-diagonal elements, however, the old definition of X̄ no longer
works in general. Since what we need is that (Ψ>X̄)t should belong to Ωt, we
instead define X̄ implicitly by the equation

E
(
(Ψ>X)t |Ωt

)
= (Ψ>X̄)t. (9.24)

This implicit definition must be implemented on a case-by-case basis. One
example is given in Exercise 9.5.

By setting Z = Ψ>X̄, we find that the moment conditions (9.21) become

E
(
X̄>Ψ Ψ>(y −Xβ)

)
= E

(
X̄>Ω−1(y −Xβ)

)
= 0. (9.25)

These conditions do indeed use Ω−1X̄ as instruments, albeit with a possibly
redefined X̄. The estimator based on (9.25) is

β̂EGMM ≡ (X̄>Ω−1X̄)−1X̄>Ω−1y, (9.26)

where EGMM denotes “efficient GMM.” The asymptotic covariance matrix
of (9.26) can be computed using (9.09), in which, on the basis of (9.25), we
see that W is to be replaced by Ψ>X̄, X by Ψ>X, and Ω by I. We cannot
apply (9.09) directly with instruments Ω−1X̄, because there is no reason to
suppose that the result (9.02) holds for the untransformed error terms u and
the instruments Ω−1X̄. The result is

plim
n→∞

(
1−
n

X>Ω−1X̄
(

1−
n

X̄>Ω−1X̄
)−1

1−
n

X̄>Ω−1X

)−1

. (9.27)
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By exactly the same argument as that used in (8.20), we find that, for any
matrix Z that satisfies Zt ∈ Ωt,

plim
n→∞

1−
n

Z>Ψ>X = plim
n→∞

1−
n

Z>Ψ>X̄. (9.28)

Since (Ψ>X)t ∈ Ωt, this implies that

plim
n→∞

1−
n

X̄>Ω−1X = plim
n→∞

1−
n

X̄>Ψ Ψ>X

= plim
n→∞

1−
n

X̄>Ψ Ψ>X̄ = plim
n→∞

1−
n

X̄>Ω−1X̄.

Therefore, the asymptotic covariance matrix (9.27) simplifies to

plim
n→∞

(
1−
n

X̄>Ω−1X̄
)−1

. (9.29)

Although the matrix (9.09) is less of a sandwich than (9.07), the matrix (9.29)
is still less of one than (9.09). This is a clear indication of the fact that the
instruments Ω−1X̄, which yield the estimator β̂EGMM, are indeed optimal.
Readers are asked to check this formally in Exercise 9.7.

In most cases, X̄ is not observed, but it can often be estimated consistently.
The usual state of affairs is that we have an n× l matrix W of instruments,
such that S(X̄) ⊆ S(W ) and

(Ψ>W )t ∈ Ωt. (9.30)

This last condition is the form taken by the predeterminedness condition
when Ω is not proportional to the identity matrix. The theoretical moment
conditions used for (overidentified) estimation are then

E
(
W>Ω−1(y −Xβ)

)
= E

(
W>Ψ Ψ>(y −Xβ)

)
= 0, (9.31)

from which it can be seen that what we are in fact doing is estimating the
transformed model (9.20) using the transformed instruments Ψ>W. The re-
sult of Exercise 9.8 shows that, if indeed S(X̄) ⊆ S(W ), the asymptotic covar-
iance matrix of the resulting estimator is still (9.29). Exercise 9.9 investigates
what happens if this condition is not satisfied.

The main obstacle to the use of the efficient estimator β̂EGMM is thus not the
difficulty of estimating X̄, but rather the fact that Ω is usually not known.
As with the GLS estimators we studied in Chapter 7, β̂EGMM cannot be
calculated unless we either know Ω or can estimate it consistently, usually
by knowing the form of Ω as a function of parameters that can be estimated
consistently. But whenever there is heteroskedasticity or serial correlation of
unknown form, this is impossible. The best we can then do, asymptotically,
is to use the feasible efficient GMM estimator (9.15). Therefore, when we
later refer to GMM estimators without further qualification, we will normally
mean feasible efficient ones.
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9.3 HAC Covariance Matrix Estimation

Up to this point, we have seen how to obtain feasible efficient GMM estimates
only when the matrix Ω is known to be diagonal, in which case we can use
the estimator (9.15). In this section, we also allow for the possibility of serial
correlation of unknown form, which causes Ω to have nonzero off-diagonal
elements. When the pattern of the serial correlation is unknown, we can still,
under fairly weak regularity conditions, estimate the covariance matrix of the
sample moments by using a heteroskedasticity and autocorrelation consistent,
or HAC, estimator of the matrix n−1W>ΩW. This estimator, multiplied
by n, can then be used in place of W>Ω̂W in the feasible efficient GMM
estimator (9.15).

The asymptotic covariance matrix of the vector n−1/2W>(y−Xβ) of sample
moments, evaluated at β = β0, is defined as follows:

Σ ≡ plim
n→∞

1−
n
W>(y −Xβ0)(y −Xβ0)>W = plim

n→∞
1−
n
W>ΩW. (9.32)

A HAC estimator of Σ is a matrix Σ̂ constructed so that Σ̂ consistently
estimates Σ when the error terms ut display any pattern of heteroskedasticity
and/or autocorrelation that satisfies certain, generally quite weak, conditions.
In order to derive such an estimator, we begin by rewriting the definition of
Σ in an alternative way:

Σ = lim
n→∞

1−
n

n∑
t=1

n∑
s=1

E
(
utusWt

>Ws

)
, (9.33)

in which we assume that a law of large numbers can be used to justify replacing
the probability limit in (9.32) by the expectations in (9.33).

For regression models with heteroskedasticity but no autocorrelation, only
the terms with t = s contribute to (9.33). Therefore, for such models, we
can estimate Σ consistently by simply ignoring the expectation operator and
replacing the error terms ut by least squares residuals ût, possibly with a mod-
ification designed to offset the tendency for such residuals to be too small. The
obvious way to estimate (9.33) when there may be serial correlation is again
simply to drop the expectations operator and replace utus by ûtûs, where ût

denotes the tth residual from some consistent but inefficient estimation proce-
dure, such as generalized IV. Unfortunately, this approach will not work. To
see why not, we need to rewrite (9.33) in yet another way. Let us define the
autocovariance matrices of the Wt

>ut as follows:

Γ (j) ≡





1−
n

n∑

t=j+1

E(utut−jWt
>Wt−j) for j ≥ 0,

1−
n

n∑

t=−j+1

E(ut+jutW
>

t+jWt) for j < 0.

(9.34)
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Because there are l moment conditions, these are l × l matrices. It is easy to
check that Γ (j) = Γ>(−j). Then, in terms of the matrices Γ (j), expression
(9.33) becomes

Σ = lim
n→∞

n−1∑

j=−n+1

Γ (j) = lim
n→∞

(
Γ (0) +

n−1∑

j=1

(
Γ (j) + Γ>(j)

))
. (9.35)

Therefore, in order to estimate Σ, we apparently need to estimate all of the
autocovariance matrices for j = 0, . . . , n− 1.

If ût denotes a typical residual from some preliminary estimator, the sample
autocovariance matrix of order j, Γ̂ (j), is just the appropriate expression in
(9.34), without the expectation operator, and with the random variables ut

and ut−j replaced by ût and ût−j , respectively. For any j ≥ 0, this is

Γ̂ (j) = 1−
n

n∑

t=j+1

ûtût−jWt
>Wt−j . (9.36)

Unfortunately, the sample autocovariance matrix Γ̂ (j) of order j is not a con-
sistent estimator of the true autocovariance matrix for arbitrary j. Suppose,
for instance, that j = n−2. Then, from (9.36), we see that Γ̂ (j) has only two
terms, and no conceivable law of large numbers can apply to only two terms.
In fact, Γ̂ (n− 2) must tend to zero as n →∞ because of the factor of n−1 in
its definition.

The solution to this problem is to restrict our attention to models for which
the actual autocovariances mimic the behavior of the sample autocovariances,
and for which therefore the actual autocovariance of order j tends to zero as
j → ∞. A great many stochastic processes generate error terms for which
the Γ (j) do have this property. In such cases, we can drop most of the
sample autocovariance matrices that appear in the sample analog of (9.35) by
eliminating ones for which |j| is greater than some chosen threshold, say p.
This yields the following estimator for Σ:

Σ̂HW = Γ̂ (0) +
p∑

j=1

(
Γ̂ (j) + Γ̂>(j)

)
, (9.37)

We refer to (9.37) as the Hansen-White estimator, because it was originally
proposed by Hansen (1982) and White and Domowitz (1984); see also White
(1984).

For the purposes of asymptotic theory, it is necessary to let the parameter p,
which is called the lag truncation parameter, go to infinity in (9.37) at some
suitable rate as the sample size goes to infinity. A typical rate would be n1/4.
This ensures that, for large enough n, all the nonzero Γ (j) are estimated
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consistently. Unfortunately, this type of result does not say how large p should
be in practice. In most cases, we have a given, finite, sample size, and we need
to choose a specific value of p.

The Hansen-White estimator (9.37) suffers from one very serious deficiency: In
finite samples, it need not be positive definite or even positive semidefinite. If
one happens to encounter a data set that yields a nondefinite Σ̂HW, then, since
the weighting matrix for GMM must be positive definite, (9.37) is unusable.
Luckily, there are numerous ways out of this difficulty. The one that is most
widely used was suggested by Newey and West (1987). The estimator they
propose is

Σ̂NW = Γ̂ (0) +
p∑

j=1

(
1− j

p + 1

)(
Γ̂ (j) + Γ̂>(j)

)
, (9.38)

in which each sample autocovariance matrix Γ̂ (j) is multiplied by a weight
1− j/(p + 1) that decreases linearly as j increases. The weight is p/(p + 1)
for j = 1, and it then decreases by steps of 1/(p + 1) down to a value of
1/(p + 1) for j = p. This estimator will evidently tend to underestimate the
autocovariance matrices, especially for larger values of j. Therefore, p should
almost certainly be larger for (9.38) than for (9.37). As with the Hansen-
White estimator, p must increase as n does, and the appropriate rate is n1/3.
A procedure for selecting p automatically was proposed by Newey and West
(1994), but it is too complicated to discuss here.

Both the Hansen-White and the Newey-West HAC estimators of Σ can be
written in the form

Σ̂ = 1−
n
W>Ω̂W (9.39)

for an appropriate choice of Ω̂. This fact, which we will exploit in the next
section, follows from the observation that there exist n×n matrices U(j) such
that the Γ̂ (j) can be expressed in the form n−1W>U(j)W, as readers are
asked to check in Exercise 9.10.

The Newey-West estimator is by no means the only HAC estimator that is
guaranteed to be positive definite. Andrews (1991) provides a detailed treat-
ment of HAC estimation, suggests some alternatives to the Newey-West esti-
mator, and shows that, in some circumstances, they may perform better than
it does in finite samples. A different approach to HAC estimation is suggested
by Andrews and Monahan (1992). Since this material is relatively advanced
and specialized, we will not pursue it further here. Interested readers may
wish to consult Hamilton (1994, Chapter 10) as well as the references already
given.

Feasible Efficient GMM Estimation

In practice, efficient GMM estimation in the presence of heteroskedasticity and
serial correlation of unknown form works as follows. As in the case with only
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heteroskedasticity that was discussed in Section 9.2, we first obtain consistent
but inefficient estimates, probably by using generalized IV. These estimates
yield residuals ût, from which we next calculate a matrix Σ̂ that estimates Σ
consistently, using (9.37), (9.38), or some other HAC estimator. The feasible
efficient GMM estimator, which generalizes (9.15), is then

β̂FGMM = (X>WΣ̂−1W>X)−1X>WΣ̂−1W>y. (9.40)

As before, this procedure may be iterated. The first-round GMM residuals
may be used to obtain a new estimate of Σ, which may be used to obtain
second-round GMM estimates, and so on. For a correctly specified model,
iteration should not affect the asymptotic properties of the estimates.

We can estimate the covariance matrix of (9.40) by

V̂ar(β̂FGMM) = n(X>WΣ̂−1W>X)−1, (9.41)

which is the analog of (9.16). The factor of n here is needed to offset the
factor of n−1 in the definition of Σ̂. We do not need to include such a factor
in (9.40), because the two factors of n−1 cancel out. As usual, the covariance
matrix estimator (9.41) can be used to construct pseudo-t tests and other
Wald tests, and asymptotic confidence intervals and confidence regions may
also be based on it. The GMM criterion function that corresponds to (9.40) is

1−
n
(y −Xβ)>WΣ̂−1W>(y −Xβ). (9.42)

Once again, we need a factor of n−1 here to offset the one in Σ̂.

The feasible efficient GMM estimator (9.40) can be used even when all the
columns of X are valid instruments and OLS would be the estimator of choice
if the error terms were not heteroskedastic and/or serially correlated. In this
case, W typically consists of X augmented by a number of functions of the
columns of X, such as squares and cross-products, and Ω̂ has squared OLS
residuals on the diagonal. This estimator, which was proposed by Cragg
(1983) for models with heteroskedastic error terms, will be asymptotically
more efficient than OLS whenever Ω is not proportional to an identity matrix.

9.4 Tests Based on the GMM Criterion Function

For models estimated by instrumental variables, we saw in Section 8.5 that
any set of r equality restrictions can be tested by taking the difference between
the minimized values of the IV criterion function for the restricted and unre-
stricted models, and then dividing it by a consistent estimate of the error var-
iance. The resulting test statistic is asymptotically distributed as χ2(r). For
models estimated by (feasible) efficient GMM, a very similar testing procedure
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is available. In this case, as we will see, the difference between the constrained
and unconstrained minima of the GMM criterion function is asymptotically
distributed as χ2(r). There is no need to divide by an estimate of σ2, because
the GMM criterion function already takes account of the covariance matrix
of the error terms.

Tests of Overidentifying Restrictions

Whenever l > k, a model estimated by GMM involves l − k overidentifying
restrictions. As in the IV case, tests of these restrictions are even easier
to perform than tests of other restrictions, because the minimized value of
the optimal GMM criterion function (9.11), with n−1W>Ω0W replaced by
a HAC estimate, provides an asymptotically valid test statistic. When the
HAC estimate Σ̂ is expressed as in (9.39), the GMM criterion function (9.42)
can be written as

Q(β, y) ≡ (y −Xβ)>W (W>Ω̂W )−1W>(y −Xβ). (9.43)

Since HAC estimators are consistent, the asymptotic distribution of (9.43),
for given β, is the same whether we use the unknown true Ω0 or a matrix Ω̂
that provides a HAC estimate. For simplicity, we therefore use the true Ω0,
omitting the subscript 0 for ease of notation. The asymptotic equivalence of
the β̂FGMM of (9.15) or (9.40) and the β̂GMM of (9.10) further implies that
what we will prove for the criterion function (9.43) evaluated at β̂GMM with
Ω̂ replaced by Ω, will equally be true for (9.43) evaluated at β̂FGMM.

We remarked in Section 9.2 that Q(β0, y), where β0 is the true parameter
vector, is asymptotically distributed as χ2(l). In contrast, the minimized
criterion function Q(β̂GMM, y) is distributed as χ2(l − k), because we lose
k degrees of freedom as a consequence of having estimated k parameters.
In order to demonstrate this result, we first express (9.43) in terms of an
orthogonal projection matrix. This allows us to reuse many of the calculations
performed in Chapter 8.

As in Section 9.2, we make use of a possibly triangular matrix Ψ that satisfies
the equation Ω−1 = Ψ Ψ>, or, equivalently,

Ω = (Ψ>)−1Ψ−1. (9.44)

If the n× l matrix A is defined as Ψ−1W, and PA ≡ A(A>A)−1A>, then

Q(β,y) = (y −Xβ)>Ψ Ψ−1W
(
W>(Ψ>)−1Ψ−1W

)−1
W>(Ψ>)−1Ψ>(y −Xβ)

= (y −Xβ)>ΨPAΨ>(y −Xβ). (9.45)

Since β̂GMM minimizes (9.45), we see that one way to write it is

β̂GMM = (X>ΨPAΨ>X)−1X>ΨPAΨ>y; (9.46)
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compare (9.10). Expression (9.46) makes it clear that β̂GMM can be thought
of as a GIV estimator for the regression of Ψ>X on Ψ>y using instruments
A ≡ Ψ−1W. As in (8.61), it can be shown that

PAΨ>(y −Xβ̂GMM) = PA(I− PPAΨ>X)Ψ>y,

where PPAΨ>X is the orthogonal projection on to the subspace S(PAΨ>X).
It follows that

Q(β̂GMM,y) = y>Ψ(PA − PPAΨ>X)Ψ>y, (9.47)

which is the analog for GMM estimation of expression (8.61) for generalized
IV estimation.

Now notice that

(PA − PPAΨ>X)Ψ>X

= PAΨ>X − PAΨ>X(X>ΨPAΨ>X)−1X>ΨPAΨ>X

= PAΨ>X − PAΨ>X = O.

Since y = Xβ0 + u if the model we are estimating is correctly specified, this
implies that (9.47) is equal to

Q(β̂GMM, y) = u>Ψ(PA − PPAΨ>X)Ψ>u. (9.48)

This expression can be compared with the value of the criterion function
evaluated at β0, which can be obtained directly from (9.45):

Q(β0,y) = u>ΨPAΨ>u. (9.49)

The two expressions (9.48) and (9.49) show clearly where the k degrees of
freedom are lost when we estimate β. We know that E(Ψ>u) = 0 and that
E(Ψ>uu>Ψ ) = Ψ>ΩΨ = I, by (9.44). The dimension of the space S(A) is
equal to l. Therefore, the extension of Theorem 4.1 treated in Exercise 9.2
allows us to conclude that (9.49) is asymptotically distributed as χ2(l). Since
S(PAΨ>X) is a k --dimensional subspace of S(A), it follows (see Exercise 2.16)
that PA − PPAΨ>X is an orthogonal projection on to a space of dimension
l−k, from which we see that (9.48) is asymptotically distributed as χ2(l−k).
Replacing β0 by β̂GMM in (9.48) thus leads to the loss of the k dimensions of
the space S(PAΨ>X), which are “used up” when we obtain β̂GMM.

The statistic Q(β̂GMM, y) is the analog, for efficient GMM estimation, of the
Sargan test statistic that was discussed in Section 8.6. This statistic was
suggested by Hansen (1982) in the famous paper that first proposed GMM
estimation under that name. It is often called Hansen’s overidentification sta-
tistic or Hansen’s J statistic. However, we prefer to call it the Hansen-Sargan
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statistic to stress its close relationship with the Sargan test of overidentifying
restrictions in the context of generalized IV estimation.

As in the case of IV estimation, a Hansen-Sargan test may reject the null
hypothesis for more than one reason. Perhaps the model is misspecified, either
because one or more of the instruments should have been included among the
regressors, or for some other reason. Perhaps one or more of the instruments
is invalid because it is correlated with the error terms. Or perhaps the finite-
sample distribution of the test statistic just happens to differ substantially
from its asymptotic distribution. In the case of feasible GMM estimation,
especially involving HAC covariance matrices, this last possibility should not
be discounted. See, among others, Hansen, Heaton, and Yaron (1996) and
West and Wilcox (1996).

Tests of Linear Restrictions

Just as in the case of generalized IV, both linear and nonlinear restrictions
on regression models can be tested by using the difference between the con-
strained and unconstrained minima of the GMM criterion function as a test
statistic. Under weak conditions, this test statistic will be asymptotically dis-
tributed as χ2 with as many degrees of freedom as there are restrictions to
be tested. For simplicity, we restrict our attention to zero restrictions on the
linear regression model (9.01). This model can be rewritten as

y = X1β1 + X2β2 + u, E(uu>) = Ω, (9.50)

where β1 is a k1--vector and β2 is a k2 --vector, with k = k1 + k2. We wish to
test the restrictions β2 = 0.

If we estimate (9.50) by feasible efficient GMM using W as the matrix of in-
struments, subject to the restriction that β2 = 0, we will obtain the restricted
estimates β̃FGMM = [β̃1

.... 0]. By the reasoning that leads to (9.48), we see
that, if indeed β2 = 0, the constrained minimum of the criterion function is

Q(β̃FGMM, y) = (y −X1β̃1)>W (W>Ω̂W )−1W>(y −X1β̃1)

= u>Ψ(PA − PPAΨ>X1)Ψ
>u. (9.51)

If we subtract (9.48) from (9.51), we find that the difference between the
constrained and unconstrained minima of the criterion function is

Q(β̃FGMM, y)−Q(β̂FGMM,y) = u>Ψ(PPAΨ>X − PPAΨ>X1)Ψ
>u. (9.52)

Since S(PAΨ>X1) ⊆ S(PAΨ>X), we see that PPAΨ>X − PPAΨ>X1 is an or-
thogonal projection matrix of which the image is of dimension k − k1 = k2.
Once again, the result of Exercise 9.2 shows that the test statistic (9.52) is
asymptotically distributed as χ2(k2) if the null hypothesis that β2 = 0 is true.
This result continues to hold if the restrictions are nonlinear, as we will see
in Section 9.5.
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The result that the statistic Q(β̃FGMM, y) −Q(β̂FGMM, y) is asymptotically
distributed as χ2(k2) depends on two critical features of the construction of
the statistic. The first is that the same matrix of instruments W is used for
estimating both the restricted and unrestricted models. This was also required
in Section 8.5, when we discussed testing restrictions on linear regression
models estimated by generalized IV. The second essential feature is that the
same weighting matrix (W>Ω̂W )−1 is used when estimating both models. If,
as is usually the case, this matrix has to be estimated, it is important that the
same estimate be used in both criterion functions. If different instruments or
different weighting matrices are used for the two models, (9.52) is no longer
in general asymptotically distributed as χ2(k2).

One interesting consequence of the form of (9.52) is that we do not always
need to bother estimating the unrestricted model. The test statistic (9.52)
must always be less than the constrained minimum Q(β̃FGMM, y). Therefore,
if Q(β̃FGMM, y) is less than the critical value for the χ2(k2) distribution at
our chosen significance level, we can be sure that the actual test statistic will
be even smaller and will not lead us to reject the null.

The result that tests of restrictions may be based on the difference between
the constrained and unconstrained minima of the GMM criterion function
holds only for efficient GMM estimation. It is not true for nonoptimal crite-
rion functions like (9.12), which do not use an estimate of the inverse of the
covariance matrix of the sample moments as a weighting matrix. When the
GMM estimates minimize a nonoptimal criterion function, the easiest way to
test restrictions is probably to use a Wald test; see Sections 6.7 and 8.5. How-
ever, we do not recommend performing inference on the basis of nonoptimal
GMM estimation.

9.5 GMM Estimators for Nonlinear Models

The principles underlying GMM estimation of nonlinear models are the same
as those we have developed for GMM estimation of linear regression models.
For every result that we have discussed in the previous three sections, there is
an analogous result for nonlinear models. In order to develop these results, we
will take a somewhat more general and abstract approach than we have done
up to this point. This approach, which is based on the theory of estimating
functions, was originally developed by Godambe (1960); see also Godambe
and Thompson (1978).

The method of estimating functions employs the concept of an elementary
zero function. Such a function plays the same role as a residual in the esti-
mation of a regression model. It depends on observed variables, at least one
of which must be endogenous, and on a k --vector of parameters, θ. As with
a residual, the expectation of an elementary zero function must vanish if it is
evaluated at the true value of θ, but not in general otherwise.
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We let ft(θ, yt) denote an elementary zero function for observation t. It is
called “elementary” because it applies to a single observation. In the linear
regression case that we have been studying up to this point, θ would be
replaced by β and we would have ft(β, yt) ≡ yt −Xtβ. In general, we may
well have more than one elementary zero function for each observation.

We consider a model M, which, as usual, is to be thought of as a set of DGPs.
To each DGP in M, there corresponds a unique value of θ, which is what
we often call the “true” value of θ for that DGP. It is important to note
that the uniqueness goes just one way here: A given parameter vector θ may
correspond to many DGPs, perhaps even to an infinite number of them, but
each DGP corresponds to just one parameter vector. In order to express the
key property of elementary zero functions, we must introduce a symbol for
the DGPs of the model M. It is conventional to use the Greek letter µ for this
purpose, but then it is necessary to avoid confusion with the conventional use
of µ to denote a population mean. It is usually not difficult to distinguish the
two uses of the symbol.

The key property of elementary zero functions can now be written as

Eµ

(
ft(θµ, yt)

)
= 0, (9.53)

where Eµ(·) denotes the expectation under the DGP µ, and θµ is the (unique)
parameter vector associated with µ. It is assumed that property (9.53) holds
for all t and for all µ ∈M.

If estimation based on elementary zero functions is to be possible, these func-
tions must satisfy a number of conditions in addition to condition (9.53). Most
importantly, we need to ensure that the model is asymptotically identified.
We therefore assume that, for some observations, at least,

Eµ

(
ft(θ, yt)

) 6= 0 for all θ 6= θµ. (9.54)

This just says that, if we evaluate ft at a θ that is different from the θµ

that corresponds to the DGP under which we take expectations, then the
expectation of ft(θ, yt) will be nonzero. Condition (9.54) does not have to
hold for every observation, but it must hold for a fraction of the observations
that does not tend to zero as n →∞.

In the case of the linear regression model, if we write β0 for the true parameter
vector, condition (9.54) will be satisfied for observation t if, for all β 6= β0,

E(yt −Xtβ) = E
(
Xt(β0 − β) + ut

)
= E

(
Xt(β0 − β)

) 6= 0. (9.55)

It is clear from (9.55) that condition (9.54) will be satisfied whenever the fitted
values actually depend on all the components of the vector β for at least some
fraction of the observations. This is equivalent to the more familiar condition
that

SX>X ≡ plim
n→∞

1−
n
X>X
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is a positive definite matrix; see Section 6.2.

We also need to make some assumption about the variances and covariances of
the elementary zero functions. If there is just one elementary zero function per
observation, we let f(θ, y) denote the n--vector with typical element ft(θ, yt).
If there are m > 1 elementary zero functions per observation, then we can
group all of them into a vector f(θ,y) with nm elements. In either event, we
then assume that

E
(
f(θ, y)f>(θ, y)

)
= Ω, (9.56)

where Ω, which implicitly depends on µ, is a finite, positive definite matrix.
Thus we are assuming that, under every DGP µ ∈ M, each of the ft has a
finite variance and a finite covariance with every fs for s 6= t.

Estimating Functions and Estimating Equations

Like every procedure that is based on the method of moments, the method of
estimating functions replaces relationships like (9.53) that hold in expectation
with their empirical, or sample, counterparts. Because θ is a k --vector, we
will need k estimating functions in order to estimate it. In general, these are
weighted averages of the elementary zero functions. Equating the estimating
functions to zero yields k estimating equations, which must be solved in order
to obtain the GMM estimator.

As for the linear regression model, the estimating equations are, in fact, just
sample moment conditions which, in most cases, are based on instrumental
variables. There will generally be more instruments than parameters, and
so we will need to form linear combinations of the instruments in order to
construct precisely k estimating equations. Let W be an n × l matrix of
instruments, which are assumed to be predetermined. Usually, one column of
W will be a vector of 1s. Now define Z ≡ WJ, where J is an l × k matrix
with full column rank k. Later, we will discuss how J, and hence Z, should
optimally be chosen, but, for the moment, we take Z as given.

If θµ is the parameter vector for the DGP µ under which we take expectations,
the theoretical moment conditions are

E
(
Zt
>ft(θµ, yt)

)
= 0, (9.57)

where Zt is the tth row of Z. Later on, when we take explicit account of the
covariance matrix Ω in formulating the estimating equations, we will need to
modify these conditions so that they take the form of conditions (9.31), but
(9.57) is all that is required at this stage. In fact, even (9.57) is stronger than
we really need. It is sufficient to assume that Zt and ft(θ) are asymptotically
uncorrelated, which, together with some regularity conditions, implies that

plim
n→∞

1−
n

n∑
t=1

Zt
>ft(θµ, yt) = 0. (9.58)
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The vector of estimating functions that corresponds to (9.57) or (9.58) is the
k --vector n−1Z>f(θ, y). Equating this vector to zero yields the system of
estimating equations

1−
n

Z>f(θ, y) = 0, (9.59)

and solving this system yields θ̂, the nonlinear GMM estimator.

Consistency

If we are to prove that the nonlinear GMM estimator is consistent, we must
assume that a law of large numbers applies to the vector n−1Z>f(θ,y). This
allows us to define the k --vector of limiting estimating functions,

α(θ; µ) ≡ plim
n→∞

µ
1−
n

Z>f(θ,y). (9.60)

In words, α(θ; µ) is the probability limit, under the DGP µ, of the vector of
estimating functions. Setting α(θ;µ) to 0 yields a set of limiting estimating
equations.

Either (9.57) or the weaker condition (9.58) implies that α(θµ;µ) = 0 for all
µ ∈ M. We then need an asymptotic identification condition strong enough
to ensure that α(θ; µ) 6= 0 for all θ 6= θµ. In other words, we require that the
vector θµ must be the unique solution to the system of limiting estimating
equations. If we assume that such a condition holds, it is straightforward to
prove consistency in the nonrigorous way we used in Sections 6.2 and 8.3.
Evaluating equations (9.59) at their solution θ̂, we find that

1−
n

Z>f(θ̂,y) = 0. (9.61)

As n → ∞, the left-hand side of this system of equations tends under µ
to the vector α(plimµ θ̂; µ), and the right-hand side remains a zero vector.
Given the asymptotic identification condition, the equality in (9.61) can hold
asymptotically only if

plim
n→∞

µ θ̂ = θµ.

Therefore, we conclude that the nonlinear GMM estimator θ̂, which solves the
system of estimating equations (9.59), consistently estimates the parameter
vector θµ, for all µ ∈ M, provided the asymptotic identification condition is
satisfied.

Asymptotic Normality

For ease of notation, we now fix the DGP µ ∈M and write θµ = θ0. Thus
θ0 has its usual interpretation as the “true” parameter vector. In addition,
we suppress the explicit mention of the data vector y. As usual, the proof
that n1/2(θ̂ − θ0) is asymptotically normally distributed is based on a Taylor
series approximation, a law of large numbers, and a central limit theorem. For
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the purposes of the first of these, we need to assume that the zero functions
ft are continuously differentiable in the neighborhood of θ0. If we perform
a first-order Taylor expansion of n1/2 times (9.59) around θ0 and introduce
some appropriate factors of powers of n, we obtain the result that

n−1/2Z>f(θ0) + n−1Z>F (θ̄)n1/2(θ̂ − θ0) = 0, (9.62)

where the n× k matrix F (θ) has typical element

Fti(θ) ≡ ∂ft(θ)
∂θi

, (9.63)

where θi is the ith element of θ. This matrix, like f(θ) itself, depends implic-
itly on the vector y and is therefore stochastic. The notation F (θ̄) in (9.62)
is the convenient shorthand we introduced in Section 6.2: Row t of the matrix
is the corresponding row of F (θ) evaluated at θ = θ̄t, where the θ̄t all satisfy
the inequality ∥∥θ̄t − θ0

∥∥ ≤ ∥∥θ̂t − θ0

∥∥.

The consistency of θ̂ then implies that the θ̄t also tend to θ0 as n →∞.

The consistency of the θ̄t implies that

plim
n→∞

1−
n

Z>F (θ̄) = plim
n→∞

1−
n

Z>F (θ0). (9.64)

Under reasonable regularity conditions, we can apply a law of large numbers
to the right-hand side of (9.64), and the probability limit is then determinis-
tic. For asymptotic normality, we also require that it should be nonsingular.
This is a condition of strong asymptotic identification, of the sort used in
Section 6.2. By a first-order Taylor expansion of α(θ; µ) around θ0, where it
is equal to 0, we see from the definition (9.60) that

α(θ;µ) a= plim
n→∞

1−
n

Z>F (θ0)(θ − θ0). (9.65)

Therefore, the condition that the right-hand side of (9.64) is nonsingular is a
strengthening of the condition that θ is asymptotically identified. Because it
is nonsingular, the system of equations

plim
n→∞

1−
n

Z>F (θ0)(θ − θ0) = 0

has no solution other than θ = θ0. By (9.65), this implies that α(θ;µ) 6= 0
for all θ 6= θ0, which is the asymptotic identification condition.

Applying the results just discussed to equation (9.62), we find that

n1/2(θ̂ − θ0)
a= −

(
plim
n→∞

1−
n

Z>F (θ0)
)−1

n−1/2Z>f(θ0). (9.66)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



372 The Generalized Method of Moments

Next, we apply a central limit theorem to the second factor on the right-hand
side of (9.66). Doing so demonstrates that n1/2(θ̂ − θ0) is asymptotically
normally distributed. By (9.57), the vector n−1/2Z>f(θ0) must have mean 0,
and, by (9.56), its covariance matrix is plim n−1Z>ΩZ. In stating this re-
sult, we assume that (9.02) holds with the f(θ0) in place of the error terms.
Then (9.66) implies that the vector n1/2(θ̂ − θ0) is asymptotically normally
distributed with mean vector 0 and covariance matrix

(
plim
n→∞

1−
n

Z>F (θ0)
)−1(

plim
n→∞

1−
n

Z>ΩZ
)(

plim
n→∞

1−
n

F>(θ0)Z
)−1

. (9.67)

Since this is a sandwich covariance matrix, it is evident that the nonlinear
GMM estimator θ̂ is not, in general, an asymptotically efficient estimator.

Asymptotically Efficient Estimation

In order to obtain an asymptotically efficient nonlinear GMM estimator, we
need to choose the estimating functions n−1Z>f(θ) optimally. This is equiv-
alent to choosing Z optimally. How we should do this will depend on what
assumptions we make about F (θ) and Ω, the covariance matrix of f(θ). Not
surprisingly, we will obtain results very similar to the results for linear GMM
estimation obtained in Section 9.2.

We begin with the simplest possible case, in which Ω = σ2I, and F (θ0) is
predetermined in the sense that

E
(
Ft(θ0)ft(θ0)

)
= 0, (9.68)

where Ft(θ0) is the tth row of F (θ0). If we ignore the probability limits
and the factors of n−1, the sandwich covariance matrix (9.67) is in this case
proportional to

(Z>F0)−1Z>Z(F0
>Z)−1, (9.69)

where, for ease of notation, F0 ≡ F (θ0). The inverse of (9.69), which is
proportional to the asymptotic precision matrix of the estimator, is

F0
>Z(Z>Z)−1Z>F0 = F0

>PZF0. (9.70)

If we set Z = F0, (9.69) is no longer a sandwich, and (9.70) simplifies to
F0
>F0. The difference between F0

>F0 and the general expression (9.70) is

F0
>F0 − F0

>PZF0 = F0
>MZF0,

which is a positive semidefinite matrix because MZ ≡ I−PZ is an orthogonal
projection matrix. Thus, in this simple case, the optimal instrument matrix
is just F0.

Since we do not know θ0, it is not feasible to use F0 directly as the matrix of
instruments. Instead, we use the trick that leads to the moment conditions
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(6.27) which define the NLS estimator. This leads us to solve the estimating
equations

1−
n

F>(θ)f(θ) = 0. (9.71)

If Ω = σ2I, and F (θ0) is predetermined, solving these equations yields an
asymptotically efficient GMM estimator.

It is not valid to use the columns of F (θ) as instruments if condition (9.68)
is not satisfied. In that event, the analysis of Section 8.3, taken up again in
Section 9.2, suggests that we should replace the rows of F0 by their expecta-
tions conditional on the information sets Ωt generated by variables that are
exogenous or predetermined for observation t. Let us define an n× k matrix
F̄ , in terms of its typical row F̄t, and another n× k matrix V , as follows:

F̄t ≡ E
(
Ft(θ0) |Ωt

)
and V ≡ F0 − F̄. (9.72)

The matrices F̄ and V are entirely analogous to the matrices X̄ and V used
in Section 8.3. The definitions (9.72) imply that

plim
n→∞

1−
n

F̄>F0 = plim
n→∞

1−
n

F̄>(F̄ + V ) = plim
n→∞

1−
n

F̄>F̄. (9.73)

The term plim n−1F̄>V equals O because (9.72) implies that E(Vt |Ωt) = 0,
and the conditional expectation F̄t belongs to the information set Ωt.

To find the asymptotic covariance matrix of n1/2(θ̂ − θ0) when F̄ is used in
place of Z and the covariance matrix of f(θ) is σ2 I, we start from expression
(9.67). Using (9.73), we obtain

σ2
(

plim
n→∞

1−
n

F̄>F0

)−1(
plim
n→∞

1−
n

F̄>F̄
)(

plim
n→∞

1−
n

F0
>F̄

)−1

= σ2
(

plim
n→∞

1−
n

F̄>F̄
)−1

. (9.74)

For any other choice of instrument matrix Z, the argument giving (9.73) shows
that plim n−1Z>F0 = plimn−1Z>F̄ , and so the covariance matrix (9.67) be-
comes

σ2
(

plim
n→∞

1−
n
Z>F̄

)−1(
plim
n→∞

1−
n
Z>Z

)(
plim
n→∞

1−
n
F̄>Z

)−1

. (9.75)

The inverse of (9.75) is 1/σ2 times the probability limit of

1−
n

F̄>Z(Z>Z)−1Z>F̄ = 1−
n

F̄>PZF̄. (9.76)

This expression is analogous to expression (8.21) for the asymptotic precision
of the IV estimator for linear regression models with endogenous explana-
tory variables. Since the difference between n−1F̄>F̄ and (9.76) is the pos-
itive semidefinite matrix n−1F̄>MZF̄, we conclude that (9.74) is indeed the
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asymptotic covariance matrix that corresponds to the optimal choice of Z.
Therefore, when Ft(θ) is not predetermined, we should use its expectation
conditional on Ωt in the matrix of instruments.

In practice, of course, the matrix F̄ will rarely be observed. We therefore
need to estimate it. The natural way to do so is to regress F (θ) on an n× l
matrix of instruments W, where l ≥ k, with the inequality holding strictly in
most cases. This yields fitted values PWF (θ). If we estimate F̄ in this way,
the optimal estimating equations become

1−
n

F>(θ)PWf(θ) = 0. (9.77)

By reasoning like that which led to (8.27) and (9.73), it can be seen that these
estimating equations are asymptotically equivalent to the same equations with
F̄ in place of F (θ). In particular, if S(F̄ ) ⊆ S(W ), the estimator obtained
by solving (9.77) is asymptotically equivalent to the one obtained using the
optimal instruments F̄.

The estimating equations (9.77) generalize the first-order conditions (8.28) for
linear IV estimation and the moment conditions (8.84) for nonlinear IV esti-
mation. As readers are asked to show in Exercise 9.14, the solution to (9.77)
in the case of the linear regression model is simply the generalized IV estima-
tor (8.29). As can be seen from (9.67), the asymptotic covariance matrix of
the estimator θ̂ defined by (9.77) can be estimated by

σ̂2(F̂>PW F̂ )−1,

where F̂ ≡ F (θ̂), and σ̂2 ≡ n−1
∑n

t=1 f2
t (θ̂), the average of the squares of the

elementary zero functions evaluated at θ̂, is a natural estimator of σ2.

Efficient Estimation with an Unknown Covariance Matrix

When the covariance matrix Ω is unknown, the GMM estimators defined by
the estimating equations (9.71) or (9.77), according to whether or not F (θ) is
predetermined, are no longer asymptotically efficient in general. But, just as
we did in Section 9.3 with regression models, we can obtain estimates that are
efficient for a given set of instruments by using a heteroskedasticity-consistent
or a HAC estimator.

Suppose there are l > k instruments which form an n × l matrix W. As in
Section 9.2, we can construct estimating equations with instruments Z = WJ,
using a full-rank l× k matrix J to select k linear combinations of the full set
of instruments. The asymptotic covariance matrix of the estimator obtained
by solving these equations is then, by (9.67),

(
plim
n→∞

1−
n

J>W>F0

)−1(
plim
n→∞

1−
n

J>W>ΩWJ
)(

plim
n→∞

1−
n

F0
>WJ

)−1

. (9.78)
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This looks just like (9.07) with F0 in place of the regressor matrix X. The
optimal choice of J is therefore just (9.08) with F0 in place of X. Since (9.08)
depends on the unknown true Ω, we replace n−1W>ΩW by an estimator Σ̂,
which could be either a heteroskedasticity-consistent or a HAC estimator.
This yields the estimating equations

F>(θ)WΣ̂−1W>f(θ) = 0, (9.79)

and the asymptotic covariance matrix (9.78) simplifies to

(
plim
n→∞

n−2F0
>WΣ̂−1W>F0

)−1

, (9.80)

in which, if F (θ) is not predetermined, we may write F̄ instead of F0 without
changing the limit. In practice, we can use

V̂ar(θ̂) = n(F̂>WΣ̂−1W>F̂ )−1, (9.81)

where F̂ ≡ F (θ̂), to estimate the covariance matrix of θ̂. As with the estima-
tor (9.41) for the linear regression case, the factor of n is needed to offset the
factor of n−1 in Σ̂. The matrix (9.81) can be used to construct Wald tests
and asymptotic confidence intervals in the usual way.

Efficient Estimation with a Known Covariance Matrix

When the covariance matrix Ω is known, we can obtain a fully efficient GMM
estimator. As before, we will let Ψ denote an n×n matrix which satisfies the
equation Ω−1 = Ψ Ψ>. The variance of the vector Ψ>f(θ0), where θ0 is the
true parameter vector for the DGP that generates the data, is then

E
(
Ψ>f(θ0)f>(θ0)Ψ

)
= Ψ>ΩΨ = I.

Thus the components of the vector Ψ>f(θ) form a set of zero functions that
are homoskedastic and serially uncorrelated. As we mentioned in Section 9.2,
it is often possible to choose Ψ in such a way that these components can be
thought of as innovations in the sense of Section 4.5, and in this case Ψ will
usually be upper triangular.

The matrix Ψ does not depend on the parameters θ. Therefore, the matrix
of derivatives of the transformed zero functions in the vector Ψ>f(θ) is just
Ψ>F (θ). Consequently, if the tth row of Ψ>F (θ) is predetermined with re-
spect to the tth component of Ψ>f(θ), the optimal estimating equations are
constructed using the columns of Ψ>F (θ0) as instruments. Because θ0 is not
known, the optimal instruments are estimated along with the parameters by
using the estimating equations

1−
n

F>(θ)Ψ Ψ>f(θ) = 1−
n

F>(θ)Ω−1f(θ) = 0, (9.82)
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as in (9.71). The asymptotic covariance matrix of the resulting estimator is

Var
(

plim
n→∞

n1/2(θ̂ − θ0)
)

= plim
n→∞

(
1−
n

F0
>Ω−1F0

)−1

, (9.83)

where, as usual, F0 ≡ F (θ0). The derivation of (9.83) from (9.67) is quite
straightforward; see Exercise 9.15. In practice, the covariance matrix of θ̂ will
normally be estimated by

V̂ar(θ̂) = (F̂>Ω−1F̂ )−1. (9.84)

If the tth row of Ψ>F (θ) is not predetermined with respect to the tth compo-
nent of Ψ>f(θ), and if this component is an innovation, then we can determine
the optimal instruments just as we did in Section 9.2. By analogy with (9.24),
we define the matrix F̄ (θ) implicitly by the equation

E
(
(Ψ>F (θ))t |Ωt

)
= (Ψ>F̄ (θ))t. (9.85)

As in Section 9.2, making this definition explicit depends on the details of
the particular model under study. The moment conditions for fully efficient
estimation are then given by (9.82) with F (θ) replaced by F̄ (θ). The asymp-
totic covariance matrix is (9.83) with F0 replaced by F̄0, and the covariance
matrix of θ̂ can be estimated by (9.84) with F̂ replaced by F̄ (θ̂). All of these
claims are proved in the same way as were the corresponding ones for linear
regressions in Section 9.2.

When the matrix F̄ (θ) is not observable, as will frequently be the case, we can
often find an n × l matrix of instruments W, where usually l > k, such that
W satisfies the predeterminedness condition in its form (9.30), and such that
S(F (θ0)) ⊆ S(W ). In such cases, overidentified estimation that makes use
of the transformed zero functions Ψ>f(θ) and the transformed instruments
Ψ>W yields asymptotically efficient estimates. The results of Exercises 9.8
and 9.9 can also be readily extended to the present nonlinear case.

Minimizing Criterion Functions

The nonlinear GMM estimators we have discussed in this section can all, like
the ones for linear regression models, be obtained by minimizing appropri-
ately chosen quadratic forms. We restrict our attention to cases in which
plim n−1F>(θ)f(θ) 6= 0, and we employ an n × l matrix of instruments, W.
When the covariance matrix Ω of the elementary zero functions is unknown,
but a heteroskedasticity-consistent or HAC estimator Σ̂ is available, the ap-
propriate GMM criterion function is

1−
n

f>(θ)WΣ̂−1W>f(θ). (9.86)

Minimizing this function with respect to θ is equivalent to solving the esti-
mating equations (9.79).
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In the case in which the matrix Ω is known, or can be estimated consistently,
the fully efficient estimators of the previous subsection can be obtained by
minimizing the quadratic form

f>(θ)ΨPΨ>WΨ>f(θ), (9.87)

where Ψ Ψ> = Ω−1, the components of Ψ>f(θ0) are innovations, and the
matrix W satisfies the predeterminedness condition in the form (9.30). For
full efficiency, the span S(W ) of the instruments must (asymptotically) include
as a subspace the span of the F̄ (θ0), as defined in (9.85). In Exercise 9.16,
readers are asked to check that minimizing (9.87) is asymptotically equivalent
to solving the optimal estimating equations.

Fortunately, we need not treat (9.86) and (9.87) separately. As in Section 9.4,
expression (9.86) is asymptotically unchanged if we replace Σ̂ by n−1W>ΩW,
where Ω is the true covariance matrix of the zero functions. Making this
replacement, we see that both (9.86) and (9.87) can be written as

Q(θ,y) ≡ f>(θ)ΨPAΨ>f(θ), (9.88)

where A = Ψ−1W and A = Ψ>W for the criterion functions (9.86) and
(9.87), respectively. Note how closely (9.88) resembles expression (9.45) for
the linear regression case.

It is often more convenient to compute GMM estimators by minimizing a
criterion function than by directly solving a set of estimating equations. One
advantage is that algorithms for minimizing functions tend to be more stable
numerically than algorithms for solving sets of nonlinear equations. Another
advantage is that the criterion function may have more than one stationary
point. In this event, the estimating equations are satisfied at each of these
stationary points, although the criterion function may have a unique global
minimum, which then corresponds to the solution of interest.

However, the main advantage of working with criterion functions is that the
minimized value of a GMM criterion function can be used for testing, as we
have already discussed for the linear regression case in Section 9.4. Notice that
the factor of n−1 in (9.86), which does not matter for estimation, is essential
when the criterion function is being used for testing. Its role is to offset the
factor of n−1 in the definition of Σ̂.

Tests Based on the GMM Criterion Function

The Hansen-Sargan overidentification test statistic is Q(θ̂,y), the minimized
value of the GMM criterion function. Up to an irrelevant scalar factor, the
first-order conditions for the minimization of (9.88) are

F>(θ̂)ΨPAΨ>f(θ̂) = 0, (9.89)
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and it follows from this, either by a Taylor expansion or directly by using the
result (9.66), that

n1/2(θ̂ − θ0)
a= −

(
1−
n

F0
>ΨPAΨ>F0

)−1

n−1/2F0
>ΨPAΨ>f0,

where, as usual, F0 and f0 denote F (θ0) and f(θ0), respectively. We now
follow quite closely the calculations of Section 9.4 in order to show that the
minimized quadratic form Q(θ̂, y) is asymptotically distributed as χ2(l − k).
By a short Taylor expansion, we see that

PAΨ>f(θ̂) a= PAΨ>f0 + n−1/2PAΨ>F0 n1/2(θ̂ − θ0)
a= PAΨ>f0 − n−1/2PAΨ>F0

( 1−
n
F0
>ΨPAΨ>F0

)−1
n−1/2F0

>ΨPAΨ>f0

= (I− PPAΨ>F0)PAΨ>f0,

where PPAΨ>F0 projects orthogonally on to S(PAΨ>F0). Thus Q(θ̂,y), the
minimized value of the criterion function (9.88), is

f>(θ̂)ΨPAΨ>f(θ̂) a= f0
>ΨPA(I− PPAΨ>F0)PAΨ>f0

= f0
>Ψ

(
PA − PPAΨ>F0

)
Ψ>f0. (9.90)

Because S(PAΨ>F0) ⊆ S(A), the difference of projection matrices in the
last expression above is itself an orthogonal projection matrix, of which the
image is of dimension l − k. As with (9.48), we see that estimating θ uses
up k degrees of freedom. By essentially the same argument as was used for
(9.48), it can be shown that (9.90) is asymptotically distributed as χ2(l− k).
Thus, as expected, Q(θ̂,y) is the Hansen-Sargan test statistic for nonlinear
GMM estimation.

As in the case of linear regression models, the difference between the GMM
criterion function (9.88) evaluated at restricted estimates and evaluated at
unrestricted estimates is asymptotically distributed as χ2(r) when there are r
equality restrictions. We will not prove this result, which was proved for the
linear case in Section 9.3. However, we will present a very simple argument
which provides an intuitive explanation.

Let θ̃ and θ̂ denote, respectively, the vectors of restricted and unrestricted
(feasible) efficient GMM estimates. From the result for the Hansen-Sargan test
that was just proved, we know that Q(θ̃, y) and Q(θ̂, y) are asymptotically
distributed as χ2(l − k + r) and χ2(l − k), respectively. Therefore, since a
random variable that follows the χ2(m) distribution is equal to the sum of m
independent χ2(1) variables,

Q(θ̃, y) a=
l−k+r∑

i=1

x2
i and Q(θ̂, y) a=

l−k∑

i=1

y2
i , (9.91)
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where the xi and yi are independent, standard normal random variables. Now
suppose that the first l − k of the xi are equal to the corresponding yi. If so,
(9.91) implies that

Q(θ̃, y)−Q(θ̂, y) a=
l−k+r∑

i=1

x2
i −

l−k∑

i=1

x2
i =

l−k+r∑

i=l−k+1

x2
i . (9.92)

Since the leftmost expression here is the test statistic we are interested in and
the rightmost expression is evidently distributed as χ2(r), we have apparently
proved the result. The proof is not complete, of course, because we have not
shown that the first l− k of the xi are, in fact, equal to the corresponding yi.
To prove this, we would need to show that, asymptotically, Q(θ̃, y) is equal
to Q(θ̂,y) plus another random variable independent of Q(θ̂,y). This other
random variable would then be equal to the rightmost expression in (9.92).

Nonlinear GMM Estimators: Overview

We have discussed a large number of nonlinear GMM estimators, and it can
be confusing to keep track of them all. We therefore conclude this section
with a brief summary of the principal cases that are likely to be encountered
in applied econometric work.

Case 1. Scalar covariance matrix: Ω = σ2I.

When plim n−1F>(θ)f(θ) = 0, we solve the estimating equations (9.71) to
obtain an efficient estimator. This is equivalent to minimizing f>(θ)f(θ).
The estimated covariance matrix of θ̂ will be

V̂ar(θ̂) = σ̂2(F̂>F̂ )−1,

where σ̂2 consistently estimates σ2. If the model is a nonlinear regression
model, then θ̂ is really the nonlinear least squares estimator discussed in
Section 6.3.

When plim n−1F>(θ)f(θ) 6= 0, we must replace F (θ) by an estimate of
its conditional expectation. This means that we solve the estimating equa-
tions (9.77), which is equivalent to minimizing f>(θ)PWf(θ). The estimated
covariance matrix of θ̂ will be

V̂ar(θ̂) = σ̂2(F̂>PW F̂ )−1.

If the model is a nonlinear regression model, then θ̂ is really the nonlinear
instrumental variables estimator discussed in Section 8.9.

Case 2. Covariance matrix known up to a scalar factor: Ω = σ2∆.

When plim n−1F>(θ)f(θ) = 0, we solve the estimating equations (9.82), with
Ω replaced by ∆, to obtain an efficient estimator. This is equivalent to
minimizing f>(θ)∆−1f(θ). The estimated covariance matrix will be

V̂ar(θ̂) = σ̂2(F̂>∆−1F̂ )−1,
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where σ̂2 consistently estimates σ2. If the underlying model is a nonlinear
regression model, then θ̂ is really the nonlinear GLS estimator discussed in
Section 7.3.
When plimn−1F>(θ)f(θ) 6= 0, we again must replace F (θ) by an estimate of
its conditional expectation. This means that we should solve the estimating
equations (9.89) with A = Ψ>W, where Ψ satisfies ∆−1 = Ψ Ψ>. This is
equivalent to minimizing (9.88) with the same definition of A. The estimated
covariance matrix will be

σ̂2(F̂>ΨPΨ>WΨ>F̂ )−1.

If the model is a linear regression model, then θ̂ is the fully efficient GMM
estimator (9.26) whenever the span of the instruments W includes the span
of the optimal instruments X̄.
When the matrix ∆ is unknown but depends on a fixed number of parameters
that can be estimated consistently, we can replace ∆ by a consistent estimator
∆̂ and proceed as if it were known, as in feasible GLS estimation.

Case 3. Unknown diagonal or general covariance matrix.
This is the most commonly encountered case in which GMM estimation is
explicitly used. Fully efficient estimation is no longer possible, but we can
still obtain estimates that are efficient for a given set of instruments by using
a consistent estimator Σ̂ of the matrix Σ defined in (9.33). This will be
heteroskedasticity-consistent if Ω is assumed to be diagonal and some sort of
HAC estimator otherwise. Whether or not plim n−1F>(θ)f(θ) = 0, we solve
the estimating equations (9.79), which is equivalent to minimizing (9.86).
The estimated covariance matrix will be (9.81). If there is to be any gain in
efficiency relative to NLS or nonlinear IV, it is essential that l, the number of
columns of W, be greater than k, the number of parameters to be estimated.
The consistent estimator Σ̂ is usually obtained from initial estimates that
are consistent but inefficient. These may be NLS estimates, nonlinear IV
estimates, or GMM estimates that do not use the optimal weighting matrix.
The efficient GMM estimates are usually obtained by minimizing the criterion
function (9.86), and the minimized value of this criterion function then serves
as a Hansen-Sargan test statistic.
The first-round estimates θ̂ can be used to obtain a new estimate of Σ, which
can then be used to obtain a second-round estimate of θ, which can be used
to obtain yet another estimate of Σ, and so on, until the process converges
or the investigator loses patience. For a correctly specified model, all of these
estimators will have the same asymptotic distribution. However, performing
more than one iteration will often improve the finite-sample properties of the
estimator. Thus, if computing cost is not a problem, it may well be best to
use the continuously updated estimator that has been iterated to convergence.
For a more thorough treatment of the asymptotic theory of GMM estimation,
see Newey and McFadden (1994).
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9.6 The Method of Simulated Moments

It is often possible to use GMM even when the elementary zero functions
cannot be evaluated analytically. Suppose they take the form

ft(yt, θ) = ht(yt)−mt(θ), t = 1, . . . , n, (9.93)

where the function ht(yt) depends only on yt and, possibly, on exogenous or
predetermined variables. The function mt(θ) depends only on exogenous or
predetermined variables and on the parameters. Like a regression function,
it is the expectation of ht(yt), conditional on the information set Ωt, under a
DGP characterized by the parameter vector θ. Estimating such a model by
GMM presents no special difficulty if the form of mt(θ) is known analytically,
but this need not be the case.

There are numerous situations in which mt(θ) may not be known analytically.
In particular, it may well occur in models which involve latent variables, that
is, variables which are not observable by an econometrician. The variables
that actually are observed are related to the latent variables in such a way
that knowing the former does not permit the values of the latter to be fully
recovered. One example, which was discussed in Section 8.2, is economic
variables that are observed with measurement error. Another example is
variables that are censored, in the sense that they are observed only to a
limited extent, for instance when only the sign of the variable is observed, or
when all negative values are replaced by zeros. Even if the distributions of
the latent variables are tractable, those of the observed variables may not be.
In particular, it may not be possible to obtain analytic expressions for their
expectations, or for the expectations of functions of them.

Even when analytic expressions are not available, it is often possible to obtain
simulation-based estimates of the distributions of the observed variables. For
example, suppose that an observed variable is equal to a latent variable plus
a measurement error of some known distribution, possibly dependent on the
parameter vector θ. Suppose further that, for a DGP characterized by θ,
we can readily generate simulated values of the latent variable. Simulated
values of the observed variable can then be generated by adding simulated
measurement errors, drawn from their known distribution, to the simulated
values of the latent variable. The mean of these drawings then provides an
estimate of the expectation of the observed variable.

In general, an unbiased simulator for the unknown expectation mt(θ) is any
function m∗

t (u
∗
t, θ) of the model parameters, variables in Ωt, and a random

variable u∗t, which either has a known distribution or can be simulated, such
that, for all θ in the parameter space, E

(
m∗

t (u
∗
t, θ)

)
= mt(θ). To simplify

notation, we write u∗t as a scalar random variable, but it may well be a vector
of random variables in practical situations of interest.

The conceptually simplest unbiased simulator can be implemented as follows.
For given θ, we obtain S simulated values y∗ts of the observed variable under
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the DGP characterized by θ, making use of S random numbers u∗ts. Then
we let m∗(u∗ts,θ) = ht(y∗ts). If (9.93) is indeed a zero function, then ht(y∗ts)
must have expectation mt(θ), and it is obvious that the sample mean of the
simulated values h(y∗ts) is a simulation-based estimate of that expectation.
This simple simulator, which is applicable whether or not the model involves
any latent variables, is not the only possible simulator, and it may not be the
most desirable one for some purposes. However, we will not consider more
complicated simulators in this book.

If an unbiased simulator is available, the elementary zero functions (9.93) can
be replaced by the functions

f∗t (yt, θ) = ht(yt)− 1
S

S∑
s=1

m∗
t (u

∗
ts, θ), (9.94)

where the u∗ts, t = 1, . . . , n, s = 1, . . . , S, are mutually independent draws.
Since these draws are computer generated, they are evidently independent of
the yt. The functions (9.94) are legitimate elementary zero functions, even
in the trivial case in which S = 1. If the true DGP is characterized by θ0,
then E

(
ht(yt)

)
= mt(θ0) by definition, and E

(
m∗

t (u
∗
ts,θ0)

)
= mt(θ0) for all s

by construction. It follows that the expectation (9.94) is zero for θ = θ0, but
not in general for other values of θ.

The application of GMM to the zero functions (9.94) is called the method of
simulated moments, or MSM. We can use an n× l matrix W of appropriate
instruments, with l ≥ k, in order to form the empirical moments

W>f∗(θ), (9.95)

in which the n--vector of functions f∗(θ) has typical element f∗t (yt,θ). A
GMM estimator that is efficient relative to this set of empirical moments may
be obtained by minimizing the quadratic form

Q(θ,y) ≡ 1−
n

f∗>(θ)WΣ̂−1W>f∗(θ) (9.96)

with respect to θ, where Σ̂ consistently estimates the covariance matrix of
n−1/2W>f∗(θ).

Minimizing the criterion function (9.96) with respect to θ proceeds in the
usual way, with one important proviso. Each evaluation of f∗(θ) requires a
large number of pseudo-random numbers (generally, at least nS of them). It
is absolutely essential that the same set of random numbers be used every
time f∗(θ) is evaluated for a new value of the parameter vector θ. Otherwise,
(9.96) would change not only as a result of changes in θ but also as a result
of changes in the random numbers used for the simulation. Therefore, if
the algorithm happened to evaluate the criterion function twice at the same
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parameter vector, it would obtain two different values of Q(θ,y), and it could
not possibly tell where the minimum was located.

The details of the simulations will, of course, differ from case to case. An
important point is that, since we require a fully specified DGP in order to
generate the simulated data, it will generally be necessary to make stronger
distributional assumptions for the purposes of MSM estimation than for the
purposes of GMM estimation.

The Asymptotic Distribution of the MSM Estimator

Because the criterion function (9.96) is based on genuine zero functions, the
estimator θ̂MSM obtained by minimizing it will be consistent whenever the
parameters are identified. However, as we will see in a moment, using simu-
lated quantities does affect the asymptotic covariance matrix of the estimator,
although the effect is generally very small if S is a reasonably large number.

The first-order conditions for minimizing (9.96), ignoring a factor of 2/n, are

F ∗>(θ)WΣ̂−1W>f∗(θ) = 0, (9.97)

where F ∗(θ) is the n × k matrix of which the tith element is ∂f∗t (yt, θ)/∂θi.
The solution to these equations is θ̂MSM. Although conditions (9.97) look
very similar to conditions (9.79), the covariance matrix is, in general, a good
deal more complicated.

From (9.97), it can be seen that the instruments effectively used by the MSM
estimator are WΣ̂−1(n−1W>F ∗

0 ), where F ∗
0 ≡ F ∗(θ0), and a factor of n−1

has been used to keep the expression of order unity as n →∞. If we think of
the effective instruments as Z = WJ, then J = Σ̂−1(n−1W>F ∗

0 ).

The asymptotic covariance matrix of n1/2(θ̂MSM − θ0) can now be found by
using the general formula (9.78) for the asymptotic covariance matrix of an
efficient GMM estimator with unknown covariance matrix. This is a sandwich
estimator of the form A−1BA−1, and we find that

A = plim
n→∞

(n−1F ∗
0
>W )Σ̂−1(n−1W>F ∗

0 ), and

B = plim
n→∞

(n−1F ∗
0
>W )Σ̂−1(n−1W>ΩW )Σ̂−1(n−1W>F ∗

0 ),
(9.98)

where Ω is the n× n covariance matrix of f∗(θ0).

The tith element of F ∗(θ) is, from (9.94),

F ∗ti(θ) = − 1
S

S∑
s=1

∂m∗
t (u

∗
ts, θ)

∂θi
.

If m∗
t is differentiable with respect to θ in a neighborhood of θ, then we can
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differentiate the relation E
(
m∗

t (u
∗
t , θ)

)
= mt(θ) to find that

E
(∂m∗

t (u
∗
t , θ)

∂θi

)
=

∂mt(θ)
∂θi

.

We denote by M(θ) the n × k matrix with typical element ∂mt/∂θi(θ). By
a law of large numbers, we then see that plim n−1W>F ∗

0 = plim n−1W>M0,
where M0 ≡ M(θ0).

Consider next the covariance matrix Ω of f∗(θ0). The original data yt are of
course completely independent of the simulated u∗ts, and the simulated data
are independent across simulations. Thus, from (9.94), we see that

Ω = Var
(
h(y)

)
+

1
S

Var
(
m∗(θ0)

)
, (9.99)

where h(y) and m∗(θ) are the n--vectors with typical elements ht(yt) and
m∗

t (u
∗
t , θ), respectively. We see that the covariance matrix Ω has two com-

ponents, one due to the randomness of the data and the other due to the
randomness of the simulations. If the simulator m∗

t (·) is the simple one sug-
gested above, then the simulated data ht(y∗t ) are generated from the DGP
characterized by θ, which is also supposed to have generated the real data.
Therefore, it is clear that Var

(
h(y)

)
= Var

(
m∗(θ0)

)
, and we conclude that

Ω = (1 + 1/S)Var
(
h(y)

)
.

In general, the n × n matrix Ω cannot be estimated consistently, but an
HCCME or HAC estimator can be used to provide a consistent estimate of Σ,
the covariance matrix of n−1/2W>f∗(θ0). For the simple simulator we have
been discussing, Σ̂ will just be 1 + 1/S times whatever HAC estimator or
HCCME would be appropriate if there were no simulation involved. For
other simulators, it may be a little harder to estimate (9.99). In any case,
once Σ̂ is available, we use it to replace n−1W>ΩW in (9.98). We also
replace plim n−1W>F ∗

0 by plim n−1W>M0. The sandwich estimator for the
asymptotic covariance matrix then simplifies greatly, and we find that the
asymptotic covariance matrix is just

plim
n→∞

(
(n−1M0

>W )Σ̂−1(n−1W>M0)
)−1

.

In practice, M0 can be estimated using either analytical or numerical deriva-
tives of (1/S)

∑S
s=1 m∗

t (u
∗
ts, θ̂), evaluated at θ̂MSM. However, for this to be a

reliable estimator, it is necessary for S to be reasonably large. If we let M̂
denote the estimate of M0, then in practice we will use

V̂ar(θ̂MSM) = n(M̂>WΣ̂−1W>M̂)−1. (9.100)

Notice that (9.100) has essentially the same form as (9.41) and (9.81), the esti-
mated covariance matrices for the feasible efficient GMM estimators of linear
regression and general nonlinear models, respectively. The most important
new feature of (9.100) is the factor of 1 + 1/S, which is buried in Σ̂.
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The Lognormal Distribution: An Example

Since the implementation of MSM estimation typically involves several steps
and can be rather tricky, we now work through a simple example in detail.
The example is in fact sufficiently simple that there is no need for simulation
at all; we can work out the “right answer” directly. This provides a benchmark
with which to compare the various other estimators that we consider. In order
to motivate these other estimators, we demonstrate how GMM can be used to
match moments of distributions. Moment matching can be done quite easily
when the moments to be matched can be expressed analytically as functions
of the parameters to be estimated, and no simulation is needed in such cases.
If analytic expressions are not available, moment matching can still be done
whenever we can simulate the random variables of which the expectations are
the moments to be matched.

A random variable is said to follow the lognormal distribution if its logarithm
is normally distributed. The lognormal distribution for a scalar random vari-
able y thus depends on just two parameters, the expectation and the variance
of log y. Formally, if z ∼ N(µ, σ2), then the variable y ≡ exp(z) is lognormally
distributed, with a distribution characterized by µ and σ2.

Suppose we have an n--vector y, of which the components yt are IID, each
lognormally distributed with unknown parameters µ and σ2. The “right” way
to estimate these unknown parameters is to take logs of each component of y,
thus obtaining an n--vector z with typical element zt, and then to estimate µ
and σ2 by the sample mean and sample variance of the zt. This can be done
by regressing z on a constant.

The above estimation method implicitly matches the first and second moments
of the log of yt in order to estimate the parameters. It yields the parameter
values that give theoretical moments equal to the corresponding moments
in the sample. Since we have two parameters to estimate, we need at least
two moments. But other sets of two moments could also be used in order to
obtain method of moments estimators of µ and σ2. So could sets of more than
two moments, although the match could not be perfect, because there would
implicitly be overidentifying restrictions.

We now consider precisely how we might estimate µ and σ2 by matching the
first moment of the yt along with the first moment of the zt. With this choice,
it is once more possible to obtain an analytical answer, because, as the result
of Exercise 9.19 shows, the expectation of yt is exp(µ+ 1

2σ2). Thus, as before,
we estimate µ by using z̄, the sample mean of the zt, and then estimate σ2

by solving the equation
log ȳ = z̄ + 1

2 σ̂2

for σ̂2, where ȳ is the sample mean of the yt. The estimate is

σ̂2 = 2(log ȳ − z̄). (9.101)
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This estimate will not, except by random accident, be numerically equal to
the estimate obtained by regressing z on a constant, and in fact it has a higher
variance; see Exercises 9.20 and 9.21.

Let us formalize the estimation procedure described above in terms of zero
functions and GMM. The moments used are the first moments of the yt and
the zt, for t = 1, . . . , n. For each observation, then, there are two elementary
zero functions, which serve to express the expectations of the yt and the zt in
terms of the parameters µ and σ2. We write these elementary zero functions
as follows:

ft1(zt, µ, σ2) = zt − µ; ft2(yt, µ, σ2) = yt − exp(µ + 1
2σ2). (9.102)

The derivatives of these functions with respect to the parameters are

∂ft1

∂µ
= −1;

∂ft1

∂σ2
= 0;

∂ft2

∂µ
= −eµ+σ2/2;

∂ft2

∂σ2
= − 1−

2
eµ+σ2/2. (9.103)

These derivatives, which are all deterministic, allow us to find the optimal
instruments for the estimation of µ and σ2 on the basis of the zero func-
tions (9.102), provided that we can also obtain the covariance matrix Ω of
the zero functions.

Notice that, in contrast to many GMM estimation procedures, this one in-
volves two elementary zero functions and no instruments. Nevertheless, we
can set the problem up so that it looks like a standard one. Let f1(µ, σ2)
and f2(µ, σ2) be two n--vectors with typical components ft1(zt, µ, σ2) and
ft2(yt, µ, σ2), respectively. For notational simplicity, we suppress the explicit
dependence of these vectors on the yt and the zt. The 2n--vector f(µ, σ2) of
the full set of elementary zero functions, and the 2n × 2 matrix F (µ, σ2) of
the derivatives with respect to the parameters, can thus be written as

f(µ, σ2) =
[

f1(µ, σ2)
f2(µ, σ2)

]
and F (µ, σ2) = −

[
ι 0
aι 1

2aι

]
, (9.104)

where a ≡ exp(µ + 1/2σ2). The constant vectors ι in F (µ, σ2) arise because
none of the derivatives in (9.103) depends on t, which is a consequence of the
assumption that the data are IID.

Because f(µ, σ2) is a 2n--vector, the covariance matrix Ω is 2n × 2n. This
matrix can be written as

Ω = E

([
f10

f20

]
[ f>10 f>20 ]

)
,

where fi0, i = 1, 2, is fi evaluated at the true values µ0 and σ2
0 . Since the

data are IID, Ω can be partitioned as follows into four n× n blocks, each of
which is proportional to an identity matrix. The result is

Ω =
[

σ2
zI σzyI

σyzI σ2
yI

]
, (9.105)
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where σ2
y ≡ Var(yt), σ2

z ≡ Var(zt), and σyz ≡ Cov(yt, zt).

We now have everything we need to set up the efficient estimating equations
(9.82), which, ignoring the factor of n−1, become

F>(µ, σ2)Ω−1f(µ, σ2) = 0, (9.106)

where f(·) and F (·) are given by (9.104), and Ω is given by (9.105). By
explicitly performing the multiplications of partitioned matrices in (9.106),
inverting Ω, and ignoring irrelevant scalar factors, we obtain

[
σ2

y − aσyz aσ2
z − σyz

− 1
2aσyz

1
2aσ2

z

][
ι> 0
0 ι>

][
f1(µ, σ2)
f2(µ, σ2)

]
= 0.

Since the leftmost factor above is a 2×2 nonsingular matrix, we see that these
estimating equations are equivalent to

ι>f1(µ, σ2) = 0 and ι>f2(µ, σ2) = 0. (9.107)

The solution to these two equations is µ̂ = z̄ and σ̂2 given by (9.101). Curi-
ously, it appears that the explicit expressions for F (·) and Ω are not needed
in order to formulate the estimator. They are needed, however, for the evalu-
ation of expression (9.67) for its asymptotic covariance matrix. This is left as
an exercise for the reader; in particular, the same expression for the variance
of σ̂2 should be found as in the answer to Exercise 9.21.

As we mentioned above, it is possible to use more than two moments. Suppose
that, in addition to matching the first moments of the zt and the yt, we also
wish to match the second moment of the yt, or, equivalently, the first moment
of the y2

t . Since the log of y2
t is just 2zt, which is distributed as N(2µ, 4σ2),

the expectation of y2
t is exp

(
2(µ + σ2)

)
. We now have three elementary zero

functions for each observation, the two given in (9.102) and

ft3(yt, µ, σ2) = y2
t − exp

(
2(µ + σ2)

)
.

The vector f(·) and the matrix F (·), originally defined in (9.104), now both
have 3n rows. The latter still has two columns, both of which can be parti-
tioned into three n--vectors, each proportional to ι. Further, the matrix Ω
of (9.105) grows to become a 3n × 3n matrix. It is then a matter of taste
whether to set up a just identified estimation problem using as optimal in-
struments the two columns of Ω−1F (µ, σ2), or to use three instruments, which
will be the columns of the matrix

W ≡



ι 0 0
0 ι 0
0 0 ι


, (9.108)
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and to construct an optimal weighting matrix. Whichever choice is made, it
is necessary to estimate Ω in order to construct the optimal instruments for
the first method, or the optimal weighting matrix for the second.

The procedures we have just described depend on the fact that we know the
analytic forms of E(zt), E(yt), and E(y2

t ). In more complicated applications,
comparable analytic expressions for the moments to be matched might not be
available; see Exercise 9.24 for an example. In such cases, simulators can be
used to replace such analytic expressions. We illustrate the method for the
case of the lognormal distribution, matching the first moments of zt and yt,
pretending that we do not know the analytic expressions for their expectations.

For any given values of µ and σ2, we can draw from the lognormal distribution
characterized by these values by first using a random number generator to
give a drawing u∗ from N(0, 1) and then computing y∗ = exp(µ+σu∗). Thus
unbiased simulators for the expectations of z ≡ log y and of y itself are

m∗
1(u

∗, µ, σ2) ≡ µ + σu∗ and m∗
2(u

∗, µ, σ2) ≡ exp(µ + σu∗).

If we perform S simulations, the zero functions for MSM estimation can be
written as

f∗t1(zt, µ, σ2) = zt − 1
S

S∑
s=1

m∗
1(u

∗
ts, µ, σ2) and

f∗t2(yt, µ, σ2) = yt − 1
S

S∑
s=1

m∗
2(u

∗
ts, µ, σ2),

where the u∗ts are IID standard normal. Comparison with (9.102) shows clearly
how we replace analytic expressions for the moments, assumed to be unknown,
by simulation-based estimates.

Since the data are IID, it might appear tempting to use just one set of random
numbers, u∗s, s = 1, . . . , S, for all t. However, doing this would introduce
dependence among the zero functions, greatly complicating the computation
of their covariance matrix. As S becomes large, of course, the law of large
numbers ensures that this effect becomes less and less important. Using just
one set of random numbers would in any case not affect the consistency of the
MSM estimator, merely that of the covariance matrix estimate.

By analogy with (9.107), we can see that the MSM estimating equations are

ι>f∗1 (µ̂, σ̂2) = 0 and ι>f∗2 (µ̂, σ̂2) = 0. (9.109)

Here we have again grouped the elementary zero functions into two n--vectors
f∗1 (·) and f∗2 (·). Recalling that the random numbers u∗ts are drawn only once
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for the entire procedure, let us make the definitions

mt1(µ, σ2) ≡ 1
S

S∑
s=1

m∗
1(u

∗
ts, µ, σ2) = µ + σ

1
S

S∑
s=1

u∗ts, and

mt2(µ, σ2) ≡ 1
S

S∑
s=1

m∗
2(u

∗
ts, µ, σ2) =

1
S

S∑
s=1

exp(µ + σu∗ts).

(9.110)

It is clear that, as S → ∞, these functions tend for all t to the limits of the
expectations of z and y, respectively. It is also not hard to see that these
limits are µ and exp(µ + 1

2σ2).

On dividing by the sample size n and rearranging, the estimating equa-
tions (9.109) can be written as

m̄1(µ, σ2) = z̄ and m̄2(µ, σ2) = ȳ, (9.111)

where z̄ and ȳ are the sample averages of the zt and the yt, respectively, and

m̄i(µ, σ2) ≡ 1−
n

n∑
t=1

mti(µ, σ2), i = 1, 2.

Equations (9.111) can be solved in various ways. One approach is to turn the
problem of solving them into a minimization problem. Let

W ≡
[

ι 0
0 ι

]
. (9.112)

Then it is not difficult to see that minimizing the quadratic form
[

z −m1(µ, σ2)
y −m2(µ, σ2)

]>
WW>

[
z −m1(µ, σ2)
y −m2(µ, σ2)

]
(9.113)

will also solve equations (9.111); see Exercise 9.23. Here the n--vectors m1(·)
and m2(·) have typical elements mt1(·) and mt2(·), respectively.

Alternatively, we can use Newton’s Method directly. We discussed this proce-
dure in Section 6.4, in connection with minimizing a nonlinear function, but it
can also be applied to sets of equations like (9.111). Suppose that we wish to
solve a set of k equations of the form g(θ) = 0 for a k --vector of unknowns θ,
where g(·) is also a k --vector. The iterative step analogous to (6.43) is

θ(j+1) = θ(j) −G−1(θ(j))g(θ(j)), (9.114)

where G(θ) is the Jacobian matrix associated with g(θ). This k × k matrix
contains the derivatives of the components of g(θ) with respect to the elements
of θ. For the estimating equations (9.111), the iterative step (9.114) becomes

[
µ(j+1)

σ2
(j+1)

]
=

[
µ(j)

σ2
(j)

]
−




∂m̄1

∂µ

∂m̄1

∂σ2

∂m̄2

∂µ

∂m̄2

∂σ2




[
m̄1(µ(j), σ

2
(j))− z̄

m̄2(µ(j), σ
2
(j))− ȳ

]
,
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where all the partial derivatives are evaluated at (µ(j), σ
2
(j)). It should be

noted that these partial derivatives are known analytically, as they can be
calculated directly from (9.110).

To estimate the asymptotic covariance matrix of the MSM estimates, we can
use any suitable estimator of (9.81), provided we remember to multiply the
result by 1 + 1/S in order to account for the simulation randomness. The
instrument matrix W of (9.81) is just the matrix W of (9.112). We are
pretending that we do not know the analytic form of the matrix F (µ, σ2)
given in (9.104), and so instead we use the matrix of partial derivatives of m1

and m2, evaluated at µ̂ and σ̂2. This matrix is

F̂ ≡




∂m1

∂µ
(µ̂, σ̂2)

∂m1

∂σ2 (µ̂, σ̂2)

∂m2

∂µ
(µ̂, σ̂2)

∂m2

∂σ2 (µ̂, σ̂2)


; (9.115)

note that each block in F̂ is an n--vector. If we used Newton’s Method for the
estimation, then all the partial derivatives in this matrix will already have been
computed. Finally, the covariance matrix Ω of the elementary zero functions
can be estimated using (9.105), by replacing the unknown quantities σ2

z , σ2
y,

and σzy with their sample analogs. If we denote the result of this by Ω̂, then
our estimate of the covariance matrix of µ̂ and σ̂2 is

V̂ar
[

µ̂

σ̂2

]
= (W>F̂ )−1W>Ω̂W (F̂>W )−1, (9.116)

with W given by (9.112) and F̂ given by (9.115).

MSM Estimation: Conclusion

Although it is very special, the example of the previous subsection illustrates
most of the key features of MSM estimation. The example shows how to
estimate two parameters by using two or more elementary zero functions,
even when there are no genuine instruments. In econometric applications, it
is more common for there to be as many elementary zero functions as there
are dependent variables, just one in the case of univariate models, and for
there to be more instruments than parameters. Also, in many applications,
the data will not be IID, but this complication generally does not require
substantial changes to the methods illustrated above.

Inference in models estimated by MSM is almost always based on asymptotic
theory, and it may therefore be quite unreliable in finite samples. Since MSM
estimation makes sense only when a model is too intractable for less compu-
tationally demanding methods to be applicable, the cost of estimating such
a model a large number of times, as would be needed to employ bootstrap
methods, is likely to be prohibitive.
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Not surprisingly, the literature on MSM is relatively recent. The two classic
papers are McFadden (1989), who seems to have coined the name, and Pakes
and Pollard (1989). Other important early papers include Lee and Ingram
(1991), Keane (1994), McFadden and Ruud (1994), and Gallant and Tauchen
(1996). An interesting early application of the method is Duffie and Singleton
(1993). Useful references include Hajivassiliou and Ruud (1994), Gouriéroux
and Monfort (1996), and van Dijk, Monfort, and Brown (1995), which is a
collection of papers, both theoretical and applied.

9.7 Final Remarks

As its name implies, the generalized method of moments is a very general
estimation method indeed, and numerous other methods can be thought of
as special cases. These include all of the ones we have discussed so far: MM,
OLS, NLS, GLS, and IV. Thus the number of techniques that can legitimately
be given the label “GMM” is bewilderingly large. To avoid bewilderment, it
is best not to attempt to enumerate all the possibilities, but simply to list
some of the ways in which various GMM estimators differ:

• Methods for which the explanatory variables are exogenous or predeter-
mined (including OLS, NLS, and GLS), and for which no extra instru-
ments are required, versus methods that do require additional exogenous
or predetermined instruments (including linear and nonlinear IV).

• Methods for linear models (including OLS, GLS, linear IV, and the GMM
techniques discussed in Section 9.2) versus methods for nonlinear models
(including NLS, GNLS, nonlinear IV, and the GMM techniques discussed
in Section 9.5).

• Methods that are inefficient for a given set of moment conditions, which
will have sandwich covariance matrices, versus methods that are efficient
for the same set of moment conditions, which will not.

• Methods that are fully efficient, because they are based on optimal in-
struments, versus methods that are not fully efficient.

• Methods based on a covariance matrix that is known, at least up to a
finite number of parameters which can be estimated consistently, versus
methods that require an HCCME or a HAC estimator. The latter can
never be fully efficient.

• Methods that involve simulation, such as MSM, versus methods where
the criterion function can be evaluated analytically.

• Univariate models versus multivariate models. We have not yet discussed
any methods for estimating the latter, but we will do so in Chapter 12.
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9.8 Exercises

9.1 Show that the difference between the matrix

(J>W>X)−1J>W>ΩWJ (X>WJ)−1

and the matrix
(X>W (W>ΩW )−1W>X)−1

is a positive semidefinite matrix. Hints: Recall Exercise 3.8. Express the
second of the two matrices in terms of the projection matrix PΩ1/2W , and
then find a similar projection matrix for the first of them.

9.2 Let the n--vector u be such that E(u) = 0 and E(uu>) = I, and let the n× l
matrix W be such that E(Wtut) = 0 and that E(utus |Wt,Ws) = δts, where
δts is the Kronecker delta introduced in Section 1.4. Assume that SW>W ≡
plim n−1W>W is finite, deterministic, and positive definite. Explain why
the quadratic form u>PWu must be asymptotically distributed as χ2(l).

9.3 Consider the quadratic form x>Ax, where x is a p × 1 vector and A is a
p× p matrix, which may or may not be symmetric. Show that there exists a
symmetric p × p matrix B such that x>Bx = x>Ax for all p × 1 vectors x,
and give the explicit form of a suitable B.

9.4 For the model (9.01) and a specific choice of the l × k matrix J, show that
minimizing the quadratic form (9.12) with weighting matrix Λ = JJ> gives
the same estimator as solving the moment conditions (9.05) with the given J.
Assuming that these moment conditions have a unique solution for β, show
that the matrix JJ> is of rank k, and hence positive semidefinite without
being positive definite.

Construct a symmetric, positive definite, l × l weighting matrix Λ such that
minimizing (9.12) with this Λ leads once more to the same estimator as that
given by solving conditions (9.05). It is convenient to take Λ in the form
JJ>+NN>. In the construction of N , it may be useful to partition W as
[W1 W2], where the n× k matrix W1 is such that W1

>X is nonsingular.

9.5 Consider the linear regression model with serially correlated errors,

yt = β1 + β2xt + ut, ut = ρut−1 + εt, (9.117)

where the εt are IID, and the autoregressive parameter ρ is assumed either
to be known or to be estimated consistently. The explanatory variable xt is
assumed to be contemporaneously correlated with εt (see Section 8.4 for the
definition of contemporaneous correlation).

Recall from Chapter 7 that the covariance matrix Ω of the vector u with
typical element ut is given by (7.32), and that Ω−1 can be expressed as ΨΨ>,
where Ψ is defined in (7.59). Express the model (9.117) in the form (9.20),
without taking account of the first observation.

Let Ωt be the information set for observation t with E(εt |Ωt) = 0. Suppose
that there exists a matrix Z of instrumental variables, with Zt ∈ Ωt, such that
the explanatory vector x with typical element xt is related to the instruments
by the equation

x = Zπ + v, (9.118)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



9.8 Exercises 393

where E(vt |Ωt) = 0. Derive the explicit form for the model (9.117) of the
expression (Ψ>X̄)t defined implicitly by equation (9.24). Find a matrix W of
instruments that satisfy the predeterminedness condition in the form (9.30)
and that lead to asymptotically efficient estimates of the parameters β1 and β2

computed on the basis of the theoretical moment conditions (9.31) with your
choice of W.

9.6 Consider the model (9.20), where the matrix Ψ is chosen in such a way that
the transformed error terms, the (Ψ>u)t, are innovations with respect to
the information sets Ωt. In other words, E((Ψ>u)t |Ωt) = 0. Suppose that
the n × l matrix of instruments W is predetermined in the usual sense that
Wt ∈ Ωt. Show that these assumptions, along with the assumption that
E((Ψ>u)2t |Ωt) = E((Ψ>u)2t ) = 1 for t = 1, . . . , n, are enough to prove the
analog of (9.02), that is, that

Var(n−1/2W>Ψ>u) = n−1E(W>W ).

In order to perform just-identified estimation, let the n× k matrix Z = WJ,
for an l×k matrix J of full column rank. Compute the asymptotic covariance
matrix of the estimator obtained by solving the moment conditions

Z>Ψ>(y −Xβ) = J>W>Ψ>(y −Xβ) = 0. (9.119)

The covariance matrix you have found will be a sandwich. Find the choice
of J that eliminates the sandwich, and show that this choice leads to an
asymptotic covariance matrix that is smaller, in the usual sense, than the
asymptotic covariance matrix for any other choice of J.

Compute the GMM criterion function for model (9.20) with instruments W,
and show that the estimator found by minimizing this criterion function is
just the estimator obtained using the optimal choice of J.

9.7 Compare the asymptotic covariance matrix found in the preceding question
for the estimator of the parameters of model (9.20), obtained by minimizing
the GMM criterion function for the n × l matrix of predetermined instru-
ments W, with the covariance matrix (9.29) that corresponds to estimation
with instruments Ψ>X̄. In particular, show that the difference between the
two is a positive semidefinite matrix.

9.8 Consider overidentified estimation based on the moment conditions

E(W>Ω−1(y −Xβ)) = 0,

which were given in (9.31), where the n× l matrix of instruments W satisfies
the predeterminedness condition (9.30). Derive the GMM criterion function
for these theoretical moment conditions, and show that the estimating equa-
tions that result from the minimization of this criterion function are

X>Ω−1W (W>Ω−1W )−1W>Ω−1(y −Xβ) = 0. (9.120)

Suppose that S(X̄), the span of the n × k matrix X̄ of optimal instruments
defined by (9.24), is a linear subspace of S(W ), the span of the transformed
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instruments. Show that, in this case, the estimating equations (9.120) are
asymptotically equivalent to

X̄>Ω−1(y −Xβ) = 0,

of which the solution is the efficient estimator β̂EGMM defined in (9.26).

9.9 Show that the asymptotic covariance matrix of the estimator obtained by
solving the estimating equations (9.120) is

plim
n→∞

(
1−
nX̄

>Ω−1W (W>Ω−1W )−1W>Ω−1X̄
)−1

. (9.121)

By expressing this asymptotic covariance matrix in terms of a matrix Ψ that
satisfies the equation Ω−1 = ΨΨ>, show that the difference between it and
the asymptotic covariance matrix of the efficient estimator β̂EGMM of (9.26)
is a positive semidefinite matrix.

9.10 Give the explicit form of the n × n matrix U(j) for which Γ̂ (j), defined
in (9.36), takes the form n−1W>U(j)W.

9.11 This question uses data on daily returns for the period 1989–1998 from the
file daily-crsp.data. These data are made available by courtesy of the Center
for Research in Security Prices (CRSP); see the comments at the bottom of
the file. Let rt denote the daily return on shares of Mobil Corporation, and
let vt denote the daily return for the CRSP value-weighted index. Using all
but the first four observations (to allow for lags), run the regression

rt = β1 + β2vt + ut

by OLS. Report three different sets of standard errors: the usual OLS ones,
ones based on the simplest HCCME, and ones based on a more advanced
HCCME that corrects for the downward bias in the squared OLS residuals;
see Section 5.5. Do the OLS standard errors appear to be reliable?

Assuming that the ut are heteroskedastic but serially uncorrelated, obtain
estimates of the βi that are more efficient than the OLS ones. For this purpose,
use r2

t−1, v2
t , v2

t−1, and v2
t−2 as additional instruments. Do these estimates

appear to be more efficient than the OLS ones?

9.12 Using the data for consumption (Ct) and disposable income (Yt) contained in
the file consumption.data, construct the variables ct = log Ct, ∆ct = ct−ct−1,
yt = log Yt, and ∆yt = yt − yt−1. Then, for the period 1953:1 to 1996:4, run
the regression

∆ct = β1 + β2∆yt + β3∆yt−1 + ut (9.122)

by OLS, and test the hypothesis that the ut are serially uncorrelated against
the alternative that they follow an AR(1) process.

Calculate eight sets of HAC estimates of the standard errors of the OLS
parameter estimates from regression (9.122), using the Newey-West estimator
with the lag truncation parameter set to the values p = 1, 2, 3, 4, 5, 6, 7, 8.

9.13 Using the squares of ∆yt, ∆yt−1, and ∆ct−1 as additional instruments, obtain
feasible efficient GMM estimates of the parameters of (9.122) by minimizing
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the criterion function (9.42), with Σ̂ given by the HAC estimators computed
in the previous exercise. For p = 6, carry out the iterative procedure described
in Section 9.3 by which new parameter estimates are used to update the HAC
estimator, which is then used to update the parameter estimates. Warning: It
may be necessary to rescale the instruments so as to avoid numerical problems.

9.14 Suppose that ft = yt −Xtβ. Show that, in this special case, the estimating
equations (9.77) yield the generalized IV estimator.

9.15 Starting from the asymptotic covariance matrix (9.67), show that, when
Ω−1F0 is used in place of Z, the covariance matrix of the resulting esti-
mator is given by (9.83). Then show that, for the linear regression model
y = Xβ + u with exogenous explanatory variables X, this estimator is the
GLS estimator.

9.16 The minimization of the GMM criterion function (9.87) yields the estimating
equations (9.89) with A = Ψ>W. Assuming that the n× l instrument matrix
W satisfies the predeterminedness condition in the form (9.30), show that
these estimating equations are asymptotically equivalent to the equations

F̄0
>ΨPΨ>W Ψ>f(θ̂) = 0, (9.123)

where, as usual, F̄0 ≡ F̄ (θ0), with θ0 the true parameter vector. Next, derive
the asymptotic covariance matrix of the estimator defined by these equations.

Show that the equations (9.123) are the optimal estimating equations for
overidentified estimation based on the transformed zero functions Ψ>f(θ)
and the transformed instruments Ψ>W. Show further that, if the condition
S(F̄ ) ⊆ S(W ) is satisfied, the asymptotic covariance matrix of the estimator
obtained by solving equations (9.123) coincides with the optimal asymptotic
covariance matrix (9.83).

9.17 Suppose the n--vector f(θ) of elementary zero functions has a covariance
matrix σ2I. Show that, if the instrumental variables used for GMM estimation
are the columns of the n× l matrix W, the GMM criterion function is

1

σ2
f>(θ)PW f(θ). (9.124)

Next, show that, whenever the instruments are predetermined, the artificial
regression

f(θ) = −PWF (θ)b + residuals, (9.125)

where F (θ) is defined as usual by (9.63), satisfies all the requisite properties
for hypothesis testing. These properties, which are spelt out in detail in
Exercise 8.20 in the context of the IVGNR, are that the regressand should be
orthogonal to the regressors when they are evaluated at the GMM estimator
obtained by minimizing (9.124); that the OLS covariance matrix from (9.125)
should be a consistent estimate of the asymptotic variance of that estimator;
and that (9.125) should admit one-step estimation.

9.18 Derive a heteroskedasticity robust version of the artificial regression (9.125),
assuming that the covariance matrix of the vector f(θ) of zero functions is
diagonal, but otherwise arbitrary.
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9.19 If the scalar random variable z is distributed according to the N(µ, σ2) dis-
tribution, show that

E(ez) = exp(µ + 1
2
σ2).

9.20 Let the components zt of the n--vector z be IID drawings from the N(µ, σ2)
distribution, and let s2 be the OLS estimate of the error variance from the
regression of z on the constant vector ι. Show that the variance of s2 is
2σ4/(n− 1).

Would this result still hold if the normality assumption were dropped? With-
out this assumption, what would you need to know about the distribution of
the zt in order to find the variance of s2?

9.21 Using the delta method, obtain an expression for the asymptotic variance of
the estimator defined by (9.101) for the variance of the normal distribution
underlying a lognormal distribution. Show that this asymptotic variance is
greater than that of the sample variance of the normal variables themselves.

9.22 Describe the two procedures by which the parameters µ and σ2 of the log-
normal distribution can be estimated by the method of simulated moments,
matching the first and second moments of the lognormal variable itself, and
the first moment of its log. The first procedure should use optimal instru-
ments and be just identified; the second should use the simple instruments
of (9.108) and be overidentified.

9.23 Show that minimizing the criterion function (9.113), when W is defined in
(9.112), is equivalent to solving equations (9.111). Then show that it is also
equivalent to minimizing the criterion function

[
z −m1(µ, σ2)

y −m2(µ, σ2)

]>
W (W>W )−1W>

[
z −m1(µ, σ2)

y −m2(µ, σ2)

]
, (9.126)

which is the criterion function for nonlinear IV estimation.

9.24 The Singh-Maddala distribution is a three-parameter distribution which has
been shown to give an acceptable account, up to scale, of the distributions
of household income in many countries. It is characterized by the following
CDF:

F (y) = 1− 1

(1 + ayb)c
, y > 0, a > 0, b > 0, c > 0. (9.127)

Suppose that you have at your disposal the values of the incomes of a random
sample of households from a given population. Describe in detail how to use
this sample in order to estimate the parameters a, b, and c of (9.127) by
the method of simulated moments, basing the estimates on the expectations
of y, log y, and y log y. Describe how to construct a consistent estimate of the
asymptotic covariance matrix of your estimator.
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Chapter 10

The Method of

Maximum Likelihood

10.1 Introduction

The method of moments is not the only fundamental principle of estimation,
even though the estimation methods for regression models discussed up to
this point (ordinary, nonlinear, and generalized least squares, instrumental
variables, and GMM) can all be derived from it. In this chapter, we introduce
another fundamental method of estimation, namely, the method of maximum
likelihood. For regression models, if we make the assumption that the error
terms are normally distributed, the maximum likelihood, or ML, estimators
coincide with the various least squares estimators with which we are already
familiar. But maximum likelihood can also be applied to an extremely wide
variety of models other than regression models, and it generally yields esti-
mators with excellent asymptotic properties. The major disadvantage of ML
estimation is that it requires stronger distributional assumptions than does
the method of moments.

In the next section, we introduce the basic ideas of maximum likelihood esti-
mation and discuss a few simple examples. Then, in Section 10.3, we explore
the asymptotic properties of ML estimators. Ways of estimating the covar-
iance matrix of an ML estimator will be discussed in Section 10.4. Some
methods of hypothesis testing that are available for models estimated by
ML will be introduced in Section 10.5 and discussed more formally in Sec-
tion 10.6. The remainder of the chapter discusses some useful applications
of maximum likelihood estimation. Section 10.7 deals with regression models
with autoregressive errors, and Section 10.8 deals with models that involve
transformations of the dependent variable.

10.2 Basic Concepts of Maximum Likelihood Estimation

Models that are estimated by maximum likelihood must be fully specified
parametric models, in the sense of Section 1.3. For such a model, once the
parameter values are known, all necessary information is available to simulate
the dependent variable(s). In Section 1.2, we introduced the concept of the
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probability density function, or PDF, of a scalar random variable and of the
joint density function, or joint PDF, of a set of random variables. If we can
simulate the dependent variable, this means that its PDF must be known, both
for each observation as a scalar r.v., and for the full sample as a vector r.v.

As usual, we denote the dependent variable by the n--vector y. For a given
k --vector θ of parameters, let the joint PDF of y be written as f(y, θ). This
joint PDF constitutes the specification of the model. Since a PDF provides
an unambiguous recipe for simulation, it suffices to specify the vector θ in
order to give a full characterization of a DGP in the model. Thus there is a
one to one correspondence between the DGPs of the model and the admissible
parameter vectors.

Maximum likelihood estimation is based on the specification of the model
through the joint PDF f(y, θ). When θ is fixed, the function f(·, θ) of y
is interpreted as the PDF of y. But if instead f(y, θ) is evaluated at the
n--vector y found in a given data set, then the function f(y, ·) of the model
parameters can no longer be interpreted as a PDF. Instead, it is referred to as
the likelihood function of the model for the given data set. ML estimation then
amounts to maximizing the likelihood function with respect to the parameters.
A parameter vector θ̂ at which the likelihood takes on its maximum value is
called a maximum likelihood estimate, or MLE, of the parameters.

In many cases, the successive observations in a sample are assumed to be
statistically independent. In that case, the joint density of the entire sample
is just the product of the densities of the individual observations. Let f(yt, θ)
denote the PDF of a typical observation, yt. Then the joint density of the
entire sample y is

f(y, θ) =
n∏

t=1

f(yt, θ). (10.01)

Because (10.01) is a product, it will often be a very large or very small number,
perhaps so large or so small that it cannot easily be represented in a computer.
For this and a number of other reasons, it is customary to work instead with
the loglikelihood function

`(y, θ) ≡ log f(y, θ) =
n∑

t=1

`t(yt,θ), (10.02)

where `t(yt, θ), the contribution to the loglikelihood function made by obser-
vation t, is equal to log ft(yt, θ). The t subscripts on ft and `t have been added
to allow for the possibility that the density of yt may vary from observation
to observation, perhaps because there are exogenous variables in the model.
Whatever value of θ maximizes the loglikelihood function (10.02) will also
maximize the likelihood function (10.01), because `(y, θ) is just a monotonic
transformation of f(y, θ).
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Figure 10.1 The exponential distribution

The Exponential Distribution

As a simple example of ML estimation, suppose that each observation yt is
generated by the density

f(yt, θ) = θe−θyt, yt > 0, θ > 0. (10.03)

This is the PDF of what is called the exponential distribution.1 This density
is shown in Figure 10.1 for three values of the parameter θ, which is what we
wish to estimate. There are assumed to be n independent observations from
which to calculate the loglikelihood function.

Taking the logarithm of the density (10.03), we find that the contribution to
the loglikelihood from observation t is `t(yt, θ) = log θ − θyt. Therefore,

`(y, θ) =
n∑

t=1

(log θ − θyt) = n log θ − θ

n∑
t=1

yt. (10.04)

To maximize this loglikelihood function with respect to the single unknown
parameter θ, we differentiate it with respect to θ and set the derivative equal
to 0. The result is

n

θ
−

n∑
t=1

yt = 0, (10.05)

which can easily be solved to yield

θ̂ =
n∑n

t=1 yt

. (10.06)

1 The exponential distribution is useful for analyzing dependent variables which
must be positive, such as waiting times or the duration of unemployment.
Models for duration data will be discussed in Section 11.8.
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This solution is clearly unique, because the second derivative of (10.04), which
is the first derivative of the left-hand side of (10.05), is always negative, which
implies that the first derivative can vanish at most once. Since it is unique, the
estimator θ̂ defined in (10.06) can be called the maximum likelihood estimator
that corresponds to the loglikelihood function (10.04).

In this case, interestingly, the ML estimator θ̂ is the same as a method of
moments estimator. As we now show, the expected value of yt is 1/θ. By
definition, this expectation is

E(yt) =
∫ ∞

0

ytθe−θytdyt.

Since −θe−θyt is the derivative of e−θyt with respect to yt, we may integrate
by parts to obtain

∫ ∞

0

ytθe−θytdyt = −
[
yte

−θyt

]∞
0

+
∫ ∞

0

e−θytdyt =
[
−θ−1e−θyt

]∞
0

= θ−1.

The most natural MM estimator of θ is the one that matches θ−1 to the
empirical analog of E(yt), which is ȳ, the sample mean. This estimator of θ
is therefore 1/ȳ, which is identical to the ML estimator (10.06).

It is not uncommon for an ML estimator to coincide with an MM estimator, as
happens in this case. This may suggest that maximum likelihood is not a very
useful addition to the econometrician’s toolkit, but such an inference would
be unwarranted. Even in this simple case, the ML estimator was considerably
easier to obtain than the MM estimator, because we did not need to calculate
an expectation. In more complicated cases, this advantage of ML estimation
is often much more substantial. Moreover, as we will see in the next three
sections, the fact that an estimator is an MLE generally ensures that it has
a number of desirable asymptotic properties and makes it easy to calculate
standard errors and test statistics.2

Regression Models with Normal Errors

It is interesting to see what happens when we apply the method of maximum
likelihood to the classical normal linear model

y = Xβ + u, u ∼ N(0, σ2I), (10.07)

which was introduced in Section 3.1. For this model, the explanatory variables
in the matrix X are assumed to be exogenous. Consequently, in constructing

2 Notice that the abbreviation “MLE” here means “maximum likelihood esti-
mator” rather than “maximum likelihood estimate.” We will use “MLE” to
mean either of these. Which of them it refers to in any given situation should
generally be obvious from the context; see Section 1.5.
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the likelihood function, we may use the density of y conditional on X. The
elements ut of the vector u are independently distributed as N(0, σ2), and so
yt is distributed, conditionally on X, as N(Xtβ, σ2). Thus the PDF of yt is,
from (4.10),

ft(yt, β, σ) =
1

σ
√

2π
exp

(
− (yt −Xtβ)2

2σ2

)
. (10.08)

The contribution to the loglikelihood function made by the tth observation is
the logarithm of (10.08). Since log σ = 1

2 log σ2, this can be written as

`t(yt,β, σ) = − 1−
2

log 2π − 1−
2

log σ2 − 1
2σ2

(yt −Xtβ)2. (10.09)

Since the observations are assumed to be independent, the loglikelihood func-
tion is just the sum of these contributions over all t, or

`(y, β, σ) = − n−
2

log 2π − n−
2

log σ2 − 1
2σ2

n∑
t=1

(yt −Xtβ)2

= − n−
2

log 2π − n−
2

log σ2 − 1
2σ2

(y −Xβ)>(y −Xβ).

(10.10)

In the second line, we rewrite the sum of squared residuals as the inner product
of the residual vector with itself. To find the ML estimator, we need to
maximize (10.10) with respect to the unknown parameters β and σ.

The first step in maximizing `(y,β, σ) is to concentrate it with respect to the
parameter σ. This means differentiating (10.10) with respect to σ, solving
the resulting first-order condition for σ as a function of the data and the
remaining parameters, and then substituting the result back into (10.10).
The concentrated loglikelihood function that results will then be maximized
with respect to β. For models that involve variance parameters, it is very
often convenient to concentrate the loglikelihood function in this way.

Differentiating the second line of (10.10) with respect to σ and equating the
derivative to zero yields the first-order condition

∂`(y, β, σ)
∂σ

= − n
σ

+
1
σ3

(y −Xβ)>(y −Xβ) = 0,

and solving this yields the result that

σ̂2(β) = 1−
n

(y −Xβ)>(y −Xβ).

Here the notation σ̂2(β) indicates that the value of σ2 that maximizes (10.10)
depends on β.
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Substituting σ̂2(β) into the second line of (10.10) yields the concentrated
loglikelihood function

`c(y,β) = − n−
2

log 2π − n−
2

log
(

1−
n
(y −Xβ)>(y −Xβ)

)
− n−

2
. (10.11)

The middle term here is minus n/2 times the logarithm of the sum of squared
residuals, and the other two terms do not depend on β. Thus we see that
maximizing the concentrated loglikelihood function (10.11) is equivalent to
minimizing the sum of squared residuals as a function of β. Therefore, the
ML estimator β̂ must be identical to the OLS estimator.

Once β̂ has been found, the ML estimate σ̂2 of σ2 is σ̂2(β̂), and the MLE of σ
is the positive square root of σ̂2. Thus, as we saw in Section 3.6, the MLE σ̂2 is
biased downward.3 The actual maximized value of the loglikelihood function
can then be written in terms of the sum-of-squared residuals function SSR
evaluated at β̂. From (10.11) we have

`(y, β̂, σ̂) = − n−
2
(1 + log 2π − log n)− n−

2
log SSR(β̂), (10.12)

where SSR(β̂) denotes the minimized sum of squared residuals.

Although it is convenient to concentrate (10.10) with respect to σ, as we have
done, this is not the only way to proceed. In Exercise 10.1, readers are asked
to show that the ML estimators of β and σ can be obtained equally well by
concentrating the loglikelihood with respect to β rather than σ.

The fact that the ML and OLS estimators of β are identical depends critically
on the assumption that the error terms in (10.07) are normally distributed. If
we had started with a different assumption about their distribution, we would
have obtained a different ML estimator. The asymptotic efficiency result to
be discussed in Section 10.4 would then imply that the least squares estimator
is asymptotically less efficient than the ML estimator whenever the two do
not coincide.

The Uniform Distribution

As a final example of ML estimation, we consider a somewhat pathological,
but rather interesting, example. Suppose that the yt are generated as indepen-
dent realizations from the uniform distribution with parameters β1 and β2,
which can be written as a vector β; a special case of this distribution was
introduced in Section 1.2. The density function for yt, which is graphed in

3 The bias arises because we evaluate SSR(β) at β̂ instead of at the true value β0.
However, if one thinks of σ̂ as an estimator of σ, rather than of σ̂2 as an
estimator of σ2, then it can be shown that both the OLS and the ML estimators
are biased downward.
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β1 β2
y

f(y,β)
1

β2 − β1

Figure 10.2 The uniform distribution

Figure 10.2, is
f(yt, β) = 0 if yt < β1,

f(yt, β) =
1

β2 − β1
if β1 ≤ yt ≤ β2,

f(yt, β) = 0 if yt > β2.

Provided that β1 < yt < β2 for all observations, the likelihood function is
equal to 1/(β2 − β1)n, and the loglikelihood function is therefore

`(y,β) = −n log(β2 − β1).

It is easy to verify that this function cannot be maximized by differentiating
it with respect to the parameters and setting the partial derivatives to zero.
Instead, the way to maximize `(y, β) is to make β2 − β1 as small as possible.
But we clearly cannot make β1 larger than the smallest observed yt, and we
cannot make β2 smaller than the largest observed yt. Otherwise, the likelihood
function would be equal to 0. It follows that the ML estimators are

β̂1 = min(yt) and β̂2 = max(yt). (10.13)

These estimators are rather unusual. For one thing, they will always lie on
one side of the true value. Because all the yt must lie between β1 and β2,
it must be the case that β̂1 ≥ β10 and β̂2 ≤ β20, where β10 and β20 denote
the true parameter values. However, despite this, these estimators turn out
to be consistent. Intuitively, this is because, as the sample size gets large, the
observed values of yt fill up the entire space between β10 and β20.

The ML estimators defined in (10.13) are super-consistent, which means that
they approach the true values of the parameters they are estimating at a
rate faster than the usual rate of n−1/2. Formally, n1/2(β̂1 − β10) tends to
zero as n → ∞, while n(β̂1 − β10) tends to a limiting random variable; see
Exercise 10.2 for more details. Now consider the parameter γ ≡ 1

2 (β1 + β2).
One way to estimate it is to use the ML estimator

γ̂ = 1−
2
(β̂1 + β̂2).
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Another approach would simply be to use the sample mean, say γ̄, which is
a least squares estimator. But the ML estimator γ̂ will be super-consistent,
while γ̄ will only be root-n consistent. This implies that, except perhaps
for very small sample sizes, the ML estimator will be very much more effi-
cient than the least squares estimator. In Exercise 10.3, readers are asked to
perform a simulation experiment to illustrate this result.

Although economists rarely need to estimate the parameters of a uniform
distribution directly, ML estimators with properties similar to those of (10.13)
do occur from time to time. In particular, certain econometric models of
auctions lead to super-consistent ML estimators; see Donald and Paarsch
(1993, 1996). However, because these estimators violate standard regularity
conditions, such as those given in Theorems 8.2 and 8.3 of Davidson and
MacKinnon (1993), we will not consider them further.

Two Types of ML Estimator

There are two different ways of defining the ML estimator, although most
MLEs actually satisfy both definitions. A Type 1 ML estimator maximizes
the loglikelihood function over the set Θ, where Θ denotes the parameter
space in which the parameter vector θ lies, which is generally assumed to be
a subset of Rk. This is the natural meaning of an MLE, and all three of the
ML estimators just discussed are Type 1 estimators.

If the loglikelihood function is differentiable and attains an interior maximum
in the parameter space, then the MLE must satisfy the first-order conditions
for a maximum. A Type 2 ML estimator is defined as a solution to the
likelihood equations, which are just the following first-order conditions:

g(y, θ̂) = 0, (10.14)

where g(y,θ) is the gradient vector, or score vector, which has typical element

gi(y, θ) ≡ ∂`(y,θ)
∂θi

=
n∑

t=1

∂`t(yt,θ)
∂θi

. (10.15)

Because there may be more than one value of θ that satisfies the likelihood
equations (10.14), the definition further requires that the Type 2 estimator θ̂
be associated with a local maximum of `(y, θ) and that, as n → ∞, the
value of the loglikelihood function associated with θ̂ be higher than the value
associated with any other root of the likelihood equations.

The ML estimator (10.06) for the parameter of the exponential distribution
and the OLS estimators of β and σ2 in the regression model with normal
errors, like most ML estimators, are both Type 1 and Type 2 MLEs. However,
the MLEs for the parameters of the uniform distribution defined in (10.13)
are Type 1 but not Type 2 MLEs, because they are not the solutions to any
set of likelihood equations. In rare circumstances, there also exist MLEs that
are Type 2 but not Type 1; see Kiefer (1978) for an example.
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Computing ML Estimates

Maximum likelihood estimates are often quite easy to compute. Indeed, for
the three examples considered above, we were able to obtain explicit expres-
sions. When no such expressions are available, as will often be the case, it is
necessary to use some sort of nonlinear maximization procedure. Many such
procedures are readily available.

The discussion of Newton’s Method and quasi-Newton methods in Section 6.4
applies with very minor changes to ML estimation. Instead of minimizing
the sum of squared residuals function Q(β), we maximize the loglikelihood
function `(θ). Since the maximization is done with respect to θ for a given
sample y, we suppress the explicit dependence of ` on y. As in the NLS case,
Newton’s Method makes use of the Hessian, which is now a k×k matrix H(θ)
with typical element ∂2`(θ)/∂θi∂θj . The Hessian is the matrix of second
derivatives of the loglikelihood function, and thus also the matrix of first
derivatives of the gradient.

Let θ(j) denote the value of the vector of estimates at step j of the algorithm,
and let g(j) and H(j) denote, respectively, the gradient and the Hessian eval-
uated at θ(j). Then the fundamental equation for Newton’s Method is

θ(j+1) = θ(j) −H−1
(j) g(j). (10.16)

This may be obtained in exactly the same way as equation (6.42). Because
the loglikelihood function is to be maximized, the Hessian should be negative
definite, at least when θ(j) is sufficiently near θ̂. This ensures that the step
defined by (10.16) will be in an uphill direction.

For the reasons discussed in Section 6.4, Newton’s Method will usually not
work well, and will often not work at all, when the Hessian is not negative
definite. In such cases, one popular way to obtain the MLE is to use some
sort of quasi-Newton method, in which (10.16) is replaced by the formula

θ(j+1) = θ(j) + α(j)D
−1
(j) g(j),

where α(j) is a scalar which is determined at each step, and D(j) is a matrix
which approximates −H(j) near the maximum but is constructed so that it
is always positive definite. Sometimes, as in the case of NLS estimation, an
artificial regression can be used to compute the vector D−1

(j) g(j). We will
encounter one such artificial regression in Section 10.4, and another, more
specialized, one in Section 11.3.

When the loglikelihood function is globally concave and not too flat, maxi-
mizing it is usually quite easy. At the other extreme, when the loglikelihood
function has several local maxima, doing so can be very difficult. See the
discussion in Section 6.4 following Figure 6.3. Everything that is said there
about dealing with multiple minima in NLS estimation applies, with certain
obvious modifications, to the problem of dealing with multiple maxima in ML
estimation.
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10.3 Asymptotic Properties of ML Estimators

One of the attractive features of maximum likelihood estimation is that ML
estimators are consistent under quite weak regularity conditions and asymp-
totically normally distributed under somewhat stronger conditions. Therefore,
if an estimator is an ML estimator and the regularity conditions are satisfied,
it is not necessary to show that it is consistent or derive its asymptotic dis-
tribution. In this section, we sketch derivations of the principal asymptotic
properties of ML estimators. A rigorous discussion is beyond the scope of this
book; interested readers may consult, among other references, Davidson and
MacKinnon (1993, Chapter 8) and Newey and McFadden (1994).

Consistency of the MLE

Since almost all maximum likelihood estimators are of Type 1, we will discuss
consistency only for this type of MLE. We first show that the expectation of
the loglikelihood function is greater when it is evaluated at the true values of
the parameters than when it is evaluated at any other values. For consistency,
we also need both a finite-sample identification condition and an asymptotic
identification condition. The former requires that the loglikelihood be different
for different sets of parameter values. If, contrary to this assumption, there
were two distinct parameter vectors, θ1 and θ2, such that `(y,θ1) = `(y, θ2)
for all y, then it would obviously be impossible to distinguish between θ1

and θ2. Thus a finite-sample identification condition is necessary for the
model to make sense. The role of the asymptotic identification condition will
be discussed below.

Let L(θ) = exp
(
`(θ)

)
denote the likelihood function, where the dependence

on y of both L and ` has been suppressed for notational simplicity. We wish to
apply a result known as Jensen’s Inequality to the ratio L(θ∗)/L(θ0), where θ0

is the true parameter vector and θ∗ is any other vector in the parameter space
of the model. Jensen’s Inequality tells us that, if X is a real-valued random
variable, then E

(
h(X)

) ≤ h
(
E(X)

)
whenever h(·) is a concave function. The

inequality will be strict whenever h is strictly concave over at least part of the
support of the random variable X, that is, the set of real numbers for which
the density of X is nonzero, and the support contains more than one point.
See Exercise 10.4 for the proof of a restricted version of Jensen’s Inequality.

Since the logarithm is a strictly concave function over the nonnegative real
line, and since likelihood functions are nonnegative, we can conclude from
Jensen’s Inequality that

E0 log
(

L(θ∗)
L(θ0)

)
< log E0

(
L(θ∗)
L(θ0)

)
, (10.17)

with strict inequality for all θ∗ 6= θ0, on account of the finite-sample identifi-
cation condition. Here the notation E0 means the expectation taken under the
DGP characterized by the true parameter vector θ0. Since the joint density
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of the sample is simply the likelihood function evaluated at θ0, the expecta-
tion on the right-hand side of (10.17) can be expressed as an integral over the
support of the vector random variable y. We have

E0

(
L(θ∗)
L(θ0)

)
=

∫
L(θ∗)
L(θ0)

L(θ0)dy =
∫

L(θ∗)dy = 1,

where the last equality here holds because every density must integrate to 1.
Therefore, because log 1 = 0, the inequality (10.17) implies that

E0 log
(

L(θ∗)
L(θ0)

)
= E0 `(θ∗)− E0 `(θ0) < 0. (10.18)

In words, (10.18) says that the expectation of the loglikelihood function when
evaluated at the true parameter vector, θ0, is strictly greater than its expec-
tation when evaluated at any other parameter vector, θ∗.

If we can apply a law of large numbers to the contributions to the loglikelihood
function, then we can assert that plim n−1`(θ) = lim n−1E0 `(θ). Then (10.18)
implies that

plim
n→∞

1−
n

`(θ∗) ≤ plim
n→∞

1−
n

`(θ0), (10.19)

for all θ∗ 6= θ, where the inequality is not necessarily strict, because we have
taken a limit. Since the MLE θ̂ maximizes `(θ), it must be the case that

plim
n→∞

1−
n

`(θ̂) ≥ plim
n→∞

1−
n

`(θ0). (10.20)

The only way that (10.19) and (10.20) can both be true is if

plim
n→∞

1−
n

`(θ̂) = plim
n→∞

1−
n

`(θ0). (10.21)

In words, (10.21) says that the plim of 1/n times the loglikelihood function
must be the same when it is evaluated at the MLE θ̂ as when it is evaluated
at the true parameter vector θ0.

By itself, the result (10.21) does not prove that θ̂ is consistent, because the
weak inequality does not rule out the possibility that there may be many
values θ∗ for which plim n−1`(θ∗) = plimn−1`(θ0). We must therefore ex-
plicitly assume that plim n−1`(θ∗) 6= plimn−1`(θ0) for all θ∗ 6= θ0. This is a
form of asymptotic identification condition; see Section 6.2. More primitive
regularity conditions on the model and the DGP can be invoked to ensure
that the MLE is asymptotically identified. For example, we need to rule out
pathological cases like (3.20), in which each new observation adds less and
less information about one or more of the parameters.
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Dependent Observations

Before we can discuss the asymptotic normality of the MLE, we need to
introduce some notation and terminology, and we need to establish a few
preliminary results. First, we consider the structure of the likelihood and
loglikelihood functions for models in which the successive observations are not
independent, as is the case, for instance, when a regression function involves
lags of the dependent variable.

Recall the definition (1.15) of the density of one random variable conditional
on another. This definition can be rewritten so as to take the form of a
factorization of the joint density:

f(y1, y2) = f(y1)f(y2 | y1), (10.22)

where we use y1 and y2 in place of the variables x2 and x1, respectively, that
appear in (1.15). It is permissible to apply (10.22) to situations in which
y1 and y2 are really vectors of random variables. Accordingly, consider the
joint density of three random variables, and group the first two together.
Analogously to (10.22), we have

f(y1, y2, y3) = f(y1, y2)f(y3 | y1, y2). (10.23)

Substituting (10.22) into (10.23) yields the following factorization of the joint
density:

f(y1, y2, y3) = f(y1)f(y2 | y1)f(y3 | y1, y2).

For a sample of size n, it is easy to see that this last result generalizes to

f(y1, . . . , yn) = f(y1)f(y2 | y1) · · · f(yn | y1, . . . , yn−1).

This result can be written using a somewhat more convenient notation as
follows:

f(yn) =
n∏

t=1

f(yt |yt−1),

where the vector yt is a t--vector with components y1, y2, . . . , yt. One can
think of yt as the subsample consisting of the first t observations of the full
sample. For a model to be estimated by maximum likelihood, the density
f(yn) will depend on a k --vector of parameters θ, and we can then write

f(yn, θ) =
n∏

t=1

f(yt |yt−1;θ). (10.24)

The structure of (10.24) is a straightforward generalization of that of (10.01),
where the marginal densities of the successive observations are replaced by
densities conditional on the preceding observations.
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The loglikelihood function corresponding to (10.24) has an additive structure:

`(y,θ) =
n∑

t=1

`t(yt, θ), (10.25)

where we omit the superscript n from y for the full sample. In addition, in
the contributions `t(·) to the loglikelihood, we do not distinguish between the
current variable yt and the lagged variables in the vector yt−1. In this way,
(10.25) has exactly the same structure as (10.02).

The Gradient

The gradient, or score, vector g(y, θ) is a k --vector that was defined in (10.15).
As that equation makes clear, each component of the gradient vector is itself
a sum of n contributions, and this remains true when the observations are
dependent; the partial derivative of `t with respect to θi now depends on yt

rather than just yt. It is convenient to group these partial derivatives into a
matrix. We define the n× k matrix G(y, θ) so as to have typical element

Gti(yt, θ) ≡ ∂`t(yt,θ)
∂θi

. (10.26)

This matrix is called the matrix of contributions to the gradient, because

gi(y,θ) =
n∑

t=1

Gti(yt, θ). (10.27)

Thus each element of the gradient vector is the sum of the elements of one of
the columns of the matrix G(y, θ).

A crucial property of the matrix G(y, θ) is that, if y is generated by the DGP
characterized by θ, then the expectations of all the elements of the matrix,
evaluated at θ, are zero. This result is a consequence of the fact that all
densities integrate to 1. Since `t is the log of the density of yt conditional
on yt−1, we see that, for all t and for all θ,

∫
exp

(
`t(yt, θ)

)
dyt =

∫
ft(yt, θ)dyt = 1,

where the integral is over the support of yt. Since this relation holds identically
in θ, we can differentiate it with respect to the components of θ and obtain
a further set of identities. Under weak regularity conditions, it can be shown
that the derivatives of the integral on the left-hand side are the integrals of
the derivatives of the integrand. Thus, since the derivative of the constant 1
is 0, we have, identically in θ and for i = 1, . . . , k,

∫
exp

(
`t(yt,θ)

) ∂`t(yt,θ)
∂θi

dyt = 0. (10.28)
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Since exp(`t(yt, θ)) is, for the DGP characterized by θ, the density of yt

conditional on yt−1, this last equation, along with the definition (10.26), gives

Eθ
(
Gti(yt, θ) |yt−1

)
= 0 (10.29)

for all t = 1, . . . , n and i = 1, . . . , k. The notation “Eθ” here means that the
expectation is being taken under the DGP characterized by θ. Taking uncon-
ditional expectations of (10.29) yields the desired result. Summing (10.29)
over t = 1, . . . , n shows that Eθ(gi(y, θ)) = 0 for i = 1, . . . , k, or, equivalently,
that Eθ(g(y, θ)) = 0.

In addition to the conditional expectations of the elements of the matrix
G(y,θ), we can compute the covariances of these elements. Let t 6= s, and
suppose, without loss of generality, that t < s. Then the covariance under the
DGP characterized by θ of the tith and sj th elements of G(y,θ) is

Eθ
(
Gti(yt, θ)Gsj(ys, θ)

)
= Eθ

(
Eθ

(
Gti(yt, θ)Gsj(ys, θ)

) |yt
))

= Eθ
(
Gti(yt, θ)Eθ

(
Gsj(ys, θ) |yt

))
= 0.

(10.30)

The step leading to the second line above follows because Gti(·) is a deter-
ministic function of yt, and the last step follows because the expectation of
Gsj(·) is zero conditional on ys−1, by (10.29), and so also conditional on the
subvector yt of ys−1. The above proof shows that the covariance of the two
matrix elements is also zero conditional on yt.

The Information Matrix and the Hessian

The covariance matrix of the elements of the tth row Gt(yt, θ) of G(y,θ) is
the k × k matrix It(θ), of which the ij th element is Eθ(Gti(yt, θ)Gtj(yt, θ)).
As a covariance matrix, It(θ) is normally positive definite. The sum of the
matrices It(θ) over all t is the k × k matrix

I(θ) ≡
n∑

t=1

It(θ) =
n∑

t=1

Eθ
(
Gt
>(y, θ)Gt(y, θ)

)
, (10.31)

which is called the information matrix. The matrices It(θ) are the contribu-
tions to the information matrix made by the successive observations.

An equivalent definition of the information matrix, as readers are invited to
show in Exercise 10.5, is I(θ) ≡ Eθ(g(y,θ)g>(y, θ)). In this second form,
the information matrix is the expectation of the outer product of the gradi-
ent with itself; see Section 1.4 for the definition of the outer product of two
vectors. Less exotically, it is just the covariance matrix of the score vector.
As the name suggests, and as we will see shortly, the information matrix is
a measure of the total amount of information about the parameters in the
sample. The requirement that it should be positive definite is a condition
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for strong asymptotic identification of those parameters, in the same sense as
the strong asymptotic identification condition introduced in Section 6.2 for
nonlinear regression models.

Closely related to (10.31) is the asymptotic information matrix

I(θ) ≡ plim
n→∞

θ
1−
n
I(θ), (10.32)

which measures the average amount of information about the parameters that
is contained in the observations of the sample. As with the notation Eθ, we
use plimθ to denote the plim under the DGP characterized by θ.

We have already defined the Hessian H(y,θ). For asymptotic analysis, we
will generally be more interested in the asymptotic Hessian,

H(θ) ≡ plim
n→∞

θ
1−
n
H(y,θ), (10.33)

than in H(y,θ) itself. The asymptotic Hessian is related to the ordinary
Hessian in exactly the same way as the asymptotic information matrix is
related to the ordinary information matrix; compare (10.32) and (10.33).

There is a very important relationship between the asymptotic information
matrix and the asymptotic Hessian. One version of this relationship, which is
called the information matrix equality, is

I(θ) = −H(θ). (10.34)

Both the Hessian and the information matrix measure the amount of curvature
in the loglikelihood function. Although they are both measuring the same
thing, the Hessian is negative definite, at least in the neighborhood of θ̂,
while the information matrix is always positive definite; that is why there is
a minus sign in (10.34). The proof of (10.34) is the subject of Exercises 10.6
and 10.7. It depends critically on the assumption that the DGP is a special
case of the model being estimated.

Asymptotic Normality of the MLE

In order for it to be asymptotically normally distributed, a maximum likeli-
hood estimator must be a Type 2 MLE. In addition, it must satisfy certain
regularity conditions, which are discussed in Davidson and MacKinnon (1993,
Section 8.5). The Type 2 requirement arises because the proof of asymptotic
normality is based on the likelihood equations (10.14), which apply only to
Type 2 estimators.

The first step in the proof is to perform a Taylor expansion of the likelihood
equations (10.14) around θ0. This expansion yields

g(θ̂) = g(θ0) + H(θ̄)(θ̂ − θ0) = 0, (10.35)
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where we suppress the dependence on y for notational simplicity. The notation
θ̄ is our usual shorthand notation for Taylor expansions of vector expressions;
see (6.20) and the subsequent discussion. We may therefore write

∥∥θ̄ − θ0

∥∥ ≤
∥∥θ̂ − θ0

∥∥.

The fact that the ML estimator θ̂ is consistent then implies that θ̄ is also
consistent.

If we solve (10.35) and insert the factors of powers of n that are needed for
asymptotic analysis, we obtain the result that

n1/2(θ̂ − θ0) = −(
n−1H(θ̄)

)−1(
n−1/2g(θ0)

)
. (10.36)

Because θ̄ is consistent, the matrix n−1H(θ̄) which appears in (10.36) must
tend to the same nonstochastic limiting matrix as n−1H(θ0), namely, H(θ0).
Therefore, equation (10.36) implies that

n1/2(θ̂ − θ0)
a= −H−1(θ0)n−1/2g(θ0). (10.37)

If the information matrix equality, equation (10.34), holds, then this result
can equivalently be written as

n1/2(θ̂ − θ0)
a= I−1(θ0)n−1/2g(θ0). (10.38)

Since the information matrix equality holds only if the model is correctly
specified, (10.38) is not in general valid for misspecified models.

The asymptotic normality of the Type 2 MLE follows immediately from the
asymptotic equalities (10.37) or (10.38) if it can be shown that the vector
n−1/2g(θ0) is asymptotically distributed as multivariate normal. As can be
seen from (10.27), each element n−1/2gi(θ0) of this vector is n−1/2 times a
sum of n random variables, each of which has mean 0, by (10.29). Under
standard regularity conditions, with which we will not concern ourselves, a
multivariate central limit theorem can therefore be applied to this vector. For
finite n, the covariance matrix of the score vector is, by definition, the infor-
mation matrix I(θ0). Thus the covariance matrix of the vector n−1/2g(θ0)
is n−1I(θ0), of which, by (10.32), the limit as n → ∞ is the asymptotic
information matrix I(θ0). It follows that

plim
n→∞

(
n−1/2g(θ0)

) a∼ N
(
0, I(θ0)

)
. (10.39)

This result, when combined with (10.37) or (10.38), implies that the Type 2
MLE is asymptotically normally distributed.
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10.4 The Covariance Matrix of the ML Estimator

For Type 2 ML estimators, we can obtain the asymptotic distribution of
the estimator by combining the result (10.39) for the asymptotic distribution
of n−1/2g(θ0) with the result (10.37). The asymptotic distribution of the
estimator is the distribution of the random variable plim n1/2(θ̂ − θ0). This
distribution is normal, with mean vector zero and covariance matrix

Var
(
plim
n→∞

n1/2(θ̂ − θ0)
)

= H−1(θ0)I(θ0)H−1(θ0), (10.40)

which has the form of a sandwich covariance matrix. When the information
matrix equality, equation (10.34), holds, the sandwich simplifies to

Var
(
plim
n→∞

n1/2(θ̂ − θ0)
)

= I−1(θ0). (10.41)

Thus the asymptotic information matrix is seen to be the asymptotic precision
matrix of a Type 2 ML estimator. This shows why the matrices I and I are
called information matrices of various sorts.

Clearly, any method that allows us to estimate I(θ0) consistently can be
used to estimate the covariance matrix of the ML estimates. In fact, several
different methods are widely used, because each has advantages in certain
situations.

The first method is just to use minus the inverse of the Hessian, evaluated at
the vector of ML estimates. Because these estimates are consistent, it is valid
to evaluate the Hessian at θ̂ rather than at θ0. This yields the estimator

V̂arH(θ̂) = −H−1(θ̂), (10.42)

which is referred to as the empirical Hessian estimator. Notice that, since it is
the covariance matrix of θ̂ in which we are interested, the factor of n1/2 is no
longer present. This estimator is easy to obtain whenever Newton’s Method,
or some sort of quasi-Newton method that uses second derivatives, is used to
maximize the loglikelihood function. In the case of quasi-Newton methods,
H(θ̂) may sometimes be replaced by another matrix that approximates it.
Provided that n−1 times the approximating matrix converges to H(θ), this
sort of replacement is asymptotically valid.

Although the empirical Hessian estimator often works well, it does not use
all the information we have about the model. Especially for simpler models,
we may actually be able to find an analytic expression for I(θ). If so, we
can use the inverse of I(θ), evaluated at the ML estimates. This yields the
information matrix, or IM, estimator

V̂arIM(θ̂) = I−1(θ̂). (10.43)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



410 The Method of Maximum Likelihood

The advantage of this estimator is that it normally involves fewer random
terms than does the empirical Hessian, and it may therefore be somewhat
more efficient. In the case of the classical normal linear model, to be discussed
below, it is not at all difficult to obtain I(θ), and the information matrix
estimator is therefore the one that is normally used.

The third method is based on (10.31), from which we see that

I(θ0) = E
(
G>(θ0)G(θ0)

)
.

We can therefore estimate n−1I(θ0) consistently by n−1G>(θ̂)G(θ̂). The
corresponding estimator of the covariance matrix, which is usually called the
outer-product-of-the-gradient, or OPG, estimator, is

V̂arOPG(θ̂) =
(
G>(θ̂)G(θ̂)

)−1
. (10.44)

The OPG estimator has the advantage of being very easy to calculate. Unlike
the empirical Hessian, it depends solely on first derivatives. Unlike the IM
estimator, it requires no theoretical calculations. However, it tends to be less
reliable in finite samples than either of the other two. The OPG estimator is
sometimes called the BHHH estimator, because it was advocated by Berndt,
Hall, Hall, and Hausman (1974) in a very well-known paper.

In practice, the estimators (10.42), (10.43), and (10.44) are all commonly used
to estimate the covariance matrix of ML estimates, but many other estimators
are available for particular models. Often, it may be difficult to obtain I(θ),
but not difficult to obtain another matrix that approximates it asymptotically,
by starting either from the matrix −H(θ) or from the matrix G>(θ)G(θ) and
taking expectations of some elements.

A fourth covariance matrix estimator, which follows directly from (10.40), is
the sandwich estimator

V̂arS(θ̂) = H−1(θ̂)G>(θ̂)G(θ̂)H−1(θ̂). (10.45)

In normal circumstances, this estimator has little to recommend it. It is
harder to compute than the OPG estimator and can be just as unreliable in
finite samples. However, unlike the other three estimators, it will be valid
even when the information matrix equality does not hold. Since this equality
will generally fail to hold when the model is misspecified, it may be desirable
to compute (10.45) and compare it with the other estimators.

When an ML estimator is applied to a model which is misspecified in ways
that do not affect the consistency of the estimator, it is said to be a quasi-
ML estimator, or QMLE; see White (1982) and Gouriéroux, Monfort, and
Trognon (1984). In general, the sandwich covariance matrix estimator (10.45)
is valid for QML estimators, but the other covariance matrix estimators, which
depend on the information matrix equality, are not valid. At least, they are

Copyright c© 1999, Russell Davidson and James G. MacKinnon



10.4 The Covariance Matrix of the ML Estimator 411

not valid for all the parameters. We have seen that the ML estimator for a
regression model with normal errors is just the OLS estimator. But we know
that the latter is consistent under conditions which do not require normality.
If the error terms are not normal, therefore, the ML estimator is a QMLE.
One consequence of this fact is explored in Exercise 10.8.

The Classical Normal Linear Model

It should help to make the theoretical results just discussed clearer if we apply
them to the classical normal linear model. We will therefore discuss various
ways of estimating the covariance matrix of the ML estimates β̂ and σ̂ jointly.
Of course, we saw in Section 3.4 how to estimate the covariance matrix of β̂
by itself, but we have not yet discussed how to estimate the variance of σ̂.
For the classical normal linear model, the contribution to the loglikelihood
function made by the tth observation is given by expression (10.09). There
are k + 1 parameters. The first k of them are the elements of the vector β,
and the last one is σ. A typical element of any of the first k columns of the
matrix G, indexed by i, is

Gti(β, σ) =
∂`t

∂βi
=

1
σ2

(yt −Xtβ)Xti, i = 1, . . . , k, (10.46)

and a typical element of the last column is

Gt,k+1(β, σ) =
∂`t

∂σ
= − 1

σ
+

1
σ3

(yt −Xtβ)2. (10.47)

These two equations give us everything we need to calculate the information
matrix.
For i, j = 1, . . . , k, the ij th element of G>G is

n∑
t=1

1
σ4

(yt −Xtβ)2XtiXtj . (10.48)

This is just the sum over all t of Gti(β, σ) times Gtj(β, σ) as defined in (10.46).
When we evaluate at the true values of β and σ, we have that yt −Xtβ = ut

and E(u2
t ) = σ2, and so the expectation of this matrix element is easily seen

to be
n∑

t=1

1
σ2

XtiXtj . (10.49)

In matrix notation, the whole β -β block of G>G has expectation X>X/σ2.
The (i, k + 1)th element of G>G is

n∑
t=1

(
− 1

σ
+

1
σ3

(yt −Xtβ)2
)(

1
σ2

(yt −Xtβ)Xti

)

= −
n∑

t=1

1
σ3

(yt −Xtβ)Xti +
n∑

t=1

1
σ5

(yt −Xtβ)3Xti.

(10.50)
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This is the sum over all t of the product of expressions (10.46) and (10.47).
We know that E(ut) = 0, and, if the error terms ut are normal, we also
know that E(u3

t ) = 0. Consequently, the expectation of this sum is 0. This
result depends critically on the assumption, following from normality, that
the distribution of the error terms is symmetric around zero. For a skewed
distribution, the third moment would be nonzero, and (10.50) would therefore
not have mean 0.

Finally, the (k + 1), (k + 1)th element of G>G is

n∑
t=1

(
− 1

σ
+

1
σ3

(yt −Xtβ)2
)2

=
n

σ2
−

n∑
t=1

2
σ4

(yt −Xtβ)2 +
n∑

t=1

1
σ6

(yt −Xtβ)4.

(10.51)

This is the sum over all t of the square of expression (10.47). To compute its
expectation, we replace yt −Xtβ by ut and use the result that E(u4

t ) = 3σ4;
see Exercise 4.2. It is then not hard to see that expression (10.51) has ex-
pectation 2n/σ2. Once more, this result depends crucially on the normality
assumption. If the kurtosis of the error terms were greater (or less) than that
of the normal distribution, the expectation of expression (10.51) would be
larger (or smaller) than 2n/σ2.

Putting the results (10.49), (10.50), and (10.51) together, the asymptotic
information matrix for β and σ jointly is seen to be

I(β, σ) = plim
n→∞

[
n−1X>X/σ2 0

0> 2/σ2

]
. (10.52)

Inverting this matrix, multiplying the inverse by n−1, and replacing σ by σ̂,
we find that the IM estimator of the covariance matrix of all the parameter
estimates is

V̂arIM(β̂, σ̂) =
[

σ̂2(X>X)−1 0

0> σ̂2/2n

]
. (10.53)

The upper left-hand block of this matrix would be the familiar OLS covariance
matrix if we had used s instead of σ̂ to estimate σ. The lower right-hand
element is the approximate variance of σ̂, under the assumption of normally
distributed error terms.

It is noteworthy that the information matrix (10.52), and therefore also the
estimated covariance matrix (10.53), are block-diagonal. This implies that
there is no covariance between β̂ and σ̂. This is a property of all regression
models, nonlinear as well as linear, and it is responsible for much of the
simplicity of these models. The block-diagonality of the information matrix
means that we can make inferences about β without taking account of the fact
that σ has also been estimated, and we can make inferences about σ without
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taking account of the fact that β has also been estimated. If the information
matrix were not block-diagonal, which in most other cases it is not, it would
have been necessary to invert the entire matrix in order to obtain any block
of the inverse.

Asymptotic Efficiency of the ML Estimator

A Type 2 ML estimator must be at least as asymptotically efficient as any
other root-n consistent estimator that is asymptotically unbiased.4 There-
fore, at least in large samples, maximum likelihood estimation possesses an
optimality property that is generally not shared by other estimation methods.
We will not attempt to prove this result here; see Davidson and MacKinnon
(1993, Section 8.8). However, we will discuss it briefly.

Consider any other root-n consistent and asymptotically unbiased estimator,
say θ̃. It can be shown that

plim
n→∞

n1/2(θ̃ − θ0) = plim
n→∞

n1/2(θ̂ − θ0) + v, (10.54)

where v is a random k --vector that has mean zero and is uncorrelated with
the vector plim n1/2(θ̂ − θ0). This means that, from (10.54), we have

Var
(
plim
n→∞

n1/2(θ̃ − θ0)
)

= Var
(
plim
n→∞

n1/2(θ̂ − θ0)
)

+ Var(v). (10.55)

Since Var(v) must be a positive semidefinite matrix, we conclude that the
asymptotic covariance matrix of the estimator θ̃ must be larger than that of
θ̂, in the usual sense.

The asymptotic equality (10.54) bears a strong, and by no means coincidental,
resemblance to a result that we used in Section 3.5 when proving the Gauss-
Markov Theorem. This result says that, in the context of the linear regression
model, any unbiased linear estimator can be written as the sum of the OLS
estimator and a random component which has mean zero and is uncorrelated
with the OLS estimator. Asymptotically, equation (10.54) says essentially the
same thing in the context of a very much broader class of models. The key
property of (10.54) is that v is uncorrelated with plimn1/2(θ̂ − θ0). Therefore,
v simply adds additional noise to the ML estimator.

The asymptotic efficiency result (10.55) is really an asymptotic version of the
Cramér-Rao lower bound,5 which actually applies to any unbiased estima-
tor, regardless of sample size. It states that the covariance matrix of such an

4 All of the root-n consistent estimators that we have discussed are also asymp-
totically unbiased. However, as is discussed in Davidson and MacKinnon (1993,
Section 4.5), it is possible for such an estimator to be asymptotically biased,
and we must therefore rule out this possibility explicitly.

5 This bound was originally suggested by Fisher (1925) and later stated in its
modern form by Cramér (1946) and Rao (1945).
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estimator can never be smaller than I−1, which, as we have seen, is asymp-
totically equal to the covariance matrix of the ML estimator. Readers are
guided through the proof of this classical result in Exercise 10.12. However,
since ML estimators are not in general unbiased, it is only the asymptotic
version of the bound that is of interest in the context of ML estimation.

The fact that ML estimators attain the Cramér-Rao lower bound asymptotic-
ally is one of their many attractive features. However, like the Gauss-Markov
Theorem, this result must be interpreted with caution. First of all, it is only
true asymptotically. ML estimators may or may not perform well in samples
of moderate size. Secondly, there may well exist an asymptotically biased
estimator that is more efficient, in the sense of finite-sample mean squared
error, than any given ML estimator. For example, the estimator obtained
by imposing a restriction that is false, but not grossly incompatible with the
data, may well be more efficient than the unrestricted ML estimator. The
former cannot be more efficient asymptotically, because the variance of both
estimators tends to zero as the sample size tends to infinity and the bias of
the biased estimator does not, but it can be more efficient in finite samples.

10.5 Hypothesis Testing

Maximum likelihood estimation offers three different procedures for perform-
ing hypothesis tests, two of which usually have several different variants.
These three procedures, which are collectively referred to as the three classical
tests, are the likelihood ratio, Wald, and Lagrange multiplier tests. All three
tests are asymptotically equivalent, in the sense that all the test statistics
tend to the same random variable (under the null hypothesis, and for DGPs
that are “close” to the null hypothesis) as the sample size tends to infinity.
If the number of equality restrictions is r, this limiting random variable is
distributed as χ2(r). We have already discussed Wald tests in Sections 6.7
and 8.5, but we have not yet encountered the other two classical tests, at
least, not under their usual names.

As we remarked in Section 4.6, a hypothesis in econometrics corresponds to
a model. We let the model that corresponds to the alternative hypothesis
be characterized by the loglikelihood function `(θ). Then the null hypothesis
imposes r restrictions, which are in general nonlinear, on θ. We write these as
r(θ) = 0, where r(θ) is an r --vector of smooth functions of the parameters.
Thus the null hypothesis is represented by the model with loglikelihood `(θ),
where the parameter space is restricted to those values of θ that satisfy the
restrictions r(θ) = 0.

Likelihood Ratio Tests

The likelihood ratio, or LR, test is the simplest of the three classical tests.
The test statistic is just twice the difference between the unconstrained max-
imum value of the loglikelihood function and the maximum subject to the
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restrictions:
LR = 2

(
`(θ̂)− `(θ̃)

)
. (10.56)

Here θ̃ and θ̂ denote, respectively, the restricted and unrestricted maximum
likelihood estimates of θ. The LR statistic gets its name from the fact that
the right-hand side of (10.56) is equal to

2 log
(

L(θ̂)
L(θ̃)

)
,

or twice the logarithm of the ratio of the likelihood functions. One of its
most attractive features is that the LR statistic is trivially easy to compute
when both the restricted and unrestricted estimates are available. Whenever
we impose, or relax, some restrictions on a model, twice the change in the
value of the loglikelihood function provides immediate feedback on whether
the restrictions are compatible with the data.

Precisely why the LR statistic is asymptotically distributed as χ2(r) is not
entirely obvious, and we will not attempt to explain it now. The asymptotic
theory of the three classical tests will be discussed in detail in the next section.
Some intuition can be gained by looking at the LR test for linear restrictions
on the classical normal linear model. The LR statistic turns out to be closely
related to the familiar F statistic, which can be written as

F =

(
SSR(β̃)− SSR(β̂)

)
/r

SSR(β̂)/(n− k)
, (10.57)

where β̂ and β̃ are the unrestricted and restricted OLS (and hence also ML)
estimators, respectively. The LR statistic can also be expressed in terms of
the two sums of squared residuals, by use of the formula (10.12), which gives
the maximized loglikelihood in terms of the minimized SSR. The statistic is

2
(
`(θ̂)− `(θ̃)

)
= 2

(
n−
2

log SSR(β̃)− n−
2

log SSR(β̂)
)

= n log
(

SSR(β̃)

SSR(β̂)

)
.

(10.58)

We can rewrite the last expression here as

n log
(
1 +

SSR(β̃)− SSR(β̂)

SSR(β̂)

)
= n log

(
1 +

r

n− k
F

)
∼= rF.

The approximate equality above follows from the facts that n/(n−k) a= 1 and
that log(1 + a) ∼= a whenever a is small. Under the null hypothesis, SSR(β̃)
should not be much larger than SSR(β̂), or, equivalently, F/(n− k) should be
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a small quantity, and so this approximation should generally be a good one.
We may therefore conclude that the LR statistic (10.58) is asymptotically
equal to r times the F statistic. Whether or not this is so, the LR statistic is
a deterministic, strictly increasing, function of the F statistic. As we will see
later, this fact has important consequences if the statistics are bootstrapped.
Without bootstrapping, it makes little sense to use an LR test rather than
the F test in the context of the classical normal linear model, because the
latter, but not the former, is exact in finite samples.

Wald Tests

Unlike LR tests, Wald tests depend only on the estimates of the unrestricted
model. There is no real difference between Wald tests in models estimated
by maximum likelihood and those in models estimated by other methods; see
Sections 6.7 and 8.5. As with the LR test, we wish to test the r restrictions
r(θ) = 0. The Wald test statistic is just a quadratic form in the vector r(θ̂)
and the inverse of a matrix that estimates its covariance matrix.

By using the delta method (Section 5.6), we find that

Var
(
r(θ̂)

) a= R(θ0)Var(θ̂)R>(θ0), (10.59)

where R(θ) is an r × k matrix with typical element ∂rj(θ)/∂θi. In the last
section, we saw that Var(θ̂) can be estimated in several ways. Substituting
any of these estimators, denoted V̂ar(θ̂), for Var(θ̂) in (10.59) and replacing
the unknown θ0 by θ̂, we find that the Wald statistic is

W = r>(θ̂)
(
R(θ̂)V̂ar(θ̂)R>(θ̂)

)−1
r(θ̂). (10.60)

This is a quadratic form in the r --vector r(θ̂), which is asymptotically multi-
variate normal, and the inverse of an estimate of its covariance matrix. It is
easy to see, using the first part of Theorem 4.1, that (10.60) is asymptotically
distributed as χ2(r) under the null hypothesis. As readers are asked to show
in Exercise 10.13, the Wald statistic (6.71) is just a special case of (10.60). In
addition, in the case of linear regression models subject to linear restrictions
on the parameters, the Wald statistic (10.60) is, like the LR statistic, a de-
terministic, strictly increasing, function of the F statistic if the information
matrix estimator (10.43) of the covariance matrix of the parameters is used
to construct the Wald statistic.

Wald tests are very widely used, in part because the square of every t statistic
is really a Wald statistic. Nevertheless, they should be used with caution.
Although Wald tests do not necessarily have poor finite-sample properties,
and they do not necessarily perform less well in finite samples than the other
classical tests, there is a good deal of evidence that they quite often do so.
One reason for this is that Wald statistics are not invariant to reformulations
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of the restrictions. Some formulations may lead to Wald tests that are well-
behaved, but others may lead to tests that severely overreject, or (much less
commonly) underreject, in samples of moderate size.

As an example, consider the linear regression model

yt = β0 + β1Xt1 + β2Xt2 + ut, (10.61)

where we wish to test the hypothesis that the product of β1 and β2 is 1. To
compute a Wald statistic, we need to estimate the covariance matrix of β̂1

and β̂2. If X denotes the n × 2 matrix with typical element Xti, and Mι is
the matrix that takes deviations from the mean, then the IM estimator of this
covariance matrix is

V̂ar(β̂1, β̂2) = σ̂2(X>MιX)−1; (10.62)

we could of course use s2 instead of σ̂2. For notational convenience, we will
let V11, V12 (= V21), and V22 denote the three distinct elements of this matrix.

There are many ways to write the single restriction on (10.61) that we wish
to test. Three that seem particularly natural are

r1(β1, β2) ≡ β1 − 1/β2 = 0,

r2(β1, β2) ≡ β2 − 1/β1 = 0, and

r3(β1, β2) ≡ β1β2 − 1 = 0.

Each of these ways of writing the restriction leads to a different Wald statistic.
If the restriction is written in the form of r1, then R(β1, β2) = [1 1/β2

2 ].
Combining this with (10.62), we find after a little algebra that the Wald
statistic is

W1 =
(β̂1 − 1/β̂2)2

V11 + 2V12/β̂2
2 + V22/β̂4

2

.

If instead the restriction is written in the form of r2, then R(β1, β2) =
[1/β2

1 1], and the Wald statistic is

W2 =
(β̂2 − 1/β̂1)2

V11/β̂4
1 + 2V12/β̂2

1 + V22

.

Finally, if the restriction is written in the form of r3, then R(β1, β2) =
[β2 β1], and the Wald statistic is

W3 =
(β̂1β̂2 − 1)2

β̂2
2V11 + 2β̂1β̂2V12 + β̂2

1V22

.

In finite samples, these three Wald statistics can be quite different. Depending
on the values of β1 and β2, any one of them may perform better or worse than
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the other two, and they can sometimes overreject severely. The performance of
alternative Wald tests in models like (10.61) has been investigated by Gregory
and Veall (1985, 1987). Other cases in which Wald tests perform very badly
are discussed by Lafontaine and White (1986).

Because of their dubious finite-sample properties and their sensitivity to the
way in which the restrictions are written, we recommend against using Wald
tests when the outcome of a test is important, except when it would be very
costly or inconvenient to estimate the restricted model. Asymptotic t statistics
should also be used with great caution, since, as we saw in Section 6.7, every
asymptotic t statistic is simply the signed square root of a Wald statistic.
Because conventional confidence intervals are based on inverting asymptotic
t statistics, they too should be used with caution.

Lagrange Multiplier Tests

The Lagrange multiplier, or LM, test is the third of the three classical tests.
The name suggests that it is based on the vector of Lagrange multipliers from
a constrained maximization problem. That can indeed be the case. In prac-
tice, however, LM tests are very rarely computed in this way. Instead, they
are usually based on the gradient vector, or score vector, of the unrestricted
loglikelihood function, evaluated at the restricted estimates. LM tests are
very often computed by means of artificial regressions. In fact, as we will see,
some of the GNR-based tests that we encountered in Sections 6.7 and 7.7 are
essentially Lagrange multiplier tests.

It is easiest to begin our discussion of LM tests by considering the case in
which the restrictions to be tested are zero restrictions, that is, restrictions
according to which some of the model parameters are zero. In such cases,
the r restrictions can be written as θ2 = 0, where the parameter vector θ is
partitioned as θ = [θ1

.... θ2], possibly after some reordering of the elements.
The vector θ̃ of restricted estimates can then be expressed as θ̃ = [θ̃1

.... 0].
The vector θ̃1 maximizes the restricted loglikelihood function `(θ1,0), and so
it satisfies the restricted likelihood equations

g1(θ̃1,0) = 0, (10.63)

where g1(·) is the vector whose components are the k − r partial derivatives
of `(·) with respect to the elements of θ1.

The formula (10.38), which gives the asymptotic form of an MLE, can be
applied to the estimator θ̃. If we partition the true parameter vector θ0 as
[θ0

1
.... 0], we find that

n1/2(θ̃1 − θ0
1)

a= (I11)−1(θ0)n−1/2g1(θ0), (10.64)

where I11(·) is the (k−r)×(k−r) top left block of the asymptotic information
matrix I(·) of the full unrestricted model. This block is, of course, just the
asymptotic information matrix for the restricted model.
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When the gradient vector of the unrestricted loglikelihood function is eval-
uated at the restricted estimates θ̃, the first k − r elements, which are the
elements of g1(θ̃), are zero, by (10.63). However, the r--vector g2(θ̃), which
contains the remaining r elements, is in general nonzero. In fact, a Taylor
expansion gives

n−1/2g2(θ̃) = n−1/2g2(θ0) + n−1H21(θ̄)n1/2(θ̃1 − θ0
1), (10.65)

where our usual shorthand notation θ̄ is used for a vector that tends to θ0 as
n →∞, and H21(·) is the lower left block of the Hessian of the loglikelihood.
The information matrix equality (10.34) shows that the limit of (10.65) for a
correctly specified model is

plim
n→∞

n−1/2g2(θ̃) = plim
n→∞

n−1/2g2(θ0)− I0
21 plim

n→∞
n1/2(θ̃1 − θ0

1)

= plim
n→∞

(
n−1/2g2(θ0)− I0

21(I
0
11)

−1n−1/2g1(θ0)
)

= [−I0
21(I

0
11)

−1 I ] plim
n→∞

[
n−1/2g1(θ0)
n−1/2g2(θ0)

]
,

(10.66)

where I0 ≡ I(θ0), I is an r × r identify matrix, and the second line follows
from (10.64).

Since the variance of the full gradient vector, plim n−1/2g(θ), is just I0, the
variance of the last expression in (10.66) is

Var
(
plim
n→∞

n−1/2g2(θ̃)
)

= [−I0
21(I

0
11)

−1 I ]
[

I0
11 I0

12

I0
21 I0

22

][−(I0
11)

−1I0
12

I

]

= I0
22 − I0

21(I
0
11)

−1I0
12. (10.67)

In Exercise 7.11, expressions were developed for the blocks of the inverses of
partitioned matrices. It is easy to see from those expressions that the inverse
of (10.67) is the 22 block of I−1(θ0). Thus, in order to obtain a statistic in
asymptotically χ2 form based on g2(θ̃), we can construct the quadratic form

LM = n−1/2g2
>(θ̃)(Ĩ−1)22 n−1/2g2(θ̃) = g2

>(θ̃)(Ĩ−1)22 g2(θ̃), (10.68)

in which Ĩ = n−1I(θ̃), and the notations (Ĩ−1)22 and (Ĩ−1)22 signify the
22 blocks of the inverses of Ĩ and I(θ̃), respectively.

Since the statistic (10.68) is a quadratic form in an r--vector, which is asymp-
totically normally distributed with mean 0, and the inverse of an r×r matrix
that consistently estimates the covariance matrix of that vector, it is clear
that the LM statistic is asymptotically distributed as χ2(r) under the null.
However, expression (10.68) is notationally awkward. Because g1(θ̃) = 0

Copyright c© 1999, Russell Davidson and James G. MacKinnon



420 The Method of Maximum Likelihood

by (10.63), we can rewrite it as what appears to be a quadratic form with k
rather than r degrees of freedom, as follows,

LM = g>(θ̃)Ĩ−1g(θ̃), (10.69)

where the notational awkwardness has disappeared. In addition, since (10.69)
no longer depends on the partitioning of θ that we used to express the zero
restrictions, it is applicable quite generally, whether or not the restrictions
are zero restrictions. This follows from the invariance of the LM test under
reparametrizations of the model; see Exercise 10.14.

Expression (10.69) is the statistic associated with the score form of the
LM test, often simply called the score test, since it it defined in terms of the
score vector g(θ) evaluated at the restricted estimates θ̃. It must of course be
kept in mind that, despite the appearance of (10.69), it has only r, and not k,
degrees of freedom. This “using up” of k− r degrees of freedom is due to the
fact that the k − r elements of θ1 are estimated. It is entirely analogous to
a similar phenomenon discussed in Sections 9.4 and 9.5, in connection with
Hansen-Sargan tests.

One way to maximize the loglikelihood function `(θ) subject to the restrictions
r(θ) = 0 is simultaneously to maximize the Lagrangian

`(θ)− r>(θ)λ

with respect to θ and minimize it with respect to the r --vector of Lagrange
multipliers λ. The first-order conditions that characterize the solution to this
problem are the k + r equations

g(θ̃)−R>(θ̃)λ̃ = 0

r(θ̃) = 0.

The first set of these equations allows us to rewrite the LM statistic (10.69)
in terms of the Lagrange multipliers λ, thereby obtaining the LM form of the
test:

LM = λ̃>R̃Ĩ−1R̃>λ̃, (10.70)

where R̃ ≡ R(θ̃). The score form (10.69) is used much more often than the
LM form (10.70), because g(θ̃) is almost always available, no matter how
the restricted estimates are obtained, whereas λ̃ is available only if they are
obtained by using a Lagrangian.

LM Tests and Artificial Regressions

We have so far assumed that the information matrix estimator used to con-
struct the LM statistic is Ĩ ≡ I(θ̃). Because this estimator is usually more
efficient than other estimators of the information matrix, Ĩ is often referred
to as the efficient score estimator of the information matrix. However, there
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are as many different ways to compute any given LM statistic as there are
asymptotically valid ways to estimate the information matrix. In practice, Ĩ
is often replaced by some other estimator, such as minus the empirical Hessian
or the OPG estimator. For example, if the OPG estimator is used in (10.69),
the statistic becomes

g̃>(G̃>G̃)−1g̃, (10.71)

where g̃ ≡ g(θ̃) and G̃ ≡ G(θ̃). This OPG variant of the statistic is asymptot-
ically, but not numerically, equivalent to the efficient score variant computed
using Ĩ. In contrast, the score and LM forms of the test are numerically
equivalent provided both are computed using the same information matrix
estimator.

The statistic (10.71) can readily be computed by use of an artificial regression
called the OPG regression, which has the general form

ι = G(θ)c + residuals, (10.72)

where ι is an n--vector of 1s. This regression can be constructed for any model
for which the loglikelihood function can be written as the sum of n contribu-
tions. If we evaluate (10.72) at the vector of restricted estimates θ̃, it becomes

ι = G̃c + residuals, (10.73)

and the explained sum of squares is

ι>G̃(G̃>G̃)−1G̃>ι = g̃>(G̃>G̃)−1g̃,

by (10.27). The right-hand side above is equal to expression (10.71), and so
the ESS from regression (10.73) is numerically equal to the OPG variant of
the LM statistic.

In the case of regression (10.72), the total sum of squares is just n, the squared
length of the vector ι. Therefore, ESS = n − SSR. This result gives us a
particularly easy way to calculate the LM test statistic, and it also puts an
upper bound on it: The OPG variant of the LM statistic can never exceed
the number of observations in the OPG regression.

Although the OPG form of the LM test is easy to calculate for a very wide va-
riety of models, it does not have particularly good finite-sample properties. In
fact, there is a great deal of evidence to suggest that this form of the LM test is
much more likely to overreject than any other form and that it can overreject
very severely in some cases. Therefore, unless it is bootstrapped, the OPG
form of the LM test should be used with great caution. See Davidson and
MacKinnon (1993, Chapter 13) for references. Fortunately, in many circum-
stances, other artificial regressions with much better finite-sample properties
are available; see Davidson and MacKinnon (2001).
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LM Tests and the GNR

Consider again the case of linear restrictions on the parameters of the classical
normal linear model. By summing the contributions (10.46) to the gradient,
we see that the gradient of the loglikelihood for this model with respect to β
can be written as

g(β, σ) =
1
σ2

X>(y −Xβ).

Since the information matrix (10.52) is block-diagonal, we need not bother
with the gradient with respect to σ in order to compute the LM statis-
tic (10.69). From (10.49), we know that the β -β block of the information
matrix is σ−2X>X. Thus, if we write the restricted estimates of the para-
meters as β̃ and σ̃, the statistic (10.69), computed with the efficient score
estimator of the information matrix, takes the form

1
σ̃2

(y −Xβ̃)>X(X>X)−1X>(y −Xβ̃). (10.74)

This variant of the LM statistic is, like the LR and some variants of the Wald
statistic, a deterministic, strictly increasing, function of the F statistic (10.57);
see Exercise 10.17.

More generally, for a nonlinear regression model subject to possibly nonlinear
restrictions on the parameters, we see that, by analogy with (10.74), the
LM statistic can be written as

1
σ̃2

(y − x̃)>X̃(X̃>X̃)−1X̃>(y − x̃), (10.75)

where x̃ ≡ x(β̃) is the n--vector of nonlinear regression functions evaluated
at the restricted ML estimates β̃, and X̃ ≡ X(β̃) is the n × k matrix of
derivatives of the regression functions with respect to the components of β. It
is easy to show that (10.75) is just n times the uncentered R2 from the GNR

y − x̃ = X̃b + residuals,

which corresponds to the unrestricted nonlinear regression, evaluated at the
restricted estimates. As we saw in Section 6.7, this is one of the valid statistics
that can be computed using a GNR.

Bootstrapping the Classical Tests

When two or more of the classical test statistics differ substantially in magni-
tude, or when we have any other reason to believe that asymptotic tests based
on them may not be reliable, bootstrap tests provide an attractive alterna-
tive to asymptotic ones. Since maximum likelihood requires a fully specified
model, it is appropriate to use a parametric bootstrap, rather than resampling.
Since, for any given parameter vector θ, the likelihood function is the PDF
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of the dependent variable, parametric bootstrap samples y∗ will simply be
realizations of vector random variables from the distribution characterized by
that PDF, evaluated at a consistent estimate of the model parameters. This
estimate must of course satisfy the restrictions to be tested, and so the natural
choice, and usually the best one, is the vector of restricted ML estimates.

The procedure we recommend for bootstrapping any of the classical tests is
very similar to the procedure for bootstrapping F tests that was discussed
in Section 4.6. The model is estimated under the null to obtain the vector
of restricted estimates θ̃, and the desired test statistic, τ̂ , is computed. This
step may, of course, entail the estimation of the unrestricted model. One then
generates B bootstrap samples using the DGP characterized by θ̃. For each
of them, a bootstrap statistic τ∗j , j = 1, . . . , B, is computed in the same way
as was τ̂ . A bootstrap P value can then be obtained in the usual way as the
proportion of bootstrap statistics more extreme than τ̂ itself; see (4.61).

We strongly recommend use of the bootstrap whenever there is any reason to
believe that classical tests based on asymptotic theory may not be reliable,
unless calculating a moderate number of τ∗j is computationally infeasible.
When this calculation is expensive, methods that do not use a fixed value of
B may be attractive; see Davidson and MacKinnon (2000).

It is important to note that, as we saw earlier in this section for some tests in
linear regression models, certain classical test statistics may be deterministic,
strictly increasing, functions of other statistics. The bootstrap P values will
be identical for statistics related in this way, since a bootstrap P value depends
only on the ordering of the statistic τ̂ and the bootstrap statistics τ∗j , and this
ordering is invariant under a deterministic, strictly increasing, function. If we
can readily compute a number of test statistics that are not deterministically
related, it is desirable to bootstrap all of them at once. This will usually
be much cheaper than bootstrapping them separately. In general, we would
expect the bootstrap P values from the various tests to be fairly similar, at
least if the null hypothesis is true.

10.6 The Asymptotic Theory of the Three Classical Tests

In this fairly advanced section, we show that the three classical test statistics
tend asymptotically to the same random variable. This is true both under
the null hypothesis and under alternatives that are close to the null in a sense
to be made precise later. The proof, which is limited to the former case,
involves obtaining expressions for the probability limits of all three statistics
in terms of the asymptotic information matrix I ≡ I(θ0) and the asymptotic
score vector s ≡ plimn−1/2g(θ0). To avoid cluttering the notation, we omit
zero subscripts. The results will be developed explicitly only for restrictions
of the form θ2 = 0, but they apply quite generally.
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By a second-order Taylor expansion of `(θ̃) around θ̂, we obtain

`(θ̃) = `(θ̂) + 1−
2
(θ̃ − θ̂)>H(θ̄)(θ̃ − θ̂),

where θ̄ is defined as usual in such an expansion. The first-order term vanishes
because of the likelihood equations g(θ̂) = 0. It follows that

LR = 2
(
`(θ̂)− `(θ̃)

)
= −(θ̃ − θ̂)>H(θ̄)(θ̃ − θ̂).

The information matrix equality and the consistency of θ̂, which implies the
consistency of θ̄, then yield the result that

LR a= n(θ̃ − θ̂)>I (θ̃ − θ̂). (10.76)

When we take the limit of (10.76), we can use the asymptotic equalities
(10.38) and (10.64) to eliminate the estimators that appear in (10.76), re-
placing them by expressions that involve only the asymptotic information
matrix and asymptotic score vector, as follows:

plim
n→∞

n1/2(θ̂ − θ̃) = plim
n→∞

n1/2(θ̂ − θ0)− plim
n→∞

n1/2(θ̃ − θ0)

= I−1s− I−1
11 s1. (10.77)

Here I11 and s1 denote, respectively, the (k − r)× (k − r) block of I and the
subvector of s that correspond to θ1. We rewrite the last expression in (10.77)
as Js, where the k × k symmetric matrix J is defined as

J ≡ I−1 −
[

I−1
11 O
O O

]
. (10.78)

Using (10.78), the probability limit of (10.76) is seen to be

plim
n→∞

LR = s>J IJs. (10.79)

Moreover, from (10.78), we have that

IJ = Ik −
[

I11 I12

I21 I22

][
I−1
11 O
O O

]
=

[
O O

−I21I
−1
11 Ik2

]
, (10.80)

where the suffixes on the two identity matrices above indicate their dimen-
sions. If we denote the last k × k matrix in (10.80) by Q, (10.80) can be
written simply as IJ = Q. This in turn implies that I−1Q = J, and, since

[
I−1
11 O
O O

][
O O

−I21I
−1
11 O

]
= O,
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it follows from (10.78) that JQ = J. This implies that J IJ = J, from which
we conclude that (10.79) can be written as

plim
n→∞

LR = s>Js. (10.81)

This expression, together with the definition (10.78) of the matrix J, shows
clearly how k − r of the k degrees of freedom of s>I−1s are used up by the
process of estimating θ1 under the null hypothesis.

We now go through a similar exercise for the LM statistic, all variants of
which are asymptotically equal to the statistic in (10.69). Consider the last
line of (10.66). If we stack the restricted likelihood equations, g1(θ̃) = 0, on
top of this, and use the definitions of Q and s, we find that (10.66) can be
written as

plim
n→∞

n1/2g(θ̃) = Qs.

We then see from (10.69) that

plim
n→∞

LM = s>Q>I−1Qs = s>J IJs = s>Js, (10.82)

since I−1Q = J and J IJ = J by our earlier results. The asymptotic equiv-
alence of the LR and LM statistics follows from (10.81) and (10.82).

The Wald statistic (10.60), for the case of zero restrictions, can be written as

W = θ̂2
>((Î−1)22

)−1
θ̂2,

and the limit of the statistic can therefore be expressed as

plim
n→∞

W = plim
n→∞

n1/2θ̂2

(
(I−1)22

)−1 plim
n→∞

n1/2θ̂2. (10.83)

When we were developing the LM statistic in the previous section, we saw that
the inverse of the 22 block of I−1 was equal to the last expression in (10.67).
From the middle expression in (10.67), we then obtain

[
O O

O
(
(I−1)22

)−1

]
=

[
O O

−I21(I11)−1 I

][
I11 I12

I21 I22

][
O −(I11)−1I12

O I

]

= Q I Q>.

Thus (10.83) becomes, by use of (10.38),

plim
n→∞

W = plim
n→∞

n1/2(θ̂ − θ0)>Q I Q>plim
n→∞

n1/2(θ̂ − θ0)

= s>I−1Q I Q>I−1s = s>J I Js = s>Js,

where we have made use of the relations among I, J, and Q that have previ-
ously been established. This result shows that all three classical test statistics
tend to the same limiting random variable, namely, s>Js.
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The Three Classical Tests when the Null is False

The asymptotic equivalence result that we have just proved depends on the
assumption that the DGP belongs to the null hypothesis. However, the three
classical tests will yield asymptotically equivalent inferences only if the equiv-
alence holds generally, and not just under the null hypothesis.

A test is said to be consistent against a DGP that does not belong to the
null hypothesis if, under that DGP, the power of the test tends to 1 as the
sample size tends to infinity. We saw in Section 4.7 that, if the null and
alternative hypotheses are classical normal linear models, power is determined
by a noncentrality parameter that must tend to infinity for power to tend to 1.
The three classical tests have a property similar to that of the exact tests of the
classical normal linear model: Under DGPs in the alternative but not in the
null, the classical test statistics tend to random variables that are distributed
as noncentral chi-squared with r degrees of freedom, where the noncentrality
parameters tend to infinity with the sample size.

If all three classical tests can be shown to be consistent against a given DGP,
then they are asymptotically equivalent under this DGP in the sense that,
as n → ∞, power tends to 1. But this does not rule out the possibility
that, in finite samples, one of the tests may be much more powerful than the
others. In order to investigate such a possibility, we want to develop a version
of asymptotic theory in which the powers of different tests tend to different
limits as n →∞ if they have very different powers in finite samples.

The simplest case we can study is that of the t statistic for the restriction
β2 = 0 in the linear regression model

y = X1β1 + x2β2 + u.

The noncentrality parameter λ of the t statistic, in finite samples, is given as
a function of β2 and the error variance σ2 in equation (4.72), which we repeat
here for convenience:

λ = 1−σ(x2
>M1x2)1/2β2.

For fixed β2 and σ, λ tends to infinity as n →∞, since, under the regularity
conditions for the classical normal linear model, n−1x2

>M1x2 tends to a finite
limit, which we denote by Sx2>M1x2 . It follows that n−1/2λ tends to a finite
limit, rather than λ itself. But if, instead of keeping β2 fixed, we subject it
to what is called a Pitman drift, we can obtain a different result. Let δ be a
fixed parameter, and, for each sample size n, let β2 = n−1/2δ. We then find
that

λ = n−1/2 1−σ (x2
>M1x2)1/2δ = 1−σ (n−1x2

>M1x2)1/2 δ → δ−σ Sx2>M1x2 .

Since the limit of λ is no longer infinite, we can compare the possibly different
limits obtained for different test statistics. A DGP for which the parameters
depend explicitly on the sample size is called a drifting DGP.
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If the model that corresponds to the alternative hypothesis is characterized
by the loglikelihood function `(θ1, θ2), and the null hypothesis is the set of r
zero restrictions θ2 = 0, an appropriate drifting DGP for studying power is
one for which θ1 is fixed and θ2 is given by n−1/2δ for a fixed r--vector δ. It
can then be shown that, under this drifting DGP, just as under the null, the
LR, LM, and Wald statistics tend as n → ∞ to the same random variable,
which follows a noncentral χ2(r) distribution; see Exercise 10.19 for a very
simple example. More generally, as discussed by Davidson and MacKinnon
(1987), we can allow for drifting DGPs that do not lie within the alternative
hypothesis, but that drift toward some fixed DGP in the null hypothesis.
It then turns out that, for drifting DGPs that are, in an appropriate sense,
equally distant from the null, the noncentrality parameter is maximized by
those DGPs that do lie within the alternative hypothesis. This result justifies
the intuition that, for a given number of degrees of freedom, tests against an
alternative which happens to be true will have more power than tests against
other alternatives.

10.7 ML Estimation of Models with Autoregressive Errors

In Section 7.8, we discussed several methods based on generalized or nonlinear
least squares for estimating linear regression models with error terms that
follow an autoregressive process. An alternative approach is to use maximum
likelihood. If it is assumed that the innovations are normally distributed,
ML estimation is quite straightforward. With the normality assumption, the
model (7.40) considered in Sections 7.7 and 7.8 can be written as

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ NID(0, σ2
ε ), (10.84)

in which the error terms follow an AR(1) process with parameter ρ that is
assumed to be less than 1 in absolute value. If we omit the first observation,
this model can be rewritten as in equation (7.41). The result is just a nonlinear
regression model, and so, as we saw in Section 10.2, the ML estimates of β
and ρ must coincide with the NLS ones.

Maximum likelihood estimation of (10.84) is more interesting if we do not omit
the first observation, because, in that case, the ML estimates no longer coin-
cide with either the NLS or the GLS estimates. For observations 2 through n,
the contributions to the loglikelihood can be written as in (10.09):

`t(yt,β, ρ, σε) =

− 1−
2

log 2π − log σε − 1
2σ2

ε

(yt − ρyt−1 −Xtβ + ρXt−1β)2.
(10.85)

As required by (10.24), this expression is the log of the density of yt conditional
on the lagged dependent variable yt−1.
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For the first observation, the only information we have is that

y1 = X1β + u1,

since the lagged dependent variable y0 is not observed. However, with the
normality assumption, we know from Section 7.8 that u1 ∼ N

(
0, σ2

ε /(1− ρ2)
)
.

Thus the loglikelihood contribution from the first observation is the log of the
density of that distribution, namely,

`1(y1, β, ρ, σε) =

− 1−
2

log 2π − log σε + 1−
2

log(1− ρ2)− 1− ρ2

2σ2
ε

(y1 −X1β)2.
(10.86)

The loglikelihood function for the model (10.84) based on the entire sample
is obtained by adding the contribution (10.86) to the sum of the contribu-
tions (10.85), for t = 2, . . . , n. The result is

`(y,β, ρ, σε) = − n−
2

log 2π − n log σε + 1−
2

log(1− ρ2) (10.87)

− 1
2σ2

ε

(
(1− ρ2)(y1 −X1β)2 +

n∑
t=2

(yt − ρyt−1 −Xtβ + ρXt−1β)2
)
.

The term 1
2 log(1− ρ2) that appears in (10.87) plays an extremely important

role in ML estimation. Because it tends to minus infinity as ρ tends to ±1,
its presence in the loglikelihood function ensures that there must be a maxi-
mum within the stationarity region defined by |ρ| < 1. Therefore, maximum
likelihood estimation using the full sample is guaranteed to yield an estimate
of ρ for which the AR(1) process is stationary. This is not the case for any of
the estimation techniques discussed in Section 7.8.

Let us define ut(β) as yt −Xtβ for t = 1, . . . , n, and let ût = ut(β̂). Then,
from the first-order conditions for the maximization of (10.87), it can be seen
that the ML estimators β̂, ρ̂, and σ̂2

ε satisfy the following equations:

(1− ρ̂2)X1
>û1 +

n∑
t=2

(Xt − ρ̂Xt−1)>(ût − ρ̂ ût−1) = 0,

ρ̂ û2
1 −

ρ̂ σ̂2
ε

1− ρ̂2
+

n∑
t=2

ût−1(ût − ρ̂ ût−1) = 0, and

σ̂2
ε = 1−

n

(
(1− ρ̂2)û2

1 +
n∑

t=2

(ût − ρ̂ ût−1)2
)
.

(10.88)

The first two of these equations are similar, but not identical, to the estimating
equations (7.70) developed in Section 7.8 for iterated feasible GLS or NLS
with account taken of the first observation. In Exercise 10.21, an artificial
regression is developed which makes it quite easy to solve equations (10.88).
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10.8 Transformations of the Dependent Variable

Whenever we specify a regression model, one of the choices we implicitly
have to make is whether, and how, to transform the dependent variable. For
example, if yt, a typical observation on the dependent variable, is always
positive, it would be perfectly valid to use log yt, or y1/2

t , or one of many
other monotonically increasing nonlinear transformations, instead of yt itself
as the regressand.

For concreteness, let us suppose that there are just two alternative models,
which we will refer to as Model 1 and Model 2:

yt = Xt1β1 + ut, ut ∼ NID(0, σ2
1), and

log yt = Xt2β2 + vt, vt ∼ NID(0, σ2
2).

Precisely how the regressors of the two competing models are related need not
concern us here. In many cases, some of the regressors for one model will be
transformations of some of the regressors for the other model. For example,
Xt1 might consist of a constant and zt, and Xt2 might consist of a constant
and log zt. Model 2 is often called a loglinear regression model.

Although we may be able to specify plausible-looking regression models for
a number of different transformations of the dependent variable, using any
model except the correct one will, in general, imply that the error terms are
neither normally nor identically distributed. For example, suppose that we
estimate Model 1 when the data were actually generated by Model 2 with
parameters β20 and σ2

20. It follows that

yt = exp(Xt2β20 + vt)

= exp(Xt2β20) exp(vt) (10.89)

= exp(Xt2β20) exp( 1
2σ2

20) + exp(Xt2β20)
(
exp(vt)− exp(1

2σ2
20)

)
.

The last line here uses the fact that exp(vt) is a lognormal variable, of which
the expectation is exp(σ2

20/2); recall Exercise 9.19. Thus the first term in the
last line is the conditional mean of yt, and so the second term, which is yt

minus this conditional mean, is the error term for Model 1.

Even if it should turn out that Xt1β1, the regression function for Model 1,
can provide a reasonably good approximation to the conditional mean in the
last line of (10.89), the error terms for that model cannot possibly have the
properties we generally assume them to have. If the error terms in Model 2
are normally and identically distributed, then the error terms in Model 1
must be skewed to the right and heteroskedastic. Their skewness is a con-
sequence of the fact that lognormal variables are always skewed to the right
(see Exercise 10.20). Because their variance is proportional to the square of
exp(Xt2β20), they are heteroskedastic.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



430 The Method of Maximum Likelihood

As this example demonstrates, even when the errors in the DGP are normally,
identically, and independently distributed, using the wrong transformation of
the dependent variable as the regressand will, in general, yield a regression
with error terms that are neither homoskedastic nor symmetric. Thus, when
we encounter heteroskedasticity and skewness in the residuals of a regression,
one possible way to eliminate them is to estimate a different regression model
in which the dependent variable has been subjected to some sort of nonlinear
transformation.

Comparing Alternative Models

It is perfectly easy to subject the dependent variable to various nonlinear
transformations and estimate one or more regression models for each of them.
However, least squares estimation does not provide any way to compare the
fits of competing models that involve different transformations. But max-
imum likelihood estimation under the assumption that the error terms are
normally distributed does provide a straightforward way to do so. The idea is
to compare the loglikelihoods of the alternative models considered as models
for the same dependent variable.

For Model 1, in which yt is the regressand, the concentrated loglikelihood
function is simply

− n−
2

log 2π − n−
2
− n−

2
log

( n∑
t=1

(yt −Xt1β1)2
)

. (10.90)

Expression (10.90) is just expression (10.11) specialized to Model 1. Most
regression packages will report the value of (10.90) evaluated at the OLS
estimates as the maximized value of the loglikelihood function.

In order to construct the loglikelihood function for the loglinear Model 2,
interpreted as a model for yt rather than for log yt, we need the density of yt

as a function of the model parameters. This requires us to use a standard
result about transformations of variables. Suppose that we wish to know the
CDF of a random variable X, but that what we actually know is the CDF of
a random variable Z defined as Z = h(X), where h(·) is a strictly increasing
deterministic function. Denote this known CDF by FZ . Then we can obtain
the CDF FX of X as follows.

FX(x) = Pr(X ≤ x) = Pr
(
h(X) ≤ h(x)

)

= Pr
(
Z ≤ h(x)

)
= FZ

(
h(x)

)
. (10.91)

The second equality above follows because h(·) is strictly increasing. The
relation between the densities, or PDFs, of the variables X and Z is obtained
by differentiating the leftmost and rightmost quantities in (10.91) with respect
to x. Denoting the PDFs by fX(·) and fZ(·), we obtain

fX(x) = F ′X(x) = F ′Z
(
h(x)

)
h′(x) = fZ

(
h(x)

)
h′(x).
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If h is strictly decreasing, the above result must be modified so as to use the
absolute value of the derivative. As readers are asked to show in Exercise
10.23, the result then becomes

fX(x) = fZ

(
h(x)

)|h′(x)|. (10.92)

It is not difficult to see that (10.92) is a perfectly general result which holds
for any strictly monotonic function h.

The factor by which fZ(z) is multiplied in order to produce fX(x) is the abso-
lute value of what is called the Jacobian of the transformation. For Model 2,
X is replaced by yt, and the transformation h is the logarithm, so that Z
becomes log yt. The density of yt is then given by (10.92) in terms of that of
log yt:

f(yt) = f(log yt)
∣∣∣∣
d log yt

dyt

∣∣∣∣ =
f(log yt)

yt
, (10.93)

where we drop subscripts and denote the PDFs of yt and log yt by f(yt) and
f(log yt), respectively.

We can now compute the loglikelihood for Model 2 thought of as a model for
the yt. The concentrated loglikelihood for the log yt is given by (10.11):

− n−
2

log 2π − n−
2
− n−

2
log

( n∑
t=1

(log yt −Xt2β2)2
)

. (10.94)

This expression is the log of the product of the densities of the log yt. Since
the density of yt, by (10.93), is equal to 1/yt times the density of log yt, the
loglikelihood function we are seeking is

− n−
2

log 2π − n−
2
− n−

2
log

( n∑
t=1

(log yt −Xt2β2)2
)
−

n∑
t=1

log yt. (10.95)

The last term here is a Jacobian term. It is the sum over all t of the logarithm
of the Jacobian factor 1/yt in the density of yt. This Jacobian term is abso-
lutely critical. If it were omitted, Model 2 would be a model for log yt, and it
would make no sense to compare the value of the loglikelihood for (10.94) with
the value for Model 1, which is a model for yt. But when the Jacobian term is
included, the loglikelihoods for both models are expressed in terms of yt, and
it is perfectly valid to compare their values. We can say with confidence that
the model corresponding to whichever of (10.90) and (10.95) has the largest
value is the model that better fits the data.

Most regression packages will evaluate (10.94) at the OLS estimates for the
loglinear model and report that as the maximized value of the loglikelihood.
In order to compute the loglikelihood (10.95), which is what we need if we are
to compare the fits of the linear and loglinear models, we will have to add the
Jacobian term to the value reported by the package.
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Of course, the logarithmic transformation is by no means the only one that
we might employ in practice. For example, when the yt are sharply skewed
to the right, a transformation like

√
yt might make sense; see Exercise 10.28.

Weighted least squares also involves transforming the dependent variable. If
we believe that the error variance is proportional to w2

t , the use of feasible
GLS leads us to divide yt and all the regressors by wt. When this is done,
the Jacobian of the transformation is just 1/wt, and the Jacobian term in the
loglikelihood function is

−
n∑

t=1

log wt. (10.96)

In order to compare a model that has yt as the regressand with another
model that has yt/wt as the regressand, we need to add (10.96) to the value
of the loglikelihood reported for the second model. Doing this makes the
loglikelihoods from the two models comparable. If it really is appropriate to
use weighted least squares, then the loglikelihood function for the weighted
model should be higher than the loglikelihood function for the original model.

The most common nonlinear transformation in econometrics is the logarithmic
transformation. Very often, we may find ourselves estimating a number of
models, some of which have yt as the regressand and some of which have
log yt as the regressand. If we simply want to decide which model fits best,
we already know how to do so. We just have to compute the loglikelihood
function for each of the models, including the Jacobian term −∑n

t=1 log yt for
models in which the regressand is log yt, and pick the model with the highest
loglikelihood. But if we want to perform a formal statistical test, and perhaps
reject one or more of the competing models as incompatible with the data,
we must go beyond simply comparing loglikelihood values.

The Box-Cox Regression Model

Most procedures for testing linear and loglinear models make use of the Box-
Cox transformation,

B(x, λ) =





xλ − 1
λ

when λ 6= 0;

log x when λ = 0,

where λ is a parameter, which may be of either sign, and x, the argument of
the transformation, must be positive. By l’Hôpital’s Rule, log x is the limit
of (xλ − 1)/λ as λ → 0. Figure 10.3 shows the Box-Cox transformation for
various values of λ. In practice, λ generally ranges from somewhat below 0 to
somewhat above 1. It can be shown that B(x, λ′) ≥ B(x, λ′′) for λ′ ≥ λ′′, and
this inequality is evident in the figure. Thus the amount of curvature induced
by the Box-Cox transformation increases as λ gets farther from 1 in either
direction.
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B(x, λ)

Figure 10.3 Box-Cox transformations for various values of λ

For the purposes of this section, the important thing about the Box-Cox
transformation is that it allows us to formulate models which include both
linear and loglinear regression models as special cases. In particular, consider
the Box-Cox regression model

B(yt, λ) =
k1∑

i=1

βiZti +
k∑

i=k1+1

βiB(Xti, λ) + ut, ut ∼ NID(0, σ2), (10.97)

in which there are k1 regressors Zti that are not subject to transformation
and k2 = k − k1 nonconstant regressors Xti that are always positive and are
subject to transformation. The Zti would include the constant term, if any,
in addition to dummy variables and any other regressors that can take on
nonpositive values. When λ = 1, this model reduces to the linear regression
model

yt − 1 =
k1∑

i=1

βiZti +
k∑

i=k1+1

βi(Xti − 1) + ut, ut ∼ NID(0, σ2).

Provided there is a constant term, or the equivalent of a constant term, among
the Zti regressors, this is equivalent to

yt =
k1∑

i=1

βiZti +
k∑

i=k1+1

βiXti + ut, ut ∼ NID(0, σ2), (10.98)
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with the βi corresponding to the constant term redefined in the obvious way.
When λ = 0, on the other hand, the Box-Cox model (10.97) reduces to the
loglinear regression model

log yt =
k1∑

i=1

βiZti +
k∑

i=k1+1

βi log Xti + ut, ut ∼ NID(0, σ2). (10.99)

Thus it is clear that the linear regression model (10.98) and the loglinear
regression model (10.99) can both be obtained as special cases of the Box-
Cox regression model (10.97).

Testing Linear and Loglinear Regression Models

There are many ways in which we can test (10.98) and (10.99) against (10.97).
Conceptually, the simplest is just to estimate all three models and perform
two likelihood ratio tests. Let `(λ̂) denote the maximum of the loglikelihood
function for the unrestricted Box-Cox model (10.97), which readers are asked
to derive in Exercise 10.29. Similarly, let `(1) and `(0) denote the maxima of
the loglikelihood functions for the linear and loglinear models, respectively.
Then the statistics for testing the linear and loglinear models against the
Box-Cox regression model are

2
(
`(λ̂)− `(1)

)
and 2

(
`(λ̂)− `(0)

)
,

respectively. If either of these statistics exceeds χ2
1−α(1), the 1 − α quantile

of the χ2(1) distribution, we may reject the model being tested at level α.
In practice, this test tends to be quite powerful in samples of even moderate
size, since it does not require a very large test statistic in order to reject the
null hypothesis; the two most widely-used critical values are χ2

0.95(1) = 3.84
and χ2

0.99(1) = 6.63.

This procedure is conceptually very simple, but it requires us to estimate λ,
which is a bit more work than simply running a linear regression. In some
cases, however, we can avoid estimating λ. We know that `(λ̂) must be larger
than whichever of `(1) and `(0) is larger. Therefore, if

2
(
`(0)− `(1)

)
> χ2

1−α(1), (10.100)

we can certainly reject the linear model, even though we have not actually
estimated the Box-Cox model or computed the LR test statistic. Similarly, if

2
(
`(1)− `(0)

)
> χ2

1−α(1), (10.101)

we can certainly reject the loglinear model. The quantities (10.100) and
(10.101) provide lower bounds for the actual LR statistics. In practice, these
lower bounds can often allow us to rule out models that are clearly incompat-
ible with the data.
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The fact that one can sometimes put a lower bound on the LR test statistic
without actually estimating the unrestricted model is often very convenient.
It was noted by Sargan (1964) in the context of choosing between linear and
loglinear models, is widely used by applied workers, and has been proposed as
a general basis for model selection by Pollak and Wales (1991). The procedure
works in only one direction, of course. If, for example, (10.100) allows us to
reject the linear model, then it tells us nothing about whether the loglinear
model is acceptable to the data.

Lagrange Multiplier Tests

Since it is very easy to estimate linear and loglinear regression models, but
somewhat harder to estimate the Box-Cox regression model, it is natural to
use LM tests in this context. The first tests of this type were proposed by
Godfrey and Wickens (1981). They are based on the OPG regression (10.72).
However, as is often the case with tests based on the OPG regression, these
tests tend to overreject quite severely in finite samples. Therefore, David-
son and MacKinnon (1985b) proposed Lagrange multiplier tests based on the
double-length artificial regression, or DLR, that they had previously devel-
oped in Davidson and MacKinnon (1984a). This artificial regression is called
“double-length” because it has 2n “observations,” two for each of the actual
observations in the sample.

For reasons of space, we will not write down the OPG or DLR test regressions
here. Readers are asked to derive a special case of the former in Exercise 10.29.
The latter, which are somewhat more complicated, are discussed in detail in
Davidson and MacKinnon (1993, Chapter 14). If an LM test is to be used,
we recommend use of the DLR rather than the OPG variant. There is a
good deal of evidence that the DLR variant is much more reliable in finite
samples; see Davidson and MacKinnon (1984b) and Godfrey, McAleer, and
McKenzie (1988), among others. Of course, either variant of the test may
easily be bootstrapped, as discussed in Section 10.6, and the OPG variant
should perform acceptably when that is done. Because it is never necessary
to estimate the unrestricted model, bootstrapping either of the LM tests will
be considerably less expensive than bootstrapping the LR test.

10.9 Final Remarks

Maximum likelihood estimation is widely used in many areas of econometrics,
and we will encounter a number of important applications in the next four
chapters. Readers seeking a more advanced treatment of the theory than we
were able to give in this chapter may wish to consult Davidson and MacKinnon
(1993), Cox and Hinkley (1974), or Stuart, Ord, and Arnold (1998).

As we have seen, ML estimation has many good properties, although these
may be more apparent asymptotically than in finite samples. Its biggest limit-
ation is the need for a fully specified parametric model. However, even if the

Copyright c© 1999, Russell Davidson and James G. MacKinnon



436 The Method of Maximum Likelihood

dependent variable does not follow its assumed distribution, quasi-maximum
likelihood estimators may still be consistent, although they will not be asymp-
totically efficient.

10.10 Exercises

10.1 Show that the ML estimator of the parameters β and σ of the classical normal
linear model can be obtained by first concentrating the loglikelihood with
respect to β and then maximizing the concentrated loglikelihood thereby
obtained with respect to σ.

10.2 Let the n--vector y be a vector of mutually independent realizations from the
uniform distribution on the interval [β1, β2], usually denoted by U(β1, β2).
Thus, yt ∼ U(β1, β2) for t = 1, . . . , n. Let β̂1 be the ML estimator of β1 given
in (10.13), and suppose that the true values of the parameters are β1 = 0 and
β2 = 1. Show that the CDF of β̂1 is

F (β) ≡ Pr(β̂1 ≤ β) = 1− (1− β)n.

Use this result to show that n(β̂1 − β10), which in this case is just nβ̂1, is
asymptotically exponentially distributed with θ = 1. Note that the PDF of
the exponential distribution was given in (10.03). (Hint: The limit as n →∞
of (1 + x/n)n, for arbitrary real x, is ex.)

Show that, for arbitrary given β10 and β20, with β20 > β10, the asymp-
totic distribution of n(β̂1 − β10) is characterized by the density (10.03) with
θ = (β20 − β10)

−1.

10.3 Generate 10,000 random samples of sizes 20, 100, and 500 from the uniform
U(0, 1) distribution. For each sample, compute γ̄, the sample mean, and γ̂,
the average of the largest and smallest observations. Calculate the root mean
squared error of each of these estimators for each of the three sample sizes.
Do the results accord with what theory predicts?

10.4 Suppose that h(·) is a strictly concave, twice continuously differentiable, func-
tion on a possibly infinite interval of the real line. Let X be a random variable
of which the support is contained in that interval. Suppose further that the
first two moments of X exist. Prove Jensen’s Inequality for the random vari-
able X and the strictly concave function h by performing a Taylor expansion
of h about E(X).

10.5 Prove that the definition (10.31) of the information matrix is equivalent to
the definition

I(θ) = Eθ(g(y,θ)g>(y,θ)).

Hint: Use the result (10.30).

10.6 By differentiating the identity (10.28) with respect to θj , show that

Eθ(Gti(y
t,θ)Gtj(y

t,θ) + (Ht)ij(y
t,θ)) = 0, (10.102)

where the k × k matrix Ht(y
t,θ) is the Hessian of the contribution `t(y

t,θ)
to the loglikelihood. Show that (10.102) also holds if the left-hand side is the
expectation conditional on yt−1.
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10.7 Use the result (10.102) of the preceding exercise to prove the asymptotic
information matrix equality (10.34).

10.8 Consider the linear regression model with exogenous explanatory variables,

y = Xβ + u,

where the only assumptions made regarding the error terms are that they
are uncorrelated and have mean zero and finite variances that are, in general,
different for each observation. The OLS estimator, which is consistent for this
model, is equal to the ML estimator of the model under the assumption of
homoskedastic normal error terms. The ML estimator is therefore a QMLE
for this model. Show that the k × k block of the sandwich covariance matrix
estimator (10.45) that corresponds to β̂ is a version of the HCCME for the
linear regression model.

10.9 Write out explicitly the empirical Hessian estimator of the covariance matrix
of β̂ and σ̂ for the classical normal linear model. How is it related to the IM
estimator (10.53)?

How would your answer change ifXβ in the classical normal linear model were
replaced by x(β), a vector of nonlinear regression functions that implicitly
depend on exogenous variables?

10.10 Suppose you treat σ2 instead of σ as a parameter. Use arguments similar to
the ones that led to (10.53) to derive the information matrix estimator of the
covariance matrix of β̂ and σ̂2. Then show that the same estimator can also
be obtained by using the delta method.

10.11 Explain how to compute two different 95% confidence intervals for σ2. One
should be based on the covariance matrix estimator obtained in Exercise
10.10, and the other should be based on the original estimator (10.53). Will
both of the intervals be symmetric? Which seems more reasonable?

10.12 Let θ̃ denote any unbiased estimator of the k parameters of a parametric
model fully specified by the loglikelihood function `(θ). The unbiasedness
property can be expressed as the following identity:

∫
L(y,θ)θ̃dy = θ. (10.103)

By using the relationship between L(y,θ) and `(y,θ) and differentiating this
identity with respect to the components of θ, show that

Covθ(g(θ), (θ̃ − θ)) = I,

where I is a k × k identity matrix, and the notation Covθ indicates that the
covariance is to be calculated under the DGP characterized by θ.

Let V denote the 2k × 2k covariance matrix of the 2k --vector obtained by
stacking the k components of g(θ) above the k components of θ̃ − θ. Partition
this matrix into 4 k × k blocks as follows:

V =

[
V1 C

C> V2

]
,
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where V1 and V2 are, respectively, the covariance matrices of the vectors g(θ)
and θ̃ − θ under the DGP characterized by θ. Then use the fact that V is pos-
itive semidefinite to show that the difference between V2 and I−1(θ), where
I(θ) is the (finite-sample) information matrix for the model, is a positive
semidefinite matrix. Hint: Use the result of Exercise 7.11.

10.13 Consider the linear regression model

y = X1β1 +X2β2 + u, u ∼ N(0, σ2I). (10.104)

Derive the Wald statistic for the hypothesis that β2 = 0, as a function of the
data, from the general formula (10.60). Show that it would be numerically
identical to the Wald statistic (6.71) if the same estimate of σ2 were used.

Show that, if the estimate of σ2 is either the OLS or the ML estimator based on
the unrestricted model (10.104), the Wald statistic is a deterministic, strictly
increasing, function of the conventional F statistic. Give the explicit form of
this deterministic function. Why can one reasonably expect that this result
holds for tests of arbitrary linear restrictions on the parameters, and not only
for zero restrictions of the type considered in this exercise?

10.14 The model specified by the loglikelihood function `(θ) is said to be repara-
metrized if the parameter vector θ is replaced by another parameter vector φ
related to θ by a one to one relationship θ = Θ(φ) with inverse φ = Θ−1(θ).
The loglikelihood function for the reparametrized model is then defined as
` ′(φ) ≡ `(Θ(φ)). Explain why this definition makes sense.

Show that the maximum likelihood estimates φ̂ of the reparametrized model
are related to the estimates θ̂ of the original model by the relation θ̂ = Θ(φ̂).
Specify the relationship between the gradients and information matrices of the
two models in terms of the derivatives of the components of φ with respect
to those of θ.

Suppose that it is wished to test a set of r restrictions written as r(θ) = 0.
These restrictions can be applied to the reparametrized model in the form
r′(φ) ≡ r(Θ(φ)) = 0. Show that the LR statistic is invariant to whether
the restrictions are tested for the original or the reparametrized model. Show
that the same is true for the LM statistic (10.69).

10.15 Show that the artificial OPG regression (10.73) possesses all the properties
needed for hypothesis testing in the context of a model estimated by maximum
likelihood. Specifically, show that

• the regressand ι is orthogonal to the regressors G(θ) when the latter are
evaluated at the MLE θ̂;

• the estimated OLS covariance matrix from (10.73) evaluated at θ̂, when mul-
tiplied by n, consistently estimates the inverse of the asymptotic information
matrix;

• the OPG regression (10.73) allows one-step estimation: If the OLS para-
meter estimates ć from (10.73) are evaluated at θ = θ́, where θ́ is any root-n
consistent estimator of θ, then the one-step estimator θ̀ ≡ θ́ + ć is asymptot-
ically equivalent to θ̂, in the sense that n1/2(θ̀ − θ0) and n1/2(θ̂ − θ0) tend
to the same random variable as n →∞.
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10.16 Show that the explained sum of squares from the artificial OPG regression
(10.73) is equal to n times the uncentered R2 from the same regression. Relate
this fact to the use of test statistics that take the form of n times the R2 of
a GNR (Section 6.7) or of an IVGNR (Section 8.6 and Exercise 8.21).

10.17 Express the LM statistic (10.74) as a deterministic, strictly increasing, func-
tion of the F statistic (10.57).

10.18 Consider a model characterized by a loglikelihood function `(y, θ), where θ
is a scalar parameter. Suppose there is a particular data set y such that the
loglikelihood of y is a quadratic function of θ:

`(θ) = aθ − 1−
2
hθ2. (10.105)

Compute the three classical test statistics for the hypothesis that θ = 0. For
the Wald and LM tests, use the information matrix estimate of the variance
of θ̂. Show that the three test statistics are equal. Graph the loglikelihood
function (10.105) and interpret the constituent elements of the three statistics
geometrically.

10.19 Let the loglikelihood function `(θ) depend on one scalar parameter θ. For
this special case, consider the distribution of the LM statistic (10.69) under
the drifting DGP characterized by the parameter θ = n−1/2δ for a fixed δ.
This DGP drifts toward the fixed DGP with θ = 0, which we think of as
representing the null hypothesis. Show first that n−1I(n−1/2δ) → I(0) as
n → ∞. Here the asymptotic information matrix I(θ) is just a scalar, since
there is only one parameter.

Next show that n−1/2 times the gradient, evaluated at θ = 0, which we
may write as n−1/2g(0), is asymptotically normally distributed with mean
δ I(0) and variance I(0). Finally, show that the LM statistic is asymptotically
distributed as χ2(1) with a finite noncentrality parameter, and give the value
of that noncentrality parameter.

10.20 Let z ∼ N(µ, σ2), and consider the lognormal random variable x ≡ ez. Using
the result that

E(ez) = exp(µ + 1
2 σ2), (10.106)

compute the second, third, and fourth central moments of x. Show that x is
skewed to the right and has positive excess kurtosis.

Note: The excess kurtosis of a random variable is formally defined as the ratio
of the fourth central moment to the square of the variance, minus 3.

10.21 The GNR proposed in Section 7.8 for NLS estimation of the model (10.84)
can be written schematically as

[
(1− ρ2)1/2u1(β)

ut(β)− ρut−1(β)

]
=

[
(1− ρ2)1/2X1 0

Xt − ρXt−1 ut−1(β)

] [
b
bρ

]
+ residuals,

where ut(β) ≡ yt−Xtβ for t = 1, . . . , n, and the last n−1 rows of the artificial
variables are indicated by their typical elements. Append one extra artificial
observation to this artificial regression. For this observation, the regressand
is ((1−ρ2)u2

1(β)/σε−σε)/
√

2, the regressor in the column corresponding to ρ

is ρσε
√

2/(1 − ρ2), and the regressors in the columns corresponding to the
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elements of β are all 0. Show that, if at each iteration σ2
ε is updated by the

formula

σ2
ε =

1−
n

(
(1− ρ2)u2

1(β) +

n∑
t=2

(ut(β)− ρut−1(β))2
)
,

then, if the iterations defined by the augmented artificial regression converge,
the resulting parameter estimates satisfy the estimating equations (10.88)
that define the ML estimator.

The odd-looking factors of
√

2 in the extra observation are there for a reason:
Show that, when the artificial regression has converged, σ−2

ε times the matrix
of cross-products of the regressors is equivalent to the block of the information
matrix that corresponds to β and ρ evaluated at the ML estimates. Explain
why this means that we can use the OLS covariance matrix from the artificial
regression to estimate the covariance matrix of β̂ and ρ̂.

10.22 Using the artificial data in the file ar1.data, estimate the linear regression
model

yt = β1 + β2xt + ut, ut = ρut−1 + εt, t = 1, . . . , 100,

which is correctly specified, in two different ways: ML omitting the first
observation, and ML using all 100 observations. The second method will
yield more efficient estimates of β1 and β2. For each of these two parameters,
how large a sample of observations similar to the last 99 observations would
be needed to obtain estimates as efficient as those obtained by using all 100
observations? Explain why your answer is greater than 100 in both cases.

10.23 Let the two random variables X and Z be related by the deterministic equa-
tion Z = h(X), where h is strictly decreasing. Show that the PDFs of the
two variables satisfy the equation

fX(x) = −fZ(h(x))h′(x).

Then show that (10.92) holds whenever h is a strictly monotonic function.

Let X = Z2. Express the density of X in terms of that of Z, taking account of
the possibility that the support of Z may include negative as well as positive
numbers.

10.24 Suppose that a dependent variable y follows the exponential distribution given
in (10.03), and let x = y2. What is the density of x? Find the ML estimator
of the parameter θ based on a sample of n observations xt which are assumed
to follow the distribution of which you have just obtained the density.

10.25 For a sample of n observations yt generated from the exponential distribution,
the loglikelihood function is (10.04), and the ML estimator is (10.06). Derive
the asymptotic information matrix I(θ), which is actually a scalar in this case,
and use it to show how n1/2(θ̂ − θ0) is distributed asymptotically. What is the
empirical Hessian estimator of the variance of θ̂? What is the IM estimator?

There is an alternative parametrization of the exponential distribution, in
which the parameter is φ ≡ 1/θ. Write down the loglikelihood function in
terms of φ and obtain the asymptotic distribution of n1/2(φ̂− φ0). What
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is the empirical Hessian estimator of the variance of φ̂? What is the IM
estimator?

10.26 Consider the ML estimator θ̂ from the previous exercise. Explain how you
could obtain an asymptotic confidence interval for θ in three different ways.
The first should be based on inverting a Wald test in the θ parametrization,
the second should be based on inverting a Wald test in the φ parametrization,
and the third should be based on inverting an LR test.

Generate 100 observations from the exponential distribution with θ = 0.5, find
the ML estimate based on these artificial data, and calculate 95% confidence
intervals for θ using the three methods just proposed. Hint: To generate
the data, use uniformly distributed random numbers and the inverse of the
exponential CDF.

10.27 Use the result (10.92) to derive the PDF of the N(µ, σ2) distribution from
the PDF of the standard normal distribution.

In the classical normal linear model as specified in (10.07), it is the distribu-
tion of the error terms u that is specified rather than that of the dependent
variable y. Reconstruct the loglikelihood function (10.10) starting from the
densities of the error terms ut and using the Jacobians of the transformations
that express the yt in terms of the ut.

10.28 Consider the model

y1/2
t = Xtβ + ut, ut ∼ NID(0, σ2),

in which it is assumed that all observations yt on the dependent variable are
positive. Write down the loglikelihood function for this model.

10.29 Derive the loglikelihood function for the Box-Cox regression model (10.97).
Then consider the following special case:

B(yt, λ) = β1 + β2B(xt, λ) + ut, ut ∼ NID(0, σ2).

Derive the OPG regression for this model and explain precisely how to use it
to test the hypotheses that the DGP is linear (λ = 1) and loglinear (λ = 0).

10.30 Consider the model (9.122) of the Canadian consumption function, with data
from the file consumption.data, for the period 1953:1 to 1996:4. Compute the
value of the maximized loglikelihood for this model regarded as a model for
the level (not the log) of current consumption.

Formulate a model with the same algebraic form as (9.122), but in levels of
the income and consumption variables. Compute the maximized loglikelihood
of this second model, and compare it with the value you obtained for the
model in logs. Can you draw any conclusion about whether either model is
misspecified?

Formulate a third model, using the variables in levels, but dividing them all
by current income Yt in order to account for heteroskedasticity. The result
will be a weighted least squares model. Compute the maximized loglikelihood
for this model as a model for the level of current consumption. Are there any
more conclusions you can draw on the basis of your results?
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10.31 Formulate a Box-Cox regression model which includes the first and second
models of the previous exercise as special cases. Use the OPG regression to
perform an LM test of the hypothesis that the Box-Cox parameter λ = 0, that
is, that the loglinear model is correctly specified. Obtain both asymptotic and
bootstrap P values.

10.32 The model (9.122) that was estimated in Exercise 10.30 can be written as

∆ct = β1 + β2∆yt + β3∆yt−1 + σεt,

where εt ∼ NID(0, 1). Suppose now that the εt, instead of being standard
normal, follow the Cauchy distribution, with density f(εt) = (π(1 + ε2

t ))−1.
Estimate the resulting model by maximum likelihood, and compare the max-
imized value of the loglikelihood with the one obtained in Exercise 9.12.

10.33 Suppose that the dependent variable yt is a proportion, so that 0 < yt < 1,
t = 1, . . . , n. An appropriate model for such a dependent variable is

log
(

yt

1− yt

)
= Xtβ + ut,

where Xt is a k× 1 vector of exogenous variables, and β is a k --vector. Write
down the loglikelihood function for this model under the assumption that
ut ∼ NID(0, σ2).
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Chapter 11

Discrete and Limited

Dependent Variables

11.1 Introduction

Although regression models are useful for modeling many types of data, they
are not suitable for modeling every type. In particular, they should not be
used when the dependent variable is discrete and can therefore take on only
a countable number of values, or when it is continuous but is limited in the
range of values it can take on. Since variables of these two types arise quite
often, it is important to be able to deal with them, and a large number of
models has been proposed for doing so. In this chapter, we discuss some of the
simplest and most commonly used models for discrete and limited dependent
variables.

The most commonly encountered type of dependent variable that cannot be
handled properly using a regression model is a binary dependent variable.
Such a variable can take on only two values, which for practical reasons are
almost always coded as 0 and 1. For example, a person may be in or out
of the labor force, a commuter may drive to work or take public transit, a
household may own or rent the home it resides in, and so on. In each case,
the economic agent chooses between two alternatives, one of which is coded
as 0 and one of which is coded as 1. A binary response model then tries to
explain the probability that the agent will choose alternative 1 as a function
of some observed explanatory variables. We discuss binary response models
at some length in Sections 11.2 and 11.3

A binary dependent variable is a special case of a discrete dependent variable.
In Section 11.4, we briefly discuss several models for dealing with discrete
dependent variables that can take on a fixed number of values. We consider
two different cases, one in which the values have a natural ordering, and one
in which they do not. Then, in Section 11.5, we discuss models for count data,
in which the dependent variable can, in principle, take on any nonnegative,
integer value.

Sometimes, a dependent variable is continuous but can take on only a limited
range of values. For example, most types of consumer spending can be zero
or positive but cannot be negative. If we have a sample that includes some
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zero observations, we need to use a model that explicitly allows for this. By
the same token, if the zero observations are excluded from the sample, we
need to take account of this omission. Both types of model are discussed
in Section 11.6. The related problem of sample selectivity, in which certain
observations are omitted from the sample in a nonrandom way, is dealt with
in Section 11.7. Finally, in Section 11.8, we discuss duration models, which
attempt to explain how much time elapses before some event occurs or some
state changes.

11.2 Binary Response Models: Estimation

In a binary response model, the value of the dependent variable yt can take on
only two values, 0 and 1. Let Pt denote the probability that yt = 1 conditional
on the information set Ωt, which consists of exogenous and predetermined vari-
ables. A binary response model serves to model this conditional probability.
Since the values are 0 or 1, it is clear that Pt is also the expectation of yt

conditional on Ωt:

Pt ≡ Pr(yt = 1 |Ωt) = E(yt |Ωt),

Thus a binary response model can also be thought of as modeling a conditional
expectation.

For many types of dependent variable, we can use a regression model to model
conditional expectations, but that is not a sensible thing to do in this case.
Suppose that Xt denotes a row vector of length k of variables that belong
to the information set Ωt, almost always including a constant term or the
equivalent. Then a linear regression model would specify E(yt |Ωt) as Xtβ.
But such a model fails to impose the condition that 0 ≤ E(yt |Ωt) ≤ 1, which
must hold because E(yt |Ωt) is a probability. Even if this condition happened
to hold for all observations in a particular sample, it would always be easy
to find values of Xt for which the estimated probability Xtβ̂ would be less
than 0 or greater than 1.

Since it makes no sense to have estimated probabilities that are negative or
greater than 1, simply regressing yt on Xt is not an acceptable way to model
the conditional expectation of a binary variable. However, as we will see in
the next section, such a regression can provide some useful information, and
it is therefore not a completely useless thing to do in the early stages of an
empirical investigation.

Any reasonable binary response model must ensure that E(yt |Ωt) lies in the
0-1 interval. In principle, there are many ways to do this. In practice, however,
two very similar models are widely used. Both of these models ensure that
0 < Pt < 1 by specifying that

Pt ≡ E(yt |Ωt) = F (Xtβ). (11.01)
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Here Xtβ is an index function, which maps from the vector Xt of explanatory
variables and the vector β of parameters to a scalar index, and F (x) is a
transformation function, which has the properties that

F (−∞) = 0, F (∞) = 1, and f(x) ≡ dF (x)
dx

> 0. (11.02)

These properties are, in fact, just the defining properties of the CDF of a
probability distribution; recall Section 1.2. They ensure that, although the
index function Xtβ can take any value on the real line, the value of F (Xtβ)
must lie between 0 and 1.

The properties (11.02) also ensure that F (x) is a nonlinear function. Con-
sequently, changes in the values of the Xti, which are the elements of Xt,
necessarily affect E(yt |Ωt) in a nonlinear fashion. Specifically, when Pt is
given by (11.01), its derivative with respect to Xti is

∂Pt

∂Xti
=

∂F (Xtβ)
∂Xti

= f(Xtβ)βi, (11.03)

where βi is the ith element of β. Therefore, the magnitude of the derivative
is proportional to f(Xtβ). For the transformation functions that are almost
always employed, f(Xtβ) achieves a maximum at Xtβ = 0 and then falls as
|Xtβ| increases; for examples, see Figure 11.1 below. Thus (11.03) tells us
that the effect on Pt of a change in one of the independent variables is greatest
when Pt = 0.5 and very small when Pt is close to 0 or 1.

The Probit Model

The first of the two widely-used choices for F (x) is the cumulative standard
normal distribution function,

Φ(x) ≡ 1√
2π

∫ x

−∞
exp

(− 1
2X2

)
dX.

When F (Xtβ) = Φ(Xtβ), (11.01) is called the probit model. Although there
exists no closed-form expression for Φ(x), it is easily evaluated numerically,
and its first derivative is, of course, simply the standard normal density func-
tion, φ(x), which was defined in expression (1.06).

One reason for the popularity of the probit model is that it can be derived
from a model involving an unobserved, or latent, variable y◦t . Suppose that

y◦t = Xtβ + ut, ut ∼ NID(0, 1). (11.04)

We observe only the sign of y◦t , which determines the value of the observed
binary variable yt according to the relationship

yt = 1 if y◦t > 0; yt = 0 if y◦t ≤ 0. (11.05)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



446 Discrete and Limited Dependent Variables

Together, (11.04) and (11.05) define what is called a latent variable model.
One way to think of y◦t is as an index of the net utility associated with some
action. If the action yields positive net utility, it will be undertaken; otherwise,
it will not be undertaken. Because we observe only the sign of y◦t , we can
normalize the variance of ut to be unity. If the variance of ut were some other
value, say σ2, we could divide β, y◦t , and ut by σ. Then ut/σ would have
variance 1, but the value of yt would be unchanged. Another way to express
this property is to say that the variance of ut is not identified by the binary
response model.

We can now compute Pt, the probability that yt = 1. It is

Pr(yt = 1) = Pr(y◦t > 0) = Pr(Xtβ + ut > 0)

= Pr(ut > −Xtβ) = Pr(ut ≤ Xtβ) = Φ(Xtβ).
(11.06)

The second-last equality in (11.06) makes use of the fact that the standard
normal density function is symmetric around zero. The final result is just
what we would get by letting Φ(Xtβ) play the role of the transformation
function F (Xtβ) in (11.01). Thus we have derived the probit model from the
latent variable model that consists of (11.04) and (11.05).

The Logit Model

The logit model is very similar to the probit model. The only difference is
that the function F (x) is now the logistic function

Λ(x) ≡ 1
1 + e−x

=
ex

1 + ex
, (11.07)

which has first derivative

λ(x) ≡ ex

(1 + ex)2
= Λ(x)Λ(−x). (11.08)

This first derivative is evidently symmetric around zero, which implies that
Λ(−x) = 1−Λ(x). A graph of the logistic function, as well as of the standard
normal distribution function, is shown in Figure 11.1 below.

The logit model is most easily derived by assuming that

log
(

Pt

1− Pt

)
= Xtβ,

which says that the logarithm of the odds (that is, the ratio of the two prob-
abilities) is equal to Xtβ. Solving for Pt, we find that

Pt =
exp(Xtβ)

1 + exp(Xtβ)
=

1
1 + exp(−Xtβ)

= Λ(Xtβ).

This result is what we would get by letting Λ(Xtβ) play the role of the
transformation function F (Xtβ) in (11.01).
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Maximum Likelihood Estimation of Binary Response Models

By far the most common way to estimate binary response models is to use the
method of maximum likelihood. Because the dependent variable is discrete,
the likelihood function cannot be defined as a joint density function, as it
was in Chapter 10 for models with a continuously distributed dependent vari-
able. When the dependent variable can take on discrete values, the likelihood
function for those values should be defined as the probability that the value
is realized, rather than as the probability density at that value. With this
redefinition, the sum of the possible values of the likelihood is equal to 1, just
as the integral of the possible values of a likelihood based on a continuous
distribution is equal to 1.

If, for observation t, the realized value of the dependent variable is yt, then the
likelihood for that observation if yt = 1 is just the probability that yt = 1, and
if yt = 0, it is the probability that yt = 0. The logarithm of the appropriate
probability is then the contribution to the loglikelihood made by observation t.

Since the probability that yt = 1 is F (Xtβ), the contribution to the loglike-
lihood function for observation t when yt = 1 is log F (Xtβ). Similarly, the
contribution to the loglikelihood function for observation t when yt = 0 is
log

(
1− F (Xtβ)

)
. Therefore, if y is an n--vector with typical element yt, the

loglikelihood function for y can be written as

`(y, β) =
n∑

t=1

(
yt log F (Xtβ) + (1− yt) log

(
1− F (Xtβ)

))
. (11.09)

For each observation, one of the terms inside the large parentheses is always 0,
and the other is always negative. The first term is 0 whenever yt = 0, and
the second term is 0 whenever yt = 1. When either term is nonzero, it must
be negative, because it is equal to the logarithm of a probability, and this
probability must be less than 1 whenever Xtβ is finite. For the model to fit
perfectly, F (Xtβ) would have to equal 1 when yt = 1 and 0 when yt = 0, and
the entire expression inside the parentheses would then equal 0. This could
happen only if Xtβ = ∞ whenever yt = 1, and Xtβ = −∞ whenever yt = 0.
Therefore, we see that (11.09) is bounded above by 0.

Maximizing the loglikelihood function (11.09) is quite easy to do. For the logit
and probit models, this function is globally concave with respect to β (see
Pratt, 1981, and Exercise 11.1). This implies that the first-order conditions,
or likelihood equations, uniquely define the ML estimator β̂, except for one
special case we consider in the next subsection but one. These likelihood
equations can be written as

n∑
t=1

(
yt − F (Xtβ)

)
f(Xtβ)Xti

F (Xtβ)
(
1− F (Xtβ)

) = 0, i = 1, . . . , k. (11.10)

There are many ways to find β̂ in practice. Because of the global concavity
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of the loglikelihood function, Newton’s Method generally works very well.
Another approach, based on an artificial regression, will be discussed in the
next section.

Conditions (11.10) look just like the first-order conditions for weighted least
squares estimation of the nonlinear regression model

yt = F (Xtβ) + vt, (11.11)

where the weight for observation t is

(
F (Xtβ)

(
1− F (Xtβ)

))−1/2

. (11.12)

This weight is one over the square root of the variance of vt ≡ yt − F (Xtβ),
which is a binary random variable. By construction, vt has mean 0, and its
variance is

E(v2
t ) = E

(
yt − F (Xtβ)

)2

= F (Xtβ)
(
1− F (Xtβ)

)2 +
(
1− F (Xtβ)

)(
F (Xtβ)

)2

= F (Xtβ)
(
1− F (Xtβ)

)
. (11.13)

Notice how easy it is to take expectations in the case of a binary random
variable. There are just two possible outcomes, and the probability of each of
them is specified by the model.

Because the variance of vt in regression (11.11) is not constant, applying
nonlinear least squares to that regression would yield an inefficient estimator
of the parameter vector β. ML estimates could be obtained by applying
iteratively reweighted nonlinear least squares. However, Newton’s method, or
a method based on the artificial regression to be discussed in the next section,
is more direct and usually much faster.

Since the ML estimator is equivalent to weighted NLS, we can obtain it as
an efficient GMM estimator. It is quite easy to construct elementary zero
functions for a binary response model. The obvious function for observation t
is yt−F (Xtβ). The covariance matrix of the n--vector of these zero functions
is the diagonal matrix with typical element (11.13), and the row vector of
derivatives of the zero function for observation t is −f(Xtβ)Xt. With this
information, we can set up the efficient estimating equations (9.82). As readers
are asked to show in Exercise 11.3, these equations are equivalent to the
likelihood equations (11.10).

Intuitively, efficient GMM and maximum likelihood give the same estimator
because, once it is understood that the yt are binary variables, the elementary
zero functions serve to specify the probabilities Pr(yt = 1), and they thus
constitute a full specification of the model.
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Figure 11.1 Alternative choices for F (x)

Comparing Probit and Logit Models

In practice, the probit and logit models generally yield very similar predicted
probabilities, and the maximized values of the loglikelihood function (11.09)
for the two models therefore tend to be very close. A formal comparison of
these two values is possible. If twice the difference between them is greater
than 3.84, the .05 critical value for the χ2(1) distribution, then we can reject
whichever model fits less well at the .05 level.1 Such a procedure was discussed
in Section 10.8 in the context of linear and loglinear models. In practice,
however, experience shows that this sort of comparison rarely rejects either
model unless the sample size is quite large.

In most cases, the only real difference between the probit and logit models is
the way in which the elements of β are scaled. This difference in scaling occurs
because the variance of the distribution for which the logistic function is the
CDF can be shown to be π2/3, while that of the standard normal distribution
is, of course, unity. The logit estimates therefore all tend to be larger in
absolute value than the probit estimates, although usually by a factor that
is somewhat less than π/

√
3. Figure 11.1 plots the standard normal CDF,

the logistic function, and the logistic function rescaled to have variance unity.
The resemblance between the standard normal CDF and the rescaled logistic

1 This assumes that there exists a comprehensive model, with a single additional
parameter, which includes the probit and logit models as special cases. It is
not difficult to formulate such a model; see Exercise 11.4.
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function is striking. The main difference is that the rescaled logistic function
puts more weight in the extreme tails.

The Perfect Classifier Problem

We have seen that the loglikelihood function (11.09) is bounded above by 0,
and that it achieves this bound if Xtβ = −∞ whenever yt = 0 and Xtβ = ∞
whenever yt = 1. Suppose there is some linear combination of the independent
variables, say Xtβ

•, such that

yt = 0 whenever Xtβ
• < 0, and

yt = 1 whenever Xtβ
• > 0.

(11.14)

When this happens, there is said to be complete separation of the data. In
this case, it is possible to make the value of `(y, β) arbitrarily close to 0 by
setting β = γβ• and letting γ → ∞. This is precisely what any nonlinear
maximization algorithm will attempt to do if there exists a vector β• for
which conditions (11.14) are satisfied. Because of the limitations of computer
arithmetic, the algorithm will eventually terminate with some sort of numeri-
cal error at a value of the loglikelihood function that is slightly less than 0. If
conditions (11.14) are satisfied, Xtβ

• is said to be a perfect classifier, since
it allows us to predict yt with perfect accuracy for every observation.

The problem of perfect classifiers has a geometrical interpretation. In the
k --dimensional space spanned by the columns of the matrix X formed from
the row vectors Xt, the vector β• defines a hyperplane that passes through
the origin and that separates the observations for which yt = 1 from those for
which yt = 0. Whenever one column of X is a constant, then the separating
hyperplane can be represented in the (k − 1)--dimensional space of the other
explanatory variables. If we write

Xtβ
• = α• + Xt2β

•
2 ,

with Xt2 a 1× (k − 1) vector, then Xtβ
• = 0 is equivalent to Xt2β

•
2 = −α•,

which is the equation of a hyperplane in the space of the Xt2 that in general
does not pass through the origin. This is illustrated in Figure 11.2 for the
case k = 3. The asterisks, which all lie to the northeast of the separating
line for which Xtβ

• = 0, represent the Xt2 for the observations with yt = 1,
and the circles to the southwest of the separating line represent them for the
observations with yt = 0.

It is clear from Figure 11.2 that, when a perfect classifier occurs, the sepa-
rating hyperplane is not, in general, unique. One could move the intercept of
the separating line in the figure up or down a little while maintaining the sep-
arating property. Likewise, one could swivel the line a little about the point
of intersection with the vertical axis. Even if the separating hyperplane were
unique, we could not identify all the components of β. This follows from the
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Figure 11.2 A perfect classifier yields a separating hyperplane

fact that the equation Xtβ
• = 0 is equivalent to the equation Xt(cβ•) = 0 for

any nonzero scalar c. The separating hyperplane is therefore defined equally
well by any multiple of β•. Although this suggests that we might be able to
estimate β• up to a scalar factor by imposing a normalization on it, there
is no question of estimating β• in the usual sense, and inference on it would
require methods beyond the scope of this book.

Even when no parameter vector exists that satisfies the inequalities (11.14),
there may exist a β• that satisfies the corresponding nonstrict inequalities.
There must then be at least one observation with yt = 0 and Xtβ

• = 0, and
at least one other observation with yt = 1 and Xtβ

• = 0. In such a case, we
speak of quasi-complete separation of the data. The separating hyperplane is
then unique, and the upper bound of the loglikelihood is no longer zero, as
readers are invited to verify in Exercise 11.6.

When there is either complete or quasi-complete separation, no finite ML
estimator exists. This is likely to occur in practice when the sample is very
small, when almost all of the yt are equal to 0 or almost all of them are equal
to 1, or when the model fits extremely well. Exercise 11.5 is designed to give
readers a feel for the circumstances in which ML estimation is likely to fail
because there is a perfect classifier.

If a perfect classifier exists, the loglikelihood should be close to its upper
bound (which may be 0 or a small negative number) when the maximization
algorithm quits. Thus, if the model seems to fit extremely well, or if the algo-
rithm terminates in an unusual way, one should always check to see whether
the parameter values imply the existence of a perfect classifier. For a detailed
discussion of the perfect classifier problem, see Albert and Anderson (1984).
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11.3 Binary Response Models: Inference

Inference about the parameters of binary response models is usually based on
the standard results for ML estimation that were discussed in Chapter 10. It
can be shown that

Var
(

plim
n→∞

n1/2(β̂ − β0)
)

= plim
n→∞

(
1−
n
X>Υ (β0)X

)−1

, (11.15)

where X is an n × k matrix with typical row Xt, β0 is the true value of β,
and Υ (β) is an n× n diagonal matrix with typical diagonal element

Υt(β) ≡ f 2(Xtβ)
F (Xtβ)

(
1− F (Xtβ)

) . (11.16)

Not surprisingly, the right-hand side of expression (11.15) looks like the
asymptotic covariance matrix for weighted least squares estimation, with
weights (11.12), of the GNR that corresponds to regression (11.11). This
GNR is

yt − F (Xtβ) = f(Xtβ)Xtb + residual. (11.17)

The factor of f(Xtβ) that multiplies all the regressors of the GNR accounts
for the numerator of (11.16). Its denominator is simply the variance of the
error term in regression (11.11). Two ways to obtain the asymptotic covar-
iance matrix (11.15) using general results for ML estimation are explored in
Exercises 11.7 and 11.8.

In practice, the asymptotic result (11.15) is used to justify the covariance
matrix estimator

V̂ar(β̂) =
(
X>Υ (β̂)X

)−1
, (11.18)

in which the unknown β0 is replaced by β̂, and the factor of n−1, which is
needed only for asymptotic analysis, is omitted. This approximation may be
used to obtain standard errors, t statistics, Wald statistics, and confidence
intervals that are asymptotically valid. However, they will not be exact in
finite samples.

It is clear from equations (11.15) and (11.18) that the ML estimator for the
binary response model gives some observations more weight than others. In
fact, the weight given to observation t is proportional to the square root of
expression (11.16) evaluated at β = β̂. It can be shown that, for both the
logit and probit models, the maximum weight will be given to observations
for which Xtβ = 0, which implies that Pt = 0.5, while relatively little weight
will be given to observations for which Pt is close to 0 or 1; see Exercise 11.9.
This makes sense, since when Pt is close to 0 or 1, a given change in Xtβ
will have little effect on Pt, while when Pt is close to 0.5, such a change will
have a much larger effect. Thus we see that ML estimation, quite sensibly,
gives more weight to observations that provide more information about the
parameter values.
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Likelihood Ratio Tests

It is straightforward to test restrictions on binary response models by using
LR tests. We simply estimate both the restricted and the unrestricted model
and calculate twice the difference between the two maximized values of the
loglikelihood function. As usual, the LR test statistic will be asymptotically
distributed as χ2(r), where r is the number of restrictions.

One especially simple application of this procedure can be used to test whether
the regressors in a binary response model have any explanatory power at all.
The null hypothesis is that E(yt |Ωt) is a constant, and the ML estimate of this
constant is just ȳ, the unconditional sample mean of the dependent variable.
It is not difficult to show that, under the null hypothesis, the loglikelihood
function (11.09) reduces to

n ȳ log(ȳ) + n(1− ȳ) log(1− ȳ), (11.19)

which is very easy to calculate. Twice the difference between the unrestricted
maximum of the loglikelihood function and the restricted maximum (11.19)
will be asymptotically distributed as χ2(k− 1). This statistic is analogous to
the usual F test for all the slope coefficients in a linear regression model to
equal zero, and many computer programs routinely compute it.

An Artificial Regression for Binary Choice Models

There is a convenient artificial regression for binary response models.2 Like the
Gauss-Newton regression, to which it is closely related, the binary response
model regression, or BRMR, can be used for a variety of purposes, including
parameter estimation, covariance matrix estimation, and hypothesis testing.

The most intuitive way to think of the BRMR is as a modified version of
the GNR. The ordinary GNR for the nonlinear regression model (11.11) is
(11.17). However, it is inappropriate to use this GNR, because the error
terms are heteroskedastic, with variance given by (11.13). We need to divide
the regressand and regressors of (11.17) by the square root of (11.13) in order
to obtain an artificial regression that has homoskedastic errors. The result is
the BRMR,

V
−1/2
t (β)

(
yt − F (Xtβ)

)
= V

−1/2
t (β)f(Xtβ)Xtb + residual, (11.20)

where Vt(β) ≡ F (Xtβ)
(
1− F (Xtβ)

)
.

If the BRMR is evaluated at the vector of ML estimates β̂, it yields the
covariance matrix

s2
(
X>Υ (β̂)X

)−1
, (11.21)

2 This regression was originally proposed, independently in somewhat different
forms, by Engle (1984) and Davidson and MacKinnon (1984b).
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where s is the standard error of the artificial regression. Since (11.20) is a GLS
regression, s will tend to 1 asymptotically, and expression (11.21) is therefore
a valid way to estimate Var(β̂). However, because there is no advantage to
multiplying by a random variable that tends to 1, it is better simply to use
(11.18), which may readily be obtained by dividing (11.21) by s2.

Like other artificial regressions, the BRMR can be used as part of a numerical
maximization algorithm, similar to the ones described in Section 6.4. The
formula that determines β(j+1), the value of β at step j + 1, is

β(j+1) = β(j) + α(j)b(j),

where b(j) is the vector of OLS estimates from the BRMR evaluated at β(j),
and α(j) may be chosen in several ways. This procedure generally works very
well, but a modified Newton procedure will usually be even faster.

The BRMR is particularly useful for hypothesis testing. Suppose that β is
partitioned as [β1

.... β2], where β1 is a (k−r)--vector and β2 is an r --vector. If
β̃ denotes the vector of ML estimates subject to the restriction that β2 = 0,
we can test that restriction by running the BRMR

Ṽ
−1/2
t (yt − F̃t) = Ṽ

−1/2
t f̃tXt1b1 + Ṽ

−1/2
t f̃tXt2b2 + residual, (11.22)

where F̃t ≡ F (Xtβ̃), f̃t ≡ f(Xtβ̃), and Ṽt ≡ Vt(β̃). Here Xt has been parti-
tioned into two vectors, Xt1 and Xt2, corresponding to the partitioning of β.
The regressors that correspond to β1 are orthogonal to the regressand, while
those that correspond to β2 are not. All the usual test statistics for b2 = 0 are
valid. The best test statistic to use in finite samples is probably the explained
sum of squares from regression (11.22). It will be asymptotically distributed
as χ2(r) under the null hypothesis. An F statistic is also asymptotically valid,
but since its denominator of s2 is random, and there is no need to estimate
the variance of (11.22), the explained sum of squares is preferable.

In the special case of the null hypothesis that all the slope coefficients are
zero, regression (11.22) simplifies dramatically. In this case, Xt1 is just unity,
and Ṽt, F̃t, and f̃t are all constants that do not depend on t. Since neither
subtracting a constant from the regressand nor multiplying the regressand
and regressors by a constant has any effect on the F statistic for b2 = 0,
regression (11.22) is equivalent to the much simpler regression

y = c1 + X2c2 + residuals. (11.23)

The ordinary F statistic for c2 = 0 in regression (11.23) is an asymptotically
valid test statistic for the hypothesis that β2 = 0. The fact that (11.23) is just
an OLS regression of y on the constant and explanatory variables accounts
for the claim we made in Section 11.2 that such a regression is not always
completely useless!
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Bootstrap Inference

Because binary response models are fully parametric, it is straightforward to
bootstrap them using procedures similar to those discussed in Sections 4.6
and 5.3. For the model specified by (11.01), the bootstrap DGP is required
to generate binary variables y∗t , t = 1, . . . , n, in such a way that

P ∗t ≡ E(y∗t |Xt) = F (Xtβ̂),

where β̂ is a vector of ML estimates, possibly subject to whatever restrictions
are being tested. In order to generate y∗t , the easiest way to proceed is to draw
u∗t from the uniform distribution U(0, 1) and set y∗t = I(u∗t ≤ P ∗t ), where, as
usual, I(·) is an indicator function. Alternatively, in the case of the probit
model, we can generate bootstrap samples by using (11.04) to generate latent
variables and (11.05) to convert these to the binary dependent variables we
actually need.

Bootstrap methods for binary response models may or may not yield more
accurate inferences than asymptotic ones. In the case of test statistics, where
the bootstrap samples must be generated under the null hypothesis, there
seems to be evidence that bootstrap P values are generally more accurate
than asymptotic ones. The value of bootstrapping appears to be particularly
great when the number of restrictions is large and the sample size is moderate.
However, in the case of confidence intervals, the evidence is rather mixed.

The bootstrap can also be used to reduce the bias of the ML estimates. As
we saw in Section 3.6, regression models tend to fit too well in finite samples,
in the sense that the residuals tend to be smaller than the true error terms.
Binary response models also tend to fit too well, in the sense that the fitted
probabilities, the F (Xtβ̂), tend to be closer to 0 and 1 than the true proba-
bilities, the F (Xtβ0). This overfitting causes the elements of β̂ to be biased
away from zero.

If we generate B bootstrap samples using the parameter vector β̂, we can
estimate the bias using

Bias∗(β̂) =
1
B

B∑

j=1

β̂∗j − β̂,

where β̂∗j is the estimate of β using the j th bootstrap sample. Therefore, a
bias-corrected estimate is

β̂bc ≡ β̂ − Bias∗(β̂) = 2β̂ − 1
B

B∑

j=1

β̂∗j .

Simulation results in MacKinnon and Smith (1998), which are by no means
definitive, suggest that this estimator is less biased and has smaller mean
squared error than the usual ML estimator.
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The finite-sample bias of the ML estimator in binary response models can
cause an important practical problem for the bootstrap. Since the probabil-
ities associated with β̂ tend to be more extreme than the true ones, samples
generated using β̂ will be more prone to having a perfect classifier. Therefore,
even though there is no perfect classifier for the original data, there may well
be perfect classifiers for some of the bootstrap samples. The simplest way to
deal with this problem is just to throw away any bootstrap samples for which
a perfect classifier exists. However, if there is more than a handful of such
samples, the bootstrap results must then be viewed with skepticism.

Specification Tests

Maximum likelihood estimation of binary response models will almost always
yield inconsistent estimates if the form of the transformation function F (Xtβ)
is misspecified. It is therefore very important to test whether this function
has been specified correctly.

In Section 11.2, we derived the probit model by starting with the latent vari-
able model (11.04), which has normally distributed, homoskedastic errors. A
more general specification for a latent variable model, which allows for the
error terms to be heteroskedastic, is

y◦t = Xtβ + ut, ut ∼ N
(
0, exp(2Ztγ)

)
, (11.24)

where Zt is a row vector of length r of observations on variables that be-
long to the information set Ωt, and γ is an r--vector of parameters to be
estimated along with β. To ensure that both β and γ are identifiable, Zt

must not include a constant term or the equivalent. With this precaution, the
model (11.04) is obtained by setting γ = 0. Combining (11.24) with (11.05)
yields the model

Pt ≡ E(yt |Ωt) = Φ
(

Xtβ

exp(Ztγ)

)
,

in which Pt depends on both the regression function Xtβ and the skedastic
function exp(2Ztγ). Thus it is clear that heteroskedasticity of the ut in a
latent variable model will affect the form of the transformation function.

Even when the binary response model being used is not the probit model, it
still seems quite reasonable to consider the alternative hypothesis

Pt = F

(
Xtβ

exp(Ztγ)

)
. (11.25)

We can test against this alternative by using a BRMR to test the hypothesis
that γ = 0. The appropriate BRMR is

Ṽ
−1/2
t (yt − F̃t) = Ṽ

−1/2
t f̃tXtb− Ṽ

−1/2
t Xtβ̃f̃tZtc + residual, (11.26)
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where F̃t, f̃t, and Ṽt are evaluated at the ML estimates β̃ computed under the
null hypothesis that γ = 0 in (11.25). These are just the ordinary estimates
for the binary response model defined by Pt = F (Xtβ); usually they will
be probit or logit estimates. The explained sum of squares from (11.26) is
asymptotically distributed as χ2(r) under the null hypothesis.

Heteroskedasticity is not the only phenomenon that may lead the transfor-
mation function F (Xtβ) to be specified incorrectly. Consider the family of
models for which

Pt ≡ E(yt |Ωt) = F

(
τ(δXtβ)

δ

)
, (11.27)

where δ is a scalar parameter, and τ(·) may be any scalar function that is
monotonically increasing in its argument and satisfies the conditions

τ(0) = 0, τ ′(0) = 1, and τ ′′(0) 6= 0, (11.28)

where τ ′(0) and τ ′′(0) are the first and second derivatives of τ(x), evaluated at
x = 0. The family of models (11.27) allows for a wide range of transformation
functions. It was considered by MacKinnon and Magee (1990), who showed,
by using l’Hôpital’s Rule, that

lim
δ→0

(
τ(δx)

δ

)
= x and lim

δ→0

(
∂
(
τ(δx)/δ

)

∂δ

)
= 1

2x2τ ′′(0). (11.29)

Hence the BRMR for testing the null hypothesis that δ = 0 is

Ṽ
−1/2
t (yt − F̃t) = Ṽ

−1/2
t f̃tXtb + Ṽ

−1/2
t (Xtβ̃)2f̃td + residual, (11.30)

where everything is evaluated at the ML estimates β̃ of the ordinary binary
response model that (11.27) reduces to when δ = 0. The constant factor
τ ′′(0)/2 that arises from (11.29) is irrelevant for testing and has been omitted.
Thus regression (11.30) simply treats the squared values of the index function
evaluated at β̃ as if they were observations on a possibly omitted regressor,
and the ordinary t statistic for d = 0 provides an asymptotically valid test.3

Tests based on the BRMRs (11.26) and (11.30) are valid only asymptotically.
It is extremely likely that their finite-sample performance could be improved
by using bootstrap P values instead of asymptotic ones. Since, in both cases,
the null hypothesis is just an ordinary binary response model, computing boot-
strap P values by using the procedures discussed in the previous subsection
is quite straightforward.

3 There is a strong resemblance between regression (11.30) and the test regression
for the RESET test (Ramsey, 1969), in which squared fitted values are added
to an OLS regression as a test for functional form. As MacKinnon and Magee
(1990) showed, this resemblance is not coincidental.
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11.4 Models for More than Two Discrete Responses

Discrete dependent variables that can take on three or more different values
are by no means uncommon in economics, and a large number of models has
been devised to deal with such cases. These are sometimes referred to as
qualitative response models and sometimes as discrete choice models. The
binary response models we have already studied are special cases.

Discrete choice models can be divided into two types: ones designed to deal
with ordered responses, and ones designed to deal with unordered responses.
Surveys often produce ordered response data. For example, respondents might
be asked whether they strongly agree, agree, neither agree nor disagree, dis-
agree, or strongly disagree with some statement. Here there are five possible
responses, which evidently can be ordered in a natural way. In many other
cases, however, there is no natural way to order the various choices. A classic
example is the choice of transportation mode. For intercity travel, people
often have a choice among flying, driving, taking the train, and taking the
bus. There is no natural way to order these four choices.

The Ordered Probit Model

The most widely-used model for ordered response data is the ordered probit
model. This model can easily be derived from a latent variable model. The
model for the latent variable is

y◦t = Xtβ + ut, ut ∼ NID(0, 1), (11.31)

which is identical to the latent variable model (11.04) that led to the ordinary
probit model. As in the case of the latter, what we actually observe is a
discrete variable yt that can take on a limited, known, number of values. For
simplicity, we assume that the number of values is just 3. It will be obvious
how to extend the model to cases in which yt can take on any known number
of values.

The relation between the observed variable yt and the latent variable y◦t is
assumed to be given by

yt = 0 if y◦t < γ1;

yt = 1 if γ1 ≤ y◦t < γ2;

yt = 2 if y◦t ≥ γ2 .

(11.32)

Thus yt = 0 for small values of y◦t , yt = 1 for intermediate values, and yt = 2
for large values. The boundaries between the three cases are determined by
the parameters γ1 and γ2. These threshold parameters, which usually must
be estimated, determine how the values of y◦t get translated into the three
possible values of yt. It is essential that γ2 > γ1. Otherwise, the first and last
lines of (11.32) would be incompatible, and we could never observe yt = 1.
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If Xt contains a constant term, it is impossible to identify the constant along
with γ1 and γ2. To see this, suppose that the constant is equal to α. Then
it is easy to check that yt is unchanged if we replace the constant by α + δ
and replace γi by γi + δ for i = 1, 2. The easiest, but not the only, solution to
this identification problem is just to set α = 0. We adopt this solution here.
In general, with no constant, the ordered probit model will have one fewer
threshold parameter than the number of choices. When there are just two
choices, the single threshold parameter is equivalent to a constant, and the
ordered probit model reduces to the ordinary probit model, with a constant.

In order to work out the loglikelihood function for this model, we need the
probabilities of the three events yt = 0, yt = 1, and yt = 2. The probability
that yt = 0 is

Pr(yt = 0) = Pr(y◦t < γ1) = Pr(Xtβ + ut < γ1)

= Pr(ut < γ1 −Xtβ) = Φ(γ1 −Xtβ).

Similarly, the probability that yt = 2 is

Pr(yt = 2) = Pr(y◦t ≥ γ2) = Pr(Xtβ + ut ≥ γ2)

= Pr(ut ≥ γ2 −Xtβ) = Φ(Xtβ − γ2).

Finally, the probability that yt = 1 is

Pr(yt = 1) = 1− Pr(yt = 0)− Pr(yt = 2)

= 1− Φ(γ1 −Xtβ)− Φ(Xtβ − γ2)

= Φ(γ2 −Xtβ)− Φ(γ1 −Xtβ).

These probabilities depend solely on the value of the index function, Xtβ,
and on the two threshold parameters.

The loglikelihood function for the ordered probit model derived from (11.31)
and (11.32) is

`(β, γ1, γ2) =
∑
yt=0

log
(
Φ(γ1 −Xtβ)

)
+

∑
yt=2

log
(
Φ(Xtβ − γ2)

)

+
∑
yt=1

log
(
Φ(γ2 −Xtβ)− Φ(γ1 −Xtβ)

)
.

(11.33)

Maximizing (11.33) numerically is generally not difficult to do, although steps
may have to be taken to ensure that γ2 is always greater than γ1. Note that
the function Φ in (11.33) may be replaced by any function F that satisfies the
conditions (11.02), although it may then be harder to derive the probabilities
from a latent variable model. Thus the ordered probit model is by no means
the only qualitative response model for ordered data.
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The ordered probit model is widely used in applied econometric work. A
simple, graphical exposition of this model is provided by Becker and Kennedy
(1992). Like the ordinary probit model, the ordered probit model can be
generalized in a number of ways; see, for example, Terza (1985). An interesting
application of a generalized version, which allows for heteroskedasticity, is
Hausman, Lo, and MacKinlay (1992). They apply the model to price changes
on the New York Stock Exchange at the level of individual trades. Because
the price change from one trade to the next almost always takes on one of a
small number of possible values, an ordered probit model is an appropriate
way to model these changes.

The Multinomial Logit Model

The key feature of ordered qualitative response models like the ordered probit
model is that all the choices depend on a single index function. This makes
sense only when the responses have a natural ordering. A different sort of
model is evidently necessary to deal with unordered responses. The most
popular of these is the multinomial logit model, sometimes called the multiple
logit model, which has been widely used in applied work.

The multinomial logit model is designed to handle J +1 responses, for J ≥ 1.
According to this model, the probability that any one of them is observed is

Pr(yt = l) =
exp(Wtlβ

l)
∑J

j=0 exp(Wtjβ
j)

for l = 0, . . . , J. (11.34)

Here Wtj is a row vector of length kj of observations on variables that belong
to the information set of interest, and βj is a kj --vector of parameters, usually
different for each j = 0, . . . , J.

Estimation of the multinomial logit model is reasonably straightforward. The
loglikelihood function can be written as

n∑
t=1

( J∑

j=0

I(yt = j)Wtjβ
j − log

( J∑

j=0

exp(Wtjβ
j)

))
, (11.35)

where I(·) is the indicator function. Thus each observation contributes two
terms to the loglikelihood function. The first is Wtjβ

j, where yt = j, and the
second is minus the logarithm of the denominator that appears in (11.34). It
is generally not difficult to maximize (11.35) by using some sort of modified
Newton method, provided there are no perfect classifiers, since the loglikeli-
hood function (11.35) is globally concave with respect to the entire vector of
parameters, [β0 .... . . .

.... βJ ]; see Exercise 11.16.

Some special cases of the multinomial logit model are of interest. One of these
arises when the explanatory variables Wtj are the same for each choice j. If
a model is intended to explain which of an unordered set of outcomes applies
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to the different individuals in a sample, then the probabilities of all of these
outcomes can be expected to depend on the same set of characteristics for
each individual. For instance, a student wondering how to spend Saturday
night may be able to choose among studying, partying, visiting parents, or
going to the movies. In choosing, the student takes into account things like
grades on the previous midterm, the length of time since the last visit home,
the interest of what is being shown at the local movie theater, and so on. All
these variables affect the probability of each possible outcome.

For models of this sort, it is not possible to identity J+1 parameter vectors βj,
j = 0, . . . , J. To see this, let Xt denote the common set of explanatory
variables for observation t, and define γj ≡ βj − β0 for j = 1, . . . , J. On
replacing the Wtj by Xt for all j, the probabilities defined in (11.34) become,
for l = 1, . . . , J,

Pr(yt = l) =
exp(Xtβ

l)∑J
j=0 exp(Xtβ

j)
=

exp(Xtγ
l)

1 +
∑J

j=1 exp(Xtγ
j)

,

where the second equality is obtained by dividing both the numerator and the
denominator by exp(Xtβ

0). For outcome 0, the probability is just

Pr(yt = 0) =
1

1 +
∑J

j=1 exp(Xtγ
j)

.

It follows that all J + 1 probabilities can be expressed in terms of the para-
meters γ j, j = 1, . . . , J, independently of β0. In practice, it is easiest to
impose the restriction that β0 = 0, which is then enough to identify the para-
meters βj, j = 1, . . . , J. When J = 1, it is easy to see that this model reduces
to the ordinary logit model with a single index function Xtβ

1.

In certain cases, some but not all of the explanatory variables are common to
all outcomes. In that event, for the common variables, a separate parameter
cannot be identified for each outcome, for the same reason as above. In order
to set up a model for which all the parameters are identified, it is necessary to
set to zero those components of β0 that correspond to the common variables.
Thus, for instance, at most J of the Wtj vectors can include a constant.

Another special case of interest is the so-called conditional logit model. For
this model, the probability that agent t makes choice l is

Pr(yt = l) =
exp(Wtlβ)

∑J
j=0 exp(Wtjβ)

. (11.36)

where Wtj is a row vector with k components for each j = 0, . . . , J, and β is a
k --vector of parameters, the same for each j. This model has been extensively
used to model the choice among competing modes of transportation. The
usual interpretation is that the elements of Wtj are the characteristics of
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choice j for agent t, and agents make their choice by considering the weighted
sums Wtjβ of these characteristics.

It is necessary that none of the explanatory variables in the Wtj vectors should
be the same for all J + 1 choices. In other words, no single variable should
appear in each and every Wtj . It is easy to see from (11.36) that, if there
were such a variable, say wti, for some i = 1, . . . , k, then this variable would
be multiplied by the same parameter βi for each choice. In consequence,
the factor exp(wtiβi) would appear in the numerator and in every term of the
denominator of (11.36) and could be cancelled out. This implies, in particular,
that none of the explanatory variables can be constant for all t = 1, . . . , n and
all j = 0, . . . , J.

An important property of the general multinomial logit model defined by the
set of probabilities (11.34) is that

Pr(yt = l)
Pr(yt = j)

=
exp(Wtlβ

l)
exp(Wtjβj)

.

for any two responses l and j. Therefore, the ratio of the probabilities of any
two responses depends solely on the explanatory variables Wtl and Wtj and
the parameters βl and βj associated with those two responses. It does not
depend on the explanatory variables or parameter vectors specific to any of
the other responses. This property of the model is called the independence of
irrelevant alternatives, or IIA, property.

The IIA property is often quite implausible. For example, suppose there are
three modes of public transportation between a pair of cities: the bus, which
is slow but cheap, the airplane, which is fast but expensive, and the train,
which is a little faster than the bus and a lot cheaper than the airplane.
Now consider what the model says will happen if the rail line is upgraded,
causing the train to become much faster but considerably more expensive.
Intuitively, we might expect a lot of people who previously flew to take the
train instead, but relatively few to switch from the bus to the train. However,
this is not what the model says. Instead, the IIA property implies that the
ratio of travelers who fly to travelers who take the bus is the same whatever
the characteristics of the train.

Although the IIA property is often not a plausible one, it can easily be tested;
see Hausman and McFadden (1984), McFadden (1987), and Exercise 11.22.
The simplicity of the multinomial logit model, despite the IIA property, makes
this model very attractive for cases in which it does not appear to be incom-
patible with the data.

The Nested Logit Model

A discrete choice model that does not possess the IIA property is the nested
logit model. For this model, the set of possible choices is decomposed into
subsets. Let the set of outcomes {0, 1, . . . , J} be partitioned into m disjoint
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subsets Ai, i = 1, . . . ,m. The model then supposes that, conditional on
choosing an outcome in subset Ai, the choice among the members of Ai is
governed by a standard multinomial logit model. We have, for j ∈ Ai, that

Pr(yt = j | yt ∈ Ai) =
exp(Wtjβ

j/θi)∑
l∈Ai

exp(Wtlβl/θi)
. (11.37)

It is clear that the parameter θi, which can be thought of as a scale para-
meter for the parameter vectors βj, j ∈ Ai, is not identifiable on the basis of
choice within the elements of subset Ai. However, it is what determines the
probability of choosing some element in Ai. Specifically, we assume that

Pr(yt ∈ Ai) =
exp(θihti)∑m

k=1 exp(θkhtk)
, (11.38)

where we have defined the inclusive value of subset Ai as:

hti = log
( ∑

j∈Ai

exp(Wtjβ
j/θi)

)
. (11.39)

Since it follows at once from (11.38) that
∑m

i=1 Pr(yt ∈ Ai) = 1, we can see
that yt must belong to one of the disjoint sets Ai.

By putting together (11.37) and (11.38), we obtain the J + 1 probabilities
for the different outcomes. For each j = 0, . . . , J, let i(j) be the subset
containing j. In other words, j ∈ Ai(j). Then we have that

Pr(yt = j) = Pr(yt = j | yt ∈ Ai(j))Pr(yt ∈ Ai(j))

=
exp(Wtjβ

j/θi(j))∑
l∈Ai(j)

exp(Wtlβl/θi(j))
exp(θi(j)hti(j))∑m

k=1 exp(θkhtk)
. (11.40)

It is not hard to check that, if θi = 1 for all i = 1, . . . ,m, the probabili-
ties (11.40) reduce to the probabilities (11.34) of the usual multinomial logit
model; see Exercise 11.17. Thus the multinomial logit model is contained
within the nested logit model as a special case. It follows, therefore, that
testing the multinomial logit model against the alternative of the nested logit
model, for some appropriate choice of the subsets Ai, is one way to test
whether the IIA property is compatible with the data.

An Artificial Regression for Discrete Choice Models

In order to perform the test of the IIA property mentioned just above, and
to perform inference generally in the context of discrete choice models, it is
convenient to be able to make use of an artificial regression. The simplest
such artificial regression was proposed by McFadden (1987) for multinomial
logit models. In this section, we present a generalized version that can be
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applied to any discrete choice model. We call this the discrete choice artificial
regression, or DCAR.

As usual, we assume that there are J + 1 possible outcomes, numbered from
j = 0 to j = J. Let the probability of choosing outcome j for observation t be
given by the function Πtj(θ), where θ is a k --vector of parameters. For the
multinomial logit model, θ would include all of the independent parameters in
the set of parameter vectors βj, j = 0, . . . , J. The function Πtj(·) will usually
also depend on exogenous or predetermined explanatory variables that are
not made explicit in the notation. We require that

∑J
j=0 Πtj(θ) = 1 for all

t = 1, . . . , n and for all admissible parameter vectors θ, in order that the set
of J + 1 outcomes should be exhaustive.

For each observation t, t = 1, . . . , n, define the J +1 indicator variables dtj as
dtj = I(yt = j). Then the loglikelihood function of the discrete choice model
is given by

`(y, θ) =
n∑

t=1

J∑

j=0

dtj log Πtj(θ). (11.41)

Just as for the loglikelihood functions (11.09) and (11.35), the contribution
made by observation t is the logarithm of the probability that yt should have
taken on its observed value.

The DCAR has n(J + 1) “observations,” J + 1 for each real observation. For
observation t, the J+1 components of the regressand, evaluated at θ, are given
by Π−1/2

tj (θ)
(
dtj−Πtj(θ)

)
, j = 0, . . . , J. The components of the regressor cor-

responding to parameter θi, i = 1, . . . , k, are given by Π−1/2
tj (θ)∂Πtj(θ)/∂θi.

Thus the DCAR may be written as

Π−1/2
tj (θ)

(
dtj −Πtj(θ)

)
= Π−1/2

tj (θ)Ttj(θ)b + residual, (11.42)

for t = 1, . . . , n and j = 0, . . . , J. Here Ttj(θ) denotes the 1 × k vector of
the partial derivatives of Πtj(θ) with respect to the components of θ, and, as
usual, b is a k --vector of artificial parameters. It is easy to see that the scalar
product of the regressand and the regressor corresponding to θi is

n∑
t=1

J∑

j=0

(
dtj −Πtj(θ)

)
∂Πtj(θ)/∂θi

Πtj(θ)
. (11.43)

The derivative of the loglikelihood function (11.41) with respect to θi is

∂`(θ)
∂θi

=
n∑

t=1

J∑

j=0

dtj
∂Πtj(θ)/∂θi

Πtj(θ)
,

and we can see that this is equal to (11.43), because differentiating the identity∑J
j=0 Πtj(θ) = 1 with respect to θi shows that

∑J
j=0 ∂Πtj(θ)/∂θi = 0. It
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follows that the regressand is orthogonal to all the regressors when all the
artificial variables are evaluated at the maximum likelihood estimates θ̂.

In Exercises 11.18 and 11.19, readers are asked to show that regression (11.42),
the DCAR, satisfies the other requirements for an artificial regression used
for hypothesis testing, as set out in Exercise 8.20. See also Exercise 11.22, in
which readers are asked to implement by artificial regression the test of the
IIA property discussed at the end of the previous subsection.

As with binary response models, it is easy to bootstrap discrete choice models,
because they are fully parametrically specified. For the model characterized
by the loglikelihood function (11.41), an easy way to implement the bootstrap
DGP is, first, to construct the cumulative probabilities Ptj(θ̂) ≡ ∑j

i=0 Πti(θ̂),
for j = 0, . . . , J − 1, and then to draw a random number, u∗t say for obser-
vation t, from the uniform distribution U(0, 1). The bootstrap dependent
variable y∗t is then set equal to

y∗t =
J−1∑

j=0

I
(
u∗t ≥ Ptj(θ̂)

)
.

All of the indicator functions in the above sum are zero if u∗t < Pt0(θ̂) =
Πt0(θ̂), an event which occurs with probability Πt0(θ̂), as desired. Similarly,
y∗t = j for j = 1, . . . , J if and only if Pt(j−1)(θ̂) ≤ u∗t < Ptj(θ̂), an event that
occurs with probability Πtj(θ̂) = Ptj(θ̂)− Pt(j−1)(θ̂).

The Multinomial Probit Model

Another discrete choice model that can sometimes be used when the IIA
property is unacceptable is the multinomial probit model. This model is
theoretically attractive but computationally burdensome. The J + 1 possible
outcomes are generated by the latent variable model

y◦tj = Wtjβ
j + utj , ut ∼ N(0,Ω), (11.44)

where the y◦tj are not observed, and ut is a 1 × (J + 1) vector with typical
element utj . What we observe are the binary variables ytj , which are assumed
to be determined as follows:

ytj = 1 if y◦tj − y◦ti ≥ 0 for all i = 0, . . . , J,

ytj = 0 otherwise.
(11.45)

As with the multinomial logit model, separate coefficients cannot be identified
for all J +1 outcomes if an explanatory variable is common to all of the index
functions Wtjβ

j. The solution to this problem is the same as before: We set
the components of β0 equal to 0 for all such variables.
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It is clear from (11.45) that the observed ytj depend only on the differences
y◦tj − y◦t0, j = 1, . . . , J. Let z◦tj be equal to this difference. Then

ytj = 1 if z◦tj ≥ z◦ti for all i = 1, . . . , J, and z◦tj ≥ 0,

ytj = 0 otherwise.
(11.46)

Thus the probabilities Pr(ytj = 1) are completely determined by the joint dis-
tribution of the z◦tj . We write the covariance matrix of this distribution as Σ,
where Σ is a J × J symmetric positive definite matrix, uniquely determined
by the (J + 1) × (J + 1) matrix Ω of (11.44), although Ω is not uniquely
determined by Σ. It follows that the matrix Ω cannot be identified on the
basis of the observed variables yt alone.

In fact, even Σ is identified only up to scale. This can be seen by observing
that, if all the z◦tj in (11.46) are multiplied by the same positive constant, the
values of the ytj remain unchanged. In practice, it is customary to set the first
diagonal element of Σ equal to 1 in order to set the scale of Σ. Once the scale
is fixed, then the only other restriction on Σ is that it must be symmetric
and positive definite. In particular, it may well have nonzero off-diagonal
elements, and these give the multinomial probit model a flexibility that is
not shared by the multinomial logit model. In consequence, the multinomial
probit model does not have the IIA property.

The latent variable model (11.44) can be interpreted as a model determining
the utility levels yielded by the different outcomes. Then the correlation
between z◦tj and z◦ti, for i 6= j, might measure the extent to which a preference
for flying over driving, say, is correlated with a preference for taking the train
over driving. In this example of transportation mode choice, we are assuming
that driving is outcome 0. It seems fair to say that, although these correlations
are what provides multinomial probit with greater flexibility than multinomial
logit, they are a little difficult to interpret directly.

Unfortunately, the multinomial probit model is not at all easy to estimate.
The event ytj = 1 will be observed if and only if y◦tj − y◦ti ≥ 0 for all i =
1, . . . , J + 1, and the probability of this event is given by a J--dimensional
integral. In order to evaluate the loglikelihood function just once, the inte-
gral corresponding to whatever event occurred must be computed for every
observation in the sample. This must generally be done a large number of
times during the course of whatever nonlinear optimization procedure is used.
Evaluating high-dimensional integrals of the normal distribution is analyti-
cally intractable. Therefore, except when J is very small, the multinomial
probit model is usually estimated by simulation-based methods, including the
method of simulated moments, which was discussed in Section 9.6. See Haji-
vassiliou and Ruud (1994) and Gouriéroux and Monfort (1996) for discussions
of some of the methods that have been proposed.

The treatment of qualitative response models in this section has necessarily
been incomplete. Detailed surveys of the older literature include Amemiya
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(1985, Chapter 9) and McFadden (1984). For a more up-to-date survey, but
one that is relatively superficial, see Maddala and Flores-Lagunes (2001).

11.5 Models for Count Data

Many economic variables are nonnegative integers. Examples include the
number of patents granted to a firm and the number of visits to the hospital
by an individual, where each is measured over some period of time. Data of
this type are called event count data or, simply, count data. In many cases,
the count is 0 for a substantial fraction of the observations.

One might think of using an ordered discrete choice model like the ordered
probit model to handle data of this type. However, this is usually not ap-
propriate, because such a model requires the number of possible outcomes to
be fixed and known. Instead, we need a model for which any nonnegative
integer value is a valid, although perhaps very unlikely, value. One way to
obtain such a model is to start from a distribution which has this property.
The most popular distribution of this type is the Poisson distribution. If a
discrete random variable Y follows the Poisson distribution, then

Pr(Y = y) =
e−λλy

y!
, y = 0, 1, 2, . . . . (11.47)

This distribution is characterized by a single parameter, λ. It can be shown
that the probabilities (11.47) sum to 1 over y = 0, 1, 2, . . ., and that the mean
and the variance of a Poisson random variable are both equal to λ, which
must therefore take on only positive values; see Exercise 11.23.

The Poisson Regression Model

The simplest model for count data is the Poisson regression model, which is
obtained by replacing the parameter λ in (11.47) by a nonnegative function
of regressors and parameters. The most popular choice for this function is the
exponential mean function

λt(β) ≡ exp(Xtβ), (11.48)

which makes use of the linear index function Xtβ. Other specifications for the
index function, possibly nonlinear, can also be used. Because the linear index
function in (11.48) is the argument of an exponential, the model specified
by (11.48) is sometimes called loglinear, since the log of λt(β) is linear in β.
For any valid choice of λt(β), we obtain the Poisson regression model

Pr(Yt = y) =
exp

(−λt(β)
)(

λt(β)
)y

y!
, y = 0, 1, 2, . . . . (11.49)

If the observed count value for observation t is yt, then the contribution to
the loglikelihood function is the logarithm of the right-hand side of (11.49),
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evaluated at y = yt. Therefore, the entire loglikelihood function is

`(y,β) =
n∑

t=1

(− exp(Xtβ) + ytXtβ − log yt!
)

(11.50)

under the exponential mean specification (11.48).

Maximizing (11.17) is not difficult. The likelihood equations are

∂`(y,β)
∂β

=
n∑

t=1

(
yt − exp(Xtβ)

)
Xt = 0, (11.51)

and the Hessian matrix is

H(β) = −
n∑

t=1

exp(Xtβ)Xt
>Xt = −X>Υ (β)X, (11.52)

where Υ (β) is an n×n diagonal matrix with typical diagonal element equal to
Υt(β) ≡ exp(Xtβ). Since H(β) is negative definite, optimization techniques
based on Newton’s Method generally work very well. Inferences may be based
on the standard asymptotic result (10.41) that the asymptotic covariance
matrix is equal to the inverse of the information matrix. This leads to the
estimator

V̂ar(β̂) = (X>Υ̂X)−1, (11.53)

where Υ̂ ≡ Υ (β̂). This estimated covariance matrix looks very much like
the one for weighted least squares estimation. In fact, if we were to run the
nonlinear regression

yt = exp(Xtβ) + ut (11.54)

by weighted least squares, using weights Υ
−1/2
t (β) = exp(− 1

2Xtβ), the first-
order conditions, treating the weights as fixed, would be equations (11.51).
Regression (11.54) is the analog for the Poisson regression model of regression
(11.11) for the binary response model. Thus ML estimation of the Poisson
regression model specified by (11.49), where λt(β) is given by an exponential
mean function, is seen to be equivalent to weighted NLS estimation of the
nonlinear regression model (11.54).

The weighted NLS interpretation suggests that an artificial regression must
be available. This is indeed the case. Just as the BRMR (11.20) is the GNR
that corresponds to the weighted version of (11.11), the artificial regression
for the Poisson regression model is the GNR that corresponds to the weighted
version of (11.54):

exp(− 1
2Xtβ)

(
yt − exp(Xtβ)

)
= exp( 1

2Xtβ)Xtb + residual. (11.55)

Like the GNR and the BRMR, this regression may be used for a number of
purposes, including estimating the covariance matrix of β̂. It is particularly
useful for testing restrictions on β without having to estimate the model more
than once; see Exercise 11.25.
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Testing for Overdispersion in the Poisson Regression Model

Although its simplicity makes it attractive, the Poisson regression model is
rarely entirely satisfactory. In practice, even though it may predict the mean
event count accurately, it frequently tends to underpredict the frequency of
zeros and large counts, because the variance of the actual data is larger than
the variance predicted by the Poisson model. This failure of the model is called
overdispersion. Before accepting a Poisson regression model, even tentatively,
it is highly advisable to test it for overdispersion.

Several tests for overdispersion have been proposed. The simplest of these
are based on the artificial OPG regression that we introduced in Section 10.5
for models estimated by maximum likelihood. The regressand of the OPG
regression is equal to 1 for each observation, and the regressors are the partial
derivatives of the loglikelihood contribution with respect to the parameters.
Thus observation t of the OPG regression based on the loglikelihood function
(11.50) can be written as

1 =
(
yt − exp(Xtβ)

)
Xtb + residual. (11.56)

When the regressors in (11.56) are evaluated at the ML estimates β̂, they are
orthogonal to the regressand.

If the variance of yt is indeed equal to exp(Xtβ), its mean according to the
loglinear Poisson regression model, then the quantity

zt(β) ≡ (
yt − exp(Xtβ)

)2 − yt (11.57)

has expectation 0.4 We can test whether the expectation is really zero by
running the OPG regression (11.56), adding an extra regressor with typical
element zt(β̂). Both n minus the sum of squared residuals from this aug-
mented OPG regression and the t statistic associated with the extra regressor
provide asymptotically valid test statistics; the former is asymptotically dis-
tributed as χ2(1) under the null hypothesis, while the latter is asymptotically
distributed as N(0, 1).

Testing can be made a little simpler if we note that the extra regressor (11.57)
is uncorrelated with the regressors in (11.56) under the null. This is a simple
consequence of the fact, which readers are asked to demonstrate in Exercise
11.24, that the third central moment of the Poisson distribution with para-
meter λ is equal to λ. We may write the testing OPG regression as

ι = Ĝb + cẑ + residuals, (11.58)

4 The quantity (yt − exp(Xtβ))2 − exp(Xtβ) also has expectation 0 and could
be used in place of (11.57) in an OPG test regression. However, the simplifica-
tions that are discussed below would not be possible if the test regressor were
redefined in this way.
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where ι is an n--vector of 1s, the matrix Ĝ ≡ G(β̂) contains the regressors
of (11.56) evaluated at β̂, and ẑ ≡ z(β̂) is the extra regressor, with typical
element zt(β̂). By the FWL Theorem, a test of the hypothesis that c = 0 can
equally well be performed by running the FWL regression

M̂Gι = cM̂Gẑ + residuals, (11.59)

where M̂G is the orthogonal projection matrix that projects on to the orthog-
onal complement of the span of the columns of Ĝ. But, since those columns
are orthogonal to ι, the regressand of (11.59) is just ι. In addition, because
z(β) is uncorrelated with the columns of G(β), the regressor is asymptotic-
ally equal to ẑ. Therefore, regressions (11.58) and (11.59) are asymptotically
equivalent to a regression of ι on ẑ. Once again, either the explained sum of
squares or the t statistic for c = 0 yields an asymptotically valid test.

In Exercise 4.8, we saw that every t statistic is the cotangent of a certain
angle, namely, the angle between the regressand and the regressor of the
FWL regression that can be used to compute the statistic. Since this angle
does not depend on which vector is the regressor and which vector is the
regressand, this result implies that the t statistic from regressing ι on ẑ is
identical to the t statistic from regressing ẑ on ι. If we run the regression in
this direction, however, we will not obtain the same ESS. Nevertheless, the
ESS can be used as a valid statistic if the variables are scaled by estimates
of the standard deviations of the elements of z(β). This rescaling yields the
artificial regression that is most commonly used to test for overdispersion in
the Poisson regression model.

Observe that, if Y is a random variable which follows the Poisson distribution
with parameter λ,

E
((

(Y − λ)2 − Y
)2) = E

((
(Y − λ)2 − (Y − λ)− λ

)2)

= E
(
(Y − λ)4

)
+ E

(
(Y − λ)2

)
+ λ2

− 2E
(
(Y − λ)3)

)− 2λE
(
Y − λ)2

)− 2λE(Y − λ)

= λ + 3λ2 + λ + λ2 − 2λ− 2λ2 = 2λ2,

where we have used the result of Exercise 11.24 for both the third and fourth
central moments of the Poisson distribution. A suitable testing regression
with scaled variables can therefore be written as

1√
2

exp(−Xtβ̂)zt(β̂) =
1√
2

exp(−Xtβ̂)c + residual, (11.60)

and either the t statistic or the ESS provide asymptotically valid test statistics.

The tests based on regression (11.60) were originally proposed by Cameron
and Trivedi (1990). They also suggest tests based on regressions like (11.60),
but with the regressor of (11.60) multiplied by various functions of the fitted

Copyright c© 1999, Russell Davidson and James G. MacKinnon



11.5 Models for Count Data 471

values exp(Xtβ̂). Common choices are the fitted values themselves or their
squares. Cameron and Trivedi show that a test in which the regressor is
multiplied by the function g(exp(Xtβ̂)) of the fitted value has greatest power
against DGPs for which the true variance of yt is of the form exp(Xtβ) +
αg(exp(Xtβ)) for some scalar α. Tests with more than one degree of freedom
can be performed by using several regressors constructed in this way. In all
cases, an appropriate test statistic is the ESS. It is asymptotically distributed
under the null as χ2(r), where r is the number of regressors.

Other tests for overdispersion have been proposed by Cameron and Trivedi
(1986), Lee (1986), and Mullahy (1997). Note that the finite-sample distribu-
tions of all these test statistics may differ substantially from their asymptotic
ones. Better results may well be obtained by using bootstrap P values. A
parametric bootstrap DGP is appropriate. It can easily be implemented by
using a procedure for obtaining drawings from the Poisson distribution similar
to the one we discussed for discrete choice models in the previous section.

Consequences of Overdispersion in the Poisson Regression Model

Finding evidence of overdispersion does not necessarily mean that we must
abandon the Poisson regression model. Since the model is equivalent to
weighted NLS, and weighted NLS is consistent even when the weights are
incorrect, the ML estimator β̂ will be consistent whenever the exponential
mean function λt(β) is correctly specified. In this situation, β̂ is actually a
quasi-ML estimator, or QMLE; see Section 10.4. However, as is generally the
case for quasi-ML estimators, the covariance matrix estimator (11.53) will not
be valid if the entire model is not specified correctly.

To find the asymptotic covariance matrix of β̂ when the model is not correctly
specified, we may use the result (10.40), which is true for every quasi-ML
estimator. If we replace the generic parameter vector θ of that equation by β,
we obtain

Var
(

plim
n→∞

n1/2(β̂ − β0)
)

= H−1(β0)I(β0)H−1(β0). (11.61)

For the Poisson regression model, we see from (11.52) that

H(β0) = − plim
n→∞

1−
n

n∑
t=1

exp(Xtβ0)Xt
>Xt = − plim

n→∞
1−
n

X>Υ (β0)X. (11.62)

From the definitions (10.31) and (10.32), and from the expression given
in (11.51) for the gradient of the loglikelihood, it follows that the asymptotic
information matrix is

I(β0) = plim
n→∞

1−
n

n∑
t=1

ω2
t (β0)Xt

>Xt = plim
n→∞

1−
n

X>Ω(β0)X, (11.63)

where ω2
t (β0) ≡ E

(
yt − exp(Xtβ0)

)2 is the conditional variance of yt, and
Ω(β0) is the diagonal matrix with typical diagonal element ω2

t (β0).
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When the model is correctly specified, the conditional variance ω2
t is equal

to the conditional mean exp(Xtβ0), and the asymptotic covariance matrix
(11.61) simplifies to I−1(β0) = −H−1(β0). When the model is not correctly
specified, however, this simplification does not occur.

One quite plausible specification for the conditional variance of yt is

ω2
t (β) = γ2exp(Xtβ), (11.64)

in which the conditional variance is proportional to the conditional mean.
Under this specification, the asymptotic covariance matrix (11.61) simplifies
to γ2 times −H−1(β0). Since this is not a sandwich covariance matrix, it
is clear that β̂ remains asymptotically efficient in this special case. An easy
way to estimate this covariance matrix is simply to run the artificial regres-
sion (11.55), with β = β̂. Because s2 provides a consistent estimator of γ2,
the OLS covariance matrix from this regression is asymptotically valid; see
Exercise 11.26.

Even if we do not specify the conditional variance of yt, we can obtain an
asymptotically valid covariance matrix whenever the matrices (11.62) and
(11.63) can be estimated consistently. To do this, we need to use a sandwich
estimator similar to the HCCME discussed in Section 5.5. We can estimate
(11.62) consistently if we replace β0 by β̂. In order to estimate (11.63) con-
sistently, we replace the conditional variance ω2

t (β0) by the squared residual
(yt − exp(Xtβ̂))2. Thus a valid estimator of Var(β̂) when only the conditional
mean part of the Poisson regression model is correctly specified is

V̂arh(β̂) = (X>Υ̂X)−1X>Ω̂X(X>Υ̂X)−1, (11.65)

where Ω̂ is the n × n diagonal matrix with diagonal element t given by
(yt − exp(Xtβ̂))2. As in Section 5.5, the “h” subscript indicates that the
matrix (11.65) is valid in the presence of heteroskedasticity of unknown form.
Given the substantial risk of misspecification, it is strongly recommended to
use the sandwich estimator (11.65) rather than (11.53) in practical applica-
tions. Notice that the sandwich estimator is very easy to calculate without
any special software. If we run the artificial regression (11.55) and ask the
regression package to compute an HCCME, it will give us either (11.65) or
something that is asymptotically equal to (11.65); see Exercise 11.27.

Of course, except in the special case of (11.64), the ML estimator β̂ will not
be asymptotically efficient when the Poisson regression model is not correctly
specified. The fact that the covariance matrix has the sandwich form makes
this clear. Moreover, β̂ will not even be consistent if the conditional mean
function exp(Xtβ) is not correctly specified. Many other models for count
data have been suggested, and one or more of them may well fit better than the
Poisson regression model does. Wooldridge (1999) and Cameron and Trivedi
(2001) provide more advanced introductions to the topic of count data, and
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Cameron and Trivedi (1998) provides a detailed treatment of a large number
of different models for data of this type.

11.6 Models for Censored and Truncated Data

Continuous dependent variables can sometimes take only a limited range of
values. This may happen because they have been censored or truncated in
some way. These two terms are easily confused. A sample is said to be
truncated if some observations have been systematically excluded from the
sample. For example, a sample of households with incomes under $200,000
explicitly excludes households with incomes over that level. It is not a random
sample of all households. If the dependent variable is income, or something
correlated with income, results using the truncated sample could potentially
be quite misleading.

On the other hand, a sample has been censored if no observations have been
systematically excluded, but some of the information contained in them has
been suppressed. Think of a “censor” who reads people’s mail and blacks
out certain parts of it. The recipients still get their mail, but parts of it are
unreadable. To continue the previous example, suppose that households with
all income levels are included in the sample, but for those with incomes in
excess of $200,000, the amount reported is always exactly $200,000. This sort
of censoring is often done in practice, presumably to protect the privacy of
high-income respondents. In this case, the censored sample is still a random
sample of all households, but the values reported for high-income households
are not the true values.

Any dependent variable that has been either censored or truncated is said to
be a limited dependent variable. Special methods are needed to deal with
such variables because, if we simply use least squares, the consequences of
truncation and censoring can be severe. Consider the regression model

y◦t = β1 + β2xt + ut, ut ∼ NID(0, σ2), (11.66)

where y◦t is a latent variable. We actually observe yt, which differs from
y◦t because it is either truncated or censored. For simplicity, suppose that
censorship or truncation occurs whenever y◦t is less than 0. Clearly, the larger
is the error term ut, the larger will be y◦t , and thus the greater will be the
probability that y◦t ≥ 0. This probability must also depend on xt. Thus, for
the sample we actually observe, ut will no longer have conditional mean 0, and
it will not be uncorrelated with xt. Since the error terms no longer satisfy these
key assumptions, it is not surprising that OLS estimation using truncated or
censored samples yields estimators that are biased and inconsistent.

The consequences of censoring and truncation are illustrated in Figure 11.3.
The figure shows 200 (xt, yt) pairs generated from the model (11.66). The
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Figure 11.3 Effects of censoring and truncation

71 observations with yt < 0 are shown as circles, and the 129 observations
with yt ≥ 0 are shown as black dots. The solid line is the true regression
function, and the nearby dotted line is the regression function obtained by
OLS estimation using all the observations. When the data are truncated, the
observations with yt < 0 are discarded. OLS estimation using this truncated
sample yields the regression line shown in small dots. When the data are
censored, these 71 observations are retained, but yt is set equal to 0 for all of
them. OLS estimation using this censored sample yields the dashed regression
line. Neither of these regression lines is at all close to the true one.

In this example, the consequences of either censoring or truncation are quite
severe. Just how they severe they will be in any particular case depends on σ2,
the variance of the error terms in (11.66), and on the extent of the censoring
or truncation. If σ2 is very small relative to the variation in the fitted values,
so will be the bias induced by limiting the dependent variable. This bias will
also be small if few observations are censored or truncated. Conversely, when
σ2 is large and many observations are censored or truncated, the bias can be
extremely large.

Truncated Regression Models

It is quite simple to estimate a truncated regression model by maximum like-
lihood if the distribution of the error terms in the latent variable model is
assumed to be known. By far the most common assumption is that the error
terms are normally, independently, and identically distributed, as in (11.66).
We restrict our attention to this special case.
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If the regression function for the latent variable model is Xtβ, the probability
that y◦t is included in the sample is

Pr(y◦t ≥ 0) = Pr(Xtβ + ut ≥ 0)

= 1− Pr(ut < −Xtβ) = 1− Pr(ut/σ < −Xtβ/σ)

= 1− Φ(−Xtβ/σ) = Φ(Xtβ/σ).

When y◦t ≥ 0 and yt is observed, the density of yt is proportional to the
density of y◦t . Otherwise, the density of yt is 0. The factor of proportionality,
which is needed to ensure that the density of yt integrates to unity, is the
inverse of the probability that y◦t ≥ 0. Therefore, the density of yt can be
written as

σ−1φ
(
(yt −Xtβ)/σ

)

Φ(Xtβ/σ)
.

This implies that the loglikelihood function, which is the sum over all t of the
log of the density of yt, is

`(y, β, σ) = − n−
2

log(2π)− n log(σ)− 1
2σ2

n∑
t=1

(yt −Xtβ)2

−
n∑

t=1

log Φ(Xtβ/σ).

(11.67)

Maximization of expression (11.67) is generally not difficult. Even though
the loglikelihood function is not globally concave, there is a unique MLE; see
Orme and Ruud (2000).

The first three terms in expression (11.67) comprise the loglikelihood function
that corresponds to OLS regression; see equation (10.10). The last term is
minus the summation over all t of the logarithms of the probabilities that an
observation with regression function Xtβ belongs to the sample. Since these
probabilities must be less than 1, this term must always be positive. It can
be made larger by making the probabilities smaller. Thus the maximization
algorithm will choose the parameters in such a way that these probabilities
are smaller than they would be for the OLS estimates. The presence of this
fourth term therefore causes the ML estimates of β and σ to differ, often
substantially, from their least squares counterparts, and it ensures that the
ML estimates are consistent.

It is not difficult to modify this model to allow for other forms of truncation.
The sample can be truncated from above, from below, or from both above
and below. The truncation points must be known, but they can be fixed or
they can vary across observations. See Exercises 11.29 and 11.30.
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Censored Regression Models

The most popular model for censored data is the tobit model, which was
first suggested in Tobin (1958), which is quite a famous paper. The simplest
version of the tobit model is

y◦t = Xtβ + ut, ut ∼ NID(0, σ2),

yt = y◦t if y◦t > 0; yt = 0 otherwise.

Here y◦t is a latent variable that is observed whenever it is positive. However,
when the latent variable is negative, the observation is censored, and we simply
observe yt = 0. The tobit model can readily be modified to allow for censoring
from above instead of from below or for censoring from both above and below.
It can also be modified to allow the point at which the censoring occurs to
vary across observations in a deterministic way; see Exercise 11.31.

The loglikelihood function for the tobit model is a little unusual, but it is not
difficult to derive. First, it is easy to see that

Pr(yt = 0) = Pr(y◦t ≤ 0) = Pr(Xtβ + ut ≤ 0)

= Pr
(ut

σ
≤ −Xtβ

σ

)
= Φ(−Xtβ/σ).

Therefore, since there is a positive probability that yt = 0, the contribution
to the loglikelihood function made by observations with yt = 0 is not the log
of the density, but the log of that positive probability, namely,

`t(yt, β, σ) = log Φ(−Xtβ/σ). (11.68)

If yt is positive, the density of yt exists, and the contribution to the loglikeli-
hood is its logarithm,

log
(

1−σ φ
(
(yt −Xtβ)/σ

))
, (11.69)

which is the contribution to the loglikelihood function for an observation in a
classical normal linear regression model without any censoring.

Combining expression (11.68), the contribution for the censored observations,
with expression (11.69), the contribution for the uncensored ones, we find that
the loglikelihood function for the tobit model is

∑
yt=0

log Φ(−Xtβ/σ) +
∑
yt>0

log
(

1−σ φ
(
(yt −Xtβ)/σ

))
. (11.70).

This loglikelihood function is rather curious. The first term is the sum of the
logs of probabilities, for the censored observations, while the second is the
sum of the logs of densities, for the uncensored observations. This reflects the
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fact that the dependent variable in a tobit model has a distribution that is
a mixture of discrete and continuous random variables. This fact does not,
however, prevent the ML estimator for the tobit model from having the usual
properties of consistency and asymptotic normality, as was shown explicitly
by Amemiya (1973c).

It is generally somewhat easier to maximize the loglikelihood function (11.70)
if the tobit model is reparametrized. The new parameters are γ ≡ β/σ
and h ≡ 1/σ. Since the loglikelihood function can be shown to be globally
concave in the latter parametrization (Olsen, 1978), there must be a unique
maximum no matter which parametrization is used. Even without any repara-
metrization, it is generally not at all difficult to maximize (11.70) by using a
quasi-Newton algorithm.

The (k + 1) × (k + 1) covariance matrix of the ML estimates may, as usual,
be estimated in several ways. Analytic expressions for the information matrix
exist (Amemiya, 1973c), and at least two artificial regressions are available.
One of these is the OPG regression that we discussed in Section 10.5, and the
other is a double-length regression proposed by Orme (1995). The latter is
substantially more complicated than the former, but it seems to work very
much better. Since the tobit model is fully specified, it is straightforward
to employ the parametric bootstrap. Simulation results in Davidson and
MacKinnon (1999a) suggest that inferences based on it can be much more
reliable than ones based only on asymptotic theory.

Testing the Tobit Model

There is an interesting relationship among the tobit, truncated regression, and
probit models. If we both add and subtract the term

∑
yt>0 log

(
Φ(Xtβ/σ)

)
from the tobit loglikelihood function (11.70), the latter becomes

∑
yt>0

log
(

1−σ φ
(
(yt −Xtβ)/σ

))−
∑
yt>0

log Φ(Xtβ/σ)

+
∑
yt=0

log Φ(−Xtβ/σ) +
∑
yt>0

log Φ(Xtβ/σ).
(11.71)

The first line of (11.71) is the loglikelihood function for a truncated regression
model estimated over all the observations for which yt > 0; compare (11.67).
The second line is the loglikelihood function for a probit model with index
function Xtβ/σ; compare (11.09). Of course, if all we had was the second
line here, we could not identify β and σ separately, but since we also have the
first line, that is not a problem.

Writing the tobit loglikelihood function in the form of (11.71) makes it clear
that this model is really a probit model combined with a truncated regression
model, with the coefficient vectors in the two models restricted to be propor-
tional to each other. This restriction can easily be tested by means of an LR
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test with k degrees of freedom. If this test leads to a rejection of the null
hypothesis, then we probably should not be using a tobit model.

Of course, like all econometric models, the tobit model can and should be
tested for a variety of types of possible misspecification. A large number of
tests can be based on the OPG regression and on the double-length regression
of Orme (1995). Tests based on the OPG regression are discussed by Pagan
and Vella (1989) and Smith (1989). See also Chesher and Irish (1987).

11.7 Sample Selectivity

In the previous section, we considered samples truncated on the basis of the
value of the dependent variable. Many samples are truncated on the basis of
another variable that is correlated with the dependent variable. For example,
people may choose to enter the labor force if their market wage exceeds their
reservation wage and choose to stay out of it otherwise. Then a sample of
people who are in the labor force will exclude those whose reservation wage
exceeds their market wage. If the dependent variable, whatever it may be,
is correlated with the difference between reservation and market wages, least
squares will yield inconsistent estimates. In this case, the sample is said to
have been selected on the basis of this difference. The consequences of this
type of sample selection are often said to be due to sample selectivity.

Let us consider a simple model that involves sample selectivity. Suppose
that y◦t and z◦t are two latent variables, generated by the bivariate process

[
y◦t
z◦t

]
=

[
Xtβ

Wtγ

]
+

[
ut

vt

]
,

[
ut

vt

]
∼ NID

(
0,

[
σ2 ρσ

ρσ 1

])
, (11.72)

where Xt and Wt are vectors of observations on exogenous or predetermined
variables, β and γ are unknown parameter vectors, σ is the standard deviation
of ut, and ρ is the correlation between ut and vt. The restriction that the
variance of vt is equal to 1 is imposed because only the sign of z◦t will be
observed. In fact, the variables that are actually observed are yt and zt, and
they are related to y◦t and z◦t as follows:

yt = y◦t if z◦t > 0; yt unobserved otherwise;

zt = 1 if z◦t > 0; zt = 0 otherwise.
(11.73)

Thus there are two types of observations, those for which we observe yt = y◦t
and zt = 1, along with both Xt and Wt, and those for which we observe only
zt = 0 and Wt.

Each observation contributes a factor to the likelihood function for this model
that can be written as

I(zt = 0)Pr(zt = 0) + I(zt = 1)Pr(zt = 1)f(y◦t | zt = 1),
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where f(y◦t | zt = 1) denotes the density of y◦t conditional on zt = 1. This
is the appropriate way to specify the likelihood because, if we integrate with
respect to y◦t and sum over the two possible values of zt, the result is 1. Note
also that the value of y◦t is needed only if it is observed, that is, if zt = 1. The
loglikelihood function is

∑
zt=0

log Pr(zt = 0) +
∑
zt=1

log
(
Pr(zt = 1)f(y◦t | zt = 1)

)
. (11.74)

The first term of (11.74), which comes from the observations with zt = 0, is
exactly the same as the corresponding term in a probit model. The second
term comes from the observations with zt = 1. By using the fact that we can
factor a joint density any way we please, it can also be written as

∑
zt=1

log
(
Pr(zt = 1 | y◦t )f(y◦t )

)
,

where f(y◦t ) is the density of y◦t conditional on predetermined or exogenous
variables, which is just a normal density with mean Xtβ and variance σ2.

In order to write out the loglikelihood function (11.74) explicitly, we must
calculate Pr(zt = 1 | y◦t ). Since ut and vt are bivariate normal, we can write
vt = ρut/σ + εt, where εt is a normally distributed random variable with
mean 0 and variance 1− ρ2. Thus

z◦t = Wtγ + ρ(y◦t −Xtβ)/σ + εt, εt ∼ NID(0, 1− ρ2).

Because yt = y◦t when zt = 1, it follows that

Pr(zt = 1 | y◦t ) = Φ
(

Wtγ + ρ(yt −Xtβ)/σ

(1− ρ2)1/2

)
.

Thus the loglikelihood function (11.74) becomes
∑
zt=0

log Φ(−Wtγ) +
∑
zt=1

log
(

1−σ φ
(
(yt −Xtβ)/σ

))

+
∑
zt=1

log Φ
(

Wtγ + ρ(yt −Xtβ)/σ

(1− ρ2)1/2

)
.

(11.75)

The first term looks like the corresponding term for a standard probit model
in which zt is explained by Wt, the second term looks like the loglikelihood
function for a linear regression of yt on Xt, with normal errors, and the third
term is one that we have not seen before. If ρ = 0, this term would collapse to
the term corresponding to observations with zt = 1 in the probit model for zt,
and we could estimate the probit model and the regression model separately.
In general, however, this term forces us to estimate both equations together
by making the probability that zt = 1 depend on yt −Xtβ.
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Heckman’s Two-Step Method

From the point of view of asymptotic efficiency, the best way to estimate the
model characterized by (11.72) and (11.73) is simply to maximize the loglike-
lihood function (11.75). With modern computing equipment and appropriate
software, this is not unreasonably difficult to do, although numerical prob-
lems can be encountered when ρ approaches ±1. Instead of ML estimation,
however, it is popular to use a computationally simpler technique, which is
known as Heckman’s two-step method; see Heckman (1976, 1979). Although
we do not recommend that practitioners rely solely on this method, it can be
useful for preliminary work, and it yields insights into the nature of sample
selectivity. In addition, it provides a good starting point for the nonlinear
algorithm used to obtain the MLE.

Heckman’s two-step method is based on the fact that the first equation of
(11.72), for observations where yt is observed, can be rewritten as

yt = Xtβ + ρσvt + et. (11.76)

Here the error term ut is divided into two parts, one perfectly correlated
with vt, the error term in the equation for the latent variable z◦t , and one
independent of vt. The idea is to replace the unobserved error term vt in
(11.76) by its mean conditional on zt = 1 and on the explanatory variables Wt.
This conditional mean is

E(vt | zt = 1, Wt) = E(vt | vt > −Wtγ,Wt) =
φ(Wtγ)
Φ(Wtγ)

, (11.77)

where readers are asked to prove the last equality in Exercise 11.32. The
quantity φ(x)/Φ(x) is known as the inverse Mills ratio; see Johnson, Kotz,
and Balakrishnan (1994). In the first step of Heckman’s two-step method, an
ordinary probit model is used to obtain consistent estimates γ̂ of the para-
meters of the selection equation. In the second step, the unobserved vt in
regression (11.76) is replaced by the selectivity regressor φ(Wtγ̂)/Φ(Wtγ̂),
and regression (11.76) becomes

yt = Xtβ + ρσ
φ(Wtγ̂)
Φ(Wtγ̂)

+ residual. (11.78)

This Heckman regression, as it is often called, is easy to estimate by OLS and
yields consistent estimates of β.

Regression (11.78) provides a test for sample selectivity as well as an estima-
tion technique. The coefficient of the selectivity regressor is ρσ. Since σ 6= 0,
the ordinary t statistic for this coefficient to be zero can be used to test the
hypothesis that ρ = 0, and it will be asymptotically distributed as N(0, 1)
under the null hypothesis. If this coefficient is not significantly different from
zero, the investigator may reasonably decide that selectivity is not a problem
and proceed to use least squares as usual.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



11.8 Duration Models 481

Although the Heckman regression (11.78) yields consistent estimates of β, the
OLS covariance matrix is valid only when ρ = 0. The problem is that the
selectivity regressor is being treated like any other regressor, when it is in
fact part of the error term. It is possible to obtain a valid covariance matrix
estimate to go along with the two-step estimates of β from (11.78), but the
calculation is quite cumbersome, and the estimated covariance matrix is not
always positive definite. See Greene (1981) and Lee (1982) for details.

It should be stressed that the consistency of this two-step estimator, like
that of the ML estimator, depends critically on the assumption of bivariate
normality. This can be seen from the specification of the selectivity regressor
as the inverse Mills ratio (11.77). When the elements of Wt are the same as
the elements of Xt, as is often the case in practice, it is only the nonlinearity
of the inverse Mills ratio as a function of Wtγ that makes the parameters of
the second-step regression identifiable. The form of the nonlinear relationship
would be different if the error terms did not follow the normal distribution.

11.8 Duration Models

Economists are sometimes interested in how much time elapses before some
event occurs. For example, they may be interested in the length of labor dis-
putes (that is, strike duration), the age of first marriage for men and women
(that is, the duration of the state of being single), the duration of unemploy-
ment spells, the duration between trades on a stock exchange, or the length
of time people wait before trading in a car. In this section, we will discuss
some simple econometric models for duration data of this type.

In many cases, each observation in the sample consists of a measured duration,
denoted ti, and a 1×k vector of exogenous variables, denoted Xi. In adopting
this formulation, we have implicitly ruled out the possibility, which more
complicated models can allow for, that the exogenous variables may change
as time passes. To avoid notational confusion, we use i to index observations.
In theory, duration is a nonnegative, continuous random variable. In practice,
however, ti is often reported as an integer number of weeks or months. When
it is always a small integer, a count data model like the ones discussed in
Section 11.5 may be appropriate. However, when ti can take on a large number
of integer values, it is conventional to model duration as being continuous.
Almost all of the literature deals with the continuous case.

Survivor Functions and Hazard Functions

In practice, interest often centers not so much on how ti is related to Xi but
rather on how the probability that a state will endure varies over the duration
of the state. For example, we may be interested in seeing how the probability
that someone will find a job changes as the length of time they have been
unemployed increases. Before we can answer this sort of question, we need to
discuss a few fundamental concepts.
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Suppose that how long a state endures is measured by T, a nonnegative, con-
tinuous random variable with PDF f(t) and CDF F (t), where t is a realization
of T. Then the survivor function is defined as

S(t) ≡ 1− F (t).

This is the probability that a state which started at time t = 0 is still going
on at time t. The probability that it will end in any short period of time, say
the period from time t to time t + ∆t, is

Pr(t < T ≤ t + ∆t) = F (t + ∆t)− F (t). (11.79)

This probability is unconditional. For many purposes, we may be interested
in the probability that a state will end between time t and time t + ∆t, con-
ditional on having reached time t in the first place. This probability is

Pr(t < T ≤ t + ∆t |T ≥ t) =
F (t + ∆t)− F (t)

S(t)
. (11.80)

Since we are dealing with continuous time, it is natural to divide (11.79) and
(11.80) by ∆t and consider what happens as ∆t → 0. The limit of 1/∆t
times (11.79) as ∆t → 0 is simply the PDF f(t), and the limit of 1/∆t times
(11.80) is

h(t) ≡ f(t)
S(t)

=
f(t)

1− F (t)
. (11.81)

The function h(t) defined in (11.81) is called the hazard function. For many
purposes, it is more interesting to model the hazard function than to model
the survivor function directly.

Functional Forms

For a parametric model of duration, we need to specify a functional form for
one of the functions F (t), S(t), f(t), or h(t), which then implies functional
forms for the others. One of the simplest possible choices is the exponential
distribution, which was discussed in Section 10.2. For this distribution,

f(t, θ) = θe−θt, and F (t, θ) = 1− e−θt, θ > 0.

Therefore, the hazard function is

h(t) =
f(t)
S(t)

=
θe−θt

e−θt
= θ.

Thus, if duration follows an exponential distribution, the hazard function is
simply a constant.
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Since the restriction that the hazard function is a constant is a very strong
one, the exponential distribution is rarely used in applied work. A much more
flexible functional form is provided by the Weibull distribution, which has two
parameters, θ and α. For this distribution,

F (t, θ, α) = 1− exp
(−(θt)α

)
. (11.82)

As readers are asked to show in Exercise 11.33, the survivor, density, and
hazard functions for the Weibull distribution are as follows:

S(t) = exp
(−(θt)α

)
;

f(t) = αθαtα−1exp
(−(θt)α

)
;

h(t) = αθαtα−1.

(11.83)

When α = 1, it is easy to see that the Weibull distribution collapses to
the exponential, and the hazard is just a constant. For α < 1, the hazard is
decreasing over time, and for α > 1, the hazard is increasing. Hazard functions
of the former type are said to exhibit negative duration dependence, while
those of the latter type are said to exhibit positive duration dependence. In
the same way, a constant hazard is said to be duration independent.

Although the Weibull distribution is not nearly as restrictive as the exponen-
tial, it does not allow for the possibility that the hazard may first increase
and then decrease over time, which is something that is frequently observed
in practice. Various other distributions do allow for this type of behavior. A
particularly simple one is the lognormal distribution, which was discussed in
Section 9.6. Suppose that log t is distributed as N(µ, σ2). Then we have

F (t) = Φ
(

1−σ(log t− µ)
)
,

S(t) = 1− Φ
(

1−σ(log t− µ)
)

= Φ
(
− 1−σ(log t− µ)

)
,

f(t) =
1
σt

φ
(

1−σ(log t− µ)
)
, and

h(t) =
1
σt

φ
(
(log t− µ)/σ

)

Φ
(−(log t− µ)/σ

) .

For this distribution, the hazard rises quite rapidly and then falls rather slowly.
This behavior can be observed in Figure 11.4, which shows several hazard
functions based on the exponential, Weibull, and lognormal distributions.

Maximum Likelihood Estimation

It is reasonably straightforward to estimate many duration models by maxi-
mum likelihood. In the simplest case, the data consist of n observations ti on
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Figure 11.4 Various hazard functions

observed durations, each with an associated regressor vector Xi. Then the
loglikelihood function for t, the entire vector of observations, is just

`(t, θ) =
n∑

i=1

log f(ti |Xi,θ), (11.84)

where f(ti |Xi,θ) denotes the density of ti conditional on the data vector
Xi for the parameter vector θ. In many cases, it may be easier to write the
loglikelihood function as

`(t,θ) =
n∑

i=1

log h(ti |Xi, θ) +
n∑

i=1

log S(ti |Xi,θ), (11.85)

where h(ti |Xi, θ) is the hazard function and S(ti |Xi, θ) is the survivor func-
tion. The equivalence of (11.84) and (11.85) is ensured by (11.81), in which
the hazard function was defined.

As with other models we have looked at in this chapter, it is convenient to let
the loglikelihood depend on explanatory variables through an index function.
As an example, suppose that duration follows a Weibull distribution, with
a parameter θi for observation i that has the form of the exponential mean
function (11.48), so that θi = exp(Xiβ) > 0. From (11.83) we see that the
hazard and survivor functions for observation i are

α exp(αXiβ)tα−1 and exp
(−tα exp(αXiβ)

)
,
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respectively. In practice, it is simpler to absorb the factor of α into the
parameter vector β, so as to yield an exponent of just Xiβ in these expressions.
Then the loglikelihood function (11.85) becomes

`(t, β, α) = n log α +
n∑

t=1

Xiβ + (α− 1)
n∑

t=1

ti −
n∑

t=1

tαi exp(Xiβ),

and ML estimates of the parameters α and β are obtained by maximizing this
function in the usual way.

In practice, many data sets contain observations for which ti is not actually
observed. For example, if we have a sample of people who entered unemploy-
ment at various points in time, it is extremely likely that some people in the
sample were still unemployed when data collection ended. If we omit such
observations, we are effectively using a truncated data set, and we will there-
fore obtain inconsistent estimates. However, if we include them but treat the
observed ti as if they were the lengths of completed spells of unemployment,
we will also obtain inconsistent estimates. In both cases, the inconsistency
occurs for essentially the same reasons as it does when we apply OLS to a
sample that has been truncated or censored; see Section 11.6.

If we are using ML estimation, it is easy enough to deal with duration data
that have been censored in this way, provided we know that censorship has
occurred. For ordinary, uncensored observations, the contribution to the log-
likelihood function is a contribution like those in (11.84) or (11.85). For
censored observations, where the observed ti is the duration of an incomplete
spell, it is the logarithm of the probability of censoring, which is the proba-
bility that the duration exceeds ti, that is, the log of the survivor function.
Therefore, if U denotes the set of uncensored observations, the loglikelihood
function for the entire sample can be written as

`(t, θ) =
∑

i∈U

log h(ti |Xi, θ) +
n∑

i=1

log S(ti |Xi, θ). (11.86)

Notice that uncensored observations contribute to both terms in (11.86), while
censored observations contribute only to the second term. When there is no
censoring, the same observations contribute to both terms, and (11.86) reduces
to (11.85).

Proportional Hazard Models

One class of models that is quite widely used is the class of proportional hazard
models, originally proposed by Cox (1972), in which the hazard function for
the ith economic agent is given by

h(Xi, t) = g1(Xi)g2(t), (11.87)
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for various specifications of the functions g1(Xi) and g2(t). The latter is called
the baseline hazard function. An implication of (11.87) is that the ratio of
the hazards for any two agents, say the ones indexed by i and j, depends on
the regressors but does not depend on t. This ratio is

h(Xi, t)
h(Xj , t)

=
g1(Xi)g2(t)
g1(Xj)g2(t)

=
g1(Xi)
g1(Xj)

.

Thus the ratio of the conditional probability that agent i will exit the state to
the probability that agent j will do so is constrained to be the same for all t.
This makes proportional hazard models econometrically convenient, but they
do impose fairly strong restrictions on behavior.

Both the exponential and Weibull distributions lead to proportional hazard
models. As we have already seen, a natural specification of g1(Xi) for these
models is exp(Xiβ). For the exponential distribution, the baseline hazard
function is just 1, and for the Weibull distribution it is αtα−1.

One attractive feature of proportional hazards models is that it is possible to
obtain consistent estimates of the parameters of the function g1(Xi), without
estimating those of g2(t) at all, by using a method called partial likelihood
which we will not attempt to describe; see Cox and Oakes (1984) or Lancaster
(1990). The baseline hazard function g2(t) can then be estimated in various
ways, some of which do not require us to specify its functional form.

Complications

The class of duration models that we have discussed is quite limited. It does
not allow the exogenous variables to change over time, and it does not allow
for any individual heterogeneity, that is, variation in the hazard function
across agents. The latter has serious implications for econometric inference.
Suppose, for simplicity, that there are two types of agent, each with a constant
hazard, which is twice as high for agents of type H as for those of type L. If
we estimate a duration model for all agents together, we will observe negative
duration dependence, because the type H agents will exit the state more
rapidly than the type L agents, and the ratio of type H to type L agents will
decline as duration increases.

There has been a great deal of work on duration models during the past
two decades, and there are numerous models that allow for time-varying ex-
planatory variables and/or individual heterogeneity. Classic references are
Heckman and Singer (1984), Kiefer (1988), and Lancaster (1990). More re-
cent work is discussed in Neumann (1999), Gouriéroux and Jasiak (2001), and
van den Berg (2001).
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11.9 Final Remarks

This chapter has dealt with a large number of types of dependent variable for
which ordinary regression models are not appropriate: binary dependent vari-
ables (Sections 11.2 and 11.3); discrete dependent variables that can take on
more than two values, which may or may not be ordered (Section 11.4); count
data (Section 11.5); limited dependent variables, which may be either cen-
sored or truncated (Section 11.6); dependent variables where the observations
included in the sample have been determined endogenously (Section 11.7);
and duration data (Section 11.8). In most cases, we have made strong dis-
tributional assumptions and relied on maximum likelihood estimation. This
is generally the easiest way to proceed, but it can lead to seriously mislead-
ing results if the assumptions are false. It is therefore important that the
specification of these models be tested carefully.

11.10 Exercises

11.1 Consider the contribution made by observation t to the loglikelihood func-
tion (11.09) for a binary response model. Show that this contribution is glob-
ally concave with respect to β if the function F is such that F (−x) = 1−F (x),
and if it, its derivative f, and its second derivative f ′ satisfy the condition

f ′(x)F (x)− f2(x) < 0 (11.88)

for all real finite x.

Show that condition (11.88) is satisfied by both the logistic function Λ(·),
defined in (11.07), and the standard normal CDF Φ(·).

11.2 Prove that, for the logit model, the likelihood equations (11.10) reduce to

n∑
t=1

Xti(yt − Λ(Xtβ)) = 0, i = 1, . . . , k.

11.3 Show that the efficient GMM estimating equations (9.82), when applied to the
binary response model specified by (11.01), are equivalent to the likelihood
equations (11.10).

11.4 If F1(·) and F2(·) are two CDFs defined on the real line, show that any
convex combination (1 − α)F1(·) + αF2(·) of them is also a properly defined
CDF. Use this fact to construct a model that nests the logit model for which
Pr(yt = 1) = Λ(Xtβ) and the probit model for which Pr(yt = 1) = Φ(Xtβ)
with just one additional parameter.

11.5 Consider the latent variable model

y◦t = β1 + β2xt + ut, ut ∼ N(0, 1),

yt = 1 if y◦t > 0, yt = 0 if y◦t ≤ 0.
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Suppose that xt ∼ N(0, 1). Generate 500 samples of 20 observations on
(xt, yt) pairs, 100 assuming that β1 = 0 and β2 = 1, 100 assuming that
β1 = 1 and β2 = 1, 100 assuming that β1 = −1 and β2 = 1, 100 assuming
that β1 = 0 and β1 = 2, 100 assuming that β1 = 0 and β1 = −2, and 100
assuming that β1 = 0 and β2 = 3. For each of the 500 samples, attempt to
estimate a probit model. In each of the five cases, what proportion of the
time does the estimation fail because of perfect classifiers? Explain why there
were more failures in some cases than in others.

Repeat this exercise for five sets of 100 samples of size 40, with the same
parameter values. What do you conclude about the effect of sample size on
the perfect classifier problem?

11.6 Suppose that there is quasi-complete separation of the data used to estimate
the binary response model (11.01), with a transformation function F such
that F (−x) = 1 − F (x) for all real x, and a separating hyperplane defined
by the parameter vector β•. Show that the upper bound of the loglikelihood
function (11.09) is equal to −nb log 2, where nb is the number of observations
for which Xtβ

• = 0.

11.7 The contribution to the loglikelihood function (11.09) made by observation t
is yt log F (Xtβ) + (1 − yt) log(1 − F (Xtβ)). First, find Gti, the derivative
of this contribution with respect to βi. Next, show that the expectation of
Gti is zero when it is evaluated at the true β. Then obtain a typical element
of the asymptotic information matrix by using the fact that it is equal to
limn→∞ n−1∑n

t=1 E(GtiGtj). Finally, show that the asymptotic covariance
matrix (11.15) is equal to the inverse of this asymptotic information matrix.

11.8 Calculate the Hessian matrix corresponding to the loglikelihood function
(11.09). Then use the fact that minus the expectation of the asymptotic
Hessian is equal to the asymptotic information matrix to obtain the same
result for the latter that you obtained in the previous exercise.

11.9 Plot Υt(β), which is defined in equation (11.16), as a function of Xtβ for
both the logit and probit models. For the logit model only, prove that Υt(β)
achieves its maximum value when Xtβ = 0 and declines monotonically as
|Xtβ| increases.

11.10 The file participation.data, which is taken from Gerfin (1996), contains data
for 872 Swiss women who may or may not participate in the labor force. The
variables in the file are:

yt Labor force participation variable (0 or 1).

It Log of nonlabor income.

At Age in decades (years divided by 10).

Et Education in years.

nut Number of children under 7 years of age.

not Number of children over 7 years of age.

Ft Citizenship dummy variable (1 if not Swiss).

The dependent variable is yt. For the standard specification, the regressors
are all of the other variables, plus A2

t . Estimate the standard specification as
both a probit and a logit model. Is there any reason to prefer one of these
two models?
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11.11 For the probit model estimated in Exercise 11.10, obtain at least three sensible
sets of standard error estimates. If possible, these should include ones based
on the Hessian, ones based on the OPG estimator (10.44), and ones based on
the information matrix estimator (11.18). You may make use of the BRMR,
regression (11.20), and/or the OPG regression (10.72), if appropriate.

11.12 Test the hypothesis that the probit model estimated in Exercise 11.10 should
include two additional regressors, namely, the squares of nut and not. Do this
in three different ways, by calculating an LR statistic and two LM statistics
based on the OPG and BRMR regressions.

11.13 Use the BRMR (11.30) to test the specification of the probit model estimated
in Exercise 11.10. Then use the BRMR (11.26) to test for heteroskedasticity,
where Zt consists of all the regressors except the constant term.

11.14 Show, by use of l’Hôpital’s rule or otherwise, that the two results in (11.29)
hold for all functions τ(·) which satisfy conditions (11.28).

11.15 For the probit model estimated in Exercise 11.10, the estimated probability
that yt = 1 for observation t is Φ(Xtβ̂). Compute this estimated probability
for every observation, and also compute two confidence intervals at the .95
level for the actual probabilities. Both confidence intervals should be based
on the covariance matrix estimator (11.18). One of them should use the delta
method (Section 5.6), and the other should be obtained by transforming the
end points of a confidence interval for the index function. Compare the two
intervals for the observations numbered 2, 63, and 311 in the sample. Are
both intervals symmetric about the estimated probability? Which of them
provides more reasonable answers?

11.16 Consider the expression

− log
( J∑

j=0

exp(Wtjβ
j)

)
, (11.89)

which appears in the loglikelihood function (11.35) of the multinomial logit
model. Let the vector βj have kj components, let k ≡ k0 + . . . + kJ, and let
β ≡ [β0 .... . . .

.... βJ ]. The k× k Hessian matrix H of (11.89) with respect to β
can be partitioned into blocks of dimension ki× kj , i = 0, . . . , J, j = 0, . . . , J,
containing the second-order partial derivatives of (11.89) with respect to an
element of βi and an element of βj. Show that, for i 6= j, the (i, j) block can
be written as

pipjWti
>Wtj ,

where pi ≡ exp(Wtiβ
i)/(

∑J
j=0 exp(Wtjβ

j)) is the probability ascribed to

choice i by the multinomial logit model. Then show that the diagonal
(i, i) block can be written as

−pi(1− pi)Wti
>Wti.

Let the k --vector a be partitioned conformably with the above partitioning
of the Hessian H, so that we can write a = [a0

.... . . .
.... aJ ], where each of the
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vectors aj has kj components for j = 0, . . . , J. Show that the quadratic form
a>Ha is equal to

( J∑

j=0

pjwj

)2
−

J∑

j=0

pjw
2
j , (11.90)

where the scalar product wj is defined as Wtjaj .

Show that expression (11.90) is nonpositive, and explain why this result shows
that the multinomial logit loglikelihood function (11.35) is globally concave.

11.17 Show that the nested logit model reduces to the multinomial logit model if
θi = 1 for all i = 1, . . . , m. Then show that it also does so if all the subsets Ai

used to define the former model are singletons.

11.18 Show that the expectation of the Hessian of the loglikelihood function (11.41),
evaluated at the parameter vector θ, is equal to the negative of the k×k matrix

I(θ) ≡
n∑

t=1

J∑

j=0

1

Πtj(θ)
T>tj (θ)Ttj(θ), (11.91)

where Ttj(θ) is the 1×k vector of partial derivatives of Πtj(θ) with respect to
the components of θ. Demonstrate that (11.91) can also be computed using
the outer product of the gradient definition of the information matrix.

Use the above result to show that the matrix of sums of squares and cross-
products of the regressors of the DCAR, regression (11.42), evaluated at θ,
is I(θ). Show further that 1/s2 times the estimated OLS covariance matrix
from (11.42) is an asymptotically valid estimate of the covariance matrix of
the MLE θ̂ if the artificial variables are evaluated at θ̂.

11.19 Let the one-step estimator θ̀ be defined as usual for the discrete choice
artificial regression (11.42) evaluated at a root-n consistent estimator θ́ as
θ̀ = θ́ + b́, where b́ is the vector of OLS parameter estimates from (11.42).
Show that θ̀ is asymptotically equivalent to the MLE θ̂.

11.20 Consider the binary choice model characterized by the probabilities (11.01).
Both the BRMR (11.20) and the DCAR (11.42) with J = 1 apply to this
model, but the two artificial regressions are obviously different, since the
BRMR has n artificial observations when the sample size is n, while the DCAR
has 2n. Show that the two artificial regressions are nevertheless equivalent, in
the sense that all scalar products of corresponding pairs of artificial variables,
regressand or regressor, are identical for the two regressions.

11.21 In terms of the notation of the DCAR, regression (11.42), the probability Πtj

that yt = j, j = 0, . . . , J, for the nested logit model is given by expres-
sion (11.40). Show that, if the index i(j) is such that j ∈ Ai(j), the partial
derivative of Πtj with respect to θi, evaluated at θk = 1 for k = 1, . . . , m,
where m is the number of subsets Ak, is

∂Πtj

∂θi
= Πtj(δi(j)ivtj −

∑

l∈Ai

Πtlvtl).

Here vtj ≡ −Wtjβ
j + hti(j), where hti denotes the inclusive value (11.39) of

subset Ai, and δij is the Kronecker delta.
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When θk = 1, k = 1, . . . , m, the nested logit probabilities reduce to the multi-
nomial logit probabilities (11.34). Show that, if the Πtj are given by (11.34),
then the vector of partial derivatives of Πtj with respect to the components
of βl is ΠtjWtl(δjl −Πtl).

11.22 Explain how to use the DCAR (11.42) to test the IIA assumption for the
conditional logit model (11.36). This involves testing it against the nested
logit model (11.40) with the βj constrained to be the same. Do this for the
special case in which J = 2, A1 = {0, 1}, A2 = {2}. Hint: Use the results
proved in the preceding exercise.

11.23 Using the fact that the infinite series expansion of the exponential function,
convergent for all real z, is

exp z =

∞∑
n=0

zn

n!
,

where by convention we define 0! = 1, show that
∑∞

y=0 e−λλy/y! = 1, and

that therefore the Poisson distribution defined by (11.58) is well defined on
the nonnegative integers. Then show that the expectation and variance of a
random variable Y that follows the Poisson distribution are both equal to λ.

11.24 Let the nth uncentered moment of the Poisson distribution with parameter λ
be denoted by Mn(λ). Show that these moments can be generated by the
recurrence Mn+1(λ) = λ(Mn(λ) + M ′

n(λ)), where M ′
n(λ) is the derivative of

Mn(λ). Using this result, show that the third and fourth central moments of
the Poisson distribution are λ and λ + 3λ2, respectively.

11.25 Explain precisely how you would use the artificial regression (11.55) to test the
hypothesis that β2 = 0 in the Poisson regression model for which λt(β) =
exp(Xt1β1 + Xt2β2). Here β1 is a k1--vector and β2 is a k2--vector, with
k = k1 + k2. Consider two cases, one in which the model is estimated subject
to the restriction and one in which it is estimated unrestrictedly.

11.26 Suppose that yt is a count variable, with conditional mean E(yt) = exp(Xtβ)
and conditional variance E(yt − exp(Xtβ))2 = γ2 exp(Xtβ). Show that ML
estimates of β under the incorrect assumption that yt is generated by a Pois-
son regression model with mean exp(Xtβ) will be asymptotically efficient
in this case. Also show that the OLS covariance matrix from the artificial
regression (11.55) will be asymptotically valid.

11.27 Suppose that yt is a count variable with conditional mean E(yt) = exp(Xtβ)
and unknown conditional variance. Show that, if the artificial regression
(11.55) is evaluated at the ML estimates for a Poisson regression model which
specifies the conditional mean correctly, the HCCME HC0 for that artificial
regression will be numerically equal to expression (11.65), which is an asymp-
totically valid covariance matrix estimator in this case.

11.28 The file count.data, which is taken from Gurmu (1997), contains data for 485
household heads who may or may not have visited a doctor during a certain
period of time. The variables in the file are:

yt Number of doctor visits (a nonnegative integer).
Ct Number of children in the household.
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At A measure of access to health care.
Ht A measure of health status.

Using these data, obtain ML estimates of a Poisson regression model to explain
the variable yt, where

λt(β) = exp(β1 + β2Ct + β3At + β4Ht).

In addition to the estimates of the parameters, report three different standard
errors. One of these should be based on the inverse of the information matrix,
which is valid only when the model is correctly specified. The other two
should be computed using the artificial regression (11.55). One of them should
be valid under the assumption that the conditional variance is proportional
to λt(β), and the other should be valid whenever the conditional mean is
specified correctly. Can you explain the differences among the three sets of
standard errors?

Test the model for overdispersion in two different ways. One test should be
based on the OPG regression, and the other should be based on the testing
regression (11.60). Note that this model is not the one actually estimated in
Gurmu (1997).

11.29 Consider the latent variable model

y◦t = Xtβ + ut, ut ∼ NID(0, σ2), (11.92)

where yt = y◦t whenever y◦t ≤ ymax and is not observed otherwise. Write
down the loglikelihood function for a sample of n observations on yt.

11.30 As in the previous question, suppose that y◦t is given by (11.92). Assume that
yt = y◦t whenever ymin ≤ y◦t ≤ ymax and is not observed otherwise. Write
down the loglikelihood function for a sample of n observations on yt.

11.31 Suppose that y◦t = Xtβ + ut with ut ∼ NID(0, σ2). Suppose further that
yt = y◦t if yt < yc

t , and yt = yc
t otherwise, where yc

t is the known value
at which censoring occurs for observation t. Write down the loglikelihood
function for this model.

11.32 Let z be distributed as N(0, 1). Show that E(z | z < x) = −φ(x)/Φ(x),
where Φ and φ are, respectively, the CDF and PDF of the standard normal
distribution. Then show that E(z | z > x) = φ(x)/Φ(−x) = φ(−x)/Φ(−x).
The second result explains why the inverse Mills ratio appears in (11.77).

11.33 Starting from expression (11.82) for the CDF of the Weibull distribution,
show that the survivor function, the PDF, and the hazard function are as
given in (11.83).
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Chapter 12

Multivariate Models

12.1 Introduction

Up to this point, almost all the models we have discussed have involved just
one equation. In most cases, there has been only one equation because there
has been only one dependent variable. Even in the few cases in which there
were several dependent variables, interest centered on just one of them. For
example, in the case of the simultaneous equations model that was discussed
in Chapter 8, we chose to estimate just one structural equation at a time.

In this chapter, we discuss models which jointly determine the values of two or
more dependent variables using two or more equations. Such models are called
multivariate because they attempt to explain multiple dependent variables.
As we will see, the class of multivariate models is considerably larger than
the class of simultaneous equations models. Every simultaneous equations
model is a multivariate model, but many interesting multivariate models are
not simultaneous equations models.

In the next section, which is quite long, we provide a detailed discussion of
GLS, feasible GLS, and ML estimation of systems of linear regressions. Then,
in Section 12.3, we discuss the estimation of systems of nonlinear equations
which may involve cross-equation restrictions but do not involve simultaneity.
Next, in Section 12.4, we provide a much more detailed treatment of the linear
simultaneous equations model than we did in Chapter 8. We approach it from
the point of view of GMM estimation, which leads to the well-known 3SLS
estimator. In Section 12.5, we discuss the application of maximum likelihood
to this model. Finally, in Section 12.6, we briefly discuss some of the methods
for estimating nonlinear simultaneous equations models.

12.2 Seemingly Unrelated Linear Regressions

The multivariate linear regression model was investigated by Zellner (1962),
who called it the seemingly unrelated regressions model. An SUR system, as
such a model is often called, involves n observations on each of g dependent
variables. In principle, these could be any set of variables measured at the
same points in time or for the same cross-section. In practice, however, the
dependent variables are often quite similar to each other. For example, in the
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12.2 Seemingly Unrelated Linear Regressions 493

time-series context, each of them might be the output of a different industry
or the inflation rate for a different country. In view of this, it might seem more
appropriate to speak of “seemingly related regressions,” but the terminology
is too well-established to change.

We suppose that there are g dependent variables indexed by i. Let yi denote
the n--vector of observations on the ith dependent variable, Xi denote the
n × ki matrix of regressors for the ith equation, βi denote the ki--vector of
parameters, and ui denote the n--vector of error terms. Then the ith equation
of a multivariate linear regression model may be written as

yi = Xiβi + ui, E(uiui
>) = σii In, (12.01)

where In is the n × n identity matrix. The reason we use σii to denote the
variance of the error terms will become apparent shortly. In most cases, some
columns are common to two or more of the matrices Xi. For instance, if every
equation has a constant term, each of the Xi must contain a column of 1s.

Since equation (12.01) is just a linear regression model with IID errors, we can
perfectly well estimate it by ordinary least squares if we assume that all the
columns of Xi are either exogenous or predetermined. If we do this, however,
we ignore the possibility that the error terms may be correlated across the
equations of the system. In many cases, it is plausible that uti, the error
term for observation t of equation i, should be correlated with utj , the error
term for observation t of equation j. For example, we might expect that a
macroeconomic shock which affects the inflation rate in one country would
simultaneously affect the inflation rate in other countries as well.

To allow for this possibility, the assumption that is usually made about the
error terms in the model (12.01) is

E(utiutj) = σij for all t, E(utiusj) = 0 for all t 6= s, (12.02)

where σij is the ij th element of the g × g positive definite matrix Σ. This
assumption allows all the uti for a given t to be correlated, but it specifies
that they are homoskedastic and independent across t. The matrix Σ is called
the contemporaneous covariance matrix, a term inspired by the time-series
context. The error terms uti may be arranged into an n × g matrix U, of
which a typical row is the 1× g vector Ut. It then follows from (12.02) that

E(Ut
>Ut) = 1−

n
E(U>U) = Σ. (12.03)

If we combine equations (12.01), for i = 1, . . . , g, with assumption (12.02), we
obtain the classical SUR model.

We have not yet made any sort of exogeneity or predeterminedness assump-
tion. A rather strong assumption is that E(U |X) = O, where X is an n× l
matrix with full rank, the set of columns of which is the union of all the linearly
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independent columns of all the matrices Xi. Thus l is the total number of
variables that appear in any of the Xi matrices. This exogeneity assumption,
which is the analog of assumption (3.08) for univariate regression models, is
undoubtedly too strong in many cases. A considerably weaker assumption is
that E(Ut |Xt) = 0, where Xt is the tth row of X. This is the analog of the
predeterminedness assumption (3.10) for univariate regression models. The
results that we will state are valid under either of these assumptions.

Precisely how we want to estimate a linear SUR system depends on what
further assumptions we make about the matrix Σ and the distribution of
the error terms. In the simplest case, Σ is assumed to be known, at least
up to a scalar factor, and the distribution of the error terms is unspecified.
The appropriate estimation method is then generalized least squares. If we
relax the assumption that Σ is known, then we need to use feasible GLS. If
we continue to assume that Σ is unknown but impose the assumption that
the error terms are normally distributed, then we may want to use maximum
likelihood, which is generally consistent even when the normality assumption
is false. In practice, both feasible GLS and ML are widely used.

GLS Estimation with a Known Covariance Matrix

Even though it is rarely a realistic assumption, we begin by assuming that the
contemporaneous covariance matrix Σ of a linear SUR system is known, and
we consider how to estimate the model by GLS. Once we have seen how to
do so, it will be easy to see how to estimate such a model by other methods.
The trick is to convert a system of g linear equations and n observations into
what looks like a single equation with gn observations and a known gn× gn
covariance matrix that depends on Σ.

By making appropriate definitions, we can write the entire SUR system of
which a typical equation is (12.01) as

y• = X•β• + u•. (12.04)

Here y• is a gn--vector consisting of the n--vectors y1 through yg stacked
vertically, and u• is similarly the vector of u1 through ug stacked vertically.
The matrix X• is a gn×k block-diagonal matrix, where k is equal to

∑g
i=1 ki.

The diagonal blocks are the matrices X1 through Xg. Thus we have

X• ≡




X1 O · · · O
O X2 · · · O
...

...
...

...
O O · · · Xg


, (12.05)

where each of the O blocks has n rows and as many columns as the Xi block
that it shares those columns with. To be conformable with X•, the vector β•
is a k --vector consisting of the vectors β1 through βg stacked vertically.
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From the above definitions and the rules for matrix multiplication, it is not
difficult to see that




y1
...

yg


 ≡ y• = X•β• + u• =




X1β1
...

Xgβg


 +




u1
...

ug


.

Thus it is apparent that the single equation (12.04) is precisely what we
obtain by stacking the equations (12.01) vertically, for i = 1, . . . , g. Using the
notation of (12.04), we can write the OLS estimator for the entire system very
compactly as

β̂OLS
• = (X•>X•)−1X•>y•, (12.06)

as readers are asked to verify in Exercise 12.4. But the assumptions we have
made about u• imply that this estimator is not efficient.

The next step is to figure out the covariance matrix of the vector u•. Since the
error terms are assumed to have mean zero, this matrix is just the expectation
of the matrix u•u•>. Under assumption (12.02), we find that

E(u•u•>) =




E(u1u1
>) · · · E(u1ug

>)
...

...
...

E(ugu1
>) · · · E(ugug

>)




=




σ11In · · · σ1gIn

...
...

...
σg1In · · · σggIn


 ≡ Σ•.

(12.07)

Here, Σ• is a symmetric gn× gn covariance matrix. In Exercise 12.1, readers
are asked to show that Σ• is positive definite whenever Σ is.

The matrix Σ• can be written more compactly as Σ• ≡ Σ ⊗ In if we use
the Kronecker product symbol ⊗. The Kronecker product A⊗B of a p× q
matrix A and an r × s matrix B is a pr × qs matrix consisting of pq blocks,
laid out in the pattern of the elements of A. For i = 1, . . . , p and j = 1, . . . , q,
the ij th block of the Kronecker product is the r× s matrix aijB, where aij is
the ij th element of A. As can be seen from (12.07), that is exactly how the
blocks of Σ• are defined in terms of In and the elements of Σ.

Kronecker products have a number of useful properties. In particular, if A,
B, C, and D are conformable matrices, then the following relationships hold:

(A⊗B)>= A>⊗B>,

(A⊗B)(C ⊗D) = (AC)⊗ (BD), and

(A⊗B)−1 = A−1 ⊗B−1.

(12.08)
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Of course, the last line of (12.08) can be true only for nonsingular, square
matrices A and B. The Kronecker product is not commutative, by which we
mean that A ⊗B and B ⊗A are different matrices. However, the elements
of these two products are the same; they are just laid out differently. In fact,
it can be shown that B ⊗A can be obtained from A ⊗B by a sequence of
interchanges of rows and columns. Exercise 12.2 asks readers to prove these
properties of Kronecker products. For an exceedingly detailed discussion of
the properties of Kronecker products, see Magnus and Neudecker (1988).

As we have seen, the system of equations defined by (12.01) and (12.02) is
equivalent to the single equation (12.04), with gn observations and error terms
that have covariance matrix Σ•. Therefore, when the matrix Σ is known, we
can obtain consistent and efficient estimates of the βi, or equivalently of β•,
simply by using the classical GLS estimator (7.04). We find that

β̂GLS
• = (X•>Σ•−1X•)−1X•>Σ•−1y•

=
(
X•>(Σ−1 ⊗ In)X•

)−1
X•>(Σ−1 ⊗ In)y•, (12.09)

where, to obtain the second line, we have used the last of equations (12.08).
This GLS estimator is sometimes called the SUR estimator. From the result
(7.05) for GLS estimation, its covariance matrix is

Var(β̂GLS
• ) =

(
X•>(Σ−1 ⊗ In)X•

)−1
. (12.10)

Since Σ is assumed to be known, we can use this covariance matrix directly,
because there are no variance parameters to estimate.

As in the univariate case, there is a criterion function associated with the GLS
estimator (7.04). This criterion function is simply expression (7.06) adapted
to the model (12.04), namely,

(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•). (12.11)

The first-order conditions for the minimization of (12.11) with respect to β•
can be written as

X•>(Σ−1 ⊗ In)(y• −X•β̂•) = 0. (12.12)

These moment conditions, which are analogous to conditions (7.07) for the
case of univariate GLS estimation, can be interpreted as a set of estimating
equations that define the GLS estimator (12.09).

In the slightly less unrealistic situation in which Σ is assumed to be known
only up to a scalar factor, so that Σ = σ2∆, the form of (12.09) would be
unchanged, but with ∆ replacing Σ, and the covariance matrix (12.10) would
become

Var(β̂GLS
• ) = σ2

(
X•>(∆−1 ⊗ In)X•

)−1
.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



12.2 Seemingly Unrelated Linear Regressions 497

In practice, to estimate Var(β̂GLS
• ), we replace σ2 by something that estimates

it consistently. Two natural estimators are

σ̂2 ≡ 1
gn

û•>(∆−1 ⊗ In)û•, and

s2 ≡ 1
(gn− k)

û•>(∆−1 ⊗ In)û•,

where û• denotes the vector of error terms from GLS estimation of (12.04).
The first estimator is analogous to the ML estimator of σ2 in the linear re-
gression model, and the second one is analogous to the OLS estimator.

At this point, a word of warning is in order. Although the GLS estimator
(12.09) has quite a simple form, it can be expensive to compute when gn
is large. In consequence, no sensible regression package would actually use
this formula. We can proceed more efficiently by working directly with the
estimating equations (12.12). Writing them out explicitly, we obtain

X•>(Σ−1 ⊗ In)(y• −X•β̂•)

=




X1
> · · · O

...
. . .

...
O · · · Xg

>







σ11In · · · σ1gIn
...

. . .
...

σg1In · · · σggIn







y1 −X1β̂
GLS
1

...
yg −Xgβ

GLS
g




=




σ11X1
> · · · σ1gX1

>
...

. . .
...

σg1Xg
> · · · σggXg

>







y1 −X1β̂
GLS
1

...
yg −Xgβ̂

GLS
g


 = 0, (12.13)

where σij denotes the ij th element of the matrix Σ−1. By solving the k
equations (12.13) for the β̂i, we find easily enough (see Exercise 12.5) that

β̂GLS
• =




σ11X1
>X1 · · · σ1gX1

>Xg

...
. . .

...

σg1Xg
>X1 · · · σggXg

>Xg




−1


∑g
j=1 σ1jX1

>yj

...∑g
j=1 σgjXg

>yj


. (12.14)

Although this expression may look more complicated than (12.09), it is much
less costly to compute. Recall that we grouped all the linearly independent
explanatory variables of the entire SUR system into the n× l matrix X. By
computing the matrix product X>X, we may obtain all the blocks of the form
Xi
>Xj merely by selecting the appropriate rows and corresponding columns

of this product. Similarly, if we form the n × g matrix Y by stacking the g
dependent variables horizontally rather than vertically, so that

Y ≡ [ y1 · · · yg ] ,
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then all the vectors of the form Xi
>yj needed on the right-hand side of (12.14)

can be extracted as a selection of the elements of the j th column of the
product X>Y .

The covariance matrix (12.10) can also be expressed in a form more suitable
for computation. By a calculation just like the one that gave us (12.13), we
see that (12.10) can be expressed as

Var(β̂GLS
• ) =




σ11X1
>X1 · · · σ1gX1

>Xg

...
. . .

...
σg1Xg

>X1 · · · σggXg
>Xg




−1

. (12.15)

Again, all the blocks here are selections of rows and columns of X>X.

For the purposes of further analysis, the estimating equations (12.13) can be
expressed more concisely by writing out the ith row as follows:

g∑

j=1

σijXi
>(yj −Xjβ̂

GLS
j ) = 0. (12.16)

The matrix equation (12.13) is clearly equivalent to the set of equations (12.16)
for i = 1, . . . , g.

Feasible GLS Estimation

In practice, the contemporaneous covariance matrix Σ is very rarely known.
When it is not, the easiest approach is simply to replace Σ in (12.09) by a
matrix that estimates it consistently. In principle, there are many ways to do
so, but the most natural approach is to base the estimate on OLS residuals.
This leads to the following feasible GLS procedure, which is probably the
most commonly-used procedure for estimating linear SUR systems.

The first step is to estimate each of the equations by OLS. This yields consis-
tent, but inefficient, estimates of the βi, along with g vectors of least squares
residuals ûi. The natural estimator of Σ is then

Σ̂ ≡ 1−
n

Û>Û, (12.17)

where Û is an n× g matrix with ith column ûi. By construction, the matrix
Σ̂ is symmetric, and it will be positive definite whenever the columns of Û
are not linearly dependent. The feasible GLS estimator is given by

β̂F
• =

(
X•>(Σ̂−1 ⊗ In)X•

)−1
X•>(Σ̂−1 ⊗ In)y•, (12.18)

and the natural way to estimate its covariance matrix is

V̂ar(β̂F
• ) =

(
X•>(Σ̂−1 ⊗ In)X•

)−1
. (12.19)
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As expected, the feasible GLS estimator (12.18) and the estimated covariance
matrix (12.19) have precisely the same forms as their full GLS counterparts,
which are (12.09) and (12.10), respectively.

Because we divided by n in (12.17), Σ̂ must be a biased estimator of Σ.
If ki is the same for all i, then it would seem natural to divide by n − ki

instead, and this would at least produce unbiased estimates of the diagonal
elements. But we cannot do that when ki is not the same in all equations.
If we were to divide different elements of Û>Û by different quantities, the
resulting estimate of Σ would not necessarily be positive definite.

Replacing Σ with an estimator Σ̂ based on OLS estimates, or indeed any
other estimator, inevitably degrades the finite-sample properties of the GLS
estimator. In general, we would expect the performance of the feasible GLS
estimator, relative to that of the GLS estimator, to be especially poor when
the sample size is small and the number of equations is large. Under the
strong assumption that all the regressors are exogenous, exact inference based
on the normal and χ2 distributions is possible whenever the error terms are
normally distributed and Σ is known, but this is not the case when Σ has
to be estimated. Not surprisingly, there is evidence that bootstrapping can
yield more reliable inferences than using asymptotic theory for SUR models;
see, among others, Rilstone and Veall (1996) and Fiebig and Kim (2000).

Cases in which OLS Estimation is Efficient

The SUR estimator (12.09) is efficient under the assumptions we have made,
because it is just a special case of the GLS estimator (7.04), the efficiency of
which was proved in Section 7.2. In contrast, the OLS estimator (12.06) is, in
general, inefficient. The reason is that, unless the matrix Σ is proportional
to an identity matrix, the error terms of equation (12.04) are not IID. Never-
theless, there are two important special cases in which the OLS estimator is
numerically identical to the SUR estimator, and therefore just as efficient.

In the first case, the matrix Σ is diagonal, although the diagonal elements
need not be the same. This implies that the error terms of equation (12.04)
are heteroskedastic but serially independent. It might seem that this het-
eroskedasticity would cause inefficiency, but that turns out not to be the case.
If Σ is diagonal, then so is Σ−1, which means that σij = 0 for i 6= j. In that
case, the estimating equations (12.16) simplify to

σiiXi
>(yi −Xiβ̂

GLS
i ) = 0, i = 1, . . . , g.

The factors σii, which must be nonzero, have no influence on the solutions
to the above equations, which are therefore the same as the solutions to the
g independent sets of equations Xi

>(yi−Xiβ̂i) = 0 which define the equation-
by-equation OLS estimator (12.06). Thus, if the error terms are uncorrelated
across equations, the GLS and OLS estimators are numerically identical. The
“seemingly” unrelated equations are indeed unrelated in this case.
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In the second case, the matrix Σ is not diagonal, but all the regressor matrices
X1 through Xg are the same, and are thus all equal to the matrix X that
contains all the explanatory variables. Thus the estimating equations (12.16)
become

g∑

j=1

σijX>(yj −Xβ̂GLS
j ) = 0, i = 1, . . . , g.

If we multiply these equations by σmi, for any m between 1 and g, and sum
over i from 1 to g, we obtain

g∑

i=1

g∑

j=1

σmiσ
ijX>(yj −Xβ̂GLS

j ) = 0. (12.20)

Since the σmi are elements of Σ and the σij are elements of its inverse, it
follows that the sum

∑g
i=1 σmiσ

ij is equal to δmj , the Kronecker delta, which
is equal to 1 if m = j and to 0 otherwise. Thus, for each m = 1, . . . , g, there is
just one nonzero term on the left-hand side of (12.20) after the sum over i is
performed, namely, that for which j = m. In consequence, equations (12.20)
collapse to

X>(ym −Xβ̂GLS
m ) = 0.

Since these are the estimating equations that define the OLS estimator of the
mth equation, we conclude that β̂GLS

m = β̂OLS
m for all m.

A GMM Interpretation

The above proof is straightforward enough, but it is not particularly intuitive.
A much more intuitive way to see why the SUR estimator is identical to the
OLS estimator in this special case is to interpret all of the estimators we have
been studying as GMM estimators. This interpretation also provides a number
of other insights and suggests a simple way of testing the overidentifying
restrictions that are implicitly present whenever the SUR and OLS estimators
are not identical.

Consider the gl theoretical moment conditions

E
(
X>(yi −Xiβi)

)
= 0, for i = 1, . . . , g, (12.21)

which state that every regressor, whether or not it appears in a particular
equation, must be uncorrelated with the error terms for every equation. In
the general case, these moment conditions are used to estimate k parameters,
where k =

∑g
i=1 ki. Since, in general, k < gl, we have more moment condi-

tions than parameters, and we can choose a set of linear combinations of the
conditions that minimizes the covariance matrix of the estimator. As is clear
from the estimating equations (12.12), that is precisely what the SUR estima-
tor (12.09) does. Although these estimating equations were derived from the
principles of GLS, they are evidently the empirical counterpart of the optimal
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moment conditions (9.18) given in Section 9.2 in the context of GMM for the
case of a known covariance matrix and exogenous regressors. Therefore, the
SUR estimator is, in general, an efficient GMM estimator.

In the special case in which every equation has the same regressors, the number
of parameters is also equal to gl. Therefore, we have just as many parameters
as moment conditions, and the empirical counterpart of (12.21) collapses to

X>(yi −Xβi) = 0, for i = 1, . . . , g,

which are just the moment conditions that define the equation-by-equation
OLS estimator. Each of these g sets of equations can be solved for the l para-
meters in βi, and the unique solution is β̂OLS

i .

We can now see that the two cases in which OLS is efficient arise for two quite
different reasons. Clearly, no efficiency gain relative to OLS is possible unless
there are more moment conditions than the OLS estimator utilizes. In other
words, there can be no efficiency gain unless gl > k. In the second case, OLS
is efficient because gl = k. In the first case, there are in general additional
moment conditions, but, because there is no contemporaneous correlation,
they are not informative about the model parameters.

We now derive the efficient GMM estimator from first principles and show
that it is identical to the SUR estimator. We start from the set of gl sample
moments

(Ig ⊗X)>(Σ−1 ⊗ In)(y• −X•β•). (12.22)

These provide the sample analog, for the linear SUR model, of the left-hand
side of the theoretical moment conditions (9.18). The matrix in the middle
is the inverse of the covariance matrix of the stacked vector of error terms.
Using the second result in (12.08), expression (12.22) can be rewritten as

(Σ−1 ⊗X>)(y• −X•β•). (12.23)

The covariance matrix of this gl--vector is

(Σ−1 ⊗X>)(Σ ⊗ In)(Σ−1 ⊗X) = Σ−1 ⊗X>X, (12.24)

where we have made repeated use of the second result in (12.08). Combining
(12.23) and (12.24) to construct the appropriate quadratic form, we find that
the criterion function for fully efficient GMM estimation is

(y• −X•β•)>(Σ−1 ⊗X)
(
Σ ⊗ (X>X)−1

)
(Σ−1 ⊗X>)(y• −X•β•)

= (y• −X•β•)>(Σ−1 ⊗ PX)(y• −X•β•), (12.25)

where, as usual, PX is the hat matrix, which projects orthogonally on to the
subspace spanned by the columns of X.
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It is not hard to see that the vector β̂GMM
• which minimizes expression (12.25)

must be identical to β̂GLS
• . The first-order conditions may be written as

g∑

j=1

σijXi
>PX(yj −Xj β̂

GMM
j ) = 0. (12.26)

But since each of the matrices Xi lies in S(X), it must be the case that
PXXi = Xi, and so conditions (12.26) are actually identical to conditions
(12.16), which define the GLS estimator.

Since the GLS, and equally the feasible GLS, estimator can be interpreted
as efficient GMM estimators, it is natural to test the overidentifying restric-
tions that these estimators depend on. These are the restrictions that certain
columns of X do not appear in certain equations. The usual Hansen-Sargan
statistic, which is just the minimized value of the criterion function (12.25),
will be asymptotically distributed as χ2(gl − k) under the null hypothesis.
As usual, the degrees of freedom for the test is equal to the number of mo-
ment conditions minus the number of estimated parameters. Investigators
should always report the Hansen-Sargan statistic whenever they estimate a
multivariate regression model by feasible GLS.

Since feasible GLS is really a feasible efficient GMM estimator, we might
prefer to use the continuously updated GMM estimator, which was introduced
in Section 9.2. Although the latter estimator is asymptotically equivalent
to the one-step feasible GMM estimator, it may have better properties in
finite samples. In this case, the continuously updated estimator is simply
iterated feasible GLS, and it works as follows. After obtaining the feasible GLS
estimator (12.18), we use it to recompute the residuals. These are then used
in the formula (12.17) to obtain an updated estimate of the contemporaneous
covariance matrix Σ, which is then plugged back into the formula (12.18) to
obtain an updated estimate of β•. This procedure may be repeated as many
times as desired. If the procedure converges, then, as we will see shortly,
the estimator that results is equal to the ML estimator computed under the
assumption of normal error terms.

Determinants of Square Matrices

The most popular alternative to feasible GLS estimation is maximum like-
lihood estimation under the assumption that the error terms are normally
distributed. We will discuss this estimation method in the next subsection.
However, in order to develop the theory of ML estimation for systems of
equations, we must first say a few words about determinants.

A p × p square matrix A defines a mapping from Euclidean p--dimensional
space, Ep, into itself, by which a vector x ∈ Ep is mapped into the p--vector
Ax. The determinant of A is a scalar quantity which measures the extent to
which this mapping expands or contracts p--dimensional volumes in Ep.
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Figure 12.1 Determinants in two dimensions

Consider a simple example in E2. Volume in 2--dimensional space is just area.
The simplest area to consider is the unit square, which can be defined as the
parallelogram defined by the two unit basis vectors e1 and e2, where ei has
only one nonzero component, in position i. The area of the unit square is, by
definition, 1. The image of the unit square under the mapping defined by a
2× 2 matrix A is the parallelogram defined by the two columns of the matrix

A[e1 e2 ] = AI = A ≡ [a1 a2 ],

where a1 and a2 are the two columns of A. The area of a parallelogram in
Euclidean geometry is given by base times height, where the length of either
one of the two defining vectors can be taken as the base, and the height is then
the perpendicular distance between the two parallel sides that correspond to
this choice of base. This is illustrated in Figure 12.1.

If we choose a1 as the base, then, as we can see from the figure, the height is
the length of the vector M1a2, where M1 is the orthogonal projection on to
the orthogonal complement of a1. Thus the area of the parallelogram defined
by a1 and a2 is ‖a1‖‖M1a2‖. By use of Pythagoras’ Theorem and a little
algebra (see Exercise 12.6), it can be seen that

‖a1‖‖M1a2‖ = |a11a22 − a12a21|, (12.27)

where aij is the ij th element of A. This quantity is the absolute value of
the determinant of A, which we write as |detA|. The determinant itself,
which is defined as a11a22 − a12a21, can be of either sign. Its signed value
can be written as “detA”, but it is more commonly, and perhaps somewhat
confusingly, written as |A|.
Algebraic expressions for determinants of square matrices of dimension higher
than 2 can be found easily enough, but we will have no need of them. We
will, however, need to make use of some of the properties of determinants.
The principal properties that will matter to us are as follows.

• The determinant of the transpose of a matrix is equal to the determinant
of the matrix itself. That is, |A>| = |A|.
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• The determinant of a triangular matrix is the product of its diagonal
elements.

• Since a diagonal matrix can be regarded as a special triangular matrix,
its determinant is also the product of its diagonal elements.

• Since an identity matrix is a diagonal matrix with all diagonal elements
equal to unity, the determinant of an identity matrix is 1.

• If a matrix can be partitioned so as to be block-diagonal, then its deter-
minant is the product of the determinants of the diagonal blocks.

• Interchanging two rows, or two columns, of a matrix leaves the absolute
value of the determinant unchanged but changes its sign.

• The determinant of the product of two square matrices of the same di-
mensions is the product of their determinants, from which it follows that
the determinant of A−1 is the reciprocal of the determinant of A.

• If a matrix can be inverted, its determinant must be nonzero. Conversely,
if a matrix is singular, its determinant is 0.

• The derivative of log |A| with respect to the ij th element aij of A is the
jith element of A−1.

Maximum Likelihood Estimation

If we assume that the error terms of an SUR system are normally distributed,
the system can be estimated by maximum likelihood. The model to be esti-
mated can be written as

y• = X•β• + u•, u• ∼ N(0,Σ ⊗ In). (12.28)

The loglikelihood function for this model is the logarithm of the joint density
of the components of the vector y•. In order to derive that density, we must
start with the density of the vector u•.

Up to this point, we have not actually written down the density of a random
vector that follows the multivariate normal distribution. We will do so in
a moment. But first, we state a more fundamental result, which extends
the result (10.92) that was proved in Section 10.8 for univariate densities of
transformations of variables to the case of multivariate densities.

Let z be a random m--vector with known density fz(z), and let x be another
random m--vector such that z = h(x), where the deterministic function h(·)
is a one to one mapping of the support of the random vector x, which is a
subset of Rm, into the support of z. Then the multivariate analog of the result
(10.92) is

fx(x) = fz
(
h(x)

)∣∣detJ(x)
∣∣ , (12.29)

where J(x) ≡ ∂h(x)/∂x is the Jacobian matrix of the transformation, that
is, the m × m matrix containing the derivatives of the components of h(x)
with respect to those of x.
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Using (12.29), it is not difficult to show that, if the m× 1 vector z follows the
multivariate normal distribution with mean vector 0 and covariance matrix Ω,
then its density is equal to

(2π)−m/2|Ω|−1/2 exp
(− 1−

2
z>Ω−1z

)
. (12.30)

Readers are asked to prove a slightly more general result in Exercise 12.8.

For the system (12.28), the function h(·) that gives u• as a function of y• is
the right-hand side of the equation

u• = y• −X•β•. (12.31)

Thus we see that, if there are no lagged dependent variables in the matrix X•,
then the Jacobian of the transformation is just the identity matrix, of which
the determinant is 1.

The Jacobian will, in general, be much more complicated if there are lagged
dependent variables, because the elements of X• will depend on the elements
of y•. However, as readers are invited to check in Exercise 12.10, even though
the Jacobian is, in such a case, not equal to the identity matrix, its determi-
nant is still 1. Therefore, we can ignore the Jacobian when we compute the
density of y•. When we substitute (12.31) into (12.30), as the result (12.29)
tells us to do, we find that the density of y• is (2π)−gn/2 times

|Σ ⊗ In|−1/2 exp
(− 1−

2
(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•)

)
. (12.32)

Jointly maximizing the logarithm of this function with respect to β• and the
elements of Σ gives the ML estimator of the SUR system.

The argument of the exponential function in (12.32) plays the same role for a
multivariate linear regression model as the sum of squares term plays in the
loglikelihood function (10.10) for a linear regression model with IID normal
errors. In fact, it is clear from (12.32) that maximizing the loglikelihood with
respect to β• for a given Σ is equivalent to minimizing the function

(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•)

with respect to β•. This expression is just the criterion function (12.11) that
is minimized in order to obtain the GLS estimator (12.09). Therefore, the
ML estimator β̂ML

• must have exactly the same form as (12.09), with the
matrix Σ replaced by its ML estimator Σ̂ML, which we will derive shortly.

It follows from (12.32) that the loglikelihood function `(Σ, β•) for the model
(12.28) can be written as

− gn−−
2

log 2π − 1−
2

log |Σ ⊗ In| − 1−
2
(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•).
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The properties of determinants set out in the previous subsection can be used
to show that the determinant of Σ⊗ In is |Σ|n; see Exercise 12.11. Thus this
loglikelihood function simplifies to

− gn−−
2

log 2π − n−
2

log |Σ| − 1−
2
(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•). (12.33)

We have already seen how to maximize the function (12.33) with respect to β•
conditional on Σ. Now we want to maximize it with respect to Σ.

Maximizing `(Σ, β•) with respect to Σ is of course equivalent to maximizing it
with respect to Σ−1, and it turns out to be technically simpler to differentiate
with respect to the elements of the latter matrix. Note first that, since the
determinant of the inverse of a matrix is the reciprocal of the determinant
of the matrix itself, we have − log |Σ| = log |Σ−1|, so that we can readily
express all of (12.33) in terms of Σ−1 rather than Σ.

It is obvious that the derivative of any p× q matrix A with respect to its ij th

element is the p × q matrix Eij , all the elements of which are 0, except for
the ij th, which is 1. Recall that we write the ij th element of Σ−1 as σij. We
therefore find that

∂Σ−1

∂σij
= Eij , (12.34)

where in this case Eij is a g×g matrix. We remarked in our earlier discussion
of determinants that the derivative of log |A| with respect to aij is the jith

element of A−1. Armed with this result and (12.34), we see that the derivative
of the loglikelihood function `(Σ, β•) with respect to the element σij is

∂`(Σ,β•)
∂σij

= n−
2
σij − 1−

2
(y• −X•β•)>(Eij ⊗ In)(y• −X•β•). (12.35)

The Kronecker product Eij ⊗ In has only one nonzero block containing In. It
is easy to conclude from this that

(y• −X•β•)>(Eij ⊗ In)(y• −X•β•) = (yi −Xiβi)>(yj −Xjβj).

By equating the partial derivative (12.35) to zero, we find that the ML esti-
mator σ̂ML

ij is
σ̂ML

ij = 1−
n
(yi −Xiβ̂

ML
i )>(yj −Xj β̂

ML
j ).

If we define the n × g matrix U(β•) to have ith column yi −Xiβi, then we
can conveniently write the ML estimator of Σ as follows:

Σ̂ML = 1−
n

U>(β̂ML
• )U(β̂ML

• ). (12.36)

This looks like equation (12.17), which defines the covariance matrix used in
feasible GLS estimation. Equations (12.36) and (12.17) have exactly the same
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form, but they are based on different matrices of residuals. Equation (12.36)
and equation (12.09) evaluated at Σ̂ML, that is

β̂ML
• =

(
X•>(Σ̂−1

ML ⊗ In)X•
)−1

X•>(Σ̂−1
ML ⊗ In)y•, (12.37)

together define the ML estimator for the model (12.28).

Equations (12.36) and (12.37) are exactly the ones that are used by the con-
tinuously updated GMM estimator to update the estimates of Σ and β•,
respectively. It follows that, if the continuous updating procedure converges,
it converges to the ML estimator. Consequently, we can estimate the covar-
iance matrix of β̂ML

• in the same way as for the GLS or GMM estimator, by
the formula

V̂ar(β̂ML
• ) =

(
X•>(Σ̂−1

ML ⊗ In)X•
)−1

. (12.38)

It is also possible to estimate the covariance matrix of the estimated con-
temporaneous covariance matrix, Σ̂ML, although this is rarely done. If the
elements of Σ are stacked in a vector of length g2, a suitable estimator is

V̂ar
(
Σ(β̂ML

• )
)

= 2−
n

Σ(β̂ML
• )⊗Σ(β̂ML

• ). (12.39)

Notice that the estimated variance of any diagonal element of Σ is just twice
the square of that element, divided by n. This is precisely what is obtained
for the univariate case in Exercise 10.10. As with that result, the asymptotic
validity of (12.39) depends critically on the assumption that the error terms
are multivariate normal.

As we saw in Chapter 10, ML estimators are consistent and asymptotically
efficient if the underlying model is correctly specified. It may therefore seem
that the asymptotic efficiency of the ML estimator (12.37) depends critically
on the multivariate normality assumption. However, the fact that the ML esti-
mator is identical to the continuously updated efficient GMM estimator means
that it is in fact efficient in the same sense as the latter. When the errors are
not normal, the estimator is more properly termed a QMLE (see Section 10.4).
As such, it is consistent, but not necessarily efficient, under assumptions about
the error terms that are no stronger than those needed for feasible GLS to be
consistent. Moreover, if the stronger assumptions made in (12.02) hold, even
without normality, then the estimator (12.38) of Var(β̂ML

• ) is asymptotically
valid. If the error terms are not normal, it would be necessary to have infor-
mation about their actual distribution in order to derive an estimator with a
smaller asymptotic variance than (12.37).

It is of considerable theoretical interest to concentrate the loglikelihood func-
tion (12.33) with respect to Σ. In order to do so, we use the first-order condi-
tions that led to (12.36) to define Σ(β•) as the matrix that maximizes (12.33)
for given β•. We find that

Σ(β•) ≡ 1−
n

U>(β•)U(β•).
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A calculation of a type that should now be familiar then shows that

(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•)

=
g∑

i=1

g∑

j=1

σij(yi −Xiβi)>(yj −Xjβj).
(12.40)

When σij = σij(β•), which denotes the ij th element of Σ−1(β•), the right-
hand side of equation (12.40) is

g∑

i=1

g∑

j=1

σij(β•)
(
U>(β•)U(β•)

)
ij

= n

g∑

i=1

g∑

j=1

σij(β•)σij(β•)

= n

g∑

i=1

(Ig)ii = n Tr(Ig) = gn,

where we have made use of the trace operator, which sums the diagonal ele-
ments of a square matrix; see Section 2.6. By substituting this result into
expression (12.33), we see that the concentrated loglikelihood function can be
written as

− gn−−
2

(log 2π + 1)− n−
2

log
∣∣∣ 1−
n

U>(β•)U(β•)
∣∣∣. (12.41)

This expression depends on the data only through the determinant of the
covariance matrix of the residuals. It is the multivariate generalization of the
concentrated loglikelihood function (10.11) that we obtained in Section 10.2
in the univariate case. We saw there that the concentrated function depends
on the data only through the sum of squared residuals.

It is quite possible to minimize the determinant in (12.41) with respect to β•
directly. It may or may not be numerically simpler to do so than to solve the
coupled equations (12.37) and (12.36).

We saw in Section 3.6 that the squared residuals of a univariate regression
model tend to be smaller than the squared error terms, because least squares
estimates make the sum of squared residuals as small as possible. For a similar
reason, the residuals from ML estimation of a multivariate regression model
tend to be too small and too highly correlated with each other. We observe
both effects, because the determinant of Σ can be made smaller either by
reducing the sums of squared residuals associated with the individual equa-
tions or by increasing the correlations among the residuals. This is likely to
be most noticeable when g and/or the ki are large relative to n.

Although feasible GLS and ML with the assumption of normally distributed
errors are by far the most commonly used methods of estimating linear SUR
systems, they are by no means the only ones that have been proposed. For
fuller treatments, a classic reference on linear SUR systems is Srivastava and
Giles (1987), and a useful recent survey paper is Fiebig (2001).
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12.3 Systems of Nonlinear Regressions

Many multivariate regression models are nonlinear. For example, economists
routinely estimate demand systems, in which the shares of consumer expen-
diture on various classes of goods and services are explained by incomes,
prices, and perhaps other explanatory variables. Demand systems may be
estimated using aggregate time-series data, cross-section data, or mixed time-
series/cross-section (panel) data on households.1

The multivariate nonlinear regression model is a system of nonlinear regres-
sions which can be written as

yti = xti(β) + uti, t = 1, . . . , n, i = 1, . . . , g. (12.42)

Here yti is the tth observation on the ith dependent variable, xti(β) is the tth

observation on the regression function which determines the conditional mean
of that dependent variable, β is a k --vector of parameters to be estimated,
and uti is an error term which is assumed to have mean zero conditional
on all the explanatory variables that implicitly appear in all the regression
functions xtj(β), j = 1, . . . , g. In the demand system case, yti would be the
share of expenditure on commodity i for observation t, and the explanatory
variables would include prices and income. We assume that the error terms
in (12.42), like those in (12.01), satisfy assumption (12.02). They are serially
uncorrelated, homoskedastic within each equation, and have contemporaneous
covariance matrix Σ with typical element σij .

The equations of the system (12.42) can also be written using essentially
the same notation as we used for univariate nonlinear regression models in
Chapter 6. If, for each i = 1, . . . , g, the n--vectors yi, xi(β), and ui are
defined to have typical elements yti, uti, and xti(β), respectively, then the
entire system can be expressed as

yi = xi(β) + ui, E(uiuj
>) = σij In, i, j = 1, . . . , g. (12.43)

We have written (12.42) and (12.43) in such a way that there is just a single
vector of parameters, denoted β. Every individual parameter may, at least in
principle, appear in every equation, although that is rare in practice. In the
demand systems case, however, some but not all of the parameters typically do
appear in every equation of the system. Thus systems of nonlinear regressions
very often involve cross-equation restrictions.

Multivariate nonlinear regression models can be estimated in essentially the
same way as the multivariate linear regression model (12.01). Feasible GLS

1 The literature on demand systems is vast; see, among many others, Christensen,
Jorgenson, and Lau (1975), Barten (1977), Deaton and Muellbauer (1980),
Pollak and Wales (1981, 1987), Browning and Meghir (1991), Lewbel (1991),
and Blundell, Browning, and Meghir (1994).
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and maximum likelihood are both commonly used. The results we obtained
in the previous section still apply, provided they are modified to allow for the
nonlinearity of the regression functions and for cross-equation restrictions.
Our discussion will therefore be quite brief.

Estimation

We saw in Section 7.3 that nonlinear GLS estimates can be obtained either by
minimizing the criterion function (7.13) or, equivalently, by solving the set of
first-order conditions (7.14). For the multivariate nonlinear regression model
(12.42), the criterion function can be written so that it looks very much like
expression (12.11). Let y• once again denote a gn--vector of the yi stacked
vertically, and let x•(β) denote a gn--vector of the xi(β) stacked in the same
way. The criterion function (7.13) then becomes

(
y• − x•(β)

)>(Σ−1 ⊗ In)
(
y• − x•(β)

)
. (12.44)

Minimizing (12.44) with respect to β yields nonlinear GLS estimates which,
by the results of Section 7.2, are consistent and asymptotically efficient under
standard regularity conditions.

The first-order conditions for the minimization of (12.44) give rise to the
following moment conditions, which have a very similar form to the moment
conditions (12.12) that we found for the linear case:

X•>(β)(Σ−1 ⊗ In)
(
y• − x•(β)

)
= 0. (12.45)

Here, the gn×k matrix X•(β) is a matrix of partial derivatives of the xti(β).
If the n × k matrices Xi(β) are defined, just as in the univariate case, so
that the tj th element of Xi(β) is ∂xti(β)/∂βj , for t = 1, . . . , n, j = 1, . . . , k,
then X•(β) is the matrix formed by stacking the Xi(β) vertically. Except in
the special case in which each parameter appears in only one equation of the
system, X•(β) does not have the block-diagonal structure of X• in (12.05).

Despite this fact, it is not hard to show that the moment conditions (12.45)
can be expressed in a compact form like (12.16), but with a double sum. As
readers are asked to check in Exercise 12.12, we obtain estimating equations
of the form

g∑

i=1

g∑

j=1

σijXi
>(β)

(
yj − xj(β)

)
= 0. (12.46)

The vector β̂GLS that solves these equations is the nonlinear GLS estimator.

Adapting expression (7.05) to the model (12.43) gives the standard estimate
of the covariance matrix of the nonlinear GLS estimator, namely,

V̂ar(β̂GLS) =
(
X•>(β̂GLS)(Σ−1 ⊗ In)X•(β̂GLS)

)−1
. (12.47)
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This can also be written (see Exercise 12.12 again) as

V̂ar(β̂GLS) =
( g∑

i=1

g∑

j=1

σijXi
>(β̂GLS)Xj(β̂GLS)

)−1

. (12.48)

Feasible GLS estimation works in essentially the same way for nonlinear mul-
tivariate regression models as it does for linear ones. The individual equations
of the system are first estimated separately by either ordinary or nonlinear
least squares, as appropriate. The residuals are then grouped into an n × g
matrix Û, and equation (12.17) is used to obtain the estimate Σ̂. We can
then replace Σ by Σ̂ in the GLS criterion function (12.44) or in the moment
conditions (12.45) to obtain the feasible GLS estimator β̂F. We may also
use a continuously updated estimator, alternately updating our estimates of
β and Σ. If this iterated feasible GLS procedure converges, we will have
obtained ML estimates, although there may well be more computationally
attractive ways to do so.

Maximum likelihood estimation under the assumption of normality is very
popular for multivariate nonlinear regression models. For the system (12.42),
the loglikelihood function can be written as

− gn−−
2

log 2π − n−
2

log |Σ| − 1−
2

(
y• − x•(β)

)>(Σ−1 ⊗ In)
(
y• − x•(β)

)
. (12.49)

This is the analog of the loglikelihood function (12.33) for the linear case.
Maximizing (12.49) with respect to β for given Σ is equivalent to minimizing
the criterion function (12.44) with respect to β, and so the first-order condi-
tions are equations (12.45). Maximizing (12.49) with respect to Σ for given β
leads to first-order conditions that can be written as

Σ(β) = 1−
n

U>(β)U(β),

in exactly the same way as the maximization of (12.33) with respect to Σ
led to equation (12.36). Here the n × g matrix U(β) is defined so that its
ith column is yi − xi(β).

Thus the estimating equations that define the ML estimator are

X•>(β̂ML)(Σ̂−1
ML ⊗ In)

(
y• − x•(β̂ML)

)
= 0, and

Σ̂ML = 1−
n

U>(β̂ML)U(β̂ML).
(12.50)

As in the linear case, these are also the estimating equations for the continu-
ously updated GMM estimator. The covariance matrix of β̂ML is, of course,
given by either of the formulas (12.47) or (12.48) evaluated at β̂ML and Σ̂ML.
The loglikelihood function concentrated with respect to Σ can be written,
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just like expression (12.41), as

− gn−−
2

(log 2π + 1)− n−
2

log
∣∣∣ 1−
n

U>(β)U(β)
∣∣∣. (12.51)

As in the linear case, it may or may not be numerically easier to maximize the
concentrated function directly than to solve the estimating equations (12.50).

The Gauss-Newton Regression

The Gauss-Newton regression can be very useful in the context of multivariate
regression models, both linear and nonlinear. The starting point for setting
up the GNR for both types of multivariate model is equation (7.15), the GNR
for the standard univariate model y = x(β) + u, with Var(u) = Ω. This
GNR takes the form

Ψ>
(
y − x(β)

)
= Ψ>X(β)b + residuals,

where, as usual, X(β) is the matrix of partial derivatives of the regression
functions, and Ψ is such that Ψ Ψ>= Ω−1.

Expressed as a univariate regression, the multivariate model (12.43) becomes

y• = x•(β) + u•, Var(u•) = Σ ⊗ In. (12.52)

If we now define the g × g matrix Ψ such that Ψ Ψ>= Σ−1, it is clear that

(Ψ ⊗ In)(Ψ ⊗ In)>= (Ψ ⊗ In)(Ψ>⊗ In) = (Ψ Ψ>⊗ In) = Σ−1 ⊗ In,

where the last expression is the inverse of the covariance matrix of u•.
From (7.15), the GNR corresponding to (12.52) is therefore

(Ψ>⊗ In)
(
y• − x•(β)

)
= (Ψ>⊗ In)X•(β)b + residuals. (12.53)

The gn× k matrix X•(β) is the matrix of partial derivatives that we already
defined for use in the moment conditions (12.45). Observe that, as required
for a properly defined artificial regression, the inner product of the regressand
with the matrix of regressors yields the left-hand side of the moment condi-
tions (12.45), and the inverse of the inner product of the regressor matrix with
itself has the same form as the covariance matrix (12.47).

The Gauss-Newton regression (12.53) can be useful in a number of contexts.
It provides a convenient way to solve the estimating equations (12.45) in
order to obtain an estimate of β for given Σ, and it automatically computes
the covariance matrix estimate (12.47) as well. Because feasible GLS and
ML estimation are algebraically identical as regards the estimation of the
parameter vector β, the GNR is useful in both contexts. In practice, it is
frequently used to calculate test statistics for restrictions on β; see Section 6.7.
Another important use is to impose cross-equation restrictions after equation-
by-equation estimation. For this purpose, the multivariate GNR is just as
useful for linear systems as for nonlinear ones; see Exercise 12.13.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



12.4 Linear Simultaneous Equations Models 513

12.4 Linear Simultaneous Equations Models

In Chapter 8, we dealt with instrumental variables estimation of a single
equation in which some of the explanatory variables are endogenous. As we
noted there, it is necessary to have information about the data-generating
process for all of the endogenous variables in order to determine the optimal
instruments. However, we actually dealt with only one equation, or at least
only one equation at a time. The model that we consider in this section and
the next, namely, the linear simultaneous equations model, extends what we
did in Chapter 8 to a model in which all of the endogenous variables have the
same status. Our objective is to obtain efficient estimates of the full set of
parameters that appear in all of the simultaneous equations.

The Model

The ith equation of a linear simultaneous system can be written as

yi = Xiβi + ui = Ziβ1i + Yiβ2i + ui, (12.54)

where Xi is an n× ki matrix of explanatory variables that can be partitioned
as Xi = [ Zi Yi ]. Here Zi is an n×k1i matrix of variables that are assumed
to be exogenous or predetermined, and Yi is an n× k2i matrix of endogenous
variables, with k1i + k2i = ki. The ki --vector βi of parameters can be parti-
tioned as [β1i

.... β2i] to conform with the partitioning of X. The g endogenous
variables y1 through yg are assumed to be jointly generated by g equations of
the form (12.54). The number of exogenous or predetermined variables that
appear anywhere in the system is l. This implies that k1i ≤ l for all i.2

We make the standard assumption (12.02) about the error terms. Thus we
allow for contemporaneous correlation, but not for heteroskedasticity or serial
correlation. It is, of course, quite possible to allow for these extra complica-
tions, but they are are not admitted in the context of the model currently
under discussion, which thus has a distinctly classical flavor, as befits a model
that has inspired a long and distinguished literature.

Except for the explicit distinction between endogenous and predetermined ex-
planatory variables, equation (12.54) looks very much like the typical equation
(12.01) of an SUR system. However, there is one important difference, which
is concealed by the notation. It is that, as with the simple demand-supply
model of Section 8.2, the dependent variables yi are not necessarily distinct.

2 Readers should be warned that the notation we have introduced in equation
(12.54) is not universal. In particular, some authors reverse the definitions of
Xi and Zi and then define X to be the n × l matrix of all the exogenous
and predetermined variables, which we will denote below by W. Our notation
emphasizes the similarities between the linear simultaneous equations model
(12.54) and the linear SUR system (12.01), as well as making it clear that W
plays the role of a matrix of instruments.
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Since equations (12.54) form a simultaneous system, it is arbitrary which one
of the endogenous variables is put on the left-hand side with a coefficient of 1,
at least in any equation in which more than one endogenous variable appears.
It is a matter of simple algebra to select one of the variables in the matrix Yi,
take it over to the left-hand side while taking yi over to the right, and then
rescale the coefficients so that the selected variable has a coefficient of 1. This
point can be important in practice.

Just as we did with the linear SUR model, we can convert the system of
equations (12.54) to a single equation by stacking them vertically. As before,
the gn--vectors y• and u• consist of the yi and the ui, respectively, stacked
vertically. The gn × k matrix X•, where k = k1 + . . . + kg, is defined to be
a block-diagonal matrix with diagonal blocks Xi, just as in equation (12.05).
The full system can then be written as

y• = X•β• + u•, E(u•u•>) = Σ ⊗ In, (12.55)

where the k --vector β• is formed by stacking the βi vertically. As before, the
g× g matrix Σ is the contemporaneous covariance matrix of the error terms.
The true value of β• will be denoted β0

• .

Efficient GMM Estimation

One of the main reasons for estimating a full system of equations is to obtain
an efficiency gain relative to single-equation estimation. In Section 9.2, we
saw how to obtain the most efficient possible estimator for a single equation in
the context of efficient GMM estimation. The theoretical moment conditions
that lead to such an estimator are given in equation (9.18), which we rewrite
here for easy reference:

E
(
X̄>Ω−1(y −Xβ)

)
= 0. (9.18)

Because we are assuming that there is no serial correlation, these moment
conditions are also valid for the linear simultaneous equations model (12.54).
We simply need to reinterpret them in terms of that model.

In reinterpreting the moment conditions (9.18), it is clear that y• will replace
the vector y, X•β• will replace the vector Xβ, and Σ−1⊗ In will replace the
matrix Ω−1. What is not quite so clear is what will replace X̄. Recall that X̄
in (9.18) is the matrix defined row by row so as to contain the expectations of
the explanatory variables for each observation conditional on the information
that is predetermined for that observation. We need to obtain the matrix that
corresponds to X̄ in equation (9.18) for the model (12.55).

Let W denote an n× l matrix of exogenous and predetermined variables, the
columns of which are all of the linearly independent columns of the Zi. For
these variables, the expectations conditional on predetermined information
are just the variables themselves. Thus we only need worry about the endo-
genous explanatory variables. Because their joint DGP is given by the system
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of linear equations (12.54), it must be possible to solve these equations for
the endogenous variables as functions of the predetermined variables and the
error terms. Since these equations are linear and have the same form for all
observations, the solution must have the form

yi = Wπi + error terms, (12.56)

where πi is an l --vector of parameters that are, in general, nonlinear functions
of the parameters β•. As the notation indicates, the variables contained in
the matrix W serve as instrumental variables for the estimation of the model
parameters. Later, we will investigate more fully the nature of the πi. We
pay little attention to the error terms, because our objective is to compute
the conditional expectations of the elements of the yi, and we know that each
of the error terms must have expectation 0 conditional on all the exogenous
and predetermined variables.

The vector of conditional expectations of the elements of yi is just Wπi. Since
equations (12.56) take the form of linear regressions with exogenous and pre-
determined explanatory variables, OLS estimates of the πi are consistent. As
we saw in Section 12.2, they are also efficient, even though the error terms
will generally display contemporaneous correlation, because the same regres-
sors appear in every equation. Thus we can replace the unknown πi by their
OLS estimates based on equations (12.56). This means that the conditional
expectations of the vectors yi are estimated by the OLS fitted values, that
is, the vectors Wπ̂i = PWyi. When this is done, the matrices that contain
the estimates of the conditional expectations of the elements of the Xi can be
written as

X̂i ≡ [ Zi PWYi ] = PW [Zi Yi ] = PWXi. (12.57)

We write X̂i rather than X̄i because the unknown conditional expectations
are estimated. The step from the second to the third expression in (12.57) is
possible because all the columns of all the Zi are, by construction, contained
in the span of the columns of W.

We are now ready to construct the matrix to be used in place of X̄ in (9.18).
It is the block-diagonal gn× k matrix X̂•, with diagonal blocks the X̂i. This
allows us to write the estimating equations for efficient GMM estimation as

X̂•>(Σ−1 ⊗ In)(y• −X•β•) = 0. (12.58)

These equations, which are the empirical versions of the theoretical moment
conditions (9.18), can be rewritten in several other ways. In particular, they
can be written in the form




σ11X1
>PW · · · σ1gX1

>PW
...

. . .
...

σg1Xg
>PW · · · σggXg

>PW







y1 −X1β1
...

yg −Xgβg


 = 0,
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by analogy with equation (12.13), and in the form

g∑

j=1

σijXi
>PW (yj −Xjβj) = 0, i = 1, . . . , g, (12.59)

by analogy with equation (12.16). It is also straightforward to check (see
Exercise 12.14) that they can be written as

X•>(Σ−1 ⊗ PW )(y• −X•β•) = 0, (12.60)

from which it follows immediately that equations (12.58) are equivalent to the
first-order conditions for the minimization of the criterion function

(y• −X•β•)>(Σ−1 ⊗ PW )(y• −X•β•). (12.61)

The efficient GMM estimator β̂GMM
• defined by (12.60) is the analog for a

linear simultaneous equations system of the GLS estimator (12.09) for an
SUR system.

The asymptotic covariance matrix of β̂GMM
• can readily be obtained from

expression (9.29). In the notation of (12.58), we find that

Var
(

plim
n→∞

n1/2(β̂GMM
• − β0

• )
)

= plim
n→∞

(
1−
n

X̂•>(Σ−1 ⊗ In)X̂•
)−1

. (12.62)

This covariance matrix can also be written, in the notation of (12.60), as

plim
n→∞

(
1−
n

X•>(Σ−1 ⊗ PW )X•
)−1

. (12.63)

Of course, the estimator β̂GMM
• is not feasible if, as is almost always the case,

the matrix Σ is unknown. However, it is obvious that we can deal with this
problem by using a procedure analogous to feasible GLS estimation of an SUR
system. We will return to this issue at the end of this section.

Two Special Cases

If the matrix Σ is diagonal, then equations (12.59) simplify to

σiiXi
>PW (yi −Xiβi) = 0, i = 1, . . . , g. (12.64)

The factors of σii have no influence on the solutions to these equations, which
are therefore just the generalized IV, or 2SLS, estimators for each of the
equations of the system treated individually, with a common matrix W of
instrumental variables. This result is the analog of what we found for an SUR
system with diagonal Σ. Here it is the equation-by-equation IV estimator
that takes the place of the equation-by-equation OLS estimator.
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Just as single-equation OLS estimation is consistent but in general inefficient
for an SUR system, so is single-equation IV estimation consistent but in gen-
eral inefficient for the linear simultaneous equations model. As readers are
asked to verify in Exercise 12.15, the estimating equations (12.64), without
the factors of σii, can be rewritten for the entire system as

X•>(Ig ⊗ PW )(y• −X•β•) = 0. (12.65)

In general, solving equations (12.65) yields an inefficient estimator unless the
true contemporaneous covariance matrix Σ is diagonal.

There is, however, another case in which the estimating equations (12.65)
yield an asymptotically efficient estimator. This case is analogous to the case
of an SUR system with the same explanatory variables in each equation, but
it takes a rather different form in this context. What we require is that each
of the equations in the system should be just identified.

When we say that a single equation is just identified by an IV estimator, part
of what we mean is that the number of instruments is equal to the number of
explanatory variables, or, equivalently for a linear regression, to the number
of parameters. If equation i is just identified, therefore, the two matrices W
and PWXi have the same dimensions. In fact, they span the same linear
subspace provided that PWXi is of full column rank. Consequently, there
exists an l × l matrix Ji such that PWXiJi = W. Premultiplying the ith

equation of (12.59) by Ji
> thus gives

g∑

j=1

σijW>(yj −Xjβj) = 0.

If all the equations of a simultaneous equations system are just identified,
then the above relation holds for each i = 1, . . . , g. We can then multiply
equation i by σmi and sum over i, as in equation (12.20). This yields the
decoupled estimating equations

W>(ym −Xmβm) = 0, m = 1, . . . , g,

which define the single-equation (simple) IV estimators in the just-identified
case. Therefore, as with the SUR model, there is no advantage to system
estimation rather than equation-by-equation estimation when every equation
is just identified, because the estimating equations use up all of the available
moment conditions.

Identification

In order to be able to solve the estimating equations (12.60) for β•, it must
be possible to invert the matrix

X•>(Σ−1 ⊗ PW )X•. (12.66)
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Thus, in finite samples, the parameters of the model (12.55) will be identified
if this matrix is nonsingular. Although this statement is accurate, it is neither
complete nor transparent. In particular, even if the matrix (12.66) is singular,
it may still be possible to identify some of the parameters.

Whenever the contemporaneous covariance matrix Σ is nonsingular, it can
be shown, as spelt out in Exercise 12.16, that the matrix (12.66) is singular if
and only if at least one of the matrices PWXi does not have full column rank.
In other words, the system of equations is unidentified if and only if at least
one of its component equations is unidentified. The result of the exercise also
shows that the parameters of those equations for which PWXi does have full
column rank can be identified uniquely by the estimating equations (12.60).
In consequence, provided that Σ is nonsingular, we can study identification
equation by equation without loss of generality.

A necessary condition for PWXi to have full column rank is that l, the number
of instruments contained in the matrix W, should be no less than ki, the
number of explanatory variables contained in Xi. This condition is called the
order condition for identification of equation i. It is an accounting condition,
and, as such, can be expressed in more than one way. Recall that we defined
k1i as the number of exogenous or predetermined explanatory variables in Xi,
that is, the dimension of the matrix Zi. Since the total number of exogenous
or predetermined variables in the full system is l, the number of such variables
excluded from equation i is l − k1i. The number of endogenous explanatory
variables included in equation i is, by definition k2i, which is the dimension
of the matrix Yi. Therefore, the inequality l ≥ ki is equivalent to

l ≥ k1i + k2i or l − k1i ≥ k2i. (12.67)

The second inequality here says that the number of predetermined variables
excluded from an equation must be at least as great as the number of endo-
genous explanatory variables in that equation.

The necessary and sufficient condition for the identification of the parameters
of equation i is that PWXi should have full column rank of ki. This condition,
which is, not surprisingly, called the rank condition for identification, will
hold whenever the ki×ki matrix Xi

>PWXi is nonsingular. It is easy to check
whether the rank condition holds for any given data set. However, it is not so
easy to check whether it holds asymptotically. The problem is that, because
some of the columns of Xi are endogenous, plim n−1Xi

>PWXi depends on
the parameters of the DGP. This point is important, and we will discuss it at
some length below.

Structural and Reduced Forms

When the equations of a linear simultaneous equations model are written in
the form (12.54), it is normally the case that each equation will have a direct
economic interpretation. In the model of Section 8.2, for instance, the two
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equations are intended to correspond to demand and supply functions. It is
for this reason that these are called structural equations. The full system of
equations constitutes what is called the structural form of the model.

It will be convenient for our subsequent analysis to stack the equations (12.54)
horizontally, instead of vertically as in the system (12.55). We thus define the
n × g matrix Y as [y1 y2 · · · yg]. Similarly, the vectors ui of error terms
can be stacked side by side to form the n× g matrix U. In this notation, the
entire set of equations (12.54) can be represented as

Y Γ = WB + U, (12.68)

where the g × g matrix Γ and the l × g matrix B are defined in such a way
as to make (12.68) equivalent to (12.54). Each equation of the system (12.54)
contributes one column to (12.68). This can be seen by writing equation i
of (12.54) in the form

[yi Yi ]
[

1
−β2i

]
= Ziβ1i + ui. (12.69)

All of the columns of Yi are also columns of Y , as is yi itself, and so column i
of the matrix Γ has 1 for element i, and the elements of the vector −β2i for
the other nonzero elements. The endogenous variables that are excluded from
equation i contribute zero elements to the column. Similarly, all the columns
of Zi are also columns of W, and so the nonzero elements of column i of B
are the elements of β1i, in appropriate positions. The “structure” of the
structural equations is embodied in the structure of the matrices Γ and B.

If (12.68) is to represent a model by which the g endogenous variables are
generated, it is necessary for Γ to be nonsingular. We can thus postmultiply
both sides of equation (12.68) by Γ−1 to obtain

Y = WBΓ−1 + V , (12.70)

where V ≡ UΓ−1. The representation (12.70) is called the reduced form of the
model, and its component equations (the columns of the matrix equation) are
the reduced form equations. These reduced form equations are regressions,
which in general are nonlinear in the parameters. Because they have only
exogenous or predetermined regressors, they can be estimated consistently by
nonlinear least squares.

Unless all the equations of the system are just identified, (12.70) is in fact
what is called the restricted reduced form or RRF. This is in contrast to the
unrestricted reduced form, or URF, which can be written as

Y = WΠ + V , (12.71)

where Π is an unrestricted l×g matrix. Notice that equation (12.56) is simply
the ith equation of this system, with yi the ith column of the matrix Y and
πi the ith column of the matrix Π.
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It may at first sight seem odd to refer to (12.70) as the restricted reduced form
and to (12.71) as the unrestricted one. The URF (12.71) has gl regression
coefficients, since Π is an l × g matrix, while the RRF (12.70) appears to
have gl + g2 parameters, since B is l × g and Γ is g × g. But remember
that Γ has g elements which are constrained to equal 1, and both Γ and B
have many zero elements corresponding to excluded endogenous and predeter-
mined explanatory variables, respectively. As readers are invited to show in
Exercise 12.18, if all the equations of the system are just identified, so that
the order condition (12.67) is satisfied with equality for each i = 1, . . . , g,
then there are exactly as many parameters in the RRF as in the URF. When
some of the order conditions are inequalities, there are fewer parameters in
the RRF than in the URF.

Asymptotic Identification

Whether or not the parameters of a linear simultaneous system are identified
by a given data set depends only on the order condition and the properties
of the actual data, but this is not true of asymptotic identification. Since
the parameters must be asymptotically identified if the parameter estimates
are to be consistent, it is worth studying in some detail the conditions for
asymptotic identification in such a system.

We assume that the probability limit of n−1W>U is a zero matrix and that
the l × l matrix

SW>W ≡ plim
n→∞

1−
n

W>W

is positive definite and, consequently, nonsingular. The nonsingularity of the
matrix W>W is not necessary for identification by a given data set, since,
if there are enough instruments, it is quite possible that each of the matrices
PWXi, i = 1, . . . , g, should have full column rank even though some of the
instruments are linearly dependent. Similarly, it is not necessary that SW>W
should be nonsingular for asymptotic identification. However, since it is al-
ways possible to eliminate linearly dependent instruments, it is convenient to
make the nonsingularity assumption. By doing so, we make it clearer how
asymptotic identification depends on the actual parameter values.

For simplicity of notation, we focus on the asymptotic identification of the
first equation of the system, which can be written as

y1 = Z1β11 + Y1β21 + u1. (12.72)

Since identification can be treated equation by equation without loss of gen-
erality, and since the ordering of the equations is quite arbitrary, our results
will be perfectly general. The matrix X1 of explanatory variables for the first
equation is X1 = [Z1 Y1 ]. Recall that the n× l matrix W contains all the
linearly independent columns of the Zi, and in particular those of Z1. Let us
order the columns of W so that the k11 columns of Z1 come first.
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The n× k21 matrix Y1 is given by a selection of the columns of the matrix Y .
The first column of Y , which corresponds to the equation we are studying,
is not among these, because y1 appears only on the left-hand side of that
equation. However, we can freely reorder the remaining columns of Y so that
the k21 columns of Y1 are the columns 2 through k21 + 1 of Y . This done,
we can express the first k21 + 1 columns of the URF (12.71), in partitioned
form, as

[y1 Y1 ] = [ Z1 W1 ]
[

π11 Π11

π21 Π21

]
+ [ v1 V1 ] , (12.73)

where we have introduced some further convenient notation. First, the
n× (l − k11) matrix W1 contains all the columns of W that are not in Z1.
Then, for the ordering that we have chosen for the columns of Y and W,
π11 is the k11 × 1 vector of parameters in the first reduced form equation
(that is, the equation that defines y1) associated with the instruments in
the matrix Z1, while the (l − k11) × 1 vector π21 contains the parameters
of the first reduced form equation associated with the instruments in W1.
Finally, the matrices Π11 and Π21 are, respectively, of dimensions k11 × k21

and (l − k11) × k21. They contain the parameters of the reduced form equa-
tions numbered 2 through k21 + 1 and associated with the instruments in Z1

and W1, respectively. The matrix [ v1 V1 ] of error terms is partitioned in
the same way as the left-hand side of (12.73).

We can write the matrix PWX1 as

PWX1 = PW [ Z1 Y1 ] = [ Z1 PWY1 ], (12.74)

because PWZ1 = Z1. With the help of (12.73), the second block of the
rightmost expression above becomes

PWY1 = [Z1 W1 ]
[

Π11

Π21

]
+ PWV1, (12.75)

where we again use the fact that PW [ Z1 W1 ] = [ Z1 W1 ], and Π11

and Π21 contain the true parameter values. Reorganizing equations (12.74)
and (12.75) gives

PWX1 = W

[
Ik11 Π11

O Π21

]
+ [O PWV1 ] . (12.76)

The necessary and sufficient condition for the asymptotic identification of the
parameters of the first equation is the nonsingularity of the probability limit
as n → ∞ of the matrix n−1X1

>PWX1. It is easy to see from (12.76) that
this limit is

plim
n→∞

1−
n

X1
>PWX1 =

[
Ik11 O

Π>
11 Π>

21

]
SW>W

[
Ik11 Π11

O Π21

]
.
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In Exercise 12.19, readers are invited to check that everything that depends on
the matrix V does indeed tend to zero in the above limit. Since we assumed
that SW>W is positive definite, it follows that equation (12.72) is asymptot-
ically identified if and only if the matrix

[
Ik11 Π11

O Π21

]
(12.77)

is of full column rank k1 = k11 + k21. Because this matrix has l rows, this
is not possible unless l > k1, that is, unless the order condition is satisfied.
However, even if the order condition is satisfied, there can perfectly well exist
parameter values for which (12.77) does not have full column rank. The
important conclusion of this analysis is that asymptotic identification of an
equation in a linear simultaneous system depends not only on the properties
of the instrumental variables W, but also on the specific parameter values of
the DGP.

In Exercise 12.20, readers are asked to show that the matrix (12.77) has
full column rank if and only if the (l − k11) × k21 submatrix Π21 has full
column rank. While this is a simple enough condition, it is expressed in
terms of the reduced form parameters, which are usually not subject to a
simple interpretation. It is therefore desirable to have a characterization of
the asymptotic identification condition in terms of the structural parameters.
In Exercise 12.21, notation that is suitable for deriving such a characterization
is proposed, and readers are asked to develop it in Exercise 12.22.

Even when the rank condition for asymptotic identification is not satisfied, the
numerical condition that the matrix (12.66) be nonsingular will be satisfied by
almost all data sets. The failure of asymptotic identification will manifest itself
as the phenomenon of weak instruments that we discussed in Section 8.4. In
such a case, we might be tempted to add additional instruments, such as lags
of the instruments themselves or other predetermined variables that may be
correlated with them. But doing this cannot lead to asymptotic identification,
because it would simply append columns of zeros to the matrix Π of reduced
form coefficients, and it is obvious that such an operation cannot convert a
matrix of deficient rank into one of full rank.

A discussion of asymptotic identification that is more detailed than the present
one, but still reasonably compact, is provided by Davidson and MacKinnon
(1993, Section 18.3). Much fuller treatments may be found in Fisher (1976)
and Hsiao (1983).

Three-Stage Least Squares

The efficient GMM estimator defined by the estimating equations (12.60) is
not feasible unless Σ is known. However, we can compute a feasible GMM
estimator if we can obtain a consistent estimate of Σ, and this is easy to do.
We first estimate the individual equations of the system by generalized IV,
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or two-stage least squares, to use the traditional terminology. This inefficient
equation-by-equation estimator is characterized formally by the estimating
equations (12.65). After computing it, we then use the 2SLS residuals to
compute the matrix Σ̂2SLS, as in (12.17). Using Σ̂2SLS in place of Σ in equa-
tions (12.60) yields the popular three-stage least squares, or 3SLS, estimator,
which was originally proposed by Zellner and Theil (1962). This estimator
can be written as

β̂3SLS
• =

(
X•>(Σ̂−1

2SLS ⊗ PW )X•
)−1

X•>(Σ̂−1
2SLS ⊗ PW )y•. (12.78)

The relationship between this 3SLS estimator and the 2SLS estimator for the
entire system is essentially the same as the relationship between the feasible
GLS estimator (12.18) for an SUR system and the OLS estimator (12.06). As
with (12.18), we may wish to compute the continuously updated version of
the 3SLS estimator (12.78), in which case we iteratively update the estimates
of β• and Σ by using equations (12.78) and (12.17), respectively.

From the results (12.62) and (12.63), it is clear that we can estimate the
covariance matrix of the classical 3SLS estimator (12.78) by

V̂ar(β̂3SLS
• ) =

(
X•>(Σ̂−1

2SLS ⊗ PW )X•
)−1

, (12.79)

which is analogous to (12.19) for the SUR case. Asymptotically valid infer-
ences can then be made in the usual way. As with the SUR estimator, we can
perform a Hansen-Sargan test of the overidentifying restrictions by using the
fact that, under the null hypothesis, the criterion function (12.61) evaluated
at β̂3SLS

• and Σ̂2SLS is asymptotically distributed as χ2(gl − k). Of course,
this will also be true if the procedure has been iterated one or more times.

12.5 Maximum Likelihood Estimation

Like the SUR model, the linear simultaneous equations model can be esti-
mated by maximum likelihood under the assumption that the error terms,
in addition to satisfying the requirements (12.02), are normally distributed.
In contrast to the situation with an SUR system, where the ML estimator is
numerically identical to the continuously updated feasible GLS estimator, the
ML estimator of a linear simultaneous equations model is, in general, different
from the continuously updated 3SLS estimator. The ML and 3SLS estimators
are, however, asymptotically equivalent.

Because the algebra of ML estimation is quite complicated, we have divided
our treatment of the subject between this section and a technical appendix,
which appears at the end of the chapter, just prior to the exercises. All of the
principal results are stated and discussed in this section, but many of them
are derived in the appendix.
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Full-Information Maximum Likelihood

The maximum likelihood estimator of a linear simultaneous system is called
the full-information maximum likelihood, or FIML, estimator. It is so called
because it uses information about all the equations in the system, unlike
the limited-information maximum likelihood estimator (LIML) that will be
discussed later in this section.

The loglikelihood function that must be maximized to obtain the FIML esti-
mator can be written in several different ways. In terms of the notation used
in equation (12.55), it is

− gn−−
2

log 2π − n−
2

log |Σ|+ n log |det Γ |
− 1−

2
(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•).

(12.80)

This looks very much like the loglikelihood function (12.49) for a multivariate
nonlinear regression model with normally distributed errors. The principal
difference is the third term, n log |det Γ |, which is a Jacobian term. This term
is the logarithm of the absolute value of the Jacobian of the transformation
from u• to y•. As we will see in the appendix, the loglikelihood function
can also be written without an explicit Jacobian term if we start from the
restricted reduced form (12.70).

Maximizing the loglikelihood function (12.80) with respect to Σ is exactly
the same as maximizing the loglikelihood function (12.33) with respect to it.
If we had ML estimates of β•, or, equivalently, of B and Γ , the ML estimate
of Σ would be

Σ̂ML = 1−
n
(Y Γ̂ML −WB̂ML)>(Y Γ̂ML −WB̂ML), (12.81)

which is just the sample covariance matrix of the structural-form error terms;
compare equation (12.36).

Recall from (12.54) that the parameter vector βi of equation i contains both
the vector β1i, which is associated with the predetermined explanatory vari-
ables, and the vector β2i, which is associated with the endogenous explanatory
variables. As is clear from equation (12.69), the matrix B is determined by
the β1i alone, and the matrix Γ by the β2i alone. We can obtain the first-order
conditions for maximizing the loglikelihood function (12.80) with respect to
the β1i in exactly the same way as we obtained conditions (12.12) from the
criterion function (12.11) for an SUR system. The first-order conditions that
we seek can be written as

Z•>(Σ−1 ⊗ In)(y• −X•β•) = 0, (12.82)

where the gn×∑
i k1i matrix Z• is defined, similarly to X•, as a matrix with

diagonal blocks Zi. The number of equations in (12.82) is
∑

i k1i, since there
is one equation for each of the β1i.
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Since it is rather complicated to work out the first-order conditions for the
maximization of (12.80) with respect to the β2i, we leave this derivation to
the appendix. These conditions can be expressed as

Y•>(B, Γ )(Σ−1 ⊗ In)(y• −X•β•) = 0, (12.83)

where the gn×∑
i k2i matrix Y•(B, Γ ) is again defined in terms of diagonal

blocks. Block i is the n × k2i matrix Yi(B, Γ ), which is the submatrix of
WBΓ−1 formed by selecting the columns that correspond to the columns
of the matrix Yi of included endogenous explanatory variables in equation i.
The conditions (12.82) and (12.83) can be grouped together as

X•>(B,Γ )(Σ−1 ⊗ In)(y• −X•β•) = 0, (12.84)

where the ith diagonal block of X•(B, Γ ) is the n×ki matrix [Zi Yi(B,Γ )].
There are k =

∑
i k1i +

∑
i k2i equations in (12.84).

With (12.81) and (12.84), we have assembled all of the first-order conditions
that define the FIML estimator. We write them here as a set of estimating
equations:

X•>(B̂ML, Γ̂ML)(Σ̂−1
ML ⊗ In)(y• −X•β̂ML

• ) = 0, and

Σ̂ML = 1−
n
(Y Γ̂ML −WB̂ML)>(Y Γ̂ML −WB̂ML).

(12.85)

Solving these equations, which must of course be done numerically, yields the
FIML estimator.

There are many numerical methods for obtaining FIML estimates. One of
them is to make use of the artificial regression

(Ψ>⊗ In)(y• −X•β•) = (Ψ>⊗ In)X•(B, Γ )b + residuals, (12.86)

where, as usual, Ψ Ψ> = Σ−1. This is analogous to the multivariate GNR
(12.53). If we start from initial consistent estimates, this artificial regression
can be used to update the estimates of B and Γ , and equation (12.81) can
be used to update the estimate of Σ. Like other artificial regressions, (12.86)
can also be used to compute test statistics and covariance matrices.

Another approach is to concentrate the loglikelihood function with respect
to Σ. As readers are asked to show in Exercise 12.24, the concentrated
loglikelihood function can be written as

− gn−−
2

(log 2π +1)+n log |detΓ |− n−
2

log
∣∣∣ 1−
n
(Y Γ −XB)>(Y Γ −XB)

∣∣∣ , (12.87)

which is the analog of (12.41) and (12.51). Expression (12.87) may be maxi-
mized directly with respect to B and Γ to yield B̂ML and Γ̂ML. This approach
may or may not be easier numerically than solving equations (12.85).
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The FIML estimator is not defined if the matrix (Y Γ − XB)>(Y Γ − XB)
that appears in (12.87) does not have full rank for all admissible values of B
and Γ, and this requires that n ≥ g +k. This result suggests that n may have
to be substantially greater than g + k if FIML is to have good finite-sample
properties; see Sargan (1975) and Brown (1981).

Comparison with Three-Stage Least Squares

We remarked at the beginning of this section that the FIML estimator is not
in general equal to the continuously updated 3SLS estimator. In order to
study the relationship between the two estimators, we write out explicitly the
estimating equations for 3SLS and compare them with (12.85), the estimating
equations for FIML. Equations (12.58) and (12.17) imply that the continu-
ously updated version of the 3SLS estimator is defined by the equations

X̂•>(Σ̂−1
3SLS ⊗ In)(y• −X•β̂3SLS

• ) = 0, and

Σ̂3SLS = 1−
n
(Y Γ̂3SLS −WB̂3SLS)>(Y Γ̂3SLS −WB̂3SLS).

(12.88)

The second of these equations has exactly the same form as the second equa-
tion of (12.85). The first equation is also very similar to the first equation
of (12.85), but there is one difference. In (12.85), the leftmost matrix on
the left-hand side of the first equation is the transpose of X•(B̂ML, Γ̂ML), of
which the typical diagonal block is [Zi Yi(B̂ML, Γ̂ML) ]. In contrast, the
corresponding matrix in the first equation of (12.88) is the transpose of X̂•,
of which the typical diagonal block is, from (12.57), [ Zi PWYi ].

In both cases, the matrix is an estimate of the matrix of optimal instruments
for equation i, that is, the matrix of the expectations of the explanatory
variables conditional on all predetermined information. It is clear from the
RRF (12.70) that this matrix is [Zi Yi(B, Γ ) ], where B and Γ are the true
parameters of the DGP. FIML uses the FIML estimates of B and Γ in place
of the true values, while 3SLS estimates Yi(B, Γ ) by PWYi, that is, by the
fitted values from estimation of the unrestricted reduced form (12.71). The
latter will, in general, be less efficient than the former.

If the restricted and unrestricted reduced forms are equivalent, as they will
be if all the equations of the system are just identified, then the estimating
equations (12.88) and (12.85) are also equivalent, and the 3SLS and FIML
estimators must coincide. In this case, as we saw in the last section, 3SLS
is also the same as 2SLS, that is, equation-by-equation IV estimation. Thus
all the estimators we have considered are identical in the just-identified case.
When there are overidentifying restrictions, and 3SLS is used without con-
tinuous updating, then the 3SLS estimators of B and Γ are replaced by the
2SLS ones in the second equation of (12.88). Solving this equation yields the
classical 3SLS estimator (12.78), which is evidently much easier to compute
than the FIML estimator.
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Our treatment of the relationship between 3SLS and FIML has been quite
brief. For much fuller treatments, see Hausman (1975) and Hendry (1976).

Inference based on FIML Estimates

Since the first equation of (12.85) is just an estimating equation for efficient
GMM, we can estimate the covariance matrix of β̂ML

• by the obvious estimate
of n−1 times the asymptotic covariance matrix (12.63), namely,

V̂ar(β̂ML
• ) =

(
X•>(B̂ML, Γ̂ML)(Σ̂−1

ML ⊗ In)X•(B̂ML, Γ̂ML)
)−1

. (12.89)

Notice that, if we evaluate the artificial regression (12.86) at the ML estimates,
then 1/s2 times the OLS covariance matrix is equal to this matrix.

There are two differences between the estimated covariance matrix for FIML
given in equation (12.89) and the estimated covariance matrix for the classical
3SLS estimator given in equation (12.79). The first is that they use different
estimates of Σ. The second is that, in (12.89), the endogenous variables in
X• are replaced by their fitted values, based on the FIML estimates, while in
(12.79) they are replaced by their projections on to S(W ).

If the model (12.54) is correctly specified, and the error terms really do satisfy
the assumptions we have made about them, then each row Vt of the matrix
of error terms V in the URF (12.71) must have properties like those of the
structural error terms Ut in (12.03). This implies that the error terms in every
equation of the URF must be homoskedastic and serially independent. This
suggests that the first step in testing the statistical assumptions on which
FIML estimation is based should always be to perform tests for heteroskedas-
ticity and serial correlation on the equations of the unrestricted reduced form;
suitable testing procedures were discussed in Sections 7.5 and 7.7. If there
is strong evidence that the Vt are not IID, then either at least one of the
structural equations is misspecified, or we need to make more complicated
assumptions about the error terms.

It is also important to test any overidentifying restrictions. In the case of
FIML, it is natural to use a likelihood ratio test rather than a Hansen-Sargan
test, as we suggested for 3SLS and SUR estimation. The number of restrictions
is, once again, gl − k, the difference between the number of coefficients in
the URF and the number in the structural model. The restricted value of
the loglikelihood function is the maximized value of either the loglikelihood
function (12.80) or the concentrated loglikelihood function (12.87), and the
unrestricted value is

− gn−−
2

(
log 2π + 1

)− n−
2

log
∣∣∣ 1−
n
(Y −WΠ̂)>(Y −WΠ̂)

∣∣∣ ,

where Π̂ denotes the matrix of OLS estimates of the parameters of the URF.
Twice the difference between the unrestricted and restricted values of the
loglikelihood function is asymptotically distributed as χ2(gl− k) if the model
is correctly specified and the overidentifying restrictions are satisfied.
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Limited-Information Maximum Likelihood

When a system of equations consists of just one structural equation, together
with one or more reduced-form equations, the FIML estimator of the struc-
tural equation reduces to a single-equation estimator. We can write the single
structural equation as

y = Zβ1 + Yβ2 + u, (12.90)

where we use a notation similar to that of (12.54), but without indices on the
variables and parameters. There are k1 elements in β1 and k2 in β2, with
k = k1 + k2. A complete simultaneous system can be formed by combining
(12.90) with the equations of the unrestricted reduced form for the endogenous
variables in the matrix Y . We write these equations as

Y = WΠ + V = ZΠ1 + W1Π2 + V , (12.91)

where the matrix W1 contains all the predetermined instruments that are
excluded from the matrix Z.

Since the equations of the unrestricted reduced form are just identified by
construction, the only equation of the system consisting of (12.90) and (12.91)
that can be overidentified is (12.90) itself. If it is also just identified, then, as
we have seen, 3SLS and FIML estimation both give exactly the same results
as IV estimation of (12.90) by itself. If equation (12.90) is overidentified, then
it turns out that 3SLS, without continuous updating, also gives the same
estimates of the parameters of (12.90) as IV estimation. Readers are asked to
prove this result in Exercise 12.27. However, continuously updated 3SLS and
ML give different, and possibly better, estimates in this case.

Maximum likelihood estimation of equation (12.90), implicitly treating it as
part of a system with (12.91), is called limited-information maximum like-
lihood, or LIML. The terminology “limited-information” refers to the fact
that no use is made of any overidentifying or cross-equation restrictions that
may apply to the parameters of the matrix Π of reduced-form coefficients.
Formally, LIML is FIML applied to a system in which only one equation is
overidentified. However, as we will see, LIML is in fact a single-equation
estimation method, in the same sense that 2SLS applied to (12.90) alone is
a single-equation method. The calculations necessary to see this are rather
complicated, and so here we will simply state the principal result, which dates
back as far as Anderson and Rubin (1949). A derivation of this result may be
found in Davidson and MacKinnon (1993, Chapter 18).

The Anderson-Rubin result is that the LIML estimate of β2 in equation
(12.90) is given by minimizing the ratio

κ ≡ (y − Yβ2)>MZ(y − Yβ2)
(y − Yβ2)>MW (y − Yβ2)

, (12.92)

where MZ projects off the predetermined variables included in (12.90), and
MW projects off all the instruments, both those in Z and those in W1. The
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value κ̂ that minimizes (12.92) may be found by a non-iterative procedure
that is discussed in the appendix. The maximized value of the loglikelihood
function is then

− gn−−
2

log(2π)− n−
2

log(κ̂)− n−
2

log |Y∗>MWY∗| , (12.93)

where Y∗ ≡ [y Y ].

If we write equation (12.90) as y = Xβ + u, then the LIML estimator of β is
defined by the estimating equations

X>(I− κ̂MW )(y −Xβ̂LIML) = 0, (12.94)

which can be solved explicitly once κ̂ has been computed. We find that

β̂LIML = (X>(I− κ̂MW )X)−1X>(I− κ̂MW )y. (12.95)

A suitable estimate of the covariance matrix of the LIML estimator is

V̂ar(β̂LIML) = σ̂2(X>(I− κ̂MW )X)−1, (12.96)

where
σ̂2 ≡ 1−

n
(y −Xβ̂LIML)>(y −Xβ̂LIML).

Given (12.96), confidence intervals, asymptotic t tests, and Wald tests can
readily be computed in the usual way.

Since W = [ Z W1 ] is the matrix containing all the instruments, we can
decompose MW as MZ −PMZW1 . This makes it clear that κ ≥ 1, since the
numerator of (12.92) cannot be smaller than the denominator. If equation
(12.90) is just identified, then, by the order condition, Y and W1 have the
same number of columns. In this case, it can be shown that the minimized
value of κ is actually equal to 1; see Exercise 12.28.

In the context of 2SLS estimation, we saw in Section 8.6 that the Hansen-
Sargan test can be used to test overidentifying restrictions. In the case of
LIML estimation, it is easier to test these restrictions by a likelihood ratio test.
As shown in Exercise 12.28, the maximized loglikelihood of the unconstrained
model for which the overidentifying restrictions of (12.90) are relaxed is the
same as expression (12.93) for the constrained model, but with κ = 1. Thus
the LR statistic for testing the overidentifying restrictions, which is twice
the difference between the unconstrained and constrained maxima, is simply
equal to n log κ̂. This test statistic was first proposed by Anderson and Rubin
(1950). Since there are l − k overidentifying restrictions, the LR statistic is
asymptotically distributed as χ2(l − k).
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K-class Estimators

In equation (12.94), we have written the LIML estimating equations in the
form of the estimating equations for a K-class estimator, following Theil
(1961). The K-class is the set of estimators defined by the estimating equa-
tions (12.94) with an arbitrary scalar K replacing κ̂. The LIML estimator is
thus a K-class estimator with K = κ̂. Similarly, the 2SLS estimator (12.60) is
a K-class estimator with K = 1, and the OLS estimator is a K-class estimator
with K = 0.

Numerous other K-class estimators have been proposed. It can be shown that,
under standard regularity conditions, these estimators are consistent whenever
the plim of K is 1. Thus 2SLS is consistent, and OLS is inconsistent. Since
n log κ̂ is asymptotically distributed as χ2(l − k) when the overidentifying
restrictions are satisfied, it must be the case that plim log κ̂ = 0, which implies
that plim κ̂ = 1. It follows that LIML is asymptotically equivalent to 2SLS. In
finite samples, however, the properties of LIML may be quite different from
those of 2SLS. The strangest feature of the LIML estimator is that it has no
finite moments. This implies that its density tends to have very thick tails,
as readers are asked to illustrate in Exercise 12.32. However, if we measure
bias by comparing the median of the estimator with the true value, the LIML
estimator is generally much less biased than the 2SLS estimator.

Fuller (1977) has proposed a modified LIML estimator that sets K equal to
κ̂ − α/(n − k), where α is a positive constant that must be chosen by the
investigator. One good choice is α = 1, since it yields estimates that are
approximately unbiased. In contrast to the LIML estimator, which has no
finite moments, Fuller’s modified estimator has all moments finite provided
the sample size is large enough. Mariano (2001) provides a recent summary
of the finite-sample properties of LIML, 2SLS, and other K-class estimators.

Invariance of ML Estimators

One important feature of the FIML and LIML estimators is that they are
invariant to any reparametrization of the model. This is actually a general
property of all ML estimators, which was explored in Exercise 10.14. Since
simultaneous equations systems can be parametrized in many different ways,
this is a useful property for these estimators to have. It means that two
investigators using the same data set will obtain the same estimates even if
they employ different parametrizations.

As an example, consider the two-equation demand-supply model that was first
discussed in Section 8.2:

qt = γd pt + Xd
t βd + ud

t (12.97)

qt = γs pt + Xs
t βs + us

t . (12.98)

As the notation indicates, equation (12.97) is a demand function, and equation
(12.98) is a supply function. In this system, pt and qt denote the price and
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quantity of some commodity in period t, which may well be in logarithms, Xd
t

and Xs
t are row vectors of exogenous or predetermined variables, βd and βs

are the corresponding vectors of parameters, and γd and γs are the slopes of
the demand and supply functions, which can be interpreted as elasticities if
pt and qt are in logarithms.

Now suppose that we reparametrize the supply function as

pt = γ′sqt + Xs
t β′s + ut

′s, (12.99)

where γ′s = 1/γs and β′s = −βs/γs. The invariance property of maximum like-
lihood implies that, if we first use FIML to estimate the system consisting of
equations (12.97) and (12.98) and then use it to estimate the system consist-
ing of equations (12.97) and (12.99), we will obtain exactly the same estimates
of the parameters of equation (12.97). Moreover, the estimated parameters of
equations (12.98) and (12.99) will bear precisely the same relationship as the
true parameters. That is,

γ̂′s = 1/γ̂s and β̂′s = −β̂s/γ̂s. (12.100)

If we use LIML to estimate equations (12.98) and (12.99), the two sets of
LIML estimates will likewise satisfy conditions (12.100).

The invariance property of LIML and FIML is not shared by 2SLS, 3SLS, or
any other GMM estimator. If, for example, we use 3SLS to estimate the two
versions of this system of equations, the two sets of estimates will not satisfy
conditions (12.100); see Exercise 12.31.

12.6 Nonlinear Simultaneous Equations Models

As we saw in Section 12.3, it is fairly straightforward to extend the SUR
model so as to allow for the possibility of nonlinearity. However, additional
complications can arise with nonlinear simultaneous equations models. With
an SUR system, the right-hand sides of the several regressions do not depend
on current endogenous variables, but this is not true of a simultaneous system.
If endogenous variables enter nonlinearly in such a system, then, since it is
not always possible to find solutions to nonlinear equations in closed form, it
may be infeasible to set up a reduced form in which each endogenous variable
is expressed as a function only of predetermined variables and parameters.

Feasible Efficient GMM

The easiest way to take account of all interesting cases is to work in terms of
zero functions and treat the nonlinear simultaneous system by the methods
we developed in Section 9.5 for nonlinear GMM. The main extension needed
for a simultaneous system is just that each elementary zero function depends,
in general, on a vector of endogenous variables, rather than on just one.
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Suppose that there are g equations that, for each observation, simultaneously
determine g endogenous variables, and suppose further that these equations
can be written as

fti(Yt, θ) = uti, t = 1, . . . , n, i = 1, . . . , g.

The functions fti(·) depend implicitly on predetermined explanatory variables.
They are, in general, nonlinear functions of both the 1 × g vector Yt that
contains the endogenous variables for observation t and the k --vector θ of
model parameters. The uti are error terms with mean zero. In some cases,
we may be ready to assume that the uti satisfy the conditions (12.02) that we
have imposed on the other models considered in this chapter.

It is clear that the fti are elementary zero functions. We may stack them
in the way we stacked the dependent variables of an SUR system. First, we
define the n--vectors fi(Y , θ), i = 1, . . . , g, so that the tth element of fi(Y , θ)
is fti(Yt, θ), where Y is the n × g matrix of which the tth row is Yt. Then
we stack the fi vertically to construct the gn × 1 vector f•(Y ,θ). Under
assumptions (12.02), the covariance matrix of this stacked vector is Σ ⊗ In.

According to the theory developed in Section 9.5, the optimal instruments
for efficient GMM are given in terms of the matrix F̄ (θ) defined in equation
(9.85). If, as before, we define the g×g matrix Ψ such that Ψ Ψ>= Σ−1, then
the matrix Ψ of (9.85) becomes Ψ ⊗ In in the present case. The matrix F (θ)
of that equation becomes a gn× k matrix F•(Y ,θ), of which the tith element
is the derivative of the tth element of f•(Y , θ) with respect to θi, the ith ele-
ment of θ. Under assumptions (12.02), the matrix F̄• needed for the optimal
estimating equations is just the gn × k matrix of which the tth row is the
expectation of the tth row of F• conditional on all information predetermined
at time t. The estimating equations we need correspond to equations (9.82).
However, as discussed in the paragraph following (9.82), we must use F̄•(θ)
instead of F•(θ) in formulating the optimal instruments. We obtain

F̄•>(θ)(Σ−1 ⊗ In)f•(Y ,θ) = 0. (12.101)

Although the notation differs slightly, the only important difference between
(9.82) and (12.101) is that the latter equations involve F̄•(θ) instead of F•(θ).
There is also no factor of n−1 in (12.101), an omission that evidently has no
effect on the solution.

It is precisely in the construction of the matrix F̄• that difficulties may arise.
Since there may be no analytical expression for some or all of the endogenous
variables, there may be no direct way of computing or even estimating F̄•.
In that case, we may proceed as in Section 9.5 by selecting a set of l ≥ k
instruments, that we group into the n × l matrix W. We then replace the
estimating equations (12.101) by

F•>(Y ,θ)(Σ−1 ⊗ PW )f•(Y ,θ) = 0, (12.102)
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which closely resemble equations (12.60) for the linear case. Equivalently, we
may minimize the criterion function

f•>(Y ,θ)(Σ−1 ⊗ PW )f•(Y , θ), (12.103)

which is comparable to expression (12.61) for the linear case. The first-order
conditions for minimizing (12.103) with respect to θ are equivalent to the
estimating equations (12.102).

If, as will usually be the case, the matrix Σ is not known, then we must
first obtain preliminary consistent estimates, say θ́. We might do this by
solving the estimating equations (12.102) or minimizing the criterion func-
tion (12.103) with Σ replaced by an identity matrix. Alternatively, if cross-
equation restrictions are not needed for identification, we might estimate each
equation separately by the methods of Section 9.5. We can then use these
preliminary estimates to form an estimate of Σ by the formula

Σ́ = 1−
n




f1
>(Y , θ́)

...
fg
>(Y , θ́)


[f1(Y , θ́) · · · fg(Y , θ́) ] .

This estimate can then be used in either (12.102) or (12.103) to obtain more
efficient estimates. We can either stop after one round or iterate to obtain
continuously updated estimates.

The one-round procedure yields a generalization of the nonlinear instrumental
variables, or NLIV, estimator θ̂NLIV, which we first encountered in Section 8.9.
It was originally proposed by Jorgenson and Laffont (1974). In Exercise 12.33,
readers are asked to write down the first-order conditions that define the
estimator θ̂NLIV, along with the usual estimate of its covariance matrix.

The NLIV estimator is sometimes called nonlinear three-stage least squares,
or NL3SLS. We prefer not to do so, because that name is quite misleading.
For the reasons discussed in Section 8.9 in connection with nonlinear two-
stage least squares, we never actually replace endogenous variables by their
fitted values from reduced-form regressions. Moreover, there are really just
two stages, the first in which preliminary consistent estimates are obtained,
the second in which (12.102) or (12.103) is used with the estimated Σ.

Nonlinear FIML Estimation

The other full-system estimation method that is widely used is nonlinear
FIML. In order to derive the loglikelihood function, it is convenient to stack
the vectors fi(Y , θ) horizontally. Let ht(Yt,θ) be a 1×g row vector containing
the elements ft1, . . . , ftg. Then the model to be estimated can be written as

ht(Yt,θ) = Ut, Ut ∼ NID(0, Σ). (12.104)
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The row vector Ut contains the error terms uti, i = 1, . . . , g, which are now
assumed to be multivariate normal. In order to obtain the density of Yt,
we start from the density of Ut, replace Ut by ht(Yt, θ), and multiply by
the Jacobian factor |detJt|, where Jt ≡ ∂ht(θ)/∂Yt is the g × g matrix of
derivatives of ht with respect to the elements of Yt. The result is

(2π)−g/2 |detJt||Σ|−1/2 exp
(
− 1−

2
ht(Yt, θ)Σ−1ht

>(Yt,θ)
)
.

Taking the logarithm of this, summing it over all observations, and then con-
centrating the result with respect to Σ, yields the concentrated loglikelihood
function for the model (12.104):

− gn−−
2

(log 2π + 1) +
n∑

t=1

log |detJt| − n−
2

log
∣∣∣ 1−
n

n∑
t=1

ht
>(Yt, θ)ht(Yt, θ)

∣∣∣.

The main difference between this function and its counterpart for the linear
case, expression (12.87), is that the Jacobian matrices Jt are in general dif-
ferent for each observation. Evaluating all these determinants could well be
expensive when n is large and g is not very small.

Another difference between the linear and nonlinear cases is that, in the lat-
ter, FIML and NLIV are not even asymptotically equivalent in general. In
fact, if the error terms are not normally distributed, the FIML estimator may
actually be inconsistent; see Phillips (1982). If the errors are indeed normal,
then, for the usual reasons, the FIML estimator is more efficient asymptot-
ically, although its efficiency may come at a price in terms of computational
complexity. More detailed treatments of nonlinear FIML estimation may be
found in Amemiya (1985, Chapter 8) and Gallant (1987, Chapter 6).

12.7 Final Remarks

Notation is a bugbear with multivariate regression models. These models
can be written in many equivalent ways, and notation that is well suited to
one estimation method may not be convenient for another. Once the nota-
tional hurdle has been crossed, we have seen that it is not excessively difficult
to estimate multivariate regression models, including simultaneous equations
models, using a variety of familiar techniques. All the procedures we have
discussed use some combination of (feasible) generalized least squares, in-
strumental variables, GMM, and maximum likelihood. Except in the case of
nonlinear simultaneous equations models, there is always a technique based on
feasible GLS and/or instrumental variables that is asymptotically equivalent
to maximum likelihood.
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12.8 Appendix: Detailed Results on FIML and LIML

This appendix derives several results on FIML and LIML estimation that were
too technical to include in the main text.

First-Order Conditions for FIML

For the purpose of obtaining the first-order conditions (12.83), it is convenient
to write the loglikelihood function (12.80) in terms of the restricted reduced
form (12.70). In the RRF, the yi are stacked horizontally. However, if we
are to use the same approach as for the SUR model, we must stack them
vertically. The ith column of (12.70) can be written as

yi = WBγi + vi, (12.105)

where the g --vector γi is the ith column of Γ−1, and vi is the ith column of V .
Then equations (12.105) can be written as

y• = (Ig ⊗WB)γ• + v•

= (Ig ⊗W )π• + v•

= W•π• + v•.

(12.106)

Here the g2--vector γ• contains the γi stacked vertically, the gn--vector v•
contains the vi stacked vertically, the gl× gn matrix W• denotes Ig⊗W, and
the gl--vector π• contains the πi stacked vertically. The πi are the columns
of the matrix Π, defined here as BΓ−1, as in the restricted reduced form.

By rewriting the last equation in (12.106) so that v• is a function of y•, we
obtain the transformation that gives v• in terms of y•. Exactly as with the
transformation (12.31), the determinant of the Jacobian of this transformation
is 1. Thus, in order to obtain the joint density of y•, we simply have to find
the density of the vector v• and then replace v• by y• −W•π•.

Since we have assumed that v• is multivariate normal, and we know that its
expectation is a zero vector, the only thing we need to write down its density
is its covariance matrix. Recall that V = UΓ−1, where U is the matrix of
structural form errors. Thus

vi = Uγi =
g∑

j=1

ujγ
ji, i = 1, . . . , g,

where γ ji is the jith element of Γ−1. By stacking these equations vertically,
it is not hard to see that

v• =
(
(Γ>)−1 ⊗ In

)
u•.
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Since the covariance matrix of u• is assumed to be Σ⊗ In, it follows that the
covariance matrix of v• can be written as

Var(v•) = E(v•v•>) =
(
(Γ>)−1 ⊗ In

)
(Σ ⊗ In)(Γ−1 ⊗ In)

= (Γ>)−1ΣΓ−1 ⊗ In.

For some of the following calculations, it will be convenient to denote the
matrix (Γ>)−1ΣΓ−1 by Ω.

Using this notation, the density of y• is (2π)−gn/2 times

|Ω ⊗ In|−1/2 exp
(− 1−

2
(y• −W•π•)>(Ω−1 ⊗ In)(y• −W•π•)

)
.

This may be compared with (12.32), the analogous expression for a linear SUR
system. It follows that the loglikelihood function for the linear simultaneous
equations model can be written as

− gn−−
2

log 2π − n−
2

log |Ω| − 1−
2
(y• −W•π•)>(Ω−1 ⊗ In)(y• −W•π•). (12.107)

This expression is deceptively simple, because the vector π• depends in a
complicated way on the vector of structural parameters β•. However, since
(12.107) depends on Ω in precisely the same way in which expression (12.33),
the loglikelihood function for a linear SUR system, depends on Σ, the ML es-
timator of Ω must have exactly the same form as (12.36).

It is of interest to compare the loglikelihood functions (12.107) and (12.80).
A little algebra, which is detailed in Exercise 12.23, shows that

(Γ>⊗ In)(y• −W•π•) = y• −X•β•, (12.108)

which is the vector of residuals from the structural form expressed as in (12.55)
in stacked form. Thus the quadratic form that appears in (12.107) can also
be written as

(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•). (12.109)

Now consider the second term in (12.107). By the definition of Ω and the
properties of determinants, this term is

− n−
2

log |Ω| = − n−
2

log
(| detΓ |−2|Σ|) = n log | detΓ | − n−

2
log |Σ|. (12.110)

If we start with (12.107) and replace the quadratic form by expression (12.109)
and the second term by the rightmost expression in (12.110), we obtain the
loglikelihood function (12.80). Thus we see that these two ways of writing the
loglikelihood function are indeed equivalent.

In order to write down the ML estimator of Ω, we define the n × g matrix
V (β•) to have ith column yi − WBγi, which is just the ith block of the
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vector y• −W•π•. It follows that V (β•) = Y −WBΓ−1. When evaluated
at the ML estimator β̂ML

• , this is just the ML estimator of the errors of the
RRF (12.70). By analogy with (12.36), we find that

Ω̂ML = 1−
n
V>(β̂ML

• )V (β̂ML
• ).

We are entitled to write V as a function of β• here because, as we saw when
defining the RRF, the matrices B and Γ on which (12.107) depends through
the vector W•π• are uniquely determined by the structural parameters in the
vector β•. Conversely, if we obtain ML estimators of the matrices B and Γ ,
these uniquely determine the ML estimator of β•.

Only the last term of the loglikelihood function (12.107) depends on B and Γ.
Therefore, conditional on Σ, the maximization of (12.107) reduces as usual
to the minimization of a quadratic form, which in this case is

(y• −W•π•)>(Ω−1 ⊗ In)(y• −W•π•). (12.111)

From the definition of Ω and the properties (12.08) of Kronecker products,
we observe that Ω−1 ⊗ In = (Γ ⊗ In)(Σ−1 ⊗ In)(Γ>⊗ In).

From the first equation in (12.106), we can see that the quadratic form
(12.111) can also be written as

(
y• − (Ig ⊗WB)γ•

)>(Ω−1 ⊗ In)
(
y• − (Ig ⊗WB)γ•

)
.

From this expression, we see that the partial derivatives of (12.107) with
respect to the g2 elements of γ• are the g2 elements of the vector

(Ig ⊗B>W>)(Ω−1 ⊗ In)
(
y• − (Ig ⊗WB)γ•

)
. (12.112)

The conditions we seek are not given by simply equating the elements of this
vector to zero, because many elements of the matrix Γ are restricted to be
equal to 0 or 1. The restrictions translate into complicated conditions on the
elements of γ• which, fortunately, we need not concern ourselves with. Rather,
we compute the derivatives of γ• with respect to any element γij of Γ which is
not restricted, and then use the chain rule to obtain the derivative of (12.107)
with respect to γij . We can then quite properly equate the resulting derivative
to zero in order to obtain a first-order condition.

The vectors that are stacked in γ• are the columns of Γ−1, and it is therefore
not hard to see that (Γ>⊗ Ig)γ• is a vector of g2 components that are all
either 0 or 1, and thus independent of the elements of Γ. Differentiating this
relation with respect to γij thus gives

(Eji ⊗ Ig)γ• + (Γ>⊗ Ig)
∂γ•

∂γij
= 0,
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where Eji is a g × g matrix of which the jith element is 1 and the other
elements are 0. Consequently, the derivative of γ• with respect to γij is the
g2--vector

−(
(Γ>)−1 ⊗ Ig

)
(Eji ⊗ Ig)γ•.

The derivative of expression (12.107) with respect to γij is the scalar product
of this vector with the vector (12.112), that is, the negative of

γ•>(Eij ⊗ Ig)(Γ−1 ⊗ Ig)(Ig ⊗B>W>)(Ω−1 ⊗ In)(y• −W•π•)

= γ•>(Eij ⊗ Ig)(Γ−1 ⊗B>W>)(Γ ⊗ In)(Σ−1 ⊗ In)(y• −X•β•)

= γ•>(Eij ⊗B>W>)(Σ−1 ⊗ In)(y• −X•β•). (12.113)

The second line above makes use of the expression of Ω in terms of Γ and Σ,
and of the result (12.108). It is straightforward to see that (12.113) is one
row of the left-hand side of (12.83), which therefore contains all the first-order
conditions with respect to the unrestricted elements of Γ .

Eigenvalues and Eigenvectors

Before we can discuss LIML estimation, we need to introduce a few more
concepts of matrix algebra. A scalar λ is said to be an eigenvalue (also called
a characteristic root or a latent root) of a matrix A if there exists a nonzero
vector x such that

Ax = λx. (12.114)

Thus the action of A on x produces a vector with the same direction as x, but
a different length unless λ = 1. The vector x is called the eigenvector that
corresponds to the eigenvalue λ. Although these concepts are defined quite
generally, we will restrict our attention to the eigenvalues and eigenvectors of
real symmetric matrices.

Equation (12.114) implies that

(A− λI)x = 0, (12.115)

from which we conclude that the matrix A− λI is singular. Its determinant,
|A − λI|, is therefore equal to zero. It can be shown that this determinant
is a polynomial in λ. The degree of the polynomial is n if A is n × n. The
fundamental theorem of algebra tells us that such a polynomial has n complex
roots, say λ1, . . . , λn. To each λi there must correspond an eigenvector xi.
This eigenvector is determined only up to a scale factor, because if xi is an
eigenvector corresponding to λi, then so is αxi for any nonzero scalar α. The
eigenvector xi does not necessarily have real elements if λi itself is not real.

If A is a real symmetric matrix, it can be shown that the eigenvalues λi are
all real and that the eigenvectors can be chosen to be real as well. If A is also
a positive definite matrix, then all its eigenvalues are positive. This follows
from the facts that x>Ax = λx>x and that both x>x and x>Ax must be
positive scalars when A is positive definite.
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The eigenvectors of a real symmetric matrix can be chosen to be mutually
orthogonal. Consider any two eigenvectors xi and xj that correspond to two
distinct eigenvalues λi and λj . We see that

λixj
>xi = xj

>Axi = (Axj)>xi = λj xj
>xi.

But this is impossible unless xj
>xi = 0. Thus we conclude that xi and xj

are necessarily orthogonal. If not all the eigenvalues are distinct, then two (or
more) eigenvectors may correspond to one and the same eigenvalue. When
that happens, these two eigenvectors span a space that is orthogonal to all
other eigenvalues by the reasoning just given. Since any linear combination
of the two eigenvectors will also be an eigenvector corresponding to the one
eigenvalue, one may choose an orthogonal set of them. Thus, whether or not
all the eigenvalues are distinct, eigenvectors may be chosen to be orthonormal,
by which we mean that they are mutually orthogonal and each has norm equal
to 1. When the eigenvectors of a real symmetric matrix A are chosen in this
way, they provide an orthonormal basis for S(A).

Let U ≡ [ x1 · · · xn ] be a matrix the columns of which are an orthonormal
set of eigenvectors of A, corresponding to the eigenvalues λi, i = 1, . . . , n.
Then we can write the eigenvalue relationship (12.114) for all the eigenvalues
at once as

AU = UΛ, (12.116)

where Λ is a diagonal matrix with λi as its ith diagonal element. The ith

column of AU is Axi, and the ith column of UΛ is λixi. Since the columns of
U are orthonormal, we find that U>U = I, which implies that U>= U−1. A
matrix with this property is said to be an orthogonal matrix. Postmultiplying
(12.116) by U> gives

A = UΛU>. (12.117)

Taking determinants of both sides of (12.117), we obtain

|A| = |U ||U>||Λ| = |U ||U−1||Λ| = |Λ| =
n∏

i=1

λi,

from which we may deduce the important result that the determinant of a
symmetric matrix is the product of its eigenvalues. In fact, this result holds
for nonsymmetric matrices as well.

LIML Estimation

Consider the system of equations consisting of the structural equation (12.90)
and the reduced form equations (12.91). The matrix of coefficients of the
endogenous variables in this system of equations is

[
1 0

−β2 I

]
.
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Because this matrix is triangular, its determinant is simply the product of
the elements on the principal diagonal, which is 1. Therefore, there is no
Jacobian term in the loglikelihood function (12.80) for such a system, and the
ML estimates may be obtained by minimizing the determinant

∣∣(Y −XBΓ−1)>(Y −XBΓ−1)
∣∣ =

∣∣(YΓ −XB)>(YΓ −XB)
∣∣.

It can, with considerable effort, be shown that minimizing this determinant
is equivalent to minimizing the ratio

κ ≡ (y − Yβ2)>MZ(y − Yβ2)
(y − Yβ2)>MW (y − Yβ2)

=
γ>Y∗>MZY∗γ
γ>Y∗>MWY∗γ

, (12.118)

where Y∗ ≡ [y Y ] and γ = [1 .... −β2]; see Davidson and MacKinnon (1993,
Chapter 18).

It is possible to minimize κ without doing any sort of nonlinear optimization.
The first-order conditions obtained by differentiating the rightmost expression
in (12.118) with respect to γ are

2Y ∗>MZY ∗γ (γ>Y ∗>MWY ∗γ)− 2Y ∗>MWY ∗γ (γ>Y ∗>MZY ∗γ) = 0.

If we divide both sides by 2γ>Y ∗>MWY ∗γ, this becomes

Y ∗>MZY ∗γ − κY ∗>MWY ∗γ = 0. (12.119)

An equivalent set of first-order conditions can be obtained by premultiply-
ing (12.119) by (Y ∗>MWY ∗)−1/2 and inserting that factor multiplied by its
inverse before γ. After some rearrangement, this yields

(
(Y ∗>MWY ∗)−1/2Y ∗>MZY ∗(Y ∗>MWY ∗)−1/2 − κI

)
γ∗ = 0,

where γ∗ ≡ (Y ∗>MWY ∗)1/2γ. This set of first-order conditions now has
the form of a standard eigenvalue-eigenvector problem for a real symmetric
matrix; see equation (12.115). Thus it is clear that κ̂ is an eigenvalue of the
matrix

(Y ∗>MWY ∗)−1/2Y ∗>MZY ∗(Y ∗>MWY ∗)−1/2, (12.120)

which depends only on observable data, and not on unknown parameters. In
fact, κ̂ must be the smallest eigenvalue, because it is the smallest possible
value of the ratio (12.118). Given κ̂, we can use equations (12.95) to compute
the LIML estimates. It is worthy of note that, if there is only one endogenous
variable in the matrix Y , then the determinantal equation that determines the
eigenvalues of (12.120) is just a quadratic equation, of which the smaller root
is κ̂, which can therefore be expressed in this case as a closed-form function
of the data.
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12.9 Exercises

12.1 Show that the gn × gn covariance matrix Σ• defined in equation (12.07) is
positive definite if and only if the g× g matrix Σ used to define it is positive
definite.

12.2 Prove the first result of equations (12.08) for an arbitrary p × q matrix A
and an arbitrary r × s matrix B. Prove the second result for A and B as
above, and for C andD arbitrary q×t and s×u matrices, respectively. Prove
the third result in (12.08) for an arbitrary nonsingular p × p matrix A and
nonsingular r × r matrix B.

Give details of the interchanges of rows and columns needed to convert A⊗B
into B ⊗A, where A is p× q and B is r × s.

12.3 If B is positive definite, show that I⊗B is also positive definite, where I is an
identity matrix of arbitrary dimension. What about B ⊗ I? If A is another
positive definite matrix, is it the case that B ⊗A is positive definite?

12.4 Show explicitly that expression (12.06) provides the OLS estimates of the
parameters of all the equations of the SUR system.

12.5 Show explicitly that expression (12.14) for the GLS estimator of the para-
meters of an SUR system follows from the estimating equations (12.13).

12.6 Show that, for any two vectors a1 and a2 in E2, the quantity ‖a1‖2‖M1a2‖2,
where M1 is the orthogonal projection on to the orthogonal complement
of a1 in E2, is equal to the square of a11a22 − a12a21, where aij denotes the
ith element of aj , for i, j = 1, 2.

12.7 Using only the properties of determinants listed at the end of the subsection on
determinants in Section 12.2, show that the determinant of a positive definite
matrix B is positive. (Hint: write B = AA>.) Show further that, if B is
positive semidefinite, without being positive definite, then its determinant
must be zero.

12.8 Suppose that m independent random variables, zi, each of which is distributed
as N(0, 1), are grouped into an m--vector z. Let x = µ + Az, where µ is
an m--vector and A is a nonsingular m×m matrix, and let Ω ≡ AA>. Show
that the mean of the vector x is µ and its covariance matrix is Ω. Then show
that the density of x is

(2π)−m/2 |Ω|−1/2 exp(− 1−
2
(x− µ)>Ω−1(x− µ)). (12.121)

This extends the result of Exercise 4.5 for the bivariate normal density to the
multivariate normal density. Hints: Remember that the joint density of m
independent random variables is equal to the product of their densities, and
use the result (12.29).

12.9 Consider a univariate linear regression model in which the regressors may
include lags of the dependent variable. Let y and u denote, respectively, the
vectors of observations on the dependent variable and the error terms, and
assume that u ∼ N(0, σ2In). Show that, even though the Jacobian matrix of
the transformation (12.31) is not an identity matrix, the determinant of the
Jacobian is unity. Then write down the loglikelihood function for this model.
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For simplicity, assume that any lagged values of the dependent variable prior
to the sample period are observed.

12.10 Consider a multivariate linear regression model of the form (12.28) in which
the regressors may include lags of the dependent variables and the error terms
are normally distributed. By ordering the data appropriately, show that the
determinant of the Jacobian of the transformation (12.31) is equal to unity.
Then explain why this implies that the loglikelihood function, conditional on
pre-sample observations, can be written as (12.33).

12.11 Let A and B be square matrices, of dimensions p× p and q× q, respectively.
Use the properties of determinants given in Section 12.2 to show that the
determinant of A⊗B is equal to that of B ⊗A.

Use this result, along with any other needed properties of determinants given
in Section 12.2, to show that the determinant of Σ ⊗ In is |Σ|n.

12.12 Verify that the moment conditions (12.45) and the estimating equations
(12.46) are equivalent. Show also that expressions (12.47) and (12.48) for
the covariance matrix estimator for the nonlinear SUR model are equivalent.
Explain how (12.48) is related to the expression (12.15) that corresponds to
it in the linear case.

12.13 The linear expenditure system is a system of demand equations that can be
written as

si =
γipi

E
+ αi

(E −∑m+1
j=1 pjγj

E

)
. (12.122)

Here, si, for i = 1, . . . , m, is the share of total expenditure E spent on com-
modity i conditional on E and the prices pi, for i = 1, . . . , m+1. The equation
indexed by i = m+1 is omitted as redundant, because the sum of the expen-
diture shares spent on all commodities is necessarily equal to 1. The model
parameters are the αi, i = 1, . . . , m, the γi, i = 1, . . . , m + 1, and the m×m
contemporaneous covariance matrix Σ.

Express the system (12.122) as a linear SUR system by use of a suitable
nonlinear reparametrization. The equations of the resulting system will be
subject to a set of cross-equation restrictions. Express these restrictions in
terms of the new parameters, and then set up a GNR in the manner of
Section 12.3 that allows one to obtain restricted estimates of the αi and γi.

12.14 Show that the estimating equations (12.60) are equivalent to the estimating
equations (12.58).

12.15 Show that the estimating equations (12.65) are equivalent to the equations
that correspond to the equation-by-equation IV (or 2SLS) estimator for all
the equations of the system jointly.

12.16 The k × k matrix X•>(Σ−1 ⊗PW )X• given in expression (12.66) is positive
semidefinite by construction. Show this property explicitly by expressing the
matrix in the form A>A, where A is a matrix with k columns and at least
k rows that should depend on a g × g nonsingular matrix Ψ which satisfies
the relation ΨΨ>= Σ−1.

Show that a positive semidefinite matrix expressed in the form A>A is positive
definite if and only ifA has full column rank. In the present case, the matrixA
fails to have full column rank if and only if there exists a k --vector β, different
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from zero, such that Aβ = 0. Since k =
∑g

i=1 ki, we may write the vector
β as [β1

.... . . .
.... βg], where βi is a ki--vector for i = 1, . . . , g. Show that there

exists a nonzero β such that Aβ = 0 if and only if, for at least one i, there
is a nonzero βi such that PWXiβi = 0, that is, if PWXi does not have full
column rank.

Show that, if PWXi has full column rank, then there exists a unique solution
of the estimating equations (12.60) for the parameters βi of equation i.

12.17 Consider the linear simultaneous equations model

yt1 = β11 + β21Xt2 + β31Xt3 + γ21yt2 + ut1

yt2 = β12 + β22Xt2 + β42Xt4 + β52Xt5 + γ21yt1 + ut2.
(12.123)

If this model is written in the matrix notation of (12.68), precisely what are
the matrices B and Γ equal to?

12.18 Demonstrate that, if each equation in the linear simultaneous equations model
(12.54) is just identified, in the sense that the order condition for identification
is satisfied as an equality, then the number of restrictions on the elements of
the matrices Γ and B of the restricted reduced form (12.70) is exactly g2. In
other words, demonstrate that the restricted and unrestricted reduced forms
have the same number of parameters in this case.

12.19 Show that all terms that depend on the matrix V of error terms in the finite-
sample expression for n−1X1

>PWX1 obtained from equation (12.76) tend to
zero as n →∞.

12.20 Consider the following p× q partitioned matrix

A =

[
Im A12

O A22

]
,

where m < min(p, q). Show that A has full column rank if and only if A22

has full column rank. Hint: In order to do so, one can show that the existence
of a nonzero q --vector x such that Ax = 0 implies the existence of a nonzero
(q −m)--vector x2 such that A22x2 = 0, and vice versa.

12.21 Consider equation (12.72), the first structural equation of the linear simultan-
eous system (12.68), with the variables ordered as described in the discussion
of the asymptotic identification of this equation. Let the matrices Γ and B
of the full system (12.68) be partitioned as follows:

B =

[
β11 B12

0 B22

]
and Γ =




1 Γ02

−β21 Γ12

0 Γ22


,

where β11 is a k11--vector, B12 and B22 are, respectively, k11 × (g − 1) and
(l − k11)× (g − 1) matrices, β21 is a k21--vector, and Γ02, Γ12, and Γ22 are,
respectively, 1× (g − 1), k21 × (g − 1), and (g − k21 − 1)× (g − 1) matrices.
Check that the restrictions imposed in this partitioning correspond correctly
to the structure of (12.72).
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Let Γ−1 be partitioned as

Γ−1 =

[
γ00 Γ 01 Γ 02

γ10 Γ 11 Γ 12

]
,

where the rows of Γ−1 are partitioned in the same pattern as the columns
of Γ, and vice versa. Show that Γ22Γ

12 is an identity matrix, and that
Γ22Γ

11 is a zero matrix, and specify the dimensions of these matrices. Show
also that the matrix [Γ 11 Γ 12] is square and nonsingular.

12.22 It was shown in Section 12.4 that the rank condition for the asymptotic iden-
tification of equation (12.72) is that the (l − k11) × k21 matrix Π21 of the
unrestricted reduced form (12.73) should have full column rank. Show that,
in terms of the structural parameters, Π21 is equal to B22Γ

11. Then consider
the matrix [

Γ22

B22

]
, (12.124)

and show, by postmultiplying it by the nonsingular matrix [Γ 11 Γ 12], that
it is of full column rank g − 1 if and only if B22Γ

11 is of full column rank.
Conclude that the rank condition for the asymptotic identification of (12.72)
is that (12.124) should have full column rank.

12.23 Consider the expression (Γ>⊗ In)y•, in the notation of Section 12.5. Show
that it is equal to a gn--vector that can be written as



Y γ1

...
Y γm


,

where γi, i = 1, . . . , g, is the ith column of Γ .

Show similarly that (Γ>⊗ In)(Ig ⊗WB)γ• is equal to a gn--vector that can
be written as 


Wb1

...
Wbm


,

where bi is the ith column of B.

Using these results, demonstrate that (Γ>⊗ In)(y•− (Ig ⊗WB)γ•) is equal
to y• −X•β•. Explain why this proves the result (12.108).

12.24 By expressing the loglikelihood function (12.107) for the linear simultaneous
equations model in terms of Σ rather than Ω, show that concentrating the
resulting function with respect to Σ yields the concentrated loglikelihood
function (12.87).

12.25 Write down the concentrated loglikelihood function for the restricted reduced
form (12.70) as a special case of (12.51). Then show that this concentrated
loglikelihood function is identical to expression (12.87).
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12.26 In the model (12.123), what is the identification status of each of the two
equations? How would your answer change if an additional regressor, Xt6,
were added to the first equation only, to the second equation only, or to both
equations?

12.27 Consider the linear simultaneous system of equations (12.90) and (12.91).
Write down the estimating equations for the 3SLS estimator for the system,
and show that they define the same estimator of the parameters of (12.90) as
the IV estimator applied to that equation alone with instruments W.

State and prove the analogous result for an SUR system in which only one
equation is overidentified.

12.28 In the just-identified case of LIML estimation, for which, in the notation
of (12.91), the number of excluded instruments in the matrix W1 is equal to
the number of included endogenous variables in the matrix Y , show that the
minimized value of the ratio κ given by (12.92) is equal to the global minimum
of 1. Show further that the vector of estimates β̂2 that attains this minimum
is the IV, or 2SLS, estimator of β2 for equation (12.90) with instruments W.

In the overidentified case of LIML estimation, explicitly formulate a model
containing the model consisting of (12.90) and (12.91) as a special case, with
the overidentifying restrictions relaxed. Show that the maximized loglikeli-
hood for this unconstrained model is the same function of the data as for the
constrained model, but with κ̂ replaced by 1.

12.29 Consider the demand-supply model

qt = β11 + β21Xt2 + β31Xt3 + γ21pt + ut1

qt = β12 + β42Xt4 + β52Xt5 + γ22pt + ut2,
(12.125)

where qt is the log of quantity, pt is the log of price, Xt2 is the log of income,
Xt3 is a dummy variable that accounts for regular demand shifts, and Xt4 and
Xt5 are the prices of inputs. Thus the first equation of (12.125) is a demand
function and the second equation is a supply function.

For this model, precisely what is the vector β• that was introduced in equation
(12.55)? What are the matrices B and Γ that were introduced in equation
(12.68)? How many overidentifying restrictions are there?

12.30 The file demand-supply.data contains 120 observations generated by the model
(12.125). Estimate this model by 2SLS, LIML, 3SLS, and FIML. In each case,
test the overidentifying restrictions, either for each equation individually or
for the whole system, as appropriate.

12.31 The second equation of (12.125) can be rewritten as

pt = β′12 + β′42Xt4 + β′52Xt5 + γ′22qt + u′t2. (12.126)

Estimate the system that consists of the first equation of (12.125) and equa-
tion (12.126) by 3SLS and FIML. What is the relationship between the FIML
estimates of this system and the FIML estimates of (12.125)? What is the
relationship between the two sets of 3SLS estimates?
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12.32 Consider the system

y1 = β + γy2 + u, y2 = Wπ1 + v, (12.127)

in which the first equation is the only structural equation and the first column
of W is a vector of 1s. For sample size n = 25, and for l = 2, 4, 6, 8, generate
l−1 additional instrumental variables as independent drawings from N(0, 1).
Generate the endogenous variables y1 and y2 using the DGP given by (12.127)
with β = 1 and γ = 1, π1 an l--vector with every element equal to 1, and the
2× 2 contemporaneous covariance matrix Σ such that the diagonal elements
are equal to 4, and the off-diagonal elements to 2. Estimate the parameters
β and γ using both IV (2SLS) and LIML.

Repeat the exercise many times and plot the empirical distributions of the
two estimators of γ. How do their properties vary with the degree of over-
identification?

12.33 Write down both the first-order conditions for minimizing the NLIV criterion
function (12.103) and the usual estimate of the covariance matrix of θ̂NLIV.
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Chapter 13

Methods for Stationary

Time-Series Data

13.1 Introduction

Time-series data have special features that often require the use of special-
ized econometric techniques. We have already dealt with some of these. For
example, we discussed methods for dealing with serial correlation in Sections
7.6 through 7.9 and in Section 10.7, and we discussed heteroskedasticity and
autocorrelation consistent (HAC) covariance matrices in Section 9.3. In this
chapter and the next, we discuss a variety of techniques that are commonly
used to model, and test hypotheses about, economic time series.

A first point concerns notation. In the time series literature, it is usual to refer
to a variable, series, or process by its typical element. For instance, one may
speak of a variable yt or a set of variables Yt, rather than defining a vector y
or a matrix Y . We will make free use of this convention in our discussion of
time series.

The methods we will discuss fall naturally into two groups. Some of them are
intended for use with stationary time series, and others are intended for use
with nonstationary time series. We defined stationarity in Section 7.6. Recall
that a random process for a time series yt is said to be covariance stationary
if the unconditional expectation and variance of yt, and the unconditional
covariance between yt and yt−j , for any lag j, are the same for all t. In this
chapter, we restrict our attention to time series that are covariance station-
ary. Nonstationary time series and techniques for dealing with them will be
discussed in Chapter 14.

Section 13.2 discusses stochastic processes that can be used to model the
way in which the conditional mean of a single time series evolves over time.
These are based on the autoregressive and moving average processes that
were introduced in Section 7.6. Section 13.3 discusses methods for estimating
this sort of univariate time-series model. Section 13.4 then discusses single-
equation dynamic regression models, which provide richer ways to model the
relationships among time-series variables than do static regression models.
Section 13.5 deals with seasonality and seasonal adjustment. Section 13.6
discusses autoregressive conditional heteroskedasticity, which provides a way
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to model the evolution of the conditional variance of a time series. Finally,
Section 13.7 deals with vector autoregressions, which are a particularly simple
and commonly used way to model multivariate time series.

13.2 Autoregressive and Moving Average Processes

In Section 7.6, we introduced the concept of a stochastic process and briefly
discussed autoregressive and moving average processes. Our purpose there
was to provide methods for modeling serial dependence in the error terms of a
regression model. But these processes can also be used directly to model the
dynamic evolution of an economic time series. When they are used for this
purpose, it is common to add a constant term, because most economic time
series do not have mean zero.

Autoregressive Processes

In Section 7.6, we discussed the pth order autoregressive, or AR(p), process. If
we add a constant term, such a process can be written, with slightly different
notation, as

yt = γ + ρ1yt−1 + ρ2yt−2 + . . . + ρpyt−p + εt, εt ∼ IID(0, σ2
ε ). (13.01)

According to this specification, the εt are homoskedastic and uncorrelated
innovations. Such a process is often referred to as white noise, by a peculiar
mixed metaphor, of long standing, which cheerfully mixes a visual and an
auditory image. Throughout this chapter, the notation εt refers to a white
noise process with variance σ2

ε .

Note that the constant term γ in equation (13.01) is not the unconditional
mean of yt. We assume throughout this chapter that the processes we con-
sider are covariance stationary, in the sense that was given to that term in
Section 7.6. This implies that µ ≡ E(yt) does not depend on t. Thus, by
equating the expectations of both sides of (13.01), we find that

µ = γ + µ

p∑

i=1

ρi.

Solving this equation for µ yields the result that

µ =
γ

1−∑p
i=1 ρi

. (13.02)

If we define ut = yt − µ, it is then easy to see that

ut =
p∑

i=1

ρiut−i + εt, (13.03)

which is exactly the definition (7.33) of an AR(p) process given in Section 7.6.
In the lag operator notation we introduced in that section, equation (13.03)
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can also be written as

ut = ρ(L)ut + εt, or as
(
1− ρ(L)

)
ut = εt,

where the polynomial ρ is defined by equation (7.35), that is, ρ(z) = ρ1z +
ρ2z2 + . . . + ρpzp. Similarly, the expression for the unconditional mean µ in
equation (13.02) can be written as γ/(1− ρ(1)).

The covariance matrix of the vector u of which the typical element is ut was
given in equation (7.32) for the case of an AR(1) process. The elements of this
matrix are called the autocovariances of the AR(1) process. We introduced
this term in Section 9.3 in the context of HAC covariance matrices, and its
meaning here is similar. For an AR(p) process, the autocovariances and the
corresponding autocorrelations can be computed by using a set of equations
called the Yule-Walker equations. We discuss these equations in detail for an
AR(2) process; the generalization to the AR(p) case is straightforward but
algebraically more complicated.

An AR(2) process without a constant term is defined by the equation

ut = ρ1ut−1 + ρ2ut−2 + εt. (13.04)

Let v0 denote the unconditional variance of ut, and let vi denote the covariance
of ut and ut−i, for i = 1, 2, . . . . Because the process is stationary, the vi, which
are by definition the autocovariances of the AR(2) process, do not depend on t.
Multiplying equation (13.04) by ut and taking expectations of both sides, we
find that

v0 = ρ1v1 + ρ2v2 + σ2
ε . (13.05)

Because ut−1 and ut−2 are uncorrelated with the innovation εt, the last term
on the right-hand side here is E(utεt) = E(ε2

t ) = σ2
ε . Similarly, multiplying

equation (13.04) by ut−1 and ut−2 and taking expectations, we find that

v1 = ρ1v0 + ρ2v1 and v2 = ρ1v1 + ρ2v0. (13.06)

Equations (13.05) and (13.06) can be rewritten as a set of three simultaneous
linear equations for v0, v1, and v2:

v0 − ρ1v1 − ρ2v2 = σ2
ε

ρ1v0 + (ρ2 − 1)v1 = 0

ρ2v0 + ρ1v1 − v2 = 0.

(13.07)

These equations are the first three Yule-Walker equations for the AR(2) pro-
cess. As readers are asked to show in Exercise 13.1, their solution is

v0 =
σ2

ε

D
(1− ρ2), v1 =

σ2
ε

D
ρ1, v2 =

σ2
ε

D

(
ρ2
1 + ρ2(1− ρ2)

)
, (13.08)

where D ≡ (1 + ρ2)(1 + ρ1 − ρ2)(1− ρ1 − ρ2).
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Figure 13.1 The stationarity triangle for an AR(2) process

The result (13.08) makes it clear that ρ1 and ρ2 are not the autocorrelations of
an AR(2) process. Recall that, for an AR(1) process, the same ρ that appears
in the defining equation ut = ρut−1 + εt is also the correlation of ut and ut−1.
This simple result does not generalize to higher-order processes. Similarly,
the autocovariances and autocorrelations of ut and ut−i for i > 2 have a
more complicated form for AR processes of order greater than 1. They can,
however, be determined readily enough by using the Yule-Walker equations.
Thus, if we multiply both sides of equation (13.04) by ut−i for any i ≥ 2, and
take expectations, we obtain the equation

vi = ρ1vi−1 + ρ2vi−2.

Since v0, v1, and v2 are given by equations (13.08), this equation allows us to
solve recursively for any vi with i > 2.

Necessary conditions for the stationarity of the AR(2) process follow directly
from equations (13.08). The 3× 3 covariance matrix




v0 v1 v2

v1 v0 v1

v2 v1 v0


 (13.09)

of any three consecutive elements of an AR(2) process must be a positive
definite matrix. Otherwise, the solution (13.08) to the first three Yule-Walker
equations, based on the hypothesis of stationarity, would make no sense. The
denominator D evidently must not vanish if this solution is to be finite. In
Exercise 12.3, readers are asked to show that the lines along which it vanishes
in the plane of ρ1 and ρ2 define the edges of a stationarity triangle such that
the matrix (13.09) is positive definite only in the interior of this triangle. The
stationarity triangle is shown in Figure 13.1.
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Moving Average Processes

A q th order moving average, or MA(q), process with a constant term can be
written as

yt = µ + α0εt + α1εt−1 + . . . + αq εt−q, (13.10)

where the εt are white noise, and the coefficient α0 is generally normalized
to 1 for purposes of identification. The expectation of the yt is readily seen
to be µ, and so we can write

ut ≡ yt − µ = εt +
q∑

j=1

αj εj =
(
1 + α(L)

)
εt,

where the polynomial α is defined by α(z) =
∑q

j=1 αjz
j.

The autocovariances of an MA process are much easier to calculate than those
of an AR process. Since the εt are white noise, and hence uncorrelated, the
variance of the ut is seen to be

Var(ut) = E(u2
t ) = σ2

ε

(
1 +

q∑

j=1

α2
j

)
. (13.11)

Similarly, the j th order autocovariance is, for j > 0,

E(utut−j) =





σ2
ε

(
αj +

∑q−j
i=1 αj+iαi

)
for j < q,

σ2
ε αj for j = q, and

0 for j > q.

(13.12)

Using (13.12) and (13.11), we can calculate the autocorrelation ρ(j) between
yt and yt−j for j > 0.1 We find that

ρ(j) =
αj +

∑q−j
i=1 αj+iαi

1 +
∑q

i=1 α2
i

for j ≤ q, ρ(j) = 0 otherwise, (13.13)

where it is understood that, for j = q, the numerator is just αj . The fact that
all of the autocorrelations are equal to 0 for j > q is sometimes convenient,
but it suggests that q may often have to be large if an MA(q) model is to be
satisfactory. Expression (13.13) also implies that q must be large if an MA(q)
model is to display any autocorrelation coefficients that are big in absolute
value. Recall from Section 7.6 that, for an MA(1) model, the largest possible
absolute value of ρ(1) is only 0.5.

1 The notation ρ is unfortunately in common use both for the parameters of an
AR process and for the autocorrelations of an AR or MA process. We therefore
distinguish between the parameter ρi and the autocorrelation ρ(j).
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If we want to allow for nonzero autocorrelations at all lags, we have to allow
q to be infinite. This means replacing (13.10) by the infinite-order moving
average process

ut = εt +
∞∑

i=1

αiεt−i =
(
1 + α(L)

)
εt, (13.14)

where α(L) is no longer a polynomial, but rather a (formal) infinite power
series in L. Of course, this MA(∞) process is impossible to estimate in
practice. Nevertheless, it is of theoretical interest, provided that

Var(ut) = σ2
ε

(
1 +

∞∑

i=1

α2
i

)

is a finite quantity. A necessary and sufficient condition for this to be the case
is that the coefficients αj are square summable, which means that

lim
q→∞

q∑

i=1

α2
i < ∞. (13.15)

We will implicitly assume that all the MA(∞) processes we encounter satisfy
condition (13.15).

Any stationary AR(p) process can be represented as an MA(∞) process. We
will not attempt to prove this fundamental result in general, but we can easily
show how it works in the case of a stationary AR(1) process. Such a process
can be written as

(1− ρ1L)ut = εt.

The natural way to solve this equation for ut as a function of εt is to multiply
both sides by the inverse of 1− ρ1L. The result is

ut = (1− ρ1L)−1εt. (13.16)

Formally, this is the solution we are seeking. But we need to explain what it
means to invert 1− ρ1L.

In general, if A(L) and B(L) are power series in L, each including a constant
term independent of L that is not necessarily equal to 1, then B(L) is the
inverse of A(L) if B(L)A(L) = 1. Here the product B(L)A(L) is the infinite
power series in L obtained by formally multiplying together the power series
B(L) and A(L); see Exercise 13.5. The relation B(L)A(L) = 1 then requires
that the result of this multiplication should be a series with only one term,
the first. Moreover, this term, which corresponds to L0, must equal 1.

We will not consider general methods for inverting a polynomial in the lag
operator; see Hamilton (1994) or Hayashi (2000), among many others. In this
particular case, though, the solution turns out to be

(1− ρ1L)−1 = 1 + ρ1L + ρ2
1L

2 + . . . . (13.17)
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To see this, note that ρ1L times the right-hand side of equation (13.17) is the
same series without the first term of 1. Thus, as required,

(1− ρ1L)−1 − ρ1L(1− ρ1L)−1 = (1− ρ1L)(1− ρ1L)−1 = 1.

We can now use this result to solve equation (13.16). We find that

ut = εt + ρ1εt−1 + ρ2
1εt−2 + . . . . (13.18)

It is clear that (13.18) is a special case of the MA(∞) process (13.14), with
αi = ρi

1 for i = 0, . . . ,∞. Square summability of the αi is easy to check
provided that |ρ1| < 1.

In general, if we can write a stationary AR(p) process as
(
1− ρ(L)

)
ut = εt, (13.19)

where ρ(L) is a polynomial of degree p in the lag operator, then there exists
an MA(∞) process

ut =
(
1 + α(L)

)
εt, (13.20)

where α(L) is an infinite series in L such that (1− ρ(L))(1 + α(L)) = 1. This
result provides an alternative way to the Yule-Walker equations to calculate
the variance, autocovariances, and autocorrelations of an AR(p) process by
using equations (13.11), (13.12), and (13.13), after we have solved for α(L).
However, these methods make use of the theory of functions of a complex
variable, and so they are not elementary.

The close relationship between AR and MA processes goes both ways. If
(13.20) is an MA(q) process that is invertible, then there exists a stationary
AR(∞) process of the form (13.19) with

(
1− ρ(L)

)(
1 + α(L)

)
= 1.

The condition for a moving average process to be invertible is formally the
same as the condition for an autoregressive process to be stationary; see the
discussion around equation (7.36). We require that all the roots of the poly-
nomial equation 1 + α(z) = 0 must lie outside the unit circle. For an MA(1)
process, the invertibility condition is simply that |α1| < 1.

ARMA Processes

If our objective is to model the evolution of a time series as parsimoniously as
possible, it may well be desirable to employ a stochastic process that has both
autoregressive and moving average components. This is the autoregressive
moving average process, or ARMA process. In general, we can write an
ARMA(p, q) process with nonzero mean as

(
1− ρ(L)

)
yt = γ +

(
1 + α(L)

)
εt, (13.21)
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and a process with zero mean as
(
1− ρ(L)

)
ut =

(
1 + α(L)

)
εt, (13.22)

where ρ(L) and α(L) are, respectively, a pth order and a q th order polynomial
in the lag operator, neither of which includes a constant term. If the process is
stationary, the expectation of yt given by (13.21) is µ ≡ γ/

(
1− ρ(1)

)
, just as

for the AR(p) process (13.01). Provided the autoregressive part is stationary
and the moving average part is invertible, an ARMA(p, q) process can always
be represented as either an MA(∞) or an AR(∞) process.

The most commonly encountered ARMA process is the ARMA(1,1) process,
which, when there is no constant term, has the form

ut = ρ1ut−1 + εt + α1εt−1. (13.23)

This process has one autoregressive and one moving average parameter.

The Yule-Walker method can be extended to compute the autocovariances
of an ARMA process. We illustrate this for the ARMA(1, 1) case and invite
readers to generalize the procedure in Exercise 13.6. As before, we denote
the ith autocovariance by vi, and we let E(utεt−i) = wi, for i = 0, 1, . . . .
Note that E(utεs) = 0 for all s > t. If we multiply (13.23) by εt and take
expectations, we see that w0 = σ2

ε . If we then multiply (13.23) by εt−1 and
repeat the process, we find that w1 = ρ1w0 + α1σ2

ε , from which we conclude
that w1 = σ2

ε (ρ1 + α1). Although we do not need them at present, we note
that the wi for i > 1 can be found by multiplying (13.23) by εt−i, which gives
the recursion wi = ρ1wi−1, with solution wi = σ2

ε ρi−1
1 (ρ1 + α1).

Next, we imitate the way in which the Yule-Walker equations are set up for
an AR process. Multiplying equation (13.23) first by ut and then by ut−1,
and subsequently taking expectations, gives

v0 = ρ1v1 + w0 + α1w1 = ρ1v1 + σ2
ε (1 + α1ρ1 + α2

1), and

v1 = ρ1v0 + α1w0 = ρ1v0 + α1σ
2
ε ,

where we have used the expressions for w0 and w1 given in the previous
paragraph. When these two equations are solved for v0 and v1, they yield

v0 = σ2
ε

1 + 2ρ1α1 + α2
1

1− ρ2
1

, and v1 = σ2
ε

ρ1 + ρ2
1α1 + ρ1α

2
1 + α1

1− ρ2
1

. (13.24)

Finally, multiplying equation (13.23) by ut−i for i > 1 and taking expectations
gives vi = ρ1vi−1, from which we conclude that

vi = σ2
ε

ρi−1
1 (ρ1 + ρ2

1α1 + ρ1α
2
1 + α1)

1− ρ2
1

. (13.25)
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Equation (13.25) provides all the autocovariances of an ARMA(1, 1) process.
Using it and the first of equations (13.24), we can derive the autocorrelations.

Autocorrelation Functions

As we have seen, the autocorrelation between ut and ut−j can be calculated
theoretically for any known stationary ARMA process. The autocorrelation
function, or ACF, expresses the autocorrelation as a function of the lag j for
j = 1, 2 . . . . If we have a sample yt, t = 1, . . . , n, from an ARMA process
of possibly unknown order, then the j th order autocorrelation ρ(j) can be
estimated by using the formula

ρ̂(j) =
Ĉov(yt, yt−j)

V̂ar(yt)
, (13.26)

where

Ĉov(yt, yt−j) =
1

n− 1

n∑

t=j+1

(yt − ȳ)(yt−j − ȳ), (13.27)

and

V̂ar(yt) =
1

n− 1

n∑
t=1

(yt − ȳ)2. (13.28)

In equations (13.27) and (13.28), ȳ is the mean of the yt. Of course, (13.28)
is just the special case of (13.27) in which j = 0. It may seem odd to divide
by n− 1 rather than by n− j − 1 in (13.27). However, if we did not use the
same denominator for every j, the estimated autocorrelation matrix would
not necessarily be positive definite. Because the denominator is the same, the
factors of 1/(n− 1) cancel in the formula (13.26).

The empirical ACF, or sample ACF, expresses the ρ̂(j), defined in equation
(13.26), as a function of the lag j. Graphing the sample ACF provides a
convenient way to see what the pattern of serial dependence in any observed
time series looks like, and it may help to suggest what sort of stochastic
process would provide a good way to model the data. For example, if the
data were generated by an MA(1) process, we would expect that ρ̂(1) would
be an estimate of α1 and all the other ρ̂(j) would be approximately equal to
zero. If the data were generated by an AR(1) process with ρ1 > 0, we would
expect that ρ̂(1) would be an estimate of ρ1 and would be relatively large, the
next few ρ̂(j) would be progressively smaller, and the ones for large j would
be approximately equal to zero. A graph of the sample ACF is sometimes
called a correlogram; see Exercise 13.15.

The partial autocorrelation function, or PACF, is another way to characterize
the relationship between yt and its lagged values. The partial autocorrelation
coefficient of order j is defined as the true value of the coefficient ρ

(j)
j in the

linear regression

yt = γ(j) + ρ
(j)
1 yt−1 + . . . + ρ

(j)
j yt−j + εt, (13.29)
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or, equivalently, in the minimization problem

min
γ(j), ρ

(j)
i

E
(
yt − γ(j) −

j∑

i=1

ρ
(j)
i yt−i

)2
. (13.30)

The superscript “(j)” appears on all the coefficients in regression (13.29) to
make it plain that all the coefficients, not just the last one, are functions of j,
the number of lags. We can calculate the empirical PACF, or sample PACF,
up to order J by running regression (13.29) for j = 1, . . . , J and retaining
only the estimate ρ̂

(j)
j for each j. Just as a graph of the sample ACF may

help to suggest what sort of stochastic process would provide a good way to
model the data, so a graph of the sample PACF, interpreted properly, may
do the same. For example, if the data were generated by an AR(2) process,
we would expect the first two partial autocorrelations to be relatively large,
and all the remaining ones to be insignificantly different from zero.

13.3 Estimating AR, MA, and ARMA Models

All of the time-series models that we have discussed so far are special cases
of an ARMA(p, q) model with a constant term, which can be written as

yt = γ +
p∑

i=1

ρiyt−i + εt +
q∑

j=1

αj εt−j , (13.31)

where the εt are assumed to be white noise. There are p+q+1 parameters to
estimate in the model (13.31): the ρi, for i = 1, . . . , p, the αj , for j = 1, . . . , q,
and γ. Recall that γ is not the unconditional expectation of yt unless all of
the ρi are zero.

For our present purposes, it is perfectly convenient to work with models that
allow yt to depend on exogenous explanatory variables and are therefore even
more general than (13.31). Such models are sometimes referred to as ARMAX
models. The ‘X’ indicates that yt depends on a row vector Xt of exogenous
variables as well as on its own lagged values. An ARMAX(p, q) model takes
the form

yt = Xtβ + ut, ut ∼ ARMA(p, q), E(ut) = 0, (13.32)

where Xtβ is the mean of yt conditional on Xt but not conditional on lagged
values of yt. The ARMA model (13.31) can evidently be recast in the form
of the ARMAX model (13.32); see Exercise 13.13.

Estimation of AR Models

We have already studied a variety of ways of estimating the model (13.32)
when ut follows an AR(1) process. In Chapter 7, we discussed three estimation

Copyright c© 1999, Russell Davidson and James G. MacKinnon



13.3 Estimating AR, MA, and ARMA Models 557

methods. The first was estimation by a nonlinear regression, in which the
first observation is dropped from the sample. The second was estimation by
feasible GLS, possibly iterated, in which the first observation can be taken
into account. The third was estimation by the GNR that corresponds to
the nonlinear regression with an extra artificial observation corresponding to
the first observation. It turned out that estimation by iterated feasible GLS
and by this extended artificial regression, both taking the first observation
into account, yield the same estimates. Then, in Chapter 10, we discussed
estimation by maximum likelihood, and, in Exercise 10.21, we showed how to
extend the GNR by yet another artificial observation in such a way that it
provides the ML estimates if convergence is achieved.

Similar estimation methods exist for models in which the error terms follow
an AR(p) process with p > 1. The easiest method is just to drop the first p
observations and estimate the nonlinear regression model

yt = Xtβ +
p∑

i=1

ρi(yt−i −Xt−iβ) + εt

by nonlinear least squares. If this is a pure time-series model for which
Xtβ = β, then this is equivalent to OLS estimation of the model

yt = γ +
p∑

i=1

ρiyt−i + εt,

where the relationship between γ and β is derived in Exercise 13.13. This
approach is the simplest and most widely used for pure autoregressive models.
It has the advantage that, although the ρi (but not their estimates) must
satisfy the necessary condition for stationarity, the error terms ut need not
be stationary. This issue was mentioned in Section 7.8, in the context of the
AR(1) model, where it was seen that the variance of the first error term u1

must satisfy a certain condition for ut to be stationary.

Maximum Likelihood Estimation

If we are prepared to assume that ut is indeed stationary, it is desirable not
to lose the information in the first p observations. The most convenient way
to achieve this goal is to use maximum likelihood under the assumption that
the white noise process εt is normal. In addition to using more information,
maximum likelihood has the advantage that the estimates of the ρj are auto-
matically constrained to satisfy the stationarity conditions.

For any ARMA(p, q) process in the error terms ut, the assumption that the εt

are normally distributed implies that the ut are normally distributed, and so
also the dependent variable yt, conditional on the explanatory variables. For
an observed sample of size n from the ARMAX model (13.32), let y denote
the n--vector of which the elements are y1, . . . , yn. The expectation of y
conditional on the explanatory variables is Xβ, where X is the n× k matrix
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with typical row Xt. Let Ω denote the autocovariance matrix of the vector y.
This matrix can be written as

Ω =




v0 v1 v2 . . . vn−1

v1 v0 v1 . . . vn−2

v2 v1 v0 . . . vn−3

...
...

...
. . .

...
vn−1 vn−2 vn−3 . . . v0



, (13.33)

where, as before, vi is the stationary covariance of ut and ut−i, and v0 is
the stationary variance of the ut. Then, using expression (12.121) for the
multivariate normal density, we see that the log of the joint density of the
observed sample is

−n−
2

log 2π − 1−
2

log |Ω | − 1−
2
(y −Xβ)>Ω−1(y −Xβ). (13.34)

In order to construct the loglikelihood function for the ARMAX model (13.32),
the vi must be expressed as functions of the parameters ρi and αj of the
ARMA(p, q) process that generates the error terms. Doing this allows us to
replace Ω in the log density (13.34) by a matrix function of these parameters.
Unfortunately, a loglikelihood function in the form of (13.34) is difficult to
work with, because of the presence of the n × n matrix Ω. Most of the
difficulty disappears if we can find an upper-triangular matrix Ψ such that
Ψ Ψ>= Ω−1, as was necessary when, in Section 7.8, we wished to estimate by
feasible GLS a model like (13.32) with AR(1) errors. It then becomes possible
to decompose expression (13.34) into a sum of contributions that are easier
to work with than (13.34) itself.

If the errors are generated by an AR(p) process, with no MA component, then
such a matrix Ψ is relatively easy to find, as we will illustrate in a moment
for the AR(2) case. However, if an MA component is present, matters are
more difficult. Even for MA(1) errors, the algebra is quite complicated— see
Hamilton (1994, Chapter 5) for a convincing demonstration of this fact. For
general ARMA(p, q) processes, the algebra is quite intractable. In such cases,
a technique called the Kalman filter can be used to evaluate the successive con-
tributions to the loglikelihood for given parameter values, and can thus serve
as the basis of an algorithm for maximizing the loglikelihood. This technique,
to which Hamilton (1994, Chapter 13) provides an accessible introduction, is
unfortunately beyond the scope of this book.

We now turn our attention to the case in which the errors follow an AR(2)
process. In Section 7.8, we constructed a matrix Ψ corresponding to the sta-
tionary covariance matrix of an AR(1) process by finding n linear combina-
tions of the error terms ut that were homoskedastic and serially uncorrelated.
We perform a similar exercise for AR(2) errors here. This will show how to
set about the necessary algebra for more general AR(p) processes.
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Errors generated by an AR(2) process satisfy equation (13.04). Therefore, for
t ≥ 3, we can solve for εt to obtain

εt = ut − ρ1ut−1 − ρ2ut−2, t = 3, . . . , n. (13.35)

Under the normality assumption, the fact that the εt are white noise means
that they are mutually independent. Thus observations 3 through n make
contributions to the loglikelihood of the form

`t(yt,β, ρ1, ρ2, σε) =

− 1−
2

log 2π − log σε − 1
2σ2

ε

(
ut(β)− ρ1ut−1(β)− ρ2ut−2(β)

)2
,

(13.36)

where yt is the vector that consists of y1 through yt, ut(β) ≡ yt −Xtβ, and
σ2

ε is as usual the variance of the εt. The contribution (13.36) is analogous to
the contribution (10.85) for the AR(1) case.

The variance of the first error term, u1, is just the stationary variance v0 given
by (13.08). We can therefore define ε1 as σεu1/

√
v0, that is,

ε1 =
( D

1− ρ2

)1/2

u1, (13.37)

where D was defined just after equations (13.08). By construction, ε1 has the
same variance σ2

ε as the εt for t ≥ 3. Since the εt are innovations, it follows
that, for t > 1, εt is independent of u1, and hence of ε1. For the loglikelihood
contribution from observation 1, we therefore take the log density of ε1, plus
a Jacobian term which is the log of the derivative of ε1 with respect to u1.
The result is readily seen to be

`1(y1,β, ρ1, ρ2, σε) =

− 1−
2

log 2π − log σε + 1−
2

log
D

1− ρ2
− D

2σ2
ε (1− ρ2)

u2
1(β).

(13.38)

Finding a suitable expression for ε2 is a little trickier. What we seek is a linear
combination of u1 and u2 that has variance σ2

ε and is independent of u1. By
construction, any such linear combination is independent of the εt for t > 2.
A little algebra shows that the appropriate linear combination is

σε

( v0

v2
0 − v2

1

)1/2(
u2 − v1

v0
u1

)
.

Use of the explicit expressions for v0 and v1 given in equations (13.08) then
shows that

ε2 = (1− ρ2
2)

1/2
(
u2 − ρ1

1− ρ2
u1

)
, (13.39)
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as readers are invited to check in Exercise 13.9. The derivative of ε2 with
respect to u2 is (1− ρ2

2)
1/2, and so the contribution to the loglikelihood from

observation 2 can be written as

`2(y2, β, ρ1, ρ2, σε) =− 1−
2

log 2π − log σε + 1−
2

log(1− ρ2
2)

− 1− ρ2
2

2σ2
ε

(
u2(β)− ρ1

1− ρ2
u1(β)

)2

.
(13.40)

Summing the contributions (13.36), (13.38), and (13.40) gives the loglikeli-
hood function for the entire sample. It may then be maximized with respect
to β, ρ1, ρ2, and σ2

ε by standard numerical methods.

Exercise 13.10 asks readers to check that the n×n matrix Ψ defined implicitly
by the relation Ψ>u = ε, where the elements of ε are defined by (13.35),
(13.37), and (13.39), is indeed upper triangular and such that Ψ Ψ> is equal
to 1/σ2

ε times the inverse of the covariance matrix (13.33) for the vi that
correspond to an AR(2) process.

Estimation of MA and ARMA Models

Just why moving average and ARMA models are more difficult to estimate
than pure autoregressive models is apparent if we consider the MA(1) model

yt = µ + εt − α1εt−1, (13.41)

where for simplicity the only explanatory variable is a constant, and we have
changed the sign of α1. For the first three observations, if we substitute
recursively for εt−1, equation (13.41) can be written as

y1 = µ− α1ε0 + ε1,

y2 = (1 + α1)µ− α1y1 − α2
1ε0 + ε2,

y3 = (1 + α1 + α2
1)µ− α1y2 − α2

1y1 − α3
1ε0 + ε3.

It is not difficult to see that, for arbitrary t, this becomes

yt =
( t−1∑

s=0

αs
1

)
µ−

t−1∑
s=1

αs
1yt−s − αt

1ε0 + εt. (13.42)

Were it not for the presence of the unobserved ε0, equation (13.42) would be
a nonlinear regression model, albeit a rather complicated one in which the
form of the regression function depends explicitly on t.

This fact can be used to develop tractable methods for estimating a model
where the errors have an MA component without going to the trouble of set-
ting up the complicated loglikelihood. The estimates are not equal to ML es-
timates, and are in general less efficient, although in some cases they are
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asymptotically equivalent. The simplest approach, which is sometimes rather
misleadingly called conditional least squares, is just to assume that any unob-
served pre-sample innovations, such as ε0, are equal to 0, an assumption that
is harmless asymptotically. A more sophisticated approach is to “backcast”
the pre-sample innovations from initial estimates of the other parameters and
then run the nonlinear regression (13.42) conditional on the backcasts, that is,
the backward forecasts. Yet another approach is to treat the unobserved in-
novations as parameters to be estimated jointly by maximum likelihood with
the parameters of the MA process and those of the regression function.

Alternative statistical packages use a number of different methods for esti-
mating models with ARMA errors, and they may therefore yield different
estimates; see Newbold, Agiakloglou, and Miller (1994) for a more detailed
account. Moreover, even if they provide the same estimates, different pack-
ages may well provide different standard errors. In the case of ML estimation,
for example, these may be based on the empirical Hessian estimator (10.42),
the OPG estimator (10.44), or the sandwich estimator (10.45), among others.
If the innovations are heteroskedastic, only the sandwich estimator is valid.

A more detailed discussion of standard methods for estimating AR, MA, and
ARMA models is beyond the scope of this book. Detailed treatments may
be found in Box, Jenkins, and Reinsel (1994, Chapter 7), Hamilton (1994,
Chapter 5), and Fuller (1995, Chapter 8), among others.

Indirect Inference

There is another approach to estimating ARMA models, which is unlikely to
be used by statistical packages but is worthy of attention if the available sam-
ple is not too small. It is an application of the method of indirect inference,
which was developed by Smith (1993) and Gouriéroux, Monfort, and Renault
(1993). The idea is that, when a model is difficult to estimate, there may be
an auxiliary model that is not too different from the model of interest but
is much easier to estimate. For any two such models, there must exist so-
called binding functions that relate the parameters of the model of interest to
those of the auxiliary model. The idea of indirect inference is to estimate the
parameters of interest from the parameter estimates of the auxiliary model
by using the relationships given by the binding functions.

Because pure AR models are easy to estimate and can be used as auxiliary
models, it is natural to use this approach with models that have an MA
component. For simplicity, suppose the model of interest is the pure time-
series MA(1) model (13.41), and the auxiliary model is the AR(1) model

yt = γ + ρyt−1 + ut, (13.43)

which we estimate by OLS to obtain estimates γ̂ and ρ̂. Let us define the
elementary zero function ut(γ, ρ) as yt − γ − ρyt−1. Then the estimating
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equations satisfied by γ̂ and ρ̂ are

n∑
t=2

ut(γ, ρ) = 0 and
n∑

t=2

yt−1ut(γ, ρ) = 0. (13.44)

If yt is indeed generated by (13.41) for particular values of µ and α1, then we
may define the pseudo-true values of the parameters γ and ρ of the auxiliary
model (13.43) as those values for which the expectations of the left-hand sides
of equations (13.44) are zero. These equations can thus be interpreted as
correctly specified, albeit inefficient, estimating equations for the pseudo-true
values. The theory of Section 9.5 then shows that γ̂ and ρ̂ are consistent for
the pseudo-true values and asymptotically normal, with asymptotic covariance
matrix given by a version of the sandwich matrix (9.67).

The pseudo-true values can be calculated as follows. Replacing yt and yt−1

in the definition of ut(γ, ρ) by the expressions given by (13.41), we see that

ut(γ, ρ) = (1− ρ)µ− γ + εt − (α1 + ρ)εt−1 + α1ρεt−2. (13.45)

The expectation of the right-hand side of this equation is just (1 − ρ)µ − γ.
Similarly, the expectation of yt−1ut(γ, ρ) can be seen to be

µ
(
(1− ρ)µ− γ)− σ2

ε (α1 + ρ)− σ2
ε α2

1ρ.

Equating these expectations to zero shows us that the pseudo-true values are

γ =
µ(1 + α1 + α2

1)
1 + α2

1

and ρ =
−α1

1 + α2
1

(13.46)

in terms of the true parameters µ and α1.

Equations (13.46) express the binding functions that link the parameters of
model (13.41) to those of the auxiliary model (13.43). The indirect estimates
µ̂ and α̂1 are obtained by solving these equations with γ and ρ replaced by γ̂
and ρ̂. Note that, since the second equation of (13.46) is a quadratic equation
for α1 in terms of ρ, there are in general two solutions for α1, which may be
complex. See Exercise 13.11 for further elucidation of this point.

In order to estimate the covariance matrix of µ̂ and α̂1, we must first estimate
the covariance matrix of γ̂ and ρ̂. Let us define the n×2 matrix Z as [ι y−1],
that is, a matrix of which the first column is a vector of 1s and the second the
vector of the yt lagged. Then, since the Jacobian of the zero functions ut(γ, ρ)
is just −Z, it is easy to see that the covariance matrix (9.67) becomes

plim
n→∞

1−
n
(Z>Z)−1Z>ΩZ(Z>Z)−1, (13.47)

where Ω is the covariance matrix of the error terms ut, which are given by
the ut(γ, ρ) evaluated at the pseudo-true values. If we drop the probability
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limit and the factor of n−1 in expression (13.47) and replace Ω by a suitable
estimate, we obtain an estimate of the covariance matrix of γ̂ and ρ̂. Instead
of estimating Ω directly, it is convenient to employ a HAC estimator of the
middle factor of expression (13.47).2 Since, as can be seen from equation
(13.45), the ut have nonzero autocovariances only up to order 2, it is natural
in this case to use the Hansen-White estimator (9.37) with lag truncation
parameter set equal to 2. Finally, an estimate of the covariance matrix of
µ̂ and α̂1 can be obtained from the one for γ̂ and ρ̂ by the delta method
(Section 5.6) using the relation (13.46) between the true and pseudo-true
parameters.

In this example, indirect inference is particularly simple because the auxiliary
model (13.43) has just as many parameters as the model of interest (13.41).
However, this will rarely be the case. We saw in Section 13.2 that a finite-order
MA or ARMA process can always be represented by an AR(∞) process. This
suggests that, when estimating an MA or ARMA model, we should use as an
auxiliary model an AR(p) model with p substantially greater than the number
of parameters in the model of interest. See Zinde-Walsh and Galbraith (1994,
1997) for implementations of this approach.

Clearly, indirect inference is impossible if the auxiliary model has fewer para-
meters than the model of interest. If, as is commonly the case, it has more,
then the parameters of the model of interest are overidentified. This means
that we cannot just solve for them from the estimates of the auxiliary model.
Instead, we need to minimize a suitable criterion function, so as to make the
estimates of the auxiliary model as close as possible, in the appropriate sense,
to the values implied by the parameter estimates of the model of interest. In
the next paragraph, we explain how to do this in a very general setting.

Let the estimates of the pseudo-true parameters be an l --vector β̂, let the
parameters of the model of interest be a k --vector θ, and let the binding
functions be an l --vector b(θ), with l > k. Then the indirect estimator of θ is
obtained by minimizing the quadratic form

(
β̂ − b(θ)

)>Σ̂−1
(
β̂ − b(θ)

)
(13.48)

with respect to θ, where Σ̂ is a consistent estimate of the l × l covariance
matrix of β̂. Minimizing this quadratic form minimizes the length of the
vector β̂ − b(θ) after that vector has been transformed so that its covariance
matrix is approximately the identity matrix.

Expression (13.48) looks very much like a criterion function for efficient GMM
estimation. Not surprisingly, it can be shown that, under suitable regularity

2 In this special case, an expression for Ω as a function of α, ρ, and σ2
ε can be

obtained from equation (13.45), so that we can estimate Ω as a function of
consistent estimates of those parameters. In most cases, however, it will be
necessary to use a HAC estimator.
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conditions, the minimized value of this criterion function is asymptotically
distributed as χ2(l−k). This provides a simple way to test the overidentifying
restrictions that must hold if the model of interest actually generated the data.
As with efficient GMM estimation, tests of restrictions on the vector θ can
be based on the difference between the restricted and unrestricted values of
expression (13.48).

In many applications, including general ARMA processes, it can be difficult or
impossible to find tractable analytic expressions for the binding functions. In
that case, they may be estimated by simulation. This works well if it is easy
to draw simulated samples from DGPs in the model of interest, and also easy
to estimate the auxiliary model. Simulations are then carried out as follows.
In order to evaluate the criterion function (13.48) at a parameter vector θ, we
draw S independent simulated data sets from the DGP characterized by θ,
and for each of them we compute the estimate β∗s(θ) of the parameters of the
auxiliary model. The binding functions are then estimated by

b∗(θ) =
1
S

S∑
s=1

β∗s(θ).

We then use b∗(θ) in place of b(θ) when we evaluate the criterion function
(13.48). As with the method of simulated moments (Section 9.6), the same
random numbers should be used to compute β∗s for each given s and for all θ.
Much more detailed discussions of indirect inference can be found in Smith
(1993) and Gouriéroux, Monfort, and Renault (1993).

Simulating ARMA Models

Simulating data from an MA(q) process is trivially easy. For a sample of
size n, one generates white-noise innovations εt for t = −q + 1, . . . , 0, . . . , n,
most commonly, but not necessarily, from the normal distribution. Then, for
t = 1, . . . , n, the simulated data are given by

u∗t = εt +
q∑

j=1

αj εt−j .

There is no need to worry about missing pre-sample innovations in the context
of simulation, because they are simulated along with the other innovations.

Simulating data from an AR(p) process is not quite so easy, because of the
initial observations. Recursive simulation can be used for all but the first p
observations, using the equation

u∗t =
p∑

i=1

ρiu
∗
t−i + εt. (13.49)

For an AR(1) process, the first simulated observation u∗1 can be drawn from
the stationary distribution of the process, by which we mean the unconditional
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distribution of ut. This distribution has mean zero and variance σ2
ε /(1− ρ2

1).
The remaining observations are then generated recursively. When p > 1,
the first p observations must be drawn from the stationary distribution of p
consecutive elements of the AR(p) series. This distribution has mean vector
zero and covariance matrix Ω given by expression (13.33) with n = p. Once
the specific form of this covariance matrix has been determined, perhaps by
solving the Yule-Walker equations, and Ω has been evaluated for the spe-
cific values of the ρi, a p × p lower-triangular matrix A can be found such
that AA>= Ω ; see the discussion of the multivariate normal distribution in
Section 4.3. We then generate εp as a p--vector of white noise innovations
and construct the p--vector u∗p of the first p observations as u∗p = Aεp. The
remaining observations are then generated recursively.

Since it may take considerable effort to find Ω, a simpler technique is often
used. One starts the recursion (13.49) for a large negative value of t with
essentially arbitrary starting values, often zero. By making the starting value
of t far enough in the past, the joint distribution of u∗1 through u∗p can be
made arbitrarily close to the stationary distribution. The values of u∗t for
nonpositive t are then discarded.

Starting the recursion far in the past also works with an ARMA(p, q) model.
However, at least for simple models, we can exploit the covariances computed
by the extension of the Yule-Walker method discussed in Section 13.2. The
process (13.22) can be written explicitly as

u∗t =
p∑

i=1

ρiu
∗
t−i + εt +

q∑

j=1

αj εt−j . (13.50)

In order to be able to compute the u∗t recursively, we need starting values for
u∗1, . . . , u

∗
p and εp−q+1, . . . , εp. Given these, we can compute u∗p+1 by drawing

the innovation εp+1 and using equation (13.50) for t = p + 1, . . . , n. The
starting values can be drawn from the joint stationary distribution character-
ized by the autocovariances vi and covariances wj discussed in the previous
section. In Exercise 13.12, readers are asked to find this distribution for the
relatively simple ARMA(1, 1) case.

13.4 Single-Equation Dynamic Models

Economists often wish to model the relationship between the current value
of a dependent variable yt, the current and lagged values of one or more
independent variables, and, quite possibly, lagged values of yt itself. This sort
of model can be motivated in many ways. Perhaps it takes time for economic
agents to perceive that the independent variables have changed, or perhaps it
is costly for them to adjust their behavior. In this section, we briefly discuss
a number of models of this type. For notational simplicity, we assume that
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there is only one independent variable, denoted xt. In practice, of course,
there is usually more than one such variable, but it will be obvious how to
extend the models we discuss to handle this more general case.

Distributed Lag Models

When a dependent variable depends on current and lagged values of xt, but
not on lagged values of itself, we have what is called a distributed lag model.
When there is only one independent variable, plus a constant term, such a
model can be written as

yt = δ +
q∑

j=0

βj xt−j + ut, ut ∼ IID(0, σ2), (13.51)

in which yt depends on the current value of xt and on q lagged values. The
constant term δ and the coefficients βj are to be estimated.
In many cases, xt is positively correlated with some or all of the lagged values
xt−j for j ≥ 1. In consequence, the OLS estimates of the βj in equation
(13.51) may be quite imprecise. However, this is generally not a problem if
we are merely interested in the long-run impact of changes in the independent
variable. This long-run impact is

γ ≡
q∑

j=0

βj =
q∑

j=0

∂yt

∂xt−j
. (13.52)

We can estimate (13.51) and then calculate the estimate γ̂ using (13.52), or
we can obtain γ̂ directly by reparametrizing regression (13.51) as

yt = δ + γxt +
q∑

j=1

βj(xt−j − xt) + ut. (13.53)

The advantage of this reparametrization is that the standard error of γ̂ is
immediately available from the regression output.
In Section 3.4, we derived an expression for the variance of a weighted sum
of parameter estimates. Expression (3.33), which can be written in a more
intuitive fashion as (3.68), can be applied directly to γ̂, which is an unweighted
sum. If we do so, we find that

Var(γ̂) = ι>Var(β̂)ι =
q∑

j=0

Var(β̂j) + 2
q∑

j=1

j−1∑

k=0

Cov(β̂j , β̂k), (13.54)

where the smallest value of j in the double summation is 1 rather than 0,
because no valid value of k exists for j = 0. When xt−j is positively correlated
with xt−k for all j 6= k, the covariance terms in (13.54) are generally all
negative. When the correlations are large, these covariance terms can often
be large in absolute value, so much so that Var(γ̂) may be smaller than the
variance of β̂j for some or all j. If we are interested in the long-run impact of
xt on yt, it is therefore perfectly sensible just to estimate equation (13.53).
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The Partial Adjustment Model

One popular alternative to distributed lag models like (13.51) is the partial
adjustment model, which dates back at least to Nerlove (1958). Suppose that
the desired level of an economic variable yt is y◦t . This desired level is assumed
to depend on a vector of exogenous variables Xt according to

y◦t = Xtβ
◦ + et, et ∼ IID(0, σ2

e ). (13.55)

Because of adjustment costs, yt is not equal to y◦t in every period. Instead, it
is assumed to adjust toward y◦t according to the equation

yt − yt−1 = (1− δ)(y◦t − yt−1) + vt, vt ∼ IID(0, σ2
v ), (13.56)

where δ is an adjustment parameter that is assumed to be positive and strictly
less than 1. Solving (13.55) and (13.56) for yt, we find that

yt = yt−1 − (1− δ)yt−1 + (1− δ)Xtβ
◦ + (1− δ)et + vt

= Xtβ + δyt−1 + ut,
(13.57)

where β ≡ (1 − δ)β◦ and ut ≡ (1 − δ)et + vt. Thus the partial adjustment
model leads to a linear regression of yt on Xt and yt−1. The coefficient of
yt−1 is the adjustment parameter, and estimates of β◦ can be obtained from
the OLS estimates of β and δ. This model does not make sense if δ < 0 or if
δ ≥ 1. Moreover, when δ is close to 1, the implied speed of adjustment may
be implausibly slow.

Equation (13.57) can be solved for yt as a function of current and lagged
values of Xt and ut. Under the assumption that |δ| < 1, we find that

yt =
∞∑

j=0

δ jXt−jβ +
∞∑

j=0

δ jut−j .

Thus we see that the partial adjustment model implies a particular form of
distributed lag. However, in contrast to the model (13.51), yt now depends on
lagged values of the error terms ut as well as on lagged values of the exogenous
variables Xt. This makes sense in many cases. If the regressors affect yt via a
distributed lag, and if the error terms reflect the combined influence of other
regressors that have been omitted, then it is surely plausible that the omitted
regressors would also affect yt via a distributed lag. However, the restriction
that the same distributed lag coefficients should apply to all the regressors
and to the error terms may be excessively strong in many cases.

The partial adjustment model is only one of many economic models that can
be used to justify the inclusion of one or more lags of the dependent variables
in regression functions. Others are discussed in Dhrymes (1971) and Hendry,
Pagan, and Sargan (1984). We now consider a general family of regression
models that include lagged dependent and lagged independent variables.
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Autoregressive Distributed Lag Models

For simplicity of notation, we will continue to discuss only models with a
single independent variable, xt. In this case, an autoregressive distributed
lag, or ADL, model can be written as

yt = β0 +
p∑

i=1

βiyt−i +
q∑

j=0

γj xt−j + ut, ut ∼ IID(0, σ2). (13.58)

Because there are p lags on yt and q lags on xt, this is sometimes called an
ADL(p, q) model.

A widely encountered special case of (13.58) is the ADL(1, 1) model

yt = β0 + β1yt−1 + γ0xt + γ1xt−1 + ut. (13.59)

Because most results that are true for the ADL(1, 1) model are also true, with
obvious modifications, for the more general ADL(p, q) model, we will largely
confine our discussion to this special case.

Although the ADL(1, 1) model is quite simple, many commonly encountered
models are special cases of it. When β1 = γ1 = 0, we have a static regression
model with IID errors; when γ0 = γ1 = 0, we have a univariate AR(1) model;
when γ1 = 0, we have a partial adjustment model; when γ1 = −β1γ0, we have
a static regression model with AR(1) errors; and when β1 = 1 and γ1 = −γ0,
we have a model in first differences that can be written as

∆yt = β0 + γ0∆xt + ut.

Before we accept any of these special cases, it makes sense to test them
against (13.59). This can be done by means of asymptotic t or F tests, which
it may be wise to bootstrap when the sample size is not large.

It is usually desirable to impose the condition that |β1| < 1 in (13.59). Strictly
speaking, this is not a stationarity condition, since we cannot expect yt to be
stationary without imposing further conditions on the explanatory variable xt.
However, it is easy to see that, if this condition is violated, the dependent
variable yt exhibits explosive behavior. If the condition is satisfied, there may
exist a long-run equilibrium relationship between yt and xt, which can be used
to develop a particularly interesting reparametrization of (13.59).

Suppose there exists an equilibrium value x◦ to which xt would converge as
t → ∞ in the absence of shocks. Then, in the absence of the error terms ut,
yt would converge to a steady-state long-run equilibrium value y◦ such that

y◦ = β0 + β1y
◦ + (γ0 + γ1)x◦.

Solving this equation for y◦ as a function of x◦ yields

y◦ =
β0

1− β1
+

γ0 + γ1

1− β1
x◦ =

β0

1− β1
+ λx◦, (13.60)
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where
λ ≡ γ0 + γ1

1− β1
. (13.61)

This is the long-run derivative of y◦ with respect to x◦, and it is an elasticity
if both series are in logarithms. An estimate of λ can be computed directly
from the estimates of the parameters of (13.59). Note that the result (13.60)
and the definition (13.61) make sense only if the condition |β1| < 1 is satisfied.

Because it is so general, the ADL(p, q) model is a good place to start when
attempting to specify a dynamic regression model. In many cases, setting
p = q = 1 will be sufficiently general, but with quarterly data it may be wise
to start with p = q = 4. Of course, we very often want to impose restrictions
on such a model. Depending on how we write the model, different restrictions
may naturally suggest themselves. These can be tested in the usual way by
means of asymptotic F and t tests, which may be bootstrapped to improve
their finite-sample properties.

Error-Correction Models

It is a straightforward exercise to check that the ADL(1, 1) model of equation
(13.59) can be rewritten as

∆yt = β0 + (β1 − 1)(yt−1 − λxt−1) + γ0∆xt + ut, (13.62)

where λ was defined in (13.61). Equation (13.62) is called an error-correction
model. It expresses the ADL(1, 1) model in terms of an error-correction
mechanism; both the model and mechanism are often abbreviated to ECM.3

Although the model (13.62) appears to be nonlinear, it is really just a repara-
metrization of the linear model (13.59). If the latter is estimated by OLS, an
appropriate GNR can be used to obtain the covariance matrix of the estimates
of the parameters of (13.62). Alternatively, any good NLS package should do
this for us if we start it at the OLS estimates.

The difference between yt−1 and λxt−1 in the ECM (13.62) measures the
extent to which the long-run equilibrium relationship between xt and yt is
not satisfied. Consequently, the parameter β1 − 1 can be interpreted as the
proportion of the resulting disequilibrium that is reflected in the movement of
yt in one period. In this respect, β1−1 is essentially the same as the parameter
δ − 1 of the partial adjustment model. The term (β1 − 1)(yt−1 − λxt−1)
that appears in (13.62) is the error-correction term. Of course, many ADL
models in addition to the ADL(1, 1) model can be rewritten as error-correction
models. An important feature of error-correction models is that they can also
be used with nonstationary data, as we will discuss in Chapter 14.

3 Error-correction models were first used by Hendry and Anderson (1977) and
Davidson, Hendry, Srba, and Yeo (1978). See Banerjee, Dolado, Galbraith,
and Hendry (1993) for a detailed treatment.
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13.5 Seasonality

As we observed in Section 2.5, many economic time series display a regular
pattern of seasonal variation over the course of every year. Seasonality, as
such a pattern is called, may be caused by seasonal variation in the weather
or by the timing of statutory holidays, school vacation periods, and so on.
Many time series that are observed quarterly, monthly, weekly, or daily display
some form of seasonality, and this can have important implications for applied
econometric work. Failing to account properly for seasonality can easily cause
us to make incorrect inferences, especially in dynamic models.

There are two different ways to deal with seasonality in economic data. One
approach is to try to model it explicitly. We might, for example, attempt
to explain the seasonal variation in a dependent variable by the seasonal
variation in some of the independent variables, perhaps including weather
variables or, more commonly, seasonal dummy variables, which were discussed
in Section 2.5. Alternatively, we can model the error terms as following a
seasonal ARMA process, or we can explicitly estimate a seasonal ADL model.

The second way to deal with seasonality is usually less satisfactory. It depends
on the use of seasonally adjusted data, that is, data which have been massaged
in such a way that they represent what the series would supposedly have been
in the absence of seasonal variation. Indeed, many statistical agencies release
only seasonally adjusted data for many time series, and economists often treat
these data as if they were genuine. However, as we will see later in this section,
using seasonally adjusted data can have unfortunate consequences.

Seasonal ARMA Processes

One way to deal with seasonality is to model the error terms of a regression
model as following a seasonal ARMA process, that is, an ARMA process with
nonzero coefficients only, or principally, at seasonal lags. In practice, purely
autoregressive processes, with no moving average component, are generally
used. The simplest and most commonly encountered example is the simple
AR(4) process

ut = ρ4ut−4 + εt, (13.63)

where ρ4 is a parameter to be estimated, and, as usual, εt is white noise.
Of course, this process makes sense only for quarterly data. Another purely
seasonal AR process for quarterly data is the restricted AR(8) process

ut = ρ4ut−4 + ρ8ut−8 + εt, (13.64)

which is analogous to an AR(2) process for nonseasonal data.

In many cases, error terms may exhibit both seasonal and nonseasonal serial
correlation. This suggests combining a purely seasonal with a nonseasonal
process. Suppose, for example, that we wish to combine an AR(1) process and
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a simple AR(4) process. The most natural approach is probably to combine
them multiplicatively. Using lag-operator notation, we obtain

(1− ρ1L)(1− ρ4L
4)ut = εt.

This can be rewritten as

ut = ρ1ut−1 + ρ4ut−4 − ρ1ρ4ut−5 + εt. (13.65)

Notice that the coefficient of ut−5 in equation (13.65) is equal to the negative
of the product of the coefficients of ut−1 and ut−4. This restriction can easily
be tested. If it does not hold, then we should presumably consider more
general ARMA processes with some coefficients at seasonal lags.

If adequate account of seasonality is not taken, there is often evidence of
fourth-order serial correlation in a regression model. Thus testing for it often
provides a useful diagnostic test. Moreover, seasonal autoregressive processes
provide a parsimonious way to model seasonal variation that is not explained
by the regressors. The simple AR(4) process (13.63) uses only one extra para-
meter, and the restricted AR(8) process (13.64) uses only two. However, just
as evidence of first-order serial correlation does not mean that the error terms
really follow an AR(1) process, evidence of fourth-order serial correlation does
not mean that they really follow an AR(4) process.

By themselves, seasonal ARMA processes cannot capture one important fea-
ture of seasonality, namely, the fact that different seasons of the year have
different characteristics: Summer is not just winter with a different label.
However, an ARMA process makes no distinction among the dynamical pro-
cesses associated with the different seasons. One simple way to alleviate this
problem would be to use seasonal dummy variables as well as a seasonal
ARMA process. Another potential difficulty is that the seasonal variation of
many time series is not stationary, in which case a stationary ARMA process
cannot adequately account for it. Trending seasonal variables may help to
cope with nonstationary seasonality, as we will discuss shortly in the context
of a specific example.

Seasonal ADL Models

Suppose we start with a static regression model in which yt equals Xtβ + ut

and then add three quarterly dummy variables, st1 through st3, assuming
that there is a constant among the other explanatory variables. The dummies
may be ordinary quarterly dummies, or else the modified dummies, defined
in equations (2.50), that sum to zero over each year. We then allow the error
term ut to follow the simple AR(4) process (13.63). Solving for ut−4 yields
the nonlinear regression model

yt = ρ4yt−4 + Xtβ − ρ4Xt−4β +
3∑

j=1

δj stj + εt. (13.66)

Copyright c© 1999, Russell Davidson and James G. MacKinnon



572 Methods for Stationary Time-Series Data

There are no lagged seasonal dummies in this model because they would be
collinear with the existing regressors.

Equation (13.66) is a special case of the seasonal ADL model

yt = γ4yt−4 + Xtβ1 + Xt−4β4 +
3∑

j=1

δjstj + εt, (13.67)

which is just a linear regression model in which yt depends on yt−4, the three
seasonal dummies, Xt, and Xt−4. Before accepting the model (13.66), one
would always want to test the common factor restrictions that it imposes on
(13.67); this can readily be done by using asymptotic F tests, as discussed in
Section 7.9. One would almost certainly also want to estimate ADL models
both more and less general than (13.67), especially if the common factor
restrictions are rejected. For example, it would not be surprising if yt−1 and
at least some components of Xt−1 also belonged in the model, but it would
also not be surprising if some components of Xt−4 did not belong.

Seasonally Adjusted Data

Instead of attempting to model seasonality, many economists prefer to avoid
dealing with it entirely by using seasonally adjusted data. Although the idea
of seasonally adjusting a time series is intuitively appealing, it is very hard to
do so in practice without resorting to highly unrealistic assumptions. Seasonal
adjustment of a series yt makes sense if, for all t, we can write yt = y◦t + ys

t,
where y◦t is a time series that contains no seasonal variation at all, and ys

t is
a time series that contains nothing but seasonal variation. However, this is
surely an extreme assumption, which would be false in almost any economic
model of seasonal variation that could reasonably be imagined.

To make the discussion more concrete, consider Figure 13.2, which shows the
logarithm of urban housing starts in Canada, quarterly, for the period 1966 to
2001. The solid line represents the actual data, and the dotted line represents
a seasonally adjusted series.4 It is clear from the figure that housing starts
in Canada are highly seasonal, with the first (winter) quarter usually having
a much smaller number of starts than the other three quarters. There is
also some indication that the magnitude of the seasonal variation may have
become smaller in the latter part of the sample, perhaps because of changes
in construction technology.

Seasonal Adjustment by Regression

In Section 2.5, we discussed the use of seasonal dummy variables to construct
seasonally adjusted data by regression. Although this approach is easy to

4 These data come from Statistics Canada. The actual data, which start in 1948,
are from CANSIM series J6001, and the adjusted data, which start in 1966,
are from CANSIM series J9001.
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Figure 13.2 Urban housing starts in Canada, 1966-2001

implement and easy to analyze, it has a number of disadvantages, and it is
almost never used by official statistical agencies.

One problem with the simplest form of seasonal adjustment by regression is
that it does not allow the pattern of seasonality to change over time. However,
as Figure 13.2 illustrates, seasonal patterns often seem to do precisely that. A
natural way to model this is to add additional seasonal dummy variables that
have been interacted with powers of a time trend that increases annually. In
the case of quarterly data, such a trend would be

t>q ≡ [1 1 1 1 2 2 2 2 3 3 3 3 · · · ]. (13.68)

The reason tq takes this rather odd form is that, when it is multiplied by the
seasonal dummies, the resulting trending dummies always sum to zero over
each year. If one simply multiplied seasonal dummies by an ordinary time
trend, that would not be the case.

Let S denote a matrix of seasonal dummies and seasonal dummies that have
been interacted with powers of tq or, in the case of data at other than quarterly
frequencies, whatever annually increasing trend term is appropriate. In the
case of quarterly data, S would normally have 3, 6, 9, or maybe 12 columns.
In the case of monthly data, it would normally have 11, 22, or 33 columns. In
all cases, every one of the variables in S should sum to zero over each year.
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Then, if y denotes the vector of observations on a series to be seasonally
adjusted, we could run the regression

y = β0 + Sδ + u (13.69)

and estimate the seasonally adjusted series as y′ = y − Sδ̂. Unfortunately,
although equations like (13.69) often provide a reasonable approximation to
observed seasonal patterns, they frequently fail to do so, as readers will find
when they answer Exercise 13.17.

Another problem with using seasonal dummies is that, as additional obser-
vations become available, the estimates from the dummy variable regression
will not stay the same. It is inevitable that, as the sample size increases, the
estimates of δ in equation (13.69) will change, and so every element of y′ will
change every time a new observation becomes available. This is clearly a most
undesirable feature from the point of view of users of official statistics. More-
over, as the sample size gets larger, the number of trend terms may need to
increase if a polynomial is to continue to provide an adequate approximation
to changes in the pattern of seasonal variation.

Seasonal Adjustment and Linear Filters

The seasonal adjustment procedures that are actually used by statistical agen-
cies tend to be very complicated. They attempt to deal with a host of practical
problems, including changes in seasonal patterns over time, variations in the
number of shopping days and the dates of holidays from year to year, and the
fact that pre-sample and post-sample observations are not available. We will
not attempt to discuss these methods at all.

Although official methods of seasonal adjustment are very complicated, they
can often be approximated remarkably well by much simpler procedures based
on what are called linear filters. Let y be an n--vector of observations (often
in logarithms rather than levels) on a series that has not been seasonally
adjusted. Then a linear filter consists of an n × n matrix Φ, with rows that
sum to 1, such that the seasonally adjusted series y′ is equal to Φy. Each row
of the matrix Φ consists of a vector of filter weights. Thus each element y′t
of the seasonally adjusted series is equal to a weighted average of current,
leading, and lagged values of yt.

Let us consider a simple example for quarterly data. Suppose we first create
three-term and eleven-term moving averages

ȳt ≡ 1−
3
(yt−4 + yt + yt+4) and ỹt ≡ 1−−

11

5∑

j=−5

yt+j .

The difference between ȳt and ỹt is a rolling estimate of the amount by which
the value of yt for the current quarter tends to differ from its average value
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over the year. Thus one way to define a seasonally adjusted series would be

y∗t ≡ yt − ȳt + ỹt

= .0909yt−5 − .2424yt−4 + .0909yt−3 + .0909yt−2

+ .0909yt−1 + .7576yt + .0909yt+1 + .0909yt+2

+ .0909yt+3 − .2424yt+4 + .0909yt+5.

(13.70)

This example corresponds to a linear filter in which, for 5 < p < n−5, the pth

row of Φ would consist first of p− 6 zeros, followed by the eleven coefficients
that appear in (13.70), followed by n− p− 5 more zeros.

Although this example is very simple, the basic approach that it illustrates
may be found, in various modified forms, in almost all official seasonal adjust-
ment procedures. The latter generally do not actually employ linear filters,
but they do employ a number of moving averages in a way similar to the ex-
ample. These moving averages tend to be longer than the ones in the example,
and they often give progressively less weight to observations farther from t.
An important feature of almost all seasonally adjusted data is that, as in the
example, the weight given to yt is generally well below 1. For more on the
relationship between official procedures and ones based on linear filters, see
Burridge and Wallis (1984) and Ghysels and Perron (1993).

We have claimed that official seasonal adjustment procedures in most cases
have much the same properties as linear filters applied to either the levels or
the logarithms of the raw data. This assertion can be checked empirically
by regressing a seasonally adjusted series on a number of leads and lags of
the corresponding seasonally unadjusted series. If the assertion is accurate,
such a regression should fit well, and the coefficients should have a distinctive
pattern. The coefficient of the current value of the raw series should be fairly
large but less than 1, the coefficients of seasonal lags and leads should be
negative, and the coefficients of other lags and leads should be small and
positive. In other words, the coefficients should resemble those in equation
(13.70). In Exercise 13.17, readers are asked to see whether a linear filter
provides a good approximation to the method actually used for seasonally
adjusting the housing starts data.

Consequences of Using Seasonally Adjusted Data

The consequences of using seasonally adjusted data depend on how the data
were actually generated and the nature of the procedures used for seasonal
adjustment. For simplicity, we will suppose that

y = y◦ + ys and X = X◦ + Xs,

where ys and Xs contain all the seasonal variation in y and X, respectively,
and y◦ and X◦ contain all other economically interesting variation. Suppose
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further that the DGP is

y◦ = X◦β0 + u, u ∼ IID(0, σ2I). (13.71)

Thus the economic relationship in which we are interested involves only the
nonseasonal components of the data.

If the same linear filter is applied to every series, the seasonally adjusted data
are Φy and ΦX, and the OLS estimator using those data is

β̂S = (X>Φ>ΦX)−1X>Φ>Φy. (13.72)

This looks very much like a GLS estimator, with the matrix Φ>Φ playing the
role of the inverse covariance matrix.

The properties of the estimator β̂S defined in equation (13.72) depend on how
the filter weights are chosen. Ideally, the filter would completely eliminate
seasonality, so that

Φy = Φy◦ and ΦX = ΦX◦.

In this ideal case, we see that

β̂S = (X◦>Φ>ΦX◦)−1X◦>Φ>Φy◦

= β0 + (X◦>Φ>ΦX◦)−1X◦>Φ>Φu.
(13.73)

If every column of X is exogenous, and not merely predetermined, it is clear
that the second term in the last line here has expectation zero, which implies
that E(β̂S) = β0. Thus we see that, under the exogeneity assumption, the
OLS estimator that uses seasonally adjusted data is unbiased. But this is a
very strong assumption for time-series data.

Moreover, this estimator is not efficient. If the elements of u are actually
homoskedastic and serially independent, as we assumed in (13.71), then the
Gauss-Markov Theorem implies that the efficient estimator would be obtained
by an OLS regression of y◦ on X◦. Instead, β̂S is equivalent to the estimator
from a certain GLS regression of y◦ on X◦. Of course, the efficient estimator
is not feasible here, because we do not observe y◦ and X◦.

In many cases, we can prove consistency under much weaker assumptions than
are needed to prove unbiasedness; see Sections 3.2 and 3.3. In particular, for
OLS to be consistent, we usually just need the regressors to be predetermined.
However, in the case of data that have been seasonally adjusted by means
of a linear filter, this assumption is not sufficient. In fact, the exogeneity
assumption that is needed in order to prove that β̂S is unbiased is also needed
in order to prove that it is consistent. From (13.73) it follows that

plim
n→∞

β̂S = β0 + plim
n→∞

(
1−
n

X◦>Φ>ΦX◦
)−1

plim
n→∞

(
1−
n

X◦>Φ>Φu
)
,
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provided we impose sufficient conditions for the probability limits to exist and
be nonstochastic. The predeterminedness assumption (3.10) evidently does
not allow us to claim that the second probability limit here is a zero vector.
On the contrary, any correlation between error terms and regressors at leads
and lags that are given nonzero weights by the filter generally causes it to be
a nonzero vector. Therefore, the estimator β̂S is inconsistent if the regressors
are merely predetermined.

Although the exogeneity assumption is always dubious in the case of time-
series data, it is certainly false when the regressors include one or more lags
of the dependent variable. There has been some work on the consequences
of using seasonally adjusted data in this case; see Jaeger and Kunst (1990),
Ghysels (1990), and Ghysels and Perron (1993), among others. It appears
that, in models with a single lag of the dependent variable, estimates of the
coefficient of the lagged dependent variable can be severely biased when sea-
sonally adjusted data are used. This bias does not vanish as the sample size
increases, and its magnitude can be substantial; see Davidson and MacKinnon
(1993, Chapter 19) for an illustration.

Seasonally adjusted data are very commonly used in applied econometric
work. Indeed, it is difficult to avoid doing so in many cases, either because
the actual data are not available or because it is the seasonally adjusted series
that are really of interest. However, the results we have just discussed suggest
that, especially for dynamic models, the undesirable consequences of using
seasonally adjusted data may be quite severe.

13.6 Autoregressive Conditional Heteroskedasticity

With time-series data, it is not uncommon for least squares residuals to be
quite small in absolute value for a number of successive periods of time, then
much larger for a while, then smaller again, and so on. This phenomenon of
time-varying volatility is often encountered in models for stock returns, foreign
exchange rates, and other series that are determined in financial markets.
Numerous models for dealing with this phenomenon have been proposed. One
very popular approach is based on the concept of autoregressive conditional
heteroskedasticity, or ARCH, that was introduced by Engle (1982). The basic
idea of ARCH models is that the variance of the error term at time t depends
on the realized values of the squared error terms in previous time periods.

If ut denotes the error term adhering to a regression model, which may be
linear or nonlinear, and Ωt−1 denotes an information set that consists of data
observed through period t− 1, then what is called an ARCH(q) process can
be written as

ut = σtεt; σ2
t ≡ E(u2

t |Ωt−1) = α0 +
q∑

i=1

αiu
2
t−i , (13.74)
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where αi > 0 for i = 0, 1, . . . , q, and εt is white noise with variance 1. Here and
throughout this section, σt is understood to be the positive square root of σ2

t .
The skedastic function for the ARCH(q) process is the rightmost expression
in (13.74). Since this function depends on t, the model is, as its name claims,
heteroskedastic. The term “conditional” is due to the fact that, unlike the
skedastic functions we have so far encountered, the ARCH skedastic function
is not exogenous, but merely predetermined. Thus the model prescribes the
variance of ut conditional on the past of the process.

Because the conditional variance of ut is a function of ut−1, it is clear that ut

and ut−1 are not independent. They are, however, uncorrelated:

E(utut−1) = E
(
E(utut−1 |Ωt−1)

)
= E

(
ut−1σtE(εt |Ωt−1)

)
= 0,

where we have used the facts that σt ∈ Ωt−1 and that εt is an innovation.
Almost identical reasoning shows that E(utus) = 0 for all s < t. Thus the
ARCH process involves only heteroskedasticity, not serial correlation.

If an ARCH(q) process is covariance stationary, then σ2, the unconditional
expectation of u2

t , exists and is independent of t. Under the stationarity
assumption, we may take the unconditional expectation of the second equation
of (13.74), from which we find that

σ2 = α0 + σ2

q∑

i=1

αi.

Therefore,
σ2 =

α0

1−∑q
i=1 αi

. (13.75)

The condition
∑q

i=1 αi < 1 is required for σ2 to be positive, and so it is
also a necessary condition for stationarity. It is of course necessary that the
conditional variances σ2

t should be positive, and that is why we require that
αi > 0 for all i. If that requirement were not satisfied, realizations of some of
the σ2

t could be negative.

Unfortunately, the ARCH(q) process has not proven to be very satisfactory in
applied work. Many financial time series display time-varying volatility that
is highly persistent, but the correlation between successive values of u2

t is not
very high; see Pagan (1996). In order to accommodate these two empirical
regularities, q must be large. But if q is large, the ARCH(q) process has a
lot of parameters to estimate, and the requirement that all the αi should be
positive may not be satisfied if it is not explicitly imposed.

GARCH Models

The generalized ARCH model, which was proposed by Bollerslev (1986), is
much more widely used than the original ARCH model. We may write a
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GARCH(p, q) process as

ut = σtεt; σ2
t ≡ E(u2

t |Ωt−1) = α0 +
q∑

i=1

αiu
2
t−i +

p∑

j=1

δj σ2
t−j . (13.76)

The conditional variance here can be written more compactly as

σ2
t = α0 + α(L)u2

t + δ(L)σ2
t , (13.77)

where α(L) and δ(L) are polynomials in the lag operator L, neither of which
includes a constant term. All of the parameters in the infinite-order auto-
regressive representation (

1− δ(L)
)−1

α(L)

must be nonnegative. Otherwise, as in the case of an ARCH(q) model with
one or more of the αi < 0, we could have negative conditional variances.

There is a strong resemblance between the GARCH(p, q) process (13.77) and
the ARMA(p, q) process (13.21). In fact, if we let δ(L) = ρ(L), α0 = γ,
σ2

t = yt, and u2
t = εt, we see that the former becomes formally the same as

an ARMA(p, q) process in which the coefficient of εt equals 0. However, the
formal similarity between the two processes masks some important differences.
In a GARCH process, the σ2

t are not observable, and E(u2
t ) = σ2

t 6= 0.

The simplest and by far the most popular GARCH model is the GARCH(1,1)
process, for which the conditional variance can be written as

σ2
t = α0 + α1u

2
t−1 + δ1σ

2
t−1. (13.78)

Under the hypothesis of covariance stationarity, the unconditional variance
σ2 can be found by taking the unconditional expectation of equation (13.78).
We find that

σ2 = α0 + α1σ
2 + δ1σ

2.

Solving this equation yields the result that

σ2 =
α0

1− α1 − δ1
. (13.79)

For this unconditional variance to exist, it must be the case that α1 + δ1 < 1,
and for it to be positive, we require that α0 > 0.

The GARCH(1, 1) process generally seems to work quite well in practice. In
many cases, it cannot be rejected against any more general GARCH(p, q)
process. An interesting empirical regularity is that the estimate α̂1 is often
small and positive, with the estimate δ̂1 much larger, and the sum of the
coefficients, α̂1 + δ̂1, between 0.9 and 1. These parameter values imply that
the time-varying volatility is highly persistent.
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Testing for ARCH Errors

It is easy to test a regression model for the presence of ARCH or GARCH
errors. Imagine, for the moment, that we actually observe the ut. Then we
can replace σ2

t by u2
t − et, where et is defined to be the difference between u2

t

and its conditional expectation. This allows us to rewrite the GARCH(p, q)
model (13.76) as

u2
t = α0 +

max(p,q)∑

i=1

(αi + δi)u2
t−i + et −

p∑

j=1

δj et−j . (13.80)

In this equation, we have replaced all of the σ2
t−j by u2

t−j − et−j and then
grouped the two summations that involve the u2

t−i. Of course, if p 6= q, either
some of the αi or some of the δi in the first summation are identically zero.
Equation (13.80) can now be interpreted as a regression model with dependent
variable u2

t and MA(p) errors. If one were actually to estimate (13.80), the
MA structure would yield estimates of the δj , and the estimated coefficients
of the u2

t−i would then allow the αi to be estimated.
Rather than estimating (13.80), it is easier to base a test on the Gauss-Newton
regression that corresponds to (13.80), evaluated under the null hypothesis
that αi = 0 for i = 1, . . . , q and δj = 0 for j = 1, . . . , p. Since equation (13.80)
is linear with respect to the αi and the δj , the GNR is easy to derive. It is

u2
t − α0 = b0 +

max(p,q)∑

i=1

biu
2
t−i + residual. (13.81)

The artificial parameter b0 here corresponds to the real parameter α0, and
the bi, for i = 1, . . . , max(p, q), correspond to the sums αi +δi, because, under
the null, the αi and δi are not separately identifiable. In the regressand, α0

would normally be the error variance estimated under the null. However, its
value is irrelevant if we are using equation (13.81) for testing, because there
is a constant term on the right-hand side.
Under the alternative, the GNR should, strictly speaking, incorporate the
MA structure of the error terms of (13.80). But, since these error terms are
white noise under the null, a valid test can be constructed without taking
account of the MA structure. The price to be paid for this simplification
is that the αi and the δi remain unidentified as separate parameters, which
means that the test is the same for all GARCH(p, q) alternatives with the
same value of max(p, q).
In practice, of course, we do not observe the ut. But, as for the GNR-based
tests against other types of heteroskedasticity that we discussed in Section 7.5,
it is asymptotically valid to replace the unobserved ut by the least squares
residuals ût. Thus the test regression is actually

û2
t = b0 +

max(p,q)∑

i=1

bi û
2
t−i + residual, (13.82)
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where we have arbitrarily set α0 = 0. Because of the lags, this GNR would
normally be run over the last n−max(p, q) observations only. As usual, there
are several possible test statistics. The easiest to compute is probably n times
the centered R2, which is asymptotically distributed as χ2

(
max(p, q)

)
under

the null. It is also asymptotically valid to use the standard F statistic for all
of the slope coefficients to be 0, treating it as if it followed the F distribution
with max(p, q) and n − 2max(p, q) − 1 degrees of freedom. These tests can
easily be bootstrapped, and it is often wise to do so. We can use either a
parametric or a semiparametric bootstrap DGP.

Because it is very easy to compute a test statistic using regression (13.82),
these tests are the most commonly used procedures to detect autoregressive
conditional heteroskedasticity. However, other procedures may well perform
better. In particular, Lee and King (1993) and Demos and Sentana (1998)
have proposed various tests which take into account the fact that the alter-
native hypothesis is one-sided. These one-sided tests have better power than
tests based on the Gauss-Newton regression (13.82).

The Stationary Distribution for ARCH and GARCH Processes

In the case of an ARMA process, the stationary, or unconditional, distribution
of the ut will be normal whenever the innovations εt are normal white noise.
However, this is not true for (G)ARCH processes, because the mapping from
the εt to the ut is nonlinear. As we will see, the stationary distribution is
not normal, and it may not even have a fourth moment. For simplicity, we
will confine our attention to the fourth moment of the ARCH(1) process.
Other moments of this process, and moments of the GARCH(1, 1) process,
are treated in the exercises.

For an ARCH(1) process with normal white noise innovations, or indeed any
such (G)ARCH process, the distribution of ut is normal conditional on Ωt−1.
Since the variance of this distribution is σ2

t , the fourth moment is 3σ4
t , as we

saw in Exercise 4.2. For an ARCH(1) process, σ2
t = α0 + α1u

2
t−1. Therefore,

E(u4
t |Ωt−1) = 3(α0 + α1u

2
t−1)

2 = 3α2
0 + 6α0α1u

2
t−1 + 3α2

1u4
t−1.

If we assume that the unconditional fourth moment exists and denote it by m4,
we can take the unconditional expectation of this relation to obtain

m4 = 3α2
0 +

6α2
0α1

1− α1
+ 3α2

1m4,

where we have used the implication of equation (13.75) that the unconditional
second moment is α0/(1− α1). Solving this equation for m4, we find that

m4 =
3α2

0(1 + α1)
(1− α1)(1− 3α2

1)
. (13.83)
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This result evidently cannot hold unless 3α2
1 < 1. In fact, if this condition

fails, the fourth moment does not exist. From the result (13.83), we can
see that m4 > 3σ4 = 3α2

0/(1 − α1)2 whenever α1 > 0. Thus, whatever the
stationary distribution of ut might be, it certainly cannot be normal. At the
time of writing there is, as far as the authors are aware, no explicit, analytical
characterization of the stationary distribution for (G)ARCH processes.

Estimating ARCH and GARCH Models

Since (G)ARCH processes induce heteroskedasticity, it might seem natural
to estimate a regression model with (G)ARCH errors by using feasible GLS.
The first step would be to estimate the underlying regression model by OLS
or NLS in order to obtain consistent but inefficient estimates of the regression
parameters, along with least squares residuals ût. The second step would
be to estimate the parameters of the (G)ARCH process by treating the û2

t

as if they were actual squared error terms and estimating a model with a
specification something like (13.80), again by least squares. The final step
would be to estimate the original regression model by feasible weighted least
squares, using weights proportional to the inverse square roots of the fitted
values from the model for the û2

t .

This approach is very rarely used, because it is not asymptotically efficient.
The skedastic function, which would, for example, be the right-hand side of
equation (13.78) in the case of a GARCH(1, 1) model, depends on the lagged
squared residuals, which in turn depend on the estimates of the regression
function. Because of this, estimating both functions together yields more
efficient estimates than estimating each of them conditional on estimates of
the other; see Engle (1982).

The most popular way to estimate models with GARCH errors is to assume
that the error terms are normally distributed and use maximum likelihood.
We can write a linear regression model with GARCH errors defined in terms
of a normal innovation process as

yt −Xtβ

σt(β, θ)
= εt, εt ∼ N(0, 1), (13.84)

where yt is the dependent variable, Xt is a vector of exogenous or predeter-
mined regressors, and β is a vector of regression parameters. The skedastic
function σ2

t (β, θ) is defined for some particular choice of p and q by equa-
tion (13.76) with ut replaced by yt −Xtβ. It therefore depends on β as well
as on the αi and δj that appear in (13.76), which we denote collectively by θ.
The density of yt conditional on Ωt−1 is then

1
σt(β,θ)

φ

(
yt −Xtβ

σt(β, θ)

)
, (13.85)

where φ(·) denotes the standard normal density. The first factor in (13.85) is

Copyright c© 1999, Russell Davidson and James G. MacKinnon



13.6 Autoregressive Conditional Heteroskedasticity 583

a Jacobian factor which reflects the fact that the derivative of εt with respect
to yt is σ−1

t (β,θ); see Section 10.8.

By taking the logarithm of expression (13.85), we find that the contribution
to the loglikelihood function made by the tth observation is

`t(β, θ) = − 1−
2

log 2π − 1−
2

log
(
σ2

t (β, θ)
)− 1−

2

(yt −Xtβ)2

σ2
t (β, θ)

. (13.86)

Unfortunately, it is not entirely straightforward to evaluate this expression.
The problem is the skedastic function σ2

t (β,θ), which is defined implicitly by
the recursion (13.77). This recursion does not constitute a complete definition
because it does not provide starting values to initialize the recursion. In
trying to find suitable starting values, we run into the difficulty, mentioned
in the previous subsection, that there exists no closed-form expression for the
stationary GARCH density.

If we are dealing with an ARCH(q) model, we can sidestep this problem by
conditioning on the first q observations. Since, in this case, the skedastic
function σ2

t (β,θ) is determined completely by q lags of the squared residuals,
there is no missing information for observations q + 1 through n. We can
therefore sum the contributions (13.86) for just those observations, and then
maximize the result. This leads to ML estimates conditional on the first q
observations. But such a procedure works only for models with pure ARCH
errors, and these models are very rarely used in practice.

With a GARCH(p, q) model, p starting values of σ2
t are needed in addition

to q starting values of the squared residuals in order to initialize the recur-
sion (13.77). It is therefore necessary to resort to some sort of ad hoc procedure
to specify the starting values. A not very good idea is just to set all unknown
pre-sample values of û2

t and σ2
t to zero. A better idea is to replace them by an

estimate of their common unconditional expectation. At least two different
ways of doing this are in common use. The first is to replace the unconditional
expectation by the appropriate function of the θ parameters, which would be
given by the rightmost expression in equations (13.79) for GARCH(1, 1). The
second, which is easier, is just to use the sum of squared residuals from OLS
estimation, divided by n.

Another approach, similar to one we discussed for models with MA errors,
is to treat the unknown starting values as extra parameters, and to max-
imize the loglikelihood with respect to them, β, and θ jointly. In all but
huge samples, the choice of starting values can have a significant effect on the
parameter estimates. Consequently, different programs for GARCH estima-
tion can produce very different results. This unsatisfactory state of affairs,
documented convincingly by Brooks, Burke, and Persand (2001), results from
doing ML estimation conditional on different things.

For any choice of starting values, maximizing a loglikelihood function obtained
by summing the contributions (13.86) is not particularly easy, especially in
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the case of GARCH models. Numerical difficulties seem to be quite common.
It is vital to use analytical, rather than numerical, first derivatives, and for
some algorithms it is highly desirable to use analytical second derivatives as
well; these may be found in Fiorentini, Calzolari, and Panattoni (1996). Exer-
cise 13.22 proposes an artificial regression, which makes use of first derivatives
only. Not all software packages provide reliable estimates and standard errors;
see McCullough and Renfro (1999) and Brooks, Burke, and Persand (2001).
Therefore, we strongly recommend estimating this type of model more than
once using different options and different computer programs.

Although GARCH models have error terms with thicker tails than those of
the normal distribution, data from financial markets often have tails even
thicker than those implied by a GARCH model with normal εt. It is therefore
quite common to modify (13.84) by assuming that the εt follow a distribution
with thicker tails than the standard normal. One possibility is the Student’s t
distribution with a small number of degrees of freedom, which may be chosen
in advance or estimated. Maximum likelihood estimation then proceeds in
the usual way.

We can use any of the estimators discussed in Section 10.4 to estimate the
covariance matrix of the ML estimates. One of these, the information matrix
estimator, can be computed by means of the artificial regression that is in-
troduced in Exercise 13.22. If the error terms are not distributed according
to the normal or whatever distribution we have assumed, the ML estimates
are still consistent, but they are not asymptotically efficient. In this case, the
sandwich covariance matrix estimator (10.45) is consistent, but covariance
matrix estimators that rely on the information matrix equality generally are
not. A variant of the sandwich estimator specifically adapted to GARCH
models was derived by Bollerslev and Wooldridge (1992). These and other
possible variants are discussed and compared by Fiorentini, Calzolari, and
Panattoni (1996).5

Simulating ARCH and GARCH Models

ARCH and GARCH models can be simulated recursively in much the same
way as ARMA models. The successive values of the σ2

t are computed on the
basis of past realizations of the u2

t and σ2
t series, and the ut are generated

as σtεt for a white-noise series εt, which is often but not always normal.
However, the problem of finding suitable starting values for the recursion is

5 It is stated in this paper and elsewhere in the literature that the information
matrix is block diagonal with respect to β and θ. This is misleading, since it is
true only if the information matrix is defined using unconditional expectations.
If the contribution of observation t to the information matrix is computed as
an expectation conditional on Ωt−1, as it should be for efficiency, then the
information matrix is not block diagonal.
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much harder for (G)ARCH models than for ARMA ones, because we cannot
simply draw them from the stationary distribution.

The easiest approach is the one already mentioned in the ARMA context,
whereby one starts the recursion for some large negative t and discards the
elements of the simulated series for nonpositive t. It is natural to set the
initial values of σ2

t in this recursion to the unconditional expectation of the u2
t

or, in the bootstrap case, to an estimate of this unconditional expectation.
However, this approach is not entirely satisfactory for bootstrapping, where
we wish to condition on the observed data as far as possible. One possibility
would be to condition on the first max(p, q) observations, using the first q
squared residuals as the initial values of u2

t and the first p squared residuals
as the initial values of σ2

t . However, since much work remains to be done
on bootstrapping (G)ARCH models, we cannot recommend this or any other
approach at the present time.

Our discussion of autoregressive conditional heteroskedasticity has necessarily
been quite superficial. There have been many extensions of the basic ARCH
and GARCH models discussed here, among them the exponential GARCH
model of Nelson (1991) and the absolute GARCH model of Hentschel (1995).
These models are intended to explain empirical features of financial time series
that the standard GARCH model cannot capture. More detailed treatments
may be found in Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and
Nelson (1994), Hamilton (1994, Chapter 21), and Pagan (1996).

13.7 Vector Autoregressions

The dynamic models discussed in Section 13.4 were single-equation models.
But we often want to model the dynamic relationships among several time-
series variables. A simple way to do so without making many assumptions is
to use what is called a vector autoregression, or VAR, model, which is the
multivariate analog of an autoregressive model for a single time series.

Let the 1×g vector Yt denote the tth observation on a set of g variables. Then
a vector autoregressive model of order p, sometimes referred to as a VAR(p)
model, can be written as

Yt = α +
p∑

j=1

Yt−j Φj + Ut, Ut ∼ IID(0, Σ), (13.87)

where Ut is a 1×g vector of error terms, α is a 1×g vector of constant terms,
and the Φj , for j = 1, . . . , p, are g × g matrices of coefficients, all of which
are to be estimated. If yti denotes the ith element of Yt and φj,ki denotes the
kith element of Φj , then the ith column of (13.87) can be written as

yti = αi +
p∑

j=1

m∑

k=1

yt−j,k φj,ki + uti.
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This is just a linear regression, in which yti depends on a constant term and
lags 1 through p of all of the g variables in the system. Thus we see that the
VAR (13.87) has the form of a multivariate linear regression model, or SUR
model, like the ones we discussed in Section 12.2.

To see this clearly, let us make the definitions

Xt ≡ [1 Yt−1 · · · Yt−p] and Π ≡




α
Φ1
...

Φp


.

The row vector Xt has k ≡ gp+1 elements, and the matrix Π is k× g. With
these definitions, the VAR (13.87) becomes

Yt = XtΠ + Ut, Ut ∼ IID(0, Σ), (13.88)

which has the form of a multivariate regression model. In fact, if we stack
the rows, it has precisely the same form as (12.71), which is the unrestricted
reduced form for a linear simultaneous equations model. Thus a VAR can be
thought of as a set of reduced form linear equations relating the endogenous
variables in the vector Yt to the predetermined variables that are collected in
the vector Xt. Except for the constant term, these predetermined variables
are the first p lags of all the endogenous variables themselves.

Estimating a vector autoregression is very easy. As we saw in Section 12.2,
it is appropriate to estimate a linear system like (13.88), in which the same
regressors appear in every equation, by ordinary least squares. In such a
case, OLS is both the efficient GLS estimator and the maximum likelihood
estimator under the assumption of multivariate normal errors. If Π̂ denotes
the matrix of OLS estimates, it follows from (12.41) that the maximized value
of the loglikelihood function is

− gn−−
2

(log 2π + 1)− n−
2

log |Σ̂|, (13.89)

where

Σ̂ ≡ 1−
n
(Y −XΠ̂)>(Y −XΠ̂) = 1−

n

n∑
t=1

Ût
>Ût (13.90)

is the ML estimate of the covariance matrix Σ. Here Y is the n × g matrix
with typical row Yt, X is the n × k matrix with typical row Xt, and Ût is
the row vector of OLS residuals for observation t. The estimate (13.90) is
often of considerable interest, because it captures the covariances between the
innovations in the various equations.

When specifying a VAR, it is important to determine how many lags need to
be included. If one wishes to test the null hypothesis that the longest lag in
the system is p against the alternative that it is p + 1, the easiest way to do
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so is to compute the LR statistic

n
(
log |Σ̂(p)| − log |Σ̂(p + 1)|), (13.91)

where Σ̂(p) and Σ̂(p + 1) denote the ML estimates of Σ for systems with p
and p + 1 lags, respectively; both of these may be computed using (13.90).
This test statistic is asymptotically distributed as χ2(g2). However, unless
the sample size n is large relative to the number of parameters in the system
(g + pg2 under the null, and g + (p + 1)g2 under the alternative), the finite-
sample distribution of the LR statistic (13.91) may differ substantially from
its asymptotic one. In consequence, this is a case in which it will often be
very desirable to compute bootstrap rather than asymptotic P values.

Since there is more than one way to generate bootstrap samples for a VAR, it
is worth saying a bit more about this. We suggest using (13.87) to generate
the data recursively, with OLS estimates under the null replacing the unknown
parameters. The bootstrap error terms are obtained by resampling the row
vectors Ũt, where Ũt is equal to (n/(n − 1 − gp))1/2 times the row vector
Ût of OLS residuals, and actual pre-sample values of Yt are used to start
the recursive process of generating the bootstrap data. Limited simulation
evidence suggests that this procedure yields much more accurate P values for
tests based on (13.91) than using the χ2(g2) distribution.

If we wish to construct confidence intervals for, or test hypotheses about,
individual parameters in a VAR, we can use the OLS standard errors, which
are asymptotically valid. Similarly, if we wish to test hypotheses concerning
two or more parameters in a single equation, we can compute Wald tests in the
usual way based on the OLS covariance matrix for that equation. However, if
we wish to test hypotheses concerning coefficients in two or more equations, we
need the covariance matrix of the parameter estimates for the entire system.

We saw in Chapter 12 that the estimated covariance matrix for the feasi-
ble GLS estimates of a multivariate regression model is given by expression
(12.19), and the one for the ML estimates is given by expression (12.38).
These two covariance matrices differ only because they use different estimates
of Σ. As in Section 12.2, we let X• ≡ Ig⊗X, which is a gn×gk matrix. Then,
if all the parameters are stacked into a vector of length gk, both covariance
matrices have the form

(
X•>(Σ̂−1 ⊗ In)X•

)−1
.

Using the rules for manipulating Kronecker products given in equations
(12.08), we see that

(
X•>(Σ̂−1⊗ In)X•

)−1 =
(
(Ig ⊗X>)(Σ̂−1⊗ In)(Ig ⊗X)

)−1 = Σ̂⊗ (X>X)−1.

Thus the covariance matrix for all the coefficients of a VAR is easily computed
from Σ̂, which is given in (13.90), and the inverse of the X>X matrix.
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The idea of using vector autoregressions instead of structural models to model
macroeconomic dynamics is often attributed to Sims (1980). Our treatment
has been very brief. For a more detailed introductory treatment, with many
references, see Lütkepohl (2001). For a review of macroeconomic applications
of VARs, see Stock and Watson (2001).

Granger Causality

One common use of vector autoregressions is to test the hypothesis that one
or more of the variables in a VAR do not “Granger cause” the others. The
concept of Granger causality was developed by Granger (1969). Other, closely
related, definitions of causality have been suggested, notably by Sims (1972).
Suppose we divide the variables in a VAR into two groups, Yt1 and Yt2, which
are row vectors of dimensions g1 and g2, respectively. Then we may say that
Yt2 does not Granger cause Yt1 if the distribution of Yt1, conditional on past
values of both Yt1 and Yt2, is the same as the distribution of Yt1 conditional
only on its own past values.

In practice, it would be very difficult to test whether the entire distribution
of Yt1 depends on past values of Yt2. Therefore, we almost always content
ourselves with asking whether the conditional mean of Yt1 depends on past
values of Yt2. In terms of the VAR (13.87), this is equivalent to imposing
restrictions on the equations that correspond to Yt1. We can rewrite the
VAR as

[Yt1 Yt2] = [α1 α2] +
p∑

j=1

[Yt−j,1 Yt−j,2]
[

Φj,11 Φj,12

Φj,21 Φj,22

]
+ [Ut1 Ut2],

where the matrices Φj have been partitioned to conform with the partition of
Yt and its lags. If Yt2 does not Granger cause Yt1, then all of the Φj,21 must
be zero matrices. Similarly, if Yt1 does not Granger cause Yt2, then all of the
Φj,12 must be zero matrices.

Since the Φj,21 appear only in the equations for Yt1, it is easy to test the
hypothesis that they are all zero. We obtain ML estimates of the two systems
of equations

Yt1 = α1 +
p∑

j=1

Yt−j,1Φj,11 + Ut1, and (13.92)

Yt1 = α1 +
p∑

j=1

(Yt−j,1Φj,11 + Yt−j,2 Φj,21) + Ut1, (13.93)

which may be done using OLS for each equation, and then calculate the
value of the loglikelihood function for each of the systems. As in (13.89), the
loglikelihood depends only on the estimate of Σ11, the g1×g1 upper left-hand
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block of Σ. This may easily be calculated using the OLS residuals, as in
(13.90). We obtain the LR statistic

n
(
log |Σ̃11| − log |Σ̂11|

)
, (13.94)

where Σ̃11 denotes the estimate of Σ11 based on the OLS residuals from equa-
tions (13.92), and Σ̂11 denotes the estimate of Σ11 based on the OLS residuals
from equations (13.93). The statistic (13.94) is asymptotically distributed as
χ2(pg1g2), but more reliable inferences in finite samples can almost certainly
be obtained by bootstrapping.

In practice, we are very commonly interested in testing Granger causality
for a single dependent variable. In that case, equations (13.92) and (13.93)
are univariate regressions. The restricted model, equation (13.92), becomes a
regression of yt1 on a constant and p of its own lagged values. The unrestricted
model, equation (13.93), adds p lagged values of g2 additional variables to this
regression. We can then perform an asymptotic F test of the hypothesis that
the pg2 coefficients of the lags of all the additional variables are jointly equal
to zero. For this test to be asymptotically valid, the error terms must be
homoskedastic. If this assumption does not seem to be correct, we should
instead perform a heteroskedasticity-robust test, as discussed in Section 6.8.

Our discussion of Granger causality has been quite brief. Hamilton (1994,
Chapter 11) provides a much more detailed discussion of this topic. That
book also discusses a number of other aspects of VAR models in more detail
than we have done here.

13.8 Final Remarks

The analysis of time-series data has engaged the interest of a great many
statisticians and econometricians and generated a massive literature. This
chapter has provided only a superficial introduction to the subject. In partic-
ular, we have said nothing at all about frequency domain methods, because
they are a bit too specialized for this book. See Brockwell and Davis (1991),
Box, Jenkins, and Reinsel (1994, Chapter 2), Hamilton (1994, Chapter 6),
and Fuller (1995), among many others.

This chapter has dealt only with stationary time series. A great many econ-
omic time series are, or at least appear to be, nonstationary. Therefore, in the
next chapter, we turn our attention to methods for dealing with nonstation-
ary time series. Such methods have been a subject of an enormous amount of
research in econometrics during the past two decades.
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13.9 Exercises

13.1 Show that the solution to the Yule-Walker equations (13.07) for the AR(2)
process is given by equations (13.08).

13.2 Demonstrate that the first p+1 Yule-Walker equations for the AR(p) process
ut =

∑p
i=1 ρiut−i + εt are

v0 −
p∑

i=1

ρivi = σ2
ε , and

ρiv0 − vi +

p∑

j=1,j 6=i

ρjv|i−j| = 0, i = 1, . . . , p. (13.95)

Then rewrite these equations using matrix notation.

13.3 Consider the AR(2) process

ut = ρ1ut−1 + ρ2ut−2 + εt,

for which the covariance matrix (13.09) of three consecutive observations has
elements specified by equations (13.08). Show that necessary conditions for
stationarity are that ρ1 and ρ2 lie inside the stationarity triangle which is
shown in Figure 13.1 and defined by the inequalities

ρ1 + ρ2 < 1, ρ2 − ρ1 < 1, and ρ2 > −1.

This can be done by showing that, outside the stationarity triangle, the matrix
(13.09) is not positive definite.

13.4 Show that, along the edges ρ1 + ρ2 = 1 and ρ1 − ρ2 = −1 of the AR(2)
stationarity triangle, both roots of the polynomial 1 − ρ1z − ρ2z2 are real,
one of them equal to 1 and the other greater than 1 in absolute value. Show
further that, along the edge ρ2 = −1, both roots are complex and equal to 1
in absolute value. How are these facts related to the general condition for the
stationarity of an AR process?

13.5 Let A(z) and B(z) be two formal infinite power series in z, as follows:

A(z) =

∞∑

i=0

aiz
i and B(z) =

∞∑

j=0

bj zj.

Let the formal product A(z)B(z) be expressed similarly as the infinite series

C(z) =

∞∑

k=0

ckzk.

Show that the coefficients ck are given by the convolution of the coefficients
ai and bj , according to the formula

ck =

k∑

i=0

aibk−i, k = 0, 1, . . . .

Copyright c© 1999, Russell Davidson and James G. MacKinnon



13.9 Exercises 591

13.6 Show that the method illustrated in Section 13.2 for obtaining the auto-
covariances of an ARMA(1, 1) process can be extended to the ARMA(p, q)
case. Since explicit formulas are hard to obtain for general p and q, it is
enough to indicate a recursive method for obtaining the solution.

13.7 Plot the autocorrelation function for the ARMA(2, 1) process

ut = ρ1ut−1 + ρ2ut−2 + εt + α1εt−1

for lags j = 0, 1, . . . , 20 and for parameter values ρ1 = 0.8, ρ2 = −0.6, and
α1 = 0.5. Repeat the exercise with ρ2 = 0, the other two parameters being
unchanged, in order to see how the moving average component affects the
ACF in this case.

13.8 Consider the p Yule-Walker equations (13.95) for an AR(p) process as a set
of simultaneous linear equations for the ρi, i = 1, . . . , p, given the auto-
covariances vi, i = 0, 1, . . . , p. Show that the ρi which solve these equations
for given vi are also the solutions to the first-order conditions for the prob-
lem (13.30) used to define the partial autocorrelation coefficients for a process
characterized by the autocovariances vi. Use this result to explain why the
pth partial autocorrelation coefficient for a given stationary process depends
only on the first p (ordinary) autocorrelation coefficients.

13.9 Show that ε2, as given by expression (13.39), has variance σ2
ε and is indepen-

dent of both ε1 as given by (13.37) and the εt for t > 2.

13.10 Define the n × n matrix Ψ so that Ψ>u = ε, where the elements of the
n--vector ε are defined by equations (13.35), (13.37), and (13.39). Show that
Ψ is upper triangular, and write down the matrix ΨΨ>. Explain how ΨΨ> is
related to the inverse of the covariance matrix (13.33), where the autocovari-
ances vi are those of the AR(2) process ut = ρ1ut−1 + ρ2ut−2 + εt.

13.11 Show that the second equation in (13.46) has real solutions for α1 in terms
of ρ only if |ρ| ≤ 0.5. Explain why this makes sense. Show that if ρ = ±0.5,
then α1 = ∓1. Show finally that, if |ρ| < 0.5, exactly one of the solutions
for α1 satisfies the invertibility condition that |α1| < 1.

13.12 The ARMA(1, 1) process

ut = ρ1ut−1 + εt + α1εt−1, εt ∼ NID(0, σ2
ε ),

can be simulated recursively if we have starting values for u1 and ε1, which
in turn can be generated from the joint stationary distribution of these two
random variables. Characterize this joint distribution.

13.13 Rewrite the ARMA(p, q) model (13.31) in the form of the ARMAX(p, q) model
(13.32) with Xtβ = β. Show precisely how β is related to γ.

13.14 Consider the MAX(1) model

yt = Xtβ + εt − αεt−1.

Show how to estimate the parameters of this model by indirect inference using
as auxiliary model the nonlinear regression corresponding to AR(1) errors,

yt = Xtγ + ρyt−1 − ρXt−1γ + ut.

In particular, show that, for true parameter values β and α, the pseudo-true
values are γ = β and ρ = −α/(1 + α2).
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13.15 This question uses the data in the file intrates-m.data, which contains four
monthly interest rate series for the United States from 1955 to 2001. Take
the first difference of two of these series, the federal funds rate, rs

t , and the
10-year treasury bond rate, rl

t. Then graph both the empirical ACF and the
empirical PACF of each of the differenced series for J = 24 for the period from
1957:1 to 2001:12. Does it seem likely that an AR(1) process would provide
a good model for either of these series? What about an MA(1) process?

13.16 For the two series rs
t and rl

t used in the previous exercise, estimate AR(1),
AR(2), MA(1), ARMA(1, 1), ARMA(2, 1), and ARMA(2, 2) models with con-
stant terms by maximum likelihood and record the values of the loglikelihood
functions. In each case, which is the most parsimonious model that seems to
be compatible with the data?

13.17 The file hstarts.data contains the housing starts data graphed in Figure 13.2.
For the period 1966:1 to 2001:4, regress the unadjusted series ht on a constant,
ht−1, the three seasonal dummies defined in (2.50), those dummies interacted
with the elements of the trend vector T defined in (13.68), and those dummies
interacted with the squares of the elements of tq. Then test the null hypothesis
that the error terms for this regression are serially independent against the
alternative that they follow the simple AR(4) process (13.63).

For the period 1966:1 to 1999:4, regress the adjusted series h′t on the unad-
justed series ht, a constant, and the nine seasonal dummy variables used in
the previous regression.

For the period 1966:1 to 1999:4, run the regression

h′t = β0 +

8∑

j=−8

δjht + ut.

Compare the performance of this regression with that of the dummy variable
regression you just estimated. Which of them provides a better approximation
to the way in which the seasonally adjusted data were actually generated?

13.18 Consider the GARCH(1, 1) model with conditional variance given by equa-
tion (13.78). Calculate the unconditional fourth moment of the stationary
distribution of the series ut generated as ut = σtεt with εt ∼ NID(0, 1). It
may be advisable to begin by calculating the unconditional fourth moment
of the stationary distribution of σt. What is the necessary condition for the
existence of these fourth moments? Show that, when the parameter δ1 is zero,
this condition becomes 3α2

1 < 1, as for an ARCH(1) process.

13.19 This exercise is an extension of Exercise 4.2. By considering the derivative
of the function z2r+1φ(z), where φ(·) is the standard normal density, and
using an inductive argument, show that the (2r)th moment of the N(0,1)
distribution is equal to

∏r
j=1(2j − 1).

13.20 Use the result of the previous exercise to show that a necessary condition for
the existence of the 2rth moment of the ARCH(1) process

ut = σtεt; σ2
t = α0 + α1u2

t−1; εt ∼ NID(0, 1)

is that αr
1

∏r
j=1(2j − 1) < 1.
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13.21 Consider the regression model y = Xβ + u, where X is an n × k matrix,
in which the errors follow a GARCH(1, 1) process with conditional variance
(13.78). Show that the skedastic function σ2

t (β,θ) used in the loglikelihood
contribution `t(β,θ) given in (13.86) can be written explicitly as

σ2
t (β,θ) =

α0(1− δt
1)

1− δ1
+ α1

t−1∑
s=1

δs−1
1 u2

t−s + σ2
u(α1 + δ1)δ

t−1
1 ,

where ut stands for the residual yt−Xtβ, σ2
u is defined as n−1 ∑n

t=1 u2
t , and

all unavailable instances of both u2
t and σ2

t are replaced by σ2
u.

Then show that the first-order partial derivatives of `t(β,θ) can be written
as follows:

∂`t

∂β
=

∂`t

∂ut

∂ut

∂β
+

∂`t

∂σ2
t

∂σ2
t

∂β
=

utXt

σ2
t

− u2
t − σ2

t

2σ4
t

(
2α1

t−1∑
s=1

ut−sXt−sδ
s−1
1

+ 2(α1 + δ1)δ
t−1
1 n−1

n∑
t=1

Xtut

)
,

∂`t

∂α0
=

∂`t

∂σ2
t

∂σ2
t

∂α0
=

(u2
t − σ2

t )(1− δt
1)

2σ4
t (1− δ1)

,

∂`t

∂α1
=

∂`t

∂σ2
t

∂σ2
t

∂α1
=

u2
t − σ2

t

2σ4
t

( t−1∑
s=1

u2
t−s δs−1

1 + σ2
u δt−1

1

)
, (13.96)

∂`t

∂δ1
=

∂`t

∂σ2
t

∂σ2
t

∂δ1
=

u2
t − σ2

t

2σ4
t

(
− tα0 δt−1

1

1− δ1
+

α0(1− δt
1)

(1− δ1)2

+ α1

t−1∑
s=1

(s− 1)u2
t−s δs−2

1 + σ2
u(tδt−1

1 + (t− 1)α1δt−2
1 ))

)
.

13.22 Consider the following artificial regression in connection with the model with
GARCH(1, 1) errors considered in the preceding exercise. Each real obser-
vation corresponds to two artificial observations. For observation t, the two
corresponding elements of the regressand are

ut/σt and (u2
t − σ2

t )/(σ2
t

√
2).

The elements of the regressors corresponding the the elements of β are the
elements of

Xt

σt
and −

√
2

σ2
t

(
α1

t−1∑
s=1

ut−sXt−s δs−1
1 + (α1 + δ1)δ

t−1
1 n−1

n∑
t=1

Xtut

)
,

For α0, the elements of the regressor are 0 and (1− δt
1)/(σ2

t

√
2(1− δ1)). For

the regressor for α1, the elements are 0 and

1

σ2
t

√
2

( t−1∑
s=1

ut−s δs−1
1 + σ2

u δt−1
1

)
.
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Finally, for δ1, the elements of the corresponding regressor are 0 and

1

σ2
t

√
2

(
− tα0 δt−1

1

1− δ1
+

α0(1− δt
1)

(1− δ1)2

+ α1

t−1∑
s=1

(s− 1)u2
t−s δs−2

1 + σ2
u(tδt−1

1 + (t− 1)α1δt−2
1

)
.

Show that, when the regressand is orthogonal to the regressors, the partial
derivatives (13.96) are zero. Let R(β,θ) denote the 2n× (k+3) matrix of the

regressors, and let β̂ and θ̂ be the ML estimates. Show that R>(β̂, θ̂)R(β̂, θ̂)
is the information matrix, where the contribution from observation t is com-
puted as an expectation conditional on the information set Ωt.

13.23 This question uses data on monthly returns for the period 1969–1998 for
shares of General Electric Corporation from the file monthly-crsp.data. These
data are made available by courtesy of the Center for Research in Security
Prices (CRSP); see the comments at the bottom of the file. Let Rt denote
the return on GE shares in month t. For the entire sample period, regress
Rt on a constant and dt, where dt is a dummy variable that is equal to 1
in November, December, January, and February, and equal to 0 in all other
months. Then test the hypothesis that the error terms are IID against the
alternative that they follow a GARCH(1, 1) process.

13.24 Using the data from the previous question, estimate the GARCH(1, 1) model

Rt = β1 + β2dt + ut, σ2
t ≡ E(u2

t ) = α0 + α1u2
t−1 + δ1σ2

t−1. (13.97)

Estimate this model by maximum likelihood, and perform an asymptotic Wald
test of the hypothesis that α1 + δ1 = 1. Then calculate the unconditional
variance σ2 given by (13.79) and construct a .95 confidence interval for it.
Compare this with the estimate of the unconditional variance from the linear
regression model estimated in the previous question.

13.25 Using the ML estimates of the model (13.97) from the previous question, plot
both û2

t and the estimated conditional variance σ̂2
t against time. Put both

series on the same axes. Comment on the relationship between the two series.

13.26 Define the rescaled residuals from the model (13.97) as ε̂t = ût/σ̂t. Plot the
EDF of the rescaled residuals on the same axes as the CDF of the standard
normal distribution. Does there appear to be any evidence that the rescaled
residuals are not normally distributed?

13.27 The file intrates-q.data contains quarterly data for 1955 to 2001 on four US
interest rate series. Take first differences of these four series and, using data
for the period 1957:1 to 2001:4, estimate a vector autoregression with two
lags. Then estimate a VAR with three lags and test the hypothesis that p,
the maximum lag, is equal to 2 at the .05 level.

13.28 Using the same first-differenced data as in the previous question, and using
models with two lags, test the hypothesis that the federal funds rate does
not Granger cause the 10-year bond rate. Then test the hypothesis that the
10-year bond rate does not Granger cause the federal funds rate. Perform
both tests in two different ways, one of which assumes that the error variance
is constant and one of which allows for heteroskedasticity of unknown form.
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Chapter 14

Unit Roots and

Cointegration

14.1 Introduction

In this chapter, we turn our attention to models for a particular type of non-
stationary time series. For present purposes, the usual definition of covariance
stationarity is too strict. We consider instead an asymptotic version, which
requires only that, as t → ∞, the first and second moments tend to fixed
stationary values, and the covariances of the elements yt and ys tend to sta-
tionary values that depend only on |t−s|. Such a series is said to be integrated
to order zero, or I(0), for a reason that will be clear in a moment.

A nonstationary time series is said to be integrated to order one, or I(1),1

if the series of its first differences, ∆yt ≡ yt − yt−1, is I(0). More generally,
a series is integrated to order d, or I(d), if it must be differenced d times
before an I(0) series results. A series is I(1) if it contains what is called a
unit root, a concept that we will elucidate in the next section. As we will
see there, using standard regression methods with variables that are I(1) can
yield highly misleading results. It is therefore important to be able to test
the hypothesis that a time series has a unit root. In Sections 14.3 and 14.4,
we discuss a number of ways of doing so. Section 14.5 introduces the concept
of cointegration, a phenomenon whereby two or more series with unit roots
may be related, and discusses estimation in this context. Section 14.6 then
discusses three ways of testing for the presence of cointegration.

14.2 Random Walks and Unit Roots

The asymptotic results we have developed so far depend on various regularity
conditions that are violated if nonstationary time series are included in the
set of variables in a model. In such cases, specialized econometric methods
must be employed that are strikingly different from those we have studied

1 In the literature, such series are usually described as being integrated of order
one, but this usage strikes us as being needlessly ungrammatical.
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596 Unit Roots and Cointegration

so far. The fundamental building block for many of these methods is the
standardized random walk process, which is defined as follows in terms of a
unit-variance white-noise process εt:

wt = wt−1 + εt, w0 = 0, εt ∼ IID(0, 1). (14.01)

Equation (14.01) is a recursion that can easily be solved to give

wt =
t∑

s=1

εs. (14.02)

It follows from (14.02) that the unconditional expectation E(wt) = 0 for all t.
In addition, wt satisfies the martingale property that E(wt |Ωt−1) = wt−1 for
all t, where as usual the information set Ωt−1 contains all information that is
available at time t− 1, including in particular wt−1. The martingale property
often makes economic sense, especially in the study of financial markets. We
use the notation wt here partly because “w” is the first letter of “walk” and
partly because a random walk is the discrete-time analog of a continuous-time
stochastic process called a Wiener process, which plays a very important role
in the asymptotic theory of nonstationary time series.

The clearest way to see that wt is nonstationary is to compute Var(wt). Since
εt is white noise, we see directly that Var(wt) = t. Not only does this variance
depend on t, thus violating the stationarity condition, but, in addition, it
actually tends to infinity as t →∞, so that wt cannot be I(0).

Although the standardized random walk process (14.01) is very simple, more
realistic models are closely related to it. In practice, for example, an economic
time series is unlikely to have variance 1. Thus the very simplest nonstationary
time-series process for data that we might actually observe is the random walk
process

yt = yt−1 + et, y0 = 0, et ∼ IID(0, σ2), (14.03)

where et is still white noise, but with arbitrary variance σ2. This process,
which is often simply referred to as a random walk, can be based on the process
(14.01) using the equation yt = σwt. If we wish to relax the assumption that
y0 = 0, we can subtract y0 from both sides of the equation so as to obtain the
relationship

yt − y0 = yt−1 − y0 + et.

The equation yt = y0 + σwt then relates yt to a series wt generated by the
standardized random walk process (14.01).

The next obvious generalization is to add a constant term. If we do so, we
obtain the model

yt = γ1 + yt−1 + et. (14.04)
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14.2 Random Walks and Unit Roots 597

This model is often called a random walk with drift, and the constant term
is called a drift parameter. To understand this terminology, subtract y0 +γ1t
from both sides of (14.04). This yields

yt − y0 − γ1t = γ1 + yt−1 − y0 − γ1t + et

= yt−1 − y0 − γ1(t− 1) + et,

and it follows that yt can be generated by the equation yt = y0 + γ1t + σwt.
The trend term γ1t is the drift in this process.

It is clear that, if we take first differences of the yt generated by a process like
(14.03) or (14.04), we obtain a time series that is I(0). In the latter case, for
example,

∆yt ≡ yt − yt−1 = γ1 + et.

Thus we see that yt is integrated to order one, or I(1). This property is the
result of the fact that yt has a unit root.

The term “unit root” comes from the fact that the random walk process
(14.03) can be expressed as

(1− L)yt = et, (14.05)

where L denotes the lag operator. As we saw in Sections 7.6 and 13.2, an
autoregressive process ut always satisfies an equation of the form

(
1− ρ(L)

)
ut = et, (14.06)

where ρ(L) is a polynomial in the lag operator L with no constant term, and
et is white noise. The process (14.06) is stationary if and only if all the roots
of the polynomial equation 1 − ρ(z) = 0 lie strictly outside the unit circle in
the complex plane, that is, are greater than 1 in absolute value. A root that
is equal to 1 is called a unit root. Any series that has precisely one such root,
with all other roots outside the unit circle, is an I(1) process, as readers are
asked to check in Exercise 14.2.

A random walk process like (14.05) is a particularly simple example of an AR
process with a unit root. A slightly more complicated example is

yt = (1 + ρ2)yt−1 − ρ2yt−2 + ut, |ρ2| < 1,

which is an AR(2) process with only one free parameter. In this case, the
polynomial in the lag operator is 1 − (1 + ρ2)L + ρ2L

2 = (1 − L)(1 − ρ2L),
and its roots are 1 and 1/ρ2 > 1.
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598 Unit Roots and Cointegration

Same-Order Notation

Before we can discuss models in which one or more of the regressors has a
unit root, it is necessary to introduce the concept of the same-order relation
and its associated notation. Almost all of the quantities that we encounter in
econometrics depend on the sample size. In many cases, when we are using
asymptotic theory, the only thing about these quantities that concerns us is
the rate at which they change as the sample size changes. The same-order
relation provides a very convenient way to deal with such cases.

To begin with, let us suppose that f(n) is a real-valued function of the positive
integer n, and p is a rational number. Then we say that f(n) is of the same
order as np if there exists a constant K, independent of n, and a positive
integer N such that ∣∣∣∣

f(n)
np

∣∣∣∣ < K for all n > N.

When f(n) is of the same order as np, we can write

f(n) = O(np).

Of course, this equation does not express an equality in the usual sense. But,
as we will see in a moment, this “big O” notation is often very convenient.

The definition we have just given is appropriate only if f(n) is a deterministic
function. However, in most econometric applications, some or all of the quan-
tities with which we are concerned are stochastic rather than deterministic.
To deal with such quantities, we need to make use of the stochastic same-
order relation. Let {an} be a sequence of random variables indexed by the
positive integer n. Then we say that an is of order np in probability if, for all
ε > 0, there exist a constant K and a positive integer N such that

Pr
(∣∣∣an

np

∣∣∣ > K
)

< ε for all n > N. (14.07)

When an is of order np in probability, we can write

an = Op(np).

In most cases, it is obvious that a quantity is stochastic, and there is no
harm in writing O(np) when we really mean Op(np). The properties of the
same-order relations are the same in the deterministic and stochastic cases.

The same-order relations are useful because we can manipulate them as if
they were simply powers of n. Suppose, for example, that we are dealing with
two functions, f(n) and g(n), which are O(np) and O(nq), respectively. Then

f(n)g(n) = O(np)O(nq) = O(np+q), and

f(n) + g(n) = O(np) + O(nq) = O(nmax(p,q)).
(14.08)
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In the first line here, we see that the order of the product of the two functions
is just n raised to the sum of p and q. In the second line, we see that the order
of the sum of the functions is just n raised to the maximum of p and q. Both
these properties of the same-order relations are often very useful in asymptotic
analysis.

Let us see how the same-order relations can be applied to a linear regression
model that satisfies the standard assumptions for consistency and asymptotic
normality. We start with the standard result, from equations (3.05), that

β̂ = β0 + (X>X)−1X>u.

In Chapters 3 and 4, we made the assumption that n−1X>X has a probability
limit of SX>X , which is a finite, positive definite, deterministic matrix; recall
equations (3.17) and (4.49). It follows readily from the definition (3.15) of a
probability limit that each element of the matrix n−1X>X is Op(1). Simi-
larly, in order to apply a central limit theorem, we supposed that n−1/2X>u
has a probability limit which is a normally distributed random variable with
expectation zero and finite variance; recall equation (4.53). This implies that
n−1/2X>u = Op(1).

The definition (14.07) lets us rewrite the above results as

X>X = Op(n) and X>u = Op(n1/2). (14.09)

From equations (14.09) and the first of equations (14.08), we see that

n1/2(β̂ − β0) = n1/2(X>X)−1X>u = n1/2Op(n−1)Op(n1/2) = Op(1).

This result is not at all new; in fact, it follows from equation (6.38) specialized
to a linear regression. But it is clear that the Op notation provides a simple
way of seeing why we have to multiply β̂ − β0 by n1/2, rather than some other
power of n, in order to find its asymptotic distribution.

As this example illustrates, in the asymptotic analysis of econometric models
for which all variables satisfy standard regularity conditions, p is generally
−1, − 1

2 , 0, 1
2 , or 1. For models in which some or all variables have a unit

root, however, we will encounter several other values of p.

Regressors with a Unit Root

Whenever a variable with a unit root is used as a regressor in a linear regression
model, the standard assumptions that we have made for asymptotic analysis
are violated. In particular, we have assumed up to now that, for the linear
regression model y = Xβ + u, the probability limit of the matrix n−1X>X
is the finite, positive definite matrix SX>X. But this assumption is false
whenever one or more of the regressors have a unit root.
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To see this, consider the simplest case. Whenever wt is one of the regressors,
one element of X>X is

∑n
t=1 w2

t , which by equation (14.02) is equal to

n∑
t=1

( t∑
r=1

t∑
s=1

εr εs

)
. (14.10)

The expectation of εr εs is zero for r 6= s. Therefore, only terms with r = s
contribute to the expectation of (14.10), which, since E(ε2

r) = 1, is

n∑
t=1

t∑
r=1

E(ε2
r) =

n∑
t=1

t = 1−
2
n(n + 1). (14.11)

Here we have used a result concerning the sum of the first n positive inte-
gers that readers are asked to demonstrate in Exercise 14.3. Let w denote
the n--vector with typical element wt. Then the expectation of n−1w>w is
(n + 1)/2, which is evidently O(n). It is therefore impossible that n−1w>w
should have a finite probability limit.

This fact has extremely serious consequences for asymptotic analysis. It im-
plies that none of the results on consistency and asymptotic normality that
we have discussed up to now is applicable to models where one or more of the
regressors have a unit root. All such results have been based on the assump-
tion that the matrix n−1X>X, or the analogs of this matrix for nonlinear
regression models, models estimated by IV and GMM, and models estimated
by maximum likelihood, tends to a finite, positive definite matrix. It is con-
sequently very important to know whether or not an economic variable has
a unit root. A few of the many techniques for answering this question will
be discussed in the next section. In the next subsection, we investigate some
of the phenomena that arise when the usual regularity conditions for linear
regression models are not satisfied.

Spurious Regressions

If xt and yt are time series that are entirely independent of each other, we
might hope that running the simple linear regression

yt = β1 + β2xt + vt (14.12)

would usually produce an insignificant estimate of β2 and an R2 near 0. How-
ever, this is so only under quite restrictive conditions on the nature of the xt

and yt. In particular, if xt and yt are independent random walks, the t statis-
tic for β2 = 0 does not follow the Student’s t or standard normal distribution,
even asymptotically. Instead, its absolute value tends to become larger and
larger as the sample size n increases. Ultimately, as n → ∞, it rejects the
null hypothesis that β2 = 0 with probability 1. Moreover, the R2 does not
converge to 0 but to a random, positive number that varies from sample to
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Spurious regression, random walk

Spurious regression, AR(1) process

Valid regression, random walk

Valid regression, AR(1) process

n

Figure 14.1 Rejection frequencies for spurious and valid regressions

sample. When a regression model like (14.12) appears to find relationships
that do not really exist, it is called a spurious regression.

We have not as yet developed the theory necessary to understand spurious
regression with I(1) series. It is therefore worthwhile to illustrate the phe-
nomenon with some computer simulations. For a large number of sample
sizes between 20 and 20, 000, we generated one million series of (xt, yt) pairs
independently from the random walk model (14.03) and then ran the spurious
regression (14.12). The dotted line near the top in Figure 14.1 shows the pro-
portion of the time that the t statistic for β2 = 0 rejected the null hypothesis
at the .05 level as a function of n. This proportion is very high even for small
sample sizes, and it is clearly tending to unity as n increases.

Upon reflection, it is not entirely surprising that tests based on the spurious
regression model (14.12) do not yield sensible results. Under the null hypo-
thesis that β2 = 0, this model says that yt is equal to a constant plus an IID
error term. But in fact yt is a random walk generated by the DGP (14.03).
Thus the null hypothesis that we are testing is false, and it is very common
for a test to reject a false null hypothesis, even when the alternative is also
false. We saw an example of this in Section 7.9; for an advanced discussion,
see Davidson and MacKinnon (1987).

It might seem that we could obtain sensible results by running the regression

yt = β1 + β2xt + β3yt−1 + vt, (14.13)

since, if we set β1 = 0, β2 = 0, and β3 = 1, regression (14.13) reduces to the
random walk (14.03), which is in fact the DGP for yt in our simulations, with
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602 Unit Roots and Cointegration

vt = et being white noise. Thus it is a valid regression model to estimate.
The lower dotted line in Figure 14.1 shows the proportion of the time that
the t statistic for β2 = 0 in regression (14.13) rejected the null hypothesis at
the .05 level. Although this proportion no longer tends to unity as n increases,
it clearly tends to a number substantially larger than 0.05. This overrejection
is a consequence of running a regression that involves I(1) variables. Both
yt and yt−1 are I(1) in this case, and, as we will see in Section 14.5, this
implies that the t statistic for β2 = 0 does not have its usual asymptotic
distribution, as one might suspect given that the n−1X>X matrix does not
have a finite plim.

The results in Figure 14.1 show clearly that spurious regressions actually
involve at least two different phenomena. The first is that they involve testing
false null hypotheses, and the second is that standard asymptotic results do
not hold whenever at least one of the regressors is I(1), even when a model is
correctly specified.

As Granger (2001) has stressed, spurious regression can occur even when all
variables are stationary. To illustrate this, Figure 14.1 also shows results of a
second set of simulation experiments. These are similar to the original ones,
except that xt and yt are now generated from independent AR(1) processes
with mean zero and autoregressive parameter ρ1 = 0.8. The higher solid line
shows that, even for these data, which are stationary as well as independent,
running the spurious regression (14.12) results in the null hypothesis being
rejected a very substantial proportion of the time. In contrast to the previous
results, however, this proportion does not keep increasing with the sample
size. Moreover, as we see from the lower solid line, running the valid regres-
sion (14.13) leads to approximately correct rejection frequencies, at least for
larger sample sizes. Readers are invited to explore these issues further in
Exercises 14.5 and 14.6.

It is of interest to see just what gives rise to spurious regression with two
independent AR(1) series that are stationary. In this case, the n−1X>X
matrix does have a finite, deterministic, positive definite plim, and so that
regularity condition at least is satisfied. However, because neither the constant
nor xt has any explanatory power for yt in (14.12), the true error term for
observation t is vt = yt, which is not white noise, but rather an AR(1) process.
This suggests that the problem can be made to go away if we do not use
the inappropriate OLS covariance matrix estimator, but instead use a HAC
estimator that takes suitable account of the serial correlation of the errors.
This is true asymptotically, but overrejection remains very significant until
the sample size is of the order of several thousand; see Exercise 14.7. The use
of HAC estimators is explored further in Exercises 14.8 and 14.9.

As the results in Figure 14.1 illustrate, there is a serious risk of appearing to
find relationships between economic time series that are actually independent.
Although the risk can be far from negligible with stationary series which ex-
hibit substantial serial correlation, it is particularly severe with nonstationary
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ones. The phenomenon of spurious regressions was brought to the attention of
econometricians by Granger and Newbold (1974), who used simulation meth-
ods that were very crude by today’s standards. Subsequently, Phillips (1986)
and Durlauf and Phillips (1988) proved a number of theoretical results about
spurious regressions involving nonstationary time series. Granger (2001) pro-
vides a brief overview and survey of the literature.

14.3 Unit Root Tests

For a number of reasons, it can be important to know whether or not an econ-
omic time series has a unit root. As Figure 14.1 illustrates, the distributions
of estimators and test statistics associated with I(1) regressors may well dif-
fer sharply from those associated with regressors that are I(0). Moreover, as
Nelson and Plosser (1982) were among the first to point out, nonstationarity
often has important economic implications. It is therefore very important to
be able to detect the presence of unit roots in time series, normally by the use
of what are called unit root tests. For these tests, the null hypothesis is that
the time series has a unit root and the alternative is that it is I(0).

Dickey-Fuller Tests

The simplest and most widely-used tests for unit roots are variants of ones
developed by Dickey and Fuller (1979). These tests are therefore referred to
as Dickey-Fuller tests, or DF tests. Consider the simplest imaginable AR(1)
model,

yt = βyt−1 + σεt, (14.14)

where εt is white noise with variance 1. When β = 1, this model has a unit
root and becomes a random walk process. If we subtract yt−1 from both sides,
we obtain

∆yt = (β − 1)yt−1 + σεt. (14.15)

Thus, in order to test the null hypothesis of a unit root, we can simply test
the hypothesis that the coefficient of yt−1 in equation (14.15) is equal to 0
against the alternative that it is negative.

Regression (14.15) is an example of what is sometimes called an unbalanced
regression because, under the null hypothesis, the regressand is I(0) and the
sole regressor is I(1). Under the alternative hypothesis, both variables are
I(0), and the regression becomes balanced again.

The obvious way to test the unit root hypothesis is to use the t statistic for
the hypothesis β − 1 = 0 in regression (14.15), testing against the alternative
that this quantity is negative. This implies a one-tailed test. In fact, this
statistic is referred to, not as a t statistic, but as a τ statistic, because, as we
will see, its distribution is not the same as that of an ordinary t statistic, even
asymptotically. Another possible test statistic is n times the OLS estimate
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of β−1 from (14.15). This statistic is called a z statistic. Precisely why the z
statistic is valid will become clear in the next subsection. Since the z statistic
is a little easier to analyze than the τ statistic, we focus on it for the moment.

The z statistic from the test regression (14.15) is

z = n

∑n
t=1 yt−1∆yt∑n

t=1 y2
t−1

,

where, for ease of notation in summations, we suppose that y0 is observed.
Under the null hypothesis, the data are generated by a DGP of the form

yt = yt−1 + σεt, (14.16)

or, equivalently, yt = y0 + σwt, where wt is a standardized random walk
defined in terms of εt by (14.01). For such a DGP, a little algebra shows that
the z statistic becomes

z = n
σ2

∑n
t=1 wt−1εt + σy0wn

σ2
∑n

t=1 w2
t−1 + 2y0σ

∑n
t=1 wt−1 + ny2

0

. (14.17)

Since the right-hand side of this equation depends on y0 and σ in a nontrivial
manner, the z statistic is not pivotal for the model (14.16). However, when
y0 = 0, z no longer depends on σ, and it becomes a function of the random
walk wt alone. In this special case, the distribution of z can be calculated,
perhaps analytically and certainly by simulation, provided we know the dis-
tribution of the εt.

In most cases, we do not wish to assume that y0 = 0. Therefore, we must look
further for a suitable test statistic. Subtracting y0 from both yt and yt−1 in
equation (14.14) gives

∆yt = (1− β)y0 + (β − 1)yt−1 + σεt.

Unlike (14.15), this regression has a constant term. This suggests that we
should replace (14.15) by the test regression

∆yt = γ0 + (β − 1)yt−1 + et. (14.18)

Since yt = y0+σwt, we may write y = y0ι+σw, where the notation should be
obvious. The z statistic from (14.18) is still n(β̂ − 1), and so, by application
of the FWL theorem, it can be written under the null as

z = n

∑n
t=1(Mιy)t−1∆yt∑n

t=1(Mιy)2t−1

= n

∑n
t=1(Mιy)t−1σεt∑n

t=1(Mιy)2t−1

, (14.19)
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where Mι is the orthogonal projection that replaces a series by its deviations
from the mean. Since Mιy = σMιw, it follows that

z = n

∑n
t=1(Mιw)t−1εt∑n
t=1(Mιw)2t−1

, (14.20)

where a factor of σ2 has been cancelled from the numerator and denominator.
Since the wt are determined by the εt, the new statistic depends only on the
series εt, and so it is pivotal for the model (14.16).

If we wish to test the unit root hypothesis in a model where the random walk
has a drift, the appropriate test regression is

∆yt = γ0 + γ1t + (β − 1)yt−1 + et, (14.21)

and if we wish to test the unit root hypothesis in a model where the random
walk has both a drift and a trend, the appropriate test regression is

∆yt = γ0 + γ1t + γ2t
2 + (β − 1)yt−1 + et; (14.22)

see Exercise 14.10. Notice that regression (14.15) contains no deterministic
regressors, (14.18) has one, (14.21) two, and (14.22) three. In the last three
cases, the test regression always contains one deterministic regressor that does
not appear under the null hypothesis.

Dickey-Fuller tests of the null hypothesis that there is a unit root may be
based on any of regressions (14.15), (14.18), (14.21), or (14.22). In practice,
regressions (14.18) and (14.21) are the most commonly used. The assumptions
required for regression (14.15) to yield a valid test are usually considered to
be too strong, while those that lead to regression (14.22) are often considered
to be unnecessarily weak.

The z and τ statistics based on the testing regression (14.15) are denoted as
znc and τnc, respectively. The subscript “nc” indicates that (14.15) has no
constant term. Similarly, z statistics based on regressions (14.18), (14.21),
and (14.22) are written as zc, zct, and zctt, respectively, because these test
regressions contain a constant, a constant and a trend, or a constant and
two trends, respectively. A similar notation is used for the τ statistics. It is
important to note that all eight of these statistics have different distributions,
both in finite samples and asymptotically, even under their corresponding null
hypotheses.

The standard test statistics for γ1 = 0 in regression (14.21) and for γ2 = 0
or γ1 = γ2 = 0 in regression (14.22) do not have their usual asymptotic
distributions under the null hypothesis of a unit root; see Dickey and Fuller
(1981). Therefore, instead of formally testing whether the coefficients of t and
t2 are equal to 0, many authors simply report the results of more than one
unit root test.
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Asymptotic Distributions of Dickey-Fuller Statistics

The eight Dickey-Fuller test statistics that we have discussed have distribu-
tions that tend to eight different asymptotic distributions as the sample size
tends to infinity. These asymptotic distributions are referred to as nonstan-
dard distributions or as Dickey-Fuller distributions.

We will analyze only the simplest case, that of the znc statistic, which is
applicable only for the model (14.16) with y0 = 0. For DGPs in that model,
the test statistic (14.17) simplifies to

znc = n

∑n
t=1 wt−1εt∑n−1

t=1 w2
t

. (14.23)

We begin by considering the numerator of this expression. By (14.02), we
have that

n∑
t=1

wt−1εt =
n∑

t=1

εt

t−1∑
s=1

εs. (14.24)

Since E(εtεs) = 0 for s < t, it is clear that the expectation of this quantity
is zero. The right-hand side of (14.24) has

∑n
t=1(t − 1) = n(n − 1)/2 terms;

recall the result used in (14.11). It is easy to see that the covariance of any
two different terms of the double sum is zero, while the variance of each term
is just 1. Consequently, the variance of (14.24) is n(n − 1)/2. The variance
of (14.24) divided by n is therefore (1 − 1/n)/2, which tends to one half as
n →∞. We conclude that n−1 times (14.24) is O(1) as n →∞.

We saw in the last section, in equation (14.11), that the expectation of∑n
t=1 w2

t is n(n + 1)/2. Thus the expectation of the denominator of (14.23)
is n(n− 1)/2, since the last term of the sum is missing. It can be checked by
a somewhat longer calculation (see Exercise 14.11) that the variance of the
denominator is O(n4) as n →∞, and so both the expectation and variance of
the denominator divided by n2 are O(1). We may therefore write (14.23) as

znc =
n−1

∑n
t=1 wt−1εt

n−2
∑n−1

t=1 w2
t

, (14.25)

where everything is of order unity. This explains why β̂−1 is multiplied by n,
rather than by n1/2 or some other power of n, to obtain the z statistic.

In order to have convenient expressions for the probability limits of the ran-
dom variables in the numerator and denominator of expression (14.25), we
can make use of a continuous-time stochastic process called the standardized
Wiener process, or sometimes Brownian motion. This process, denoted W (r)
for 0 ≤ r ≤ 1, can be interpreted as the limit of the standardized random
walk wt as the length of each interval becomes infinitesimally small. It is
defined as

W (r) = plim
n→∞

n−1/2 w[rn] = plim
n→∞

n−1/2

[rn]∑
t=1

εt, (14.26)
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where [rn] means the integer part of the quantity rn, which is a number be-
tween 0 and n. Intuitively, a Wiener process is like a continuous random walk
defined on the 0--1 interval. Even though it is continuous, it varies erratic-
ally on any subinterval. Since εt is white noise, it follows from the central
limit theorem that W (r) is normally distributed for each r ∈ [0, 1]. Clearly,
E(W (r)) = 0, and, since Var(wt) = t, it can be seen that Var(W (r)) = r.
Thus W (r) follows the N(0, r) distribution. For further properties of the
Wiener process, see Exercise 14.12.

We can now express the limit as n → ∞ of the numerator of the right-hand
side of equation (14.25) in terms of the Wiener process W (r). Note first that,
since wt+1 − wt = εt+1,

n∑
t=1

w2
t =

n−1∑
t=0

(
wt + (wt+1 − wt)

)2 =
n−1∑
t=0

w2
t + 2

n−1∑
t=0

wtεt+1 +
n−1∑
t=0

ε2
t+1.

Since w0 = 0, the term on the left-hand side above is the same as the first
term of the rightmost expression, except for the term w2

n. Thus we find that

n−1∑
t=0

wtεt+1 =
n∑

t=1

wt−1εt = 1−
2

(
w2

n −
n∑

t=1

ε2
t

)
.

Dividing by n and taking the limit as n →∞ gives

plim
n→∞

1−
n

n∑
t=1

wt−1εt = 1−
2

(
W 2(1)− 1

)
, (14.27)

where we have used the law of large numbers to see that plim n−1
∑

ε2
t = 1.

For the denominator of the right-hand side of equation (14.25), we see that

n−2
n−1∑
t=1

w2
t = 1−

n

n−1∑
t=1

W 2
(

t−
n

)
.

If f is an ordinary nonrandom function defined on [0, 1], the Riemann integral
of f on that interval can be defined as the following limit:

∫ 1

0

f(x) dx = lim
n→∞

1−
n

n∑
t=1

f
(

t−
n

)
. (14.28)

It turns out to be possible to extend this definition to random integrands in
a natural way. We may therefore write

plim
n→∞

n−2
n−1∑
t=1

w2
t =

∫ 1

0

W 2(r) dr,
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which, combined with equation (14.27), gives

plim
n→∞

znc =
1
2

(
W 2(1)− 1

)
∫ 1

0
W 2(r)dr

. (14.29)

A similar calculation (see Exercise 14.13) shows that

plim
n→∞

τnc =
1
2

(
W 2(1)− 1

)
(∫ 1

0
W 2(r)dr

)1/2
. (14.30)

More formal proofs of these results can be found in many places, including
Banerjee, Dolado, Galbraith, and Hendry (1993, Chapter 4), Hamilton (1994,
Chapter 17), Fuller (1996), Hayashi (2000, Chapter 9), and Bierens (2001).

Results for the other six test statistics are more complicated. For zc and τc,
the limiting random variables can be expressed in terms of a centered Wiener
process. Similarly, for zct and τct, one needs a Wiener process that has been
centered and detrended, and so on. For details, see Phillips and Perron (1988)
and Bierens (2001). Exercise 14.14 looks in more detail at the limit of zc.

Unfortunately, although the quantities (14.29) and (14.30) and their analogs
for the other test statistics have well-defined distributions, there are no simple,
analytical expressions for them.2 In practice, therefore, these distributions
are always evaluated by simulation methods. Published critical values are
based on a very large number of simulations of either the actual test statistics
or of quantities, based on simulated random walks, that approximate the
expressions to which the statistics converge asymptotically under the null
hypothesis. For example, in the case of (14.30), the quantity to which τnc

tends asymptotically, such an approximation is given by

1
2 (w2

n − 1)
(
n−1

∑n
t=1 w2

t

)1/2
,

where the wt are generated by the standardized random walk process (14.01).

Various critical values for unit root and related tests have been reported in
the literature. Not all of these are particularly accurate. Some authors fail to
use a sufficiently large number of replications, and many report results based
on a single finite value of n instead of using more sophisticated techniques
in order to estimate the asymptotic distributions of interest. See MacKinnon
(1991, 1994, 1996). The last of these papers probably gives the most accurate
estimates of Dickey-Fuller distributions that have been published. It also
provides programs, which are freely available, that make it easy to calculate
critical values and P values for all of the test statistics discussed here.

2 Abadir (1995) does provide an analytical expression for the distribution of τnc,
but it is certainly not simple.
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Figure 14.2 Asymptotic densities of Dickey-Fuller τ tests

The asymptotic densities of the τnc, τc, τct, and τctt statistics are shown in
Figure 14.2. For purposes of comparison, the standard normal density is also
shown. The differences between it and the four Dickey-Fuller τ distributions
are striking. The critical values for one-tail tests at the .05 level based on the
Dickey-Fuller distributions are also marked on the figure. These critical values
become more negative as the number of deterministic regressors in the test
regression increases. For the standard normal distribution, the corresponding
critical value would be −1.645.

The asymptotic densities of the znc, zc, zct, and zctt statistics are shown
in Figure 14.3. These are much more spread out than the densities of the
corresponding τ statistics, and the critical values are much larger in absolute
value. Once again, these critical values become more negative as the number
of deterministic regressors in the test regression increases. Since the test
statistics are equal to n(β̂ − 1), it is easy to see how these critical values
are related to β̂ for any given sample size. For example, when n = 100, the
zc test rejects the null hypothesis of a unit root whenever β̂ < 0.859, and the
zct test rejects the null whenever β̂ < 0.783. Evidently, these tests have little
power if the data are actually generated by a stationary AR(1) process with β
reasonably close to unity.

Of course, the finite-sample distributions of Dickey-Fuller test statistics are
not the same as their asymptotic distributions, although the latter generally
provide reasonable approximations for samples of moderate size. The pro-
grams in MacKinnon (1996) actually provide finite-sample critical values and
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Figure 14.3 Asymptotic densities of Dickey-Fuller z tests

P values as well as asymptotic ones, but only under the strong assumptions
that the error terms are normally and identically distributed. Neither of these
assumptions is required for the asymptotic distributions to be valid. However,
the assumption that the error terms are serially independent, which is often
not at all plausible in practice, is required.

14.4 Serial Correlation and Unit Root Tests

Because the unit root test regressions (14.15), (14.18), (14.21), and (14.22)
do not include any economic variables beyond yt−1, the error terms ut may
well be serially correlated. This very often seems to be the case in practice.
But this means that the Dickey-Fuller tests we have described are no longer
asymptotically valid. A good many ways of modifying the tests have been
proposed in order to make them valid in the presence of serial correlation
of unknown form. The most popular approach is to use what are called
augmented Dickey-Fuller, or ADF, tests. They were proposed originally by
Dickey and Fuller (1979) under the assumption that the error terms follow an
AR process of known order. Subsequent work by Said and Dickey (1984) and
Phillips and Perron (1988) showed that they are asymptotically valid under
much less restrictive assumptions.

Consider the test regressions (14.15), (14.18), (14.21), or (14.22). We can
write any of these regressions as

∆yt = Xtγ
◦ + (β − 1)yt−1 + ut, (14.31)
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where Xt is a row vector that consists of whatever deterministic regressors
are included in the test regression. Now suppose, for simplicity, that the error
term ut in (14.31) follows the stationary AR(1) process ut = ρ1ut−1 + et,
where et is white noise. Then regression (14.31) would become

∆yt = Xtγ
◦ − ρ1Xt−1γ

◦ + (ρ1 + β − 1)yt−1 − βρ1yt−2 + et

= Xtγ + (ρ1 + β − 1− βρ1)yt−1 + βρ1(yt−1 − yt−2) + et

= Xtγ + (β − 1)(1− ρ1)yt−1 + βρ1∆yt−1 + et

≡ Xtγ + β′yt−1 + δ1∆yt−1 + et. (14.32)

We are able to replace Xtγ
◦ − ρ1Xt−1γ

◦ by Xtγ in the second line here,
for some choice of γ, because every column of Xt−1 lies in S(X). This is
a consequence of the fact that Xt can include only deterministic variables
such as a constant, a linear trend, and so on. Each element of γ is a linear
combination of the elements of γ◦. Expression (14.32) is just the regression
function of (14.31), with one additional regressor, namely, ∆yt−1. Adding
this regressor has caused the serially dependent error term ut to be replaced
by the white-noise error term et.

The ADF version of the τ statistic is simply the ordinary t statistic for the
coefficient β′ on yt−1 in (14.32) to be zero. If the serial correlation in the error
terms were fully accounted for by an AR(1) process, it turns out that this
statistic would have exactly the same asymptotic distribution as the ordinary
τ statistic for the same specification of Xt. The fact that β′ is equal to
(β − 1)(1− ρ1) rather than β−1 does not matter. Because it is assumed that
|ρ1| < 1, this coefficient can be zero only if β = 1. Thus a test for β′ = 0 in
regression (14.32) is equivalent to a test for β = 1.

It is very easy to compute ADF τ statistics using regressions like (14.32), but
it is not quite so easy to compute the corresponding z statistics. If β̂′ were
multiplied by n, the result would be n(β̂ − 1)(1 − ρ̂1) rather than n(β̂ − 1).
The former statistic clearly would not have the same asymptotic distribution
as the latter. To avoid this problem, we need to divide by 1 − ρ̂1. Thus, a
valid ADF z statistic based on regression (14.32) is nβ̂′/(1− ρ̂1).

In this simple example, we were able to handle serial correlation by adding
a single regressor, ∆yt−1, to the test regression. It is easy to see that, if ut

followed an AR(p) process, we would have to add p additional regressors,
namely, ∆yt−1, ∆yt−2, and so on up to ∆yt−p. But if the error terms followed
a moving average process, or a process with a moving average component, it
might seem that we would have to add an infinite number of lagged values
of ∆yt in order to model them. However, we do not have to do anything so
extreme. As Said and Dickey (1984) showed, we can validly use ADF tests
even when there is a moving average component in the errors, provided we let
the number of lags of ∆yt that are included tend to infinity at an appropriate
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rate, which turns out to be a rate slower than n1/3. See Galbraith and Zinde-
Walsh (1999). This is a consequence of the fact that every moving average
and ARMA process has an AR(∞) representation; see Section 13.2.

To summarize, provided the number of lags p is chosen appropriately, we can
always base both types of ADF test on the regression

∆yt = Xtγ + β′yt−1 +
p∑

j=1

δj∆yt−j + et, (14.33)

where Xt is a row vector of deterministic regressors, and β′ and the δj are
functions of β and the p coefficients in the AR(p) representation of the process
for the error terms. The τ statistic is just the ordinary t statistic for β′ = 0,
and the z statistic is

z =
nβ̂′

(1−∑p
j=1 δ̂j)

. (14.34)

Under the null hypothesis of a unit root, and for a suitable choice of p (which
must increase with n), the asymptotic distributions of both z and τ statistics
are the same as those of ordinary Dickey-Fuller statistics for the same set
of regressors Xt. Because a general proof of this result is cumbersome, it is
omitted, but an important part of the proof is treated in Exercise 14.16.

In practice, of course, since n is fixed for any sample, knowing that p should
increase at a rate slower than n1/3 provides no help in choosing p. Moreover,
investigators do not know what process is actually generating the error terms.
Thus what is generally done is simply to add as many lags of ∆yt as appear
to be necessary to remove any serial correlation in the residuals. Formal
procedures for determining just how many lags to add are discussed by Ng
and Perron (1995, 2001). As we will discuss in the next section, conventional
methods of inference, such as t and F tests, are asymptotically valid for any
parameter that can be written as the coefficient of an I(0) variable. Since
∆yt is I(0) under the null hypothesis, this result applies to regression (14.33),
and we can use standard methods for determining how many lags to include.
If too few lags of ∆yt are added, the ADF test may tend to overreject the
null hypothesis when it is true, but adding too many lags tends to reduce the
power of the test.

The finite-sample performance of ADF tests is rather mixed. When the serial
correlation in the error terms is well approximated by a low-order AR(p)
process without any large, negative roots, ADF tests generally perform quite
well in samples of moderate size. However, when the error terms seem to
follow an MA or ARMA process in which the moving average polynomial has
a large negative root, they tend to overreject severely. See Schwert (1989)
and Perron and Ng (1996) for evidence on this point. Standard techniques
for bootstrapping ADF tests do not seem to work particularly well in this
situation, although they can improve matters somewhat; see Li and Maddala
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(1996). The problem is that it is difficult to generate bootstrap error terms
with the same time-series properties as the unknown process that actually
generated the ut. Recent work in this area includes Park (2002) and Chang
and Park (2003).

Alternatives to ADF Tests

Many alternatives to, and variations of, augmented Dickey-Fuller tests have
been proposed. Among the best known are the tests proposed by Phillips and
Perron (1988). These Phillips-Perron, or PP, tests have the same asymptotic
distributions as the corresponding ADF z and τ tests, but they are computed
quite differently. The test statistics are based on a regression like (14.31),
without any modification to allow for serial correlation. A form of HAC
estimator is then used when computing the test statistics to ensure that serial
correlation does not affect their asymptotic distributions. Because there is
now a good deal of evidence that PP tests perform less well in finite samples
than ADF tests, we will not discuss them further; see Schwert (1989) and
Perron and Ng (1996), among others, for evidence on this point.

A procedure that does have some advantages over the standard ADF test is
the ADF-GLS test proposed by Elliott, Rothenberg, and Stock (1996). The
idea is to obtain higher power by estimating γ prior to estimating β′. As can
readily be seen from Figures 14.2 and 14.3, the more deterministic regressors
we include in Xt, the larger (in absolute value) become the critical values for
ADF tests based on regression (14.32). Inevitably, this reduces the power of
the tests. The ADF-GLS test estimates γ◦ by running the regression

yt − ρ̄yt−1 = (Xt − ρ̄Xt−1)γ◦ + vt, (14.35)

where Xt contains either a constant or a constant and a trend, and the fixed
scalar ρ̄ is equal to 1 + c̄/n, with c̄ = −7 when Xt contains just a constant
and c̄ = −13.5 when it contains both a constant and a trend. Notice that ρ̄
tends to unity as n → ∞. Let γ̂◦ denote the estimate of γ◦ obtained from
regression (14.35). Then construct the variable y′t = yt −Xtγ̂

◦ and run the
test regression

∆y′t = β′y′t−1 +
p∑

j=1

δj∆y′t−j + et,

which looks just like regression (14.32) for the case with no constant term. The
test statistic is the ordinary t statistic for β′ = 0. When Xt contains only a
constant term, this test statistic has exactly the same asymptotic distribution
as τnc. When Xt contains both a constant and a trend, it has an asymptotic
distribution that was derived and tabulated by Elliott, Rothenberg, and Stock
(1996). This distribution, which depends on c̄, is quite close to that of τc.

There is a massive literature on unit root tests, most of which we will not
attempt to discuss. Hayashi (2000) and Bierens (2001) provide recent treat-
ments that are more detailed than ours.
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14.5 Cointegration

Economic theory often suggests that two or more economic variables should be
linked more or less closely. Examples include interest rates on assets of differ-
ent maturities, prices of similar commodities in different countries, disposable
income and consumption, government spending and tax revenues, wages and
prices, and the money supply and the price level. Although deterministic rela-
tionships among the variables in any one of these sets are usually assumed to
hold only in the long run, economic forces are expected to act in the direction
of eliminating short-run deviations from these long-term relationships.

A great many economic variables are, or at least appear to be, I(1). As we saw
in Section 14.2, random variables which are I(1) tend to diverge as n → ∞,
because their unconditional variances are proportional to n. Thus it might
seem that two or more such variables could never be expected to obey any sort
of long-run relationship. But, as we will see, variables that are all individually
I(1), and hence divergent, can in a certain sense diverge together. Formally, it
is possible for some linear combinations of a set of I(1) variables to be I(0). If
that is the case, the variables are said to be cointegrated. When variables are
cointegrated, they satisfy one or more long-run relationships, although they
may diverge substantially from these relationships in the short run.

VAR Models with Unit Roots

In Chapter 13, we saw that a convenient way to model several time series
simultaneously is to use a vector autoregression, or VAR model, of the type
introduced in Section 13.7. Just as with univariate AR models, a VAR model
can have unit roots and so give rise to nonstationary series. We begin by
considering the simplest case, namely, a VAR(1) model with just two variables.
We assume, at least for the present, that there are neither constants nor
trends. Therefore, we can write the model as

yt1 = φ11yt−1,1 + φ12yt−1,2 + ut1,

yt2 = φ21yt−1,1 + φ22yt−1,2 + ut2,

[
ut1

ut2

]
∼ IID(0, Ω). (14.36)

Let zt and ut be 2--vectors, the former with elements yt1 and yt2 and the latter
with elements ut1 and ut2, and let Φ be the 2 × 2 matrix with ij th element
φij . Then equations (14.36) can be written as

zt = Φzt−1 + ut, ut ∼ IID(0,Ω). (14.37)

In order to keep the analysis as simple as possible, we assume that z0 = 0.
This implies that the solution to the recursion (14.37) is

zt =
t∑

s=1

Φt−sus. (14.38)
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A univariate AR model has a unit root if the coefficient on the lagged depen-
dent variable is equal to unity. Analogously, as we now show, the VAR model
(14.36) has a unit root if an eigenvalue of the matrix Φ is equal to 1.

Recall from Section 12.8 that the matrix Φ has an eigenvalue λ and cor-
responding eigenvector x if Φx = λx. For a 2 × 2 matrix, there are two
eigenvalues, λ1 and λ2. If λ1 6= λ2, there are two corresponding eigenvectors,
x1 and x2, which are linearly independent; see Exercise 14.17. If λ1 = λ2, we
assume, with only a slight loss of generality, that there still exist two linearly
independent eigenvectors x1 and x2. Then, as in equation (12.116), we can
write

ΦX = XΛ, with X ≡ [x1 x2] and Λ =
[

λ1 0
0 λ2

]
.

It follows that Φ2X = Φ(ΦX) = ΦXΛ = XΛ2. Performing this operation
repeatedly shows that, for any positive integer s, ΦsX = XΛs.

The solution (14.38) can be rewritten in terms of the eigenvalues and eigen-
vectors of Φ as follows:

X−1zt =
t∑

s=1

Λt−sX−1us. (14.39)

The inverse matrix X−1 exists because x1 and x2 are linearly independent.
It is then not hard to show that the solution (14.39) can be written as

yt1 = x11

t∑
s=1

λt−s
1 es1 + x12

t∑
s=1

λt−s
2 es2,

yt2 = x21

t∑
s=1

λt−s
1 es1 + x22

t∑
s=1

λt−s
2 es2,

(14.40)

where et ≡ [et1
.... et2] ∼ IID(0, Σ), Σ ≡ X−1Ω(X>)−1, and xij is the ij th ele-

ment of X.

It can be seen from equations (14.40) that the series yt1 and yt2 are both
linear combinations of the two series

vt1 ≡
t∑

s=1

λt−s
1 es1 and vt2 ≡

t∑
s=1

λt−s
2 es2. (14.41)

If both eigenvalues are less than 1 in absolute value, then vt1 and vt2 are I(0).
If both eigenvalues are equal to 1, then the two series are random walks, and
consequently yt1 and yt2 are I(1). If one eigenvalue, say λ1, is equal to 1
while the other is less than 1 in absolute value, then vt1 is a random walk,
and vt2 is I(0). In general, then, both yt1 and yt2 are I(1), although there
exists a linear combination of them, namely vt2, that is I(0). According to
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the definition we gave above, yt1 and yt2 are cointegrated in this case. Each
differs from a multiple of the random walk vt1 by a process that, being I(0),
does not diverge and has a finite variance as t →∞.

Quite generally, if the series yt1 and yt2 are cointegrated, then there exists a
2--vector η with elements η1 and η2 such that

νt ≡ η>zt = η1yt1 + η2yt2 (14.42)

is I(0). The vector η is called a cointegrating vector. It is clearly not unique,
since it could be multiplied by any nonzero scalar without affecting anything
except the sign and the scale of νt.

Equation (14.42) is an example of a cointegrating regression. This particular
one is unnecessarily restrictive. In practice, we might expect the relationship
between yt1 and yt2 to change gradually over time. We can allow for this by
adding a constant term and, perhaps, one or more trend terms, so as to obtain

η>zt = Xtγ + νt, (14.43)

where Xt denotes a deterministic row vector that may or may not have any
elements. If it does, the first element is a constant, the second, if it exists,
is normally a linear time trend, the third, if it exists, is normally a quadratic
time trend, and so on. There could also be seasonal dummy variables in Xt.
Since zt could contain more than two variables, equation (14.43) is actually
a very general way of writing a cointegrating regression. The error term
νt = η>zt − Xtγ that is implicitly defined in equation (14.43) is called the
equilibrium error.

Unless each of a set of cointegrated variables is I(1), the cointegrating vec-
tor is trivial, since it has only one nonzero element, namely, the one that
corresponds to the I(0) variable. Therefore, before estimating equations like
(14.42) and (14.43), it is customary to test the null hypothesis that each of
the series in zt has a unit root. If this hypothesis is rejected for any of the
series, it is pointless to retain it in the set of possibly cointegrated variables.

When there are more than two variables involved, there may be more than
one cointegrating vector. For the remainder of this section, however, we will
focus on the case in which there is just one such vector. The more general
case, in which there are g variables and up to g− 1 cointegrating vectors, will
be discussed in the next section.

It is not entirely clear how to specify the deterministic vector Xt in a coint-
egrating regression like (14.43). Ordinary t and F tests are not valid, partly
because the stochastic regressors are not I(0) and any trending regressors do
not satisfy the usual conditions for the matrix n−1X>X to tend to a positive
definite matrix as n → ∞, and partly because the error terms are likely to
display serial correlation. As with unit root tests, investigators commonly use
several choices for Xt and present several sets of results.
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Estimating Cointegrating Vectors

If we have a set of I(1) variables that may be cointegrated, we usually wish
to estimate the parameters of the cointegrating vector η. Logic dictates that,
before doing so, we should perform one or more tests to see if the data seem
compatible with the existence of a cointegrating vector, but it is easier to
discuss estimation before testing. Testing is the topic of the next section.

The simplest way to estimate a cointegrating vector is just to pick one of the
I(1) variables and regress it on Xt and the other I(1) variables by OLS. Let
Yt ≡ [yt Yt2] be a 1× g row vector containing all the I(1) variables, yt being
the one selected as regressand. The OLS regression can then be written as

yt = Xtγ + Yt2η2 + νt, (14.44)

where η = [1 .... −η2]. The nonuniqueness of η is resolved here by setting the
first element to 1. The OLS estimator η̂2 is known as the levels estimator.

At first sight, this approach seems to ignore all the precepts of good economet-
ric practice. If the yti are generated by a DGP belonging to a VAR model,
such as (14.36) in the case of two variables, then they are all endogenous.
Therefore, unless the error terms in every equation of the VAR model hap-
pen to be uncorrelated with those in every other equation, the regressors Yt2

in equation (14.44) will be correlated with the error term νt. In addition,
this error term will often be serially correlated. As we will see below, for
the model (14.36), νt depends on the serially correlated series vt2 defined
in the second of equations (14.41). Nevertheless, the levels estimator of the
vector η2 is not only consistent but super-consistent, in a sense to be made
explicit shortly. This result indicates just how different asymptotic theory is
when I(1) variables are involved.

Let us suppose that we have two cointegrated series, yt1 and yt2, generated
by equations (14.40), with λ1 = 1 and |λ2| < 1. By use of (14.41), we have

yt1 = x11vt1 + x12vt2, and yt2 = x21vt1 + x22vt2, (14.45)

where vt1 is a random walk, and vt2 is I(0). For simplicity, suppose that Xt

is empty in regression (14.44), yt = yt1, and Yt2 has the single element yt2.
Then we have

η̂2 =

∑n
t=1 yt2yt1∑n

t=1 y2
t2

, (14.46)

where η̂2 is the OLS estimator of the single element of η2.

It follows from equations (14.45) that the denominator of the right-hand side
of equation (14.46) is

x2
21

n∑
t=1

v2
t1 + 2x21x22

n∑
t=1

vt1vt2 +
n∑

t=1

v2
t2. (14.47)
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Since Var(et1) = σ11, the element in the first row and column of the covariance
matrix Σ of the innovations et1 and et2, we see that the random walk vt1 can
be expressed as σ

1/2
11 wt, for a standardized random walk wt. We saw from

the argument following expression (14.10) that
∑n

t=1 w2
t = O(n2) as n →∞,

and so the first term of (14.47) is O(n2). The series vt2 has a stationary
variance; in fact E(v2

t2) tends to σ22/(1 − |λ2|2) as t → ∞. By the law of
large numbers, therefore, the last term of (14.47), divided by n, tends to this
stationary variance as n →∞. The term itself is thus O(n). By an argument
similar to the one we used to show that the expression (14.24) is O(n), we
can show that the middle term in (14.47) is O(n); see Exercise 14.18.

In like manner, we see that the numerator of the right-hand side of (14.46) is

x11x21

n∑
t=1

v2
t1 + (x11x22 + x12x21)

n∑
t=1

vt1vt2 + x12x22

n∑
t=1

v2
t2. (14.48)

The first term here is O(n2), and the other two are O(n). Thus, if we divide
both numerator and denominator in (14.46) by n2, only the first terms in
expressions (14.47) and (14.48) contribute nonzero limits as n → ∞. The
factors x21

∑
v2

t1 cancel, and the limit of η̂2 is therefore seen to be x11/x21.
From equations (14.45), we see that

yt1 − x11

x21
yt2 =

x12x21 − x11x22

x21
vt2,

from which, given that vt2 is stationary, we conclude that [1 .... −x11/x21] is in-
deed the cointegrating vector. It follows that η̂2 is consistent for η2 ≡ x11/x21.

If we divide expression (14.47) by x21

∑
v2

t1, which is O(n2), we obtain the
result x21 + O(n−1), since the last two terms of (14.47) are O(n). Similarly,
dividing expression (14.48) by the same quantity gives x11+O(n−1). It follows
that η̂2 − η2 = O(n−1). This is the property of super-consistency mentioned
above. It implies that the estimation error η̂2 − η2 tends to zero like n−1 as
n → ∞. We may say that η̂2 is n--consistent, unlike the root-n consistent
estimators of conventional asymptotic theory. Note, however, that instincts
based on conventional theory are correct to the extent that η̂2 is biased in
finite samples. This fact can be worrisome in practice, and it is therefore
often desirable to find alternative ways of estimating cointegrating vectors.

With a little more work, it can be seen that the super-consistency result
applies more generally to cointegrating regressions like (14.43), with deter-
ministic regressors such as a constant and a trend, when one element of Yt is
arbitrarily given a coefficient of unity and the others moved to the right-hand
side. For a rigorous discussion of this result, see Stock (1987). Note also that
we do not as yet have the means to perform statistical inference on cointe-
grating vectors, since we have not studied the asymptotic distribution of the
order-unity quantity n(η̂2 − η2), which turns out to be nonstandard. We will
discuss this point further later in this section.
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Estimation Using an ECM

We mentioned in Section 13.4 that an error correction model can be used
even when the data are nonstationary. In order to justify this assertion, we
start again from the simplest case, in which the two series yt1 and yt2 are
generated by the two equations (14.45). From the definition (14.41) of the
I(0) process vt2, we have

∆vt2 = (λ2 − 1)vt−1,2 + et2. (14.49)

We may invert equations (14.45) as follows:

vt1 = x11yt1 + x12yt2, and vt2 = x21yt1 + x22yt2, (14.50)

where xij is the ij th element of the inverse X−1 of the matrix with typical
element xij . If we use the expression for vt2 and its first difference given by
equations (14.50), then equation (14.49) becomes

x21∆yt1 = −x22∆yt2 + (λ2 − 1)(x21yt−1,1 + x22yt−1,2) + et2.

Dividing by x21 and noting that the relation between the inverse matrices
implies that x21x11 + x22x21 = 0, we obtain the error-correction model

∆yt1 = η2∆yt2 + (λ2 − 1)(yt−1,1 − η2yt−1,2) + e′t2, (14.51)

where, as above, η2 = x11/x21 is the second component of the cointegrating
vector, and e′t2 = et2/x21. Although the notation is somewhat different from
that used in Section 13.3, it is easy enough to see that equation (14.51) is
a special case of an ECM like (13.62). Notice that it must be estimated by
nonlinear least squares.

In general, equation (14.51) is an unbalanced regression, because it mixes the
first differences, which are I(0), with the levels, which are I(1). But the linear
combination yt−1,1 − η2yt−1,2 is I(0), on account of the cointegration of yt1

and yt2. The term (λ2 − 1)(yt−1,1 − η2yt−1,2) is precisely the error-correction
term of this ECM. Indeed, yt−1,1 − η2yt−1,2 is the equilibrium error, and it
influences ∆yt1 through the negative coefficient λ2 − 1.

The parameter η2 appears twice in (14.51), once in the equilibrium error,
and once as the coefficient of ∆yt2. The implied restriction is a consequence
of the very special structure of the DGP (14.45). It is the parameter that
appears in the equilibrium error that defines the cointegrating vector, not the
coefficient of ∆yt2. This follows because it is the equilibrium error that defines
the long-run relationship linking yt1 and yt2, whereas the coefficient of ∆yt2 is
a short-run multiplier, determining the immediate impact of a change in yt2

on yt1. It is usually thought to be too restrictive to require that the long-run
and short-run multipliers should be the same, and so, for the purposes of
estimation and testing, equation (14.51) is normally replaced by

∆yt1 = α∆yt2 + δ1yt−1,1 + δ2yt−1,2 + et, (14.52)
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where the new parameter α is the short-run multiplier, δ1 = λ2 − 1, and
δ2 = (1 − λ2)η2. Since (14.52) is just a linear regression, the parameter
of interest, which is η2, can be estimated by η̂2 ≡ −δ̂2/δ̂1, using the OLS
estimates of δ1 and δ2.

Equation (14.52) is without doubt an unbalanced regression, and so we must
expect that the OLS estimates will not have their usual distributions. It
turns out that η̂2 is a super-consistent estimator of η2. In fact, it is usually
less biased than the estimate obtained from the simple regression of yt2 on yt1,
as readers are invited to check by simulation in Exercise 14.20.

In the general case, with k cointegrated variables, we may estimate the coint-
egrating vector using the linear regression

∆yt = Xtγ + ∆Yt2α + δyt−1 + Yt−1,2δ2 + et, (14.53)

where, as before, Xt is a vector of deterministic regressors, γ is the associated
parameter vector, Yt = [yt Yt2] is a 1 × k vector, δ is a scalar, and α and
δ2 are both (k − 1)--vectors. Regression (14.52) is evidently a special case
of regression (14.53). The super-consistent ECM estimator of η2 is then the
ratio of the OLS estimator α̂ to the OLS estimator δ̂.

Other approaches

When we cannot, or do not want to, specify an ECM, at least two other
methods are available for estimating a cointegrating vector. One, proposed
by Phillips and Hansen (1990), is called fully modified estimation. The idea
is to modify the OLS estimate of η2 in equation (14.44) by subtracting an
estimate of the bias. The result turns out to be asymptotically multivariate
normal, and it is possible to estimate its asymptotic covariance matrix. To
explain just how fully modified estimation works would require more space
than we have available. Interested readers should consult the original paper
or Banerjee, Dolado, Galbraith, and Hendry (1993, Chapter 7).

A second approach, which is due to Saikkonen (1991), is much simpler to
describe and implement. We run the regression

yt = Xtγ + Yt2η2 +
p∑

j=−p

∆Yt+j,2δj + νt (14.54)

by OLS. Observe that regression (14.54) is just regression (14.44) with the
addition of p leads and p lags of the first differences of Yt2. As with augmented
Dickey-Fuller tests, the idea is to add enough leads and lags so that the error
terms appear to be serially independent. Provided that p is allowed to increase
at the appropriate rate as n → ∞, this regression yields estimates that are
asymptotically efficient.
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Inference in Regressions with I(1) Variables

From what we have said so far, it might seem that standard asymptotic results
never apply when a regression contains one or more regressors that are I(1).
This is true for spurious regressions like (14.12), for unit root test regressions
like (14.18), and for error-correction models like (14.52). In all these cases,
certain statistics that are computed as ordinary t statistics actually follow
nonstandard distributions asymptotically.

However, it is not true that the t statistic on every parameter in a regression
that involves I(1) variables follows a nonstandard distribution asymptotic-
ally. It is not even true that the t statistic on every coefficient of an I(1)
variable follows such a distribution. Instead, as Sims, Stock, and Watson
(1990) showed in a famous paper, the t statistic on any parameter that ap-
pears only as the coefficient of an I(0) variable, perhaps after the regressors
are rearranged, follows the standard normal distribution asymptotically. Sim-
ilarly, an F statistic for a test of the hypothesis that any set of parameters
is zero follows its usual asymptotic distribution if all the parameters can be
written as coefficients of I(0) variables at the same time. On the other hand,
t statistics and F statistics corresponding to parameters that do not satisfy
this condition generally follow nonstandard limiting distributions, although
there are certain exceptions that we will not discuss here; see West (1988)
and Sims, Stock, and Watson (1990).

We will not attempt to prove these results, which are by no means trivial.
Proofs may be found in the original paper by Sims et al., and there is a some-
what simpler discussion in Banerjee, Dolado, Galbraith, and Hendry (1993,
Chapter 6). Instead, we will consider two examples that should serve to illus-
trate the nature of the results. First, consider a simple ECM reparametrized
as equation (14.52). When yt1 and yt2 are not cointegrated, it is impossible
to arrange things so that δ1 is the coefficient of an I(0) variable. Therefore,
the t statistic for δ1 = 0 follows a nonstandard distribution asymptotically.
However, when yt1 and yt2 are cointegrated, the quantity yt−1,1 − η2yt−1,2 is
I(0). In this case, therefore, δ1 is the coefficient of an I(0) variable, and the
t statistic for δ1 = d1 is asymptotically distributed as N(0, 1), if the true value
of δ1 is the negative number d1.

We can rewrite equation (14.52) as

∆yt1 = α∆yt2 − δ2(η1yt−1,1 − yt−1,2) + et, (14.55)

where η1 = 1/η2 = −δ1/δ2. In equation (14.55), δ2 is written as the coefficient
of a variable that is I(0) if yt1 and yt2 are cointegrated. It follows that the
t statistic for a test that δ2 is equal to its true (presumably positive) value is
asymptotically distributed as N(0, 1).

We have just seen that, when yt1 and yt2 are cointegrated, equation (14.52)
can be rewritten is such a way that either δ1 or δ2 is the coefficient of an
I(0) variable. Consequently, the t statistic on every coefficient in (14.52) is
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asymptotically normally distributed. Despite this, it is not the case that an
F statistic for a test concerning both δ1 and δ2 follows its usual asymptotic
distribution under the null hypothesis. This is because we cannot rewrite
(14.52) so that both δ1 and δ2 are coefficients of I(0) variables at the same
time. Indeed, if δ̂1 and δ̂2 were jointly asymptotically normal, the ratio η̂2

would also be asymptotically normal, with the same rate of convergence, in
contradiction of the result that η̂2 is super-consistent.

It is not obvious how it is possible for both δ̂1 and δ̂2 to be asymptotic-
ally normal, with the usual root-n rate of convergence, while the ratio η̂2 is
super-consistent. The phenomenon is explained by the fact, which we will
not attempt to demonstrate in detail here, that the two random variables
n1/2(δ̂1 − δ1)/δ1 and n1/2(δ̂2 − δ2)/δ2 tend as n → ∞ to exactly the same
random variable, and so differ only at order n−1/2. The two variables are
therefore perfectly correlated asymptotically. It is straightforward (see Exer-
cise 14.21) to show that this implies that

−η̂2 =
δ̂2

δ̂1

=
δ2

δ1
+ O(n−1). (14.56)

This result expresses the super-consistency of η̂2.

As a second example, consider the augmented Dickey-Fuller test regression

∆yt = γ + β′yt−1 + δ1∆yt−1 + et, (14.57)

which is a special case of equation (14.32). This can be rewritten as

∆yt = γ + β′yt−1 + δ1yt−1 − δ1yt−2 + et

= γ + β′(yt−1 − yt−2) + δ1yt−1 + (β′ − δ1)yt−2 + et.
(14.58)

When yt is I(1), we cannot write this regression in such a way that β′ is the
coefficient of an I(0) variable. In the second line of (14.58), it does multiply
such a variable, since yt−1 − yt−2 is I(0), but it also multiplies yt−2, which is
I(1). Thus we may expect that the t statistic for β′ = 0 has a nonstandard
asymptotic distribution. As we saw in Section 14.3, that is indeed the case,
since it follows the Dickey-Fuller τc distribution graphed in Figure 14.2.

On the other hand, because ∆yt−1 is I(0), the t statistic for δ1 = 0 in equation
(14.57) does follow the standard normal distribution asymptotically. More-
over, F tests for the coefficients of more than one lag of ∆yt to be jointly zero
also yield statistics that follow the usual asymptotic F distribution. That
is why we can validly use standard tests to decide how many lags of ∆yt−1

to include in the test regression (14.33) that is used to perform augmented
Dickey-Fuller tests.
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Estimation by a Vector Autoregression

The procedures we have discussed so far for estimating and making inferences
about cointegrating vectors are all in essence single-equation methods. A very
popular alternative to those methods is to estimate a vector autoregression,
or VAR, for all of the possibly cointegrated variables. The best-known such
methods were introduced by Johansen (1988, 1991) and initially applied by
Johansen and Juselius (1990, 1992), and a similar approach was introduced
independently by Ahn and Reinsel (1988, 1990). Johansen (1995) provides a
detailed exposition. An advantage of these methods is that they can allow for
more than one cointegrating relation among a set of more than two variables.

Consider the VAR

Yt = XtB +
p+1∑

i=1

Yt−i Φi + Ut, (14.59)

where Yt is a 1 × g vector of observations on the levels of a set of variables,
each of which is assumed to be I(1), Xt (which may or may not be present) is
a row vector of deterministic variables, such as a constant term and a trend,
B is a matrix of coefficients of those deterministic regressors, Ut is a 1 × g
vector of error terms, and the Φi are g × g matrices of coefficients.

The VAR (14.59) is written in levels. It can be reparametrized as

∆Yt = XtB + Yt−1Π +
p∑

i=1

∆Yt−iΓi + Ut, (14.60)

where it is not difficult to verify that Γp = −Φp+1, Γi = Γi+1 − Φi+1 for
i = 1, . . . , p, and

Π =
p+1∑

i=1

Φi − Ig.

Equation (14.60) is the multivariate analog of the augmented Dickey-Fuller
test regression (14.33). In that regression, we tested the null hypothesis of
a unit root by testing whether the coefficient of yt−1 is 0. In very much the
same way, we can test whether and to what extent the variables in Yt are
cointegrated by testing hypotheses about the g× g matrix Π, which is called
the impact matrix.

If we assume, as usual, that the differenced variables are I(0), then everything
in equation (14.60) except the term Yt−1Π is I(0). Therefore, if the equation
is to be satisfied, this term must be I(0) as well. It clearly is so if the matrix
Π is a zero matrix. In this extreme case, there is no cointegration at all.
However, it can also be I(0) if Π is nonzero but does not have full rank. In
fact, the rank of Π is the number of cointegrating relations.

To see why this is so, suppose that the matrix Π has rank r, with 0 ≤ r < g.
In this case, we can always write

Π = ηα>, (14.61)
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where η and α are both g × r matrices. Recall that the rank of a matrix
is the number of linearly independent columns. Here, any set of r linearly
independent columns of Π is a set of linear combinations of the r columns
of η. See also Exercise 14.19. When equation (14.61) holds, we see that
Yt−1Π = Yt−1ηα>. This term is I(0) if and only if the r columns of Yt−1η
are I(0). Thus, for each of the r columns ηi of η, Yt−1ηi is I(0). In other
words, ηi is a cointegrating vector. Since the ηi are linearly independent, it
follows that there are r independent cointegrating relations.

We can now see just how the number of cointegrating vectors is related to
the rank of the matrix Π. In the extreme case in which r = 0, there are
no cointegrating vectors at all, and Π = O. When r = 1, there is a single
cointegrating vector, which is proportional to η1. When r = 2, there is a
two-dimensional space of cointegrating vectors, spanned by η1 and η2. When
r = 3, there is a three-dimensional space of cointegrating vectors, spanned
by η1, η2, and η3, and so on. Our assumptions exclude the case with r = g,
since we have assumed that all the elements of Yt are I(1). If r = g, every
linear combination of these elements would be stationary, which implies that
all the elements of Yt are I(0).

The system (14.60) with the constraint (14.61) imposed can be written as

∆Yt = XtB + Yt−1ηα>+
p∑

i=1

∆Yt−iΓi + Ut. (14.62)

Estimating this system of equations yields estimates of the r cointegrating
vectors. However, it can be seen from (14.62) that not all of the elements of
η and α can be identified, since the factorization (14.61) is not unique for a
given Π. In fact, if Θ is any nonsingular r × r matrix,

ηΘΘ−1α>= ηα>. (14.63)

It is therefore necessary to make some additional assumption in order to con-
vert equation (14.62) into an identified model.

We now consider the simpler case in which g = 2, r = 1, and p = 0. In this
case, the VAR (14.60) becomes

∆yt1 = Xtb1 + π11yt−1,1 + π21yt−1,2 + ut1,

∆yt2 = Xtb2 + π12yt−1,1 + π22yt−1,2 + ut2,
(14.64)

in obvious notation. If one forgets for a moment about the terms Xtbi, this
pair of equations can be deduced from the model (14.36), with π21 = φ12,
π12 = φ21, and πii = φii − 1, i = 1, 2. We saw in connection with the system
(14.36) that, if yt1 and yt2 are cointegrated, then the matrix Φ of (14.37) has
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one unit eigenvalue and the other eigenvalue less than 1 in absolute value.
This requirement is identical to requiring the matrix

[
π11 π21

π12 π22

]

to have one zero eigenvalue and the other between −2 and 0. Let the zero
eigenvalue correspond to the eigenvector [η2

.... 1]. Then it follows that

π21 = −η2π11 and π22 = −η2π12.

Thus the pair of equations corresponding in this special case to the set of
equations (14.62), incorporating an identifying restriction, is

∆yt1 = Xtb1 + π11(yt−1,1 − η2yt−1,2) + ut1,

∆yt2 = Xtb2 + π12(yt−1,1 − η2yt−1,2) + ut2,
(14.65)

from which it is clear that the cointegrating vector is [1 .... −η2].

Unlike equations (14.64), the restricted equations (14.65) are nonlinear. There
are at least two convenient ways to estimate them. One is first to estimate
the unrestricted equations (14.64) and then use the GNR (12.53) discussed
in Section 12.3, possibly with continuous updating of the estimate of the
contemporaneous covariance matrix. Another is to use maximum likelihood,
under the assumption that the error terms ut1 and ut2 are jointly normally
distributed. This second method extends straightforwardly to the estimation
of the more general restricted VAR (14.62). The normality assumption is not
really restrictive, since the ML estimator is a QMLE even when the normality
assumption is not satisfied; see Section 10.4.

Maximum likelihood estimation of a system of nonlinear equations was treated
in Section 12.3. We saw there that one approach is to minimize the deter-
minant of the matrix of sums of squares and cross-products of the residuals.
The hard work can be restricted to the minimization with respect to η2, since,
for fixed η2, the regression functions in (14.65) are linear with respect to the
other parameters. As functions of η2, then, the residuals can be written as
MX,v∆yi, where the yi, for i = 1, 2, are n--vectors with typical elements yti,
and v is an n--vector with typical element yt−1,1 − η2yt−1,2, for the given η2.
Here MX,v denotes an orthogonal projection on to S⊥([X v]).

For simplicity, we suppose for the moment that X is an empty matrix. The
general case will be dealt with in more detail in the next section. Then the
determinant that we wish to minimize with respect to η2 is the determinant
of the matrix ∆Y >Mv∆Y, where ∆Y = [∆y1 ∆y2]. A certain amount
of algebra (see Exercise 14.22) shows that this determinant is equal to the
determinant of ∆Y >∆Y times the ratio

κ ≡ v>M∆Y v

v>v
. (14.66)
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Since ∆Y >∆Y depends only on the data and not on η2, it is enough to
minimize κ with respect to η2. The notation κ is intended to be reminiscent
of the notation used in Section 12.5 in the context of LIML estimation, since
the algebra of LIML is very similar to that used here. In the present simple
case, the first-order condition for minimizing κ reduces to a quadratic equation
for η2. Of the two roots of this equation, we select the one for which the value
of κ given by equation (14.66) is smaller; see Exercise 14.23 for details.

As with the other methods we have discussed, estimating a cointegrating vec-
tor by a VAR yields a super-consistent estimator. Bias is in general less than
with either the levels estimator (14.46) or the ECM estimator obtained by
running regression (14.52). For small sample sizes, there appears to be a ten-
dency for there to be outliers in the left-hand tail of the distribution, leading
to a higher variance than with the other two methods. This phenomenon
apparently disappears for samples of size greater than about 100, however;
see Exercise 14.24.

14.6 Testing for Cointegration

The three methods discussed in the last section for estimating a cointegrating
vector can all be extended to provide tests for whether cointegrating relations
exist for a set of I(1) variables, and, in the case in which a VAR is used, to
determine how many such relations exist. We begin with a method based on
the cointegrating regression (14.44).

Engle-Granger Tests

The simplest, and probably still the most popular, way to test for cointe-
gration was proposed by Engle and Granger (1987). The idea is to estimate
the cointegrating regression (14.44) by OLS and then subject the resulting
estimates of νt to a Dickey-Fuller test, which is usually augmented to deal
with serial correlation. We saw in the last section that, if the variables Yt are
cointegrated, then the OLS estimator of η2 from equation (14.44) is super-
consistent. The residuals ν̂t are then super-consistent estimators of the par-
ticular linear combination of the elements of Yt that is I(0). If, however, the
variables are not cointegrated, there is no such linear combination, and the
residuals, being a linear combination of I(1) variables, are themselves I(1).
Therefore, they have a unit root. Thus, when we subject the series ν̂t to a
unit root test, the null hypothesis of the test is that νt does have a unit root,
that is, that the variables in Yt are not cointegrated.

It may seem curious to have a null hypothesis of no cointegration, but this
follows inevitably from the nature of any unit root test. Recall from the simple
model (14.36) that, when there is no cointegration, the matrix Φ of (14.37)
is restricted so as to have two unit eigenvalues. The alternative hypothesis of
cointegration implies that there is just one, the only constraint on the other
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eigenvalue being that its absolute value should be less than 1. It is therefore
natural from this point of view to have a test with a null hypothesis of no
cointegration, with the restriction that there are two unit roots, against an
alternative of cointegration, with only one. This feature applies to all the
tests for cointegration that we consider.

The first step of the Engle-Granger procedure is to obtain the residuals ν̂t

from regression (14.44). An augmented Engle-Granger (EG) test is then
performed in almost exactly the same way as an augmented Dickey-Fuller
test, by running the regression

∆ν̂t = Xtγ + β′ν̂t−1 +
p∑

j=1

δj∆ν̂t−j + et, (14.67)

where p is chosen to remove any evidence of serial correlation in the residuals.
As with the ADF test, the test statistic may be either a τ statistic or a
z statistic, although the former is more common. We let τc(g) denote the
t statistic for β′ = 0 in (14.67) when Xt contains only a constant term and
the vector η2 has g−1 elements to be estimated. Similarly, τnc(g), τct(g), and
τctt(g) denote t statistics for the same null hypothesis, where the indicated
deterministic terms are included in Xt. By the same token, znc(g), zc(g),
zct(g), and zctt(g) denote the corresponding z statistics. As before, these are
defined by equation (14.34).

As the above notation suggests, the asymptotic distributions of these test
statistics depend on g. When g = 1, we have a limiting case, since there is then
only one variable, yt, which is I(1) under the null hypothesis and I(0) under the
alternative. Not surprisingly, for g = 1, the asymptotic distribution of each of
the Engle-Granger statistics is identical to the asymptotic distribution of the
corresponding Dickey-Fuller statistic. To see this, note that the residuals ν̂t

are in this case just yt itself projected off whatever is in Xt. The result then
follows from the FWL Theorem, which implies that regressing yt on Xt and
then running regression (14.67) is the same (except for the initial observations)
as directly running an ADF testing regression like (14.32). If there is more
than one variable, but some or all of the components of the cointegrating
vector are known, then the proper value of g is 1 plus the number of parameters
to be estimated in order to estimate η2. Thus, if all the parameters are known,
we have g = 1 whatever the number of variables.

Figure 14.4 shows the asymptotic densities of the τc(g) tests for g = 1, . . . , 12.
The densities move steadily to the left as g, the number of possibly cointe-
grated variables, increases. In consequence, the critical values become larger
in absolute value, and the power of the test diminishes. The other Engle-
Granger tests display similar patterns.

Since a set of g I(1) variables is cointegrated if there is a linear combination
of them that is I(0), any g independent linear combinations of the variables
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Figure 14.4 Asymptotic densities of Engle-Granger τc tests

is also a cointegrated set. In other words, cointegration is a property of the
linear space spanned by the variables, not of the particular choice of variables
that span the space. A problem with Engle-Granger test statistics is that they
depend on the particular choice of Yt2 in the first step regression (14.44), or,
more precisely, on the linear subspace spanned by the variables in Yt2. The
asymptotic distribution of the test statistic under the null hypothesis is the
same regardless of how Yt2 is chosen, but the actual test statistic is not.
Consequently, Engle-Granger tests with the same data but different choices
of Yt2 can, and often do, lead to quite different inferences.

ECM Tests

A second way to test for cointegration involves the estimation of an error-
correction model. We can base an ECM test for the null hypothesis that the
set of variables Yt = [yt Yt2] is not cointegrated on equation (14.53). If no
linear combination of the variables in Yt is I(0), then the coefficients δ and δ2

in that equation must be zero. A suitable test statistic is thus the t statistic
for δ = 0. Of course, since the regressor yt−1 is I(1), this ECM statistic
does not follow the N(0, 1) distribution asymptotically. Instead, if Yt is a
1× g vector, it follows the distribution that Ericsson and MacKinnon (2002)
call the κd(g) distribution, where d is one of nc, c, ct, or ctt, depending on
which deterministic regressors are included in Xt.

When g = 1, the asymptotic distribution of the ECM statistic is identical to
that of the corresponding Dickey-Fuller τ statistic. This follows immediately
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Figure 14.5 Asymptotic densities of ECM κc tests

from the fact that, for g = 1, equation (14.53) collapses to

∆yt = Xtγ + δyt−1 + et,

which is equivalent to equation (14.31). However, when k > 1, the distribu-
tions of the various κ statistics are not the same as those of the corresponding
Engle-Granger τ statistics.

Equation (14.53) is less likely to suffer from serial correlation than the Engle-
Granger test regression (14.67) because the error-correction term often has
considerable explanatory power when there really is cointegration. If serial
correlation is a problem, one can add lagged values of both ∆yt and ∆Yt2

to equation (14.53) without affecting the asymptotic distributions of the test
statistics. Indeed, one can add any stochastic variable that is I(0) and exogen-
ous or predetermined, as well as nontrending deterministic variables. Thus
it is possible to perform ECM tests within the context of a well-specified
econometric model, of which equation (14.53) is a special case. Indeed, this is
probably the best way to perform such a test, and it is one of the things that
makes ECM tests attractive.

Figure 14.5 shows the densities of the κc(g) statistics for g = 1, . . . , 12. This
figure is comparable to Figure 14.4. It can be seen that, for g > 1, the
critical values are somewhat smaller in absolute value than they are for the
corresponding EG tests. The distributions of the κ statistics are also more
spread out than those of the corresponding τ statistics, with positive values
much more likely to occur.
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Under the alternative hypothesis of cointegration, an ECM test is more likely
to reject the false null than an EG test. Consider equation (14.52). Subtract-
ing η2∆yt2 from both sides and rearranging, we obtain

∆(yt1 − η2yt2) = δ1(yt−1,1 − η2yt−1,2) + (α− η2)∆yt2 + et. (14.68)

If we replace η2 by its estimate (14.46) and omit the term (α− η2)∆yt2, this
is just a version of the Engle-Granger test regression (14.67). We remarked
in our discussion of the estimation of η2 by an ECM that the restriction that
α = η2 is often too strong for comfort. When this restriction is false, we may
expect (14.68) to fit better than (14.67) and to be less likely to suffer from
serially correlated errors. Thus we should expect the EG test to have less
power than the ECM test in most cases. It must be noted, however, that the
ECM test shares with the EG test the disadvantage that it depends on the
particular choice of Yt2.

For more detailed discussions of ECM tests, see Campos, Ericsson, and Hendry
(1996), Banerjee, Dolado, and Mestre (1998), and Ericsson and MacKinnon
(2002). The densities graphed in Figure 14.5 are taken from the last of these
papers, which provides programs that can be used to compute critical values
and P values for these tests.

Tests Based on a Vector Autoregression

A third way to test for cointegration is based on the VAR (14.60). The idea
is to estimate this VAR subject to the constraint (14.61) for various values
of the rank r of the impact matrix Π, using ML estimation based on the
assumption that the error vector Ut is multivariate normal for each t and
independent across observations. Null hypotheses for which there are any
number of cointegrating relations from 0 to g − 1 can then be tested against
alternatives with a greater number of relations, up to a maximum of g. Of
course, if there really were g cointegrating relations, all the variables would
be I(0), and so this case is usually only of theoretical interest. The most
convenient test statistics are likelihood ratio (LR) statistics.

We saw in the last section that a convenient way to obtain ML estimates of
the restricted VAR (14.62) is to minimize the determinant of the matrix of
sums of squares and cross-products of the residuals. We now describe how to
do this in general, and how to use the result in order to compute estimates
of sets of cointegrating vectors and LR test statistics. We will not enter into
a discussion of why the recipes we provide work, since doing so would be
rather complicated. But, since the methodology is in very common use in
practice, we will give detailed instructions as to how it can be implemented.
See Banerjee, Dolado, Galbraith, and Hendry (1993, Chapter 8), Davidson
(2000, Chapter 16), and Johansen (1995) for more detailed treatments.

The first step is to concentrate the B and Γi parameters out of the VAR
(14.62). We can do this by regressing both ∆Yt and Yt−1 on the deterministic
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variables Xt and the lags ∆Yt−1 through ∆Yt−p. This requires us to run
2g OLS regressions, all of which involve the same regressors, and yields two
sets of residuals,

V̂t1 = ∆Yt −∆Ŷt, and

V̂t2 = Yt−1 − Ŷt−1,
(14.69)

where V̂t1 and V̂t2 are both 1×g vectors. In equations (14.69), ∆Ŷt and Ŷt−1

denote the fitted values from the regressions on Xt and ∆Yt−1 through ∆Yt−p.

The next step is to compute the g × g sample covariance matrices

Σ̂jl = 1−
n

n∑
t=1

V̂tj
>V̂tl, j = 1, 2, l = 1, 2.

Then we must find the solutions λi and zi, for i = 1, . . . , g, to the equations

(λiΣ̂22 − Σ̂21Σ̂
−1
11 Σ̂12)zi = 0, (14.70)

which are similar to equations (12.115) for finding the eigenvalues and eigen-
vectors of a matrix. The eigenvalue-eigenvector problem we actually solve is
for the positive definite symmetric matrix

A ≡ Ψ̂>
22Σ̂21Σ̂

−1
11 Σ̂12 Ψ̂22, (14.71)

where Ψ̂22 Ψ̂>
22 = Σ̂−1

22 . The eigenvalues of this matrix turn out to be the λi

that we seek. We sort these from largest to smallest, so that λi > λj for i < j.
Then we choose the corresponding eigenvectors to be the columns of a g × g
matrix W which is such that W>W = I; see Exercise 14.25. The eigenvalue-
eigenvector relation implies that AW = WΛ, where the diagonal entries of
the diagonal matrix Λ are the (ordered) eigenvalues λi. It is then easy to show
that the columns zi of the matrix Z ≡ Ψ̂22W solve the equations (14.70) along
with the λi, and that the matrix Z satisfies the relation

Z>Σ̂22Z = Ig. (14.72)

The purpose of solving equations (14.70) in this way is that the first r columns
of Z are the ML estimates η̂ of η, with equations (14.72) providing the nec-
essary identifying restrictions so that α and η are uniquely determined; recall
the indeterminacy expressed by equation (14.63). As we remarked in the last
section, once η is given, the equations (14.62) are linear in the other para-
meters, which can therefore be estimated by least squares.

It can be shown that the maximized loglikelihood function for the restricted
model (14.62) is

− gn−−
2

(log 2π + 1)− n−
2

r∑

i=1

log(1− λi). (14.73)
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Thus we can calculate the maximized loglikelihood function for any value of
the number of cointegrating vectors, once we have found the eigenvalues of
the matrix (14.71). For given r, (14.73) depends on the r largest eigenvalues.
Note that it must be the case that 0 < λi < 1 for all i, because the matrix A
is positive definite, and because, if λi ≥ 1, the loglikelihood function (14.73)
would not exist.

As r increases, so does the value of the maximized loglikelihood function
given by expression (14.73). This makes sense, since we are imposing fewer
restrictions. To test the null hypothesis that r = r1 against the alternative
that r = r2, for r1 < r2 ≤ g, we compute the LR statistic

−n

r2∑

i=r1+1

log(1− λi). (14.74)

This is often called the trace statistic, because it can be thought of as the sum
of a subset of the elements on the principal diagonal of the diagonal matrix
−n log(I−Λ). Because the impact matrix Π cannot be written as a matrix
of coefficients of I(0) variables (recall the discussion in the last section), the
distributions of the trace statistic are nonstandard. These distributions have
been tabulated for a number of values of r2− r1. Typically, the trace statistic
is used to test the null hypothesis that there are r cointegrating vectors against
the alternative that there are g of them.

When the null hypothesis is that there are r cointegrating vectors and the
alternative is that there are r + 1 of them, there is just one term in the sum
that appears in expression (14.74). The test statistic is then

−n log(1− λr+1) = −n log(1− λmax), (14.75)

where λmax is the largest eigenvalue of those that correspond to eigenvectors
which have not been incorporated into η̂ under the null hypothesis. For
obvious reasons, this test statistic is often called the λmax statistic. The
distributions of this statistic for various values of r have been tabulated.

Like those of unit-root tests and single-equation cointegration tests, the
asymptotic distributions of the trace and λmax statistics depend on what
deterministic regressors are included in Xt. To complicate matters, it may
well be desirable to impose restrictions on the matrix B, and the distributions
also depend on what restrictions, if any, are imposed.

A further complication is that some of the I(1) variables may be known not
to be cointegrated. In that case, we can divide Yt into two parts, treating the
variables in one part as exogenous and those in the other part as potentially
cointegrated. The distributions of the test statistics then depend on how many
exogenous variables there are. For details, see Harbo, Johansen, Nielsen, and
Rahbek (1998) and Pesaran, Shin, and Smith (2000).
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Figure 14.6 Asymptotic densities of some λmax tests

Figure 14.6 shows the densities of the λmax statistics for the null hypotheses
that r = 0, 1, 2, 3, 4, 5 under one popular assumption about B, namely, that
Xt consists only of a constant, and that there are certain restrictions on B.
This was called “Case II” by Pesaran, Shin, and Smith (2000) and “Case 1∗”
by Osterwald-Lenum (1992). We see from the figure that the mean and var-
iance of the λmax statistic become larger as r increases, and that its density
becomes more symmetrical. The mean and variance of the trace statistic,
which coincides with the λmax statistic when g − r = 1, increase even more
rapidly as g − r increases. Figure 14.6 is based on results from MacKinnon,
Haug, and Michelis (1999), which provides programs that can be used to com-
pute asymptotic critical values and P values for the λmax and trace statistics
for all the standard cases, including systems with exogenous I(1) variables.

Unlike EG and ECM tests, tests based on the trace or λmax statistics are
invariant when the variables Yt are replaced by independent linear combina-
tions of them. We will not take the time to prove this important property,
but it is a reasonably straightforward consequence of the definitions given in
this section. Intuitively, it is a consequence of the fact that no particular
variable or linear combination of variables is singled out in the specification
of the VAR (14.62), in contrast to the specifications of the regressions used
to implement EG and ECM tests.
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14.7 Final Remarks

This chapter has provided a reasonably brief introduction to the modeling
of nonstationary time series, a topic which has engendered a massive liter-
ature in a relatively short period of time. A deeper treatment would have
required a book instead of a chapter. The asymptotic theory that is applica-
ble when some variables have unit roots is very different from the conventional
asymptotic theory that we have encountered in previous chapters. Moreover,
the enormous number of different tests, each with its own nonstandard limit-
ing distribution, can be intimidating. However, we have seen that the same
fundamental ideas underlie many of the techniques for both estimation and
hypothesis testing in models that involve variables which have unit roots.

14.8 Exercises

14.1 Calculate the autocovariance E(wtws), s < t, of the standardardized random
walk given by (14.01).

14.2 Suppose that (1 − ρ(L))ut = et is the autoregressive representation of the
series ut, where et is white noise, and ρ(z) is a polynomial of degree p with
no constant term. If ut has exactly one unit root, show that the polynomial
1− ρ(z) can be factorized as

1− ρ(z) = (1− z)(1− ρ0(z)),

where 1−ρ0(z) is a polynomial of degree p−1 with no constant term and all its
roots strictly outside the unit circle. Give the autoregressive representation of
the first-differenced series (1−L)ut, and show that it implies that this series
is stationary.

14.3 Establish the three results

n∑
t=1

t =
1−
2
n(n + 1),

n∑
t=1

t2 =
1−
6
n(n + 1)(2n + 1),

n∑
t=1

t3 =
1−
4
n2(n + 1)2

by inductive arguments. That is, show directly that the results are true for
n = 1, and then for each one show that, if the result is true for a given n, it
is also true for n + 1.

14.4 Consider the following random walk, in which a second-order polynomial in
time is included in the defining equation:

yt = β0 + β1t + β2t2 + yt−1 + ut, ut ∼ IID(0, σ2).

Show that yt can be generated in terms of a standardized random walk wt

that satisfies (14.01) by the equation

yt = y0 + β0t + β1
1−
2
t(t + 1) + β2

1−
6
t(t + 1)(2t + 1) + σwt.

Can you obtain a similar result for the case in which the second-order poly-
nomial is replaced by a polynomial of degree p in time?
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14.5 For sample sizes of 50, 100, 200, 400, and 800, generate N pairs of data from
the DGP

yt = ρ1yt−1 + ut1, y0 = 0, ut1 ∼ NID(0, 1),

xt = ρ2xt−1 + ut2, x0 = 0, ut2 ∼ NID(0, 1),

for the following values of ρ1 and ρ2: −0.7, 0.0, 0.7, and 1. Then run regression
(14.12) and record the proportion of the time that the ordinary t test for
β2 = 0 rejects the null hypothesis at the .05 level. Thus you need to perform
16 experiments for each of 5 sample sizes. Choose a reasonably large value
of N, but not so large that you use an unreasonable amount of computer time.
The smallest value that would probably make sense is N = 10,000.

For which values of ρ1 and ρ2 does it seem plausible that the t test based
on the spurious regression (14.12) rejects the correct proportion of the time
asymptotically? For which values is it clear that the test overrejects asymp-
totically? Are there any values for which it appears that the test underrejects
asymptotically?

Was it really necessary to run all 16 experiments? Explain.

14.6 Repeat the previous exercise using regression (14.13) instead of regression
(14.12). For which values of ρ1 and ρ2 does it seem plausible that the t test
based on this regression rejects the correct proportion of the time asymptot-
ically? For which values is it clear that the test overrejects asymptotically?
Are there any values for which it appears that the test underrejects asymp-
totically?

14.7 Repeat some of the experiments in Exercise 14.5 with ρ1 = ρ2 = 0.8, using
a HAC covariance matrix estimator instead of the OLS covariance matrix
estimator for the computation of the t statistic. A reasonable rule of thumb
is to set the lag truncation parameter p equal to three times the fourth root
of the sample size, rounded to the nearest integer. You should also do a few
experiments with sample sizes between 1,000 and 5,000 in order to see how
slowly the behavior of the t test approaches its nominal asymptotic behavior.

14.8 Repeat exercise 14.7 with unit root processes in place of stationary AR(1) pro-
cesses. You should find that the use of a HAC estimator alleviates the extent
of spurious regression, in the sense that the probability of rejection tends to 1
more slowly as n →∞. Intuitively, why should using a HAC estimator work,
even if only in very large samples, with stationary AR(1) processes but not
with unit root processes?

14.9 The HAC estimators used in the preceding two exercises are estimates of the
covariance matrix

(X>X)−1X>ΩX(X>X)−1, (14.76)

where Ω is the true covariance matrix of the error terms. Do just a few
experiments for sample sizes of 20, 40, and 60, with AR(1) variables in some
and unit root variables in others, in which you use the trueΩ in (14.76) rather
than using a HAC estimator. Hint: The result of Exercise 7.10 is useful for
the construction of X>ΩX. You should find that the rejection rate is very
close to nominal even for these small samples.
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14.10 Consider the model with typical DGP

yt =

p∑

i=0

βit
i + yt−1 + σεt, εt ∼ IID(0, 1). (14.77)

Show that the z and τ statistics from the testing regression

∆yt =

p+1∑

i=0

γit
i + (β − 1)yt−1 + et

are pivotal if the DGP is (14.77) and the distribution for the white-noise
process εt is known.

14.11 Show that

n∑
t=1

w2
t =

n∑
t=1

(n− t + 1) ε2
t + 2

n∑
t=2

t−1∑
s=1

(n− t + 1) εtεs,

where wt is the standardized random walk (14.02). Demonstrate that any
pair of terms from either sum on the right-hand side of the above expression
are uncorrelated. Let the fourth moment of the white-noise process εt be m4.
Then show that the variance of

∑n
t=1 w2

t is equal to

m4

6
n(n + 1)(2n + 1) +

1−
3
n2(n2 − 1),

of order n4 as n →∞. Hint: Use the results of Exercise 14.3.

14.12 Consider the standardized Wiener process W (r) defined by (14.26). Show
that, for 0 ≤ r1 < r2 ≤ r3 < r4 ≤ 1, W (r2)−W (r1) and W (r4)−W (r3) are
independent. This property is called the property of independent increments
of the Wiener process. Show that the covariance of W (r) and W (s) is equal
to min(r, s).

The process G(r), r ∈ [0, 1], defined by G(r) = W (r) − rW (1), where W (r)
is a standardized Wiener process, is called a Brownian bridge. Show that
G(r) ∼ N(0, r(1 − r)), and that the covariance of G(r) and G(s) is s(1 − r)
for r > s.

14.13 By using arguments similar to those leading to the result (14.29), demonstrate
the result (14.30). For this purpose, the result of Exercise 4.8 may be helpful.

14.14 Show that, if wt is the standardized random walk (14.01),
∑n

t=1 wt is of
order n3/2 as n → ∞. By use of the definition (14.28) of the Riemann
integral, show that

plim
n→∞

n−3/2
n∑

t=1

wt =

∫ 1

0

W (r)dr.

Demonstrate that this plim is distributed as N(0, 1/3).
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Show that the probability limit of the formula (14.20) for the statistic zc can
be written in terms of a standardized Wiener process W (r) as

plim
n→∞

zc =

1−
2
(W 2(1)− 1)−W (1)

∫ 1

0
W (r) dr

∫ 1

0
W 2(r) dr − (

∫ 1

0
W (r) dr)2

.

14.15 The file intrates-m.data contains several monthly interest rate series for the
United States from 1955 to 2001. Let Rt denote the 10-year government bond
rate. Using data for 1957 through 2001, test the hypothesis that this series
has a unit root with ADF τc, τct, τctt, zc, zct, and zctt tests, using whatever
value(s) of p seem reasonable.

14.16 Consider the simplest ADF testing regression

∆yt = β′yt−1 + δ∆yt−1 + et,

and suppose that the data are generated by the simplest random walk:
yt = wt, where wt is the standardized random walk (14.01). If P1 is the
orthogonal projection on to the lagged dependent variable ∆yt−1, and if w−1

is the n--vector with typical element wt−1, show that the expressions

1−
n

n∑
t=1

(P1w−1)tεt and
1−
n

n∑
t=1

wt−1εt

have the same probability limit as n →∞. Derive the same result for the two
expressions

1

n2

n∑
t=1

(P1w−1)
2
t and

1

n2

n∑
t=1

w2
t−1.

14.17 Let the p × p matrix A have q distinct eigenvalues λ1, . . . , λq, where q ≤ p.
Let the p--vectors xi, i = 1, . . . , q, be corresponding eigenvectors, so that
Axi = λixi. Prove that the xi are linearly independent.

14.18 Show that the expression n−1∑n
t=1 vt1vt2, where vt1 and vt2 are given

by (14.41), has an expectation and a variance which both tend to finite limits
as n →∞. For the variance, the easiest way to proceed is to express the vti as
in (14.41), and to count the number of nonzero contributions to the variance.

14.19 If the p × q matrix A has rank r, where r ≤ p and r ≤ q, show that there
exist a p× r matrix B and a q× r matrix C, both of full column rank r, such
that A = BC>. Show further that any matrix of the form BC>, where B is
p× r with r ≤ p and C is q× r with r ≤ q, has rank r if both B and C have
rank r.

14.20 Generate two I(1) series yt1 and yt2 using the DGP given by (14.45) with
x11 = x21 = 1, x12 = 0.5, and x22 = 0.3. The series vt1 and vt2 should be
generated by (14.41), with λ1 = 1 and λ2 = 0.7, the series et1 and et2 being
white noise with a contemporaneous covariance matrix

Σ =
[

1 0.7
0.7 1.5

]
.
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Perform a set of simulation experiments for sample sizes n = 30, 50, 100,
200, and 500 in which the parameter η2 of the stationary linear combination
yt1 − η2yt2 is estimated first by (14.46), and then as −δ̂2/δ̂1 from the regres-
sion (14.52). You should observe that the first estimator is substantially more
biased than the second.

Verify the super-consistency of both estimators by computing the first two
moments of n(η̂2−η2) and showing that they are roughly constant as n varies,
at least for larger values of n.

14.21 Show that, if

n1/2(δ̂i − δi)

δi
= t + O(n−1/2),

for i = 1, 2, then the ratio δ̂2/δ̂1 is super-consistent. In other words, show
that equation (14.56) holds.

14.22 Let A ≡ [a1 a2] be an n×2 matrix, and let v be an n--vector. Show that the
determinant of the 2×2 matrix A>MvA, whereMv projects orthogonally on
to S⊥(v), is equal to the determinant of A>A multiplied by v>MAv/v>v. In
your calculation, it is helpful to exploit the fact that S(v) is one-dimensional
and to compute the explicit inverse of A>A in terms of the scalar products
ai
>aj , i, j = 1, 2.

14.23 Show that the first-order condition for minimizing the κ given in expression
(14.66) with respect to η2, where v = y1 − η2y2, is equivalent to requiring
that η2 should be a solution to the quadratic equation

η2
2(y1

>y2 y2
>M∆Y y2 − y1

>M∆Y y2 y2
>y2)

+ η(y2
>y2 y1

>M∆Y y1 − y1
>y1 y2

>M∆Y y2)

+ (y1
>y1 y1

>M∆Y y2 − y1
>M∆Y y1 y1

>y2) = 0. (14.78)

14.24 Repeat the simulation experiments of Exercise 14.20 for the VAR estimator
of the parameter η2 of the cointegration relation. The easiest way to proceed
is to solve the quadratic equation (14.78), choosing the root for which κ is
smallest.

14.25 Let the p × p matrix A be symmetric, and suppose that A has two distinct
eigenvalues λ1 and λ2, with corresponding eigenvectors z1 and z2. Prove that
z1 and z2 are orthogonal.

Use this result to show that there is a g × g matrix Z, with Z>Z = I (that
is, Z is an orthogonal matrix), such that AZ = ZΛ, where Λ is a diagonal
matrix the entries of which are the eigenvalues of A.

14.26 Let rt denote the logarithm of the 10-year government bond rate, and let st

denote the logarithm of the 1-year government bond rate, where monthly data
on both rates are available in the file intrates-m.data. Using data for 1957
through 2001, use whatever augmented Engle-Granger τ tests seem appropri-
ate to test the null hypothesis that these two series are not cointegrated.

14.27 Consider once again the Canadian consumption data in the file consump-
tion.data, for the period 1953:1 to 1996:4. Perform a variety of appropriate
tests of the hypotheses that the levels of consumption and income have unit
roots. Repeat the exercise for the logs of these variables.
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If you fail to reject the hypotheses that the levels or the logs of these variables
have unit roots, proceed to test whether they are cointegrated, using two ver-
sions of the EG test procedure, one with consumption, the other with income,
as the regressand in the cointegrating regression. Similarly, perform two ver-
sions of the ECM test. Finally, test the null hypothesis of no cointegration
using Johansen’s VAR-based procedure.
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Chapter 15

Testing the Specification

of Econometric Models

15.1 Introduction

As we first saw in Section 3.7, estimating a misspecified regression model
generally yields biased and inconsistent parameter estimates. This is true for
regression models whenever we incorrectly omit one or more regressors that
are correlated with the regressors included in the model. Except in certain
special cases, some of which we have discussed, it is also true for more general
types of model and more general types of misspecification. This suggests
that the specification of every econometric model should be thoroughly tested
before we even tentatively accept its results.

We have already discussed a large number of procedures that can be used
as specification tests. These include t and F tests for omitted variables and
for parameter constancy (Section 4.4), along with similar tests for nonlinear
regression models (Section 6.7) and IV regression (Section 8.5), tests for het-
eroskedasticity (Section 7.5), tests for serial correlation (Section 7.7), tests
of common factor restrictions (Section 7.9), DWH tests (Section 8.7), tests
of overidentifying restrictions (Sections 8.6, 9.4, 9.5, 12.4, and 12.5), and the
three classical tests for models estimated by maximum likelihood, notably LM
tests (Section 10.6).

In this chapter, we discuss a number of other procedures that are designed
for testing the specification of econometric models. Some of these procedures
explicitly involve testing a model against a less restricted alternative. Others
do not make the alternative explicit and are intended to have power against a
large number of plausible alternatives. In the next section, we discuss a variety
of tests that are based on artificial regressions. Then, in Section 15.3, we
discuss nonnested hypothesis tests, which are designed to test the specification
of a model when alternative models are available. In Section 15.4, we discuss
model selection based on information criteria. Finally, in Section 15.5, we
introduce the concept of nonparametric estimation. Nonparametric methods
avoid specification errors caused by imposing an incorrect functional form,
and the validity of parametric models can be checked by comparing them
with nonparametric ones.

Copyright c© 1999, Russell Davidson and James G. MacKinnon 640



15.2 Specification Tests Based on Artificial Regressions 641

15.2 Specification Tests Based on Artificial Regressions

In previous chapters, we have encountered numerous examples of artificial
regressions. These include the Gauss-Newton regression (Section 6.7) and
its heteroskedasticity-robust variant (Section 6.8), the OPG regression (Sec-
tion 10.5), and the binary response model regression (Section 11.3). We can
write any of these artificial regressions as

r(θ) = R(θ)b+ residuals, (15.01)

where θ is a parameter vector of length k, r(θ) is a vector, often but by no
means always of length equal to the sample size n, and R(θ) is a matrix with
as many rows as r(θ) and k columns. For example, in the case of the GNR,
r(θ) is a vector of residuals, written as a function of the data and parameters,
and R(θ) is a matrix of derivatives of the regression function with respect to
the parameters.

In order for (15.01) to be a valid artificial regression, the vector r(θ) and
the matrix R(θ) must satisfy certain properties, which all of the artificial
regressions we have studied do satisfy. These properties are given in outline
in Exercise 8.20, and we restate them more formally here. We use a notation
that was introduced in Section 9.5, whereby M denotes a model, µ denotes a
DGP which belongs to that model, and plimµ means a probability limit taken
under the DGP µ. See the discussion in Section 9.5.

An artificial regression of the form (15.01) corresponds to a model M with
parameter vector θ, and to a root-n consistent asymptotically normal estima-
tor θ̂ of that parameter vector, if and only if the following three conditions are
satisfied. For the last two of these conditions, θ́ may be any root-n consistent
estimator, not necessarily the same as θ̂.

• The artificial regressand and the artificial regressors are orthogonal when
evaluated at θ̂, that is,

R>(θ̂)r(θ̂) = 0.

• Under any DGP µ ∈ M, the asymptotic covariance matrix of θ̂ is given
either by

Var
(
plim
n→∞

µ n
1/2(θ̂ − θµ)

)
= plim
n→∞

µ

(
N−1R>(θ́)R(θ́)

)−1
, (15.02)

where θµ is the true parameter vector for the DGP µ, n is the sample
size, and N is the number of rows of r and R, or by

Var
(
plim
n→∞

µ n
1/2(θ̂ − θµ)

)
= plim
n→∞

µ ś
2
(
N−1R>(θ́)R(θ́)

)−1
, (15.03)

where ś2 is the OLS estimate of the error variance obtained by running
regression (15.01) with θ = θ́.
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• The artificial regression allows for one-step estimation, in the sense that,
if b́ denotes the vector of OLS parameter estimates obtained by running
regression (15.01) with θ = θ́, then, under any DGP µ ∈M,

plim
n→∞

µ n
1/2(θ́ + b́− θµ) = plim

n→∞
µ n

1/2(θ̂ − θµ). (15.04)

Equivalently, making use of the Op notation introduced in Section 14.2,
the property (15.04) may be expressed as θ́ + b́ = θ̂ +Op(n−1).

The Gauss-Newton regression for a nonlinear regression model, together with
the least-squares estimator of the parameters of the model, satisfies the above
conditions. For the GNR, the asymptotic covariance matrix is given by equa-
tion (15.03). The OPG regression for any model that can be estimated by
maximum likelihood, together with the ML estimator of its parameters, also
satisfies the above conditions, but the asymptotic covariance matrix is given
by equation (15.02). See Davidson and MacKinnon (2001) for a more detailed
discussion of artificial regressions.

Now consider the artificial regression

r(θ́) = R(θ́)b+Z(θ́)c+ residuals, (15.05)

where Ź ≡ Z(θ́) is a matrix with r columns that depends on the same sample
data and parameter estimates as ŕ ≡ r(θ́) and Ŕ ≡ R(θ́). We have previously
encountered instances of regressions like (15.05), where both R(θ) and Z(θ)
were matrices of derivatives, with R(θ) corresponding to the parameters of
a restricted version of the model and Z(θ) corresponding to additional para-
meters that appear only in the unrestricted model. In such a case, if the
root-n consistent estimator θ́ satisfies the restrictions, then running an arti-
ficial regression like (15.05) and testing the hypothesis that c = 0 provides
a way of testing those restrictions; recall the discussion in Section 6.7 in the
context of the GNR. In many cases, θ́ is conveniently chosen as the vector of
estimates from the restricted model.

A great many specification tests may be based on artificial regressions of the
form (15.05). The null hypothesis under test is that the model M to which
regression (15.01) corresponds is correctly specified. It is not necessary that
the matrix Ź should explicitly be a matrix of derivatives. In fact, any matrix
Z(θ) which satisfies the following three conditions can be used in (15.05) to
obtain a valid specification test.

R1. For every DGP µ ∈M,

plim
n→∞

µN
−1Z>(θµ)r(θµ) = 0. (15.06)

A sufficient condition for (15.06) to hold is Eµ
(
Zt
>(θµ)rt(θµ)

)
= 0 for all

t = 1, . . . , N, where N is the number of elements of r, and Zt and rt are,
respectively, the tth row and tth element of Z and r.
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R2. Let rµ, Rµ, and Zµ denote r(θµ), R(θµ), and Z(θµ), respectively. Then,
for any µ ∈ M, if the asymptotic covariance matrix is given by (15.02),
the matrix

plim
n→∞

µ
1−
n

[
Rµ
>Rµ Rµ

>Zµ
Zµ
>Rµ Zµ

>Zµ

]
(15.07)

is the covariance matrix of the plim of the vector n−1/2[Rµ
>rµ

.... Zµ>rµ],
which is required to be asymptotically multivariate normal. If instead the
asymptotic covariance matrix is given by equation (15.03), then the ma-
trix (15.07) must be multiplied by the probability limit of the estimated
error variance from the artificial regression.

R3. The Jacobian matrix containing the partial derivatives of the elements
of the vector n−1Z>(θ)r(θ) with respect to the elements of θ, evalu-
ated at θµ, is asymptotically equal, under the DGP µ, to −n−1Zµ

>Rµ.
Formally, this Jacobian matrix is equal to −n−1Zµ

>Rµ +Op(n−1/2).

Since a proof of the sufficiency of these conditions requires a good deal of
algebra, we relegate it to a technical appendix.

When these conditions are satisfied, we can test the correct specification of
the model M against an alternative in which equation (15.06) does not hold
by testing the hypothesis that c = 0 in regression (15.05). If the asymptotic
covariance matrix is given by equation (15.02), then the difference between the
explained sum of squares from regression (15.05) and the ESS from regression
(15.01), evaluated at θ́, must be asymptotically distributed as χ2(r) under
the null hypothesis. This is not true when the asymptotic covariance matrix
is given by equation (15.03), in which case we can use an asymptotic t test if
r = 1 or an asymptotic F test if r > 1.

The RESET Test

One of the oldest specification tests for linear regression models, but one that
is still widely used, is the regression specification error test, or RESET test,
which was originally proposed by Ramsey (1969). The idea is to test the null
hypothesis that

yt = Xtβ + ut, ut ∼ IID(0, σ2), (15.08)

where the explanatory variables Xt are predetermined with respect to the
error terms ut, against the rather vaguely specified alternative that E(yt|Xt)
is a nonlinear function of the elements of Xt. The simplest version of RESET
involves regressing yt on Xt to obtain fitted values Xtβ̂ and then running the
regression

yt = Xtβ + γ(Xtβ̂)2 + ut. (15.09)

The test statistic is the ordinary t statistic for γ = 0.

At first glance, the RESET procedure may not seem to be based on an artificial
regression. But it is easy to show (Exercise 15.2) that the t statistic for γ = 0
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in regression (15.09) is identical to the t statistic for c = 0 in the GNR

ût = Xtb+ c(Xtβ̂)2 + residual, (15.10)

where ût is the tth residual from regression (15.08). The test regression (15.10)
is clearly a special case of the artificial regression (15.05), with β̂ playing the
role of θ́ and (Xtβ̂)2 playing the role of Ź. It is not hard to check that the
three conditions for a valid specification test regression are satisfied. First,
the predeterminedness of Xt implies that E

(
(Xtβ0)2(yt −Xtβ0)

)
= 0, where

β0 is the true parameter vector, so that condition R1 holds. Condition R2
is equally easy to check. For condition R3, let z(β) be the n--vector with
typical element (Xtβ)2. Then the derivative of n−1z>(β)(yt − Xtβ) with
respect to βi, for i = 1, . . . , k, evaluated at β0, is

2−
n

n∑
t=1

Xtβ0 xtiut − 1−
n

n∑
t=1

(Xtβ0)2xti.

The first term above is n−1/2 times an expression which, by a central limit the-
orem, is asymptotically normal with mean zero and finite variance. It is there-
fore Op(n−1/2). The second term is an element of the vector −n−1z>(β0)X.
Thus condition R3 holds, and the RESET test, implemented either by either
of the regressions (15.09) or (15.10), is seen to be asymptotically valid.

Actually, the RESET test is not merely valid asymptotically. It is exact in
finite samples whenever the model that is being tested satisfies the strong
assumptions needed for t statistics to have their namesake distribution; see
Section 4.4 for a statement of those assumptions. To see why, note that the
vector of fitted values Xβ̂ is orthogonal to the residual vector û, so that
E(β̂>X>û) = 0. Under the assumption of normal errors, it follows that Xβ̂
is independent of û. As Milliken and Graybill (1970) first showed, and as
readers are invited to show in Exercise 15.3, this implies that the t statistic
for c = 0 yields an exact test under classical assumptions.

Like most specification tests, the RESET procedure is designed to have power
against a variety of alternatives. However, it can also be derived as a test
against a specific alternative. Suppose that

yt =
τ(δXtβ)

δ
+ ut, (15.11)

where δ is a scalar parameter, and τ(x) may be any scalar function that is
monotonically increasing in its argument x and satisfies the conditions

τ(0) = 0, τ ′(0) = 1, and τ ′′(0) 6= 0,

where τ ′(0) and τ ′′(0) are the first and second derivatives of τ(x), evaluated
at x = 0. A simple example of such a function is

τ(x) = x+ x2.
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We first encountered the family of functions τ(·) in Section 11.3, in connection
with tests of the functional form of binary response models.

By l’Hôpital’s Rule, the nonlinear regression model (15.11) reduces to the
linear regression model (15.08) when δ = 0. It is not hard to show, using
equations (11.29), that the GNR for testing the null hypothesis that δ = 0 is

yt −Xtβ̂ = Xtb+ c(Xtβ̂)2 1−
2
τ ′′(0) + residual,

which, since τ ′′(0)/2 is just a constant, is equivalent to regression (15.10).
Thus RESET can be derived as a test of δ = 0 in the nonlinear regression
model (15.11). For more details, see MacKinnon and Magee (1990), which
also discusses some other specification tests that can be used to test (15.08)
against nonlinear models involving transformations of the dependent variable.

Some versions of the RESET procedure add the cube, and sometimes also the
fourth power, of Xtβ̂ to the test regression (15.09). This makes no sense if
the alternative is (15.11), but it may give the test more power against some
other alternatives. In general, however, we recommend the simplest version
of the test, namely, the t test for γ = 0 in regression (15.09).

Conditional Moment Tests

If a model M is correctly specified, many random quantities that are functions
of the dependent variable(s) should have expectations of zero. Often, these
expectations are taken conditional on some information set. For example,
in the linear regression model (15.08), the expectation of the error term ut,
conditional on any variable in the information set Ωt relative to which the
model is supposed to give the conditional mean of yt, should be equal to
zero. For any zt that belongs to Ωt, therefore, we have E(ztut) = 0 for all
observations t. This sort of requirement, following from the hypothesis that
M is correctly specified, is known as a moment condition.

A moment condition is purely theoretical. However, we can often calculate
the empirical counterpart of a moment condition and use it as the basis of a
conditional moment test. For a linear regression, of course, we already know
how to perform such a test: We add zt to regression (15.08) and look at the
t statistic for this additional regressor to have a coefficient of 0.

More generally, consider a moment condition of the form

Eθ
(
mt(yt,θ)

)
= 0, t = 1, . . . , n, (15.12)

where yt is the dependent variable, and θ is the vector of parameters for the
model M. As the notation implies, the expectation in (15.12) is computed
using a DGP in M with parameter vector θ. The t subscript on the moment
function mt(yt,θ) indicates that, in general, moment functions also depend
on exogenous or predetermined variables. Equation (15.12) implies that the
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mt(yt,θ) are elementary zero functions in the sense of Section 9.5. We cannot
test whether condition (15.12) holds for each observation, but we can test
whether it holds on average. Since we will be interested in asymptotic tests,
it is natural to consider the probability limit of the average. Thus we can
replace (15.12) by the somewhat weaker condition

plim
n→∞

µ
1−
n

n∑
t=1

mt(yt,θ) = 0. (15.13)

The empirical counterpart of the left-hand side of condition (15.13) is

m(y, θ̂) ≡ 1−
n

n∑
t=1

mt(yt, θ̂), (15.14)

where y denotes the vector with typical element yt, and θ̂ denotes a vector
of estimates of θ from the model under test. The quantity m(y, θ̂) is referred
to as an empirical moment. We wish to test whether its value is significantly
different from zero.

In order to do so, we need an estimate of the variance ofm(y, θ̂). It might seem
that, since the empirical moment is just the sample mean of the mt(yt, θ̂), this
variance could be consistently estimated by the usual sample variance,

1
n− 1

n∑
t=1

(
mt(yt, θ̂)−m(y, θ̂)

)2
. (15.15)

If θ̂ were replaced by the true value θ0 in expression (15.14), then we could
indeed use the sample variance (15.15) with θ̂ replaced by θ0 to estimate the
variance of the empirical moment. But, because the vector θ̂ is random, on
account of its dependence on y, we have to take this parameter uncertainty
into account when we estimate the variance of m(y, θ̂).

The easiest way to see the effects of parameter uncertainty is to consider
conditional moment tests based on artificial regressions. Suppose there is an
artificial regression of the form (15.01) in correspondence with the model M
and the estimator θ̂ which allows us to write the moment function mt(yt,θ)
as the product zt(yt,θ)rt(yt,θ) of a factor zt and the regressand rt of the
artificial regression. If the number N of artificial observations is not equal
to the sample size n, some algebraic manipulation may be needed in order
to express the moment functions in a convenient form, but we ignore such
problems here and suppose that N = n.

Now consider the artificial regression of which the typical observation is

rt(yt,θ) = Rt(yt,θ)b+ czt(yt,θ) + residual. (15.16)

If the zt satisfy conditions R1–R3, then the t statistic for c = 0 is a valid
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test statistic whenever equation (15.16) is evaluated at a root-n consistent
estimate of θ, in particular, at θ̂. By applying the FWL Theorem to this
equation and taking probability limits, it is not difficult to see that this t sta-
tistic is actually testing the hypothesis that

plim
n→∞

1−
n
z0
>MR0r0 = 0, (15.17)

where z0 ≡ z(θ0), R0 ≡ R(θ0), andMR0 is the matrix that projects orthogo-
nally on to S⊥(R0). Asymptotically, equation (15.17) is precisely the moment
condition that we wish to test, as can be seen from the following argument:

n1/2m(θ̂) = n−1/2z>(θ̂)r(θ̂)

= n−1/2z0
>r0 + n−1z0

>R0 n
1/2(θ̂ − θ0) +Op(n−1/2)

= n−1/2z0
>MR0r0 +Op(n−1/2), (15.18)

where for notational ease we have suppressed the dependence on the dependent
variable. The steps leading to (15.18) are very similar to the derivation of
a closely related result in the technical appendix, and interested readers are
urged to consult the latter. If there were no parameter uncertainty, the second
term in the second line above would vanish, and the leading-order term in
expression (15.18) would simply be n−1/2z0

>r0.

It is clear from expression (15.18) that, as we indicated above, the asymp-
totic variance of n1/2m(θ̂) is smaller than that of n1/2m(θ0), because the
projection MR0 appears in the leading-order term for the former empirical
moment but not in the leading-order term for the latter one. The reduction
in variance caused by the projection is a phenomenon analogous to the loss
of degrees of freedom in Hansen-Sargan tests caused by the need to estimate
parameters; recall the discussion in Section 9.4. Indeed, since moment func-
tions are zero functions, conditional moment tests can be interpreted as tests
of overidentifying restrictions.

Examples of Conditional Moment Tests

Suppose the model under test is the nonlinear regression model (6.01), and
the moment functions can be written as

mt(β) = zt(β)ut(β), (15.19)

where ut(β) ≡ yt − xt(β) is the tth residual, and zt(β) is some function
of exogenous or predetermined variables and the parameters. We are using
β instead of θ to denote the vector of parameter estimates here because the
regression function is xt(β). In this case, as we now show, a test of the moment
condition (15.13) can be based on the following Gauss-Newton regression:

ut(β̂) = Xt(β̂)b+ czt(β̂) + residual, (15.20)
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where β̂ is the vector of NLS estimates of the parameters, and Xt(β) is the
k--vector of derivatives of xt(β) with respect to the elements of β.

Since the NLS estimator β̂ is root-n consistent and asymptotically normal
under the usual regularity conditions for nonlinear regression, all we have
to show is that conditions R1–R3 are satisfied by the GNR (15.20). Condi-
tion R1 is trivially satisfied, since what it requires is precisely what we wish
to test. Condition R2, for the covariance matrix (15.03), follows easily from
the fact that Xt(β) and zt(β) depend on the data only through exogenous or
predetermined variables.

Condition R3 requires a little more work, however. Let z(β) and u(β) be the
n--vectors with typical elements zt(β) and ut(β), respectively. The derivative
of n−1z>(β)u(β) with respect to any component βi of the vector β is

1−
n

∂z>(β)
∂βi

u(β)− 1−
n
z>(β)

∂x(β)
∂βi

. (15.21)

Since the elements of z(β) are predetermined, so are those of its derivative
with respect to βi, and since u(β0) is just the vector of error terms, it follows
from a law of large numbers that the first term of expression (15.21) tends to
zero as n → ∞. In fact, by a central limit theorem, this term is Op(n−1/2).
The n× k matrix X(β) has typical column ∂x(β)/∂βi. Therefore, the Jaco-
bian matrix of n−1z>(β)u(β) is asymptotically equal to −n−1z>(β0)X(β0),
which is condition R3 for the GNR (15.20). Thus we conclude that this GNR
can be used to test the moment condition (15.13).

The above reasoning can easily be generalized to allow us to test more than
one moment condition at a time. Let Z(β) denote an n × r matrix of func-
tions of the data, each column of which is asymptotically orthogonal to the
vector u under the null hypothesis that is to be tested, in the sense that
plimn−1Z>(β0)u = 0. Now consider the artificial regression

u(β̂) = X(β̂)b+Z(β̂)c + residuals. (15.22)

As readers are asked to show in Exercise 15.5, n times the uncentered R2 from
this regression is asymptotically distributed as χ2(r) under the null hypo-
thesis. An ordinary F test for c = 0 is also asymptotically valid.

Conditional moment tests based on the GNR are often useful for linear and
nonlinear regression models, but they evidently cannot be used when the GNR
itself is not applicable. With models estimated by maximum likelihood, tests
can be based on the OPG regression that was introduced in Section 10.5. This
artificial regression applies whenever there is a Type 2 MLE θ̂ that is root-n
consistent and asymptotically normal; see Section 10.3.

The OPG regression was originally given in equation (10.72). It is repeated
here for convenience with a minor change of notation:

ι = G(θ)b + residuals. (15.23)
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The regressand is an n--vector of 1s, and the regressor matrix is the matrix
of contributions to the gradient, with typical element defined by (10.26). The
artificial regression corresponds to the model implicitly defined by the matrix
G(θ), together with the ML estimator θ̂. Let m(θ) be the n--vector with
typical element the moment function mt(yt,θ) that is to be tested, where
once more the notation hides the dependence on the data. Then the testing
regression is simplicity itself: We add m(θ) to regression (15.23) as an extra
regressor, obtaining

ι = G(θ)b+ cm(θ) + residuals. (15.24)

The test statistic is the t statistic on the extra regressor. The regressors here
can be evaluated at any root-n consistent estimator, but it is most common
to use the MLE θ̂.

If several moment conditions are to be tested simultaneously, then we can
form the n × r matrix M(θ), each column of which is a vector of moment
functions. The testing regression is then

ι = G(θ) +M(θ)c + residuals. (15.25)

When the regressors are evaluated at the MLE θ̂, several asymptotically valid
test statistics are available, including the explained sum of squares, n times
the uncentered R2, and the F statistic for the artificial hypothesis that c = 0.
The first two of these statistics are distributed asymptotically as χ2(r) under
the null hypothesis, as is r times the third. If the regressors in equation (15.25)
are not evaluated at θ̂, but at some other root-n consistent estimate, then only
the F statistic is asymptotically valid.

The artificial regression (15.23) is valid for a very wide variety of models.
Condition R2 requires that we be able to apply a central limit theorem to
the scalar product n−1/2m>(θ0)ι, where, as usual, θ0 is the true parameter
vector. If the expectation of each moment function mt(θ0) is zero conditional
on an appropriate information set Ωt, then it is normally a routine matter
to find a suitable central limit theorem. Condition R3 is also satisfied under
very mild regularity conditions. What it requires is that the derivatives of
n−1m>(θ)ι with respect to the elements of θ, evaluated at θ0, should be given
by the elements of the vector n−1m>(θ0)G(θ0), up to a term of order n−1/2.
Formally, we require that

1−
n

n∑
t=1

∂mt(θ)
∂θi

∣∣∣∣
θ=θ0

= 1−
n

n∑
t=1

mt(θ0)Gt(θ0) +Op(n−1/2), (15.26)

where Gt(θ) is the tth row of G(θ). Readers are invited in Exercise 15.6
to show that equation (15.26) holds under the usual regularity conditions
for ML estimation. This property and its use in conditional moment tests
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implemented by an OPG regression were first established by Newey (1985).
It is straightforward to extend this result to the case in which we have a
matrix M(θ) of moment functions.

As we noted in Section 10.5, many tests based on the OPG regression are prone
to overreject the null hypothesis, sometimes very severely, in finite samples.
It is therefore often a good idea to bootstrap conditional moment tests based
on the OPG regression. Since the model under test is estimated by maximum
likelihood, a fully parametric bootstrap is appropriate. It is generally quite
easy to implement such a bootstrap, unless estimating the original model is
unusually difficult or expensive.

Tests for Skewness and Kurtosis

One common application of conditional moment tests is checking the residuals
from an econometric model for skewness and excess kurtosis. By “excess”
kurtosis, we mean a fourth moment greater than 3σ4, the value for the normal
distribution; see Exercise 4.2. The presence of significant departures from
normality may indicate that a model is misspecified, or it may indicate that
we should use a different estimation method. For example, although least
squares may still perform well in the presence of moderate skewness and excess
kurtosis, it cannot be expected to do so when the error terms are extremely
skewed or have very thick tails.

Both skewness and excess kurtosis are often encountered in returns data from
financial markets, especially when the returns are measured over short periods
of time. A good model should eliminate, or at least substantially reduce,
the skewness and excess kurtosis that is generally evident in daily, weekly,
and, to a lesser extent, monthly returns data. Thus one way to evaluate a
model for financial returns, such as the ARCH models that were discussed in
Section 13.5, is to test the residuals for skewness and excess kurtosis.

We cannot base tests for skewness and excess kurtosis in regression models
on the GNR, because the GNR is designed only for testing against alterna-
tives that involve the conditional mean of the dependent variable. There is
no way to define functions zt(β) that depend on parameters and exogenous
or predetermined variables in such a way that the moment function (15.19)
corresponds to the condition we wish to test. Instead, one valid approach
is to test the slightly stronger assumption that the error terms are normally
distributed by using the OPG regression. We now discuss this approach and
show that even simpler tests are available.

The OPG regression that corresponds to the linear regression model

y = Xβ + u, u ∼ N(0, σ2I),

where the regressors include a constant or the equivalent, can be written as

1 =
1
σ2
ut(β)Xtb+ bσ

u2
t (β)− σ2

σ3
+ residual. (15.27)
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Here ut(β) ≡ yt −Xtβ, and the assumption that the error terms are normal
implies that they are not skewed and do not suffer from excess kurtosis. To
test the assumption that they are not skewed, the appropriate test regressor
for observation t is just u3

t (β). For testing purposes, all the regressors are to
be evaluated at the OLS estimates β̂ and σ̂2 ≡ SSR/n. Thus an appropriate
testing regression is

1 =
1
σ̂2
ut(β̂)Xtb+ bσ

u2
t (β̂)− σ̂2

σ̂3
+ cu3

t (β̂) + residual. (15.28)

This is just a special case of regression (15.24), and the test statistic is simply
the t statistic for c = 0.

Regression (15.28) is unnecessarily complicated. First, observe that the test
regressor is asymptotically orthogonal under the null to the regressor that
corresponds to the parameter σ. To see this, evaluate the regressors at the
true β0 instead of at β̂. Then the residuals ut(β0) are just the error terms ut,
and so we see that

plim
n→∞

1−
n

n∑
t=1

u2
t − σ2

σ3
u3
t = 0.

This result uses a law of large numbers and follows from the facts that E(u5
t ) =

E(u3
t ) = 0 if ut is normally distributed. Thus the t statistic for c = 0 from

regression (15.28) is asymptotically unchanged if we simply omit the regressor
corresponding to σ.

This t statistic is also unchanged, in finite samples, if we add to u3
t (β) any

linear combination of the regressors that correspond to β; recall the discussion
in Section 2.4 in connection with the FWL Theorem. Thus, since we assumed
that there is a constant term in the regression, the t statistic is unchanged if
we replace u3

t (β) by u3
t (β)−3σ2ut(β). Doing so makes the new test regressor

asymptotically orthogonal to all the regressors that correspond to β, as can
be seen from the following calculation:

plim
n→∞

1−
n

n∑
t=1

Xtut(u3
t − 3σ2ut) = lim

n→∞
1−
n

n∑
t=1

XtE(u4
t − 3σ2u2

t ) = 0.

The second equality uses the fact that, when ut is normal, E(u4
t ) = 3σ4.

Therefore, it makes no difference asymptotically if we omit the regressors
that correspond to β.

The above arguments imply that we can obtain a valid test simply by using
the t statistic from the regression

1 = c
(
u3
t (β̂)− 3σ̂2ut(β̂)

)
+ residual, (15.29)

which is numerically identical to the t statistic for the sample mean of the
single regressor here to be 0. Because the plim of the error variance is just 1,
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since the regressor and regressand are asymptotically orthogonal, both of these
t statistics are asymptotically equal to

n−1/2
∑n
t=1(û3

t − 3σ̂2ût)(
n−1

∑n
t=1(û3

t − 3σ̂2ût)2
)1/2 , (15.30)

where ût ≡ ut(β̂). Since the OLS residuals from a regression that includes a
constant sum to 0, the numerator of this expression simplifies to n−1/2

∑
û3
t .

The sixth moment of the normal distribution is 15σ6 (see Exercise 13.19), and
so the plim of the denominator is the square root of

E(u6
t − 6σ2u4

t + 9σ4u2
t ) = σ6(15− 18 + 9) = 6σ6.

It follows that expression (15.30) is asymptotically equal to the much simpler
test statistic

τ3 ≡ (6n)−1/2
n∑
t=1

e3
t , (15.31)

which is expressed in terms of the normalized residuals et ≡ ût/σ̂. The asymp-
totic distribution of the test statistic τ3 is standard normal under the null
hypothesis that the error terms are normally distributed.

It follows from (15.31) that the variance of n−1/2
∑
û3
t is 6σ6. In contrast,

the variance of n−1/2
∑
u3
t , which is equal to the variance of u3

t , is 15σ6; see
Exercise 13.19. Thus, in this case, the reduction in variance due to parameter
uncertainty is very considerable.

The tth observation of the regressor needed to test for excess kurtosis is
u4
t − 3σ4. It is easy to check that this regressor can be made asymptotic-

ally orthogonal to the other regressors in (15.27) without changing the t sta-
tistic by adding 6σ5 times the regressor corresponding to σ, so as to yield
u4
t −6σ2u2

t +3σ4. Dividing this by σ4 also has no effect on the t statistic, and
so running the test regression

1 = c(e4
t − 6e2

t + 3) + residual, (15.32)

which is defined in terms of the normalized residuals, provides an appropriate
test statistic. As readers are invited to check in Exercise 15.8, this statistic is
asymptotically equivalent to the simpler statistic

τ4 ≡ (24n)−1/2
n∑
t=1

(e4
t − 3). (15.33)

It is important that the denominator of the normalized residual be the ML
estimator σ̂ rather than the usual least squares estimator s, as this choice
ensures that the sum of the e2

t is precisely n. Like τ3, the statistic τ4 has an
asymptotic N(0, 1) distribution under the null hypothesis of normality.
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The squares of τ3 and τ4 are widely used as a test statistics for skewness and
excess kurtosis; they are both asymptotically distributed as χ2(1). However,
we prefer to use the statistics themselves rather than their squares, since the
sign is informative. The statistic τ3 is positive when the residuals are skewed
to the right and negative when they are skewed to the left. Similarly, the
statistic τ4 is positive if there is positive excess kurtosis and negative if there
is negative excess kurtosis.

It can be shown (see Exercise 15.8 again) that the test statistics (15.31) and
(15.33) are asymptotically independent under the null. Therefore, a joint test
for skewness and excess kurtosis can be based on the statistic

τ3,4 ≡ τ2
3 + τ2

4 , (15.34)

which is asymptotically distributed as χ2(2) when the error terms are normally
distributed. The statistics τ3, τ4, and τ3,4 were proposed, in slightly different
forms, by Jarque and Bera (1980) and Kiefer and Salmon (1983); see also
Bera and Jarque (1982). Many regression packages calculate these statistics
as a matter of course.

The statistics τ3, τ4, and τ3,4 defined in equations (15.31), (15.33), and (15.34)
depend solely on normalized residuals. This implies that, for a linear regres-
sion model with fixed regressors, they are pivotal under the null hypothesis of
normality. Therefore, if we use the parametric bootstrap in this situation, we
can obtain exact tests based on these statistics; see the discussion at the end
of Section 7.7. Even for nonlinear regression models or models with lagged
dependent variables, parametric bootstrap tests should work very much better
than asymptotic tests.

The statistics τ3, τ4, and τ3,4 are not valid if the regression model that fur-
nishes the normalized residuals does not contain a constant or the equivalent.
In such unusual cases, it is necessary to proceed differently, for instance, by
using the full OPG regression (15.27) with one or two test regressors. The
OPG regression can also be used to test for skewness and excess kurtosis in
models that are not regression models, such as the models with ARCH errors
that were discussed in Section 13.6.

Information Matrix Tests

In Section 10.3, we first encountered the information matrix equality. This
famous result, which is given in equation (10.34), tells us that, for a model
estimated by maximum likelihood with parameter vector θ, the asymptotic
information matrix, I(θ), is equal to minus the asymptotic Hessian, H(θ).
The proof of this result, which was given in Exercises 10.6 and 10.7, depends
on the DGP being a special case of the model. Therefore, we should expect
that, in general, the information matrix equality does not hold when the model
we are estimating is misspecified. This suggests that testing this equality is
one way to test the specification of a statistical model. This idea was first
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suggested by White (1982), who called tests based on it information matrix
tests, or IM tests. These tests were later reinterpreted as conditional moment
tests by Newey (1985) and White (1987).

Consider a statistical model characterized by the loglikelihood function

`(y,θ) =
n∑
t=1

`t(yt,θ),

in the standard notation of equation (10.25). The null hypothesis for the IM
test is that

plim
n→∞

1−
n

n∑
t=1

(
∂2`t(θ)
∂θi∂θj

+
∂`t(θ)
∂θi

∂`t(θ)
∂θj

)
= 0, (15.35)

for i = 1, . . . , k and j = 1, . . . , i. Expression (15.35) is a typical element of the
information matrix equality. The first term is an element of the asymptotic
Hessian, and the second term is the corresponding element of the outer prod-
uct of the gradient, the expectation of which is the asymptotic information
matrix. Since both these matrices are symmetric, there are 1

2k(k+ 1) distinct
conditions of the form (15.35).

Equation (15.35) is a conditional moment in the form (15.13). We can there-
fore calculate IM test statistics by means of the OPG regression, a proce-
dure that was originally suggested by Chesher (1983) and Lancaster (1984).
The matrix M(θ) that appears in regression (15.25) is constructed as an
n× 1

2k(k + 1) matrix with typical element

∂2`t(θ)
∂θi∂θj

+
∂`t(θ)
∂θi

∂`t(θ)
∂θj

. (15.36)

This matrix and the other matrix of regressors G(θ) in (15.25) are usually
evaluated at the ML estimates θ̂. The test statistic is then the explained
sum of squares, or, equivalently, n − SSR from this regression. If the matrix
[G(θ̂) M(θ̂] has full rank, this test statistic is asymptotically distributed
as χ2

(
1
2k(k + 1)

)
. If it does not have full rank, as is the case for linear

regression models with a constant term, one or more columns of M(θ̂) have
to be dropped, and the number of degrees of freedom for the test reduced
accordingly.

In Exercise 15.11, readers are asked to develop the OPG version of the infor-
mation matrix test for a particular linear regression model. As the exercise
shows, the IM test in this case is sensitive to excess kurtosis, skewness, skew-
ness interacted with the regressors, and any form of heteroskedasticity that
the test of White (1980) would detect; see Section 7.5. This suggests that we
might well learn more about what is wrong with a regression model by testing
for heteroskedasticity, skewness, and kurtosis separately instead of performing
an information matrix test. We should certainly do that if the IM test rejects
the null hypothesis.
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As we have remarked before, tests based on the OPG regression are extremely
prone to overreject in finite samples. This is particularly true for information
matrix tests when the number of parameters is not small; see Davidson and
MacKinnon (1992, 1998). Fortunately, the OPG variant of the IM test is by
no means the only one that can be used. Davidson and MacKinnon (1998)
compare the OPG version of the IM test for linear regression models with
two other versions. One of these is the efficient score, or ES, variant (see
Section 10.5), and the other is based on the double-length regression, or DLR,
originally proposed by Davidson and MacKinnon (1984a). They also compare
the OPG variant of the IM test for probit models with an efficient score
variant that was proposed by Orme (1988). Although the DLR and both ES
versions of the IM test are much more reliable than the corresponding OPG
versions, their finite-sample properties are far from ideal, and they too should
be bootstrapped whenever the sample size is not extremely large.

15.3 Nonnested Hypothesis Tests

Hypothesis testing usually involves nested models, in which the model that
represents the null hypothesis is a special case of a more general model that
represents the alternative hypothesis. For such a model, we can always test the
null hypothesis by testing the restrictions that it imposes on the alternative.
But economic theory often suggests models that are nonnested. This means
that neither model can be written as a special case of the other without
imposing restrictions on both models. In such a case, we cannot simply test
one of the models against the other, less restricted, one.

There is an extensive literature on nonnested hypothesis testing. It provides
a number of ways to test the specification of statistical models when one or
more nonnested alternatives exists. In this section, we briefly discuss some of
the simplest and most widely-used nonnested hypothesis tests, primarily in
the context of regression models.

Testing Nonnested Linear Regression Models

Suppose we have two competing economic theories which imply different linear
regression models for a dependent variable yt conditional on some information
set. We can write the two models as

H1 : y = Xβ + u1, and

H2 : y = Zγ + u2.
(15.37)

Here y is an n--vector with typical element yt, and the regressor matrices X
and Z, which contain exogenous or predetermined variables, are n × k1 and
n× k2, respectively. For simplicity, we will assume that, if the hypothesis Hi

holds, then E(uiu>i ) = σ2
i I, for i = 1, 2. Thus OLS estimation is appropriate

for whichever model actually generated the data, and we can base inferences
on the usual OLS covariance matrix.
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For the models H1 and H2 given in equations (15.37) to be nonnested, it must
be the case that neither of them is a special case of the other. This implies
that S(X) cannot be a subspace of S(Z), and vice versa. In other words,
there must be at least one regressor among the columns of X that does not
lie in S(Z), and there must be at least one regressor among the columns of Z
that does not lie in S(X). We will assume that this is the case.

The simplest and most widely-used nonnested hypothesis tests start from the
artificial comprehensive model

y = (1− α)Xβ + αZγ + u, (15.38)

where α is a scalar parameter. When α = 0, equation (15.38) reduces to H1,
and when α = 1, it reduces to H2. Thus it might seem that, to test H1, we
could simply estimate this model and test whether α = 0. However, this is
not possible, because at least one, and usually quite a few, of the parameters
of equation (15.38) cannot be identified. There are k1 + k2 + 1 parameters in
the regression function of the artificial model, but the number of parameters
that can be identified is the dimension of the subspace S(X,Z). This cannot
exceed k1 +k2 and is usually smaller, because some of the regressors, or linear
combinations of them, may appear in both regression functions.

The simplest way to base a test on equation (15.38) is to estimate a restricted
version of it that is identified, namely, the inclusive regression

y = Xβ′ +Z ′γ′ + u, (15.39)

where the n× k′2 matrix Z ′ consists of the k′2 columns of Z that do not lie in
S(X). Thus S(X,Z) = S(X,Z ′), and the dimension of this space is k1 + k′2.
We can estimate the model (15.39) by OLS and test the null hypothesis that
γ′ = 0 by using an ordinary F test with k′2 and n−k1−k′2 degrees of freedom.
This provides an easy and reliable way to test H1.

Although the F test for γ′ = 0 in the inclusive regression (15.39) has much
to recommend it, it is not often thought of as a nonnested hypothesis test,
and it does not generalize in a very satisfactory way to the case of nonlinear
regression models. Moreover, it is generally less powerful than the nonnested
hypothesis tests that we are about to discuss when H2 actually generated the
data. We will have more to say about this test below.

Another way to make equation (15.38) identified is to replace the unknown
vector γ by a vector of parameter estimates. This idea was first suggested by
Davidson and MacKinnon (1981), who proposed that γ be replaced by γ̂, the
vector of OLS estimates of the H2 model. Thus, if β is redefined appropriately,
equation (15.38) becomes

y = Xβ + αZγ̂ + u

= Xβ + αPZy + u,
(15.40)
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where, as usual, PZ denotes the matrix Z(Z>Z)−1Z>. This leads to the
nonnested hypothesis test that Davidson and MacKinnon called the J test. It
is based on the ordinary t statistic for α = 0 in equation (15.40), which they
called the J statistic.1

It is not at all obvious that the J statistic is asymptotically distributed as
N(0, 1) under the null hypothesis that the data were generated by H1. After
all, as can be seen from the second equation of (15.40), the test regressor
depends on the regressand. Thus one might expect the regressand to be
positively correlated with the test regressor, even when the null hypothesis is
true. This is generally the case, but only in finite samples. The proof that
the J statistic is asymptotically valid depends on the fact that, under the null
hypothesis, the numerator of the test statistic is

y>MXPZ y = u>MXPZXβ0 + u>MXPZu, (15.41)

where β0 is the true parameter vector. The left-hand side of this equation
can easily be obtained by applying the FWL Theorem to the second line of
equation (15.40). The right-hand side follows when we replace y by Xβ0 +u.
There are only two terms on the right-hand side of the equation, because
β0
>X>MX = 0.

The first term on the right-hand side of equation (15.41) is a weighted average
of the elements of the vector u. Under standard regularity conditions, we may
apply a central limit theorem to it, with the result that this term is Op(n1/2).
In contrast, the second term is Op(1), as can be seen from the following:

u>MXPZu = u>PZu− u>PXPZu
= n−1/2u>Z(n−1Z>Z)−1n−1/2Z>u

− n−1/2u>X(n−1X>X)−1n−1X>Z(n−1Z>Z)−1n−1/2Z>u.

Since the error terms from the H1 model are uncorrelated with the regressors
of the H2 model when the former is true, we can apply a central limit theorem
to both n−1/2X>u and n−1/2Z>u, so that these expressions are both Op(1).
So too, under standard regularity conditions, are the cross-product matrices of
the form n−1W>W, where W stands for either X or Z. It follows that n−1/2

times the numerator of the J statistic has the same asymptotic distribution
as n−1/2 times the first term in (15.41). This distribution is

N(0, n−1σ2
1 β0
>X>PZMXPZXβ0). (15.42)

It can be shown that n−1 times the square of the denominator of the test

1 This J statistic should not be confused with the Hansen-Sargan statistic dis-
cussed in Section 9.4, which some authors refer to as the J statistic.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



658 Testing the Specification of Econometric Models

statistic consistently estimates the variance that appears in expression (15.42);
see Exercise 15.12. The J statistic itself is therefore asymptotically distributed
as N(0, 1) under the null hypothesis.

Although the J test is asymptotically valid, it generally is not exact in finite
samples, although there is an exception in one very special case, which is
treated in Exercise 15.13. In fact, because the second term on the right-hand
side of equation (15.41) usually has a positive expectation under the null,
the numerator of the J statistic generally has a positive mean, and so does
the test statistic itself. In consequence, the J test tends to overreject, often
quite severely, in finite samples. Theoretical results in Davidson and MacKin-
non (2002a), which are consistent with the results of simulation experiments
reported in a number of papers, suggest that the overrejection tends to be
particularly severe when at least one of the following conditions holds:

• The sample size is small;

• The model under test does not fit very well;

• The number of regressors in H2 that do not appear in H1 is large.

Bootstrapping the J test dramatically improves its finite-sample performance.
The bootstrap data may be generated under H1 using either a fully parametric
or a semiparametric bootstrap DGP, as discussed in Section 4.6. If the latter is
used, it is very important to rescale the residuals before they are resampled. In
most cases, the bootstrap J test is quite reliable, even in very small samples;
see Godfrey (1998) and Davidson and MacKinnon (2002a). An even more
reliable test may be obtained by using a more sophisticated bootstrapping
procedure proposed by Davidson and MacKinnon (2002b).

Another way to obtain a nonnested test that is more reliable than the asymp-
totic J test in finite samples is to replace γ̂ in the first line of equation (15.40)
by another estimate of γ, namely,

γ̃ ≡ (Z>Z)−1Z>PXy. (15.43)

This estimate may be obtained by regressing PXy on Z. It is an estimate of
the expectation of γ̂ when H1 actually generates the data. The test regression
is then

y = Xβ + αZγ̃ + u

= Xβ + αPZPXy + u,
(15.44)

and the test statistic is, once again, the t statistic for α = 0. This test
statistic, which was originally proposed by Fisher and McAleer (1981), is
called the JA statistic. The resulting JA test has much better finite-sample
properties under the null hypothesis than the ordinary J test. In fact, the test
is exact whenever both the H1 and H2 models satisfy all the assumptions of
the classical normal linear model, for exactly the same reason that the RESET
test is exact in a similar situation; see Godfrey (1983) and Exercise 15.3.
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Unfortunately, the excellent performance of the JA test under the null is not
accompanied by equally good performance under the alternative. As can be
seen from the second of equations (15.44), the vector y is projected onto X
before γ is estimated. In consequence, γ̃ may differ greatly from γ̂ when H1 is
false, and evidence that theH1 model is incorrect may therefore be suppressed.
Simulation experiments have shown that the JA test can be very much less
powerful than the J test; see, for example, Davidson and MacKinnon (1982).
A rejection by the JA test should be taken very seriously, but a failure to
reject provides little information. In contrast, the J test, when bootstrapped,
appears to be both reliable and powerful in samples of reasonable size.

The J and JA tests are by no means the only nonnested tests that have
been proposed for linear regression models. In particular, several tests have
been based on the pioneering work of Cox (1961, 1962), which we will discuss
further below. The most notable of these were proposed by Pesaran (1974) and
Godfrey and Pesaran (1983). However, since these tests are asymptotically
equivalent to the J test, have finite-sample properties that are either dreadful
(for the first test) or mediocre (for the second one), and are more complicated
to compute than the J test, especially in the case of the second one, there
appears to be no reason to employ them in practice.

Testing Nonnested Nonlinear Regression Models

The J test can readily be extended to nonlinear regression models. Suppose
the two models are

H1 : y = x(β) + u1, and

H2 : y = z(γ) + u2.
(15.45)

When we say that these two models are nonnested, we mean that there are
values of β, usually infinitely many of them, for which there is no admissible γ
for which x(β) = z(γ), and, similarly, values of γ for which there is no
admissible β such that z(γ) = x(β). In other words, neither model is a
special case of the other unless we impose restrictions on both models. The
artificial comprehensive model analogous to equation (15.38) is

y = (1− α)x(β) + αz(γ) + u,

and the J statistic is the t statistic for α = 0 in the nonlinear regression

y = (1− α)x(β) + αẑ + residuals, (15.46)

where ẑ ≡ z(γ̂), γ̂ being the vector of NLS estimates of the regression
model H2. It can be shown that, under suitable regularity conditions, this
test statistic is asymptotically distributed as N(0, 1) under H1; see Davidson
and MacKinnon (1981).

Because some of the parameters of the nonlinear regression (15.46) may not be
well identified, the J statistic can be difficult to compute. This difficulty can
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be avoided in the usual way, that is, by running the GNR which corresponds
to equation (15.46), evaluated at α = 0 and β = β̂. This GNR is

y − x̂ = X̂b+ a(ẑ − x̂) + residuals, (15.47)

where x̂ ≡ x(β̂), and X̂ ≡X(β̂) is the matrix of derivatives of x(β) with
respect to β, evaluated at the NLS estimates β̂. The ordinary t statistic for
a = 0 in regression (15.47) is called the P statistic. Under the null hypothesis,
it is asymptotically equal to the corresponding J statistic. The P test is much
more commonly used than the J test when the H1 model is nonlinear.

Numerous other nonnested tests are available for nonlinear regression models.
These include the PA test, which is related to the P test in precisely the
same way as the JA test is related to the J test in the case of linear models.
Because H1 is nonlinear, the PA test may not be particularly reliable in finite
samples, and, like the JA test, it can suffer from a serious lack of power. In
contrast, a bootstrap version of the P test should be reasonably reliable and
quite powerful. We therefore recommend using it rather than the PA test if
computer time is not a constraint.

The J and P tests can both be made robust to heteroskedasticity of unknown
form either by using heteroskedasticity-robust standard errors (Section 5.5) or
by using the HRGNR (Section 6.8). Like ordinary J and P tests, these tests
should be bootstrapped. However, bootstrapping heteroskedasticity-robust
tests requires procedures different from those used to bootstrap ordinary t
and F tests, because the bootstrap DGP has to preserve the relationship
between the regressors and the variances of the error terms. This means that
we cannot use IID errors or resampled residuals. For introductory discussions
of bootstrap methods for regression models with heteroskedastic errors, see
Horowitz (2001) and MacKinnon (2002).

It is straightforward to extend the J and P tests to handle more than two
nonnested alternatives. For concreteness, suppose there are three competing
models. Then a J test of H1 could be based on an F statistic for the joint
significance of the fitted values from H2 and H3 when they are added to the
regression for H1. Similarly, a P test of H1 could be based on an F statistic for
the joint significance of the difference between the fitted values from H2 and
H1, and the difference between the fitted values from H3 and H1, when they
are both added to the GNR for H1 evaluated at the least squares estimates
of that model.

The P test can also be extended to linear and nonlinear multivariate regression
models; see Davidson and MacKinnon (1983). One starts by formulating an
artificial comprehensive model analogous to (15.38), with just one additional
parameter, replaces the parameters of the H2 model by suitable estimates,
and then obtains a P test based on the multivariate GNR (12.53) for the
model under test. Because there is more than one plausible way to specify
the artificial comprehensive model, more than one such test can be computed.
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Interpreting Nonnested Tests

All of the nonnested hypothesis tests that we have discussed are really just
specification tests of the H1 model from either equations (15.37) or (15.45).
If we reject the null hypothesis, there is no implication that the H2 model is
true. To say anything about the validity of the H2 model, we need to test it.
This can be done by interchanging the roles of the two models. For example,
the J test of H2 in the linear case would be based on the regression

y = Zγ + α′Xβ̂ + u

= Zγ + α′PXy + u,
(15.48)

where α′ = 1 − α. The J statistic would then be the ordinary t statistic for
α′ = 0 in regression (15.48).

When we perform a pair of nonnested tests, testing each of H1 and H2 against
the other, there are four possible outcomes:

• Reject H1 but do not reject H2;

• Reject H2 but do not reject H1;

• Reject both models;

• Do not reject either model.

Since the first two outcomes lead us to prefer one of the models, it is tempting
to see them as natural and desirable. However, the last two outcomes, which
are by no means uncommon in practice, can also be very informative. If both
models are rejected, then we need to find some other model that fits better.
If neither model is rejected, then we have learned that the data appear to be
compatible with both hypotheses.

Because nonnested hypothesis tests are designed as specification tests, rather
than as procedures for choosing among competing models, it is not at all
surprising that they sometimes do not lead us to choose one model over the
other. If we simply want to choose the “best” model out of some set of
competing models, whether or not any of them is satisfactory, then we should
use a completely different approach, based on what are called information
criteria. This approach will be discussed in the next section.

Encompassing Tests

If the true DGP belongs to model H1, then it should be possible to derive the
properties of parameter estimates from model H2 in terms of the properties of
model H1. This is the idea behind what are called encompassing tests. It is
very similar to the idea behind indirect inference, a topic we briefly discussed
in Section 13.3. Binding functions, as defined in the context of indirect infer-
ence, specify the plim of the parameter estimates from model H2 in terms of
the parameters of the true DGP, which is assumed to be in H1. Thus a test
of H1 can be based on a comparison of the actual H2 parameter estimates and
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estimates of the values of the binding functions under the assumption that
H1 generated the data.

As a concrete example, consider the linear case in which the two models
are given by equations (15.37). If the DGP is a special case of H1 with
parameters β0, the binding functions evaluated at β0 give the plim of the
vector γ̂ obtained by estimating H2. Since the columns of Z are assumed to
be exogenous or predetermined, we see that

plim
n→∞

γ̂ =
(

plim
n→∞

1−
n
Z>Z

)−1(
plim
n→∞

1−
n
Z>Xβ0

)
.

We can estimate this probability limit by dropping the plims on the right-
hand side and replacing β0 by β̂. Doing so yields the estimator γ̃ defined in
equation (15.43). An encompassing test can therefore be based on the vector
of contrasts between γ̂ and γ̃. This vector is

(Z>Z)−1Z>y − (Z>Z)−1Z>PXy = (Z>Z)−1Z>MXy. (15.49)

The leading factor (Z>Z)−1 has no effect on the test, because it is just a
square matrix of full rank. Since some columns of Z generally lie in S(X),
some of the columns of the matrix Z>MX usually are identically zero. Thus,
as before, we let Z ′ denote the remaining columns of Z. Then what we really
want to test is whether the plim of the vector n−1Z ′>MXy is zero. This calls
for a conditional moment test. Since the model H1 is linear, such a test can
be implemented without an explicit GNR simply by using the columns of Z ′

as test regressors, that is, by using the inclusive regression (15.39) as a test
regression. The test statistic is just the F statistic for γ′ = 0 in (15.39), which
we have already discussed.

The parallels between this sort of encompassing test and the DWH test dis-
cussed in Section 8.6 are illuminating. Both tests can be implemented as
F tests — in the case of the DWH test, an F test based on regression (8.77).
In both cases, the F test almost always has fewer degrees of freedom in the
numerator than the number of parameters. The interested reader may find it
worthwhile to show explicitly that a DWH test can be set up as a conditional
moment test.

For a detailed discussion of the concept of encompassing and various tests
that are based on it, see Hendry (1995, Chapter 14). Encompassing tests are
available for a variety of nonlinear models; see Mizon and Richard (1986).
However, there can be practical difficulties with these tests. These difficulties
are similar to the ones that can arise with Hausman tests which are based
directly on a vector of contrasts; see Section 8.6. The basic problem is that it
can be difficult to ascertain the dimension of the space analogous to S(X,Z),
and, in consequence, it can be difficult to determine the appropriate number
of degrees of freedom for the test.
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Cox Tests

Nonnested hypothesis tests are available for a large number of models that are
not regression models. Most of these tests are based on one of two approaches.
The first approach, which previously led to the J and P tests, involves forming
an artificial comprehensive model and then replacing the parameters of the
H2 model by estimates that are asymptotically nonstochastic. As an example
of this approach, Exercise 15.19 asks readers to derive a test similar to the
P test for binary response models. The second approach, which we briefly
discuss in this subsection, is based on two classic papers by Cox (1961, 1962).
It leads to what are generally called Cox tests.

Suppose the two nonnested models are each to be estimated by maximum
likelihood, and that their loglikelihood functions are

`1(θ1) =
n∑
t=1

`1t(θ1), and `2(θ2) =
n∑
t=1

`2t(θ2), (15.50)

for models H1 and H2, respectively. The notation, which is similar to that
used in Chapter 10, omits the dependence on the data for clarity. Cox’s
original idea was to extend the idea of a likelihood ratio test, and so he
considered what would be the LR statistic if H1 were nested in H2, namely,
2
(
`2(θ̂2)− `1(θ̂1)

)
, where θ̂1 and θ̂2 are the ML estimates of the two models.

The statistical properties of the LR statistic are quite different when H1

and H2 are nonnested rather than nested. In particular, it is necessary to
divide the statistic by n1/2 in order to obtain a random variable with a well-
defined asymptotic distribution. It is then convenient to center this variable
by subtracting its expectation. Since, according to equations (15.50), both
`1(θ1) and `2(θ2) are sums of contributions, it is reasonable to suppose that
the expression

2n−1/2
(
`2(θ̂2)− `1(θ̂1)

)− 2n−1/2 Eθ1

(
`2(θ̂2)− `1(θ̂1)

)
(15.51)

is asymptotically normal, where the notation Eθ1 denotes an expectation
taken under the DGP in the H1 model with parameter vector θ1.

Since the parameter vector θ1 is not known, the expectation in (15.51) cannot
be calculated. It is natural to estimate it by replacing the true θ1 by the ML
estimate θ̂1, but then we face the problem of parameter uncertainty if we wish
to estimate the variance of the result. Cox solved this problem by showing
that the statistic

T1 ≡ 2n−1/2
(
`2(θ̂2)− `1(θ̂1)

)− 2n−1/2 Eθ̂1

(
`2(θ̂2)− `1(θ̂1)

)
(15.52)

is indeed asymptotically normally distributed, with mean 0 and a variance
that can be estimated consistently using a formula given in his 1962 paper.

Copyright c© 1999, Russell Davidson and James G. MacKinnon



664 Testing the Specification of Econometric Models

It turns out that the statistic (15.52) is unnecessarily complicated. As readers
are invited to check in Exercise 15.20,

n−1/2
(
`1(θ̂)− Eθ̂1

(
`1(θ̂1)

))
= Op(n−1/2)

under the usual regularity conditions for a Type 2 MLE. Thus the T1 statistic
is asymptotically equivalent to the simpler statistic

T ≡ 2n−1/2
(
`2(θ̂2)− Eθ̂1

(
`2(θ̂2)

))
. (15.53)

It can be seen from (15.53) that the Cox test is in fact an encompassing test,
in which the maximized loglikelihood function for model H2 is compared with
its expectation under the DGP in model H1 with parameter vector θ̂1. The
expectation Eθ1(`2(θ̂2)) can be interpreted naturally as the binding function
for `2(θ̂2).

The Cox test can also be interpreted as a conditional moment test. The
moment condition can be written as

plim θ1
1−
n

n∑
t=1

(
`2t(θ̂2)− Eθ1

(
`2t(θ̂2)

))
= 0,

and the empirical moment as

1−
n

n∑
t=1

(
`2t(θ̂2)− Eθ̂1

(
`2t(θ̂2)

))
.

These expressions make it clear that the contributions `2t(θ̂2) are treated as
functions of the data alone. Thus the moment depends on the parameters θ1

of H1, the model under test, only through the expectation.

The conditional moment interpretation leads naturally to an implementa-
tion of the Cox test by artificial regression. The easiest one to set up is, as
usual, the OPG regression. Since there is only one test regressor, it takes
the form (15.24). The matrix Ĝ in (15.24) is the matrix of contributions to
the gradient for the H1 model, evaluated at θ̂1. The test regressor can be
expressed in two different ways, which lead to asymptotically, but not numer-
ically, equivalent statistics. The typical element can be either

`2t(θ̂2)− 1−
n

Eθ̂1

(
`2(θ̂2)

)
or `2t(θ̂2)− Eθ̂1

(
`2t(θ̂2)

)
. (15.54)

It can be shown easily enough that both choices satisfy conditions R1–R3.
The first choice may be easier to compute, since there is only one expectation,
whereas the second choice requires the computation of n expectations.

For regression models, there is a close relationship between Cox tests and tests
based on artificial comprehensive models. Cox tests for linear and nonlinear
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regression models were derived by Pesaran (1974) and Pesaran and Deaton
(1978), respectively. These tests were shown to be asymptotically equivalent
to the corresponding J and P tests by Davidson and MacKinnon (1981).2

The only difficulty involved in calculating a Cox test, in general, is obtaining
the expectation of `2(θ̂2) under H1. Since the test is valid only asymptotically,
it is legitimate to replace the expectation in the first expression in (15.54) by
a probability limit, which may be simpler to evaluate analytically than the
expectation. In cases in which no analytic expression is available, we may
evaluate any of the expectations in (15.54) by simulation. After estimating
the H1 model, we generate S sets of simulated data from the DGP with
parameter vector θ̂1, estimate H2 using the simulated data, and then estimate
the expectation of `2t(θ̂) as

1
S

S∑
s=1

`2t(θ̂∗2s), (15.55)

where θ̂∗2s denotes the estimate of θ2 based on the sth set of simulated data.
The expectation of `2(θ̂2) is obtained by summing expression (15.55) over t.

As we have remarked before, the OPG regression does not have very good
finite-sample properties. This suggests that it is generally wise to bootstrap
any test based on it. When the expectation of `2(θ̂2) can be calculated without
simulation, this often poses no serious difficulty. However, if we have to use
simulation, bootstrapping involves estimating the H2 model S + 1 times for
each of B bootstrap samples, and this may be computationally demanding.

Our discussion of nonnested hypothesis testing has necessarily omitted many
topics. Survey articles on this subject include Gouriéroux and Monfort (1994),
McAleer (1995), and Pesaran and Weeks (2001). In general, nonnested tests
based on asymptotic theory have poor finite-sample properties. It is therefore
desirable to bootstrap them in many, if not most, cases. However, except
for tests of linear regression models (Davidson and MacKinnon, 2002a), not
much is known about the finite-sample properties of bootstrapped nonnested
hypothesis tests.

15.4 Model Selection Based on Information Criteria

As we remarked in the previous section, testing each of two nonnested models
against the other may or may not allow us to choose one model over the other.
More generally, if we have m models and perform m(m − 1) pairwise tests,
we cannot reasonably expect to find that one and only one of the models is
never rejected. Thus, if our objective is to choose the best model out of the

2 The negative of the Cox statistic, as formulated in these papers, is asymptot-
ically equal to the corresponding J or P test.
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m competing models, and we do not care whether even the best model is
false, we should not use nonnested hypothesis tests. Instead, we should use a
procedure explicitly designed for model selection. Such a procedure generally
involves calculating some sort of criterion function for each of the models and
picking the model for which that function is maximized or minimized.

For concreteness, suppose that, for the same dependent variable or variables,
we have m competing models that are estimated by maximum likelihood,
ordinary least squares, or nonlinear least squares. Let θi be the ki--vector of
parameters for the ith model, and let `i(θ̂i) denote the maximized value of the
loglikelihood function for that model, which we may take to be − 1

2 n log SSR
in the case of models estimated by least squares. It might seem natural to
pick the model with the largest value of `i(θ̂i). However, if the models are
nested, this simply leads us to pick the model with the greatest number of
parameters, even when other models fit almost as well. This violates the
principle that, when each one of a set of nested models is correctly specified,
we should prefer the one that has fewest parameters to estimate. This model
is called the most parsimonious model of the set. With nonnested models,
it is not necessarily the case that the least parsimonious of them yields the
greatest value of the loglikelihood function, but, whenever ki > kj , model i
plainly has an advantage over model j and therefore tends to be chosen too
often when parsimony is a concern.

To avoid this problem, we evidently need to penalize models with a large
number of parameters. This idea leads to various criterion functions that can
be used to rank competing models. The most widely used of these is probably
the Akaike information criterion, or AIC (Akaike, 1973). There is more than
one version of the AIC. For model i, the simplest is

AICi = `i(θ̂i)− ki. (15.56)

Thus we reduce the loglikelihood function of each model by 1 for every esti-
mated parameter, and we then choose the model that maximizes AICi. The
original form of the AIC is equivalent to (15.56) but a bit more complicated,
and it is supposed to be minimized instead of maximized. Users of black-box
software packages should make sure that they understand precisely what is
being printed if a package prints what it calls the AIC.

The AIC does not always respect the need for parsimony any more than
the maximized loglikelihood function. Consider two nested models, H1 and
H2, with k and k + 1 parameters, respectively. Asymptotically, twice the
difference between the two loglikelihood functions is distributed as χ2(1) if
H1 is correctly specified. Therefore, the probability that AIC2 is greater than
AIC1 tends in large samples to the probability mass in the right-hand tail of
the χ2(1) distribution beyond 2, which is 0.1573. Thus, even with an infinitely
large sample, we choose the less parsimonious model nearly 16% of the time.
This example illustrates a general problem. Whenever two or more models
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are nested, the AIC may fail to choose the most parsimonious of those that
are correctly specified. If all the models are nonnested, and only one is well
specified, the AIC chooses that one asymptotically, but so does simply picking
the model with the largest value of the loglikelihood function.

A popular alternative to the AIC, which avoids the problem discussed in the
preceding paragraph, is the Bayesian information criterion, or BIC, which
was proposed by Schwarz (1978). For model i, the BIC is

BICi = `i(θ̂i)− 1−
2
ki log n. (15.57)

The factor of log n in the penalty term ensures that, as n → ∞, the penalty
for having an additional parameter becomes very large. Thus, asymptotically,
there is no danger of choosing an insufficiently parsimonious model. If we com-
pare a false but parsimonious model H2 with a correctly-specified model H1

that may have more parameters, the BIC chooses H1 asymptotically, since,
as readers are asked to check in Exercise 15.24, the difference BIC1 − BIC2

tends to infinity with the sample size.

It is possible to extend the Akaike and Bayesian information criteria to models
that are not estimated by maximum likelihood or least squares. See Andrews
and Lu (2001) for a detailed discussion in the context of GMM estimation.
The penalty terms depend on the number of overidentifying restrictions rather
than on the number of parameters only. These penalty terms are twice as large
as the ones that appear in equations (15.56) and (15.57), because likelihood
ratio tests (Section 10.5) involve a factor of two, while tests based on GMM
criterion functions (Section 9.4) do not involve such a factor.

15.5 Nonparametric Estimation

Estimation by nonparametric methods has become an area of major interest
in both statistics and econometrics over the past twenty-five years. The term
“nonparametric” can have more than one meaning. We use it here rather
loosely to refer to a variety of estimation techniques that do not explicitly
involve estimating parameters. We first discuss nonparametric density esti-
mation and then move on to discuss nonparametric regression. Nonparametric
methods can be used to provide alternatives against which to test parametric
models, and we briefly discuss this sort of test at the end of the section.

We have already encountered a few nonparametric estimators. In particular,
the HAC estimators that were introduced in Section 9.3 are explicitly non-
parametric. Another example is the empirical distribution function, or EDF,
which was introduced in Section 4.5. As we saw there, if a sample is drawn
from some univariate distribution, then the EDF consistently estimates the
cumulative distribution function, or CDF. Since resampling from residuals is
equivalent to drawing values randomly from the EDF, as we saw in Section 4.6,
many bootstrap methods implicitly make use of nonparametric estimates.
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The probability density function (PDF) associated with a given distribution
is the derivative of the CDF, if the derivative exists. Since an EDF is, by
construction, a discontinuous function, its derivative does not exist at the
points of discontinuity. Elsewhere, an EDF is locally constant, and so, at those
points where the derivative exists, it is zero. Thus, if we wish to estimate a
density, we clearly cannot do so by differentiating the EDF.

Estimation of Density Functions

One traditional way of estimating a PDF is to form a histogram. Given a
sample xt, t = 1, . . . , n, of independent realizations of a random variable X,
the interval containing the xt is partitioned into a set of subintervals by a set
of points zi, i = 1, . . . ,m, with zi < zj for i < j, where m is typically much
smaller than n. Like the EDF, the histogram is a locally constant function
with discontinuities. Unlike the EDF, the histogram is discontinuous at the zi,
not the xt. For arbitrary argument x, let i be such that zi ≤ x < zi+1. Then
the histogram is defined as

f̂(x) =
n∑
t=1

I(zi ≤ xt < zi+1)
zi+1 − zi , (15.58)

where, as usual, I(·) denotes an indicator function, and the notation f̂(x) is
motivated by the fact that the histogram is an estimate of a density function.
Thus the value of the histogram at x is the number of sample points contained
in the same bin as x, divided by the length of the bin, that is, the length of
the segment [zi, zi+1]. It is thus quite precisely the density of sample points
in that segment.

The histogram (15.58) is entirely dependent on the choice of the partitioning
points zi. If there were only one segment, [z1, z2], covering the whole range
of the sample, then the histogram would be constant over that range, and
the estimated density would therefore correspond to a uniform distribution.
If the partition were exceedingly fine, with a value of m much greater than
the sample size, then most bins would be empty, and the histogram would
be equal to 0 for values of x in those bins. For the bins that contained one
or more points, the value of the histogram would be very large, since the
denominator zi+1 − zi would tend to zero as the partition became finer.

In the limit with just one bin, the histogram is completely smooth, being con-
stant over the sample range. In the other limit of an infinite number of bins,
the histogram is completely unsmooth, its values alternating between zero
and infinity. Neither limit is at all useful. What we seek is some intermedi-
ate degree of smoothness. More sophisticated methods of density estimation,
which we introduce in the next subsection, must, like the histogram, make a
choice of how smooth the estimated density should be. The choice depends
on what is called the bandwidth, or window width, which corresponds to the
width of a typical segment for a histogram.
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Kernel Estimation

The empirical distribution function, or EDF, of a sample was first defined in
Section 4.5. The definition, which is repeated here for convenience, is

F̂ (x) ≡ 1−
n

n∑
t=1

I(xt ≤ x). (15.59)

The discontinuous indicator function I(xt ≤ x), or equivalently I(x ≥ xt), can
be interpreted as the CDF of a degenerate random variable which puts all its
probability mass on xt, and the EDF can then be thought of as the unweighted
average of these CDFs. As is clear from Figure 4.6, such a discontinuous EDF
can, when graphed, provide the appearance of a smooth approximation to a
CDF when the sample size is moderately large. But the interpretation of the
indicator functions as CDFs suggests that we can obtain a genuinely smooth
estimate of the CDF by replacing the discontinuous function I(x ≥ xt) by a
continuous CDF, with support in an interval containing xt.

Let K(x) be any continuous CDF corresponding to a distribution with mean 0.
This function is called a cumulative kernel. It usually corresponds to a dis-
tribution that is symmetric around the origin, such as the standard normal.
Then a smooth estimate of the CDF could be obtained by replacing the in-
dicator function I(xt ≤ x) in equation (15.59) by K(x− xt). It is convenient
to be able to control the degree of smoothness of the estimate. Accordingly,
we set the variance of the distribution characterized by K(x) equal to 1 and
introduce the bandwidth parameter h as a scaling parameter for the actual
smoothing distribution. This gives the kernel CDF estimator

F̂h(x) = 1−
n

n∑
t=1

K
(x− xt

h

)
. (15.60)

Evidently, this estimator depends on the choice of the cumulative kernel and
on the bandwidth. As h tends to zero, it is easy to see that a typical term
of the summation on the right-hand side tends to I(x ≥ xt), and so F̂h(x)
tends to the EDF F̂ (x) as h→ 0. At the other extreme, as h becomes large, a
typical term of the summation tends to the constant value K(0), which makes
the kernel estimator F̂h(x) very much too smooth. In the usual case in which
K(x) is symmetric, F̂h(x) tends to 0.5 as h→∞.

Kernel methods can also be used for density estimation. In fact, they are
much more commonly used to estimate PDFs than to estimate CDFs. For
density estimation, we choose a function K(x) that is not only continuous but
also differentiable and define the kernel function k(x), often simply called the
kernel, as K ′(x). Then, if we differentiate equation (15.60) with respect to x,
we obtain the kernel density estimator

f̂h(x) =
1
nh

n∑
t=1

k
(x− xt

h

)
. (15.61)
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Like the kernel CDF estimator (15.60), the kernel density estimator depends
on both the choice of kernel k and the bandwidth h. It turns out that the
choice of kernel is much less critical than the choice of bandwidth. One very
popular choice for k is the Gaussian kernel, which is just the standard nor-
mal density φ. It gives a positive (although perhaps very small) weight to
every point in the sample. Another commonly used kernel, which has certain
optimality properties, is the Epanechnikov kernel,

k(z) =
3(1− z2/5)

4
√

5
for |z| < √5, 0 otherwise.

This kernel gives a positive weight only to points for which |(xt−x)|/h < √5.
In practice, the Gaussian and Epanechnikov kernels generally give very similar
estimates if they are based on similar values of h.

Choosing the Bandwidth

The kernel density estimator (15.61) is sensitive to the value of the bandwidth
parameter h, and there is a very large and highly technical literature on how
best to choose it. See Silverman (1986), Härdle (1990), Wand and Jones
(1995), or Pagan and Ullah (1999) for introductions to this literature. The
estimator f̂h(x) is biased, unless the density is genuinely constant, which is
almost never the case, and too large a value of h gives rise to oversmoothing.
This suggests that, to make bias small, h should be small. However, when h is
too small, the estimator suffers from undersmoothing, which implies that the
variance of f̂h(x) is large. Thus any choice of h inevitably involves a tradeoff
between the bias and the variance. This suggests that we should choose h to
minimize the expectation of the squared error, defined as

E
(
f̂h(x)− f(x)

)2 =
(
Ef̂h(x)− f(x)

)2 + Var
(
f̂h(x)

)
, (15.62)

that is, the square of the bias of f̂h(x) plus its variance. If we are interested
in the entire density rather than just the density at a single point, which is
often but not always the case, then we would like to minimize the integral
over all x of either side of equation (15.62).

Under fairly general regularity conditions, it can be shown that any h
that minimizes the expectation (15.62) or its integral must be proportional
to n−1/5; see Exercise 15.26. The factor of proportionality depends on the
true distribution of the data. Two popular choices for h are

h = 1.059sn−1/5, and (15.63)

h = 0.785(q̂.75 − q̂.25)n−1/5, (15.64)

where s is the standard deviation of the xt, and q̂.75 − q̂.25 is the difference
between the estimated .75 and .25 quantiles of the data, which is known as
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the interquartile range, or IQR. When the data are approximately normally
distributed, it makes sense to use s to measure the spread of the data. In
fact, the value of h given in equation (15.63) is optimal for data that are
normally distributed when using a Gaussian kernel. The factor of 1.059 is
really (4/3)1/5, a quantity that appears in the proof of optimality. When the
data have thick tails, s tends to overestimate the spread, and it is better to
use the interquartile range. Note that the factor of 0.785 in equation (15.64)
is 1.059 divided by 1.349, which is the interquartile range for the standard
normal distribution. Thus, if the data were normally distributed, both s and
IQR/1.349 would be estimates of σ.

Although the values given in equations (15.63) and (15.64) should work quite
well in many cases, they may tend to oversmooth a bit when the data are
strongly skewed or bimodal. Therefore, as a rule of thumb, Silverman (1986)
suggests using

h = 0.9 min(s, IQR/1.349)n−1/5. (15.65)

This is the minimum of the values defined in equation (15.63) and (15.64),
but with the factor of 1.059 replaced by 0.9 in order to reduce the risk of
oversmoothing.

It should be noted that the bandwidths appropriate for kernel estimation of
densities are not appropriate for kernel estimation of CDFs. Under the same
(extremely strong) assumptions that led to the value h = 1.059sn−1/5 for
density estimation, it can be shown that h = 1.587sn−1/3 is optimal for CDF
estimation. However, h = 1.3sn−1/3 may be a better choice if interest centers
on tail quantiles. See Azzalini (1981) or Wand and Jones (1995).

An Illustration of Kernel Density Estimation

Figure 15.1 shows an estimated density for daily percentage returns on IBM
common stock. It is based on 9939 observations from July, 1962 to December,
2001. A Gaussian kernel with h given by equation (15.64) was used. We
also tried using the somewhat larger value of h given by equation (15.63),
the somewhat smaller value (Silverman’s rule of thumb) given by equation
(15.65), and an Epanechnikov instead of a Gaussian kernel. The alternative
density estimates were so close to the one shown in the figure that it is not
worth plotting them, although the peak was very slightly higher when we used
Silverman’s rule of thumb. Note that we did not estimate f̂h(x) for every point
in the sample, but only for 201 evenly-spaced points between −10 and 10. It
makes sense to do something like this when the objective is simply to plot an
estimated density and the sample size is large.

Figure 15.1 also shows a normal density with the same mean and variance as
the data. This normal density looks very different from the kernel estimate.
As we noted in Section 15.2, returns data from financial markets commonly
display excess kurtosis. The kernel density estimates strongly suggest that this
empirical regularity holds for the IBM stock returns, since the density appears
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Figure 15.1 Estimates of the density of IBM stock returns

to be much more peaked and to have thicker tails than the normal. The thicker
tails are hard to see in the figure, but they are evident if one looks closely
at f̂h(x) for larger absolute values of x. For example, f̂h(8) = 0.0006051 and
f̂h(−8) = 0.0005470, while the corresponding values for the normal density
are just 0.0000014 and 0.0000010.

Figure 15.2 shows the same estimated density as Figure 15.1, plus two others.
Both of the new estimates used a Gaussian kernel, but with h either four
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Figure 15.2 Effect of h on kernel density estimates
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times larger or four times smaller than the value given in equation (15.64).
When h is too large, the estimated density is very smooth, but it is much
less peaked than the one based on a sensible choice of h. Thus it is evident
that, for many values of x, these oversmoothed estimates are severely biased.
In contrast, when h is too small, the estimated density has roughly the same
shape as before, but it is extremely jagged. Thus it is evident that the variance
of these undersmoothed estimates is quite high.

The example in Figures 15.1 and 15.2 involves 9939 observations, which is a
rather large number. Kernel density estimation cannot be expected to work
nearly as well when the sample size is small, because there are not enough
observations in the vicinity of many values of x to obtain good estimates of
f(x) for those values.

Nonparametric Regression

The fitted values from a regression model are estimates of the expectation of
the dependent variable conditional on the values of the explanatory variables
for each observation. The linear regression model (1.01) is perhaps the sim-
plest such model, since it makes use of only one explanatory variable, xt, and
the expectation of the dependent variable yt conditional on xt is assumed to
be an affine function of xt. This very strong assumption can of course be re-
laxed by using powers or other nonlinear transformations of xt as additional
regressors. An alternative approach is to use a nonparametric regression,
which estimates E(yt |xt) directly, without making any assumptions about
functional form.

The simplest approach to nonparametric regression is kernel regression, a
technique similar to kernel density estimation. We suppose that two random
variables Y and X are jointly distributed, and we wish to estimate the condi-
tional expectation µ(x) ≡ E(Y |x) as a function of x, using a sample of paired
observations (yt, xt) for t = 1, . . . , n. For given x, consider the function G(x)
defined as

G(x) = E
(
Y · I(X ≤ x)

)
=
∫ x

−∞

∫ ∞
−∞

y f(y, z) dy dz,

where f(y, x) is the joint density of Y and X. Let g(x) ≡ G′(x) denote the
first derivative of G(X). Then

g(x) =
∫ ∞
−∞

yf(y, x)dy = f(x)
∫ ∞
−∞

yf(y |x)dy = f(x)E(Y |x),

where f(x) is the marginal density of X, and f(y |x) is the density of Y
conditional on X = x.

A natural unbiased estimator of G(x) is n−1
∑n
t=1 ytI(xt ≤ x), but this, like

the EDF, is discontinuous and cannot be differentiated. As with the kernel

Copyright c© 1999, Russell Davidson and James G. MacKinnon



674 Testing the Specification of Econometric Models

CDF estimator (15.60), therefore, we replace this estimator by the biased but
smooth estimator

Ĝh(x) = 1−
n

n∑
t=1

ytK
(x− xt

h

)
, (15.66)

where K is a cumulative kernel (that is, the CDF of a distribution with
mean 0 and variance 1), and h is a bandwidth parameter. Defining ĝh(x) as
the derivative of (15.66) and using the kernel estimator (15.61) to estimate
the marginal density of X leads to the following estimator of µ(x):

µ̂h(x) =
ĝh(x)

f̂h(x)
.

This is called the Nadaraya-Watson estimator, and it simplifies to

µ̂h(x) =

∑n
t=1 ytkt∑n
t=1 kt

, kt ≡ k
(x− xt

h

)
, (15.67)

where k ≡ K ′ is a kernel function.

The Nadaraya-Watson estimator is the solution to the estimating equation

n∑
t=1

kt
(
yt − µ̂h(x)

)
= 0.

This can be thought of as the empirical counterpart of a weighted average of
the elementary zero functions yt − µ(x). But these elementary zero functions
do not have mean 0, because the conditional expectation of yt is not µ(x) but
µ(xt). This is evidently a source of bias. The correct, but infeasible, zero
function would instead be yt − µ(xt).

A better approximation to the correct zero function is given by the two-
term Taylor expansion µ(x) + µ′(x)(xt − x), in which both µ(x) and µ′(x)
are unknown. Both of these unknowns can be estimated simultaneously by
solving the two estimating equations

n∑
t=1

kt
(
yt − µ(x)− µ′(x)(xt − x)

)
= 0 and

n∑
t=1

kt(xt − x)
(
yt − µ(x)− µ′(x)(xt − x)

)
= 0.

(15.68)

These estimating equations are at least approximately correct, because the
random variable Y − E(Y |X), of which the yt − µ(x) − µ′(x)(xt − x) are
approximate realizations, is uncorrelated with X − x. The simplest way to
solve equations (15.68) is to run the linear regression

k
1/2
t yt = µ(x)k1/2

t + µ′(x)k1/2
t (xt − x) + residual, (15.69)
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so as to obtain the locally linear estimator of µ(x), which is just the first
estimated coefficient. Regression (15.69) is to be run for every value of x for
which we wish to estimate E(Y |x). Taylor expansions with more terms can
be handled simply by adding additional regressors of the form k1/2

t (xt − x)i

to (15.69), with i an integer greater than 1. See Fan and Gijbels (1996) for a
detailed discussion of the numerous other methods of kernel regression.

Up to this point, we have assumed that there is just one regressor. Although
kernel regression can be used when there are several regressors, its perfor-
mance tends to become much worse as the number of regressors k increases.
Intuitively, the reason for which it suffers from this curse of dimensionality
is that the fraction of sample points that are close to any point at which we
wish to evaluate the conditional expectation declines rapidly as k increases.
In consequence, when k is greater than 1 or 2, we generally need a very large
sample for estimates to be at all precise.

As an example, suppose that the regressors follow independent N(0, 1) dis-
tributions, the point x is the origin, and we define “close” to mean that the
Euclidean distance between xt and the origin is no greater than 0.5. As the
notation indicates, x and xt are now, in general, vectors. When k = 1, the
fraction of the xt that are close to the origin in this sense is 0.383; when
k = 2, it is 0.118; when k = 3, it is 0.031; and so on. See Exercise 15.29. This
example is typical. In general, the proportion of the sample points for which
xt is close to any specified x decreases rapidly as k increases.

Cross-Validation

The optimal choice of h for kernel regression is not, in general, the same
as for kernel density estimation. When there are k regressors, h should be
proportional to n−1/(k+4). The optimal choice of h depends on a number
of things, including the values of x for which we wish to compute E(Y |x),
the kernel, and the shape of the true (but unknown) regression function.
Consequently, there is no widely-used rule of thumb for choosing h like the
ones we discussed for kernel density estimation. Instead, it is customary to
choose h by some sort of data-based method. One popular approach is to use
a technique called cross-validation, which we now discuss in the context of
kernel regression.3

Suppose we choose a bandwidth h and calculate a kernel estimate ŷh(xt) for
each value of xt in the sample. This may be a Nadaraya-Watson estimate, a
locally linear estimate, or some other type of kernel regression estimate. In
order to compute ŷh(xt), we make use of the values k

(
(xt − xs)/h

)
of the

kernel function for all s = 1, . . . , n. As h→ 0, these values tend to 0 for all s
such that xs 6= xt. If the only such s is t itself, it follows that ŷh(xt) tends
to yt as h → 0. In the event of ties, ŷh(xt) tends to the average of the ys

3 Cross-validation can also be used to choose the bandwidth for kernel density
estimation; see Silverman (1986).
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for which s is such that xs = xt. The residual ŷh(xt)− yt thus tends to 0 in
the former case, and to the deviation of yt from the mean of the ys with tied
values of xs in the latter case.

This rules out the sum of the squares of the ŷh(xt) − yt as a useful criterion
function for the choice of h, since it tends monotonically to a lower limit as
h→ 0. Instead, it is common to use what is called a leave-one-out estimator.
We encountered such estimators in Section 2.6, in connection with leverage.
Here, the estimator has the same form as a regular kernel estimator, except
that observation t is omitted when we estimate E(Y |xt). Thus there is no
tendency for the leave-one-out estimate ŷ(t)

h (xt) to converge to yt as h → 0.
Otherwise, the leave-one-out estimator has exactly the same properties as the
ordinary kernel estimator when x is not one of the sample points.

We define the cross-validation function by the formula

CV(h) = 1−
n

n∑
t=1

w(xt)
(
yt − ŷ(t)

h (xt)
)2
. (15.70)

Here w(xt) is a weight, which could just be 1 for all observations. When we
use cross-validation, we evaluate CV(h) for a number of values of h and pick
the value that minimizes it. This makes sense, because, when the weights
are chosen appropriately, the cross-validation function (15.70) provides a rea-
sonable way to estimate the average squared error of ŷh(x) over the range of
values of x in which we are interested. It is attractive to use nonconstant
weights if we are more interested in obtaining good estimates of E(Y |x) for
some values of x than for others. The weight might even be 0 for values of xt
that are far from the values of x in which we are interested.

A Numerical Example

It is instructive to see how kernel regression works in practice. For purposes
of illustration, we generated 400 observations from an artificial DGP that was
linear for xt below a certain value and quite nonlinear beyond that point. It
is obvious that a linear regression model fits these data very badly.

Figure 15.3 shows the data and two sets of Nadaraya-Watson kernel estimates
based on an Epanechnikov kernel. The first set, shown as a solid line, used
a baseline bandwidth h = sn−1/5, which, by analogy with results for kernel
density estimation, seems like a reasonable value to start with. Although these
estimates look sensible for most values of xt, they perform poorly for extreme
values. In particular, they severely overestimate E(Y |x) for the largest values
of x. This happens because, when x is large, there are few or no values of xt
greater than x. Consequently, most of the values of yt of which ŷh(x) is a
weighted average are associated with values of xt smaller than x.

The second set of estimates shown in Figure 15.3 used a value of h chosen by
cross-validation. The only way to avoid severely overestimating E(Y |x) for
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Figure 15.3 Nadaraya-Watson kernel regression using simulated data

the more extreme values of x is to make the bandwidth quite small, and indeed
the value of h given by cross-validation is much smaller than the baseline
value. But making h small causes ŷh(x) to wiggle around much more than
seems reasonable. Thus neither set of Nadaraya-Watson estimates is at all
satisfactory.

Figure 15.4 shows the same data and two sets of locally linear kernel estimates,
both also based on an Epanechnikov kernel. These estimates are much more
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Figure 15.4 Locally linear kernel regression using simulated data
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plausible than the previous ones. The h chosen by cross-validation is smaller
than the baseline value, but it is large enough that ŷh(x) is generally quite
smooth, and there is not much difference between the two sets of estimates.
The values of the cross-validation function (15.70) provide further evidence
that the locally linear estimates are better than the Nadaraya-Watson ones.
For the baseline value of h, these values are 2.4947 and 2.8525, respectively.
For the optimal values of h, they are 2.4693 and 2.4960.

Our treatment of nonparametric estimation is necessarily very superficial.
Much more detailed discussions may be found in Härdle (1990), Yatchew
(1998), and Pagan and Ullah (1999). There is a vast literature on techniques
for nonparametric regression. In addition to the references already cited, see
Green and Silverman (1994), Simonoff (1996), Eubank (1999), and Loader
(1999), among others.

Assessing the Specification of Parametric Models

Nonparametric methods can be useful even when we are primarily interested in
estimating a parametric model. Graphical methods can be especially valuable.
Looking at the fitted values from a kernel regression may suggest what sort
of parametric nonlinear regression function could be expected to provide a
good fit. Graphing the fitted values from a parametric model alongside those
from a kernel regression may indicate in what respects, if any, the parametric
model needs improvement.

More formal methods exist for testing the validity of a parametric regression
model using the evidence provided by a nonparametric one. In fact, many
testing procedures have been proposed. Some of these are explicitly based on
the J and P tests that were discussed in Section 15.2. Examples include the
tests proposed by Wooldridge (1992) and Delgado and Stengos (1994), neither
of which uses kernel regression to estimate the nonparametric model. These
tests require that the parametric null and nonparametric alternative models
should be nonnested. Many other tests do not have this requirement, and
so they can be used to test the null hypothesis that E(Y |X) has a specific,
parametric, functional form. Examples include Zheng (1996), Li and Wang
(1998), Ellison and Ellison (2000), and Horowitz and Spokoiny (2001), all
of which use some variant of kernel regression. Tests that do not use kernel
regression have been proposed by Yatchew (1992) and Hong and White (1995),
among others.

Although most of these tests are conceptually simple, and some of them are
also simple to compute, their asymptotic validity generally depends on tech-
nical assumptions that may be difficult to verify. Moreover, their finite-sample
performance, as asymptotic tests, is often not very good. For both these
reasons, it is highly desirable to bootstrap them. Even if a test statistic is not
asymptotically pivotal, bootstrap P values are almost always asymptotically
valid. If a test statistic is asymptotically pivotal, as is the case for the tests
proposed in all of the papers cited above when the required conditions hold,
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then bootstrap P values should be more accurate than asymptotic P values,
in the sense that we discussed at the end of Section 4.6.

It is quite easy to bootstrap this sort of test statistic. For example, consider
the statistic

(y − x̂)>(y − x̂)− (y − ŷ)>(y − ŷ)
(y − x̂)>(y − x̂)/(n− k)

, (15.71)

which is closely related to the statistics proposed by Yatchew (1992) and Hong
and White (1995). In expression (15.71), y is the vector of observations on
the dependent variable, x̂ is the vector of fitted values from the parametric
model, ŷ is the vector of fitted values from the nonparametric model, and k is
the number of parameters. When the nonparametric model involves the same
regressors as the parametric one, we would expect this statistic to be positive
if the bandwidth for the nonparametric regression has been chosen sensibly.
Thus we want to reject the null hypothesis whenever expression (15.71) is
positive and sufficiently large.

When the null hypothesis is a static regression model, it is natural to specify
the bootstrap DGP as

y∗ = x̂+ u∗,

where u∗ is an n--vector with typical element u∗t obtained by resampling the
rescaled residuals from the parametric model. When the null hypothesis is a
dynamic model, the vector y∗ should be generated recursively, as in equation
(4.65). For each bootstrap sample, we estimate both the parametric model
and the nonparametric one and then use the two sets of estimates to compute
the test statistic (15.71). A bootstrap P value is then computed in the usual
way as the proportion of the bootstrap statistics that are larger than the
actual test statistic; see equation (4.61).

Although this procedure is conceptually straightforward, it can be compu-
tationally costly. The cost is high whenever the parametric model involves
nonlinear estimation and/or the bandwidth for the nonparametric model is
chosen by cross-validation. In general, we recommend using simpler proce-
dures, such as the RESET test, F tests for omitted powers and cross-products
of the regressors, and nonnested hypothesis tests, prior to explicitly testing
a parametric model against one or more nonparametric alternatives. Doing
the latter makes sense only if the simpler procedures fail to find conclusive
evidence of misspecification.

15.6 Final Remarks

It is difficult to overemphasize the importance of testing the specification of
econometric models thoroughly before using them for any purpose. For this
reason, several procedures for model specification testing have been discussed
in this chapter and elsewhere in the book. Many of these procedures are based
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on artificial regressions, because they require estimation of the model under
test only, and artificial regressions are generally quite easy to set up.

We must use caution when performing more than one specification test on
the same model. Even when every one of the tests is exact, which is very
rarely true in practice, the probability that at least one test rejects a correctly
specified model by chance can be quite large; see Exercise 15.30. As readers
are asked to show in that exercise, it is easy to control the overall significance
level of several tests taken together if all the test statistics are independent.
However, it is not at all easy to do so without sacrificing power when the test
statistics are not independent, which they generally are not; see Savin (1980)
for an introduction to this topic.

For more detailed treatments of some aspects of model specification testing
in econometrics, see Godfrey (1988) and White (1994). The second of these
books is very much more advanced than the discussion in this chapter.

15.7 Appendix: Test Regressors in Artificial Regressions

In this appendix, we sketch a proof of why the three conditions R1–R3 given
in Section 15.2 make it admissible to base an asymptotic test on the artificial
regression (15.05). We assume that the DGP belongs to the model M and
is characterized by the parameter vector θ0. We deal only with the case
in which the asymptotic covariance matrix of the estimator θ̂ is given by
equation (15.02). The other case, in which it is given by equation (15.03), is
dealt with in Exercise 15.4.

The explained sums of squares from the restricted artificial regression (15.01),
evaluated at the root-n consistent estimator θ́, and the unrestricted artificial
regression (15.05) can be written as

ŕ>PŔ ŕ and ŕ>PŔ,Ź ŕ,

respectively, where PŔ is the orthogonal projection on to the columns of Ŕ,
and PŔ,Ź is the orthogonal projection onto the columns of Ŕ and Ź jointly.
The difference between the two explained sums of squares is therefore

ŕ>(PŔ,Ź − PŔ)ŕ = ŕ>PḾRŹ ŕ = ŕ>MŔŹ(Ź>MŔŹ)−1Ź>MŔ ŕ, (15.72)

where MŔ ≡ I−PŔ. Note that expression (15.72) could also be computed as
the difference between the sums of squared residuals from regressions (15.01)
and (15.05).

Now consider the r--vector n−1/2Ź>MŔ ŕ. It is equal to

n−1/2Ź>ŕ − n−1Ź>Ŕ n1/2(Ŕ>Ŕ)−1Ŕ>ŕ. (15.73)
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A Taylor expansion of the first term in expression (15.73) around the true
value θ0 gives

n−1/2Ź>ŕ = n−1/2Z0
>r0 − n−1Z0

>R0 n
1/2(θ́ − θ0) +Op(n−1/2), (15.74)

where r0 ≡ r(θ0), R0 ≡ R(θ0), and Z0 ≡ Z(θ0). Here we have used condi-
tion R3 in the evaluation of the Jacobian of Z>(θ)r(θ). By the requirement
that an artificial regression admits one-step estimation, the second term in
expression (15.73) is equal to

−n−1Ź>Ŕ n1/2(θ̂ − θ́) +Op(n−1/2).

Because θ́ is root-n consistent, we can replace n−1Ź>Ŕ in this expression by
n−1Z0

>R0 +Op(n−1/2), to obtain

−n−1Z0
>R0 n

1/2(θ̂ − θ0) + n−1Z0
>R0 n

1/2(θ́ − θ0) +Op(n−1/2). (15.75)

When we add expressions (15.74) and (15.75), the terms that involve θ́ cancel,
and so the complete expression (15.73) becomes

n−1/2Z0
>r0 − n−1Z0

>R0 n
1/2(θ̂ − θ0) +Op(n−1/2)

= n−1/2Z0
>r0 − n−1Z0

>R0 n
1/2(R0

>R0)−1R0
>r0 +Op(n−1/2)

= n−1/2Z0
>MR0r0 +Op(n−1/2).

In the second line here, we have used the one-step property for θ0 rather
than θ́, since θ0 is trivially root-n consistent for itself. Thus we conclude that

n−1/2Ź>ŕ = n−1/2Z0
>MR0r0 +Op(n−1/2) (15.76)

for all θ́ such that θ́ − θ0 = Op(n−1/2).

The asymptotic covariance matrix of the vector n−1/2Z0
>MR0r0 is

Var
(
plim
n→∞

n−1/2Z0
>MR0r0

)
= plim
n→∞

1−
n
Z0
>MR0r0r0

>MR0Z0.

If we replaceMR0 by I−R0(R0
>R0)−1R0

>, the right-hand side of this equation
becomes

plim
n→∞

1−
n
Z0
>r0r0

>Z0 − plim
n→∞

1−
n
Z0
>R0(R0

>R0)−1R0
>r0r0

>Z0

− plim
n→∞

1−
n
Z0
>r0r0

>R0(R0
>R0)−1R0

>Z0

+ plim
n→∞

1−
n
Z0
>R0(R0

>R0)−1R0
>r0r0

>R0(R0
>R0)−1R0

>Z0.
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By making use of condition R2, we can replace the limits of expressions like
n−1R0

>r0r0R0 by those of expressions like n−1R0
>R0. When we do this, the

rather lengthy expression above collapses to

plim
n→∞

(
1−
n
Z0
>Z0 − 1−

n
Z0
>R0(R0

>R0)−1R0
>Z0

)
= plim
n→∞

1−
n
Z0
>MR0Z0. (15.77)

The root-n consistency of θ́ and the result (15.76) imply that the asymptotic
covariance matrix of n−1/2Ź>ŕ is equal to the right-hand side of equation
(15.77) for all θ́ such that θ́ − θ0 = Op(n−1/2). Moreover, the consistency
of θ́ also implies that

plim
n→∞

1−
n
Ź>MŔŹ = plim

n→∞
1−
n
Z0
>MR0Z0.

It follows from this result and the result (15.76) that the test statistic (15.72)
is asymptotically equal to

(n−1/2r0
>MR0Z0)(n−1Z0

>MR0Z0)−1(n−1/2Z0
>MR0r0). (15.78)

This is a quadratic form in the r--vector n−1/2Z0
>MR0r0 and the inverse of

its asymptotic covariance matrix. By Theorem 4.1, the statistic (15.78) must
be asymptotically distributed as χ2(r).

Calculations very similar to those above can be used to show that, when the
asymptotic covariance matrix of θ̂ is given by equation (15.03), F statistics
computed from the unrestricted artificial regression (15.05) and the restricted
one (15.01) evaluated at θ́ have their namesake distributions asymptotically
under the hypothesis that the true DGP is contained in the model M. We
leave the proof of this as Exercise 15.4.

15.8 Exercises

15.1 If the linear regression model y = X�+ u, with error terms ut ∼ IID(0, σ2),
is estimated using the n× l matrix W of instrumental variables, an artificial
regression that corresponds to this model and this estimator is the IVGNR

y −X� = PWXb + residuals.

Suppose that we wish to test whether the n--vector z is predetermined with
respect to the error terms in u, that is, whether plimn−1z>u = 0. Show that
the obvious testing regression, namely,

y −X� = PWXb+ cz + residuals,

does not satisfy the three conditions given in Section 15.2 for a valid testing
regression. What other artificial regression could be used to obtain a valid
test statistic?
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15.2 Show that the t statistic for γ = 0 in regression (15.09) is numerically identical
to the t statistic for c = 0 in regression (15.10).

15.3 Suppose that the dependent variable y is generated by the DGP y = X�0+u,
u ∼ N(0, σ2

0I), where the n × k matrix X is independent of u. Let z be a
vector that is not necessarily independent of u, but is independent of MXu.
Show that the t statistic on z in the linear regression y = X�+cz+u follows
the Student’s t distribution with n− k − 1 degrees of freedom.

15.4 Let (15.01) be an artificial regression corresponding to a model M and an
asymptotically normal root-n consistent estimator �̂ of the parameters of M,
with the asymptotic covariance matrix of �̂ given by (15.03). Show that,
whenever �́ is a root-n consistent estimator, r times the F statistic for the
artificial hypothesis that c = 0 in the artificial regression (15.05) is asymp-
totically distributed as χ2(r) under any DGP in M.

15.5 Suppose the vector y is generated by the nonlinear regression model (6.01),
and Z(�) is an n× r matrix such that

plim
n→∞

1−
nZ
>(�)u = 0.

Show that n times the uncentered R2 from regression (15.22) is asymptotically
distributed as χ2(r).

15.6 Consider a fully parametrized model for which the tth observation is character-
ized by a conditional density function ft(yt,�), where the vector yt contains
the observations y1, . . . , yt on the dependent variable. The density is that
of yt conditional on yt−1. Let the moment function mt(yt,�) have expecta-
tion zero conditional on yt−1 when evaluated at the true parameter vector �0.
Show that

E(mt(yt,�0)Gt(�0)) = −E
(
∂mt(�)

∂�

)∣∣∣
θ=θ0

,

where Gt(�) is the row vector of derivatives of log ft(yt,�), the contribution
to the loglikelihood function made by the tth observation, and ∂mt/∂�(�)
denotes the row vector of derivatives of mt(yt,�) with respect to �. All
expectations are taken under the density ft(yt,�). Then explain why this
result implies equation (15.26) under conditions R1 and R2 of Section 15.2.
Hint: Use the same approach as in Exercise 10.6.

15.7 Consider the following artificial regression, which was originally proposed by
Tauchen (1985):

m̂ = Ĝb′ + c′� + residuals.

Show that the t statistic for c′ = 0 from this regression is numerically identical
to the t statistic for c = 0 from the OPG regression (15.24). Hint: See
Exercise 4.8.

15.8 Show that the regressor in the testing regression (15.32) is asymptotically
orthogonal to the regressors in the OPG regression (15.27), when all regressors
are evaluated at root-n consistent estimators �́ and ś. Note that two vectors
a and b are said to be asymptotically orthogonal if plimn−1a>b = 0.

Prove that the t statistic from regression (15.32) is asymptotically equivalent
to the statistic τ4 defined by (15.33).
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Show also that the statistics τ3 and τ4 are asymptotically independent under
the null of normality.

15.9 Suppose that you have a sample of n IID observations ut, t = 1, . . . , n, on
a variable supposed to follow the standard normal distribution. How would
you test the null hypothesis of normality against alternatives allowing the ut
to be skewed, to have excess kurtosis, or both?

Suppose now that the variance of the ut is unknown and must be estimated
from the sample. How would you now test the null of normality against the
same alternatives?

15.10 This question uses data on monthly returns for the period 1969–1998 for
shares of General Electric Corporation from the file monthly-crsp.data. These
data are made available by courtesy of the Center for Research in Security
Prices (CRSP); see the comments at the bottom of the file. Let Rt denote
the return on GE shares in month t. For the entire sample period, regress
Rt on a constant and dt, where dt is a dummy variable that is equal to 1
in November, December, January, and February, and equal to 0 in all other
months. Then test the residuals for evidence of skewness and excess kurto-
sis, both individually and jointly. Use asymptotic tests based on normalized
residuals and tests based on the OPG regression.

15.11 Consider the classical linear regression model

yt = β1 + β2xt2 + β3xt3 + ut, ut ∼ NID(0, σ2),

where xt2 and xt3 are exogenous variables, and there are n observations.
Write down the contribution to the loglikelihood made by the tth observation.
Then calculate the matrix M(�̂) of which the typical element is expression
(15.36) evaluated at the ML estimates. How many columns does this matrix
have? What is a typical element of each of the columns?

Explain how to compute an information matrix test for this model using the
OPG regression (15.25). How many regressors does the test regression have?
What test statistic would you use, and how many degrees of freedom does it
have? What types of misspecification is this test sensitive to?

15.12 Show that the J statistic computed using regression (15.40) is given by

J =
(n− k1 − 1)1/2y>MXPZy

(y>MXy y>PZMXPZy − (y>MXPZy)2)1/2
,

Use this expression to show that the probability limit under hypothesis H1

of n−1 times the denominator is

σ2
0 plim
n→∞

1−
n �0
>X>PZMXPZX�0,

where �0 and σ2
0 are the true parameters.

15.13 Consider the nonnested linear regression models given in equations (15.37).
Suppose that just one column of Z does not lie in S(X). In this special case,
how is the J statistic for testing H1 from regression (15.40) related to the
F statistic for 
′ = 0 in the inclusive regression (15.39)?
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15.14 How is the P statistic from equation (15.47) related to the J statistic from
equation (15.46) when the regression function x(�) for the H1 model can be
written as X�?

15.15 The P test regression (15.47) can be interpreted as a Gauss-Newton regression
for testing a moment condition. Make this moment condition explicit and
explain why it makes sense.

15.16 This question uses data from the file consumption.data. As in previous exer-
cises that use these data, ct is the log of consumption, and yt is the log of
disposable income. All models are to be estimated, and all tests calculated,
for the 176 observations from 1953:1 to 1996:4.

Using ordinary least squares, estimate the ADL model in levels,

ct = α+ βct−1 + γ0yt + γ1yt−1 + ut, (15.79)

and the ADL model in first differences,

∆ct = α′ + β′∆ct−1 + γ′0∆yt + γ′1∆yt−1 + ut, (15.80)

where ∆ct ≡ ct − ct−1 and ∆yt ≡ yt − yt−1.

Test each of these two models against the other using a J test. Then test both
models against a more general model that includes both of them as special
cases. Report asymptotically valid P values for all four tests.

15.17 Calculate semiparametric bootstrap P values for the four tests of the previous
exercise, using the procedure discussed in Section 4.6. Do the bootstrap tests
yield the same inferences as the asymptotic ones? What can you tentatively
conclude from these results?

15.18 Consider the two nonnested linear regression models (15.37). An encompass-
ing test can be based on the estimate of the error variance of model H2 rather
than on the estimates of the parameters 
. Let σ̂2

2 be the usual ML estimate
obtained from estimating H2. Compute the expectation of σ̂2

2 under the DGP
in model H1 with parameters � and σ2

1 . Let σ̃2
2 be a consistent estimate of this

expectation based on the estimates of � and σ2
1 obtained by estimating H1.

Show that n1/2(σ̂2
2 − σ̃2

2) is asymptotically equal to a random variable that

is proportional to u>MXPZX�0, in the notation of equation (15.41). What
does this result imply about the relationship between the variance encom-
passing test and the J test?

15.19 Consider the binary response models

H1 : E(yt |Ωt) = F1(Xt�), and

H2 : E(yt |Ωt) = F2(Zt
),

where F1(·) and F2(·) may be any transformation functions that satisfy con-
ditions (11.02). Starting from the artificial comprehensive model

E(yt |Ωt) = (1− α)F1(Xt�) + αF2(Zt
), (15.81)

show how to compute a nonnested hypothesis test similar to the P test but
based on the BRMR (Section 11.3) instead of the GNR.
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15.20 Let the loglikelihood function of a model to be estimated by maximum like-
lihood be given by a sum of contributions from each observation:

`(�) =

n∑
t=1

`t(�).

Show that, if �̂ is a root-n, asymptotically normal, Type 2 MLE of a true
parameter vector �0, then

Eθ0

(
n−1/2(`(�̂)− `(�0))

)
= Op(n−1/2).

Use this result to show that n−1/2(`(�̂)−E
θ̂

(`(�̂))) is also of order n−1/2 as
n→∞.

15.21 Show that the statistic (15.53) for a Cox test of the nonnested linear regression
models (15.37) is equal to

T = n1/2 log
(
σ̂2

1 + σ̂2
a

σ̂2
2

)
, (15.82)

where σ̂2
i , i = 1, 2, is the ML estimate of the error variance from estimating

model Hi, and σ̂2
a ≡ n−1‖MZPXy‖2. Show that the statistic T is asymp-

totically proportional to the J statistic and also, therefore, to the variance
encompassing test statistic of Exercise 15.18. Why is it not surprising that
the Cox test, which can be interpreted as an encompassing test based on the
maximized loglikelihood, should be asymptotically equivalent to the variance
encompassing test?

Show that the asymptotic variance of the statistic (15.82) is

4σ2
1

σ2
1 + σ2

a

plim
n→∞

1−
n‖MXMZPXy‖2,

where σ2
a ≡ plim σ̂2

a = plimn−1‖MZPXy‖2. Use this result to write down a
Cox statistic in asymptotically N(0, 1) form.

15.22 Set up the OPG artificial regression for the Cox test of model H1 against H2

in (15.37). In particular, show that, in the notation of Exercise 15.21, the
typical element of the test regressor can take either of the forms

log
(
σ̂2

1 + σ̂2
a

σ̂2
2

)
+
û2

2t

σ̂2
2

− 1, or

log
(
σ̂2

1 + σ̂2
a

σ̂2
2

)
+
û2

2t

σ̂2
2

− σ̂2
1 + (MZPXy)2

t

σ̂2
1 + σ2

a
.

(15.83)

15.23 The file nonnested.data contains 40 observations on artificially generated vari-
ables x1, x2, z2, z3, and z4. Consider the nonnested linear regression models

H1 : y = α1�+ β1x1 + β2x2 + u, and

H2 : y = α2�+ γ1x1 + γ2z2 + γ3z3 + γ4z4 + u.
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Perform a simulation experiment where, for each replication, the dependent
variable y is generated by the DGP in H1 with α1 = 0, β1 = β2 = 1, and
normally distributed error terms with variance σ2

1 = 1. For each simulated
data set, compute the J statistic, the Cox statistic of Exercise 15.21, and two
statistics based on an OPG artificial regression, with test regressors of the two
forms (15.83). Compare the empirical distribution functions of the simulated
statistics with the nominal N(0, 1) distribution.

Repeat the experiment with the DGP y = x1 +x2 +0.5z3 +u, u ∼ NID(0, 1).
Given that all four statistics have finite-sample distributions different from the
nominal asymptotic N(0, 1) distribution, how can one use the results of both
experiments to measure the ability of the statistics to discriminate between
the DGPs of the two experiments?

15.24 Consider two nonnested models H1 and H2 characterized by the loglikelihood
functions (15.50). If the true DGP µ belongs to H1 and not to H2, show that

plim
n→∞

µ
1−
n(`1(�̂1)− `2(�̂2)) > 0, (15.84)

where �̂1 and �̂2 are the MLEs of the two models. Hint: Use Jensen’s inequal-
ity for the contribution to the two likelihood functions from each observation.

Let BICi denote the Bayesian information criterion (15.57) for model Hi. Use
(15.84) to show that BIC1 − BIC2 tends to +∞ as n→∞.

15.25 Show that the kernel density defined in equation (15.61) is nonnegative and
integrates to unity.

15.26 For a given choice of bandwidth, the expectation of the estimate f̂h(x)
of (15.61) is h−1 times the expectation of the random variable k((x−X)/h),
where X denotes the random variable of which the xt are IID realizations.
Assume that k is symmetric about the origin. Show that the bias of f̂h(x) is
independent of the sample size n and roughly proportional to h2 for small h.
More formally, this means that the bias is O(h2) as h→ 0.

Show also that the variance of f̂h(x) is of order (nh)−1 as n → ∞ and
h → 0. Why do these facts imply that the bandwidth h that minimizes the
expectation of the squared error of f̂h(x) must be of order n−1/5 as n→∞?

15.27 A subsample of the data used for Figures 15.1 and 15.2 can be found in the file
daily-crsp.data, for the period from January 1989 to December 1998. Estimate
the density of the percentage daily returns on IBM stock (the data in the file
times 100) using the same bandwidths as those used for the Figures, using
both Gaussian and Epanechnikov kernels. Also perform the estimation using
the uniform kernel k(z) = 1/(2

√
3) for |z| < √3 and k(z) = 0 outside this

range. Finally, compute a histogram with bin width equal to the bandwidths
of the kernel estimators. Graph your results. What conclusions can you draw
from them?

15.28 Regress the IBM daily returns in daily-crsp.data on the returns for the CRSP
value-weighted index in the same file by nonparametric regression. Since these
data have fat tails, you will find it necessary to trim the tails. A reasonable
way to do this is to eliminate from the sample all observations for which the
return on the index is greater than 2.6 in absolute value. Compute both the
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Nadaraya-Watson estimator and the locally linear estimator. For the former,
use the bandwidth (15.64) computed using the IQR of the trimmed index
returns; for the latter a much greater value, around 1, is more appropriate.

Compute the cross-validation function (15.70), with weights equal to 1, for
both the Nadaraya-Watson and locally linear estimators. For the former, it
should be enough to compute the function in the neighborhood of the value
given by (15.64), but for the latter you should explore larger values. Finally,
compare your results with an OLS regression of the IBM returns on a constant
and the index returns.

15.29 Suppose that the k --vector xt ∼ N(0, I). What is the probability that the
Euclidean distance between xt and the origin is less than 1 if k = 1? What
is it if k = 2, k = 3, and k = 4?

15.30 Let τ1 and τ2 each be distributed as N(0, 1), with correlation ρ. For ρ = −0.9,
−0.5, 0, 0.5, and 0.9, generate at least 10,000 realizations of τ1 and τ2 and
calculate the proportion of the time that either statistic is greater than the
.95 quantile of the standard normal distribution. What does this experiment
tell us about the overall significance level when we perform two tests that are
not independent?

Copyright c© 1999, Russell Davidson and James G. MacKinnon


	Regression Models
	1.1 Introduction
	1.2 Distributions, Densities, and Moments
	1.3 The Specification of Regression Models
	1.4 Matrix Algebra
	1.5 Method of Moments Estimation
	1.6 Notes on the Exercises
	1.7 Exercises

	The Geometry of Linear Regression
	2.1 Introduction
	2.2 The Geometry of Vector Spaces
	2.3 The Geometry of OLS Estimation
	2.4 The Frisch- Waugh- Lovell Theorem
	2.5 Applications of the FWL Theorem
	2.6 Influential Observations and Leverage
	2.7 Final Remarks
	2.8 Exercises

	The Statistical Properties of Ordinary Least Squares
	3.1 Introduction
	3.2 Are OLS Parameter Estimators Unbiased?
	3.3 Are OLS Parameter Estimators Consistent?
	3.4 The Covariance Matrix of the OLS Parameter Estimates
	3.5 Efficiency of the OLS Estimator
	3.6 Residuals and Error Terms
	3.7 Misspecification of Linear Regression Models
	3.8 Measures of Goodness of Fit
	3.9 Final Remarks
	3.10 Exercises

	Hypothesis Testing in Linear Regression Models
	4.1 Introduction
	4.2 Basic Ideas
	4.3 Some Common Distributions
	4.4 Exact Tests in the Classical Normal Linear Model
	4.5 Large- Sample Tests in Linear Regression Models
	4.6 Simulation- Based Tests
	4.7 The Power of Hypothesis Tests
	4.8 Final Remarks
	4.9 Exercises

	Confidence Intervals
	5.1 Introduction
	5.2 Exact and Asymptotic Confidence Intervals
	5.3 Bootstrap Confidence Intervals
	5.4 Confidence Regions
	5.5 Heteroskedasticity- Consistent Covariance Matrices
	5.6 The Delta Method
	5.7 Final Remarks
	5.8 Exercises

	Nonlinear Regression
	6.1 Introduction
	6.2 Method of Moments Estimators for Nonlinear Models
	6.3 Nonlinear Least Squares
	6.4 Computing NLS Estimates
	6.5 The Gauss- Newton Regression
	6.6 One- Step Estimation
	6.7 Hypothesis Testing
	6.8 Heteroskedasticity- Robust Tests
	6.9 Final Remarks
	6.10 Exercises

	Generalized Least Squares and Related Topics
	7.1 Introduction
	7.2 The GLS Estimator
	7.3 Computing GLS Estimates
	7.4 Feasible Generalized Least Squares
	7.5 Heteroskedasticity
	7.6 Autoregressive and Moving Average Processes
	7.7 Testing for Serial Correlation
	7.8 Estimating Models with Autoregressive Errors
	7.9 Specification Testing and Serial Correlation
	7.10 Models for Panel Data
	7.11 Final Remarks
	7.12 Exercises

	Instrumental Variables Estimation
	8.1 Introduction
	8.2 Correlation Between Error Terms and Regressors
	8.3 Instrumental Variables Estimation
	8.4 Finite- Sample Properties of IV Estimators
	8.5 Hypothesis Testing
	8.6 Testing Overidentifying Restrictions
	8.7 Durbin- Wu- Hausman Tests
	8.8 Bootstrap Tests
	8.9 IV Estimation of Nonlinear Models
	8.10 Final Remarks
	8.11 Exercises

	The Generalized Method of Moments
	9.1 Introduction
	9.2 GMM Estimators for Linear Regression Models
	9.3 HAC Covariance Matrix Estimation
	9.4 Tests Based on the GMM Criterion Function
	9.5 GMM Estimators for Nonlinear Models
	9.6 The Method of Simulated Moments
	9.7 Final Remarks
	9.8 Exercises

	The Method of Maximum Likelihood
	10.1 Introduction
	10.2 Basic Concepts of Maximum Likelihood Estimation
	10.3 Asymptotic Properties of ML Estimators
	10.4 The Covariance Matrix of the ML Estimator
	10.5 Hypothesis Testing
	10.6 The Asymptotic Theory of the Three Classical Tests
	10.7 ML Estimation of Models with Autoregressive Errors
	10.8 Transformations of the Dependent Variable
	10.9 Final Remarks
	10.10 Exercises

	Discrete and Limited Dependent Variables
	11.1 Introduction
	11.2 Binary Response Models: Estimation
	11.3 Binary Response Models: Inference
	11.4 Models for More than Two Discrete Responses
	11.5 Models for Count Data
	11.6 Models for Censored and Truncated Data
	11.7 Sample Selectivity
	11.8 Duration Models
	11.9 Final Remarks
	11.10 Exercises

	Multivariate Models
	12.1 Introduction
	12.2 Seemingly Unrelated Linear Regressions
	12.3 Systems of Nonlinear Regressions
	12.4 Linear Simultaneous Equations Models
	12.5 Maximum Likelihood Estimation
	12.6 Nonlinear Simultaneous Equations Models
	12.7 Final Remarks
	12.8 Appendix: Detailed Results on FIML and LIML
	12.9 Exercises

	Methods for Stationary Time- Series Data
	13.1 Introduction
	13.2 Autoregressive and Moving Average Processes
	13.3 Estimating AR, MA, and ARMA Models
	13.4 Single- Equation Dynamic Models
	13.5 Seasonality
	13.6 Autoregressive Conditional Heteroskedasticity
	13.7 Vector Autoregressions
	13.8 Final Remarks
	13.9 Exercises

	Unit Roots and Cointegration
	14.1 Introduction
	14.2 Random Walks and Unit Roots
	14.3 Unit Root Tests
	14.4 Serial Correlation and Unit Root Tests
	14.5 Cointegration
	14.6 Testing for Cointegration
	14.7 Final Remarks
	14.8 Exercises

	Testing the Specification of Econometric Models
	15.1 Introduction
	15.2 Speci cation Tests Based on Arti cial Regressions
	15.3 Nonnested Hypothesis Tests
	15.4 Model Selection Based on Information Criteria
	15.5 Nonparametric Estimation
	15.6 Final Remarks
	15.7 Appendix: Test Regressors in Arti cial Regressions
	15.8 Exercises


