Chapter 1

Regression Models

1.1 Introduction

Regression models form the core of the discipline of econometrics. Although
econometricians routinely estimate a wide variety of statistical models, using
many different types of data, the vast majority of these are either regression
models or close relatives of them. In this chapter, we introduce the concept of
a regression model, discuss several varieties of them, and introduce the estima-
tion method that is most commonly used with regression models, namely, least
squares. This estimation method is derived by using the method of moments,
which is a very general principle of estimation that has many applications in
econometrics.

The most elementary type of regression model is the simple linear regression
model, which can be expressed by the following equation:

Yo = P+ Bo Xy + wy. (1.01)

The subscript ¢ is used to index the observations of a sample. The total num-
ber of observations, also called the sample size, will be denoted by n. Thus,
for a sample of size n, the subscript ¢ runs from 1 to n. Each observation
comprises an observation on a dependent variable, written as y; for observa-
tion ¢, and an observation on a single explanatory variable, or independent
variable, written as X;.

The relation (1.01) links the observations on the dependent and the explana-
tory variables for each observation in terms of two unknown parameters, (3;
and (5, and an unobserved error term, u;. Thus, of the five quantities that
appear in (1.01), two, y; and Xy, are observed, and three, 31, (2, and wu, are
not. Three of them, y;, X;, and wu;, are specific to observation ¢, while the
other two, the parameters, are common to all n observations.

Here is a simple example of how a regression model like (1.01) could arise in
economics. Suppose that the index ¢ is a time index, as the notation suggests.
Each value of ¢ could represent a year, for instance. Then y; could be house-
hold consumption as measured in year ¢, and X; could be measured disposable
income of households in the same year. In that case, (1.01) would represent
what in elementary macroeconomics is called a consumption function.
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4 Regression Models

If for the moment we ignore the presence of the error terms, (3 is the marginal
propensity to consume out of disposable income, and 3 is what is sometimes
called autonomous consumption. As is true of a great many econometric mod-
els, the parameters in this example can be seen to have a direct interpretation
in terms of economic theory. The variables, income and consumption, do in-
deed vary in value from year to year, as the term “variables” suggests. In
contrast, the parameters reflect aspects of the economy that do not vary, but
take on the same values each year.

The purpose of formulating the model (1.01) is to try to explain the observed
values of the dependent variable in terms of those of the explanatory variable.
According to (1.01), for each ¢, the value of y; is given by a linear function
of X, plus what we have called the error term, u;. The linear (strictly speak-
ing, affine!) function, which in this case is 31 + ($2.Xy, is called the regression
function. At this stage we should note that, as long as we say nothing about
the unobserved quantity u:, (1.01) does not tell us anything. In fact, we can
allow the parameters 3; and (32 to be quite arbitrary, since, for any given 34
and (3, (1.01) can always be made to be true by defining u; suitably.

If we wish to make sense of the regression model (1.01), then, we must make
some assumptions about the properties of the error term u;. Precisely what
those assumptions are will vary from case to case. In all cases, though, it is
assumed that u; is a random variable. Most commonly, it is assumed that,
whatever the value of X;, the expectation of the random variable u; is zero.
This assumption usually serves to identify the unknown parameters ; and
(2, in the sense that, under the assumption, (1.01) can be true only for specific
values of those parameters.

The presence of error terms in regression models means that the explanations
these models provide are at best partial. This would not be so if the error
terms could be directly observed as economic variables, for then u; could be
treated as a further explanatory variable. In that case, (1.01) would be a
relation linking y; to X; and u; in a completely unambiguous fashion. Given
X; and uy, y; would be completely explained without error.

Of course, error terms are not observed in the real world. They are included
in regression models because we are not able to specify all of the real-world
factors that determine y;. When we set up our models with u; as a ran-
dom variable, what we are really doing is using the mathematical concept of
randomness to model our ignorance of the details of economic mechanisms.
What we are doing when we suppose that the mean of an error term is zero is
supposing that the factors determining y; that we ignore are just as likely to
make y; bigger than it would have been if those factors were absent as they
are to make y; smaller. Thus we are assuming that, on average, the effects
of the neglected determinants tend to cancel out. This does not mean that

LA function g(z) is said to be affine if it takes the form g(z) = a + bz for two
real numbers a and b.
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1.2 Distributions, Densities, and Moments 5

those effects are necessarily small. The proportion of the variation in y; that
is accounted for by the error term will depend on the nature of the data and
the extent of our ignorance. Even if this proportion is large, as it will be in
some cases, regression models like (1.01) can be useful if they allow us to see
how y; is related to the variables, like X, that we can actually observe.

Much of the literature in econometrics, and therefore much of this book, is
concerned with how to estimate, and test hypotheses about, the parameters
of regression models. In the case of (1.01), these parameters are the constant
term, or intercept, (31, and the slope coefficient, 5>. Although we will begin
our discussion of estimation in this chapter, most of it will be postponed until
later chapters. In this chapter, we are primarily concerned with understanding
regression models as statistical models, rather than with estimating them or
testing hypotheses about them.

In the next section, we review some elementary concepts from probability
theory, including random variables and their expectations. Many readers will
already be familiar with these concepts. They will be useful in Section 1.3,
where we discuss the meaning of regression models and some of the forms
that such models can take. In Section 1.4, we review some topics from matrix
algebra and show how multiple regression models can be written using matrix
notation. Finally, in Section 1.5, we introduce the method of moments and
show how it leads to ordinary least squares as a way of estimating regression
models.

1.2 Distributions, Densities, and Moments

The variables that appear in an econometric model are treated as what statis-
ticians call random variables. In order to characterize a random variable, we
must first specify the set of all the possible values that the random variable
can take on. The simplest case is a scalar random variable, or scalar r.v. The
set of possible values for a scalar r.v. may be the real line or a subset of the
real line, such as the set of nonnegative real numbers. It may also be the set
of integers or a subset of the set of integers, such as the numbers 1, 2, and 3.

Since a random variable is a collection of possibilities, random variables cannot
be observed as such. What we do observe are realizations of random variables,
a realization being one value out of the set of possible values. For a scalar
random variable, each realization is therefore a single real value.

If X is any random variable, probabilities can be assigned to subsets of the
full set of possibilities of values for X, in some cases to each point in that
set. Such subsets are called events, and their probabilities are assigned by a
probability distribution, according to a few general rules.
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6 Regression Models

Discrete and Continuous Random Variables

The easiest sort of probability distribution to consider arises when X is a
discrete random variable, which can take on a finite, or perhaps a countably
infinite number of values, which we may denote as x1, xa,.... The probability
distribution simply assigns probabilities, that is, numbers between 0 and 1,
to each of these values, in such a way that the probabilities sum to 1:

ZP(%‘) =1,

where p(z;) is the probability assigned to x;. Any assignment of nonnega-
tive probabilities that sum to one automatically respects all the general rules
alluded to above.

In the context of econometrics, the most commonly encountered discrete ran-
dom variables occur in the context of binary data, which can take on the
values 0 and 1, and in the context of count data, which can take on the values
0, 1, 2,...; see Chapter 11.

Another possibility is that X may be a continuous random variable, which, for
the case of a scalar r.v., can take on any value in some continuous subset of the
real line, or possibly the whole real line. The dependent variable in a regression
model is normally a continuous r.v. For a continuous r.v., the probability
distribution can be represented by a cumulative distribution function, or CDF.
This function, which is often denoted F'(x), is defined on the real line. Its
value is Pr(X < x), the probability of the event that X is equal to or less
than some value z. In general, the notation Pr(A) signifies the probability
assigned to the event A, a subset of the full set of possibilities. Since X is
continuous, it does not really matter whether we define the CDF as Pr(X < x)
or as Pr(X < z) here, but it is conventional to use the former definition.

Notice that, in the preceding paragraph, we used X to denote a random
variable and x to denote a realization of X, that is, a particular value that the
random variable X may take on. This distinction is important when discussing
the meaning of a probability distribution, but it will rarely be necessary in
most of this book.

Probability Distributions

We may now make explicit the general rules that must be obeyed by proba-
bility distributions in assigning probabilities to events. There are just three
of these rules:

(i) All probabilities lie between 0 and 1;
(ii) The null set is assigned probability 0, and the full set of possibilities is
assigned probability 1;
(iii) The probability assigned to an event that is the union of two disjoint
events is the sum of the probabilities assigned to those disjoint events.
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1.2 Distributions, Densities, and Moments 7

We will not often need to make explicit use of these rules, but we can use
them now in order to derive some properties of any well-defined CDF for a
scalar r.v. First, a CDF F(x) tends to 0 as # — —oo. This follows because
the event (X < z) tends to the null set as © — —oo, and the null set has
probability 0. By similar reasoning, F'(x) tends to 1 when x — +o00, because
then the event (X < z) tends to the entire real line. Further, F'(z) must be
a weakly increasing function of x. This is true because, if 1 < x2, we have

where U is the symbol for set union. The two subsets on the right-hand side
of (1.02) are clearly disjoint, and so

Pr(X <z3) =Pr(X <z) 4+ Pr(z; < X < z).

Since all probabilities are nonnegative, it follows that the probability that
(X < 22) must be no smaller than the probability that (X < 7).

For a continuous r.v., the CDF assigns probabilities to every interval on the
real line. However, if we try to assign a probability to a single point, the result
is always just zero. Suppose that X is a scalar r.v. with CDF F'(z). For any
interval [a,b] of the real line, the fact that F'(x) is weakly increasing allows
us to compute the probability that X € [a,b]. If a < b,

Pr(X <b)=Pr(X <a)+Pr(a< X <0),
whence it follows directly from the definition of a CDF that
Pr(a < X <b)=F(b) — F(a), (1.03)

since, for a continuous r.v., we make no distinction between Pr(a < X <)
and Pr(a < X <b). If we set b = a, in the hope of obtaining the probability
that X = a, then we get F(a) — F(a) = 0.

Probability Density Functions

For continuous random variables, the concept of a probability density func-
tion, or PDF, is very closely related to that of a CDF. Whereas a distribution
function exists for any well-defined random variable, a PDF exists only when
the random variable is continuous, and when its CDF is differentiable. For a

scalar r.v., the density function, often denoted by f, is just the derivative of
the CDF:

f(z) = F'(x).
Because F(—oc0) = 0 and F(co) = 1, every PDF must be normalized to
integrate to unity. By the Fundamental Theorem of Calculus,

/_Oo f(z)dz = /_OO F'(x)dz = F(o0) — F(—o0) = 1. (1.04)

It is obvious that a PDF is nonnegative, since it is the derivative of a weakly
increasing function.
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Figure 1.1 The CDF and PDF of the standard normal distribution

Probabilities can be computed in terms of the PDF as well as the CDF. Note
that, by (1.03) and the Fundamental Theorem of Calculus once more,

b
Pr(a < X <b)=F(b)— F(a) = / f(z)dx. (1.05)

Since (1.05) must hold for arbitrary a and b, it is clear why f(x) must always be
nonnegative. However, it is important to remember that f(x) is not bounded
above by unity, because the value of a PDF at a point x is not a probability.
Only when a PDF is integrated over some interval, as in (1.05), does it yield
a probability.

The most common example of a continuous distribution is provided by the
normal distribution. This is the distribution that generates the famous or
infamous “bell curve” sometimes thought to influence students’ grade distri-
butions. The fundamental member of the normal family of distributions is the
standard normal distribution. It is a continuous scalar distribution, defined
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Figure 1.2 The CDF of a binary random variable

on the entire real line. The PDF of the standard normal distribution is often
denoted ¢(-). Its explicit expression, which we will need later in the book, is

o(x) = (2m) /2 exp(— %:132) (1.06)
Unlike ¢(+), the CDF, usually denoted ®(-), has no elementary closed-form
expression. However, by (1.05) with a = —co and b = z, we have

B(x) = /_ " ) dy.

The functions ®(-) and ¢(-) are graphed in Figure 1.1. Since the PDF is the
derivative of the CDF, it achieves a maximum at x = 0, where the CDF is
rising most steeply. As the CDF approaches both 0 and 1, and consequently,
becomes very flat, the PDF approaches 0.

Although it may not be obvious at once, discrete random variables can be
characterized by a CDF just as well as continuous ones can be. Consider a
binary r.v. X that can take on only two values, 0 and 1, and let the probability
that X = 0 be p. It follows that the probability that X = 1is 1 —p. Then the
CDF of X, according to the definition of F'(z) as Pr(X < z), is the following
discontinuous, “staircase” function:

0 forz<O
F(x):{p for0 <z <1

1 for x> 1.
This CDF is graphed in Figure 1.2. Obviously, we cannot graph a corre-
sponding PDF, for it does not exist. For general discrete random variables,
the discontinuities of the CDF occur at the discrete permitted values of X, and
the jump at each discontinuity is equal to the probability of the corresponding
value. Since the sum of the jumps is therefore equal to 1, the limiting value
of F', to the right of all permitted values, is also 1.
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10 Regression Models

Using a CDF is a reasonable way to deal with random variables that are
neither completely discrete nor completely continuous. Such hybrid variables
can be produced by the phenomenon of censoring. A random variable is said
to be censored if not all of its potential values can actually be observed. For
instance, in some data sets, a household’s measured income is set equal to 0 if
it is actually negative. It might be negative if, for instance, the household lost
more on the stock market than it earned from other sources in a given year.
Even if the true income variable is continuously distributed over the positive
and negative real line, the observed, censored, variable will have an atom, or
bump, at 0, since the single value of 0 now has a nonzero probability attached
to it, namely, the probability that an individual’s income is nonpositive. As
with a purely discrete random variable, the CDF will have a discontinuity
at 0, with a jump equal to the probability of a negative or zero income.

Moments of Random Variables

A fundamental property of a random variable is its expectation. For a discrete

r.v. that can take on m possible finite values x1, s, ..., x,, the expectation
is simply
m
E(X) =) p(z:). (1.07)
i=1

Thus each possible value z; is multiplied by the probability associated with
it. If m is infinite, the sum above has an infinite number of terms.

For a continuous r.v., the expectation is defined analogously using the PDF:

o
E(X) E/ x f(x)dx. (1.08)
— 00
Not every r.v. has an expectation, however. The integral of a density function
always exists and equals 1. But since X can range from —oo to 0o, the integral
(1.08) may well diverge at either limit of integration, or both, if the density
f does not tend to zero fast enough. Similarly, if m in (1.07) is infinite, the
sum may diverge. The expectation of a random variable is sometimes called
the mean or, to prevent confusion with the usual meaning of the word as the

mean of a sample, the population mean. A common notation for it is p.

The expectation of a random variable is often referred to as its first moment.
The so-called higher moments, if they exist, are the expectations of the r.v.
raised to a power. Thus the second moment of a random variable X is the
expectation of X2, the third moment is the expectation of X3, and so on. In
general, the k'™ moment of a continuous random variable X is

mi(X) = /OO a" f(z) dx.

— 00

Observe that the value of any moment depends only on the probability distri-
bution of the r.v. in question. For this reason, we often speak of the moments
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1.2 Distributions, Densities, and Moments 11

of the distribution rather than the moments of a specific random variable. If
a distribution possesses a k'™ moment, it also possesses all moments of order
less than k.

The higher moments just defined are called the uncentered moments of a
distribution, because, in general, X does not have mean zero. It is often more
useful to work with the central moments, which are defined as the ordinary
moments of the difference between the random variable and its expectation.
Thus the k" central moment of the distribution of a continuous r.v. X is

i =B(x = B00) = [ @) fa)da,

— OO
where = E(X). For a discrete X, the k*® central moment is

e =B(X —E(X)" =3 plai)(z; — p)*.

=1

By far the most important central moment is the second. It is called the
variance of the random variable and is frequently written as Var(X). Another
common notation for a variance is o2. This notation underlines the important
fact that a variance cannot be negative. The square root of the variance, o,
is called the standard deviation of the distribution. Estimates of standard
deviations are often referred to as standard errors, especially when the random
variable in question is an estimated parameter.

Multivariate Distributions

A vector-valued random variable takes on values that are vectors. It can
be thought of as several scalar random variables that have a single, joint
distribution. For simplicity, we will focus on the case of bivariate random
variables, where the vector is of length 2. A continuous, bivariate r.v. (X1, X3)
has a distribution function

F(z1,32) = Pr((X; <) N (X2 < 22)),

where N is the symbol for set intersection. Thus F(x1,x5) is the joint proba-
bility that both X; < z; and X5 < x5. For continuous variables, the PDF, if
it exists, is the joint density function?

82F(l’1, ZIZQ)

f(xl,wZ) - 8:}018:1;2

(1.09)

2 Here we are using what computer scientists would call “overloaded function”
notation. This means that F(-) and f(-) denote respectively the CDF and the
PDF of whatever their argument(s) happen to be. This practice is harmless
provided there is no ambiguity.
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12 Regression Models

This function has exactly the same properties as an ordinary PDF. In partic-

ular, as in (1.04),
/ / f(.fl,.’lfQ) d.fldmg =1.

More generally, the probability that X; and X5 jointly lie in any region is the
integral of f(x1,x2) over that region. A case of particular interest is

F(z1,25) = Pr((X; < 21) N (Xy < 25))
o po (1.10)
= /_ /_ f(y1,y2) dyidys,

which shows how to compute the CDF given the PDF.

The concept of joint probability distributions leads naturally to the impor-
tant notion of statistical independence. Let (X;, X3) be a bivariate random
variable. Then X; and X, are said to be statistically independent, or often
just independent, if the joint CDF of (X1, X2) is the product of the CDF's of
X7 and Xs. In straightforward notation, this means that

F(x1,22) = F(x1,00)F (00, x3). (1.11)

The first factor here is the joint probability that X; < x; and Xs < oo. Since
the second inequality imposes no constraint, this factor is just the probability
that X; < 1. The function F(x1,00), which is called the marginal CDF of
X1, is thus just the CDF of X; considered by itself. Similarly, the second
factor on the right-hand side of (1.11) is the marginal CDF of Xs.

It is also possible to express statistical independence in terms of the marginal
density of X; and the marginal density of X5. The marginal density of X is,
as one would expect, the derivative of the marginal CDF of X7,

f(z1) = Fi(21,00),

where Fi(-) denotes the partial derivative of F'(-) with respect to its first
argument. It can be shown from (1.10) that the marginal density can also be
expressed in terms of the joint density, as follows:

fla) = /OO f(@1,22) dzs. (1.12)

Thus f(x1) is obtained by integrating X5 out of the joint density. Similarly,
the marginal density of X5 is obtained by integrating X; out of the joint
density. From (1.09), it can be shown that, if X; and X5 are independent, so
that (1.11) holds, then

f(l‘l,m) :f<$1)f($2)- (1-13)

Thus, when densities exist, statistical independence means that the joint den-
sity factorizes as the product of the marginal densities, just as the joint CDF
factorizes as the product of the marginal CDFs.
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ANB

Figure 1.3 Conditional probability

Conditional Probabilities

Suppose that A and B are any two events. Then the probability of event A
conditional on B, or given B, is denoted as Pr(A | B) and is defined implicitly
by the equation

Pr(An B) =Pr(B)Pr(A|B). (1.14)

For this equation to make sense as a definition of Pr(A | B), it is necessary that
Pr(B) # 0. The idea underlying the definition is that, if we know somehow
that the event B has been realized, this knowledge can provide information
about whether event A has also been realized. For instance, if A and B are
disjoint, and B is realized, then it is certain that A has not been. As we
would wish, this does indeed follow from the definition (1.14), since AN B is
the null set, of zero probability, if A and B are disjoint. Similarly, if B is a
subset of A, knowing that B has been realized means that A must have been
realized as well. Since in this case Pr(A N B) = Pr(B), (1.14) tells us that
Pr(A|B) =1, as required.

To gain a better understanding of (1.14), consider Figure 1.3. The bounding
rectangle represents the full set of possibilities, and events A and B are sub-
sets of the rectangle that overlap as shown. Suppose that the figure has been
drawn in such a way that probabilities of subsets are proportional to their
areas. Thus the probabilities of A and B are the ratios of the areas of the cor-
responding circles to the area of the bounding rectangle, and the probability
of the intersection A N B is the ratio of its area to that of the rectangle.

Suppose now that it is known that B has been realized. This fact leads us
to redefine the probabilities so that everything outside B now has zero prob-
ability, while, inside B, probabilities remain proportional to areas. Event B
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Figure 1.4 The CDF and PDF of the uniform distribution on [0, 1]

will now have probability 1, in order to keep the total probability equal to 1.
Event A can be realized only if the realized point is in the intersection AN B,
since the set of all points of A outside this intersection have zero probability.
The probability of A, conditional on knowing that B has been realized, is thus
the ratio of the area of AN B to that of B. This construction leads directly
to (1.14).

There are many ways to associate a random variable X with the rectangle
shown in Figure 1.3. Such a random variable could be any function of the
two coordinates that define a point in the rectangle. For example, it could be
the horizontal coordinate of the point measured from the origin at the lower
left-hand corner of the rectangle, or its vertical coordinate, or the Euclidean
distance of the point from the origin. The realization of X is the value of the
function it corresponds to at the realized point in the rectangle.

For concreteness, let us assume that the function is simply the horizontal
coordinate, and let the width of the rectangle be equal to 1. Then, since
all values of the horizontal coordinate between 0 and 1 are equally probable,
the random variable X has what is called the uniform distribution on the
interval [0, 1]. The CDF of this distribution is

0 forz<O
F(l’):{x for0<z<1
1 forx>1.

Because F'(z) is not differentiable at * = 0 and x = 1, the PDF of the
uniform distribution does not exist at those points. Elsewhere, the derivative
of F(x) is 0 outside [0,1] and 1 inside. The CDF and PDF are illustrated in
Figure 1.4. This special case of the uniform distribution is often denoted the
U(0,1) distribution.

If the information were available that B had been realized, then the distri-
bution of X conditional on this information would be very different from the
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Figure 1.5 The CDF and PDF conditional on event B

U(0,1) distribution. Now only values between the extreme horizontal limits
of the circle of B are allowed. If one computes the area of the part of the
circle to the left of a given vertical line, then for each event a = (X < x) the
probability of this event conditional on B can be worked out. The result is
just the CDF of X conditional on the event B. Its derivative is the PDF of
X conditional on B. These are shown in Figure 1.5.

The concept of conditional probability can be extended beyond probability
conditional on an event to probability conditional on a random variable. Sup-
pose that X; is ar.v. and X5 is a discrete r.v. with permitted values 21, ..., zp,.
For each i = 1,...,m, the CDF of X;, and, if X; is continuous, its PDF, can
be computed conditional on the event (Xo = z;). If X5 is also a continuous
r.v., then things are a little more complicated, because events like (Xo = x2)
for some real x5 have zero probability, and so cannot be conditioned on in the
manner of (1.14).

On the other hand, it makes perfect intuitive sense to think of the distribution
of X7 conditional on some specific realized value of X5. This conditional
distribution gives us the probabilities of events concerning X; when we know
that the realization of Xy was actually xzo. We therefore make use of the
conditional density of X; for a given value x5 of X5. This conditional density,
or conditional PDF, is defined as

f(l‘b $2)
flz2)

Thus, for a given value x5 of X5, the conditional density is proportional to the
joint density of X; and X5. Of course, (1.15) is well defined only if f(x3) > 0.
In some cases, more sophisticated definitions can be found that would allow
f(z1 | x2) to be defined for all 9 even if f(x2) = 0, but we will not need these
in this book. See, among others, Billingsley (1979).

f(@1]x2) = (1.15)
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Conditional Expectations

Whenever we can describe the distribution of a random variable, X7, condi-
tional on another, X5, either by a conditional CDF or a conditional PDF,
we can consider the conditional expectation or conditional mean of X;. If it
exists, this conditional expectation is just the ordinary expectation computed
using the conditional distribution. If x5 is a possible value for X5, then this
conditional expectation is written as E(X; | z2).

For a given value x5, the conditional expectation E(X; | x2) is, like any other
ordinary expectation, a deterministic, that is, nonrandom, quantity. But we
can consider the expectation of X; conditional on every possible realization
of Xs5. In this way, we can construct a new random variable, which we denote
by E(X; | X3), the realization of which is E(X; |z2) when the realization of
Xo is x9. We can call E(X; | X2) a deterministic function of the random vari-
able X5, because the realization of E(X; | X2) is unambiguously determined
by the realization of Xs.

Conditional expectations defined as random variables in this way have a num-

ber of interesting and useful properties. The first, called the Law of Iterated
Expectations, can be expressed as follows:

E(E(X:|X2)) =E(Xy). (1.16)

If a conditional expectation of X; can be treated as a random variable,
then the conditional expectation itself may have an expectation. According
to (1.16), this expectation is just the ordinary expectation of X;.

Another property of conditional expectations is that any deterministic func-
tion of a conditioning variable X5 is its own conditional expectation. Thus,
for example, E(Xs | X3) = Xo, and E(X3 | X5) = X2. Similarly, conditional
on Xo, the expectation of a product of another random variable X; and a
deterministic function of X5 is the product of that deterministic function and
the expectation of X; conditional on Xo:

E(X1h(X2) | X2) = h(X2) E(X; | X2), (1.17)

for any deterministic function h(-). An important special case of this, which
we will make use of in Section 1.5, arises when E(X; | X3) = 0. In that case,
for any function A(-), E(X;h(X2)) = 0, because

E(X1 h(Xg)) = E(E(X1 h(X2) | Xg))
= (h(Xg)E(Xl \Xg))
=E(0)=0.
The first equality here follows from the Law of Iterated Expectations, (1.16).
The second follows from (1.17). Since E(X; | X3) = 0, the third line then fol-

lows immediately. We will present other properties of conditional expectations
as the need arises.
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1.3 The Specification of Regression Models

We now return our attention to the regression model (1.01) and revert to the
notation of Section 1.1 in which y; and X; respectively denote the dependent
and independent variables. The model (1.01) can be interpreted as a model
for the mean of y; conditional on X;. Let us assume that the error term wu;
has mean 0 conditional on X;. Then, taking conditional expectations of both
sides of (1.01), we see that

E(ys | Xe) = 51+ 6o Xy + E(ug | Xe) = 51 + B2 X4

Without the key assumption that E(u;|X;) = 0, the second equality here
would not hold. As we pointed out in Section 1.1, it is impossible to make
any sense of a regression model unless we make strong assumptions about
the error terms. Of course, we could define u; as the difference between
yr and E(y; | X;), which would give E(u; | X;) = 0 by definition. But if we
require that E(u; | X;) = 0 and also specify (1.01), we must necessarily have
E(y: | Xi) = 61 + B2 Xq.

As an example, suppose that we estimate the model (1.01) when in fact
yr = B1 + Bo Xy + B3 X7 + vy (1.18)

with 3 # 0 and an error term v; such that E(v; | X;) = 0. If the data were
generated by (1.18), the error term wu; in (1.01) would be equal to 83 X7 + v;.
By the results on conditional expectations in the last section, we see that

E(ut | X;) = E(Bs X7 +ve | Xi) = B X7,

which we have assumed to be nonzero. This example shows the force of the
assumption that the error term has mean zero conditional on X;. Unless the
mean of y; conditional on X; really is a linear function of X;, the regression
function in (1.01) is not correctly specified, in the precise sense that (1.01)
cannot hold with an error term that has mean zero conditional on X;. It will
become clear in later chapters that estimating incorrectly specified models
usually leads to results that are meaningless or, at best, seriously misleading.

Information Sets

In a more general setting, what we are interested in is usually not the mean
of y; conditional on a single explanatory variable X; but the mean of y,; con-
ditional on a set of potential explanatory variables. This set is often called
an information set, and it is denoted €2;. Typically, the information set will
contain more variables than would actually be used in a regression model. For
example, it might consist of all the variables observed by the economic agents
whose actions determine y; at the time they make the decisions that cause
them to perform those actions. Such an information set could be very large.
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As a consequence, much of the art of constructing, or specifying, a regression
model is deciding which of the variables that belong to €2; should be included
in the model and which of the variables should be excluded.

In some cases, economic theory makes it fairly clear what the information set
; should consist of, and sometimes also which variables in 2; should make
their way into a regression model. In many others, however, it may not be
at all clear how to specify ;. In general, we want to condition on exogenous
variables but not on endogenous ones. These terms refer to the origin or
genesis of the variables: An exogenous variable has its origins outside the
model under consideration, while the mechanism generating an endogenous
variable is inside the model. When we write a single equation like (1.01), the
only endogenous variable allowed is the dependent variable, ;.

Recall the example of the consumption function that we looked at in Sec-
tion 1.1. That model seeks to explain household consumption in terms of
disposable income, but it makes no claim to explain disposable income, which
is simply taken as given. The consumption function model can be correctly
specified only if two conditions hold:

(i) The mean of consumption conditional on disposable income is a linear
function of the latter.

(ii) Consumption is not a variable that contributes to the determination of
disposable income.

The second condition means that the origin of disposable income, that is, the
mechanism by which disposable income is generated, lies outside the model for
consumption. In other words, disposable income is exogenous in that model.
If the simple consumption model we have presented is correctly specified, the
two conditions above must be satisfied. Needless to say, we do not claim that
this model is in fact correctly specified.

It is not always easy to decide just what information set to condition on. As
the above example shows, it is often not clear whether or not a variable is
exogenous. This sort of question will be discussed in Chapter 8. Moreover,
even if a variable clearly is exogenous, we may not want to include it in €2;.
For example, if the ultimate purpose of estimating a regression model is to
use it for forecasting, there may be no point in conditioning on information
that will not be available at the time the forecast is to be made.

Error Terms

Whenever we specify a regression model, it is essential to make assumptions
about the properties of the error terms. The simplest assumption is that all
of the error terms have mean 0, come from the same distribution, and are
independent of each other. Although this is a rather strong assumption, it is
very commonly made in practice.

Mutual independence of the error terms, when coupled with the assumption
that E(us) = 0, implies that the mean of u; is 0 conditional on all of the other

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



1.3 The Specification of Regression Models 19

error terms ug, s # t. However, the implication does not work in the other di-
rection, because the assumption of mutual independence is stronger than the
assumption about the conditional means. A very strong assumption which
is often made is that the error terms are independently and identically dis-
tributed, or IID. According to this assumption, the error terms are mutually
independent, and they are in addition realizations from the same, identical,
probability distribution.

When the successive observations are ordered by time, it often seems plausible
that an error term will be correlated with neighboring error terms. Thus wu;
might well be correlated with us; when the value of |t — s| is small. This could
occur, for example, if there is correlation across time periods of random factors
that influence the dependent variable but are not explicitly accounted for in
the regression function. This phenomenon is called serial correlation, and it
often appears to be observed in practice. When there is serial correlation, the
error terms cannot be IID because they are not independent.

Another possibility is that the variance of the error terms may be systemat-
ically larger for some observations than for others. This will happen if the
conditional variance of y; depends on some of the same variables as the condi-
tional mean. This phenomenon is called heteroskedasticity, and it too is often
observed in practice. For example, in the case of the consumption function, the
variance of consumption may well be higher for households with high incomes
than for households with low incomes. When there is heteroskedasticity, the
error terms cannot be IID, because they are not identically distributed. It is
perfectly possible to take explicit account of both serial correlation and het-
eroskedasticity, but doing so would take us outside the context of regression
models like (1.01).

It may sometimes be desirable to write a regression model like the one we
have been studying as

E(y: [ Q) = 1 + Xy, (1.19)

in order to stress the fact that this is a model for the mean of y; conditional
on a certain information set. However, by itself, (1.19) is just as incomplete
a specification as (1.01). In order to see this point, we must now state what
we mean by a complete specification of a regression model. Probably the
best way to do this is to say that a complete specification of any econometric
model is one that provides an unambiguous recipe for simulating the model
on a computer. After all, if we can use the model to generate simulated data,
it must be completely specified.

Simulating Econometric Models

Consider equation (1.01). When we say that we simulate this model, we
mean that we generate numbers for the dependent variable, y;, according
to equation (1.01). Obviously, one of the first things we must fix for the
simulation is the sample size, n. That done, we can generate each of the y;,
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t =1,...,n, by evaluating the right-hand side of the equation n times. For
this to be possible, we need to know the value of each variable or parameter
that appears on the right-hand side.

If we suppose that the explanatory variable X; is exogenous, then we simply
take it as given. So if, in the context of the consumption function example,
we had data on the disposable income of households in some country every
year for a period of n years, we could just use those data. Our simulation
would then be specific to the country in question and to the time period of
the data. Alternatively, it could be that we or some other econometricians
had previously specified another model, for the explanatory variable this time,
and we could then use simulated data provided by that model.

Besides the explanatory variable, the other elements of the right-hand side of
(1.01) are the parameters, §; and (33, and the error term u;. The key feature
of the parameters is that we do not know their true values. We will have
more to say about this point in Chapter 3, when we define the twin concepts
of models and data-generating processes. However, for purposes of simulation,
we could use either values suggested by economic theory or values obtained
by estimating the model. Evidently, the simulation results will depend on
precisely what values we use.

Unlike the parameters, the error terms cannot be taken as given; instead, we
wish to treat them as random. Luckily, it is easy to use a computer to generate
“random” numbers by using a program called a random number generator; we
will discuss these programs in Chapter 4. The “random” numbers generated
by computers are not random according to some meanings of the word. For
instance, a computer can be made to spit out exactly the same sequence of
supposedly random numbers more than once. In addition, a digital computer
is a perfectly deterministic device. Therefore, if random means the opposite
of deterministic, only computers that are not functioning properly would be
capable of generating truly random numbers. Because of this, some people
prefer to speak of computer-generated random numbers as pseudo-random.
However, for the purposes of simulations, the numbers computers provide have
all the properties of random numbers that we need, and so we will call them
simply random rather than pseudo-random.

Computer-generated random numbers are mutually independent drawings,
or realizations, from specific probability distributions, usually the uniform
U(0,1) distribution or the standard normal distribution, both of which were
defined in Section 1.2. Of course, techniques exist for generating drawings
from many other distributions as well, as do techniques for generating draw-
ings that are not independent. For the moment, the essential point is that we
must always specify the probability distribution of the random numbers we
use in a simulation. It is important to note that specifying the expectation of
a distribution, or even the expectation conditional on some other variables, is
not enough to specify the distribution in full.
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Let us now summarize the various steps in performing a simulation by giving
a sort of generic recipe for simulations of regression models. In the model
specification, it is convenient to distinguish between the deterministic spec-
ification and the stochastic specification. In model (1.01), the deterministic
specification consists of the regression function, of which the ingredients are
the explanatory variable and the parameters. The stochastic specification
(“stochastic” is another word for “random”) consists of the probability distri-
bution of the error terms, and the requirement that the error terms should be
IID drawings from this distribution. Then, in order to simulate the dependent
variable y; in (1.01), we do as follows:

e Fix the sample size, n;
e Choose the parameters (here 3; and f32) of the deterministic specification;

e Obtain the n successive values X;, t = 1,...,n, of the explanatory vari-
able. As explained above, these values may be real-world data or the
output of another simulation;

e Evaluate the n successive values of the regression function 31 + 32 X;, for
t=1,...,n;

e Choose the probability distribution of the error terms, if necessary spec-
ifying parameters such as its mean and variance;

e Use a random-number generator to generate the n successive and mutu-
ally independent values u; of the error terms;

e Form the n successive values y; of the dependent variable by adding the
error terms to the values of the regression function.

The n values y;, t = 1,...,n, thus generated are the output of the simulation;
they are the simulated values of the dependent variable.

The chief interest of such a simulation is that, if the model we simulate is
correctly specified and thus reflects the real-world generating process for the
dependent variable, our simulation mimics the real world accurately, because
it makes use of the same data-generating mechanism as that in operation in
the real world.

A complete specification, then, is anything that leads unambiguously to a
recipe like the one given above. We will define a fully specified parametric
model as a model for which it is possible to simulate the dependent variable
once the values of the parameters are known. A partially specified parametric
model is one for which more information, over and above the parameter values,
must be supplied before simulation is possible. Both sorts of models are
frequently encountered in econometrics.

To conclude this discussion of simulations, let us return to the specifications
(1.01) and (1.19). Both are obviously incomplete as they stand. In order
to complete either one, it is necessary to specify the information set €2; and
the distribution of w; conditional on €2;. In particular, it is necessary to
know whether the error terms ug with s # ¢ belong to ;. In (1.19), one
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aspect of the conditional distribution is given, namely, the conditional mean.
Unfortunately, because (1.19) contains no explicit error term, it is easy to
forget that it is there. Perhaps as a result, it is more common to write
regression models in the form of (1.01) than in the form of (1.19). However,
writing a model in the form of (1.01) does have the disadvantage that it
obscures both the dependence of the model on the choice of an information
set and the fact that the distribution of the error term must be specified
conditional on that information set.

Linear and Nonlinear Regression Models

The simple linear regression model (1.01) is by no means the only reasonable
model for the mean of y; conditional on X;. Consider, for example, the models

Y = B1 + PoXe + B3 X7 + u (1.20)
Yt =71 + Y2 log X + ug, and (1.21)
1
=01+ 00— . 1.22
Yy = 01 + 2X, + uy (1.22)
3

These are all models that might be plausible in some circumstances.” In
equation (1.20), there is an extra parameter, 3, which allows E(y; | X}) to
vary quadratically with X; whenever 33 is nonzero. In effect, X; and X?
are being treated as separate explanatory variables. Thus (1.20) is the first
example we have seen of a multiple linear regression model. It reduces to the
simple linear regression model (1.01) when 5 = 0.

In the models (1.21) and (1.22), on the other hand, there are no extra para-
meters. Instead, a nonlinear transformation of X; is used in place of X; itself.
As a consequence, the relationship between X; and E(y;| X;) in these two
models is necessarily nonlinear. Nevertheless, (1.20), (1.21), and (1.22) are all
said to be linear regression models, because, even though the mean of y; may
depend nonlinearly on X3, it always depends linearly on the unknown para-
meters of the regression function. As we will see in Section 1.5, it is quite easy
to estimate a linear regression model. In contrast, genuinely nonlinear mod-
els, in which the regression function depends nonlinearly on the parameters,
are somewhat harder to estimate; see Chapter 6.

Because it is very easy to estimate linear regression models, a great deal
of applied work in econometrics makes use of them. It may seem that the
linearity assumption is very restrictive. However, as the examples (1.20),
(1.21), and (1.22) illustrate, this assumption need not be unduly restrictive
in practice, at least not if the econometrician is at all creative. If we are
willing to transform the dependent variable as well as the independent ones,

3 In this book, all logarithms are natural logarithms. Thus a = logx implies
that z = e Some authors use “In” to denote natural logarithms and “log” to
denote base 10 logarithms. Since econometricians should never have any use
for base 10 logarithms, we avoid this aesthetically displeasing notation.
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the linearity assumption can be made even less restrictive. As an example,
consider the nonlinear regression model

g = X XD 4y, (1.23)

in which there are two explanatory variables, X;» and X;3, and the regression
function is multiplicative. If the notation seems odd, suppose that there is
implicitly a third explanatory variable, X;;, which is constant and always
equal to e. Notice that the regression function in (1.23) can be evaluated only
when X;5 and X;3 are positive for all ¢. It is a genuinely nonlinear regression
function, since it is clearly linear neither in parameters nor in variables. For
reasons that will shortly become apparent, a nonlinear model like (1.23) is
very rarely estimated in practice.

A model like (1.23) is not as outlandish as may appear at first glance. It
could arise, for instance, if we wanted to estimate a Cobb-Douglas production
function. In that case, y; would be output for observation ¢, and X;» and X;3
would be inputs, say labor and capital. Since e is just a positive constant,
it plays the role of the scale factor that is present in every Cobb-Douglas
production function.

As (1.23) is written, everything enters multiplicatively except the error term.
But it is easy to modify (1.23) so that the error term also enters multiplica-
tively. One way to do this is to write

yr = XRZXE +up = (X X)L+ ), (1.24)

where the error factor 1 + v, multiplies the regression function. If we now
assume that the underlying errors v; are IID, it follows that the additive
errors u; are proportional to the regression function. This may well be a more
plausible specification than that in which the u; are supposed to be IID, as
was implicitly assumed in (1.23). To see this, notice first that the additive
error u; has the same units of measurement as y;. If (1.23) is interpreted as
a production function, then u; is measured in units of output. However, the
multiplicative error v; is dimensionless. In other words, it is a pure number,
like 0.02, which could be expressed as 2 percent. If the u; are assumed to be
IID, then we are assuming that the error in output is of the same order of
magnitude regardless of the scale of production. If, on the other hand, the v,
are assumed to be IID, then the error is proportional to total output. This
second assumption is almost always more reasonable than the first.

If the model (1.24) is a good one, the v; should be quite small, usually less than
about 0.05. For small values of the argument w, a standard approximation to
the exponential function gives us that e = 1+ w. As a consequence, (1.24)
will be very similar to the model

gy = X2 Xsevt (1.25)
whenever the error terms are reasonably small.
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Now suppose we take logarithms of both sides of (1.25). The result is
logy: = 1 + P2 log Xia + B3 log Xz + vy, (1.26)

which is a loglinear regression model. This model is linear in the parameters
and in the logarithms of all the variables, and so it is very much easier to esti-
mate than the nonlinear model (1.23). Since (1.25) is at least as plausible as
(1.23), it is not surprising that loglinear regression models, like (1.26), are es-
timated very frequently in practice, while multiplicative models with additive
error terms, like (1.23), are very rarely estimated. Of course, it is important
to remember that (1.26) is not a model for the mean of y; conditional on Xy
and X;3. Instead, it is a model for the mean of logy; conditional on those
variables. If it is really the conditional mean of y; that we are interested in,
we will not want to estimate a loglinear model like (1.26).

1.4 Matrix Algebra

It is impossible to study econometrics beyond the most elementary level with-
out using matrix algebra. Most readers are probably already quite familiar
with matrix algebra. This section reviews some basic results that will be used
throughout the book. It also shows how regression models can be written very
compactly using matrix notation. More advanced material will be discussed
in later chapters, as it is needed.

An n x m matrix A is a rectangular array that consists of nm elements
arranged in n rows and m columns. The name of the matrix is conventionally
shown in boldface. A typical element of A might be denoted by either A;; or
aij, where 1 =1,...,n and j =1,...,m. The first subscript always indicates
the row, and the second always indicates the column. It is sometimes necessary
to show the elements of a matrix explicitly, in which case they are arrayed in
rows and columns and surrounded by large brackets, as in

2 3 6
B= .
{458}

Here B is a 2 x 3 matrix.

If a matrix has only one column or only one row, it is called a vector. There are
two types of vectors, column vectors and row vectors. Since column vectors
are more common than row vectors, a vector that is not specified to be a
row vector is normally treated as a column vector. If a column vector has
n elements, it may be referred to as an n-vector. Boldface is used to denote
vectors as well as matrices. It is conventional to use uppercase letters for
matrices and lowercase letters for column vectors. However, it is sometimes
necessary to ignore this convention.
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If a matrix has the same number of columns and rows, it is said to be square.
A square matrix A is symmetric if A;; = Aj; for all ¢« and j. Symmetric
matrices occur very frequently in econometrics. A square matrix is said to
be diagonal if A;; = 0 for all 7 # j; in this case, the only nonzero entries are
those on what is called the principal diagonal. Sometimes a square matrix
has all zeros above or below the principal diagonal. Such a matrix is said to
be triangular. If the nonzero elements are all above the diagonal, it is said to
be upper-triangular; if the nonzero elements are all below the diagonal, it is
said to be lower-triangular. Here are some examples:

B~ N
D W N
UL
o o
S = O
OO
Tt W
NN O
o O O

In this case, A is symmetric, B is diagonal, and C' is lower-triangular.

The transpose of a matrix is obtained by interchanging its row and column
subscripts. Thus the ij*" element of A becomes the ji*" element of its trans-
pose, which is denoted A'. Note that many authors use A’ rather than A" to
denote the transpose of A. The transpose of a symmetric matrix is equal to
the matrix itself. The transpose of a column vector is a row vector, and vice
versa. Here are some examples:

2
A:[2 o 7} Al = b= 4| b =[2 4 6].
6

~ Ut N
= 00 W

Note that a matrix A is symmetric if and only if A = A,

Arithmetic Operations on Matrices

Addition and subtraction of matrices works exactly the way it does for scalars,
with the proviso that matrices can be added or subtracted only if they are
conformable. In the case of addition and subtraction, this just means that
they must have the same dimensions, that is, the same number of rows and
the same number of columns. If A and B are conformable, then a typical
element of A 4+ B is simply A;; + B;;, and a typical element of A — B is
Aij — Bzg

Matrix multiplication actually involves both additions and multiplications. It
is based on what is called the inner product, or scalar product, of two vectors.
Suppose that a and b are n—vectors. Then their inner product is

a'b=bla = iaibi.
=1

As the name suggests, this is just a scalar.
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When two matrices are multiplied together, the ij'"" element of the result is
equal to the inner product of the i** row of the first matrix with the j"
column of the second matrix. Thus, if C = AB,

Cij = Z A Byj. (1.27)
k=1

For (1.27) to make sense, we must assume that A has m columns and that
B has m rows. In general, if two matrices are to be conformable for multipli-
cation, the first matrix must have as many columns as the second has rows.
Further, as is clear from (1.27), the result has as many rows as the first matrix
and as many columns as the second. One way to make this explicit is to write
something like
A B = C.
nxm mxlIl nxl

One rarely sees this type of notation in a book or journal article. However, it
is often useful to employ it when doing calculations, in order to verify that the
matrices being multiplied are indeed conformable and to derive the dimensions
of their product.

The rules for multiplying matrices and vectors together are the same as the
rules for multiplying matrices with each other; vectors are simply treated as
matrices that have only one column or only one row. For instance, if we
multiply an n-vector a by the transpose of an n-vector b, we obtain what is
called the outer product of the two vectors. The result, written as ab', is an
n X n matrix with typical element a;b;.

Matrix multiplication is, in general, not commutative. The fact that it is pos-
sible to premultiply B by A does not imply that it is possible to postmultiply
B by A. In fact, it is easy to see that both operations are possible if and only
if one of the matrix products is square, in which case the other matrix product
will be square also, although generally with different dimensions. Even when
both operations are possible, AB # BA except in special cases.

A special matrix that econometricians frequently make use of is I, which
denotes the identity matrix. It is a diagonal matrix with every diagonal
element equal to 1. A subscript is sometimes used to indicate the number of
rows and columns. Thus

Is =

SO =
O = O
= o O

The identity matrix is so called because when it is either premultiplied or
postmultiplied by any matrix, it leaves the latter unchanged. Thus, for any
matrix A, AI = TA = A, provided, of course, that the matrices are con-
formable for multiplication. It is easy to see why the identity matrix has this
property. Recall that the only nonzero elements of I are equal to 1 and are
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on the principal diagonal. This fact can be expressed simply with the help of
the symbol known as the Kronecker delta, written as d;;. The definition is

(1 =y,
5”_{0 iti . (1.28)

The 45" element of I is just §;;. By (1.27), the ij'" element of AT is

ZAikaj = ZAik;(Skj = Ayj,
=1 k=1

since all the terms in the sum over k vanish except that for which k£ = j.

A special vector that we frequently use in this book is ¢. It denotes a col-
umn vector every element of which is 1. This special vector comes in handy
whenever one wishes to sum the elements of another vector, because, for any
n-vector b,

o= b (1.29)
=1

Matrix multiplication and matrix addition interact in an intuitive way. It
is easy to check from the definitions of the respective operations that the
distributive properties hold. That is, assuming that the dimensions of the
matrices are conformable for the various operations,

A(B+C)=AB+ AC, and
(B+C)A=BA+ CA.

In addition, both operations are associative, which means that
(A+B)+C=A+(B+C), and
(AB)C = A(BC).

The transpose of the product of two matrices is the product of the transposes
of the matrices with the order reversed. Thus

(AB)'= B'A". (1.30)

The reversal of the order is necessary for the transposed matrices to be con-
formable for multiplication. The result (1.30) can be proved immediately by
writing out the typical entries of both sides and checking that

(AB)j;= (AB);; = > AjBri = Y (B )u(AT)y; = (B'AT);5,
k=1 k=1

where m is the number of columns of A and the number of rows of B. It is
always possible to multiply a matrix by its own transpose: If A is n x m, then
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ATis m xn, ATA is m x m, and AAT is n x n. It follows directly from (1.30)
that both of these matrix products are symmetric:

A'A=(A"A)" and AAT=(AA")".

It is frequently necessary to multiply a matrix, say B, by a scalar, say a.
Multiplication by a scalar works exactly the way one would expect: Every
element of B is multiplied by a. Since multiplication by a scalar is commuta-
tive, we can write this either as aB or as Ba, but aB is the more common
notation.

Occasionally, it is necessary to multiply two matrices together element by
element. The result is called the direct product of the two matrices. The
direct product of A and B is denoted Ax* B, and a typical element of it is
equal to A,LJBZ]

A square matrix may or may not be invertible. If A is invertible, then it has
an inverse matrix A~! with the property that

AA T =A"A=1

If A is symmetric, then so is AL If A is triangular, then so is A~!. Except
in certain special cases, it is not easy to calculate the inverse of a matrix by
hand. One such special case is that of a diagonal matrix, say D, with typical
diagonal element D;;. It is easy to verify that D~! is also a diagonal matrix,
with typical diagonal element D_; L

If an n x n square matrix A is invertible, then its rank is n. Such a matrix is
said to have full rank. If a square matrix does not have full rank, and therefore
is not invertible, it is said to be singular. If a square matrix is singular, its
rank must be less than its dimension. If, by omitting j rows and j columns
of A, we can obtain a matrix A’ that is invertible, and if j is the smallest
number for which this is true, the rank of A is n — j. More generally, for
matrices that are not necessarily square, the rank is the largest number m
for which an m x m nonsingular matrix can be constructed by omitting some
rows and some columns from the original matrix. The rank of a matrix is
closely related to the geometry of vector spaces, which will be discussed in
the next chapter.

Regression Models and Matrix Notation

The simple linear regression model (1.01) can easily be written in matrix
notation. If we stack the model for all the observations, we obtain

y1 = B+ B Xh +uy

Y2 = 1 + B2 Xo + us
(1.31)

yn:ﬁl+ﬁ2Xn+Un~
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Let y denote an n—vector with typical element y;, u an n-vector with typical
element u;, X an n x 2 matrix that consists of a column of 1s and a column
with typical element X;, and 8 a 2-vector with typical element 3;, 1 = 1, 2.
Thus we have

Y1 Uy I X
Y2 U9 1 X2
y=1|.1|, w=| .|, X=|. .|, and B:{Bl}.
; ; D P2
Yn Un, 1 X,
Equations (1.31) can now be rewritten as
y=XB+u. (1.32)

It is easy to verify from the rules of matrix multiplication that a typical row
of (1.32) is a typical row of (1.31). When we postmultiply the matrix X by
the vector 3, we obtain a vector X3 with typical element (31 + (2 X;.

When a regression model is written in the form (1.32), the separate columns
of the matrix X are called regressors, and the column vector y is called
the regressand. In (1.31), there are just two regressors, corresponding to
the constant and one explanatory variable. One advantage of writing the
regression model in the form (1.32) is that we are not restricted to just one
or two regressors. Suppose that we have k regressors, one of which may or
may not correspond to a constant, and the others to a number of explanatory
variables. Then the matrix X becomes

X X2 o Xk
Xo1 Xog - Xop

x-— |7 >, (1.33)
an XnQ o Xnk

where X;; denotes the t*"' observation on the i'" regressor, and the vector 3

now has k elements, 5, through ;. Equation (1.32) remains perfectly valid
when X and 3 are redefined in this way. A typical row of this equation is

k
ye = XeB+up = Z Bi Xti + ug, (1.34)
i=1

where we have used X; to denote the ¢t row of X.

In (1.32), we used the rules of matrix multiplication to write the regression
function, for the entire sample, in a very simple form. These rules make it
possible to find equally convenient expressions for other aspects of regression
models. The key fact is that every element of the product of two matrices is a
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summation. Thus it is often very convenient to use matrix algebra when deal-
ing with summations. Consider, for example, the matrix of sums of squares
and cross-products of the X matrix. This is a £ x k symmetric matrix, of
which a typical element is either

n n
§ : 2 § :

Xti or Xn’th,
t=1 t=1

the former being a typical diagonal element and the latter a typical off-
diagonal one. This entire matrix can be written very compactly as X 'X.
Similarly, the vector with typical element

n
Z Xti Yt
t=1

can be written as X 'y. As we will see in the next section, the least squares
estimates of B depend only on the matrix X 'X and the vector X y.

Partitioned Matrices

There are many ways of writing an n X k matrix X that are intermediate
between the straightforward notation X and the full element-by-element de-
composition of X given in (1.33). We might wish to separate the columns
while grouping the rows, as

X = [azl Ty - :ck],

nxk nxl nx1 ... nx1

or we might wish to separate the rows but not the columns, as

X1 1xk
X 1xk
X=|:
X, 1xk
n Xk
To save space, we can also write this as X = [Xl HD, R I Xn] . There is no

restriction on how a matrix can be partitioned, so long as all the submatrices
or blocks fit together correctly. Thus we might have

k1 ko
X = |:X11 Xi2 } ni
X1 Xa2 | o

with the submatrix Xi; of dimensions nq X ki, Xjo of dimensions n; X ko,
X5 of dimensions no X kq, and Xso of dimensions ny X ko, with ny +ns =n
and k1 + ko = k. Thus X7 and X5 have the same number of rows, and
also X1 and Xss, as required for the submatrices to fit together horizontally.
Similarly, X7; and X5; have the same number of columns, and also X2 and
X9, as required for the submatrices to fit together vertically as well.
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If two matrices A and B of the same dimensions are partitioned in exactly
the same way, they can be added or subtracted block by block. A simple
example is

A+B=[A A;]+[B, By]=[A+B;, A,+ B],

where A; and B have the same dimensions, as do A, and Bs.

More interestingly, as we now explain, matrix multiplication can sometimes
be performed block by block on partitioned matrices. If the product AB
exists, then A has as many columns as B has rows. Now suppose that the
columns of A are partitioned in the same way as the rows of B. Then

B,
B,
AB=[A, Ay, --- A,]| .
B,
Here each A;, i = 1,...,p, has as many columns as the corresponding B;

has rows. The product can be computed following the usual rules for matrix
multiplication just as though the blocks were scalars, yielding the result

p
AB=> A;B;. (1.35)

=1

To see this, it is enough to compute the typical element of each side of equation
(1.35) directly and observe that they are the same. Matrix multiplication
can also be performed block by block on matrices that are partitioned both
horizontally and vertically, provided all the submatrices are conformable; see
Exercise 1.17.

These results on multiplying partitioned matrices lead to a useful corollary.
Suppose that we are interested only in the first m rows of a product AB,
where A has more than m rows. Then we can partition the rows of A into
two blocks, the first with m rows, the second with all the rest. We need not
partition B at all. Then

AB = [jjB: [ig}. (1.36)

This works because A; and A, both have the full number of columns of A,
which must be the same as the number of rows of B, since AB exists. It
is clear from the rightmost expression in (1.36) that the first m rows of AB
are given by A;B. In order to obtain any subset of the rows of a matrix
product of arbitrarily many factors, the rule is that we take the submatrix of
the leftmost factor that contains just the rows we want, and then multiply it
by all the other factors unchanged. Similarly, if we want to select a subset
of columns of a matrix product, we can just select them from the rightmost
factor, leaving all the factors to the left unchanged.
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1.5 Method of Moments Estimation

Almost all econometric models contain unknown parameters. For most of the
uses to which such models can be put, it is necessary to have estimates of these
parameters. To compute parameter estimates, we need both a model contain-
ing the parameters and a sample made up of observed data. If the model is
correctly specified, it describes the real-world mechanism which generated the
data in our sample.

It is common in statistics to speak of the “population” from which a sample
is drawn. Recall the use of the term “population mean” as a synonym for
the mathematical term “expectation”; see Section 1.2. The expression is a
holdover from the time when statistics was biostatistics, and the object of
study was the human population, usually that of a specific town or country,
from which random samples were drawn by statisticians for study. The av-
erage weight of all members of the population, for instance, would then be
estimated by the mean of the weights of the individuals in the sample, that
is, by the sample mean of individuals’ weights. The sample mean was thus an
estimate of the population mean. The underlying idea is just that the sample
represents the population from which it has been drawn.

In econometrics, the use of the term population is simply a metaphor. A better
concept is that of a data-generating process, or DGP. By this term, we mean
whatever mechanism is at work in the real world of economic activity giving
rise to the numbers in our samples, that is, precisely the mechanism that our
econometric model is supposed to describe. A data-generating process is thus
the analog in econometrics of a population in biostatistics. Samples may be
drawn from a DGP just as they may be drawn from a population. In both
cases, the samples are assumed to be representative of the DGP or population
from which they are drawn.

A very natural way to estimate parameters is to replace population means by
sample means. This technique is called the method of moments, and it is one
of the most widely-used estimation methods in statistics. As the name implies,
it can be used with moments other than the mean. In general, the method
of moments, sometimes called MM for short, estimates population moments
by the corresponding sample moments. In order to apply this method to
regression models, we must use the facts that population moments are expec-
tations, and that regression models are specified in terms of the conditional
expectations of the error terms.

Estimating the Simple Linear Regression Model

Let us now see how the principle of replacing population means by sample
means works for the simple linear regression model (1.01). The error term for
observation ¢ is

ur = yr — 1 — B2 X,
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and, according to our model, the expectation of this error term is zero. Since
we have n error terms for a sample of size n, we can consider the sample mean
of the error terms:

n

1 1
Ezut = gZ(?/t — b1 — 2 Xy). (1.37)
t=1 t=1
We would like to set this sample mean equal to zero.

Suppose to begin with that §, = 0. This reduces the number of parameters
in the model to just one. In that case, there is just one value of 3; which will
allow (1.37) to be zero. The equation defining this value is

%Z(yt - 51) = 0. (1'38)

Since (31 is common to all the observations and thus does not depend on the
index ¢, (1.38) can be written as

1
HE yr — 1 = 0.
=1

We can easily solve this equation to obtain an estimate Bl. This estimate is
just the mean of the observed values of the dependent variable,

=13 (1.39)
t=1

Thus, if we wish to estimate the population mean of the y;, which is what
(1 is in our model when 35 = 0, the method of moments tells us to use the
sample mean as our estimate.

It is not obvious at first glance how to use the method of moments if we put
the second parameter 32 back into the model. Equation (1.38) would become

%Z(yt - B — ﬁth) =0, (1'40)
t=1

but this is just one equation, and there are two unknowns. In order to obtain
another equation, we can use the fact that our model specifies that the mean
of u; is 0 conditional on the explanatory variable X;. Actually, it may well
specify that the mean of u; is 0 conditional on many other things as well,
depending on our choice of the information set €2;, but we will ignore this for
now. The conditional mean assumption implies that not only is E(u;) = 0,
but that E(X;u;) = 0 as well, since, by (1.16) and (1.17),
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Thus we can supplement (1.40) by the following equation, which replaces the
population mean in (1.41) by the corresponding sample mean,

%ZXt(yt — B — 52Xt) =0. (1-42)
t=1

The equations (1.40) and (1.42) are two linear equations in two unknowns,
(1 and (. Except in rare conditions, which can easily be ruled out, they
will have a unique solution that is not difficult to calculate. Solving these
equations yields the MM estimates.

We could just solve (1.40) and (1.42) directly, but it is far more illuminating
to rewrite them in matrix form. Since ; and (32 do not depend on ¢, these
two equations can be written as

B1 + (%ZXQ@ = %Zyt
t=1 t=1
(%;Xt)m " (%;Xf)ﬁz =) X

Multiplying both equations by n and using the rules of matrix multiplication
that were discussed in the last section, we can also write them as

{Z?Z X, g: )i;} {g;] B [;Efjéi;] (1.43)

Equations (1.43) can be rewritten much more compactly. As we saw in the
last section, the model (1.01) is simply a special case of the multiple linear
regression model

y = X0 + u, (1.44)

where the n-vector y has typical element y;, the k-vector B has typical
element 3;, and, in general, the matrix X is n x k. In this case, X is n x 2; it
can be written as X = [¢ ], where ¢ denotes a column of 1s, and x denotes
a column with typical element X;. Thus, recalling (1.29), we see that

xT :|: 2?21 Yt ]
Z?:l Xiyt
and

XTX: |: n Z:L:l Xt:|

S Xe i X
These are the principal quantities that appear in the equations (1.43). Thus
it is clear that we can rewrite those equations as

X'X8=X"y. (1.45)
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To find the estimator 3 that solves (1.45), we simply multiply it by the inverse
of the matrix X "X, assuming that this inverse exists. This yields the famous
formula

B=(X"X)'XTy. (1.46)

The estimator ,é given by this formula is generally called the ordinary least
squares, or OLS, estimator for the linear regression model.* Why it is called
this, rather than the MM estimator, will be explained shortly.

Estimating the Multiple Linear Regression Model

The formula (1.46) gives us the OLS, and MM, estimator for the simple linear
regression model (1.01), but in fact it does far more than that. As we now
show, it also gives us the MM estimator for the multiple linear regression
model (1.44). Since each of the explanatory variables is required to be in the
information set )y, we have, for i = 1,... k,

E(Xm»ut) = 0;

which, in the corresponding sample mean form, yields

%ZXti(yt - X;8)=0. (1.47)

t=1

(Recall from (1.34) that X; denotes the t*" row of X.) As i varies from 1
to k, equation (1.47) yields k equations for the & unknown components of 3.
In most cases, there will be a constant, which we may take to be the first
regressor. If so, X;; = 1, and the first of these equations simply says that the
sample mean of the error terms is 0.

In matrix form, after multiplying them by n, the k equations of (1.47) can be
written as
X'(y — XB) = 0. (1.48)

The notation 0 is used to signify a zero vector, here a k-vector, each element
of which is zero. Equations (1.48) are clearly equivalent to equations (1.45).
Thus solving them yields the estimator (1.46), which applies no matter what
the number of regressors.

It is easy to see that the OLS estimator (1.46) depends on y and X exclu-
sively through a number of scalar products. Each column x; of the matrix X
corresponds to one of the regressors, as does each row @; of the transposed

4 Econometricians generally make a distinction between an estimate, which is
simply a number used to estimate some parameter, normally based on a par-
ticular data set, and an estimator, which is a rule, such as (1.46), for obtaining
estimates from any set of data.
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matrix X . Thus we can write X 'y as

T T,
T 1y
T T,
X T2 T2y
Yy = .Y =
T T
T Tr Y

The elements of the rightmost expression here are just the scalar products of
the regressors ; with the regressand y. Similarly, we can write X 'X as

x, iz, x Ty - oz Ty

. To T T, THxo - XTo T
XX=|.|[x&1 22 - =] = ) :

:I?;cT Cl:;;raﬁ :vazvg te :ckTa:k

Once more, all the elements of the rightmost expression are scalar products of
pairs of regressors. Since X "X can be expressed exclusively in terms of scalar
products of the variables of the regression, the same is true of its inverse, the
elements of which will be in general complicated functions of those scalar
products. Thus ,(3‘ is a function solely of scalar products of pairs of variables.

Least Squares Estimation

We have derived the estimator (1.46) by using the method of moments. De-
riving it in this way has at least two major advantages. Firstly, the method
of moments is a very general and very powerful principle of estimation, one
that we will encounter again and again throughout this book. Secondly, by
using the method of moments, we were able to obtain (1.46) without making
any use of calculus. However, as we have already remarked, (1.46) is generally
referred to as the OLS estimator, not the MM estimator. It is interesting to
see why this is so.

For the multiple linear regression model (1.44), the expression y; — X;3 is
equal to the error term for the ¢*" observation, but only if the correct value
of the parameter vector 3 is used. If the same expression is thought of as a
function of 3, with 3 allowed to vary arbitrarily, then it is called a residual,
more specifically, the residual associated with the ¢*" observation. Similarly,
the n-vector y — X3 is called the vector of residuals. The sum of the squares
of the components of the vector of residuals is called the sum of squared
residuals, or SSR. Since this sum is a scalar, the sum of squared residuals is
a scalar-valued function of the k-vector 3:

n

SSR(B) = Y _(y: — X:8)*. (1.49)

t=1

The notation here emphasizes the fact that this function can be computed for
arbitrary values of the argument (3 purely in terms of the observed data y
and X.
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The idea of least squares estimation is to minimize the sum of squared resid-
uals associated with a regression model. At this point, it may not be at all
clear why we would wish to do such a thing. However, it can be shown that
the parameter vector 3 which minimizes (1.49) is the same as the MM esti-
mator (1.46). This being so, we will regularly use the traditional terminology
associated with linear regressions, based on least squares. Thus, the parameter
estimates which are the components of the vector ,é that minimizes the SSR
(1.49) are called the least squares estimates, and the corresponding vector of
residuals is called the vector of least squares residuals. When least squares
is used to estimate a linear regression model like (1.01), it is called ordinary
least squares, or OLS, to distinguish it from other varieties of least squares
that we will encounter later, such as nonlinear least squares (Chapter 6) and
generalized least squares (Chapter 7).

Consider briefly the simplest case of (1.01), in which $2 = 0 and the model
contains only a constant term. Expression (1.49) becomes

n

SSR(f1) = Z(yt —B1)? = ny +n07 - 2512 Yt (1.50)
=1 =1

t=1

Differentiating the rightmost expression in (1.50) with respect to 3; and set-
ting the derivative equal to zero gives the following first-order condition for a
minimum:

0SSR
91

For this simple model, the matrix X consists solely of the constant vector, ¢.
Therefore, by (1.29), X'X =1t =n, and X'y = 'y = 31" | y:. Thus, if
the first-order condition (1.51) is multiplied by one-half, it can be rewritten
as t't3; = ¢'y, which is clearly just a special case of (1.45). Solving (1.51)
for By yields the sample mean of the y;,

=26n—2) y =0 (1.51)

t=1

B = %Zyt = (") Wy. (1.52)
t=1

We already saw, in (1.39), that this is the MM estimator for the model
with B3 = 0. The rightmost expression in (1.52) makes it clear that the
sample mean is just a special case of the famous formula (1.46).

Not surprisingly, the OLS and MM estimators are also equivalent in the mul-
tiple linear regression model. For this model,

SSR(B) = (y — XB)(y — XB). (1.53)

If this inner product is written out in terms of the scalar components of y, X,
and 3, it is easy enough to show that the first-order conditions for minimizing
the SSR (1.53) can be written as (1.45); see Exercise 1.20. Thus we conclude
that (1.46) provides a general formula for the OLS estimator B in the multiple
linear regression model.
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Final Remarks

We have seen that it is perfectly easy to obtain an algebraic expression, (1.46),
for the OLS estimator B With modern computers and appropriate software,
it is also easy to obtain OLS estimates numerically, even for regressions with
millions of observations and dozens of explanatory variables; the time-honored
term for doing so is “running a regression”. What is not so easy, and will
occupy us for most of the next four chapters, is to understand the properties
of these estimates.

We will be concerned with two types of properties. The first type, numerical
properties, arise as a consequence of the way that OLS estimates are obtained.
These properties hold for every set of OLS estimates, no matter how the data
were generated. That they hold for any data set can easily be verified by direct
calculation. The numerical properties of OLS will be discussed in Chapter 2.
The second type, statistical properties, depend on the way in which the data
were generated. They can be verified theoretically, under certain assumptions,
and they can be illustrated by simulation, but we can never prove that they
are true for any given data set. The statistical properties of OLS will be
discussed in detail in Chapters 3, 4, and 5.

Readers who seek a deeper treatment of the topics dealt with in the first two
sections may wish to consult Gallant (1997) or Mittelhammer (1996).

1.6 Notes on the Exercises

Each chapter of this book is followed by a set of exercises. These exercises are
of various sorts, and they have various intended functions. Some are, quite
simply, just for practice. Some serve chiefly to extend the material presented
in the chapter. In many cases, the new material in such exercises recurs
later in the book, and it is hoped that readers who have worked through
them will follow later discussions more easily. A case in point concerns the
bootstrap. Some of the exercises in this chapter and the next two are designed
to familiarize readers with the tools that are used to implement the bootstrap,
so that, when it is introduced formally in Chapter 4, the bootstrap will appear
as a natural development. Other exercises have a tidying-up function. Details
left out of the discussions in the main text are taken up, and conscientious
readers can check that unproved claims made in the text are in fact justified.

Many of the exercises require the reader to make use of a computer, sometimes
to compute estimates and test statistics using real or simulated data, and
sometimes for the purpose of doing simulations. There are a great many
computer packages that are capable of doing the things we ask for in the
exercises, and it seems unnecessary to make any specific recommendations as
to what software would be best. Besides, we expect that many readers will
already have developed their own personal preferences for software packages,
and we know better than to try to upset such preferences.
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Some exercises require, not only a computer, but also actual economic data.
It cannot be stressed enough that econometrics is an empirical discipline, and
that the analysis of economic data is its raison d’étre. All of the data needed
for the exercises are available from the World Wide Web site for this book.
The address is

http://www.econ.queensu.ca/ETM/

This web site will ultimately contain corrections and updates to the book as
well as the data needed for the exercises.

1.7 Exercises

1.1 Consider a sample of n observations, y1,¥y2,...,Yn, on some random vari-
able Y. The empirical distribution function, or EDF, of this sample is a dis-
crete distribution with n possible points. These points are just the n observed
points, y1,y2,...,yn. Each point is assigned the same probability, which is
just 1/, in order to ensure that all the probabilities sum to 1.

Compute the expectation of the discrete distribution characterized by the
EDF, and show that it is equal to the sample mean, that is, the unweighted
average of the n sample points, y1,y2,...,Yn.

1.2 A random variable computed as the ratio of two independent standard normal
variables follows what is called the Cauchy distribution. It can be shown that
the density of this distribution is

1
)= ———-<.
Show that the Cauchy distribution has no first moment, which means that its
expectation does not exist.

Use your favorite random number generator to generate samples of 10, 100,
1,000, and 10,000 drawings from the Cauchy distribution, and as many in-
termediate values of n as you have patience or computer time for. For each
sample, compute the sample mean. Do these sample means seem to converge
to zero as the sample size increases? Repeat the exercise with drawings from
the standard normal density. Do these sample means tend to converge to zero
as the sample size increases?

1.3 Consider two events A and B such that A C B. Compute Pr(A| B) in terms
of Pr(A) and Pr(B). Interpret the result.

1.4 Prove Bayes’ Theorem. This famous theorem states that, for any two events
A and B with nonzero probabilities,
B|A)Pr(A)
Pr(B)

Pr(A|B) = L1

Another form of the theorem deals with two continuous random variables X7
and Xo, which have a joint density f(z1,z2). Show that, for any values x
and zo that are permissible for X1 and Xo, respectively,

_ flza]z) fl@1)
Flole) =",
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1.5

1.6

1.7

1.8

1.9

1.10

1.11
1.12

Regression Models

Suppose that X and Y are two binary random variables. Their joint distri-
bution is given in the following table.

Y =0 Y=1
X=0 .16 37
X =1 .29 18

What is the marginal distribution of Y? What is the distribution of Y con-
ditional on X = 0?7 What is the distribution of Y conditional on X = 17

Demonstrate the Law of Iterated Expectations explicitly by showing that
E(E(X|Y)) = E(X). Let h(Y) = Y3, Show explicitly that E(Xh(Y)|Y) =
h(Y)E(X |Y) in this case.

Using expression (1.06) for the density ¢(z) of the standard normal distribu-
tion, show that the derivative of ¢(x) is the function —z¢(z), and that the
second derivative is (z? —1)¢(z). Use these facts to show that the expectation
of a standard normal random variable is 0, and that its variance is 1. These
two properties account for the use of the term “standard.”

A normally distributed random variable can have any mean p and any positive
variance o2, Such a random variable is said to follow the N (u, 0%) distribution.
A standard normal variable therefore has the N(0, 1) distribution. Suppose
that X has the standard normal distribution. Show that the random variable
Z = i+ 0X has mean p and variance o>,

Compute the CDF of the N(u,o?) distribution in terms of ®(-), the CDF of
the standard normal distribution. Differentiate your answer so as to obtain
the PDF of N(u,0?).

If two random variables X; and Xsg are statistically independent, show that

E(X1]X2) = E(X1).

The covariance of two random variables X1 and Xs, which is often written
as Cov(X1, X2), is defined as the expectation of the product of X; — E(X)
and X9 — E(X2). Consider a random variable X1 with mean zero. Show that
the covariance of X7 and any other random variable X, whether it has mean
zero or not, is just the expectation of the product of X7 and Xs.

Show that the covariance of the random variables E(X;|X32) and X; —
E(X1|X32) is zero. It is easiest to show this result by first showing that
it is true when the covariance is computed conditional on Xo.

Show also that the variance of the random variable X; — E(X | X2) cannot
be greater than the variance of X1, and that the two variances will be equal
if X1 and X» are independent. This result shows how one random variable
can be informative about another: Conditioning on it reduces variance unless
the two variables are independent.

Prove that, if X7 and X5 are statistically independent, Cov(X7, X2) = 0.

Let a random variable X7 be distributed as N(0,1). Now suppose that a
second random variable, X», is constructed as the product of X; and an
independent random variable Z, which equals 1 with probability 1/ and —1
with probability 1/9.
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1.13

1.14

1.15

1.16

1.17

1.18

What is the (marginal) distribution of X5? What is the covariance between
X1 and X2? What is the distribution of X7 conditional on X7

Consider the linear regression models

Hiy: yt = 1+ P2 Xt +up and
Hjy: logyt =71 + v2log Xy + uy.

Suppose that the data are actually generated by Hs, with v; = 1.5 and
v2 = 0.5, and that the value of X; varies from 10 to 110 with an average
value of 60. Ignore the error terms and consider the deterministic relations
between y; and X; implied by the two models. Find the values of 3; and (2
that make the relation given by H; have the same level and the same value
of dyt/dX; as the level and value of dy;/dX; implied by the relation given
by Ho when it is evaluated at the average value of the regressor.

Using the deterministic relations, plot y; as a function of X; for both models
for 10 < Xy < 110. Also plot log 4+ as a function of log Xt for both models for
the same range of X;. How well do the two models approximate each other
in each of the plots?

Consider two matrices A and B of dimensions such that the product AB
exists. Show that the i*" row of AB is the matrix product of the i row of
A with the entire matrix B. Show that this result implies that the i row of
a product ABC'..., with arbitrarily many factors, is the product of the ith
row of A with BC'....

What is the corresponding result for the columns of AB? What is the corre-
sponding result for the columns of ABC'...7

Consider two invertible square matrices A and B, of the same dimensions.
Show that the inverse of the product AB exists and is given by the formula

(AB ' =B 'A%
This shows that there is a reversal rule for inverses as well as for transposes;

see (1.30).

Show that the transpose of the product of an arbitrary number of factors is
the product of the transposes of the individual factors in completely reversed
order:

(ABC--)'=...c'B'A".
Show also that an analogous result holds for the inverse of the product of an
arbitrary number of factors.
Consider the following example of multiplying partitioned matrices:

[An A12} [311 312} _ [A11B11+A12321 A11B13 + A12B22
Ag1 Ao | [ B2 Bao A21B11 + AoBo1 A21Bia + AxxBoo |’

Check all the expressions on the right-hand side, verifying that all products
are well defined and that all sums are of matrices of the same dimensions.

Suppose that X = [¢ X7 Xb], where X is n X k, ¢ is an n-vector of 1s,
X1 is n x k1, and X5 is n X ko. What is the matrix X'X in terms of
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1.19

1.20

1.21

1.22

Regression Models

the components of X 7 What are the dimensions of its component matrices?
What is the element in the upper left-hand corner of X Tx equal to?

Fix a sample size of n = 100, and simulate the very simplest regression model,
namely, y+ = 8+ ut. Set § = 1, and let the error terms us be drawings from
the standard normal distribution. Compute the sample mean of the vy,

t=1

Use your favorite econometrics software package to run a regression with y,
the 100 x 1 vector with typical element y;, as the dependent variable, and a
constant as the sole explanatory variable. Show that the OLS estimate of the
constant is equal to the sample mean. Why is this a necessary consequence
of the formula (1.46)7

For the multiple linear regression model (1.44), the sum of squared residuals
can be written as

SSR(B) = > (vt — X:8)” = (y — XB) ' (y — XB).

t=1

Show that, if we minimize SSR(3) with respect to (3, the minimizing value of
B is B, the OLS estimator given by (1.46). The easiest way is to show that
the first-order conditions for a minimum are exactly the equations (1.47),
or (1.48), that arise from MM estimation. This can be done without using
matrix calculus.

The file consumption.data contains data on real personal disposable income
and consumption expenditures in Canada, seasonally adjusted in 1986 dol-
lars, from the first quarter of 1947 until the last quarter of 1996. The sim-
plest imaginable model of the Canadian consumption function would have
consumption expenditures as the dependent variable, and a constant and
personal disposable income as explanatory variables. Run this regression for
the period 1953:1 to 1996:4. What is your estimate of the marginal propensity
to consume out of disposable income?

Plot a graph of the OLS residuals for the consumption function regression
against time. All modern regression packages will generate these residuals for
you on request. Does the appearance of the residuals suggest that this model
of the consumption function is well specified?

Simulate the consumption function model you have just estimated in exercise
1.21 for the same sample period, using the actual data on disposable income.
For the parameters, use the OLS estimates obtained in exercise 1.21. For
the error terms, use drawings from the N (0, 52) distribution, where s? is the
estimate of the error variance produced by the regression package.

Next, run a regression using the simulated consumption data as the dependent
variable and the constant and disposable income as explanatory variables. Are
the parameter estimates the same as those obtained using the real data? Why
or why not?

Plot the residuals from the regression with simulated data. Does the plot look
substantially different from the one obtained using the real data? It should!
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Chapter 2

The Geometry of Linear Regression

2.1 Introduction

In Chapter 1, we introduced regression models, both linear and nonlinear,
and discussed how to estimate linear regression models by using the method
of moments. We saw that all n observations of a linear regression model with
k regressors can be written as

y=XB+u, (2.01)

where y and u are n-vectors, X is an n X k matrix, one column of which may
be a constant term, and 3 is a k—vector. We also saw that the MM estimates,
usually called the ordinary least squares or OLS estimates, of the vector 3 are

B=(X"X)'XTy. (2.02)

In this chapter, we will be concerned with the numerical properties of these
OLS estimates. We refer to certain properties of estimates as “numerical” if
they have nothing to do with how the data were actually generated. Such
properties hold for every set of data by virtue of the way in which B is com-
puted, and the fact that they hold can always be verified by direct calculation.
In contrast, the statistical properties of OLS estimates, which will be discussed
in Chapter 3, necessarily depend on unverifiable assumptions about how the
data were generated, and they can never be verified for any actual data set.

In order to understand the numerical properties of OLS estimates, it is useful
to look at them from the perspective of Euclidean geometry. This geometrical
interpretation is remarkably simple. Essentially, it involves using Pythagoras’
Theorem and a little bit of high-school trigonometry in the context of fi-
nite-dimensional vector spaces. Although this approach is simple, it is very
powerful. Once one has a thorough grasp of the geometry involved in ordi-
nary least squares, one can often save oneself many tedious lines of algebra
by a simple geometrical argument. We will encounter many examples of this
throughout the book.

In the next section, we review some relatively elementary material on the
geometry of vector spaces and Pythagoras’ Theorem. In Section 2.3, we then
discuss the most important numerical properties of OLS estimation from a
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44 The Geometry of Linear Regression

geometrical perspective. In Section 2.4, we introduce an extremely useful
result called the FWL Theorem, and in Section 2.5 we present a number of
applications of this theorem. Finally, in Section 2.6, we discuss how and to
what extent individual observations influence parameter estimates.

2.2 The Geometry of Vector Spaces

In Section 1.4, an n-vector was defined as a column vector with n elements,
that is, an n x 1 matrix. The elements of such a vector are real numbers.
The usual notation for the real line is R, and it is therefore natural to denote
the set of n-vectors as R™. However, in order to use the insights of Euclidean
geometry to enhance our understanding of the algebra of vectors and matrices,
it is desirable to introduce the notion of a Euclidean space in n dimensions,
which we will denote as E™. The difference between R™ and E™ is not that they
consist of different sorts of vectors, but rather that a wider set of operations
is defined on E™. A shorthand way of saying that a vector @ belongs to an
n—dimensional Euclidean space is to write & € E™.

Addition and subtraction of vectors in E™ is no different from the addition
and subtraction of n x 1 matrices discussed in Section 1.4. The same thing is
true of multiplication by a scalar in E™. The final operation essential to E"
is that of the scalar or inner product. For any two vectors x,y € E", their
scalar product is

(@,y) =2'y.

The notation on the left is generally used in the context of the geometry of
vectors, while the notation on the right is generally used in the context of
matrix algebra. Note that (z,y) = (y,x), since 'y = y'z. Thus the scalar
product is commutative.

The scalar product is what allows us to make a close connection between
n-vectors considered as matrices and considered as geometrical objects. It
allows us to define the length of any vector in E™. The length, or norm, of a

vector @ is simply
2| = (z"x)"/2

This is just the square root of the inner product of @ with itself. In scalar

terms, it is
n 1/2
x| = (Z xf) . (2.03)

=1

Pythagoras’ Theorem

The definition (2.03) is inspired by the celebrated theorem of Pythagoras,
which says that the square on the longest side of a right-angled triangle is
equal to the sum of the squares on the other two sides. This longest side
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2 2
T +ZC2

Figure 2.1 Pythagoras’ Theorem

is called the hypotenuse. Pythagoras’ Theorem is illustrated in Figure 2.1.
The figure shows a right-angled triangle, ABC, with hypotenuse AC, and two
other sides, AB and BC, of lengths 7 and x5 respectively. The squares on
each of the three sides of the triangle are drawn, and the area of the square
on the hypotenuse is shown as 3 + x3, in accordance with the theorem.

A beautiful proof of Pythagoras’ Theorem, not often found in geometry texts,
is shown in Figure 2.2. Two squares of equal area are drawn. Each square
contains four copies of the same right-angled triangle. The square on the left
also contains the squares on the two shorter sides of the triangle, while the

2 2
fCl‘f‘fL'Q

Figure 2.2 Proof of Pythagoras’ Theorem
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B

T2

O T A

Figure 2.3 A vector x in E?

square on the right contains the square on the hypotenuse. The theorem
follows at once.

Any vector € E? has two components, usually denoted as z; and 3. These
two components can be interpreted as the Cartesian coordinates of the vec-
tor in the plane. The situation is illustrated in Figure 2.3. With O as the
origin of the coordinates, a right-angled triangle is formed by the lines OA,
AB, and OB. The length of the horizontal side of the triangle, OA, is the
horizontal coordinate x;. The length of the vertical side, AB, is the vertical
coordinate xo. Thus the point B has Cartesian coordinates (z1, z2). The vec-
tor x itself is usually represented as the hypotenuse of the triangle, OB, that
is, the directed line (depicted as an arrow) joining the origin to the point B,
with coordinates (z1,z2). By Pythagoras’ Theorem, the length of the vector
x, the hypotenuse of the triangle, is (2% +22)!/2. This is what (2.03) becomes
for the special case n = 2.

Vector Geometry in Two Dimensions

Let  and y be two vectors in E? with components (z1,72) and (y1,¥2),
respectively. Then, by the rules of matrix addition, the components of  + y
are (r1 + y1, 22 + y2). Figure 2.4 shows how the addition of & and y can
be performed geometrically in two different ways. The vector @ is drawn as
the directed line segment, or arrow, from the origin O to the point A with
coordinates (x1,x2). The vector y can be drawn similarly and represented
by the arrow OB. However, we could also draw y starting, not at O, but at
the point reached after drawing @, namely A. The arrow AC has the same
length and direction as OB, and we will see in general that arrows with the
same length and direction can be taken to represent the same vector. It is
clear by construction that the coordinates of C are (x1 + y1,x2 + y2), that is,
the coordinates of @ + y. Thus the sum « + y is represented geometrically by
the arrow OC.
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Y2 f--mmmmomoe-

Tofb------

O Y1 T

Figure 2.4 Addition of vectors

The classical way of adding vectors geometrically is to form a parallelogram
using the line segments OA and OB that represent the two vectors as adjacent
sides of the parallelogram. The sum of the two vectors is then the diagonal
through O of the resulting parallelogram. It is easy to see that this classical
method also gives the result that the sum of the two vectors is represented
by the arrow OC, since the figure OACB is just the parallelogram required
by the construction, and OC' is its diagonal through O. The parallelogram
construction also shows clearly that vector addition is commutative, since
y + x is represented by OB, for y, followed by BC', for . The end result is
once more OC.

Multiplying a vector by a scalar is also very easy to represent geometrically.
If a vector & with components (x1,z2) is multiplied by a scalar «, then ax
has components (ax1, axs). This is depicted in Figure 2.5, where a = 2. The
line segments OA and OB represent & and ax, respectively. It is clear that
even if we move ax so that it starts somewhere other than O, as with CD
in the figure, the vectors & and ax are always parallel. If o were negative,
then ax would simply point in the opposite direction. Thus, for a« = —2, ax
would be represented by DC', rather than CD.

Another property of multiplication by a scalar is clear from Figure 2.5. By
direct calculation,

1/2

laz|| = (az, az)'/? = |a|(z"2)"/* = |of |z]|. (2.04)

Since a = 2, OB and CD in the figure are twice as long as OA.
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D

ax

Figure 2.5 Multiplication by a scalar

The Geometry of Scalar Products

The scalar product of two vectors = and y, whether in E? or E™, can be
expressed geometrically in terms of the lengths of the two vectors and the
angle between them, and this result will turn out to be very useful. In the
case of FE?, it is natural to think of the angle between two vectors as the angle
between the two line segments that represent them. As we will now show, it
is also quite easy to define the angle between two vectors in E™.

If the angle between two vectors is 0, they must be parallel. The vector y is
parallel to the vector x if y = ax for some suitable a. In that event,

T

(x,y) = (z,0z) = ax'a = of|]*

From (2.04), we know that |y|| = |«a|||z||, and so, if @ > 0, it follows that

(@, y) = ||zl [lyl]. (2.05)

Of course, this result is true only if  and y are parallel and point in the same
direction (rather than in opposite directions).

For simplicity, consider initially two vectors, w and z, both of length 1, and
let 6 denote the angle between them. This is illustrated in Figure 2.6. Suppose
that the first vector, w, has coordinates (1,0). It is therefore represented by
a horizontal line of length 1 in the figure. Suppose that the second vector, z,
is also of length 1, that is, ||z|| = 1. Then, by elementary trigonometry, the
coordinates of z must be (cosf,sinf). To show this, note first that, if so,

|2]|? = cos? 0 +sin? 6 = 1, (2.06)

as required. Next, consider the right-angled triangle OAB, in which the hy-
potenuse OB represents z and is of length 1, by (2.06). The length of the
side AB opposite O is sinf, the vertical coordinate of z. Then the sine of
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.
O A

Figure 2.6 The angle between two vectors

the angle BOA is given, by the usual trigonometric rule, by the ratio of the
length of the opposite side AB to that of the hypotenuse OB. This ratio is
sinf/1 = sin§, and so the angle BOA is indeed equal to 6.

Now let us compute the scalar product of w and z. It is
(w, z) = w'z = wyz + waze = 21 = cos b,

because wy = 1 and wy = 0. This result holds for vectors w and z of length 1.
More generally, let * = aw and y = vz, for positive scalars o and . Then
lz|| = @ and ||y|| = 7. Thus we have

(x,y) =2y = ayw'z = ay(w, 2).

Because x is parallel to w, and y is parallel to z, the angle between x and y
is the same as that between w and z, namely 6. Therefore,

(@,y) = ||| ||yl cos 6. (2.07)

This is the general expression, in geometrical terms, for the scalar product of
two vectors. It is true in E™ just as it is in £?, although we have not proved
this. In fact, we have not quite proved (2.07) even for the two-dimensional
case, because we made the simplifying assumption that the direction of @
and w is horizontal. In Exercise 2.1, we ask the reader to provide a more
complete proof.

The cosine of the angle between two vectors provides a natural way to measure
how close two vectors are in terms of their directions. Recall that cos varies
between —1 and 1; if we measure angles in radians, cos0 = 1, cosm/2 = 0,
and cosm = —1. Thus cos @ will be 1 for vectors that are parallel, 0 for vectors
that are at right angles to each other, and —1 for vectors that point in directly
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opposite directions. If the angle € between the vectors  and y is a right angle,
its cosine is 0, and so, from (2.07), the scalar product (x,y) is 0. Conversely,
if (x,y) = 0, then cosf = 0 unless x or y is a zero vector. If cosf = 0, it
follows that 6 = w/2. Thus, if two nonzero vectors have a zero scalar product,
they are at right angles. Such vectors are often said to be orthogonal, or,
less commonly, perpendicular. This definition implies that the zero vector is
orthogonal to everything.

Since the cosine function can take on values only between —1 and 1, a conse-
quence of (2.07) is that
& y| < || ly]- (2.08)

This result, which is called the Cauchy-Schwartz inequality, says that the
inner product of @ and y can never be greater than the length of the vector
times the length of the vector y. Only if  and y are parallel does the
inequality in (2.08) become the equality (2.05). Readers are asked to prove
this result in Exercise 2.2.

Subspaces of Euclidean Space

For arbitrary positive integers n, the elements of an n-vector can be thought
of as the coordinates of a point in E™. In particular, in the regression model
(2.01), the regressand y and each column of the matrix of regressors X can be
thought of as vectors in E™. This makes it possible to represent a relationship
like (2.01) geometrically.

It is obviously impossible to represent all n dimensions of E™ physically
when n > 3. For the pages of a book, even three dimensions can be too many,
although a proper use of perspective drawings can allow three dimensions to
be shown. Fortunately, we can represent (2.01) without needing to draw in
n dimensions. The key to this is that there are only three vectors in (2.01):
y, XB, and u. Since only two vectors, X3 and w, appear on the right-hand
side of (2.01), only two dimensions are needed to represent it. Because y is
equal to X3 + u, these two dimensions suffice for y as well.

To see how this works, we need the concept of a subspace of a Euclidean
space E". Normally, such a subspace will have a dimension lower than n. The
easiest way to define a subspace of E™ is in terms of a set of basis vectors. A
subspace that is of particular interest to us is the one for which the columns
of X provide the basis vectors. We may denote the k columns of X as x,
o, ...xp. Then the subspace associated with these k basis vectors will be
denoted by 8(X) or 8(x1,...,xr). The basis vectors are said to span this
subspace, which will in general be a k-dimensional subspace.

The subspace 8(x1,...,x)) consists of every vector that can be formed as a
linear combination of the x;, ¢ = 1,..., k. Formally, it is defined as

S8(xy,...,xx) = {zEE”

k
=1
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8+(X)

Figure 2.7 The spaces $(X) and 8§+ (X)

The subspace defined in (2.09) is called the subspace spanned by the x;,
i =1,...,k, or the column space of X; less formally, it may simply be referred
to as the span of X, or the span of the x;.

The orthogonal complement of §(X) in E", which is denoted §1(X), is the
set of all vectors w in E™ that are orthogonal to everything in $(X). This

means that, for every z in §(X), (w, 2) = w'z = 0. Formally,

$HX)={weE" |wz=0foral z € §X)}.

If the dimension of §(X) is k, then the dimension of §+(X) is n — k.

Figure 2.7 illustrates the concepts of a subspace and its orthogonal comple-
ment for the simplest case, in which n = 2 and k& = 1. The matrix X has
only one column in this case, and it is therefore represented in the figure by a
single vector, denoted x. As a consequence, §(X) is 1-dimensional, and, since
n =2, 8+ (X) is also 1-dimensional. Notice that §(X) and 8§+ (X) would be
the same if & were any vector, except for the origin, parallel to the straight
line that represents 8(X).

Now let us return to E™. Suppose, to begin with, that £ = 2. We have two
vectors, 1 and @5, which span a subspace of, at most, two dimensions. It
is always possible to represent vectors in a 2-dimensional space on a piece of
paper, whether that space is E? itself or, as in this case, the 2-dimensional
subspace of E" spanned by the vectors @7 and x5. To represent the first
vector, 1, we choose an origin and a direction, both of which are entirely
arbitrary, and draw an arrow of length ||| in that direction. Suppose that
the origin is the point O in Figure 2.8, and that the direction is the horizontal
direction in the plane of the page. Then an arrow to represent ax; can be
drawn as shown in the figure. For xo, we compute its length, ||x2]|, and the
angle, 6, that it makes with ;. Suppose for now that 6 # 0. Then we choose
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bix1 + baxa

; o
o b1z

Figure 2.8 A 2-dimensional subspace

as our second dimension the vertical direction in the plane of the page, with
the result that we can draw an arrow for x5, as shown.

Any vector in 8§(x1,x2) can be drawn in the plane of Figure 2.8. Consider,
for instance, the linear combination of @1 and xo given by the expression
z = byx1 + boxs. We could draw the vector z by computing its length and
the angle that it makes with @;. Alternatively, we could apply the rules for
adding vectors geometrically that were illustrated in Figure 2.4 to the vectors
bixy and boxs. This is illustrated in the figure for the case in which by = 2/3
and by = 1/5.

In precisely the same way, we can represent any three vectors by arrows in
3-dimensional space, but we leave this task to the reader. It will be easier to
appreciate the renderings of vectors in three dimensions in perspective that
appear later on if one has already tried to draw 3-dimensional pictures, or
even to model relationships in three dimensions with the help of a computer.

We can finally represent the regression model (2.01) geometrically. This is
done in Figure 2.9. The horizontal direction is chosen for the vector X3, and
then the other two vectors y and u are shown in the plane of the page. It
is clear that, by construction, y = X3 4 u. Notice that u, the error vector,
is not orthogonal to X3. The figure contains no reference to any system of
axes, because there would be n of them, and we would not be able to avoid
needing n dimensions to treat them all.

Linear Independence

In order to define the OLS estimator by the formula (1.46), it is necessary
to assume that the k x k square matrix X 'X is invertible, or nonsingular.
Equivalently, as we saw in Section 1.4, we may say that X 'X has full rank.
This condition is equivalent to the condition that the columns of X should be
linearly independent. This is a very important concept for econometrics. Note
that the meaning of linear independence is quite different from the meaning
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(0] X

Figure 2.9 The geometry of the linear regression model

of statistical independence, which we discussed in Section 1.2. It is important
not to confuse these two concepts.

The vectors @1 through x; are said to be linearly dependent if we can write
one of them as a linear combination of the others. In other words, there is a
vector ¢, 1 < j <k, and coefficients ¢; such that

T; = ZCZ:BZ (2.10)

i#]

Another, equivalent, definition is that there exist coefficients b;, at least one
of which is nonzero, such that

> b = 0. (2.11)

Recall that 0 denotes the zero vector, every component of which is 0. It is
clear from the definition (2.11) that, if any of the x; is itself equal to the zero
vector, then the x; are linearly dependent. If x; = 0, for example, then (2.11)
will be satisfied if we make b; nonzero and set b; = 0 for all 7 # j.

If the vectors x;, i = 1,...,k, are the columns of an n x k matrix X, then
another way of writing (2.11) is

Xb=0, (2.12)

where b is a k-vector with typical element b;. In order to see that (2.11)
and (2.12) are equivalent, it is enough to check that the typical elements of
the two left-hand sides are the same; see Exercise 2.5. The set of vectors
x;, i = 1,...,k, is linearly independent if it is not linearly dependent, that
is, if there are no coefficients ¢; such that (2.10) is true, or (equivalently) no
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coefficients b; such that (2.11) is true, or (equivalently, once more) no vector
b such that (2.12) is true.

It is easy to show that if the columns of X are linearly dependent, the matrix
X "X is not invertible. Premultiplying (2.12) by X yields

X'Xb=0. (2.13)

Thus, if the columns of X are linearly dependent, there is a nonzero k-vector
b which is annihilated by X "X. The existence of such a vector b means that
XX cannot be inverted. To see this, consider any vector a, and suppose
that

X'Xa=c

If XTX could be inverted, then we could premultiply the above equation by
(X'X)™! to obtain
(X'X) le=a. (2.14)

However, (2.13) also allows us to write
X'X(a+b)=c,

which would give
(X'X)lc=a+b. (2.15)

But (2.14) and (2.15) cannot both be true, and so (X 'X)™! cannot exist.
Thus a necessary condition for the existence of (X 'X)™! is that the columns
of X should be linearly independent. With a little more work, it can be shown
that this condition is also sufficient, and so, if the regressors a1, ..., x; are
linearly independent, X "X is invertible.

If the k columns of X are not linearly independent, then they will span a
subspace of dimension less than k, say k', where k' is the largest number of
columns of X that are linearly independent of each other. The number %’ is
called the rank of X. Look again at Figure 2.8, and imagine that the angle 6
between &, and x5 tends to zero. If 8 = 0, then &, and x5 are parallel, and we
can write 1 = aaxy, for some scalar «. But this means that 1 —axs = 0, and
so a relation of the form (2.11) holds between x; and @9, which are therefore
linearly dependent. In the figure, if ; and xo are parallel, then only one
dimension is used, and there is no need for the second dimension in the plane
of the page. Thus, in this case, k = 2 and k' = 1.

When the dimension of §(X) is ¥’ < k, 8§(X) will be identical to $(X’), where
X’ is an n x k' matrix consisting of any k’ linearly independent columns of
X. For example, consider the following X matrix, which is 5 x 3:

1

(2.16)

—_ e =
S = O = O
—_ O = O
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The columns of this matrix are not linearly independent, since
x, = .25y + x3.
However, any two of the columns are linearly independent, and so
S(X) = 8(x1,x2) = 8(x1, x3) = (X2, X3);

see Exercise 2.8. For the remainder of this chapter, unless the contrary is
explicitly assumed, we will assume that the columns of any regressor matrix
X are linearly independent.

2.3 The Geometry of OLS Estimation

We studied the geometry of vector spaces in the last section because the nu-
merical properties of OLS estimates are easily understood in terms of that
geometry. The geometrical interpretation of OLS estimation, that is, MM es-
timation of linear regression models, is simple and intuitive. In many cases,
it entirely does away with the need for algebraic proofs.

As we saw in the last section, any point in a subspace $(X), where X is an
n X k matrix, can be represented as a linear combination of the columns of X.
We can partition X in terms of its columns explicitly, as follows:

X=[xy x> - x].

In order to compute the matrix product X3 in terms of this partitioning, we
need to partition the vector 3 by its rows. Since 8 has only one column, the
elements of the partitioned vector are just the individual elements of 3. Thus
we find that

By

6 k
XB=[e1 @ - w]| | |=@if b @bt b= B,

. i=1

B

which is just a linear combination of the columns of X. In fact, it is clear
from the definition (2.09) that any linear combination of the columns of X,
and thus any element of the subspace 8(X) = 8(x1,..., k), can be written
as X3 for some 3. The specific linear combination (2.09) is constructed by
using B8 = [by i ... i bg]. Thus every n-vector X3 belongs to §(X), which
is, in general, a k-dimensional subspace of E”. In particular, the vector XB
constructed using the OLS estimator B belongs to this subspace.

The estimator B was obtained by solving the equations (1.48), which we
rewrite here for easy reference:

XT(y— XB)=0. (1.48)
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0 . -

Figure 2.10 Residuals and fitted values

These equations have a simple geometrical interpretation. Note first that each
element of the left-hand side of (1.48) is a scalar product. By the rule for
selecting a single row of a matrix product (see Section 1.4), the i*! element is

since x;, the i*" column of X, is the transpose of the i*" row of X T. By (1.48),
the scalar product in (2.17) is zero, and so the vector y — X3 is orthogonal to
all of the regressors, that is, all of the vectors x; that represent the explanatory
variables in the regression. For this reason, equations like (1.48) are often
referred to as orthogonality conditions.

Recall from Section 1.5 that the vector y — X3, treated as a function of 3,
is called the vector of residuals. This vector may be written as u(3). We
are interested in w(8), the vector of residuals evaluated at 3, which is often
called the vector of least squares residuals and is usually written simply as .
We have just seen, in (2.17), that @ is orthogonal to all the regressors. This
implies that @ is in fact orthogonal to every vector in §(X), the span of the
regressors. To see this, remember that any element of §(X) can be written

as X3 for some (3, with the result that, by (1.48),

(XB,4) = (XB)'a=p'X"a=0.

The vector XB is referred to as the vector of fitted values. Clearly, it lies
in 8(X), and, consequently, it must be orthogonal to . Figure 2.10 is similar
to Figure 2.9, but it shows the vector of least squares residuals & and the
vector of fitted values X,é instead of w and X3. The key feature of this
figure, which is a consequence of the orthogonality conditions (1.48), is that
the vector & makes a right angle with the vector XB.

Some things about the orthogonality conditions (1.48) are clearer if we add
a third dimension to the picture. Accordingly, in panel a) of Figure 2.11,
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8(x1,x2)
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a) y projected on two regressors
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b) The span S$(x1,x2) of the regressors ¢) The vertical plane through y

Figure 2.11 Linear regression in three dimensions

we consider the case of two regressors, 1 and x5, which together span the
horizontal plane labelled 8(x1,x2), seen in perspective from slightly above
the plane. Although the perspective rendering of the figure does not make it
clear, both the lengths of x; and x5 and the angle between them are totally
arbitrary, since they do not affect 8(x1,x2) at all. The vector y is intended
to be viewed as rising up out of the plane spanned by @1 and as.

In the 3-dimensional setup, it is clear that, if @ is to be orthogonal to the
horizontal plane, it must itself be vertical. Thus it is obtained by “dropping
a perpendicular” from y to the horizontal plane. The least-squares inter-
pretation of the MM estimator ,3 can now be seen to be a consequence of
simple geometry. The shortest distance from y to the horizontal plane is
obtained by descending vertically on to it, and the point in the horizontal
plane vertically below y, labeled A in the figure, is the closest point in the
plane to y. Thus ||@|| minimizes ||u(3)||, the norm of w(3), with respect to 8.
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The squared norm, ||u(8)|/% is just the sum of squared residuals, SSR(3);
see (1.49). Since minimizing the norm of u(B) is the same thing as minimiz-
ing the squared norm, it follows that 3 is the OLS estimator.

Panel b) of the figure shows the horizontal plane 8(x1,x2) as a straightfor-
ward 2-dimensional picture, seen from directly above. The point A is the
point directly underneath y, and so, since y = XB + @ by definition, the
vector represented by the line segment OA is the vector of fitted values, XB
Geometrically, it is much simpler to represent X,B than to represent just the
vector ,8, because the latter lies in R*, a different space from the space E™
that contains the variables and all linear combinations of them. However, it is
easy to see that the information in panel b) does indeed determine B Plainly,
Xﬁ can be decomposed in just one way as a linear combination of 1 and @,
as shown. The numerical value of Bl can be computed as the ratio of the
length of the vector Bl x1 to that of @1, and similarly for Bg.

In panel c) of Figure 2.11, we show the right-angled triangle that corresponds
to dropping a perpendicular from y, labelled in the same way as in panel a).
This triangle lies in the vertical plane that contains the vector y. We can see
that y is the hypotenuse of the triangle, the other two sides being XB and .
Thus this panel corresponds to what we saw already in Figure 2.10. Since we
have a right-angled triangle, we can apply Pythagoras’ Theorem. It gives

lyll> = 1 XBI* + 4. (2.18)
If we write out the squared norms as scalar products, this becomes
'y =B'X'XB+ (y - XB)'(y - XB). (2.19)

In words, the total sum of squares, or TSS, is equal to the explained sum
of squares, or ESS, plus the sum of squared residuals, or SSR. This is a
fundamental property of OLS estimates, and it will prove to be very useful in
many contexts. Intuitively, it lets us break down the total variation (TSS) of
the dependent variable into the explained variation (ESS) and the unexplained
variation (SSR), unexplained because the residuals represent the aspects of y
about which we remain in ignorance.

Orthogonal Projections

When we estimate a linear regression model, we implicitly map the regressand
y into a vector of fitted values X,B and a vector of residuals 4 = y — X,B
Geometrically, these mappings are examples of orthogonal projections. A
projection is a mapping that takes each point of E™ into a point in a subspace
of K", while leaving all points in that subspace unchanged. Because of this,
the subspace is called the invariant subspace of the projection. An orthogonal
projection maps any point into the point of the subspace that is closest to it.
If a point is already in the invariant subspace, it is mapped into itself.
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The concept of an orthogonal projection formalizes the notion of “dropping
a perpendicular” that we used in the last subsection when discussing least
squares. Algebraically, an orthogonal projection on to a given subspace can
be performed by premultiplying the vector to be projected by a suitable pro-
jection matrix. In the case of OLS, the two projection matrices that yield the
vector of fitted values and the vector of residuals, respectively, are

Px = X(X'X)'X'", and

(2.20)
Mx =1-Px=1-X(X'X)'XT,

where I is the n x n identity matrix. To see this, recall (2.02), the formula
for the OLS estimates of (3:

B=(X"X)'X"y.
From this, we see that
X3 =X(X"X)'X"y = Pxy. (2.21)

Therefore, the first projection matrix in (2.20), Px, projects on to 8(X). For
any n-vector y, Pxy always lies in §(X), because

Pxy=X((X'X)'X"y).

Since this takes the form Xb for b = (3, it is a linear combination of the
columns of X, and hence it belongs to §(X).

From (2.20), it is easy to show that Px X = X. Since any vector in $(X)
can be written as Xb for some b € R*, we see that

Px Xb= Xb. (2.22)

We saw from (2.21) that the result of acting on any vector y € E™ with Px is
a vector in 8(X). Thus the invariant subspace of the projection Px must be
contained in §(X). But, by (2.22), every vector in §(X) is mapped into itself
by Px. Therefore, the image of Px, which is a shorter name for its invariant
subspace, is precisely 8(X).

It is clear from (2.21) that, when Px is applied to y, it yields the vector of
fitted values. Similarly, when Mx, the second of the two projection matrices
in (2.20), is applied to y, it yields the vector of residuals:

Mxy=(1-XX'X)'X")y=y—Pxy=y—XB=1.
The image of Mx is 8+(X), the orthogonal complement of the image of Px.
To see this, consider any vector w € §+(X). It must satisfy the defining condi-

tion X Tw = 0. From the definition (2.20) of Px, this implies that Pxw = 0,
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the zero vector. Since Mx = I — Px, we find that Mxw = w. Thus §+(X)
must be contained in the image of Mx. Next, consider any vector in the
image of Mx. It must take the form Mxy, where y is some vector in E™
From this, it will follow that Mxy belongs to §+(X). Observe that

(Mxy)' X =y 'MxX, (2.23)
an equality that relies on the symmetry of Mx. Then, from (2.20), we have
MxX =(I1-Px)X =X - X =0, (2.24)

where O denotes a zero matrix, which in this case is n x k. The result (2.23)
says that any vector Mxy in the image of Mx is orthogonal to X, and thus
belongs to 8§+(X). We saw above that 8§1(X) was contained in the image
of Mx, and so this image must coincide with §+(X). For obvious reasons,
the projection Mx is sometimes called the projection off §(X).

For any matrix to represent a projection, it must be idempotent. An idem-
potent matrix is one that, when multiplied by itself, yields itself again. Thus,

These results are easily proved by a little algebra directly from (2.20), but the
geometry of the situation makes them obvious. If we take any point, project
it on to 8(X), and then project it on to 8(X) again, the second projection
can have no effect at all, because the point is already in §(X), and so it is
left unchanged. Since this implies that Px Pxy = Pxy for any vector y, it
must be the case that Px Px = Px, and similarly for Mx.

Since, from (2.20),
Px + Mx =1, (2.25)

any vector y € E" is equal to Pxy + Mxvy. The pair of projections Px and
Mx are said to be complementary projections, since the sum of Pxy and
Mxy restores the original vector y.

The fact that §(X) and 8+ (X) are orthogonal subspaces leads us to say that
the two projection matrices Px and Mx define what is called an orthogonal
decomposition of E”, because the two vectors Mxy and Pxy lie in the two
orthogonal subspaces. Algebraically, the orthogonality depends on the fact
that Px and Mx are symmetric matrices. To see this, we start from a
further important property of Px and Mx, which is that

PxMx = O. (2.26)

This equation is true for any complementary pair of projections satisfy-
ing (2.25), whether or not they are symmetric; see Exercise 2.9. We may say
that Px and Mx annihilate each other. Now consider any vector z € 8§(X)
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and any other vector w € 8§+ (X). We have z = Pxz and w = Mxw. Thus
the scalar product of the two vectors is

(Pxz, Mxw) = z' Py Mxw.

Since Px is symmetric, P; = Px, and so the above scalar product is zero
by (2.26). In general, however, if two complementary projection matrices are
not symmetric, the spaces they project on to are not orthogonal.

The projection matrix Mx annihilates all points that lie in §(X), and Px
likewise annihilates all points that lie in 8+ (X). These properties can be
proved by straightforward algebra (see Exercise 2.11), but the geometry of
the situation is very simple. Consider Figure 2.7. It is evident that, if we
project any point in §+(X) orthogonally on to §(X), we end up at the origin,
as we do if we project any point in §(X) orthogonally on to 8 (X).

Provided that X has full rank, the subspace 8(X) is k-dimensional, and so the
first term in the decomposition y = Pxy+ Mxy belongs to a k-dimensional
space. Since y itself belongs to E™, which has n dimensions, it follows that
the complementary space §*(X) must have n — k dimensions. The number
n — k is called the codimension of X in E™.

Geometrically, an orthogonal decomposition y = Pxy + Mxwy can be rep-
resented by a right-angled triangle, with y as the hypotenuse and Pxy and
Mxy as the other two sides. In terms of projections, equation (2.18), which
is really just Pythagoras’ Theorem, can be rewritten as

lyll> = | Pxyl® + || Mxy|>. (2.27)

In Exercise 2.10, readers are asked to provide an algebraic proof of this equa-
tion. Since every term in (2.27) is nonnegative, we obtain the useful result
that, for any orthogonal projection matrix Px and any vector y € E",

I1Pxyll < [lyll (2.28)

In effect, this just says that the hypotenuse is longer than either of the other
sides of a right-angled triangle.

In general, we will use P and M subscripted by matrix expressions to denote
the matrices that, respectively, project on to and off the subspaces spanned by
the columns of those matrix expressions. Thus Pz would be the matrix that
projects on to 8(Z), Mx, w would be the matrix that projects off §(X, W), or,
equivalently, on to 8+ (X, W), and so on. It is frequently very convenient to
express the quantities that arise in econometrics using these matrices, partly
because the resulting expressions are relatively compact, and partly because
the properties of projection matrices often make it easy to understand what
those expressions mean. However, projection matrices are of little use for
computation because they are of dimension n x n. It is never efficient to
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calculate residuals or fitted values by explicitly using projection matrices, and
it can be extremely inefficient if n is large.

Linear Transformations of Regressors

The span §(X) of the regressors of a linear regression can be defined in many
equivalent ways. All that is needed is a set of k£ vectors that encompass
all the k directions of the k-dimensional subspace. Consider what happens
when we postmultiply X by any nonsingular k x k matrix A. This is called
a nonsingular linear transformation. Let A be partitioned by its columns,
which may be denoted a;, 1 =1,...,k:

XA=X[a1 ay - ap]=[Xa; Xay --- Xai].

Each block in the product takes the form X a;, which is an n-vector that is
a linear combination of the columns of X. Thus any element of 8§(X A) must
also be an element of §(X). But any element of §(X) is also an element
of (X A). To see this, note that any element of §(X) can be written as X3
for some B € R*. Since A is nonsingular, and thus invertible,

X8 =XAA'8=(XA)(A'B).

Because A™'3 is just a k-vector, this expression is a linear combination of
the columns of X A, that is, an element of §(XA). Since every element of
S(XA) belongs to 8(X), and every element of §(X) belongs to S(X A), these
two subspaces must be identical.

Given the identity of $(X) and 8(XA), it seems intuitively compelling to
suppose that the orthogonal projections Px and Px4 should be the same.
This is in fact the case, as can be verified directly:

Pxa=XAA'X'XA)IATXT
= XAA YXTX) (AT ATXT
= X(X'X)'X"= Px.

When expanding the inverse of the matrix A"XTXA, we used the reversal
rule for inverses; see Exercise 1.15.

We have already seen that the vectors of fitted values and residuals depend
on X only through Px and Mx. Therefore, they too must be invariant to
any nonsingular linear transformation of the columns of X. Thus if, in the
regression y = X3+ u, we replace X by X A for some nonsingular matrix A,
the residuals and fitted values will not change, even though B will change.
We will discuss an example of this important result shortly.

When the set of regressors contains a constant, it is necessary to express it as
a vector, just like any other regressor. The coefficient of this vector is then
the parameter we usually call the constant term. The appropriate vector is ¢,
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the vector of which each element equals 1. Consider the n—vector it + fBox,
where ® is any nonconstant regressor, and (3; and (» are scalar parameters.
The t* element of this vector is 31 + Box;. Thus adding the vector B¢ to
B2 simply adds the scalar §; to each component of 3yx. For any regression
which includes a constant term, then, the fact that we can perform arbitrary
nonsingular transformations of the regressors without affecting residuals or
fitted values implies that these vectors are unchanged if we add any constant
amount to any one or more of the regressors.

Another implication of the invariance of residuals and fitted values under
nonsingular transformations of the regressors is that these vectors are un-
changed if we change the units of measurement of the regressors. Suppose,
for instance, that the temperature is one of the explanatory variables in a re-
gression with a constant term. A practical example in which the temperature
could have good explanatory power is the modeling of electricity demand:
More electrical power is consumed if the weather is very cold, or, in societies
where air conditioners are common, very hot. In a few countries, notably the
United States, temperatures are still measured in Fahrenheit degrees, while
in most countries they are measured in Celsius (centigrade) degrees. It would
be disturbing if our conclusions about the effect of temperature on electricity
demand depended on whether we used the Fahrenheit or the Celsius scale.

Let the temperature variable, expressed as an n-vector, be denoted as T in
Celsius and as F' in Fahrenheit, the constant as usual being represented by ¢.
Then F = 32¢ + 9/5T, and, if the constant is included in the transformation,

1 32
0 9]
The constant and the two different temperature measures are related by a
linear transformation that is easily seen to be nonsingular, since Fahrenheit

degrees can be converted back into Celsius. This implies that the residuals
and fitted values are unaffected by our choice of temperature scale.

[¢ Fl=]¢ T][ (2.29)

Let us denote the constant term and the slope coefficient as 3; and (s if we
use the Celsius scale, and as a1 and s if we use the Fahrenheit scale. Then
it is easy to see that these parameters are related by the equations

Bl = a1 + 320[2 and ﬁg = 9/5042. (230)

To see that this makes sense, suppose that the temperature is at freezing
point, which is 0° Celsius and 32° Fahrenheit. Then the combined effect of
the constant and the temperature on electricity demand is 51 + 062 = (1
using the Celsius scale, and a; + 32y using the Fahrenheit scale. These
should be the same, and, according to (2.30), they are. Similarly, the effect of
a 1-degree increase in the Celsius temperature is given by (2. Now 1 Celsius
degree equals 9/5 Fahrenheit degrees, and the effect of a temperature increase
of 9/5 Fahrenheit degrees is given by 9/5a2. We are assured by (2.30) that the
two effects are the same.
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2.4 The Frisch-Waugh-Lovell Theorem

In this section, we discuss an extremely useful property of least squares esti-
mates, which we will refer to as the Frisch-Waugh-Lovell Theorem, or FWL
Theorem for short. It was introduced to econometricians by Frisch and Waugh
(1933), and then reintroduced by Lovell (1963).

Deviations from the Mean

We begin by considering a particular nonsingular transformation of variables
in a regression with a constant term. We saw at the end of the last section
that residuals and fitted values are invariant under such transformations of
the regressors. For simplicity, consider a model with a constant and just one
explanatory variable:

y = fit+ fox + u. (2.31)

In general, x is not orthogonal to ¢, but there is a very simple transformation
which makes it so. This transformation replaces the observations in @ by
deviations from the mean. In order to perform the transformation, one first
calculates the mean of the n observations of the vector x,

n

1

ﬁ T,
t=1

and then subtracts the constant T from each element of x. This yields the
vector of deviations from the mean, z = & — z¢. The vector z is easily seen
to be orthogonal to ¢, because

T

T

T T t=nZ—nz=0.

t'z=t(x—TL)=nT — Tt
The operation of expressing a variable in terms of the deviations from its
mean is called centering the variable. In this case, the vector z is the centered

version of the vector x.

Since centering leads to a variable that is orthogonal to ¢, it can be performed
algebraically by the orthogonal projection matrix M,. This can be verified
by observing that

Mxz=(I1-Plx=x—1(t'v) "Wx=2—7L=z, (2.32)

as claimed. Here, we once again used the facts that ¢'e =n and ¢’z = nz.

The idea behind the use of deviations from the mean is that it makes sense
to separate the overall level of a dependent variable from its dependence on
explanatory variables. Specifically, if we write (2.31) in terms of z, we get

y=(B1+ B+ oz +u=ait+arz+u,
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Figure 2.12 Adding a constant does not affect the slope coefficient

where we see that
oy = p1+ 22, and ap = Pa.

If, for some observation ¢, the value of z; were exactly equal to the mean
value, Z, then z; = 0. Thus we find that y; = a1 + u;. We interpret this as
saying that the expected value of y;, when the explanatory variable takes on
its average value, is the constant a;.

The effect on y; of a change of one unit in x; is measured by the slope coeffi-
cient (5. If we hold Z at its value before x; is changed, then the unit change
in x; induces a unit change in z;. Thus a unit change in z;, which is measured
by the slope coefficient az, should have the same effect as a unit change in x;.
Accordingly, as = (3, just as we found above.

The slope coefficients as and (B would be the same with any constant in the
place of . The reason for this can be seen geometrically, as illustrated in
Figure 2.12. This figure, which is constructed in the same way as panel b) of
Figure 2.11, depicts the span of ¢ and «, with ¢ in the horizontal direction.
As before, the vector y is not shown, because a third dimension would be
required; the vector would extend from the origin to a point off the plane of
the page and directly above (or below) the point labelled g.

The figure shows the vector of fitted values g as the vector sum ﬁlb + ﬁgw
The slope coefficient 62 is the ratio of the length of the vector Bgm to that
of x; geometrically, it is given by the ratio OA/OB. Then a new regressor z
is defined by adding the constant value ¢, which is negative in the figure, to
each component of x, giving z = @ + ct. In terms of this new regressor, the
vector g is given by dit + doz, and és is given by the ratio OC'/OD. Since
the ratios OA/OB and OC/OD are clearly the same, we see that dy = (5. A
formal argument would use the fact that OAC and OBD are similar triangles.
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Figure 2.13 Orthogonal regressors may be omitted

When the constant ¢ is chosen as z, the vector z is said to be centered, and,
as we saw above, it is orthogonal to ¢. In this case, the estimate Ao is the
same whether it is obtained by regressing y on both ¢ and z, or just on z
alone. This is illustrated in Figure 2.13, which shows what Figure 2.12 would
look like when z is orthogonal to ¢. Once again, the vector of fitted values g
is decomposed as &1t + oz, with z now at right angles to ¢.

Now suppose that y is regressed on z alone. This means that y is projected
orthogonally on to 8§(z), which in the figure is the vertical line through z. By
definition,

Y= a1t + doz + 1, (2.33)

where @ is orthogonal to both ¢ and z. But ¢ is also orthogonal to z, and
so the only term on the right-hand side of (2.33) not to be annihilated by
the projection on to 8(z) is the middle term, which is left unchanged by it.
Thus the fitted value vector from regressing y on z alone is just &z z, and so
the OLS estimate is the same ao as given by the regression on both ¢ and z.
Geometrically, we obtain this result because the projection of y on to 8(z) is
the same as the projection of g on to 8(z).

Incidentally, the fact that OLS residuals are orthogonal to all the regressors,
including ¢, leads to the important result that the residuals in any regression
with a constant term sum to zero. In fact,

n
L= E uy = 0;
t=1

recall (1.29). The residuals will also sum to zero in any regression for which
L € 8(X), even if ¢ does not explicitly appear in the list of regressors. This
can happen if the regressors include certain sets of dummy variables, as we
will see in Section 2.5.
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Two Groups of Regressors

The results proved in the previous subsection are actually special cases of
more general results that apply to any regression in which the regressors can
logically be broken up into two groups. Such a regression can be written as

y=X101+ X282 +u, (2.34)

where X7 is n x k1, X5 is n X ko, and X may be written as the partitioned
matrix [X; Xz, with & = k1 + k2. In the case dealt with in the previous
subsection, X; is the constant vector ¢ and X5 is either « or z. Several other
examples of partitioning X in this way will be considered in Section 2.5.

We begin by assuming that all the regressors in X; are orthogonal to all the
regressors in Xs, so that X' X; = O. Under this assumption, the vector of
least squares estimates 3; from (2.34) is the same as the one obtained from
the regression

y = X151 + uq, (2.35)

and B, from (2.34) is likewise the same as the vector of estimates obtained
from the regression y = X532 + us. In other words, when X; and X5 are
orthogonal, we can drop either set of regressors from (2.34) without affecting
the coefficients of the other set.

The vector of fitted values from (2.34) is Pxy, while that from (2.35) is Pyy,
where we have used the abbreviated notation

P, = Px, = X (X' X)X/
As we will show directly,
P, Px = PxP, = Py; (2.36)
this is true whether or not X; and X5 are orthogonal. Thus
Py = P Pxy = P\(XiB1 + X2f2) = P X181 = X1 1. (2.37)

The first equality above, which follows from (2.36), says that the projection
of y on to §(X7) is the same as the projection of § = Pxy on to $(X3).
The second equality follows from the definition of the fitted value vector from
(2.34) as Pxy; the third from the orthogonality of X; and X5, which implies
that Py Xy = O; and the last from the fact that X; is invariant under the
action of P;. Since P,y is equal to X7 postmultiplied by the OLS estimates
from (2.35), the equality of the leftmost and rightmost expressions in (2.37)
gives us the result that the same @; can be obtained either from (2.34) or
from (2.35). The analogous result for 35 is proved in just the same way.

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



68 The Geometry of Linear Regression

We now drop the assumption that X; and X5 are orthogonal and prove (2.36),
a very useful result that is true in general. In order to show that Px P, = P,
we proceed as follows:

PxP = Px X, ( X/ X)) 'X/ = X,(X/' X)X, = P.

The middle equality follows by noting that PxX; = Xj, because all the
columns of X; are in 8§(X), and so are left unchanged by Px. The other
equality in (2.36), namely Py Px = Py, is obtained directly by transposing
Px P, = P, and using the symmetry of Px and P;. The two results in (2.36)
tell us that the product of two orthogonal projections, where one projects on
to a subspace of the image of the other, is the projection on to that subspace.
See also Exercise 2.14, for the application of this result to the complementary
projections Mx and M.

The general result corresponding to the one shown in Figure 2.12 can be
stated as follows. If we transform the regressor matrix in (2.34) by adding
XA to X5, where A is a k; X ko matrix, and leaving X; as it is, we have
the regression

y=Xa + (XQ + XlA)az + u. (2.38)

Then éy from (2.38) is the same as B, from (2.34). This can be seen imme-
diately by expressing the right-hand side of (2.38) as a linear combination of
the columns of X and of X5.

In the present general context, there is an operation analogous to that of
centering. The result of centering a variable « is a variable z that is orthogonal
to ¢, the constant. We can create from X5 a set of variables orthogonal to X3
by acting on X, with the orthogonal projection M; =1 — P, so as to obtain
M, X5. This allows us to run the regression

y=Xi0q + M Xoas+u
= Xia1 + (X2 — X1 (X' X1) ' X Xo) g + w.

The first line above is a regression model with two groups of regressors, X3
and M X5, which are mutually orthogonal. Therefore, &y will be unchanged
if we omit Xj. The second line makes it clear that this regression is a special
case of (2.38), which implies that &g is equal to B, from (2.34). Consequently,
we see that the two regressions

Yy = X1a1 + MlXQﬁQ +u and (239)

y=M X208 +v (2.40)

must yield the same estimates of 3.

Although regressions (2.34) and (2.40) give the same estimates of (33, they
do not give the same residuals, as we have indicated by writing u for one
regression and v for the other. We can see why the residuals are not the same
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by looking again at Figure 2.13, in which the constant ¢ plays the role of X7,
and the centered variable z plays the role of M X5. The point corresponding
to y can be thought of as lying somewhere on a line through the point g
and sticking perpendicularly out from the page. The residual vector from
regressing y on both ¢ and z is thus represented by the line segment from g,
in the page, to y, vertically above the page. However, if y is regressed on
z alone, the residual vector is the sum of this line segment and the segment
from &s z and gy, that is, the top side of the rectangle in the figure. If we want
the same residuals in regression (2.34) and a regression like (2.40), we need to
purge the dependent variable of the second segment, which can be seen from
the figure to be equal to &;¢.

This suggests replacing y by what we get by projecting y off ¢. This projec-
tion would be the line segment perpendicular to the page, translated in the
horizontal direction so that it intersected the page at the point &sz rather
than g. In the general context, the analogous operation replaces y by My,
the projection off X rather than off ©. When we perform this projection,
(2.40) is replaced by the regression

My = M, X53; + residuals, (2.41)

which will yield the same vector of OLS estimates 35 as (2.34), and also
the same vector of residuals. This regression is sometimes called the FWL
regression. We used the notation “+ residuals” instead of “+ w” in (2.41)
because, in general, the difference between M7y and M; X535 is not the same
thing as the vector w in (2.34). If w is interpreted as an error vector, then
(2.41) would not be true if “residuals” were replaced by w.

We can now formally state the FWL Theorem. Although the conclusions of
the theorem have been established gradually in this section, we also provide
a short formal proof.

Theorem 2.1. (Frisch-Waugh-Lovell Theorem)

1. The OLS estimates of B2 from regressions (2.34) and (2.41) are
numerically identical.

2. The residuals from regressions (2.34) and (2.41) are numerically
identical.

Proof: By the standard formula (1.46), the estimate of 35 from (2.41) is
( Xy M, X5) ' X5 My y. (2.42)
Let 31 and B, denote the two vectors of OLS estimates from (2.34). Then
y = Pxy + Mxy = X181 + X203 + Mxy. (2.43)

Premultiplying the leftmost and rightmost expressions in (2.43) by Xy M,
we obtain R
Xy My = Xo' M X, 3. (2.44)
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The first term on the right-hand side of (2.43) has dropped out because M,
annihilates X;. To see that the last term also drops out, observe that

Myx M, X, = MxX, = O. (2.45)

The first equality follows from (2.36) (see also Exercise 2.14), and the second
from (2.24), which shows that Mx annihilates all the columns of X, in par-
ticular those of Xs. Premultiplying y by the transpose of (2.45) shows that
X, My Mxy = 0. We can now solve (2.44) for 35 to obtain

By = (X0 M, X5) " X My,

which is expression (2.42). This proves the first part of the theorem.

If we had premultiplied (2.43) by M), instead of by Xy M, we would have
obtained X
My = M1 X282 + Mxy, (2.46)

where the last term is unchanged from (2.43) because My Mx = Mx. The
regressand in (2.46) is the regressand from regression (2.41). Because 35 is the
estimate of B, from (2.41), by the first part of the theorem, the first term on
the right-hand side of (2.46) is the vector of fitted values from that regression.
Thus the second term must be the vector of residuals from regression (2.41).
But Mxy is also the vector of residuals from regression (2.34), and this
therefore proves the second part of the theorem. [ |

2.5 Applications of the FWL Theorem

A regression like (2.34), in which the regressors are broken up into two groups,
can arise in many situations. In this section, we will study three of these. The
first two, seasonal dummy variables and time trends, are obvious applications
of the FWL Theorem. The third, measures of goodness of fit that take the
constant term into account, is somewhat less obvious. In all cases, the FWL
Theorem allows us to obtain explicit expressions based on (2.42) for subsets
of the parameter estimates of a linear regression.

Seasonal Dummy Variables

For a variety of reasons, it is sometimes desirable to include among the ex-
planatory variables of a regression model variables that can take on only two
possible values, which are usually 0 and 1. Such variables are called indicator
variables, because they indicate a subset of the observations, namely, those
for which the value of the variable is 1. Indicator variables are a special case
of dummy variables, which can take on more than two possible values.

Seasonal variation provides a good reason to employ dummy variables. It
is common for economic data that are indexed by time to take the form of
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quarterly data, where each year in the sample period is represented by four
observations, one for each quarter, or season, of the year. Many economic
activities are strongly affected by the season, for obvious reasons like Christ-
mas shopping, or summer holidays, or the difficulty of doing outdoor work
during very cold weather. This seasonal variation, or seasonality, in economic
activity is likely to be reflected in the economic time series that are used in
regression models. The term “time series” is used to refer to any variable the
observations of which are indexed by the time. Of course, time-series data are
sometimes annual, in which case there is no seasonal variation to worry about,
and sometimes monthly, in which case there are twelve “seasons” instead of
four. For simplicity, we consider only the case of quarterly data.

Since there are four seasons, there may be four seasonal dummy variables,
each taking the value 1 for just one of the four seasons. Let us denote these
variables as s1, So, 83, and s4. If we consider a sample the first observation of
which corresponds to the first quarter of some year, these variables look like

[17] [0 (0] (0]
0 1 0 0
0 0 1 0
0 0 0 1
S1 = 1 , So2 = 0 , 83 = 0 , 84 = 0 (247)
0 1 0 0
0 0 1 0
0 0 0 1

An important property of these variables is that, since every observation must
correspond to some season, the sum of the seasonal dummies must indicate
every season. This means that this sum is a vector every component of which
equals 1. Algebraically,

S1+ 8o+ 83+84 =01, (2.48)

as is clear from (2.47). Since ¢ represents the constant in a regression, (2.48)
means that the five-variable set consisting of all four seasonal dummies plus
the constant is linearly dependent. Consequently, one of the five variables
must be dropped if all the regressors are to be linearly independent.

Just which one of the five is dropped makes no difference to the fitted values
and residuals of a regression, because it is easy to check that

8(817 82, 83, 84) — S(La S2, 83, 84) — 8([’7 81, 83, 84)7

and so on. However the parameter estimates associated with the set of four
variables that we choose to keep have different interpretations depending on
that choice. Suppose first that we drop the constant and run the regression

Y = 181 + a9 89 + i3s3 + au sy + XB + u, (2.49)
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where the n X k matrix X contains other explanatory variables. Consider a
single observation, indexed by ¢, that corresponds to the first season. The ¢!
observations of so, s3, and s4 are all 0, and that of s; is 1. Thus, if we write
out the t'" observation of (2.49), we get

Yy = a1 + Xu B+ uy.

From this it is clear that, for all ¢t belonging to the first season, the constant
term in the regression is «y. If we repeat this exercise for ¢ in the second,
third, or fourth season, we see at once that «; is the constant for season i.
Thus the introduction of the seasonal dummies gives us a different constant
for every season.

An alternative is to retain the constant and drop s;. This yields
Y = oot + 7282 + 7383 + 7184 + XB + u.

It is clear that, in this specification, the overall constant «q is really the
constant for season 1. For an observation belonging to season 2, the constant
is ag + 72, for an observation belonging to season 3, it is ap + 73, and so
on. The easiest way to interpret this is to think of season 1 as the reference
season. The coefficients ~;, i = 2,3,4, measure the difference between «yg,
the constant for the reference season, and the constant for season i. Since we
could have dropped any of the seasonal dummies, the reference season is, of
course, entirely arbitrary.

Another alternative is to retain the constant and use the three dummy vari-
ables defined by

/ / !
8] =81 — 84, ShHL =28y — 84, 85=83— S4. (2.50)

These new dummy variables are not actually indicator variables, because their
components for season 4 are equal to —1, but they have the advantage that,
for each complete year, the sum of their components for that year is 0. Thus,
for any sample whose size is a multiple of 4, each of the s, i = 1,2,3, is
orthogonal to the constant. We can write the regression as

y = ot + 018] + 285 + 385 + XB + u. (2.51)

It is easy to see that, for ¢ in season ¢, i = 1,2, 3, the constant term is dy + 9;.
For t belonging to season 4, it is dg — 01 — d3 — d3. Thus the average of
the constants for all four seasons is just gy, the coefficient of the constant, ¢.
Accordingly, the d;, i = 1,2,3, measure the difference between the average
constant dp and the constant specific to season i. Season 4 is a bit of a mess,
because of the arithmetic needed to ensure that the average does indeed work
out to dg.
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Let S denote whatever n x 4 matrix we choose to use in order to span the
constant and the four seasonal variables s;. Then any of the regressions we
have considered so far can be written as

y =580+ XB+u. (2.52)

This regression has two groups of regressors, as required for the application
of the FWL Theorem. That theorem implies that the estimates 3 and the
residuals @ can also be obtained by running the FWL regression

Mgy = Mg X3 + residuals, (2.53)

where, as the notation suggests, Mg =1 — S(S'S)~1S".

The effect of the projection Mg on y and on the explanatory variables in the
matrix X can be considered as a form of seasonal adjustment. By making
Mgy orthogonal to all the seasonal variables, we are, in effect, purging it of its
seasonal variation. Consequently, Mgy can be called a seasonally adjusted,
or deseasonalized, version of y, and similarly for the explanatory variables. In
practice, such seasonally adjusted variables can be conveniently obtained as
the residuals from regressing y and each of the columns of X on the variables
in S. The FWL Theorem tells us that we get the same results in terms of
estimates of 8 and residuals whether we run (2.52), in which the variables are
unadjusted and seasonality is explicitly accounted for, or run (2.53), in which
all the variables are seasonally adjusted by regression. This was, in fact, the
subject of the famous paper by Lovell (1963).

The equivalence of (2.52) and (2.53) is sometimes used to claim that, in esti-
mating a regression model with time-series data, it does not matter whether
one uses “raw” data, along with seasonal dummies, or seasonally adjusted
data. Such a conclusion is completely unwarranted. Official seasonal adjust-
ment procedures are almost never based on regression; using official seasonally
adjusted data is therefore not equivalent to using residuals from regression on
a set of seasonal variables. Moreover, if (2.52) is not a sensible model (and
it would not be if, for example, the seasonal pattern were more complicated
than that given by Sa), then (2.53) is not a sensible specification either.
Seasonality is actually an important practical problem in applied work with
time-series data. We will discuss it further in Chapter 13. For more detailed
treatments, see Hylleberg (1986, 1992) and Ghysels and Osborn (2001).

The deseasonalization performed by the projection Mg makes all variables
orthogonal to the constant as well as to the seasonal dummies. Thus the
effect of Mg is not only to deseasonalize, but also to center, the variables
on which it acts. Sometimes this is undesirable; if so, we may use the three
variables s, given in (2.50). Since they are themselves orthogonal to the
constant, no centering takes place if only these three variables are used for
seasonal adjustment. An explicit constant should normally be included in any
regression that uses variables seasonally adjusted in this way.
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Time Trends

Another sort of constructed, or artificial, variable that is often encountered
in models of time-series data is a time trend. The simplest sort of time trend
is the linear time trend, represented by the vector T', with typical element
T, =t ThusT =[1:i2:i3:i4%...]. Imagine that we have a regression with
a constant and a linear time trend:

Yy =mnt+ 7T+ X3+ u.

For observation ¢, y; is equal to 71 + v2t + X¢3 + u¢. Thus the overall level
of y; increases or decreases steadily as t increases. Instead of just a constant,
we now have the linear (strictly speaking, affine) function of time, v + 7at.
An increasing time trend might be appropriate, for instance, in a model of a
production function where technical progress is taking place. An explicit
model of technical progress might well be difficult to construct, in which
case a linear time trend could serve as a simple way to take account of the
phenomenon.

It is often desirable to make the time trend orthogonal to the constant by
centering it, that is, operating on it with M,. If we do this with a sample
with an odd number of elements, the result is a variable that looks like

[ 1—31-2:-1:10:1:2i3%..-].

If the sample size is even, the variable is made up of the half integers £1/5,
+3/9, +5/5,.... In both cases, the coefficient of ¢ is the average value of the
linear function of time over the whole sample.

Sometimes it is appropriate to use constructed variables that are more com-
plicated than a linear time trend. A simple case would be a quadratic time
trend, with typical element ¢2. In fact, any deterministic function of the time
index t can be used, including the trigonometric functions sint and cost,
which could be used to account for oscillatory behavior. With such variables,
it is again usually preferable to make them orthogonal to the constant by
centering them.

The FWL Theorem applies just as well with time trends of various sorts as
it does with seasonal dummy variables. It is possible to project all the other
variables in a regression model off the time trend variables, thereby obtaining
detrended variables. The parameter estimates and residuals will be same as
if the trend variables were explicitly included in the regression. This was in
fact the type of situation dealt with by Frisch and Waugh (1933).

Goodness of Fit of a Regression

In equations (2.18) and (2.19), we showed that the total sum of squares (TSS)
in the regression model y = X3 + u can be expressed as the sum of the
explained sum of squares (ESS) and the sum of squared residuals (SSR).
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This was really just an application of Pythagoras’ Theorem. In terms of the
orthogonal projection matrices Px and Mx, the relation between TSS, ESS,
and SSR can be written as

TSS = [ly* = [|Pxy|* + | Mxyl||* = ESS + SSR.

This allows us to introduce a measure of goodness of fit for a regression model.
This measure is formally called the coefficient of determination, but it is
universally referred to as the R2. The R? is simply the ratio of ESS to TSS.
It can be written as

 IMxyl? . SSR

ESS  ||[Pxyl?
o H XyH -1 1__200320, (254)

R* = = = T
Tss [yl lyl? TSS

where 6 is the angle between y and Pxy; see Figure 2.10. For any angle 6,
we know that —1 < cos@ < 1. Consequently, 0 < R? < 1. If the angle 6 were
zero, Yy and XB would coincide, the residual vector & would vanish, and we
would have what is called a perfect fit, with R? = 1. At the other extreme, if
R? = 0, the fitted value vector would vanish, and y would coincide with the
residual vector .

As we will see shortly, (2.54) is not the only measure of goodness of fit. It is
known as the uncentered R? and, to distinguish it from other versions of R?,
it is sometimes denoted as RZ. Because R2 depends on y only through the
residuals and fitted values, it is invariant under nonsingular linear transforma-
tions of the regressors. In addition, because it is defined as a ratio, the value
of R? is invariant to changes in the scale of y. For example, we could change
the units in which the regressand is measured from dollars to thousands of
dollars without affecting the value of R2.

However, R2 is not invariant to changes of units that change the angle 6. An
example of such a change is given by the conversion between the Celsius and
Fahrenheit scales of temperature, where a constant is involved; see (2.29). To
see this, let us consider a very simple change of measuring units, whereby a
constant «, analogous to the constant 32 used in converting from Celsius to
Fahrenheit, is added to each element of y. In terms of these new units, the
regression of y on a regressor matrix X becomes

y+ar=XB+u. (2.55)

If we assume that the matrix X includes a constant, it follows that Pxt = ¢
and Mxt¢ = 0, and so we find that

y+ o =Px(y+ o) + Mx(y+at) = Pxy + o+ Mxy.
This allows us to compute R? as

e I Pxy+ o
ly + ael?

u
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which is clearly different from (2.54). By choosing « sufficiently large, we can
in fact make R2 as close as we wish to 1, because, for very large «, the term
at will completely dominate the terms Pxy and y in the numerator and
denominator respectively. But a large R? in such a case would be entirely
misleading, since the “good fit” would be accounted for almost exclusively by
the constant.

It is easy to see how to get around this problem, at least for regressions that
include a constant term. An elementary consequence of the FWL Theorem
is that we can express all variables as deviations from their means, by the
operation of the projection M,, without changing parameter estimates or
residuals. The ordinary R? from the regression that uses centered variables is
called the centered R2. It is defined as

PxMyl? . [Mxy|?
g2 = IPxMoylP | IMxy|” 2.56
M,y M,y (2:36)

and it is clearly unaffected by the addition of a constant to the regressand, as
in equation (2.55).

The centered R? is much more widely used than the uncentered R?. When ¢
is contained in the span §(X) of the regressors, R? certainly makes far more
sense than R2. However, R? does not make sense for regressions without a
constant term or its equivalent in terms of dummy variables. If a statistical
package reports a value for R? in such a regression, one needs to be very
careful. Different ways of computing R2, all of which would yield the same,
correct, answer for regressions that include a constant, may yield quite differ-
ent answers for regressions that do not. It is even possible to obtain values of
R? that are less than 0 or greater than 1, depending on how the calculations
are carried out.

Either version of R2 is a valid measure of goodness of fit only when the least
squares estimates B are used. If we used some other estimates of 3, say ,6,
the triangle in Figure 2.10 would no longer be a right-angled triangle, and
Pythagoras’ Theorem would no longer apply. As a consequence, (2.54) would
no longer hold, and the different definitions of R? would no longer be the

same: ~ ~
ly — X8| , X8|
lyl]? lyll®

If we chose to define R? in terms of the residuals, using the first of these
expressions, we could not guarantee that it would be positive, and if we chose
to define it in terms of the fitted values, using the second, we could not
guarantee that it would be less than 1. Thus, when anything other than
least squares is used to estimate a regression, one should be very cautious
about interpreting a reported R?. It is not a sensible measure of fit in such
a case, and, depending on how it is actually computed, it may be seriously
misleading.

1—

£

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



2.6 Influential Observations and Leverage 7

High leverage point @

4
3 Regression line with point included
e .
2 — .
L[]
1 Regression line with point excluded
0 T T T T T T T T T T |z

Figure 2.14 An influential observation

2.6 Influential Observations and Leverage

One important feature of OLS estimation, which we have not stressed up to
this point, is that each element of the vector of parameter estimates ,é is
simply a weighted average of the elements of the vector y. To see this, define
ci as the i*" row of the matrix (X'X) !X" and observe from (2.02) that
Bz» = ¢;y. This fact will prove to be of great importance when we discuss the
statistical properties of least squares estimation in the next chapter.

Because each element of ,é is a weighted average, some observations may
affect the value of B much more than others do. Consider Figure 2.14. This
figure is an example of a scatter diagram, a long-established way of graphing
the relation between two variables. Each point in the figure has Cartesian
coordinates (¢, y;), where x; is a typical element of a vector @, and y; of a
vector y. One point, drawn with a larger dot than the rest, is indicated, for
reasons to be explained, as a high leverage point. Suppose that we run the
regression
y=705t+ ox+u

twice, once with, and once without, the high leverage observation. For each
regression, the fitted values all lie on the so-called regression line, which is
the straight line with equation

Y :Bl "’ﬁQCC-

The slope of this line is just BQ, which is why 5 is sometimes called the slope
coefficient; see Section 1.1. Similarly, because 3; is the intercept that the
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regression line makes with the y axis, the constant term (; is sometimes called
the intercept. The regression line is entirely determined by the estimated
coefficients, 51 and (.

The regression lines for the two regressions in Figure 2.14 are substantially
different. The high leverage point is quite distant from the regression line
obtained when it is excluded. When that point is included, it is able, by
virtue of its position well to the right of the other observations, to exert a
good deal of leverage on the regression line, pulling it down toward itself.
If the y coordinate of this point were greater, making the point closer to
the regression line excluding it, then it would have a smaller influence on
the regression line including it. If the x coordinate were smaller, putting
the point back into the main cloud of points, again there would be a much
smaller influence. Thus it is the x coordinate that gives the point its position
of high leverage, but it is the y coordinate that determines whether the high
leverage position will actually be exploited, resulting in substantial influence
on the regression line. In a moment, we will generalize these conclusions to
regressions with any number of regressors.

If one or a few observations in a regression are highly influential, in the sense
that deleting them from the sample would change some elements of B sub-
stantially, the prudent econometrician will normally want to scrutinize the
data carefully. It may be that these influential observations are erroneous, or
at least untypical of the rest of the sample. Since a single erroneous obser-
vation can have an enormous effect on ,5, it is important to ensure that any
influential observations are not in error. Even if the data are all correct, the
interpretation of the regression results may change if it is known that a few ob-
servations are primarily responsible for them, especially if those observations
differ systematically in some way from the rest of the data.

Leverage

The effect of a single observation on ,é can be seen by comparing B with B(t),
the estimate of B that would be obtained if the t*" observation were omitted
from the sample. Rather than actually omit the t*" observation, it is easier
to remove its effect by using a dummy variable. The appropriate dummy
variable is e;, an n—vector which has ¢t*" element 1 and all other elements 0.
The vector e; is called a unit basis vector, unit because its norm is 1, basis
because the set of all the e;, for t = 1,...,n, span, or constitute a basis for,
the full space E™; see Exercise 2.20. Considered as an indicator variable, e;
indexes the singleton subsample that contains only observation t.

Including e; as a regressor leads to a regression of the form
y=XB+ ae; +u, (2.57)

and, by the FWL Theorem, this gives the same parameter estimates and
residuals as the FWL regression

My = M; X3 + residuals, (2.58)
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where M, = M., =1— et(etTet)_letT is the orthogonal projection off the
vector e;. It is easy to see that M,y is just y with its ¢*" component replaced
by 0. Since e;'e; = 1, and since e, y can easily be seen to be the ¢*"' component
of y,

My =y —eely =y — yre;.

Thus y; is subtracted from y for the ¢ observation only. Similarly, M;X
is just X with its ¢*® row replaced by zeros. Running regression (2.58) will
give the same parameter estimates as those that would be obtained if we
deleted observation ¢ from the sample. Since the vector ﬁ is defined exclusively
in terms of scalar products of the variables, replacing the ¢*" elements of
these variables by 0 is tantamount to simply leaving observation ¢ out when
computing those scalar products.

Let us denote by Pz and Mz, respectively, the orthogonal projections on to
and off (X, e;). The fitted values and residuals from regression (2.57) are
then given by

y = Pry+ Mzy = XB"Y +ae, + Mzy. (2.59)
Now premultiply (2.59) by Px to obtain
Pxy = X3 + aPxey, (2.60)

where we have used the fagt that Mz Px = O, because Mz annihilates both
X and e;. But Pxy = X0, and so (2.60) gives

X(BY - B) = —aPxey. (2.61)

We can compute the difference between ,é ®) and ,é from this if we can compute
the value of a.

In order to calculate &, we once again use the FWL Theorem, which tells us
that the estimate of o from (2.57) is the same as the estimate from the FWL
regression

Mxy = & Mxe; + residuals.

Therefore, using (2.02) and the idempotency of Mx,

e/ Mxy

—_ 2.62
e/ Mxe, (2.62)

o=
Now e/ Mxy is the t*" element of Mxy, the vector of residuals from the
regression including all observations. We may denote this element as 4. In

like manner, e/ Mxe;, which is just a scalar, is the ¢t*" diagonal element
of Mx. Substituting these into (2.62), we obtain

Uit

-t 2.63
e (2.63)

o =
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where h; denotes the t*" diagonal element of Px, which is equal to 1 minus
the ¢t*" diagonal element of Mx. The rather odd notation h; comes from the
fact that Px is sometimes referred to as the hat matrix, because the vector
of fitted values X8 = Pxy is sometimes written as g, and Px is therefore
said to “put a hat on” y.

Finally, if we premultiply (2.61) by (X 'X)"!X " and use (2.63), we find that

BY —B=—a(X"X)"'XTPxe, = —

- (XTX)1X/ 1. (2.64)
— It

The second equality uses the facts that X "Px = X | and that the final factor
of e; selects the t*" column of X, which is the transpose of the t** row, X;.
Expression (2.64) makes it clear that, when either 4 is large or h; is large, or
both, the effect of the ¢*" observation on at least some elements of B is likely
to be substantial. Such an observation is said to be influential.

From (2.64), it is evident that the influence of an observation depends on both
u; and hy. It will be greater if the observation has a large residual, which,
as we saw in Figure 2.14, is related to its y coordinate. On the other hand,
h; is related to the x coordinate of a point, which, as we also saw in the
figure, determines the leverage, or potential influence, of the corresponding
observation. We say that observations for which h; is large have high leverage
or are leverage points. A leverage point is not necessarily influential, but it
has the potential to be influential.

The Diagonal Elements of the Hat Matrix

Since the leverage of the ¢*" observation depends on hy, the ¢*" diagonal ele-
ment of the hat matrix, it is worth studying the properties of these diagonal
elements in a little more detail. We can express h; as

ht = BtTPXEt = HPXGtHQ. (265)

Since the rightmost expression here is a square, hy > 0. Moreover, since
|le:|]| = 1, we obtain from (2.28) applied to e; that h; = ||[Pxe;||> < 1. Thus

0<hy <1. (2.66)

The geometrical reason for these bounds on the value of h; can be found in
Exercise 2.26.

The lower bound in (2.66) can be strengthened when there is a constant term.
In that case, none of the h; can be less than 1/n. This follows from (2.65),
because if X consisted only of a constant vector ¢, e, P,e; would equal 1/n.
If other regressors are present, then we have

1/n = ||Pei|* = |P.Pxe.|* < || Pxe® = hy.
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Here we have used the fact that P, Px = P, since ¢ is in 8§(X') by assumption,
and, for the inequality, we have used (2.28). Although h; cannot be 0 in normal
circumstances, there is a special case in which it equals 1. If one column of
X is the dummy variable e, hy = e/ Pxe;, = ele; = 1.

In a regression with n observations and k regressors, the average of the h; is
equal to k/n. In order to demonstrate this, we need to use some properties
of the trace of a square matrix. If A is an n X n matrix, its trace, denoted
Tr(A), is the sum of the elements on its principal diagonal. Thus

A convenient property is that the trace of a product of two not necessarily
square matrices A and B is unaffected by the order in which the two matrices
are multiplied together. If the dimensions of A are n x m, then, in order for
the product AB to be square, those of B must be m x n. This implies further
that the product BA exists and is m x m. We have

n n m

Tr(AB)=> (AB); =) iAijBﬁ => (BA);; = Tr(BA). (2.67)

i=1 i=1 j=1 j=1

The result (2.67) can be extended. If we consider a (square) product of several
matrices, the trace is invariant under what is called a cyclic permutation of
the factors. Thus, as can be seen by successive applications of (2.67),

Tr(ABC) = Tr(CAB) = Tr(BCA). (2.68)
We now return to the h;. Their sum is

- — Ty — Ty Ty -1y T
;ht—T(PX) Tr(X(X'X)'Xx7) 2.69)

=Tr(X'X)'X'X) = Tr(Iy) = k.

The first equality in the second line makes use of (2.68). Then, because we
are multiplying a k x k matrix by its inverse, we get a k x k identity matrix,
the trace of which is obviously just k. It follows from (2.69) that the average
of the h; equals k/n. When, for a given regressor matrix X, the diagonal
elements of Px are all close to their average value, no observation has very
much leverage. Such an X matrix is sometimes said to have a balanced design.
On the other hand, if some of the h; are much larger than k/n, and others
consequently smaller, the X matrix is said to have an unbalanced design.

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



82 The Geometry of Linear Regression

hi

X

Figure 2.15 h; as a function of X

The h; tend to be larger for values of the regressors that are farther away
from their average over the sample. As an example, Figure 2.15 plots them
as a function of X; for a particular sample of 100 observations for the model

yr = B1+ Bo Xy + uy.

The elements X; of the regressor are perfectly well behaved, being drawings
from the standard normal distribution. Although the average value of the h;
is 2/100 = 0.02, h; varies from 0.0100 for values of X; near the sample mean to
0.0695 for the largest value of Xy, which is about 2.4 standard deviations above
the sample mean. Thus, even in this very typical case, some observations have
a great deal more leverage than others. Those observations with the greatest
amount of leverage are those for which x; is farthest from the sample mean,
in accordance with the intuition of Figure 2.14.

2.7 Final Remarks

In this chapter, we have discussed the numerical properties of OLS estimation
of linear regression models from a geometrical point of view. This perspective
often provides a much simpler way to understand such models than does a
purely algebraic approach. For example, the fact that certain matrices are
idempotent becomes quite clear as soon as one understands the notion of
an orthogonal projection. Most of the results discussed in this chapter are
thoroughly fundamental, and many of them will be used again and again
throughout the book. In particular, the FWL Theorem will turn out to be
extremely useful in many contexts.

The use of geometry as an aid to the understanding of linear regression has
a long history; see Herr (1980). One valuable reference on linear models that
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takes the geometric approach is Seber (1980). A good expository paper that
is reasonably accessible is Bryant (1984), and a detailed treatment is provided
by Ruud (2000).

It is strongly recommended that readers attempt the exercises which follow
this chapter before starting Chapter 3, in which we turn our attention to the
statistical properties of OLS estimation. Many of the results of this chapter
will be useful in establishing these properties, and the exercises are designed
to enhance understanding of these results.

2.8 Exercises

2.1 Consider two vectors « and y in E2 Let = [z i 20] and y = [y1 | y2]. Show
trigonometrically that 'y = z1y1 + z2ys is equal to ||z|| ||y|| cosf, where 6
is the angle between x and y.

2.2 A vector in E™ can be normalized by multiplying it by the reciprocal of its
norm. Show that, for any @ € E™ with & # 0, the norm of x/|x|| is 1.

Now consider two vectors x,y € E”. Compute the norm of the sum and of
the difference of & normalized and y normalized, that is, of

I A B

[l vl el [yl

By using the fact that the norm of any nonzero vector is positive, prove the
Cauchy-Schwartz inequality (2.08):

.
[z y| < [l [yl (2.08)

Show that this inequality becomes an equality when x and y are parallel.
Hint: Show first that « and y are parallel if and only if z/|z| = £ y/||y]|

2.3 The triangle inequality states that, for x,y € E",
lz +yll < [zl + [yl (2.70)

Draw a 2-dimensional picture to illustrate this result. Prove the result alge-
braically by computing the squares of both sides of the above inequality, and
then using (2.08). In what circumstances will (2.70) hold with equality?

2.4 Suppose that  =[1.0i1.5i1.2: 0.7 and y = [3.2 i 4.4 i 2.5 i 2.0]. What are
|||, lyll, and 2 "y? Use these quantities to calculate 6, the angle 6 between
x and y, and cos 6.

2.5 Show explicitly that the left-hand sides of (2.11) and (2.12) are the same.

This can be done either by comparing typical elements or by using the results
in Section 2.3 on partitioned matrices.

2.6 Prove that, if the k columns of X are linearly independent, each vector z in
8(X) can be expressed as X b for one and only one k-vector b. Hint: Suppose
that there are two different vectors, by and bs, such that z = Xb;, 1 = 1,2,
and show that this implies that the columns of X are linearly dependent.
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2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

The Geometry of Linear Regression

Consider the vectors @1 = [1i2i4], 22 =[2i3i5], and 3 = [3 6 i 12].
What is the dimension of the subspace that these vectors span?

Consider the example of the three vectors x1, 2, and 3 defined in (2.16).
Show that any vector z = by + baxa in S(x1,x2) also belongs to 8(x1,x3)
and 8(x2,x3). Give explicit formulas for z as a linear combination of x;
and x3, and of 2 and x3.

Prove algebraically that Px Mx = O. This is equation (2.26). Use only the
requirement (2.25) that Px and Mx be complementary projections, and the
idempotency of Px.

Prove algebraically that equation (2.27), which is really Pythagoras’ Theorem
for linear regression, holds. Use the facts that Px and Mx are symmetric,
idempotent, and orthogonal to each other.

Show algebraically that, if Px and Mx are complementary orthogonal pro-
jections, then Mx annihilates all vectors in 8§(X), and Px annihilates all
vectors in 81 (X).

Consider the two regressions

y = pix1 + fax2 + B3x3 + u, and

Yy =a1z1 +a2z2 +a3z3 +u,
where z; = 1 — 2x9, 20 = ®2 + 4x3, and z3 = 2x1 — 3xo + Hx3z. Let
X =[x1 x2 x3] and Z = [z1 z2 =z3]. Show that the columns of Z can be

expressed as linear combinations of the columns of X, that is, that Z = X A,
for some 3 x 3 matrix A. Find the elements of this matrix A.

Show that the matrix A is invertible, by showing that the columns of X are
linear combinations of the columns of Z. Give the elements of A~!. Show
that the two regressions give the same fitted values and residuals.

Precisely how is the OLS estimate Bl related to the OLS estimates &, for
i =1,...,37 Precisely how is &; related to the 3;, fort=1,...,37

Let X be an n X k matrix of full rank. Consider the n x k matrix X A, where
A is a singular k x k matrix. Show that the columns of XA are linearly

dependent, and that §(XA) C 8(X).

Use the result (2.36) to show that Mx M; = M1 Mx = Mx, where X =
(X1 X3l

Consider the following linear regression:
y=X181+ X282+ u,

where y is n x 1, X1 is n X k1, and Xo is n X kg. Let ,31 and Bg be the OLS
parameter estimates from running this regression.

Now consider the following regressions, all to be estimated by OLS:

a) y = X282 + u;
b) Py = X382 + u;
c) Py = P X502 +u;

d) Pxy = X181 + X282 + u;
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2.16

2.17

2.18

2.19

2.20

2.21

e) Pxy = X282 + u;

My = X282 + u;

My = M1 X282 + u;

My = X181 + M1 X282 + u;

i) My = M1 X181 + M1 X232 + u;
i) Pxy =M1 X282 +u.

r =

Here P; projects orthogonally on to the span of Xy, and M; =1 — P;. For
which of the above regressions will the estimates of B2 be the same as for the
original regression? Why? For which will the residuals be the same? Why?

Consider the linear regression
y =Pt + X282 +u,

where ¢ is an n-vector of 1s, and X5 is an n x (k — 1) matrix of observations
on the remaining regressors. Show, using the FWL Theorem, that the OLS
estimators of 51 and B2 can be written as

B 0 Xo M, X Xo M,y |’

where, as usual, M, is the matrix that takes deviations from the sample mean.

Show, preferably using (2.36), that Px — P; is an orthogonal projection
matrix. That is, show that Px — P; is symmetric and idempotent. Show
further that

Px — P, = Py x,s

where Ppr, x, is the projection on to the span of M7 X>. This can be done
most easily by showing that any vector in §(M;X3) is invariant under the
action of Px — Pp, and that any vector orthogonal to this span is annihilated
by PX - Pl.

Let ¢ be a vector of 1s, and let X be an n x 3 matrix, with full rank, of which
the first column is ¢. What can you say about the matrix M, X? What can
you say about the matrix P, X? What is M, Mx equal to? What is P, Mx
equal to?

Express the four seasonal variables, s;, ¢ = 1,2,3,4, defined in (2.47), as
functions of the constant ¢ and the three variables s;, i = 1,2,3, defined
in (2.50).

Show that the full n—dimensional space E™ is the span of the set of unit basis

vectors e;, t = 1,...,n, where all the components of e; are zero except for
the tth, which is equal to 1.

The file tbrate.data contains data for 1950:1 to 1996:4 for three series: 74,

the interest rate on 90-day treasury bills, 7, the rate of inflation, and y;, the

logarithm of real GDP. For the period 1950:4 to 1996:4, run the regression
Ary = 1+ Bami—1 + B3Ays—1 + BaAr—1 + Bs Arg—o + ut, (2.71)
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2.22

2.23

2.24

2.25

2.26

2.27

2.28
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where A is the first-difference operator, defined so that Ary = ry —r¢_1. Plot
the residuals and fitted values against time. Then regress the residuals on
the fitted values and on a constant. What do you learn from this second
regression? Now regress the fitted values on the residuals and on a constant.
What do you learn from this third regression?

For the same sample period, regress Ar; on a constant, Ayy—1, Ary_1, and
Ari_o. Save the residuals from this regression, and call them é;. Then regress
m¢_1 on a constant, Ay;_1, Ary_1, and Ars_o. Save the residuals from this
regression, and call them v;. Now regress é; on U;. How are the estimated
coefficient and the residuals from this last regression related to anything that
you obtained when you estimated regression (2.71)?

Calculate the diagonal elements of the hat matrix for regression (2.71) and
use them to calculate a measure of leverage. Plot this measure against time.
On the basis of this plot, which observations seem to have unusually high
leverage?

Show that the ¢*! residual from running regression (2.57) is 0. Use this fact
to demonstrate that, as a result of omitting observation t, the t" residual
from the regression y = X3 + u changes by an amount

g
tl—ht.

Calculate a vector of “omit 17 residuals @(") for regression (2.71). The t*Pele-
ment of @) is the residual for the t'" observation calculated from a regression
that uses data for every observation except the tth, Try to avoid running 185
regressions in order to do this! Regress 4() on the ordinary residuals @. Is
the estimated coefficient roughly the size you expected it to be? Would it be
larger or smaller if you were to omit some of the high-leverage observations?

Show that the leverage measure h; is the square of the cosine of the angle
between the unit basis vector e; and its projection on to the span 8(X) of
the regressors.

Suppose the matrix X is 150 x 5 and has full rank. Let Px be the matrix
that projects on to 8§(X) and let Mx =1 — Px. What is Tr(Px)? What is
Tr(Mx)? What would these be if X did not have full rank but instead had
rank 37

Generate a figure like Figure 2.15 for yourself. Begin by drawing 100 observa-
tions of a regressor x¢ from the N (0, 1) distribution. Then compute and save
the h¢ for a regression of any regressand on a constant and x;. Plot the points
(zt, ht), and you should obtain a graph similar to the one in Figure 2.15.

Now add one more observation, x191. Start with 191 = Z, the average value
of the x;, and then increase x191 progressively until z191 = Z + 20. For each
value of x191, compute the leverage measure h1g;. How does hig; change
as w101 gets larger? Why is this in accord with the result that hy = 1 if the
regressors include the dummy variable e;?
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Chapter 3

The Statistical Properties of
Ordinary Least Squares

3.1 Introduction

In the previous chapter, we studied the numerical properties of ordinary least
squares estimation, properties that hold no matter how the data may have
been generated. In this chapter, we turn our attention to the statistical prop-
erties of OLS, ones that depend on how the data were actually generated.
These properties can never be shown to hold numerically for any actual data
set, but they can be proven to hold if we are willing to make certain as-
sumptions. Most of the properties that we will focus on concern the first two
moments of the least squares estimator.

In Section 1.5, we introduced the concept of a data-generating process, or
DGP. For any data set that we are trying to analyze, the DGP is simply
the mechanism that actually generated the data. Most real DGPs for econ-
omic data are probably very complicated, and economists do not pretend to
understand every detail of them. However, for the purpose of studying the sta-
tistical properties of estimators, it is almost always necessary to assume that
the DGP is quite simple. For instance, when we are studying the (multiple)
linear regression model

ye = Xi B +ug, us ~ I1D(0,0%), (3.01)
we may wish to assume that the data were actually generated by the DGP
yi = X B0 +us, uy ~ NID(0,03). (3.02)

The symbol “~” in (3.01) and (3.02) means “is distributed as.” We intro-
duced the abbreviation IID, which means “independently and identically dis-
tributed,” in Section 1.3. In the model (3.01), the notation IID(0, c?) means
that the u; are statistically independent and all follow the same distribution,
with mean 0 and variance o2 Similarly, in the DGP (3.02), the notation
NID(0,02) means that the u; are normally, independently, and identically
distributed, with mean 0 and variance o3. In both cases, it is implicitly being
assumed that the distribution of u; is in no way dependent on X;.
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The differences between the regression model (3.01) and the DGP (3.02) may
seem subtle, but they are important. A key feature of a DGP is that it
constitutes a complete specification, where that expression means, as in Sec-
tion 1.3, that enough information is provided for the DGP to be simulated on
a computer. For that reason, in (3.02) we must provide specific values for the
parameters 3 and o (the zero subscripts on these parameters are intended
to remind us of this), and we must specify from what distribution the error
terms are to be drawn (here, the normal distribution).

A model is defined as a set of data-generating processes. Since a model is a
set, we will sometimes use the notation M to denote it. In the case of the
linear regression model (3.01), this set consists of all DGPs of the form (3.01)
in which the coefficient vector 3 takes some value in R¥, the variance o2 is
some positive real number, and the distribution of u; varies over all possible
distributions that have mean 0 and variance o2 Although the DGP (3.02)
evidently belongs to this set, it is considerably more restrictive.

The set of DGPs of the form (3.02) defines what is called the classical normal
linear model, where the name indicates that the error terms are normally
distributed. The model (3.01) is larger than the classical normal linear model,
because, although the former specifies the first two moments of the error
terms, and requires the error terms to be mutually independent, it says no
more about them, and in particular it does not require them to be normal.
All of the results we prove in this chapter, and many of those in the next,
apply to the linear regression model (3.01), with no normality assumption.
However, in order to obtain some of the results in the next two chapters, it
will be necessary to limit attention to the classical normal linear model.

For most of this chapter, we assume that whatever model we are studying,
the linear regression model or the classical normal linear model, is correctly
specified. By this, we mean that the DGP that actually generated our data
belongs to the model under study. A model is misspecified if that is not the
case. It is crucially important, when studying the properties of an estimation
procedure, to distinguish between properties which hold only when the model
is correctly specified, and properties, like those treated in the previous chapter,
which hold no matter what the DGP. We can talk about statistical properties
only if we specify the DGP.

In the remainder of this chapter, we study a number of the most important
statistical properties of ordinary least squares estimation, by which we mean
least squares estimation of linear regression models. In the next section, we
discuss the concept of bias and prove that, under certain conditions, B, the
OLS estimator of 3, is unbiased. Then, in Section 3.3, we discuss the concept
of consistency and prove that, under considerably weaker conditions, 3 is
consistent. In Section 3.4, we turn our attention to the covariance matrix
of ,é, and we discuss the concept of collinearity. This leads naturally to a
discussion of the efficiency of least squares estimation in Section 3.5, in which
we prove the famous Gauss-Markov Theorem. In Section 3.6, we discuss the
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estimation of o2 and the relationship between error terms and least squares
residuals. Up to this point, we will assume that the DGP belongs to the
model being estimated. In Section 3.7, we relax this assumption and consider
the consequences of estimating a model that is misspecified in certain ways.
Finally, in Section 3.8, we discuss the adjusted R? and other ways of measuring
how well a regression fits.

3.2 Are OLS Parameter Estimators Unbiased?

One of the statistical properties that we would like any estimator to have
is that it should be unbiased. Suppose that 0 is an estimator of some para-
meter 6, the true value of which is . Then the bias of 0 is defined as E(é) —0o,
the expectation of 6 minus the true value of 6. If the bias of an estimator is
zero for every admissible value of ), then the estimator is said to be unbiased.
Otherwise, it is said to be biased. Intuitively, if we were to use an unbiased
estimator to calculate estimates for a very large number of samples, then the
average value of those estimates would tend to the quantity being estimated.
If their other statistical properties were the same, we would always prefer an
unbiased estimator to a biased one.

As we have seen, the linear regression model (3.01) can also be written, using
matrix notation, as

y=XB+u, u~IID0,s%]), (3.03)

where y and u are n-vectors, X is an n X k matrix, and 3 is a k-vector. In
(3.03), the notation IID(0, 01) is just another way of saying that each element
of the vector w is independently and identically distributed with mean 0 and
variance 2. This notation, which may seem a little strange at this point, is
convenient to use when the model is written in matrix notation. Its meaning
should become clear in Section 3.4. As we first saw in Section 1.5, the OLS
estimator of 3 can be written as

B=(X"X)'XTy. (3.04)

In order to see whether this estimator is biased, we need to replace y by
whatever it is equal to under the DGP that is assumed to have generated the
data. Since we wish to assume that the model (3.03) is correctly specified, we
suppose that the DGP is given by (3.03) with 3 = (By. Substituting this into
(3.04) yields

B=(X"X)'XT(XB) +u)

(3.05
=GB+ (X' X)X Tu. )
The expectation of the second line here is

E(B) =By +E(XTX)'X ). (3.06)
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It is obvious that B will be unbiased if and only if the second term in (3.06) is
equal to a zero vector. What is not entirely obvious is just what assumptions
are needed to ensure that this condition will hold.

Assumptions about Error Terms and Regressors

In certain cases, it may be reasonable to treat the matrix X as nonstochastic,
or fixed. For example, this would certainly be a reasonable assumption to
make if the data pertained to an experiment, and the experimenter had chosen
the values of all the variables that enter into X before y was determined. In
this case, the matrix (X'X) !XT is not random, and the second term in
(3.06) becomes

E(X'X) ' X u) = (X'X) ' XE(u). (3.07)

If X really is fixed, it is perfectly valid to move the expectations operator
through the factor that depends on X, as we have done in (3.07). Then, if we
are willing to assume that E(u) = 0, we will obtain the result that the vector
on the right-hand side of (3.07) is a zero vector.

Unfortunately, the assumption that X is fixed, convenient though it may be
for showing that ﬁ is unbiased, is frequently not a reasonable assumption
to make in applied econometric work. More commonly, at least some of the
columns of X correspond to variables that are no less random than y itself,
and it would often stretch credulity to treat them as fixed. Luckily, we can
still show that B is unbiased in some quite reasonable circumstances without
making such a strong assumption.

A weaker assumption is that the explanatory variables which form the columns
of X are exogenous. The concept of exogeneity was introduced in Section 1.3.
When applied to the matrix X, it implies that any randomness in the DGP
that generated X is independent of the error terms u in the DGP for y. This
independence in turn implies that

E(u|X)=0. (3.08)

In words, this says that the mean of the entire vector u, that is, of every one
of the u;, is zero conditional on the entire matrix X. See Section 1.2 for a
discussion of conditional expectations. Although condition (3.08) is weaker
than the condition of independence of X and w, it is convenient to refer to
(3.08) as an exogeneity assumption.

Given the exogeneity assumption (3.08), it is easy to show that B is unbiased.
It is clear that
E(X'X)"'XTu|X) =0, (3.09)

because the expectation of (X'X) !XT conditional on X is just itself, and
the expectation of w conditional on X is assumed to be 0; see (1.17). Then,
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applying the Law of Iterated Expectations, we see that the unconditional
expectation of the left-hand side of (3.09) must be equal to the expectation
of the right-hand side, which is just O.

Assumption (3.08) is perfectly reasonable in the context of some types of data.
In particular, suppose that a sample consists of cross-section data, in which
each observation might correspond to an individual firm, household, person,
or city. For many cross-section data sets, there may be no reason to believe
that u; is in any way related to the values of the regressors for any of the
observations. On the other hand, suppose that a sample consists of time-
series data, in which each observation might correspond to a year, quarter,
month, or day, as would be the case, for instance, if we wished to estimate a
consumption function, as in Chapter 1. Even if we are willing to assume that
uz is in no way related to current and past values of the regressors, it must
be related to future values if current values of the dependent variable affect
future values of some of the regressors. Thus, in the context of time-series
data, the exogeneity assumption (3.08) is a very strong one that we may often
not feel comfortable in making.

The assumption that we made in Section 1.3 about the error terms and the
explanatory variables, namely, that

E(u¢ | X;) =0, (3.10)

is substantially weaker than assumption (3.08), because (3.08) rules out the
possibility that the mean of u; may depend on the values of the regressors for
any observation, while (3.10) merely rules out the possibility that it may de-
pend on their values for the current observation. For reasons that will become
apparent in the next subsection, we refer to (3.10) as a predeterminedness
condition. Equivalently, we say that the regressors are predetermined with
respect to the error terms.

The OLS Estimator Can Be Biased

We have just seen that the OLS estimator B is unbiased if we make assump-
tion (3.08) that the explanatory variables X are exogenous, but we remarked
that this assumption can sometimes be uncomfortably strong. If we are not
prepared to go beyond the predeterminedness assumption (3.10), which it is
rarely sensible to do if we are using time-series data, then we will find that B
is, in general, biased.

Many regression models for time-series data include one or more lagged vari-
ables among the regressors. The first lag of a time-series variable that takes
on the value z; at time t is the variable whose value at ¢ is z;_1. Similarly,
the second lag of z; has value z;_o, and the p'" lag has value Zt—p. In some
models, lags of the dependent variable itself are used as regressors. Indeed,
in some cases, the only regressors, except perhaps for a constant term and
time trend or dummy variables, are lagged dependent variables. Such mod-
els are called autoregressive, because the conditional mean of the dependent
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variable depends on lagged values of the variable itself. A simple example of
an autoregressive model is

Yy =P+ Boyr +u, wu~IID(0,0%T). (3.11)

Here, as usual, ¢ is a vector of 1s, the vector y has typical element y;, the
dependent variable, and the vector y; has typical element y; 1, the lagged
dependent variable. This model can also be written, in terms of a typical
observation, as

Ye = 1+ Boyi1 +ug,  up ~ IID(0, 02).

It is perfectly reasonable to assume that the predeterminedness condition
(3.10) holds for the model (3.11), because this condition amounts to saying
that E(us) = 0 for every possible value of y; 1. The lagged dependent variable
y¢—1 is then said to be predetermined with respect to the error term u;. Not
only is y;_1 realized before u;, but its realized value has no impact on the
expectation of u;. However, it is clear that the exogeneity assumption (3.08),
which would here require that E(u|y;) = 0, cannot possibly hold, because
yi—1 depends on wus_q, us—2, and so on. Assumption (3.08) will evidently
fail to hold for any model in which the regression function includes a lagged
dependent variable.

To see the consequences of assumption (3.08) not holding, we use the FWL
Theorem to write out (o explicitly as

B = (' M,y1) 'yl Moy,
Here M, denotes the projection matrix I—¢(¢7¢)~'¢", which centers any vector
it multiplies; recall (2.32). If we replace y by B10t + P20y1 + u, where 31 and
B9o are specific values of the parameters, and use the fact that M, annihilates
the constant vector, we find that

By = (y1 M, y1) "y M, (y1 Ba0 + u)

S (3.12)
= B0 + (y1 M,y1)” y1 M, u.

This is evidently just a special case of (3.05).

It is clear that Bg will be unbiased if and only if the second term in the second
line of (3.12) has expectation zero. But this term does not have expectation
zero. Because y; is stochastic, we cannot simply move the expectations op-
erator, as we did in (3.07), and then take the unconditional expectation of wu.
Because E(u|y1) # 0, we also cannot take expectations conditional on vy,
in the way that we took expectations conditional on X in (3.09), and then
rely on the Law of Iterated Expectations. In fact, as readers are asked to
demonstrate in Exercise 3.1, the estimator Bg is biased.

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



3.3 Are OLS Parameter Estimators Consistent? 93

It seems reasonable that, if Bg is biased, so must be 31. The equivalent of the
second line of (3.12) is

B = Bro + (LT]VIy1 L)_ILTMMU, (3.13)

where the notation should be self-explanatory. Once again, because y; de-
pends on u, we cannot employ the methods that we used in (3.07) or (3.09)
to prove that the second term on the right-hand side of (3.13) has mean zero.
In fact, it does not have mean zero, and Bl is consequently biased, as readers
are also asked to demonstrate in Exercise 3.1.

The problems we have just encountered when dealing with the autoregressive
model (3.11) will evidently affect every regression model with random regres-
sors for which the exogeneity assumption (3.08) does not hold. Thus, for all
such models, the least squares estimator of the parameters of the regression
function is biased. Assumption (3.08) cannot possibly hold when the regressor
matrix X contains lagged dependent variables, and it probably fails to hold
for most other models that involve time-series data.

3.3 Are OLS Parameter Estimators Consistent?

Unbiasedness is by no means the only desirable property that we would like
an estimator to possess. Another very important property is consistency. A
consistent estimator is one for which the estimate tends to the quantity being
estimated as the size of the sample tends to infinity. Thus, if the sample size
is large enough, we can be confident that the estimate will be close to the true
value. Happily, the least squares estimator ﬁ will often be consistent even
when it is biased.

In order to define consistency, we have to specify what it means for the sam-
ple size n to tend to infinity or, in more compact notation, n — oo. At first
sight, this may seem like a very odd notion. After all, any given data set
contains a fixed number of observations. Nevertheless, we can certainly imag-
ine simulating data and letting n become arbitrarily large. In the case of a
pure time-series model like (3.11), we can easily generate any sample size we
want, just by letting the simulations run on for long enough. In the case of
a model with cross-section data, we can pretend that the original sample is
taken from a population of infinite size, and we can imagine drawing more and
more observations from that population. Even in the case of a model with
fixed regressors, we can think of ways to make n tend to infinity. Suppose that
the original X matrix is of dimension m x k. Then we can create X matrices
of dimensions 2m X k, 3m x k, 4m X k, and so on, simply by stacking as many
copies of the original X matrix as we like. By simulating error vectors of the
appropriate length, we can then generate y vectors of any length n that is an
integer multiple of m. Thus, in all these cases, we can reasonably think of
letting n tend to infinity.
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Probability Limits

In order to say what happens to a stochastic quantity that depends on n
as n — oo, we need to introduce the concept of a probability limit. The
probability limit, or plim for short, generalizes the ordinary concept of a limit
to quantities that are stochastic. If a(y™) is some vector function of the
random vector y", and the plim of a(y™) as n — oo is ag, we may write

plim a(y") = ao. (3.14)

n—oo

We have written y™ here, instead of just y, to emphasize the fact that y”
is a vector of length n, and that n is not fixed. The superscript is often
omitted in practice. In econometrics, we are almost always interested in taking
probability limits as n — oo. Thus, when there can be no ambiguity, we will
often simply use notation like plima(y) rather than more precise notation
like that of (3.14).

Formally, the random vector a(y™) tends in probability to the limiting random
vector ay if, for all ¢ > 0,

lim Pr([|la(y™) —ao| <¢) =1. (3.15)
Here || - || denotes the Euclidean norm of a vector (see Section 2.2), which

simplifies to the absolute value when its argument is a scalar. Condition
(3.15) says that, for any specified tolerance level £, no matter how small, the
probability that the norm of the discrepancy between a(y™) and ag will be
less than € goes to unity as n — oc.

Although the probability limit ag was defined above to be a random variable
(actually, a vector of random variables), it may in fact be an ordinary non-
random vector or scalar, in which case it is said to be nonstochastic. Many
of the plims that we will encounter in this book are in fact nonstochastic. A
simple example of a nonstochastic plim is the limit of the proportion of heads
in a series of independent tosses of an unbiased coin. Suppose that y; is a
random variable equal to 1 if the coin comes up heads, and equal to 0 if it
comes up tails. After n tosses, the proportion of heads is just

1
p(y") = n Zyt-
t=1

If the coin really is unbiased, E(y;) = 1/2. Thus it should come as no surprise
to learn that plimp(y™) = 1/2. Proving this requires a certain amount of
effort, however, and we will therefore not attempt a proof here. For a detailed
discussion and proof, see Davidson and MacKinnon (1993, Section 4.2).

The coin-tossing example is really a special case of an extremely powerful
result in probability theory, which is called a law of large numbers, or LLN.
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Suppose that T is the sample mean of x;, t = 1,...,n, a sequence of random
variables, each with expectation p. Then, provided the z; are independent
(or at least, not too dependent), a law of large numbers would state that

n
plim z = plim % Z Ty = [ (3.16)

n— 00 n— 00
t=1

In words, = has a nonstochastic plim which is equal to the common expectation
of each of the x;.

It is not hard to see intuitively why (3.16) is true under certain conditions.
Suppose, for example, that the z; are IID, with variance o?. Then we see at

once that .
_ %Z Z p= g and
Var(z ( ) Za

Thus  has mean i and a variance which tends to zero as n — oo. In the
limit, we expect that, on account of the shrinking variance,  will become a
nonstochastic quantity equal to its expectation y. The law of large numbers
assures us that this is the case.

Another useful way to think about laws of large numbers is to note that, as
n — 00, we are collecting more and more information about the mean of
the z;, with each individual observation providing a smaller and smaller frac-
tion of that information. Thus, eventually, the randomness in the individual
x¢ cancels out, and the sample mean & converges to the population mean .
For this to happen, we need to make some assumption in order to prevent
any one of the z; from having too much impact on Z. The assumption that
they are IID is sufficient for this. Alternatively, if they are not IID, we could
assume that the variance of each x; is greater than some finite nonzero lower
bound, but smaller than some finite upper bound. We also need to assume
that there is not too much dependence among the x; in order to ensure that
the random components of the individual z; really do cancel out.

There are actually many laws of large numbers, which differ principally in the
conditions that they impose on the random variables which are being averaged.
We will not attempt to prove any of these LLNs. Section 4.5 of Davidson and
MacKinnon (1993) provides a simple proof of a relatively elementary law of
large numbers. More advanced LLNs are discussed in Section 4.7 of that book,
and, in more detail, in Davidson (1994).

Probability limits have some very convenient properties. For example, sup-
pose that {z™}, n = 1,...,00, is a sequence of random variables which
has a nonstochastic plim zy as n — oo, and n(x™) is a smooth function
of z". Then plimn(z™) = n(xg). This feature of plims is one that is em-
phatically not shared by expectations. When 7(-) is a nonlinear function,
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E(n(x)) #* n(E(J:)) Thus, it is often very easy to calculate plims in circum-
stances where it would be difficult or impossible to calculate expectations.

However, working with plims can be a little bit tricky. The problem is that
many of the stochastic quantities we encounter in econometrics do not have
probability limits unless we divide them by n or, perhaps, by some power of n.
For example, consider the matrix X ' X, which appears in the formula (3.04)
for B. Each element of this matrix is a scalar product of two of the columns
of X, that is, two n-vectors. Thus it is a sum of n numbers. As n — oo, we
would expect that, in most circumstances, such a sum would tend to infinity
as well. Therefore, the matrix X "X will generally not have a plim. However,
it is not at all unreasonable to assume that

plim L XX = Sxx, (3.17)

n—oo

where Sxtx is a nonstochastic matrix with full rank k, since each element of
the matrix on the left-hand side of (3.17) is now an average of n numbers:

1 T _ 1 v
(:x X)ij =1 ;Xnth.

In effect, when we write (3.17), we are implicitly making some assumption
sufficient for a LLN to hold for the sequences generated by the squares of
the regressors and their cross-products. Thus there should not be too much
dependence between X;; X;; and Xy; X; for s # t, and the variances of these
quantities should not differ too much as ¢ and s vary.

The OLS Estimator is Consistent

We can now show that, under plausible assumptions, the least squares estima-
tor B3 is consistent. When the DGP is a special case of the regression model
(3.03) that is being estimated, we saw in (3.05) that

B=0+(X"X)'X u. (3.18)

To demonstrate that ,(;’ is consistent, we need to show that the second term
on the right-hand side here has a plim of zero. This term is the product of
two matrix expressions, (X'X)™! and X 'u. Neither X'X nor X 'u has
a probability limit. However, we can divide both of these expressions by n
without changing the value of this term, since n-n~! = 1. By doing so, we
convert them into quantities that, under reasonable assumptions, will have
nonstochastic plims. Thus the plim of the second term in (3.18) becomes

—1
(plim %XTX) plim £ X T = (SXTX)flplim %XTu =0. (3.19)

n—oo n—oo n—oo
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In writing the first equality here, we have assumed that (3.17) holds. To obtain
the second equality, we start with assumption (3.10), which can reasonably be
made even when there are lagged dependent variables among the regressors.
This assumption tells us that E(X{u; | X;) = 0, and the Law of Iterated
Expectations then tells us that E(X;u;) = 0. Thus, assuming that we can
apply a law of large numbers,

plim Xu—phm ZXtut—O

n—oo n—oo

Together with (3.18), (3.19) gives us the result that @ is consistent.

We have just seen that the OLS estimator B is consistent under consider-
ably weaker assumptions about the relationship between the error terms and
the regressors than were needed to prove that it is unbiased; compare (3.10)
and (3.08). This may wrongly suggest that consistency is a weaker condition
than unbiasedness. Actually, it is neither weaker nor stronger. Consistency
and unbiasedness are simply different concepts. Sometimes, least squares
estimators may be biased but consistent, for example, in models where X
includes lagged dependent variables. In other circumstances, however, these
estimators may be unbiased but not consistent. For example, consider the
model

yr = P11+ ﬂzl +uy,  up ~ IID(0,0?). (3.20)

Since both regressors here are nonstochastic, the least squares estimates ﬁl
and ﬁg are clearly unbiased. However, it is easy to see that ﬁg is not consistent.
The problem is that, as n — oo, each observation provides less and less
information about (5. This happens because the regressor 1/; tends to zero,
and hence varies less and less across observations as t becomes larger. As
a consequence, the matrix Sxtx can be shown to be singular. Therefore,
equation (3.19) does not hold, and the second term on the right-hand side of
equation (3.18) does not have a probability limit of zero.

The model (3.20) is actually rather a curious one, since 3; is consistent even
though Bg is not. The reason Bl is consistent is that, as the sample size n
gets larger, we obtain an amount of information about 3; that is roughly
proportional to n. In contrast, because each successive observation gives us
less and less information about (s, Bg is not consistent.

An estimator that is not consistent is said to be inconsistent. There are
two types of inconsistency, which are actually quite different. If an unbiased
estimator, like Bg in the previous example, is inconsistent, it is so because
it does not tend to any nonstochastic probability limit. In contrast, many
inconsistent estimators do tend to nonstochastic probability limits, but they
tend to the wrong ones.

To illustrate the various types of inconsistency, and the relationship between
bias and inconsistency, imagine that we are trying to estimate the population
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mean, i, from a sample of data y;,t = 1,...,n. A sensible estimator would
be the sample mean, . Under reasonable assumptions about the way the
y¢ are generated, y will be unbiased and consistent. Three not very sensible
estimators are the following:

1 n
“1:n+1;yt’

A 1.01 —
fla =——> 1y, and
n
t=1
0.99 <«
0= = 0.01 —_— .
ftz = 0.0 y1+n_1t§:2yt

The first of these estimators, i1, is biased but consistent. It is evidently equal
to n/(n + 1) times y. Thus its mean is (n/(n + 1))u, which tends to p as
n — 00, and it will be consistent whenever 7 is. The second estimator, fio, is
clearly biased and inconsistent. Its mean is 1.01y, since it is equal to 1.01%,
and it will actually tend to a plim of 1.01x as n — oco. The third estimator, fi3,
is perhaps the most interesting. It is clearly unbiased, since it is a weighted
average of two estimators, y; and the average of yo through ¥, each of which
is unbiased. The second of these two estimators is also consistent. However,
f13 itself is not consistent, because it does not converge to a nonstochastic
plim. Instead, it converges to the random quantity 0.99u + 0.01y;.

3.4 The Covariance Matrix of the OLS Parameter Estimates

Although it is valuable to know that the least squares estimator ,3 is either
unbiased or, under weaker conditions, consistent, this information by itself is
not very useful. If we are to interpret any given set of OLS parameter esti-
mates, we need to know, at least approximately, how B is actually distributed.
For purposes of inference, the most important feature of the distribution of
any vector of parameter estimates is the matrix of its central second moments.
This matrix is the analog, for vector random variables, of the variance of a
scalar random variable. If b is any random vector, we will denote its matrix
of central second moments by Var(b), using the same notation that we would
use for a variance in the scalar case. Usage, perhaps somewhat illogically,
dictates that this matrix should be called the covariance matrix, although
the terms variance matrix and variance-covariance matrix are also sometimes
used. Whatever it is called, the covariance matrix is an extremely important
concept which comes up over and over again in econometrics.

The covariance matrix Var(b) of a random k-vector b, with typical element b;,
organizes all the central second moments of the b; into a k x k symmetric
matrix. The i*" diagonal element of Var(b) is Var(b;), the variance of b;. The
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i7" off-diagonal element of Var(b) is Cov(b;, b;), the covariance of b; and b;.
The concept of covariance was introduced in Exercise 1.10. In terms of the
random variables b; and b;, the definition is

Cov(bi,b;) = E((bi —E(b:)) (b, — E(bj))). (3.21)

Many of the properties of covariance matrices follow immediately from (3.21).
For example, it is easy to see that, if i = j, Cov(b;,b;) = Var(b;). Moreover,
since from (3.21) it is obvious that Cov(b;, b;) = Cov(b;, b;), Var(b) must be a
symmetric matrix. The full covariance matrix Var(b) can be expressed readily
using matrix notation. It is just

Var(b) = E((b —E(®b))(b— E(b))T), (3.22)

as is obvious from (3.21). An important special case of (3.22) arises when
E(b) = 0. In this case, Var(b) = E(bb").

The special case in which Var(b) is diagonal, so that all the covariances
are zero, is of particular interest. If b; and b; are statistically independent,
Cov(b;, bj) = 0; see Exercise 1.11. The converse is not true, however. It is per-
fectly possible for two random variables that are not statistically independent
to have covariance 0; for an extreme example of this, see Exercise 1.12.

The correlation between b; and b; is

COV(bi, b])

p(bi, bj) =
(Var(b;) Var(b;))

o (3.23)

It is often useful to think in terms of correlations rather than covariances,
because, according to the result of Exercise 3.6, the former always lie between
—1 and 1. We can arrange the correlations between all the elements of b
into a symmetric matrix called the correlation matrix. It is clear from (3.23)
that all the elements on the principal diagonal of this matrix will be 1. This
demonstrates that the correlation of any random variable with itself equals 1.

In addition to being symmetric, Var(b) must be a positive semidefinite matrix;
see Exercise 3.5. In most cases, covariance matrices and correlation matrices
are positive definite rather than positive semidefinite, and their properties
depend crucially on this fact.

Positive Definite Matrices

A k x k symmetric matrix A is said to be positive definite if, for all nonzero
k-vectors x, the matrix product £'Aa, which is just a scalar, is positive. The
quantity Az is called a quadratic form. A quadratic form always involves
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a k-vector, in this case @, and a k X k matrix, in this case A. By the rules of
matrix multiplication,

ko k
T Az = Z Z x;xiAij. (3.24)

i=1 j=1

If this quadratic form can take on zero values but not negative values, the
matrix A is said to be positive semidefinite.

Any matrix of the form BB is positive semidefinite. To see this, observe
that BB is symmetric and that, for any nonzero x,

x'B'Bx = (Bx)'(Bx) = | Bz||* > 0. (3.25)

This result can hold with equality only if Bx = 0. But, in that case, since
x # 0, the columns of B are linearly dependent. We express this circumstance
by saying that B does not have full column rank. Note that B can have full
rank but not full column rank if B has fewer rows than columns, in which case
the maximum possible rank equals the number of rows. However, a matrix
with full column rank necessarily also has full rank. When B does have full
column rank, it follows from (3.25) that BB is positive definite. Similarly, if
A is positive definite, then any matrix of the form BTAB is positive definite
if B has full column rank and positive semidefinite otherwise.

It is easy to see that the diagonal elements of a positive definite matrix must all
be positive. Suppose this were not the case and that, say, Ass were negative.
Then, if we chose x to be the vector es, that is, a vector with 1 as its second
element and all other elements equal to 0 (see Section 2.6), we could make
x'Ax < 0. From (3.24), the quadratic form would just be e’ Aey = Asy < 0.
For a positive semidefinite matrix, the diagonal elements may be 0. Unlike
the diagonal elements, the off-diagonal elements of A may be of either sign.

A particularly simple example of a positive definite matrix is the identity
matrix, I. Because all the off-diagonal elements are zero, (3.24) tells us that

a quadratic form in I is
k
x'lx = E z2,
i=1

which is certainly positive for all nonzero vectors . The identity matrix was
used in (3.03) in a notation that may not have been clear at the time. There
we specified that u ~ IID(0,02I). This is just a compact way of saying that
the vector of error terms w is assumed to have mean vector 0 and covariance
matrix o?1.

A positive definite matrix cannot be singular, because, if A is singular, there
must exist a nonzero « such that Az = 0. But then ' Ax = 0 as well, which
means that A is not positive definite. Thus the inverse of a positive definite
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matrix always exists. It too is a positive definite matrix, as readers are asked
to show in Exercise 3.7.

There is a sort of converse of the result that any matrix of the form BB,
where B has full column rank, is positive definite. It is that, if A is a symmet-
ric positive definite k x k matrix, there always exist full-rank k£ x k matrices B
such that A = B'B. For any given A, such a B is not unique. In particular,
B can be chosen to be symmetric, but it can also be chosen to be upper or
lower triangular. Details of a simple algorithm (Crout’s algorithm) for finding
a triangular B can be found in Press et al. (1992a, 1992b).

The OLS Covariance Matrix

The notation we used in the specification (3.03) of the linear regression model
can now be understood in terms of the covariance matrix of the error terms,
or the error covariance matrix. If the error terms are 11D, they all have the
same variance o2, and the covariance of any pair of them is zero. Thus the
covariance matrix of the vector u is 021, and we have

Var(u) = E(uu') = o°L. (3.26)

Notice that this result does not require the error terms to be independent. It
is required only that they all have the same variance and that the covariance
of each pair of error terms is zero.

If we assume that X is exogenous, we can now calculate the covariance matrix
of B in terms of the error covariance matrix (3.26). To do this, we need to
multiply the vector 3 — By by itself transposed. From (3.05), we know that

B—B=(X"X)'X"u.

By (3.22), under the assumption that 3 is unbiased, Var (,@) is the expectation
of the k x k matrix

(B—B0)(B—Bo) = (X"X)"' X uu"X(X'X)". (3.27)

Taking this expectation, conditional on X, and using (3.26) with the specific
value o7 for the covariance matrix of the error terms, yields

X' X' X Euue ) X(X'X)!'=( X" X)' X521 X(X"X) !
0
= (X' X)) XX (X"TXxX)!
(XX,

Thus we conclude that
Var(B) = 02(X X)) (3.28)

This is the standard result for the covariance matrix of B under the assumption
that the data are generated by (3.01) and that 3 is an unbiased estimator.
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Precision of the Least Squares Estimates

Now that we have an expression for Var(83), we can investigate what deter-
mines the precision of the least squares coefficient estimates ,é There are
really only three things that matter. The first of these is 03, the true variance
of the error terms. Not surprisingly, Var(@3) is proportional to o2. The more
random variation there is in the error terms, the more random variation there

is in the parameter estimates.

The second thing that affects the precision of B is the sample size, n. It is
illuminating to rewrite (3.28) as

Var(3) = (%03) (%XTX>_1. (3.29)

If we make the assumption (3.17), the second factor on the right-hand side of
(3.29) will not vary much with the sample size n, at least not if n is reasonably
large. In that case, the right-hand side of (3.29) will be roughly proportional
to 1/, because the first factor is precisely proportional to 1/,. Thus, if we
were to double the sample size, we would expect the variance of ﬁ to be
roughly halved and the standard errors of the individual ,@AZ to be divided

by V2.

As an example, suppose that we are estimating a regression model with just a
constant term. We can write the model as y = ¢/31 +u, where ¢ is an n-vector
of ones. Plugging in ¢ for X in (3.04) and (3.28), we find that

Br=(T)y Ny = %Zyt, and
t=1
Var(B1) = og(t/0) ™ = S 03

Thus, in this particularly simple case, the variance of the least squares esti-
mator is exactly proportional to 1/,.

The third thing that affects the precision of B is the matrix X. Suppose that
we are interested in a particular coefficient which, without loss of generality,
we may call 1. Then, if B2 denotes the (k — 1)-vector of the remaining
coefficients, we can rewrite the regression model (3.03) as

y=x101 + X262 + u, (3.30)
where X has been partitioned into x; and X5 to conform with the partition
of B. By the FWL Theorem, regression (3.30) will yield the same estimate of
(1 as the FWL regression

Msy = Msx, 3, + residuals,
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where, as in Section 2.4, My =1 — X5 (XQTXQ)_ngT. This estimate is

T
B o 1 Mg’y
| = —

.’,UlTMQ.’Bl,

and, by a calculation similar to that leading to (3.28), its variance is

2
—1 g,

Thus Var(ﬁAl) is equal to the variance of the error terms divided by the squared
length of the vector Msx;.

The intuition behind (3.31) is simple. How much information the sample gives
us about 37 is proportional to the squared Euclidean length of the vector
Mz, which is the denominator of the right-hand side of (3.31). When
||Msox4]| is big, either because n is large or because at least some elements of
Mz, are large, /3’1 will be relatively precise. When || Maa1 || is small, either
because n is small or because all the elements of Msx; are small, Bl will be
relatively imprecise.

The squared Euclidean length of the vector Msa; is just the sum of squared
residuals from the regression

x1 = Xoc + residuals. (3.32)

Thus the variance of @17 expression (3.31), is proportional to the inverse of the
sum of squared residuals from regression (3.32). When x; is well explained
by the other columns of X, this SSR will be small, and the variance of 3; will
consequently be large. When @7 is not well explained by the other columns
of X, this SSR will be large, and the variance of Bl will consequently be small.

As the above discussion makes clear, the precision with which 3; is estimated
depends on X5 just as much as it depends on x;. Sometimes, if we just
regress y on a constant and x;, we may obtain what seems to be a very
precise estimate of 31, but if we then include some additional regressors, the
estimate becomes much less precise. The reason for this is that the additional
regressors do a much better job of explaining x; in regression (3.32) than does
a constant alone. As a consequence, the length of Msxq is much less than the
length of M, ax,. This type of situation is sometimes referred to as collinearity,
or multicollinearity, and the regressor «; is said to be collinear with some of
the other regressors. This terminology is not very satisfactory, since, if a
regressor were collinear with other regressors in the usual mathematical sense
of the term, the regressors would be linearly dependent. It would be better to
speak of approximate collinearity, although econometricians seldom bother
with this nicety. Collinearity can cause difficulties for applied econometric
work, but these difficulties are essentially the same as the ones caused by
having a sample size that is too small. In either case, the data simply do not
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contain enough information to allow us to obtain precise estimates of all the
coefficients.

The covariance matrix of B, expression (3.28), tells us all that we can possibly
know about the second moments of ,3 In practice, of course, we will rarely
know (3.28), but we can estimate it by using an estimate of o2. How to
obtain such an estimate will be discussed in Section 3.6. Using this estimated
covariance matrix, we can then, if we are willing to make some more or less
strong assumptions, make exact or approximate inferences about the true
parameter vector By. Just how we can do this will be discussed at length in
Chapters 4 and 5.

Linear Functions of Parameter Estimates

The covariance matrix of B can be used to calculate the variance of any linear
(strictly speaking, affine) function of ,é Suppose that we are interested in
the variance of 4, where v = w'3, 4 = wTB, and w is a k-vector of known
coefficients. By choosing w appropriately, we can make v equal to any one
of the 3;, or to the sum of the 3;, or to any linear combination of the ; in
which we might be interested. For example, if v = 307 — (84, w would be a
vector with 3 as the first element, —1 as the fourth element, and 0 for all the
other elements.

It is easy to show that
Var(§) = w' Var(B)w = o2w (X 'X) 'w. (3.33)
This result can be obtained as follows. By (3.22),

Var(w'8) = E(w'(8 — B0)(8 — Bo)'w)
=w'E((8 - Bo)(B — Bo)" w
=w'(of(X'X) Hw,
from which (3.33) follows immediately. Notice that, in general, the variance
of 4 depends on every element of the covariance matrix of 3; this is made
explicit in expression (3.68), which readers are asked to derive in Exercise 3.10.

Of course, if some elements of w are equal to 0, Var(4) will not depend on
the corresponding rows and columns of o2 (X' X)™L.

It may be illuminating to consider the special case used as an example above,
in which v = 381 — 4. In this case, the result (3.33) implies that

Var (%) = w? Var(Bl) + w3 Var(@) + 2w wy COV(BI, 34)
= 9Var(3,) + Var(Bs) — 6Cov (01, B4).

Notice that the variance of 4 depends on the covariance of Bl and /34 as well
as on their variances. If this covariance is large and positive, Var(%) may be
small, even if Var((;) and Var((4) are both large.
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The Variance of Forecast Errors

The variance of the error associated with a regression-based forecast can be
obtained by using the result (3.33). Suppose we have computed a vector of
OLS estimates ,[:1 and wish to use them to forecast y,, for s not in 1,...,n,
using an observed vector of regressors X,. Then the forecast of y, will simply
be X,B. For simplicity, let us assume that 3 is unbiased, which implies that
the forecast itself is unbiased. Therefore, the forecast error has mean zero,
and its variance is

E(ys - XSB)Q = E(XslgO +us — XSB)2
= E(u?) + B(X.6 — X,0)* (3.34)
= 02 + Var(X,03).

The first equality here depends on the assumption that the regression model
is correctly specified, the second depends on the assumption that the error
terms are serially uncorrelated, which ensures that E(us Xs,é) = 0, and the
third uses the fact that B is assumed to be unbiased.

Using the result (3.33), and recalling that X is a row vector, we see that the
last line of (3.34) is equal to

024+ X Var(8) X, = 02 + 02 X,(X X)X, (3.35)

Thus we find that the variance of the forecast error is the sum of two terms.
The first term is simply the variance of the error term ug. If we knew the true
value of 3, this would be the variance of the forecast error. The second term,
which makes the forecast error larger than o3, arises because we are using the
estimate B instead of the true parameter vector By. It can be thought of as
the penalty we pay for our ignorance of 3. Of course, the result (3.35) can
easily be generalized to the case in which we are forecasting a vector of values

of the dependent variable; see Exercise 3.16.

3.5 Efficiency of the OLS Estimator

One of the reasons for the popularity of ordinary least squares is that, under
certain conditions, the OLS estimator can be shown to be more efficient than
many competing estimators. One estimator is said to be more efficient than
another if, on average, the former yields more accurate estimates than the
latter. The reason for the terminology is that an estimator which yields more
accurate estimates can be thought of as utilizing the information available in
the sample more efficiently.

For a scalar parameter, the accuracy of an estimator is often taken to be
proportional to the inverse of its variance, and this is sometimes called the
precision of the estimator. For an estimate of a parameter vector, the precision
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matrix is defined as the inverse of the covariance matrix of the estimator. For
scalar parameters, one estimator of the parameter is said to be more efficient
than another if the precision of the former is larger than that of the latter.
For parameter vectors, there is a natural way to generalize this idea. Suppose
that B and B are two unbiased estimators of a k-vector of parameters 3, with
covariance matrices Var(B) and Var(ﬁ)7 respectively. Then, if efficiency is
measured in terms of precision, B is said to be more efficient than B if and
only if the difference between their precision matrices, Var(3)~! — Var(8)~,
is a nonzero positive semidefinite matrix.

Since it is more usual to work in terms of variance than precision, it is conven-
ient to express the efficiency condition directly in terms of covariance matrices.
As readers are asked to show in Exercise 3.8, if A and B are positive definite
matrices of the same dimensions, then the matrix A — B is positive semidef-
inite if and only if B~! — A~! is positive semidefinite. Thus the efficiency
condition expressed above in terms of precision matrices is equivalent to say-
ing that 3 is more efficient than 3 if and only if Var (B) — Var(ﬁ) is a nonzero
positive semidefinite matrix.

If B is more efficient than B in this sense, then every individual parameter in
the vector B, and every linear combination of those parameters, is estimated
at least as efficiently by using ,3 as by using B Consider an arbitrary linear
combination of the parameters in 3, say v = w'(3, for any k-vector w that
we choose. As we saw in the preceding section, Var(y) = wTVar(,[:])w, and
similarly for Var(%). Therefore, the difference between Var(¥) and Var(¥) is

w' Var(8)w — w' Var(B)w = w'(Var(8) — Var(,é))w. (3.36)

The right-hand side of (3.36) must be either positive or zero whenever the
matrix Var(8) — Var(,@) is positive semidefinite. Thus, if 3 is a more efficient
estimator than ,8, we can be sure that 4 will be estimated with less variance
than 4. In practice, when one estimator is more efficient than another, the dif-
ference between the covariance matrices is very often positive definite. When
that is the case, every parameter or linear combination of parameters will be
estimated more efficiently using B than using .

We now let B, as usual, denote the vector of OLS parameter estimates (3.04).
As we are about to show, this estimator is more efficient than any other
linear unbiased estimator. In section 3.3, we discussed what it means for an
estimator to be unbiased, but we have not yet discussed what it means for
an estimator to be linear. It simply means that we can write the estimator
as a linear (affine) function of y, the vector of observations on the dependent
variable. It is clear that B itself is a linear estimator, because it is equal to
the matrix (X'X)~'X " times the vector y.

If B now denotes any linear estimator that is not the OLS estimator, we can
always write

B=Ay=(X"X)'XTy+Cy, (3.37)
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where A and C are k x n matrices that depend on X. The first equality here
just says that 3 is a linear estimator. To obtain the second equality, we make
the definition

C=A-(X'xX)'xT", (3.38)

So far, least squares is the only estimator for linear regression models that
we have encountered. Thus it may be difficult to imagine what kind of esti-
mator B might be. In fact, there are many estimators of this type, including
generalized least squares estimators (Chapter 7) and instrumental variables
estimators (Chapter 8) An alternative way of writing the class of linear unbi-
ased estimators is explored in Exercise 3.17.

The principal theoretical result on the efficiency of the OLS estimator is called
the Gauss-Markov Theorem. An informal way of stating this theorem is to
say that B is the best linear unbiased estimator, or BLUE for short. In other
words, the OLS estimator is more efficient than any other linear unbiased
estimator.

Theorem 3.1. (Gauss-Markov Theorem)

If it is assumed that E(u|X) = 0 and E(uu'|X) = o®I in the
linear regression model (3.03), then the OLS estimator B is more
efficient than any other linear unbiased estimator 3, in the sense

~ ~

that Var(8) — Var(3) is a positive semidefinite matrix.

Proof: We assume that the DGP is a special case of (3.03), with parameters
Bo and o3. Substituting for y in (3.37), we find that

B=A(XBy+u) = AXB + Au. (3.39)

Since we want B to be unbiased, we require that the expectation of the right-
most expression in (3.39), conditional on X, should be By. The second term in
that expression has conditional mean 0, and so the first term must have con-

ditional mean (By. This will be the case for all By if and only if AX =1, the
k x k identity matrix. From (3.38), this condition is equivalent to CX = O.
Thus requiring 8 to be unbiased imposes a strong condition on the matrix C.

The unbiasedness condition that CX = O implies that Cy = Cwu. Since,
from (3.37), Cy =3 — (3, this makes it clear that 8 — B has conditional mean
zero. The unbiasedness condition also implies that the covariance matrix of
B — B and (3 is a zero matrix. To see this, observe that

E((B-B0)B-0)") =E(X'X)'Xuu'C")
= (X'X)"'XTs21CT (3.40)
=o(X'X)"'X'C" = 0.

Consequently, equation (3.37) says that the unbiased linear estimator 3 is
equal to the least squares estimator 3 plus a random component C'y which
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has mean zero and is uncorrelated with ,6 The random component simply
adds noise to the efficient estimator 8. This makes it clear that 3 is more
efficient than ,6’. To complete the proof, we note that

Var(8) = Var(,é +(B- B))
= Var(,é + Cy) (3.41)
= Var(B) + Var(Cy),

because, from (3.40), the covariance of B and Cly is zero. Thus the difference
between Var(3) and Var(3) is Var(Cy). Since it is a covariance matrix, this
difference is necessarily positive semidefinite. [ |

We will encounter many cases in which an inefficient estimator is equal to
an efficient estimator plus a random variable that has mean zero and is un-
correlated with the efficient estimator. The zero correlation ensures that the
covariance matrix of the inefficient estimator is equal to the covariance matrix
of the efficient estimator plus another matrix that is positive semidefinite, as
in the last line of (3.41). If the correlation were not zero, this sort of proof
would not work. Observe that, because everything is done in terms of second
moments, the Gauss-Markov Theorem does not require any assumption about
the normality of the error terms.

The Gauss-Markov Theorem that the OLS estimator is BLUE is one of the
most famous results in statistics. However, it is important to keep in mind
the limitations of this theorem. The theorem applies only to a correctly speci-
fied model with error terms that are homoskedastic and serially uncorrelated.
Moreover, it does not say that the OLS estimator ,[:3 is more efficient than
every imaginable estimator. Estimators which are nonlinear and/or biased
may well perform better than ordinary least squares.

3.6 Residuals and Error Terms

The vector of least squares residuals, u = y — XB, is easily calculated once we
have obtained B The numerical properties of & were discussed in Section 2.3.
These properties include the fact that @ is orthogonal to XB and to every
vector that lies in §(X). In this section, we turn our attention to the statistical
properties of @ as an estimator of w. These properties are very important,
because we will want to use @ for a number of purposes. In particular, we
will want to use it to estimate o2, the variance of the error terms. We need
an estimate of o2 if we are to obtain an estimate of the covariance matrix
of 3. As we will see in later chapters, the residuals can also be used to test
some of the strong assumptions that are often made about the distribution
of the error terms and to implement more sophisticated estimation methods
that require weaker assumptions.
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The consistency of B implies that w — w as n — oo, but the finite-sample
properties of u differ from those of w. As we saw in Section 2.3, the vector of
residuals @ is what remains after we project the regressand y off $(X). If we
assume that the DGP belongs to the model we are estimating, as the DGP
(3.02) belongs to the model (3.01), then

The first term in the middle expression here vanishes because Mx annihilates
everything that lies in 8(X). The statistical properties of & as an estimator
of u follow directly from the fact that @ = Mxwu when the model (3.01) is
correctly specified.

Each of the residuals is equal to a linear combination of every one of the
error terms. Consider a single row of the matrix product @ = Mxwu. Since
the product has dimensions n x 1, this row has just one element, and this
element is one of the residuals. Recalling the result on partitioned matrices in
Exercise 1.14, which allows us to select rows of a matrix product by selecting
that row of the leftmost factor, we can write the ¢*" residual as

iy = up — Xy (X' X) ' X T

=u — Y X(XTX) ' X, (3.42)

s=1

Thus, even if each of the error terms wu; is independent of all the other error
terms, as we have been assuming, each of the 4; will not be independent of
all the other residuals. In general, there will be some dependence between
every pair of residuals. However, this dependence will generally diminish as
the sample size n increases.

Let us now assume that E(u | X) = 0. This is assumption (3.08), which we
made in Section 3.2 in order to prove that B is unbiased. According to this
assumption, E(u; | X) = 0 for all ¢. All the expectations we will take in the
remainder of this section will be conditional on X. Since, by (3.42), 4 is
just a linear combination of all the u;, the expectation of u; conditional on
X must be zero. Thus, in this respect, the residuals 4; behave just like the
error terms ;.

In other respects, however, the residuals do not have the same properties as
the error terms. Consider Var(a,), the variance of @;. Since E(4;) = 0, this
variance is just E(47). As we saw in Section 2.3, the Euclidean length of the
vector of least squares residuals, u, is always smaller than that of the vector of
residuals evaluated at any other value, u(3). In particular, & must be shorter
than the vector of error terms u = u(3y). Thus we know that |a||? < [Jul/%
This implies that E(||a||?) < E(|lul/?). If, as usual, we assume that the error
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variance is o} under the true DGP, we see that

gvm(at) = gE(af) = E(tz_; u§> =E(||a|?)

<B(lul?) = B( 30 ) =SB = nof.

t=1

This suggests that, at least for most observations, the variance of 4; must
be less than 3. In fact, we will see that Var(i,) is less than o3 for every

observation.

The easiest way to calculate the variance of 4, is to calculate the covariance
matrix of the entire vector u:

Var(1) = Var(Mxu) = E(Mxuu' Mx)
= MxE(uu')Mx = Mx Var(u)Mx (3.43)
= Mx (031)Mx = 0o MxMx = 02 Mx.

The second equality in the first line here uses the fact that Mxwu has mean 0.
The third equality in the last line uses the fact that Mx is idempotent. From
the result (3.43), we see immediately that, in general, E(usus) # 0 for ¢ # s.
Thus, even though the original error terms are assumed to be uncorrelated,
the residuals will not be uncorrelated.

From (3.43), it can also be seen that the residuals will not have constant
variance, and that this variance will always be smaller than 03. Recall from
Section 2.6 that h; denotes the t** diagonal element of the projection matrix
Px. Thus a typical diagonal element of Mx is 1 — hy. Therefore, it follows
from (3.43) that

Var(i;) = B(4?) = (1 — hy) op. (3.44)

Since 0 < 1 — hy < 1, (3.44) implies that E(47) will always be smaller than
o3. Just how much smaller will depend on h;. It is clear that high-leverage
observations, for which h; is relatively large, will have residuals with smaller
variance than low-leverage observations, for which h; is relatively small. This
makes sense, since high-leverage observations have more effect on the para-
meter values. As a consequence, the residuals for high-leverage observations
tend to be shrunk more, relative to the error terms, than the residuals for
low-leverage observations.

Estimating the Variance of the Error Terms

The method of least squares provides estimates of the regression coefficients,
but it does not directly provide an estimate of o2, the variance of the error
terms. The method of moments suggests that we can estimate o2 by using the
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corresponding sample moment. If we actually observed the u;, this sample

moment would be .
1
1y (3.45)
t=1

We do not observe the u;, but we do observe the ;. Thus the simplest possible
MM estimator is
n
> . (3.46)
t=1

This estimator is just the average of n squared residuals. It can be shown to
be consistent; see Exercise 3.13. However, because each squared residual has
expectation less than o3, by (3.44), 6% must be biased downward.

It is easy to calculate the bias of 62 We saw in Section 2.6 that > i hy = k.
Therefore, from (3.44) and (3.46),

52 =

3=

—k
D52 (3.47)

. 1 X 1
E(6%) ==Y E(@}) =+ (1-h)og =
=1 =1

n

Since 4 = Mxu and Mx is idempotent, the sum of squared residuals is just
u'Mxu. The result (3.47) implies that

E(u'Mxu) = E(SSR(B)) = E(Z at) = (n—k)od. (3.48)

t=1

Readers are asked to show this in a different way in Exercise 3.14. Notice,
from (3.48), that adding one more regressor has exactly the same effect on
the expectation of the SSR as taking away one observation.

The result (3.47) suggests another MM estimator which will be unbiased:

n

1
s? = ay. (3.49)

The only difference between 62 and s? is that the former divides the SSR by n
and the latter divides it by n — k. As a result, s? will be unbiased whenever B
is. Ideally, if we were able to observe the error terms, our MM estimator would
be (3.45), which would be unbiased. When we replace the error terms wu; by
the residuals 4, we introduce a downward bias. Dividing by n — k instead of
by n eliminates this bias.

Virtually all OLS regression programs report s? as the estimated variance of
the error terms. However, it is important to remember that, even though s
provides an unbiased estimate of o2, s itself does not provide an unbiased
estimate of o, because taking the square root of s? is a nonlinear operation. If
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we replace o2 by s* in expression (3.28), we can obtain an unbiased estimate
of Var(8), o
Var(B) = s*(X X)L (3.50)

This is the standard estimate of the covariance matrix of the OLS parameter
estimates under the assumption of IID errors.

3.7 Misspecification of Linear Regression Models

Up to this point, we have assumed that the DGP belongs to the model that
is being estimated, or, in other words, that the model is correctly specified.
This is obviously a very strong assumption indeed. It is therefore important
to know something about the statistical properties of B when the model is not
correctly specified. In this section, we consider a simple case of misspecifica-
tion, namely, underspecification. In order to understand underspecification
better, we begin by discussing its opposite, overspecification.

Overspecification

A model is said to be overspecified if some variables that rightly belong to the
information set 2;, but do not appear in the DGP, are mistakenly included
in the model. Overspecification is not a form of misspecification. Including
irrelevant explanatory variables in a model makes the model larger than it
need have been, but, since the DGP remains a special case of the model, there
is no misspecification. Consider the case of an overspecified linear regression
model. Suppose that we estimate the model

y=XB+ Zy+u, u~IID(0,c%T), (3.51)

when the data are actually generated by
y=XB+u, u~ID(0,s1). (3.52)
It is assumed that X; and Z;, the t*" rows of X and Z, respectively, belong to
Q. Recall the discussion of information sets in Section 1.3. The overspecified

model (3.51) is not misspecified, since the DGP (3.52) is a special case of it,
with 8 = B, ¥ = 0, and 02 = 7.

Suppose now that we run the linear regression (3.51). By the FWL Theorem,
the estimates 8 from (3.51) are the same as those from the regression

Mzy = Mz X3 + residuals,
where, as usual, Mz =1 — Z(Z'Z) ' Z". Thus we see that
B=(X"MzX)'XMzy. (3.53)
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Since B is part of the OLS estimator of a correctly specified model, it should
be unbiased. Indeed, if we replace y by X3y + u, we find from (3.53) that

B =08+ (X MzX)'X Mzu. (3.54)

The conditional expectation of the second term on the right-hand side of
(3.54) is 0, provided we take expectations conditional on Z as well as on X;
see Section 3.2. Since Z; is assumed to belong to §2, it is perfectly legitimate
to do this.

If we had estimated (3.51) subject to the valid restriction that v = 0, we
would have obtained the OLS estimate ,é, expression (3.94), which is unbiased
and has covariance matrix (3.28). We see that both B and B are unbiased
estimators, linear in y. Both are OLS estimators, and so it seems that we
should be able to apply the Gauss-Markov Theorem to both of them. This is
in fact correct, but we must be careful to apply the theorem in the context of
the appropriate model for each of the estimators.

For ,3, the appropriate model is the restricted model,
y=XB+u, wu~IID(0,s%I), (3.55)

in which the restriction v = 0 is explicitly imposed. Provided this restriction
is correct, as it will be if the true DGP takes the form (3.52), 3 must be more
efficient than any other linear unbiased estimator of 3. Thus we should find
that the matrix Var(8) — Var(8) is positive semidefinite.

For 3, the appropriate model is the unrestricted model (3.51). In this context,
the Gauss-Markov Theorem says that, when we do not know the true value

of 7y, B is the best linear unbiased estimator of 3. It is important to note here
that ,@ is not an unbiased estimator of 3 for the unrestricted model, and so
it cannot be included in the class of estimators covered by the Gauss-Markov
Theorem for that model. We will make this point more fully in the next

subsection, when we discuss underspecification.

It is illuminating to check these consequences of the Gauss-Markov Theorem
explicitly. From equation (3.54), it follows that

Var(8) = E((8 ~ 80)(8 — Bo)")
— XTMZX)_lXTMZE<UUT)MZX(XTMZX)_l
o3(X Mz X) "X MzIMz X (X Mz X) ™

, (3.56)
0
o2( X MzX)™ 1.

The situation is clear in the case in which there is only one parameter, [,
corresponding to a single regressor, . Since Mz is a projection matrix, the
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Euclidean length of Mzax must be smaller (or at least, no larger) than the
Euclidean length of x; recall (2.28). Thus ' Mzx < x'x, which implies that

o2(x'Mgx)™ > o2(x'z)" . (3.57)

The inequality in (3.57) will almost always hold strictly. The only exception
is the special case in which x lies in 8§+(Z), which implies that the regression
of & on Z has no explanatory power at all.

In general, we wish to show that Var(8) — Var(3) is a positive semidefinite
matrix. As we saw in Section 3.5, this is equivalent to showing that the matrix
Var(B3)~! — Var(3)~! is positive semidefinite. A little algebra shows that

X'X -X'MzX =X"(I1-Mz)X
=X'PzX (3.58)
= (PzX)'PzX.

Since X "X —X "Mz X can be written as the transpose of a matrix times itself,
it must be positive semidefinite. Dividing by o2 gives the desired result.

We have established that the OLS estimator of 3 in the overspecified regres-
sion model (3.51) is at most as efficient as the OLS estimator in the restricted
model (3.55), provided the restrictions are true. Therefore, adding additional
variables that do not really belong in a model normally leads to less accurate
estimates. Only in certain very special cases will there be no loss of efficiency.
In such cases, the covariance matrices of B and ,@ must be the same, which
implies that the matrix difference computed in (3.58) must be zero.

The last expression in (3.58) will be a zero matrix whenever Pz X = O. This
condition will hold when the two sets of regressors X and Z are mutually
orthogonal, so that Z'X = O. In this special case, B will be as efficient as ,6
In general, however, including regressors that do not belong in a model will
increase the variance of the estimates of the coefficients on the regressors that
do belong, and the increase can be very great in many cases. As can be seen
from the left-hand side of (3.57), the variance of the estimated coefficient (3
associated with any regressor x is proportional to the inverse of the SSR from
a regression of x on all the other regressors. The more other regressors there
are, whether they truly belong in the model or not, the smaller will be this
SSR, and, in consequence, the larger will be the variance of f.

Underspecification

The opposite of overspecification is underspecification, in which we omit some
variables that actually do appear in the DGP. To avoid any new notation, let
us suppose that the model we estimate is (3.55), which yields the estimator ,3,
but that the DGP is really

y=XBy+ Zvo +u, u~IID0,031). (3.59)
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Thus the situation is precisely the opposite of the one considered above. The
estimator (3, based on regression (3.51), is now the “correct” one to use, while
the estimator B is based on an underspecified model. It is clear that under-
specification, unlike overspecification, ¢s a form of misspecification, because
the DGP (3.59) does not belong to the model (3.55).

The first point to recognize about ,é is that it is now, in general, biased. Sub-
stituting the right-hand side of (3.59) for y in (3.04), and taking expectations
conditional on X and Z, we find that

E(B) = E(X'X)"'X(XBo + Zo + u))

=B+ (X' X) ' X" Zv +E(X'X) ' X Tu) (3.60)

= Bo+ (X'X) X Z~,.
The second term in the last line of (3.60) will be equal to zero only when
X'Z = O or 49 = 0. The first possibility arises when the two sets of
regressors are mutually orthogonal, the second when (3.55) is not in fact
underspecified. Except in these very special cases, 3 will generally be biased.
The magnitude of the bias will depend on the parameter vector v and on the

X and Z matrices. Because this bias does not vanish as n — oo, B will also
generally be inconsistent.

Since 3 is biased, we cannot reasonably use its covariance matrix to evaluate
its accuracy. Instead, we can use the mean squared error matrix, or MSE
matrix, of 3. This matrix is defined as

MSE(8) = E((8 - 80)(8—80)"). (3.61)

The MSE matrix is equal to Var(B) if 3 is unbiased, but not otherwise. For
a scalar parameter 3, the MSE is equal to the square of the bias plus the
variance:

A A 2 A
MSE(8) = (E(3) — Bo)” + Var(p).
Thus, when we use MSE to evaluate the accuracy of an estimator, we are

choosing to give equal weight to random errors and to systematic errors that
arise from bias.!

From (3.60), we can see that
B—Bo=(X"X)'X"Zy + (X X)X u.
Therefore, B — Bp times itself transposed is equal to
(X' X)X Zyv Z'X(XTX) ™+ (XTX) ' X Tuu X (X TX)!
+(XTX) X" Zyu X (XTX) '+ (XX X Tuy Z'X (X TX)7L

L For a scalar parameter, it is common to report the square root of the MSE,
called the root mean squared error, or RMSE, instead of the MSE itself.
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The second term here has expectation 03(X "X )™, and the third and fourth
terms, one of which is the transpose of the other, have expectation zero. Thus
we conclude that

MSE(B) = o2(X'X) ' + (X' X) ' X Zyoy Z2' X (X'X)"L.  (3.62)

The first term is what the covariance matrix would be if we were estimating
a correctly specified model, and the second term arises from the bias of 3.

We would like to compare MSE(8), expression (3.62), with MSE(8) = Var(3),
which is given by expression (3.56). However, no unambiguous comparison
is possible. The first term in (3.62) cannot be larger, in the matrix sense,
than (3.56). Thus, if the bias is small, the second term will be small, and
it may well be that 3 is more efficient than 8. However, if the bias is large,
the second term will necessarily be large, and 8 will be less efficient than 3.
Of course, it is quite possible that some parameters may be estimated more
efficiently by B and others more efficiently by 3.

Whether or not ,(9 happens to be more efficient than ,5, the covariance matrix
for B that will be calculated by a least squares regression program will be
incorrect. The program will attempt to estimate the first term in (3.62),
but it will ignore the second. However, s? will typically be larger than o if
some regressors have been incorrectly omitted. Thus, the program will yield
a biased estimate of the first term.

It is tempting to conclude from this discussion that underspecification is a
much more severe problem than overspecification. After all, the former con-
stitutes misspecification, but the latter does not. In consequence, as we have
seen, underspecification leads to biased estimates and an estimated covariance
matrix that may be severely misleading, while overspecification merely leads
to inefficiency. Therefore, it would seem that we should always err on the
side of overspecification. If all samples were extremely large, this might be
a reasonable conclusion. The bias caused by underspecification does not go
away as the sample size increases, but the variances of all consistent estima-
tors tend to zero. Therefore, in sufficiently large samples, it makes sense to
avoid underspecification at all costs. However, in samples of modest size, the
gain in efficiency from omitting some variables, even if their coefficients are
not actually zero, may be very large relative to the bias that is caused by their
omission.

3.8 Measures of Goodness of Fit

A natural question to ask about any regression is: How well does it fit? There
is more than one way to answer this question, and none of the answers may
be entirely satisfactory in every case.
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One possibility might be to use s, the estimated standard error of the regres-
sion. But s can be rather hard to interpret, since it depends on the scale of
the y;. When the regressand is in logarithms, however, s is meaningful and
easy to interpret. Consider the loglinear model

logy = B1 + B2 log Xy + B3 log X3 + uy. (3.63)

As we saw in Section 1.3, this model can be obtained by taking logarithms of
both sides of the model
Yr = eﬁlthz Xtﬁg3e“t. (3.64)

The error factor e“t is, for u; small, approximately equal to 1 4+ u;. Thus the
standard deviation of u; in (3.63) is, approximately, the standard deviation of
the proportional error in the regression (3.64). Therefore, for any regression
where the dependent variable is in logs, we can simply interpret 100s, provided
it is small, as an estimate of the percentage error in the regression.

When the regressand is not in logarithms, we could divide s by 7, the average
of the y;, or perhaps by the average absolute value of y; if they were not all
of the same sign. This would provide a measure of how large are the errors in
the regression relative to the magnitude of the dependent variable. In many
cases, s/y (for a model in levels) or s (for a model in logarithms) will provide
a useful measure of how well a regression fits. However, these measures are
not entirely satisfactory. They are bounded from below, since they cannot be
negative, but they are not bounded from above. Moreover, s/y is very hard
to interpret if y; can be either positive or negative.

A much more commonly used (and misused) measure of goodness of fit is
the coefficient of determination, or R?, which we introduced in Section 2.5.
In that section, we discussed two versions of R?: the centered version, RZ
and the uncentered version, R2. As we saw there, both versions are based
on Pythagoras’ Theorem, which allows the total sum of squares (TSS) to be
broken into two parts, the explained sum of squares (ESS) and the sum of
squared residuals (SSR). Both versions of R? can be written as

R?2 = E_SS =1- @’

TSS TSS
where ESS and TSS are calculated around zero for R? and around the mean of
the regressand for R2. The centered version is much more commonly encoun-
tered than the uncentered version, because it is invariant to changes in the
mean of the regressand. By adding a large enough constant to all the y;, we
could always make R2 become arbitrarily close to 1, at least if the regression
included a constant, since the SSR would stay the same and the TSS would
increase without limit. We discussed an example of this in Section 2.5.

One important limitation of both versions of R? is that they are valid only
if a regression model is estimated by least squares, since otherwise it will not
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be true that TSS = ESS + SSR. Moreover, as we saw in Section 2.5, the
centered version is not valid if the regressors do not include a constant term
or the equivalent, that is, if ¢, the vector of 1s, does not belong to §(X).

Another, possibly undesirable, feature of both R? and R? as measures of
goodness of fit is that both increase whenever more regressors are added. To
demonstrate this, we argue in terms of R2, but the FWL Theorem can be
used to show that the same results hold for R2. Consider once more the
restricted and unrestricted models, (3.55) and (3.51), respectively. Since both
regressions have the same dependent variable, they have the same TSS. Thus
the regression with the larger ESS will also have the larger R% The ESS from
(3.51) is || Px,zy||* and that from (3.55) is ||Pxyl/?, and so the difference
between them is

y'(Px.z — Px)y. (3.65)

Clearly, 8(X) C 8§(X, Z). Thus Px projects on to a subspace of the image
of Px, z. This implies that the matrix in the middle of (3.65), say @, is an
orthogonal projection matrix; see Exercise 2.17. Consequently, (3.65) takes
the form y'Qy = ||Qyl|?> > 0. The ESS from (3.51) is therefore no less than
that from (3.55), and so the R? from (3.51) is no less than that from (3.55).

The R? can be modified so that adding additional regressors does not neces-
sarily increase its value. If ¢ € §(X), the centered R? can be written as

Dy U
i (e — 9)?

The numerator of the second term is just the SSR which, as we saw in Sec-
tion 3.6, has expectation (n — k)og under standard assumptions. The denom-
inator can be thought of as an estimator of n times the variance of y; about
its true mean. As such, it will have expectation (n — 1)Var(y). Thus the
second term of (3.66) can be thought of as the ratio of two biased estimators.
If we replace these biased estimators by unbiased estimators, we obtain the
adjusted R2,

R =1- (3.66)

5 g e U ~)y'™M
R2 = 1 . - n—k;nthl ti - _ 1 o (n )yT Xy ) (367)
=7 21 (Yt — 7) (n—k)y™M,y

The adjusted R? is reported by virtually all regression packages, often in
preference to R2. However, R? is really no more informative than R2. The
two will generally be very similar, except when (n — k)/(n — 1) is noticeably
less than 1.

One nice feature of R_i and R? is that they are constrained to lie between 0
and 1. In contrast, R? can actually be negative. If a model has very little

explanatory power, it is conceivable that (n —1)/(n — k) may be greater than
TSS/SSR. When that happens, R? < 0.
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The widespread use of R? dates from the early days of econometrics, when
sample sizes were often small, and investigators were easily impressed by mod-
els that yielded large values of R?2. We saw above that adding an extra regres-
sor to a linear regression will alway increase R?. This increase can be quite
noticeable when the sample size is small, even if the added regressor does not
really belong in the regression. In contrast, adding an extra regressor will
increase R? only if the proportional reduction in the SSR is greater than the
proportional reduction in n — k. Therefore, a naive investigator who tries to
maximize R? is less likely to end up choosing a severely overspecified model
than one who tries to maximize R2.

It can be extremely misleading to compare any form of R? for models es-
timated using different data sets. Suppose, for example, that we estimate
Model 1 using a set of data for which the regressors, and consequently the
regressand, vary a lot, and we estimate Model 2 using a second set of data for
which both the regressors and the regressand vary much less. Then, even if
both models fit equally well, in the sense that their residuals have just about
the same variance, Model 1 will have a much larger R? than Model 2. This
can most easily be seen from (3.66). Increasing the denominator of the second
term while holding the numerator constant will evidently increase the R2.

3.9 Final Remarks

In this chapter, we have dealt with many of the most fundamental, and best-
known, statistical properties of ordinary least squares. In particular, we have
discussed the properties of ,3 as an estimator of 3 and of s? as an estimator
of o3. We have also derived Var(,é), the covariance matrix of 8, and shown
how to estimate it. However, we have not said anything about how to use B

and the estimate of Var(3) to make inferences about 3. This important topic
will be taken up in the next chapter.

3.10 Exercises

3.1 Generate a sample of size 25 from the model (3.11), with 8; = 1 and 82 = 0.8.
For simplicity, assume that yg = 0 and that the u; are NID(0,1). Use this
sample to compute the OLS estimates 31 and Bg. Repeat at least 100 times,
and find the averages of the Bl and the Bg. Use these averages to estimate
the bias of the OLS estimators of 87 and (5.

Repeat this exercise for sample sizes of 50, 100, and 200. What happens to
the bias of 81 and (32 as the sample size is increased?

3.2 Consider a sequence of random variables z¢, t = 1,..., 00, such that E(x;) =
pt. By considering the centered variables xy — ug, show that the law of large
numbers can be formulated as

n n
plim L E ¢ = lim 1 g Lt
n nooo M

t=1 t=1
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3.3

3.4

3.5

3.6

3.7
3.8

The Statistical Properties of Ordinary Least Squares

Using the data on consumption and personal disposable income in Canada for
the period 1947:1 to 1996:4 in the file consumption.data, estimate the model

¢t = B1 + Boyt + ur, ug ~ NID(0,02),

where ¢; = logC} is the log of consumption and y; = logY; is the log of
disposable income, for the entire sample period. Then use the estimates of
B1, B2, and o to obtain 200 simulated observations on c;.

Begin by regressing your simulated log consumption variable on the log of
income and a constant using just the first 3 observations. Save the estimates
of 31, P2, and o. Repeat this exercise for sample sizes of 4,5,...,200. Plot
your estimates of B2 and o as a function of the sample size. What happens
to these estimates as the sample size grows?

Repeat the complete exercise with a different set of simulated consumption
data. Which features of the paths of the parameter estimates are common to
the two experiments, and which are different?

Plot the EDF (empirical distribution function) of the residuals from OLS
estimation using one of the sets of simulated data, for the entire sample period,
that you obtained in the last exercise; see Exercise 1.1 for a definition of the
EDF. On the same graph, plot the CDF of the N(0, 02) distribution, where
o2 now denotes the variance you used to simulate the log of consumption.

Show that the distributions characterized by the EDF and the normal CDF
have the same mean but different variances. How could you modify the resid-

uals so that the EDF of the modified residuals would have the same variance,
02, as the normal CDF?

In Section 3.4, it is stated that the covariance matrix Var(b) of any ran-
dom k-vector b is positive semidefinite. Prove this fact by considering arbi-
trary linear combinations w'b of the components of b with nonrandom w. If
Var(b) is positive semidefinite without being positive definite, what can you
say about b?

For any pair of random variables, by and bs, show, by using the fact that the
covariance matrix of b = [by i ba] is positive semidefinite, that

(Cov(by, b2)>2 < Var(by) Var(bs).

Use this result to show that the correlation of by and bs lies between —1 and 1.
If A is a positive definite matrix, show that A1 is also positive definite.

If A is a symmetric positive definite k x k& matrix, then I — A is positive
definite if and only if Al TIis positive definite, where I is the k x k identity
matrix. Prove this result by considering the quadratic form mT(I — A)x and
expressing « as R_lz, where R is a symmetric matrix such that A = R?.

Extend the above result to show that, if A and B are symmetric positive
definite matrices of the same dimensions, then A — B is positive definite if
and only if B~! — A™! is positive definite.
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3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Show that the variance of a sum of random variables z¢, t = 1,...,n, with
Cov(zt, zs) = 0 for t # s, equals the sum of their individual variances, what-
ever their expectations may be.

fy=w'g8 = Zle w; B3, show that Var(¥), which is given by (3.33), can
also be written as

k k i—1
Z w? Var(3;) + 22 Z wiw; Cov(;, Bg) (3.68)
i=1

i=2 j=1

Using the data in the file consumption.data, construct the variables c¢, the
logarithm of consumption, and y;, the logarithm of income, and their first
differences Acy = ¢t — c¢4—1 and Ayy = yr — y¢—1. Use these data to estimate
the following model for the period 1953:1 to 1996:4:

Act = 1+ BoAyr + B3Ayi—1 + BaAys—2 + B5Ays—3 + B Ayi—a. (3.69)

Let v = 25:2 B;. Calculate 4 and its standard error in two different ways.
One method should explicitly use the result (3.33), and the other should use
a transformation of regression (3.69) which allows 4 and its standard error to
be read off directly from the regression output.

Starting from equation (3.42) and using the result proved in Exercise 3.9, but
without using (3.43), prove that, if E(u?) = g and E(usu;) = 0 for all s # ¢,
then Var(at) = (1 — ht)od. This is the result (3.44).

Use the result (3.44) to show that the MM estimator 62 of (3.46) is consistent.
You may assume that a LLN applies to the average in that equation.

Prove that E(4'@) = (n — k)og. This is the result (3.48). The proof should
make use of the fact that the trace of a product of matrices is invariant to
cyclic permutations; see Section 2.6.

Consider two linear regressions, one restricted and the other unrestricted:
y=XB+u and
y=XB+ Zvy +u.

Show that, in the case of mutually orthogonal regressors, with X'z = O,
the estimates of 3 from the two regressions are identical.

Suppose that you use the OLS estimates ,é, obtained by regressing the n x 1
vector y on the n x k matrix X, to forecast the nx x 1 vector y« using the
n« X k matrix X«. Assuming that the error terms, both within the sample
used to estimate the parameters 3 and outside the sample in the forecast
period, are ITD(0, 02), and that the model is correctly specified, what is the
covariance matrix of the vector of forecast errors?

The class of estimators considered by the Gauss-Markov Theorem can be
written as B8 = Ay, with AX = I. Show that this class of estimators is in
fact identical to the class of MM estimators of the form

2 Ty\—1 T
=W X) Wy,
where W is a matrix of exogenous variables such that W 'X is nonsingular.
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3.18

3.19

3.20

3.21

3.22

3.23
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Show that the difference between the unrestricted estimator B of model (3.51)
and the restricted estimator 3 of model (3.55) is given by

B-B=(XMzX)'X'MzMxy.

Hint: In order to prove this result, it is easiest to premultiply the difference
by X 'MzX.

Consider the linear regression model

yt = B1 + P2 Xi2 + B3 Xi3 + ue.

Explain how you could estimate this model subject to the restriction that
B2 4+ B3 = 1 by running a regression that imposes the restriction. Also,
explain how you could estimate the unrestricted model in such a way that the
value of one of the coefficients would be zero if the restriction held exactly for
your data.

Prove that, for a linear regression model with a constant term, the uncentered
R? is always greater than the centered R2.

Consider a linear regression model for a dependent variable y; that has a
sample mean of 17.21. Suppose that we create a new variable y,/f =yt + 10
and run the same linear regression using y; instead of y; as the regressand.
How will Rg, R%, and the estimate of the constant term be related in the two
regressions? What if instead vy} = y; — 10?

Using the data in the file consumption.data, construct the variables c;, the
logarithm of consumption, and y, the logarithm of income. Use them to esti-
mate, for the period 1953:1 to 1996:4, the following autoregressive distributed
lag, or ADL, model:

ct = a+ Bei—1 Y0yt +y1ye—1 + ue. (3.70)
Such models are often expressed in first-difference form, that is, as
Act =0+ pce—1 + 0Ay + Yys—1 + uy, (3.71)

where the first-difference operator A is defined so that Ac: = ¢ — ¢p—1.
Estimate the first-difference model (3.71), and then, without using the results
of (3.70), rederive the estimates of «, 8, 70, and 1 solely on the basis of your
results from (3.71).

Simulate model (3.70) of the previous question, using your estimates of «, 3,
Y0, 71, and the error variance o2. Perform the simulation conditional on the
income series and the first observation c¢; of consumption. Plot the residuals
from running (3.70) on the simulated data, and compare the plot with that
of the residuals from the real data. Comments?

Copyright © 1999, Russell Davidson and James G. MacKinnon



Chapter 4

Hypothesis Testing in
Linear Regression Models

4.1 Introduction

As we saw in Chapter 3, the vector of OLS parameter estimates B is a random
vector. Since it would be an astonishing coincidence if ,é were equal to the
true parameter vector By in any finite sample, we must take the randomness
of ,5 into account if we are to make inferences about 3. In classical economet-
rics, the two principal ways of doing this are performing hypothesis tests and
constructing confidence intervals or, more generally, confidence regions. We
will discuss the first of these topics in this chapter, as the title implies, and the
second in the next chapter. Hypothesis testing is easier to understand than
the construction of confidence intervals, and it plays a larger role in applied
econometrics.

In the next section, we develop the fundamental ideas of hypothesis testing
in the context of a very simple special case. Then, in Section 4.3, we review
some of the properties of several distributions which are related to the nor-
mal distribution and are commonly encountered in the context of hypothesis
testing. We will need this material for Section 4.4, in which we develop a
number of results about hypothesis tests in the classical normal linear model.
In Section 4.5, we relax some of the assumptions of that model and introduce
large-sample tests. An alternative approach to testing under relatively weak
assumptions is bootstrap testing, which we introduce in Section 4.6. Finally,
in Section 4.7, we discuss what determines the ability of a test to reject a
hypothesis that is false.

4.2 Basic ldeas

The very simplest sort of hypothesis test concerns the (population) mean from
which a random sample has been drawn. To test such a hypothesis, we may
assume that the data are generated by the regression model

yi = B+ug, ug~1ID(0,0?), (4.01)
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where y; is an observation on the dependent variable, 8 is the population
mean, which is the only parameter of the regression function, and o2 is the
variance of the error term u;. The least squares estimator of 3 and its variance,
for a sample of size n, are given by

3= %Zyt and Var () = %02. (4.02)
t=1

These formulas can either be obtained from first principles or as special cases
of the general results for OLS estimation. In this case, X is just an n-vector
of 1s. Thus, for the model (4.01), the standard formulas B = (XTX) Xy
and Var(8) = 02(X X))~ yield the two formulas given in (4.02).

Now suppose that we wish to test the hypothesis that g = [y, where [y is
some specified value of 3.! The hypothesis that we are testing is called the
null hypothesis. It is often given the label Hy for short. In order to test Hy,
we must calculate a test statistic, which is a random variable that has a known
distribution when the null hypothesis is true and some other distribution when
the null hypothesis is false. If the value of this test statistic is one that might
frequently be encountered by chance under the null hypothesis, then the test
provides no evidence against the null. On the other hand, if the value of the
test statistic is an extreme one that would rarely be encountered by chance
under the null, then the test does provide evidence against the null. If this
evidence is sufficiently convincing, we may decide to reject the null hypothesis

that ﬁ = ﬁo.

For the moment, we will restrict the model (4.01) by making two very strong
assumptions. The first is that u; is normally distributed, and the second
is that o is known. Under these assumptions, a test of the hypothesis that
B8 = By can be based on the test statistic

B 3 - Bo _nt?
z = (Var(B))l/Q = (B~ Bo)- (4.03)

It turns out that, under the null hypothesis, z must be distributed as N (0,1).
It must have mean 0 because (3 is an unbiased estimator of 3, and 8 = 3y
under the null. It must have variance unity because, by (4.02),

B(%) = 5B((B-50)?) = 5 = = 1.

Lyt may be slightly confusing that a 0 subscript is used here to denote the value
of a parameter under the null hypothesis as well as its true value. So long
as it is assumed that the null hypothesis is true, however, there should be no
possible confusion.
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Finally, to see that z must be normally distributed, note that B is just the
average of the y;, each of which must be normally distributed if the corre-
sponding u; is; see Exercise 1.7. As we will see in the next section, this
implies that z is also normally distributed. Thus z has the first property that
we would like a test statistic to possess: It has a known distribution under
the null hypothesis.

For every null hypothesis there is, at least implicitly, an alternative hypothesis,
which is often given the label H;. The alternative hypothesis is what we are
testing the null against, in this case the model (4.01) with 5 # [y. Just as
important as the fact that z follows the N(0,1) distribution under the null is
the fact that z does not follow this distribution under the alternative. Suppose
that 3 takes on some other value, say ;. Then it is clear that @ =01+,
where 4 has mean 0 and variance o2/n; recall equation (3.05). In fact, 4
is normal under our assumption that the u; are normal, just like B, and so
4 ~ N(0,0?/n). It follows that z is also normal (see Exercise 1.7 again), and
we find from (4.03) that

/
z~N(M\1), with \= g (B1 = Bo). (4.04)

Therefore, provided n is sufficiently large, we would expect the mean of z to
be large and positive if 51 > [y and large and negative if 31 < By. Thus we
will reject the null hypothesis whenever z is sufficiently far from 0. Just how
we can decide what “sufficiently far” means will be discussed shortly.

Since we want to test the null that § = () against the alternative that 3 # o,
we must perform a two-tailed test and reject the null whenever the absolute
value of z is sufficiently large. If instead we were interested in testing the
null hypothesis that 8 < (B, against the alternative that 8 > [y, we would
perform a one-tailed test and reject the null whenever z was sufficiently large
and positive. In general, tests of equality restrictions are two-tailed tests, and
tests of inequality restrictions are one-tailed tests.

Since z is a random variable that can, in principle, take on any value on the
real line, no value of z is absolutely incompatible with the null hypothesis,
and so we can never be absolutely certain that the null hypothesis is false.
One way to deal with this situation is to decide in advance on a rejection rule,
according to which we will choose to reject the null hypothesis if and only if
the value of z falls into the rejection region of the rule. For two-tailed tests,
the appropriate rejection region is the union of two sets, one containing all
values of z greater than some positive value, the other all values of z less than
some negative value. For a one-tailed test, the rejection region would consist
of just one set, containing either sufficiently positive or sufficiently negative
values of z, according to the sign of the inequality we wish to test.

A test statistic combined with a rejection rule is sometimes called simply a
test. If the test incorrectly leads us to reject a null hypothesis that is true,
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we are said to make a Type I error. The probability of making such an error
is, by construction, the probability, under the null hypothesis, that z falls
into the rejection region. This probability is sometimes called the level of
significance, or just the level, of the test. A common notation for this is a.
Like all probabilities, a is a number between 0 and 1, although, in practice, it
is generally much closer to 0 than 1. Popular values of « include .05 and .01.
If the observed value of z, say Z, lies in a rejection region associated with a
probability under the null of a, we will reject the null hypothesis at level «,
otherwise we will not reject the null hypothesis. In this way, we ensure that
the probability of making a Type I error is precisely a.

In the previous paragraph, we implicitly assumed that the distribution of the
test statistic under the null hypothesis is known exactly, so that we have what
is called an exact test. In econometrics, however, the distribution of a test
statistic is often known only approximately. In this case, we need to draw a
distinction between the nominal level of the test, that is, the probability of
making a Type I error according to whatever approximate distribution we are
using to determine the rejection region, and the actual rejection probability,
which may differ greatly from the nominal level. The rejection probability is
generally unknowable in practice, because it typically depends on unknown
features of the DGP.?

The probability that a test will reject the null is called the power of the test.
If the data are generated by a DGP that satisfies the null hypothesis, the
power of an exact test is equal to its level. In general, power will depend on
precisely how the data were generated and on the sample size. We can see
from (4.04) that the distribution of z is entirely determined by the value of A,
with A = 0 under the null, and that the value of A depends on the parameters
of the DGP. In this example, A is proportional to 81 — By and to the square
root of the sample size, and it is inversely proportional to o.

Values of A different from 0 move the probability mass of the N (A, 1) distribu-
tion away from the center of the N (0, 1) distribution and into its tails. This
can be seen in Figure 4.1, which graphs the N(0,1) density and the N(\, 1)
density for A = 2. The second density places much more probability than the
first on values of z greater than 2. Thus, if the rejection region for our test
was the interval from 2 to 400, there would be a much higher probability in
that region for A = 2 than for A\ = 0. Therefore, we would reject the null
hypothesis more often when the null hypothesis is false, with A = 2, than
when it is true, with A = 0.

2 Another term that often arises in the discussion of hypothesis testing is the size
of a test. Technically, this is the supremum of the rejection probability over all
DGPs that satisfy the null hypothesis. For an exact test, the size equals the
level. For an approximate test, the size is typically difficult or impossible to
calculate. It is often, but by no means always, greater than the nominal level
of the test.
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Figure 4.1 The normal distribution centered and uncentered

Mistakenly failing to reject a false null hypothesis is called making a Type II
error. The probability of making such a mistake is equal to 1 minus the
power of the test. It is not hard to see that, quite generally, the probability of
rejecting the null with a two-tailed test based on z increases with the absolute
value of A\. Consequently, the power of such a test will increase as 31 — (g
increases, as o decreases, and as the sample size increases. We will discuss
what determines the power of a test in more detail in Section 4.7.

In order to construct the rejection region for a test at level «, the first step
is to calculate the critical value associated with the level a. For a two-tailed
test based on any test statistic that is distributed as N(0, 1), including the
statistic z defined in (4.04), the critical value ¢, is defined implicitly by

Do) =1—a/2. (4.05)

Recall that ® denotes the CDF of the standard normal distribution. In terms
of the inverse function ®~1, ¢,, can be defined explicitly by the formula

Ca = P71 —a/2). (4.06)

According to (4.05), the probability that z > ¢, is 1 — (1 — «/2) = a/2, and
the probability that z < —¢, is also «/2, by symmetry. Thus the probability
that |z| > ¢, is a, and so an appropriate rejection region for a test at level «
is the set defined by |z| > ¢,. Clearly, ¢, increases as « approaches 0. As
an example, when o = .05, we see from (4.06) that the critical value for a
two-tailed test is ®1(.975) = 1.96. We would reject the null at the .05 level
whenever the observed absolute value of the test statistic exceeds 1.96.

P Values

As we have defined it, the result of a test is yes or no: Reject or do not
reject. A more sophisticated approach to deciding whether or not to reject
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the null hypothesis is to calculate the P value, or marginal significance level,
associated with the observed test statistic 2. The P value for Z is defined as the
greatest level for which a test based on Z fails to reject the null. Equivalently,
at least if the statistic z has a continuous distribution, it is the smallest level
for which the test rejects. Thus, the test rejects for all levels greater than the
P value, and it fails to reject for all levels smaller than the P value. Therefore,
if the P value associated with Z is denoted p(%), we must be prepared to accept
a probability p(2) of Type I error if we choose to reject the null.

For a two-tailed test, in the special case we have been discussing,

p(2) =2(1—@(|2])). (4.07)

To see this, note that the test based on Z rejects at level a if and only if
|2| > co. This inequality is equivalent to ®(|Z]) > ®(cy), because D(-) is
a strictly increasing function. Further, ®(c,) = 1 — /2, by (4.05). The
smallest value of « for which the inequality holds is thus obtained by solving
the equation

D(Z) = 1-a/2,

and the solution is easily seen to be the right-hand side of (4.07).

One advantage of using P values is that they preserve all the information
conveyed by a test statistic, while presenting it in a way that is directly
interpretable. For example, the test statistics 2.02 and 5.77 would both lead
us to reject the null at the .05 level using a two-tailed test. The second of
these obviously provides more evidence against the null than does the first,
but it is only after they are converted to P values that the magnitude of the
difference becomes apparent. The P value for the first test statistic is .0434,
while the P value for the second is 7.93 x 107, an extremely small number.

Computing a P value transforms z from a random variable with the N (0, 1)
distribution into a new random variable p(z) with the uniform U(0,1) dis-
tribution. In Exercise 4.1, readers are invited to prove this fact. It is quite
possible to think of p(z) as a test statistic, of which the observed realization
is p(2). A test at level « rejects whenever p(2) < a. Note that the sign of
this inequality is the opposite of that in the condition |Z| > ¢,. Generally,
one rejects for large values of test statistics, but for small P values.

Figure 4.2 illustrates how the test statistic Z is related to its P value p(Z2).
Suppose that the value of the test statistic is 1.51. Then

Pr(z > 1.51) = Pr(z < —1.51) = .0655. (4.08)

This implies, by equation (4.07), that the P value for a two-tailed test based
on Z is .1310. The top panel of the figure illustrates (4.08) in terms of the
PDF of the standard normal distribution, and the bottom panel illustrates it
in terms of the CDF. To avoid clutter, no critical values are shown on the
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Figure 4.2 P values for a two-tailed test

figure, but it is clear that a test based on Z will not reject at any level smaller
than .131. From the figure, it is also easy to see that the P value for a one-
tailed test of the hypothesis that 8 < fy is .0655. This is just Pr(z > 1.51).
Similarly, the P value for a one-tailed test of the hypothesis that 6 > [y is
Pr(z < 1.51) = .9345.

In this section, we have introduced the basic ideas of hypothesis testing. How-
ever, we had to make two very restrictive assumptions. The first is that the
error terms are normally distributed, and the second, which is grossly unreal-
istic, is that the variance of the error terms is known. In addition, we limited
our attention to a single restriction on a single parameter. In Section 4.4, we
will discuss the more general case of linear restrictions on the parameters of
a linear regression model with unknown error variance. Before we can do so,
however, we need to review the properties of the normal distribution and of
several distributions that are closely related to it.
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4.3 Some Common Distributions

Most test statistics in econometrics follow one of four well-known distribu-
tions, at least approximately. These are the standard normal distribution,
the chi-squared (or x?) distribution, the Student’s ¢ distribution, and the
F' distribution. The most basic of these is the normal distribution, since the
other three distributions can be derived from it. In this section, we discuss the
standard, or central, versions of these distributions. Later, in Section 4.7, we
will have occasion to introduce noncentral versions of all these distributions.

The Normal Distribution

The normal distribution, which is sometimes called the Gaussian distribu-
tion in honor of the celebrated German mathematician and astronomer Carl
Friedrich Gauss (1777-1855), even though he did not invent it, is certainly
the most famous distribution in statistics. As we saw in Section 1.2, there
is a whole family of normal distributions, all based on the standard normal
distribution, so called because it has mean 0 and variance 1. The PDF of the
standard normal distribution, which is usually denoted by ¢(-), was defined
in (1.06). No elementary closed-form expression exists for its CDF, which is
usually denoted by ®(-). Although there is no closed form, it is perfectly easy
to evaluate ® numerically, and virtually every program for doing econometrics
and statistics can do this. Thus it is straightforward to compute the P value
for any test statistic that is distributed as standard normal. The graphs of
the functions ¢ and ® were first shown in Figure 1.1 and have just reappeared
in Figure 4.2. In both tails, the PDF rapidly approaches 0. Thus, although
a standard normal r.v. can, in principle, take on any value on the real line,
values greater than about 4 in absolute value occur extremely rarely.

In Exercise 1.7, readers were asked to show that the full normal family can be
generated by varying exactly two parameters, the mean and the variance. A
random variable X that is normally distributed with mean ; and variance o2
can be generated by the formula

X =p+oZ, (4.09)

where Z is standard normal. The distribution of X, that is, the normal
distribution with mean g and variance o2 is denoted N(u,o?). Thus the
standard normal distribution is the N(0,1) distribution. As readers were
asked to show in Exercise 1.8, the PDF of the N (u, 0?) distribution, evaluated

at x, is
1 x—u): 1 (_(:v—u)2> i1
5o(T) = e (- ga). (4.10)

In expression (4.10), as in Section 1.2, we have distinguished between the
random variable X and a value x that it can take on. However, for the
following discussion, this distinction is more confusing than illuminating. For
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the rest of this section, we therefore use lower-case letters to denote both
random variables and the arguments of their PDFs or CDF's, depending on
context. No confusion should result. Adopting this convention, then, we
see that, if = is distributed as N(u,0?), we can invert (4.09) and obtain
z = (x — p)/o, where z is standard normal. Note also that z is the argument
of ¢ in the expression (4.10) of the PDF of x. In general, the PDF of a
normal variable x with mean p and variance o2 is 1/0 times ¢ evaluated at
the corresponding standard normal variable, which is z = (z — u) /0.

Although the normal distribution is fully characterized by its first two mo-
ments, the higher moments are also important. Because the distribution is
symmetric around its mean, the third central moment, which measures the
skewness of the distribution, is always zero.® This is true for all of the odd
central moments. The fourth moment of a symmetric distribution provides a
way to measure its kurtosis, which essentially means how thick the tails are.
In the case of the N (u, 0?) distribution, the fourth central moment is 30?; see
Exercise 4.2.

Linear Combinations of Normal Variables

An important property of the normal distribution, used in our discussion in
the preceding section, is that any linear combination of independent normally
distributed random variables is itself normally distributed. To see this, it
is enough to show it for independent standard normal variables, because,
by (4.09), all normal variables can be generated as linear combinations of
standard normal ones plus constants. We will tackle the proof in several
steps, each of which is important in its own right.

To begin with, let z; and 29 be standard normal and mutually independent,
and consider w = by z; + byzs. For the moment, we suppose that b3 + b3 = 1,
although we will remove this restriction shortly. If we reason conditionally
on z1, then we find that

E(w | Zl) = 6121 + bQE(Zg ‘ 21) = 512’1 + bQE(ZQ) = blzl.

The first equality follows because by z; is a deterministic function of the condi-
tioning variable z;, and so can be taken outside the conditional expectation.
The second, in which the conditional expectation of zs is replaced by its un-
conditional expectation, follows because of the independence of z; and 2z (see
Exercise 1.9). Finally, E(z2) = 0 because z5 is N(0,1).

The conditional variance of w is given by
2
E((w —E(w|z)) | zl> = B((by22)? | 21) = B((b222)?) = b2,

3 A distribution is said to be skewed to the right if the third central moment is
positive, and to the left if the third central moment is negative.
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where the last equality again follows because zo ~ N(0,1). Conditionally
on zi, w is the sum of the constant byz; and by times a standard normal
variable 25, and so the conditional distribution of w is normal. Given the
conditional mean and variance we have just computed, we see that the con-
ditional distribution must be N (b; 21, b2 ). The PDF of this distribution is the
density of w conditional on z1, and, by (4.10), it is

blzl) (4.11)

1 w —
fw]z) = E¢<T :
In accord with what we noted above, the argument of ¢ here is equal to zo,

which is the standard normal variable corresponding to w conditional on 2.

The next step is to find the joint density of w and z;. By (1.15), the density
of w conditional on z; is the ratio of the joint density of w and z; to the
marginal density of z;. This marginal density is just ¢(z1), since z; ~ N(0, 1),
and so we see that the joint density is

w_—b”’l) (4.12)

Flw,21) = f(21) flw] 1) = ¢<21>é¢( b,

If we use (1.06) to get an explicit expression for this joint density, then we

obtain
1

27Tb2

1 1 5 9
= 2, exp (—@<Zl —2b1z1w + w )),

exp( 2b2 (b2z1 +w? — 2by 2w + blzl))
(4.13)

since we assumed that b? + b3 = 1. The right-hand side of (4.13) is symmetric
with respect to z; and w. Thus the joint density can also be expressed as
n (4.12), but with z; and w interchanged, as follows:

fw,21) = — d(w )¢( blw). (4.14)

2

We are now ready to compute the unconditional, or marginal, density of w.
To do so, we integrate the joint density (4.14) with respect to z;; see (1.12).
Note that z; occurs only in the last factor on the right-hand side of (4.14).
Further, the expression (1/b2)¢((21 — biw)/bs), like expression (4.11), is a
probability density, and so it integrates to 1. Thus we conclude that the
marginal density of w is f(w) = ¢(w), and so it follows that w is standard
normal, unconditionally, as we wished to show.

It is now simple to extend this argument to the case for which b3 + b3 # 1.
We define 72 = b? + b3, and consider w/r. The argument above shows that
w/r is standard normal, and so w ~ N(0,7?). It is equally simple to extend
the result to a linear combination of any number of mutually independent
standard normal variables. If we now let w be defined as b2y + bozo + b323,

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



4.3 Some Common Distributions 133

where 21, 22, and z3 are mutually independent standard normal variables, then
b12z1+bs25 is normal by the result for two variables, and it is independent of z3.
Thus, by applying the result for two variables again, this time to b1z + ba2o
and z3, we see that w is normal. This reasoning can obviously be extended
by induction to a linear combination of any number of independent standard
normal variables. Finally, if we consider a linear combination of independent
normal variables with nonzero means, the mean of the resulting variable is
just the same linear combination of the means of the individual variables.

The Multivariate Normal Distribution

The results of the previous subsection can be extended to linear combina-
tions of normal random variables that are not necessarily independent. In
order to do so, we introduce the multivariate normal distribution. As the
name suggests, this is a family of distributions for random wvectors, with the
scalar normal distributions being special cases of it. The pair of random
variables z; and w considered above follow the bivariate normal distribution,
another special case of the multivariate normal distribution. As we will see
in a moment, all these distributions, like the scalar normal distribution, are
completely characterized by their first two moments.

In order to construct the multivariate normal distribution, we begin with a
set of m mutually independent standard normal variables, z;, ¢ = 1,...,m,
which we can assemble into a random m-vector z. Then any m-vector x
of linearly independent linear combinations of the components of z follows
a multivariate normal distribution. Such a vector x can always be written
as Az, for some nonsingular m x m matrix A. As we will see in a moment,
the matrix A can always be chosen to be lower-triangular.

We denote the components of « as z;, 7 = 1,..., m. From what we have seen
above, it is clear that each z; is normally distributed, with (unconditional)
mean zero. Therefore, from results proved in Section 3.4, it follows that the
covariance matrix of x is

Var(z) = E(xx') = AE(z2")A" = ATA" = AA".

Here we have used the fact that the covariance matrix of z is the identity
matrix I. This is true because the variance of each component of z is 1,
and, since the z; are mutually independent, all the covariances are 0; see
Exercise 1.11.

Let us denote the covariance matrix of & by §2. Recall that, according to
a result mentioned in Section 3.4 in connection with Crout’s algorithm, for
any positive definite matrix 2, we can always find a lower-triangular A such
that AA" = 2. Thus the matrix A may always be chosen to be lower-
triangular. The distribution of @ is multivariate normal with mean vector 0
and covariance matrix §2. We write this as * ~ N(0,$2). If we add an
m~vector p of constants to @, the resulting vector must follow the N(pu, §2)
distribution.
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Figure 4.3 Contours of two bivariate normal densities

It is clear from this argument that any linear combination of random variables
that are jointly multivariate normal is itself normally distributed. Thus, if
x ~ N(u, £2), any scalar a'x, where a is an m-vector of fixed coefficients, is

normally distributed with mean a'p and variance a'f2a.

We saw a moment ago that z ~ N(0,I) whenever the components of the
vector z are independent. Another crucial property of the multivariate nor-
mal distribution is that the converse of this result is also true: If x is any
multivariate normal vector with zero covariances, the components of x are
mutually independent. This is a very special property of the multivariate
normal distribution, and readers are asked to prove it, for the bivariate case,
in Exercise 4.5. In general, a zero covariance between two random variables
does not imply that they are independent.

It is important to note that the results of the last two paragraphs do not hold
unless the vector « is multivariate normal, that is, constructed as a set of linear
combinations of independent normal variables. In most cases, when we have
to deal with linear combinations of two or more normal random variables, it is
reasonable to assume that they are jointly distributed as multivariate normal.
However, as Exercise 1.12 illustrates, it is possible for two or more random
variables not to be multivariate normal even though each one individually
follows a normal distribution.

Figure 4.3 illustrates the bivariate normal distribution, of which the PDF is
given in Exercise 4.5 in terms of the variances 02 and o2 of the two variables,
and their correlation p. Contours of the density are plotted, on the right for
01 = 03 = 1.0 and p = 0.5, on the left for o1 = 1.5, 0o = 1.0, and p = —0.9.
The contours of the bivariate normal density can be seen to be elliptical. The
ellipses slope upward when p > 0 and downward when p < 0. They do so
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more steeply the larger is the ratio o2/0q1. The closer |p| is to 1, for given
values of o1 and o4, the more elongated are the elliptical contours.

The Chi-Squared Distribution

Suppose, as in our discussion of the multivariate normal distribution, that
the random vector z is such that its components zi,...,z, are mutually
independent standard normal random variables. An easy way to express this
is to write z ~ N(0,I). Then the random variable

=z’ =2"2= sz (4.15)

is said to follow the chi-squared distribution with m degrees of freedom. A
compact way of writing this is: y ~ x2?(m). From (4.15), it is clear that
m must be a positive integer. In the case of a test statistic, it will turn out
to be equal to the number of restrictions being tested.

The mean and variance of the x?(m) distribution can easily be obtained from
the definition (4.15). The mean is

ZE(Z :i1 m. (4.16)

Since the z; are independent, the variance of the sum of the 22 is just the sum
of the (identical) variances:

Var(y ZVar mE((z} — 1)%)

:mE(zi —2224+1)=m(3-2+1) =2m.

(4.17)

The third equality here uses the fact that E(z}) = 3; see Exercise 4.2.

Another important property of the chi-squared distribution, which follows
immediately from (4.15), is that, if y; ~ x*(m1) and y2 ~ x?(m2), and 3
and yo are independent, then y; + yo ~ x2(m1 + ms). To see this, rewrite
(4.15) as

mi+ma mi+ma
Y=y +y2= Z g4 ) A=)
1=mq+1 =1

from which the result follows.

Figure 4.4 shows the PDF of the x?(m) distribution for m = 1, m = 3,
m = 5, and m = 7. The changes in the location and height of the density
function as m increases are what we should expect from the results (4.16) and
(4.17) about its mean and variance. In addition, the PDF, which is extremely
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Figure 4.4 Various chi-squared PDFs

skewed to the right for m = 1, becomes less skewed as m increases. In fact, as
we will see in Section 4.5, the x?(m) distribution approaches the N(m,2m)
distribution as m becomes large.

In Section 3.4, we introduced quadratic forms. As we will see, many test
statistics can be written as quadratic forms in normal vectors, or as functions
of such quadratic forms. The following theorem states two results about
quadratic forms in normal vectors that will prove to be extremely useful.

Theorem 4.1.

1. If the m~-vector x is distributed as N (0, §2), then the quadratic
form "2~z is distributed as x2(m);

2. If P is a projection matrix with rank r» and z is an n-vector
that is distributed as N(0,I), then the quadratic form z' Pz is
distributed as x?(r).

Proof: Since the vector x is multivariate normal with mean vector 0, so is the

vector A~ x, where, as before, AA"T = £2. Moreover, the covariance matrix
of A=tz is

E(A_lwa(AT)_l) — A—IQ(AT)—l — A—lAAT(AT)—l — Im

Thus we have shown that the vector z = A~ 'z is distributed as N(0,I).

The quadratic form "2z is equal to ' (A")!A 'z = 272, As we have
just shown, this is equal to the sum of m independent, squared, standard
normal random variables. From the definition of the chi-squared distribution,
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we know that such a sum is distributed as x?(m). This proves the first part
of the theorem.

Since P is a projection matrix, it must project orthogonally on to some sub-
space of E™. Suppose, then, that P projects on to the span of the columns of
an n X r matrix Z. This allows us to write

2'Pz=2'2(Z'2)"'Z"~.

The r-vector £ = Z'z evidently follows the N(0, Z"Z) distribution. There-
fore, z" Pz is seen to be a quadratic form in the multivariate normal r-vector
x and (Z'Z)~!, which is the inverse of its covariance matrix. That this
quadratic form is distributed as x?(r) follows immediately from the the first
part of the theorem. [ |

The Student’s ¢t Distribution

If z ~ N(0,1) and y ~ x?(m), and 2z and y are independent, then the random
variable .

t= — 4.18

(ujm) 7 e

is said to follow the Student’s t distribution with m degrees of freedom. A

compact way of writing this is: ¢ ~ ¢(m). The Student’s ¢ distribution looks

very much like the standard normal distribution, since both are bell-shaped

and symmetric around 0.

The moments of the t distribution depend on m, and only the first m — 1
moments exist. Thus the ¢(1) distribution, which is also called the Cauchy
distribution, has no moments at all, and the #(2) distribution has no variance.
From (4.18), we see that, for the Cauchy distribution, the denominator of ¢
is just the absolute value of a standard normal random variable. Whenever
this denominator happens to be close to zero, the ratio is likely to be a very
big number, even if the numerator is not particularly large. Thus the Cauchy
distribution has very thick tails. As m increases, the chance that the denom-
inator of (4.18) is close to zero diminishes (see Figure 4.4), and so the tails
become thinner.

In general, if ¢ is distributed as ¢(m) with m > 2, then Var(t) = m/(m — 2).
Thus, as m — oo, the variance tends to 1, the variance of the standard
normal distribution. In fact, the entire ¢(m) distribution tends to the standard
normal distribution as m — oo. By (4.15), the chi-squared variable y can be
expressed as ., 22 where the z; are independent standard normal variables.
Therefore, by a law of large numbers, such as (3.16), y/m, which is the average
of the 22, tends to its expectation as m — co. By (4.16), this expectation is
just m/m = 1. Tt follows that the denominator of (4.18), (y/m)/?, also tends

to 1, and hence that t — z ~ N(0,1) as m — oo.

Figure 4.5 shows the PDF's of the standard normal, #(1), ¢(2), and #(5) distri-
butions. In order to make the differences among the various densities in the
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Figure 4.5 PDF's of the Student’s t distribution

figure apparent, all the values of m are chosen to be very small. However, it
is clear from the figure that, for larger values of m, the PDF of ¢(m) will be
very similar to the PDF of the standard normal distribution.

The F' Distribution

If y; and y are independent random variables distributed as x?(m;) and
x2(msy), respectively, then the random variable

_yi/m
© y2/ma

F (4.19)

is said to follow the F' distribution with m; and mso degrees of freedom. A
compact way of writing this is: F' ~ F(mj,msy). The notation F' is used in
honor of the well-known statistician R. A. Fisher. The F'(m1, ma) distribution
looks a lot like a rescaled version of the x*(m;) distribution. As for the
t distribution, the denominator of (4.19) tends to unity as ms — oo, and
so miF — y; ~ x?(m1) as ma — oo. Therefore, for large values of ms, a
random variable that is distributed as F'(mj,ms) will behave very much like
1/m; times a random variable that is distributed as x?(m).

The F distribution is very closely related to the Student’s ¢ distribution. It is
evident from (4.19) and (4.18) that the square of a random variable which is
distributed as t(mg) will be distributed as F'(1,m2). In the next section, we
will see how these two distributions arise in the context of hypothesis testing
in linear regression models.
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4.4 Exact Tests in the Classical Normal Linear Model

In the example of Section 4.2, we were able to obtain a test statistic z that was
distributed as N (0, 1). Tests based on this statistic are exact. Unfortunately,
it is possible to perform exact tests only in certain special cases. One very
important special case of this type arises when we test linear restrictions on
the parameters of the classical normal linear model, which was introduced in
Section 3.1. This model may be written as

y=XB+u, u~ N(0,0°T), (4.20)

where X is an n X k matrix of regressors, so that there are n observations
and k regressors, and it is assumed that the error vector w is statistically
independent of the matrix X. Notice that in (4.20) the assumption which in
Section 3.1 was written as u; ~ NID(0, 0?) is now expressed in matrix notation
using the multivariate normal distribution. In addition, since the assumption
that w and X are independent means that the generating process for X is
independent of that for y, we can express this independence assumption by
saying that the regressors X are exogenous in the model (4.20); the concept
of exogeneity* was introduced in Section 1.3 and discussed in Section 3.2.

Tests of a Single Restriction

We begin by considering a single, linear restriction on 8. This could, in
principle, be any sort of linear restriction, for example, that 31 = 5 or 83 = (4.
However, it simplifies the analysis, and involves no loss of generality, if we
confine our attention to a restriction that one of the coefficients should equal 0.
If a restriction does not naturally have the form of a zero restriction, we can
always apply suitable linear transformations to y and X, of the sort considered
in Sections 2.3 and 2.4, in order to rewrite the model so that it does; see
Exercises 4.6 and 4.7.

Let us partition 3 as [31 i (2], where 31 is a (k — 1)-vector and (s is a
scalar, and consider a restriction of the form (3, = 0. When X is partitioned
conformably with 3, the model (4.20) can be rewritten as

y=X1081+ foxa+u, u~ N(O, 021)7 (4.21)

where X; denotes an n x (k — 1) matrix and @2 denotes an n-vector, with
X =[X; x).

By the FWL Theorem, the least squares estimate of o from (4.21) is the
same as the least squares estimate from the FWL regression

My = o Myxs + residuals, (4.22)

4 This assumption is usually called strict exogeneity in the literature, but, since
we will not discuss any other sort of exogeneity in this book, it is convenient
to drop the word “strict”.
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where M; =1 — X;(X,'X;)"'X] is the matrix that projects on to 8*(X).
By applying the standard formulas for the OLS estimator and covariance
matrix to regression (4.22), under the assumption that the model (4.21) is
correctly specified, we find that

. M. A
By = L2 MY and Var(fs) = 0'2(1132TM1:B2)_1'
xo M xo

In order to test the hypothesis that 8 equals any specified value, say A9, we
have to subtract 89 from (5 and divide by the square root of the variance. For
the null hypothesis that Gy = 0, this yields a test statistic analogous to (4.03),

.
.’L'QMly

= , 4.23

T (@) Mym,) ' 2 (4.23)

which can be computed only under the unrealistic assumption that o is known.
If the data are actually generated by the model (4.21) with #2 = 0, then

Mly = Ml(Xl,Bl + U) = Mlu.
Therefore, the right-hand side of (4.23) becomes

xs Mu

o(x Myxo)t/2 (4.24)

It is now easy to see that zg, is distributed as N(0,1). Because we can
condition on X, the only thing left in (4.24) that is stochastic is w. Since
the numerator is just a linear combination of the components of w, which is
multivariate normal, the entire test statistic must be normally distributed.
The variance of the numerator is

E(.’B;—MluuTleg) = :BgTMlE(uuT)Mlzcg

= x5 M2 I Mz = 0’ xy M.

Since the denominator of (4.24) is just the square root of the variance of
the numerator, we conclude that zg, is distributed as N(0,1) under the null
hypothesis.

The test statistic zg, defined in (4.23) has exactly the same distribution under
the null hypothesis as the test statistic z defined in (4.03). The analysis of
Section 4.2 therefore applies to it without any change. Thus we now know
how to test the hypothesis that any coefficient in the classical normal linear
model is equal to 0, or to any specified value, but only if we know the variance
of the error terms.

In order to handle the more realistic case in which we do not know the variance
of the error terms, we need to replace o in (4.23) by s, the usual least squares
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standard error estimator for model (4.21), defined in (3.49). If, as usual, Mx
is the orthogonal projection on to 8+ (X), we have s = y"'Mxy/(n— k), and
so we obtain the test statistic

. _ @My [y Mxy 1 a My
%7 s(@d Myas)/? n—k (s Myao) /2

(4.25)

As we will now demonstrate, this test statistic is distributed as ¢(n — k) under
the null hypothesis. Not surprisingly, it is called a t statistic.

As we discussed in the last section, for a test statistic to have the t(n — k)
distribution, it must be possible to write it as the ratio of a standard normal
variable z to the square root of y/(n — k), where y is independent of z and
distributed as x?(n — k). The ¢ statistic defined in (4.25) can be rewritten as

tg, = “B2 — (4.26)
* 7 WMxy/(n - k)o2)”

which has the form of such a ratio. We have already shown that z3, ~ N(0,1).
Thus it only remains to show that y'Mxy/o? ~ x?(n — k) and that the
random variables in the numerator and denominator of (4.26) are independent.

Under any DGP that belongs to (4.21),

y Mxy B u'Mxu

: ——— =& Mxe, (4.27)

o g

where € = u/o is distributed as N(0,I). Since Mx is a projection matrix
with rank n — k, the second part of Theorem 4.1 shows that the rightmost
expression in (4.27) is distributed as x%(n — k).

To see that the random variables zg, and e"Mxe are independent, we note
first that €' Mxe depends on y only through Mxy. Second, from (4.23), it
is not hard to see that zz, depends on y only through Pxy, since

xo My = x5 Px My = x5 (Px — Px Py)y = x5 M1 Pxy;

the first equality here simply uses the fact that xs € 8(X), and the third
equality uses the result (2.36) that Px P, = P; Px. Independence now follows
because, as we will see directly, Pxy and Mxvy are independent.

We saw above that Mxy = Mxwu. Further, from (4.20), Pxy = X3+ Pxu,
from which it follows that the centered version of Pxvy is Pxu. The n x n
matrix of covariances of components of Pxu and Mxw is thus

E(Pxuu'Mx) = 0?PxMx = O,

by (2.26), because Px and Mx are complementary projections. These zero
covariances imply that Pxu and Mxwu are independent, since both are mul-
tivariate normal. Geometrically, these vectors have zero covariance because
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they lie in orthogonal subspaces, namely, the images of Px and Mx. Thus,
even though the numerator and denominator of (4.26) both depend on y, this
orthogonality implies that they are independent.

We therefore conclude that the ¢ statistic (4.26) for S = 0 in the model (4.21)
has the t(n—k) distribution. Performing one-tailed and two-tailed tests based
on tg, is almost the same as performing them based on zz,. We just have to
use the t(n — k) distribution instead of the N(0,1) distribution to compute
P values or critical values. An interesting property of ¢ statistics is explored
in Exercise 14.8.

Tests of Several Restrictions

Economists frequently want to test more than one linear restriction. Let us
suppose that there are r restrictions, with » < k, since there cannot be more
equality restrictions than there are parameters in the unrestricted model. As
before, there will be no loss of generality if we assume that the restrictions
take the form B3 = 0. The alternative hypothesis is the model (4.20), which
has been rewritten as

Hi: y=X161+X28+u, u~N(0,0T). (4.28)

Here X; is an n x k1 matrix, X5 is an n X ko matrix, 81 is a ki—vector, Bs is
a ko—vector, k = k1 + ko, and the number of restrictions r = ky. Unless r =1,
it is no longer possible to use a t test, because there will be one ¢ statistic for
each element of B2, and we want to compute a single test statistic for all the
restrictions at once.

It is natural to base a test on a comparison of how well the model fits when
the restrictions are imposed with how well it fits when they are not imposed.
The null hypothesis is the regression model

Hy: y=X181+u, u~N(0,0°T), (4.29)

in which we impose the restriction that B3 = 0. As we saw in Section 3.8,
the restricted model (4.29) must always fit worse than the unrestricted model
(4.28), in the sense that the SSR from (4.29) cannot be smaller, and will
almost always be larger, than the SSR from (4.28). However, if the restrictions
are true, the reduction in SSR from adding X5 to the regression should be
relatively small. Therefore, it seems natural to base a test statistic on the
difference between these two SSRs. If USSR denotes the unrestricted sum
of squared residuals, from (4.28), and RSSR denotes the restricted sum of
squared residuals, from (4.29), the appropriate test statistic is
~ (RSSR — USSR)/r

o = TUSSRJ(n— k) (4.30)
Under the null hypothesis, as we will now demonstrate, this test statistic fol-
lows the F' distribution with r» and n — k degrees of freedom. Not surprisingly,
it is called an F' statistic.
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The restricted SSR is y'M;y, and the unrestricted one is y'Mxy. One
way to obtain a convenient expression for the difference between these two
expressions is to use the FWL Theorem. By this theorem, the USSR is the
SSR from the FWL regression
My = M, X53; + residuals. (4.31)

The total sum of squares from (4.31) is y'M;y. The explained sum of squares
can be expressed in terms of the orthogonal projection on to the r—dimensional
subspace 8(M;X5), and so the difference is

USSR = y My — y' M, Xo(Xo M, X5) ' X, My y. (4.32)
Therefore,

RSSR — USSR = y' M X, (X3 M X)X, My,

and the F statistic (4.30) can be written as

Fa - yTMlXQ(XQTMlXQ)_lXQTMly/T. (433)
& y'Mxy/(n— k)

Under the null hypothesis, Mxy = Mxu and My = Mju. Thus, under
this hypothesis, the F' statistic (4.33) reduces to

€TM1X2(X2—|—M1X2)_1X;M1€/T

e"Mxe/(n — k) ’ (4.34)

where, as before, e = u/o. We saw in the last subsection that the quadratic
form in the denominator of (4.34) is distributed as x*(n — k). Since the
quadratic form in the numerator can be written as €' Ppr, x, €, it is distributed
as x2(r). Moreover, the random variables in the numerator and denominator
are independent, because Mx and Py, x, project on to mutually orthogonal
subspaces: Mx M, X, = Mx (X5 — P; X5) = O. Thus it is apparent that the
statistic (4.34) follows the F(r,n — k) distribution under the null hypothesis.

A Threefold Orthogonal Decomposition

Each of the restricted and unrestricted models generates an orthogonal de-
composition of the dependent variable y. It is illuminating to see how these
two decompositions interact to produce a threefold orthogonal decomposi-
tion. It turns out that all three components of this decomposition have useful
interpretations. From the two models, we find that

y=Py+ My and y= Pxy+ Mxy. (4.35)
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In Exercise 2.17, it was seen that Px — P; is an orthogonal projection matrix,
equal to Py, x,. It follows that

Px = P, + P]\41)(27 (436)

where the two projections on the right-hand side are obviously mutually or-
thogonal, since P, annihilates M; X5. From (4.35) and (4.36), we obtain the
threefold orthogonal decomposition

y =Py + Puvyx,y + Mxy. (4.37)

The first term is the vector of fitted values from the restricted model, X; ,51. In
this and what follows, we use a tilde () to denote the restricted estimates, and
a hat (7) to denote the unrestricted estimates. The second term is the vector
of fitted values from the FWL regression (4.31). It equals M; X5 ,32, where,
by the FWL Theorem, ,5‘2 is a subvector of estimates from the unrestricted
model. Finally, Mxy is the vector of residuals from the unrestricted model.

Since Pxy = X1,31 + X5 ﬁg, the vector of fitted values from the unrestricted
model, we see that

X181 + XoB2 = X181 + M, X5 8s. (4.38)

In Exercise 4.9, this result is exploited to show how to obtain the restricted
estimates in terms of the unrestricted estimates.

The F statistic (4.33) can be written as the ratio of the squared norm of the
second component in (4.37) to the squared norm of the third, each normalized
by the appropriate number of degrees of freedom. Under both hypotheses, the
third component Mxy equals Mxu, and so it consists of random noise. Its
squared norm is a x2(n — k) variable times o2, which serves as the (unre-
stricted) estimate of 02 and can be thought of as a measure of the scale of
the random noise. Since u ~ N(0,0°I), every element of u has the same
variance, and so every component of (4.37), if centered so as to leave only the
random part, should have the same scale.

Under the null hypothesis, the second component is Pyr, x,¥ = P x,u,
which just consists of random noise. But, under the alternative, Pyr, x,y =
M, X582 + Py, x,u, and it thus contains a systematic part related to Xa.
The length of the second component will be greater, on average, under the
alternative than under the null, since the random part is there in all cases, but
the systematic part is present only under the alternative. The F' test compares
the squared length of the second component with the squared length of the
third. It thus serves to detect the possible presence of systematic variation,
related to X, in the second component of (4.37).

All this means that we want to reject the null whenever the numerator of
the F' statistic, RSSR — USSR, is relatively large. Consequently, the P value
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corresponding to a realized F' statistic Fis computed as 1 —F,. ,_ k(F ), where
F, n—i(-) denotes the CDF of the F distribution with the appropriate numbers
of degrees of freedom. Thus we compute the P value as if for a one-tailed
test. However, F' tests are really two-tailed tests, because they test equality
restrictions, not inequality restrictions. An F' test for By = 0 will reject the
null hypothesis whenever Bg is sufficiently far from 0, whether the individual
elements of Bg are positive or negative.

There is a very close relationship between F tests and t tests. In the previous
section, we saw that the square of a random variable with the t(n — k) distri-
bution must have the F'(1,n — k) distribution. The square of the ¢ statistic
t3,, defined in (4.25), is

2 = y' Mxo(x) Mixs) 'xd My
7 y Mxy/(n — k)

This test statistic is evidently a special case of (4.33), with the vector x
replacing the matrix Xs. Thus, when there is only one restriction, it makes
no difference whether we use a two-tailed ¢ test or an F' test.

An Example of the F' Test

The most familiar application of the F' test is testing the hypothesis that all
the coefficients in a classical normal linear model, except the constant term,
are zero. The null hypothesis is that 85 = 0 in the model

y=70t+XoB:+u, u~ N0, %), (4.39)

where ¢ is an n-vector of 1s and X5 is n x (k — 1). In this case, using (4.32),
the test statistic (4.33) can be written as

F _ yTMLX2 (XQ—I_MLXQ)_]-XJMLy/(k B 1) (4.40)
P2 (yTMLy — y M, X (XM, X,) ' Xo M,y) /(n — k)

where M, is the projection matrix that takes deviations from the mean, which
was defined in (2.32). Thus the matrix expression in the numerator of (4.40)
is just the explained sum of squares, or ESS, from the FWL regression

M,y = M, X535 + residuals.

Similarly, the matrix expression in the denominator is the total sum of squares,
or TSS, from this regression, minus the ESS. Since the centered R? from (4.39)
is just the ratio of this ESS to this TSS, it requires only a little algebra to
show that

_n—k R?
2" k-1 1-Re

Therefore, the F' statistic (4.40) depends on the data only through the cen-
tered R, of which it is a monotonically increasing function.

Fa
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Testing the Equality of Two Parameter Vectors

It is often natural to divide a sample into two, or possibly more than two,
subsamples. These might correspond to periods of fixed exchange rates and
floating exchange rates, large firms and small firms, rich countries and poor
countries, or men and women, to name just a few examples. We may then
ask whether a linear regression model has the same coefficients for both the
subsamples. It is natural to use an F test for this purpose. Because the classic
treatment of this problem is found in Chow (1960), the test is often called a
Chow test; later treatments include Fisher (1970) and Dufour (1982).

Let us suppose, for simplicity, that there are only two subsamples, of lengths
ny and no, with n = ny + no. We will assume that both n; and no are
greater than k, the number of regressors. If we separate the subsamples by
partitioning the variables, we can write

_ |y _ 1 Xy
= 5 d X: s
v=lp] ma x=%)

where y; and ys are, respectively, an ni-vector and an ns-vector, while X;
and X, are n; X k and ns X k matrices. Even if we need different para-
meter vectors, 81 and B, for the two subsamples, we can nonetheless put the
subsamples together in the following regression model:

lej - [i}ﬁﬁ [)?JVJF“’ u ~ N(0,0°I). (4.41)

It can readily be seen that, in the first subsample, the regression functions
are the components of X331, while, in the second, they are the components
of X5(B1 + 7). Thus « is to be defined as B2 — B1. If we define Z as an
n X k matrix with O in its first n; rows and X5 in the remaining ns rows,
then (4.41) can be rewritten as

y=XB1+Zy+u, u~ N(0,). (4.42)

This is a regression model with n observations and 2k regressors. It has
been constructed in such a way that (3; is estimated directly, while 35 is
estimated using the relation By = v + 3;. Since the restriction that 3; = 3
is equivalent to the restriction that v = 0 in (4.42), the null hypothesis has
been expressed as a set of k zero restrictions. Since (4.42) is just a classical
normal linear model with k linear restrictions to be tested, the F' test provides
the appropriate way to test those restrictions.

The F statistic can perfectly well be computed as usual, by running (4.42)
to get the USSR and then running the restricted model, which is just the
regression of y on X, to get the RSSR. However, there is another way to
compute the USSR. In Exercise 4.10, readers are invited to show that it
is simply the sum of the two SSRs obtained by running two independent
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regressions on the two subsamples. If SSR; and SSRy denote the sums of
squared residuals from these two regressions, and RSSR denotes the sum of
squared residuals from regressing y on X, the F' statistic becomes

(RSSR — SSR1 — SSR») /k

By =SSR, £ 8SRa)/(n— 2k) (4.43)

This Chow statistic, as it is often called, is distributed as F'(k,n — 2k) under
the null hypothesis that 37 = 35.

4.5 Large-Sample Tests in Linear Regression Models

The t and F tests that we developed in the previous section are exact only
under the strong assumptions of the classical normal linear model. If the
error vector were not normally distributed or not independent of the matrix
of regressors, we could still compute ¢ and F' statistics, but they would not
actually follow their namesake distributions in finite samples. However, like
a great many test statistics in econometrics which do not follow any known
distribution exactly, they would in many cases approximately follow known
distributions in large samples. In such cases, we can perform what are called
large-sample tests or asymptotic tests, using the approximate distributions to
compute P values or critical values.

Asymptotic theory is concerned with the distributions of estimators and test
statistics as the sample size n tends to infinity. It often allows us to obtain
simple results which provide useful approximations even when the sample size
is far from infinite. In this book, we do not intend to discuss asymptotic the-
ory at the advanced level of Davidson (1994) or White (1984). A rigorous
introduction to the fundamental ideas may be found in Gallant (1997), and a
less formal treatment is provided in Davidson and MacKinnon (1993). How-
ever, it is impossible to understand large parts of econometrics without having
some idea of how asymptotic theory works and what we can learn from it. In
this section, we will show that asymptotic theory gives us results about the
distributions of ¢ and F’ statistics under much weaker assumptions than those
of the classical normal linear model.

Laws of Large Numbers

There are two types of fundamental results on which asymptotic theory is
based. The first type, which we briefly discussed in Section 3.3, is called a law
of large numbers, or LLN. A law of large numbers may apply to any quantity
which can be written as an average of n random variables, that is, 1/n times
their sum. Suppose, for example, that

n
- _ 1
Z’:E Tt,
t=1
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Figure 4.6 EDFs for several sample sizes

where the x; are independent random variables, each with its own bounded
finite variance o? and with a common mean p. Then a fairly simple LLN
assures us that, as n — oo, T tends to pu.

An example of how useful a law of large numbers can be is the Fundamental
Theorem of Statistics, which concerns the empirical distribution function,
or EDF, of a random sample. The EDF was introduced in Exercises 1.1
and 3.4. Suppose that X is a random variable with CDF F(X) and that
we obtain a random sample of size n with typical element xz;, where each
x; is an independent realization of X. The empirical distribution defined by
this sample is the discrete distribution that puts a weight of 1/n at each of
the z4, t = 1,...,n. The EDF is the distribution function of the empirical
distribution, and it can be expressed algebraically as

F(z)= %anf(xt <z), (4.44)

where I(-) is the indicator function, which takes the value 1 when its argument
is true and takes the value 0 otherwise. Thus, for a given argument z, the
sum on the right-hand side of (4.44) counts the number of realizations x; that
are smaller than or equal to . The EDF has the form of a step function: The
height of each step is 1/n, and the width is equal to the difference between two
successive values of x;. According to the Fundamental Theorem of Statistics,
the EDF consistently estimates the CDF of the random variable X.
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Figure 4.6 shows the EDFs for three samples of sizes 20, 100, and 500 drawn
from three normal distributions, each with variance 1 and with means 0, 2,
and 4, respectively. These may be compared with the CDF of the standard
normal distribution in the lower panel of Figure 4.2. There is not much
resemblance between the EDF based on n = 20 and the normal CDF from
which the sample was drawn, but the resemblance is somewhat stronger for
n = 100 and very much stronger for n = 500. It is a simple matter to
simulate data from an EDF, as we will see in the next section, and this type
of simulation can be very useful.

It is very easy to prove the Fundamental Theorem of Statistics. For any real
value of x, each term in the sum on the right-hand side of (4.44) depends only
on x;. The expectation of I(x; < x) can be found by using the fact that it
can take on only two values, 1 and 0. The expectation is

E(I(z; <)) =0-Pr(I(z; <z)=0)+1-Pr(I(z <z)=1)
=Pr(I(z; <z)=1) =Pr(z; < z) = F(x).

Since the x; are mutually independent, so too are the terms I(x; < z). Since
the z; all follow the same distribution, so too must these terms. Thus (4.44) is
the mean of n IID random terms, each with finite expectation. The simplest
of all LLNs (due to Khinchin) applies to such a mean, and we conclude that,
for every z, F(z) is a consistent estimator of F(z).

There are many different LLNs, some of which do not require that the indi-
vidual random variables have a common mean or be independent, although
the amount of dependence must be limited. If we can apply a LLN to any
random average, we can treat it as a nonrandom quantity for the purpose of
asymptotic analysis. In many cases, this means that we must divide the quan-
tity of interest by n. For example, the matrix X "X that appears in the OLS
estimator generally does not converge to anything as n — oo. In contrast,
the matrix n~'X "X will, under many plausible assumptions about how X is
generated, tend to a nonstochastic limiting matrix Sxtx as n — oo.

Central Limit Theorems

The second type of fundamental result on which asymptotic theory is based
is called a central limit theorem, or CLT. Central limit theorems are crucial
in establishing the asymptotic distributions of estimators and test statistics.
They tell us that, in many circumstances, 1/y/n times the sum of n centered
random variables will approximately follow a normal distribution when n is
sufficiently large.

Suppose that the random variables x;, t = 1,...,n, are independently and
identically distributed with mean p and variance o2 Then, according to the
Lindeberg-Lévy central limit theorem, the quantity

1 oz — 7
_ 4.45
7 Zt_l - (4.45)

z
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is asymptotically distributed as N(0,1). This means that, as n — oo, the
random variable z tends to a random variable which follows the N(0,1) dis-
tribution. It may seem curious that we divide by /n instead of by n in (4.45),
but this is an essential feature of every CLT. To see why, we calculate the var-
iance of z. Since the terms in the sum in (4.45) are independent, the variance
of z is just the sum of the variances of the n terms:

1 _
Var(Z) == nVar(WxtU M) = % =1.

If we had divided by n, we would, by a law of large numbers, have obtained a
random variable with a plim of 0 instead of a random variable with a limiting
standard normal distribution. Thus, whenever we want to use a CLT, we
must ensure that a factor of n=1/2 = 1/y/n is present.

Just as there are many different LLNs, so too are there many different CLTs,
almost all of which impose weaker conditions on the z; than those imposed
by the Lindeberg-Lévy CLT. The assumption that the z; are identically dis-
tributed is easily relaxed, as is the assumption that they are independent.
However, if there is either too much dependence or too much heterogeneity,
a CLT may not apply. Several CLTs are discussed in Section 4.7 of David-
son and MacKinnon (1993), and Davidson (1994) provides a more advanced
treatment. In all cases of interest to us, the CLT says that, for a sequence of
random variables x¢, t = 1,..., 00, with E(x) = 0,

plim n~1/2 Z Ty = Xg ~ N(O, lim % Z Var(:l:t)).
1 t=1

n—oo t— n—oo

We sometimes need vector, or multivariate, versions of CLTs. Suppose that we
have a sequence of random m-vectors x;, for some fixed m, with E(x;) = 0.
Then the appropriate multivariate version of a CLT tells us that

plimn /23", = 2o ~ N(O, lim %ZVar(azt)), (4.46)
1 t=1

n—oo t— n—oo

where x( is multivariate normal, and each Var(x;) is an m x m matrix.

Figure 4.7 illustrates the fact that CLTs often provide good approximations
even when n is not very large. Both panels of the figure show the densities
of various random variables z defined as in (4.45). In the top panel, the z;
are uniformly distributed, and we see that z is remarkably close to being
distributed as standard normal even when n is as small as 8. This panel does
not show results for larger values of n because they would have made it too
hard to read. In the bottom panel, the x; follow the x?(1) distribution, which
exhibits extreme right skewness. The mode of the distribution is 0, there are
no values less than 0, and there is a very long right-hand tail. For n = 4
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Figure 4.7 The normal approximation for different values of n

and n = 8, the standard normal provides a poor approximation to the actual
distribution of z. For n = 100, on the other hand, the approximation is not
bad at all, although it is still noticeably skewed to the right.

Asymptotic Tests

The ¢t and F' tests that we discussed in the previous section are asymptotically
valid under much weaker conditions than those needed to prove that they
actually have their namesake distributions in finite samples. Suppose that
the DGP is

y=XBo+u, u~ID(0,51), (4.47)

where By satisfies whatever hypothesis is being tested, and the error terms
are drawn from some specific but unknown distribution with mean 0 and
variance o5. We allow X; to contain lagged dependent variables, and so we
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abandon the assumption of exogenous regressors and replace it with assump-
tion (3.10) from Section 3.2, plus an analogous assumption about the variance.
These two assumptions can be written as

E(us | X;) =0 and E(u?|X;) = op. (4.48)

The first of these assumptions, which is assumption (3.10), can be referred
to in two ways. From the point of view of the error terms, it says that they
are innovations. An innovation is a random variable of which the mean is 0
conditional on the information in the explanatory variables, and so knowledge
of the values taken by the latter is of no use in predicting the mean of the in-
novation. From the point of view of the explanatory variables X;, assumption
(3.10) says that they are predetermined with respect to the error terms. We
thus have two different ways of saying the same thing. Both can be useful,
depending on the circumstances.

Although we have greatly weakened the assumptions of the classical normal
linear model, we now need to make an additional assumption in order to be
able to use asymptotic results. We therefore assume that the data-generating
process for the explanatory variables is such that

plim L XX = Sxrx, (4.49)

n—oo

where SxTx is a finite, deterministic, positive definite matrix. We made this
assumption previously, in Section 3.3, when we proved that the OLS estimator
is consistent. Although it is often reasonable, condition (4.49) is violated in
many cases. For example, it cannot hold if one of the columns of the X matrix
is a linear time trend, because >, t* grows at a rate faster than n.

Now consider the ¢ statistic (4.25) for testing the hypothesis that G, = 0 in
the model (4.21). The key to proving that (4.25), or any test statistic, has
a certain asymptotic distribution is to write it as a function of quantities to
which we can apply either a LLN or a CLT. Therefore, we rewrite (4.25) as

T -1/2 12 T
y' Mxy n zo My
Ly — ( ) ( (4.50)

n—k n—lax Myxy)t/2’

where the numerator and denominator of the second factor have both been
multiplied by n~1/2. Under the DGP (4.47), s> = y"Mxy/(n—k) tends to o3
as n — oo. This statement, which is equivalent to saying that the OLS error
variance estimator s2 is consistent under our weaker assumptions, follows from
a LLN, because s has the form of an average, and the calculations leading
to (3.49) showed that the mean of s? is o2. It follows from the consistency
of % that the first factor in (4.50) tends to 1/0g as n — co. When the data
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are generated by (4.47) with 8y = 0, we have that My = Mju, and so (4.50)
is asymptotically equivalent to

n= 2z Miu
Uo(n_liBQTMl.’,Ug)l/2 '

(4.51)

It is now easy to derive the asymptotic distribution of ¢g, if for a moment we
reinstate the assumption that the regressors are exogenous. In that case, we
can work conditionally on X, which means that the only part of (4.51) that
is treated as random is w. The numerator of (4.51) is n='/? times a weighted
sum of the u;, each of which has mean 0, and the conditional variance of this
weighted sum is

E(:L’QTMluuTleg | X) = agzchleg.

Thus (4.51) evidently has mean 0 and variance 1, conditional on X. But
since 0 and 1 do not depend on X, these are also the unconditional mean
and variance of (4.51). Provided that we can apply a CLT to the numerator
of (4.51), the numerator of ¢, must be asymptotically normally distributed,
and we conclude that, under the null hypothesis, with exogenous regressors,

tg, ~ N(0,1). (4.52)

The notation “~” means that t3, is asymptotically distributed as N(0,1).
Since the DGP is assumed to be (4.47), this result does not require that the

error terms be normally distributed.

The t Test with Predetermined Regressors

If we relax the assumption of exogenous regressors, the analysis becomes more
complicated. Readers not interested in the algebraic details may well wish to
skip to next section, since what follows is not essential for understanding the
rest of this chapter. However, this subsection provides an excellent example
of how asymptotic theory works, and it illustrates clearly just why we can
relax some assumptions but not others.

We begin by applying a CLT to the k-vector
v=n"12XTy =n"1?2 ZutXtT. (4.53)
t=1

By (3.10), E(u; | X;) = 0. This implies that E(u; X; ) = 0, as required for
the CLT, which then tells us that

n—oo

v 2 N(o, lim %ZVar(utXtT)) - N(O, Tim LY E(qutTXt));
t=1 t=1
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recall (4.46). Notice that, because X; is a 1 x k row vector, the covariance

matrix here is k X k, as it must be. The second assumption in (4.48) allows
us to simplify the limiting covariance matrix:

. 1 - . 1 .
lim =Y Eu;X/X;) = lim of - B(X/X,)
t=1 t=1

n—oo n—oo
n
= of plim % Z X/ X, (4.54)
nTee i
= 0'8 phm %XTX = 0'8 SxTx.
n—oo

We applied a LLN in reverse to go from the first line to the second, and the
last equality follows from (4.49).

Now consider the numerator of (4.51). It can be written as
n 2z — n~ V22 Pu. (4.55)

The first term of this expression is just the last, or k*", component of v, which
we can denote by vo. By writing out the projection matrix P; explicitly, and
dividing various expressions by n in a way that cancels out, the second term
can be rewritten as

n" el Xy (n T X X)) T T2 X . (4.56)

By assumption (4.49), the first and second factors of (4.56) tend to determin-
istic limits. In obvious notation, the first tends to Ss1, which is a submatrix
of Sx7x, and the second tends to Sl_ll, which is the inverse of a submatrix
of Sx7x. Thus only the last factor remains random when n — oo. It is just
the subvector of v consisting of the first £k — 1 components, which we denote
by v1. Asymptotically, in partitioned matrix notation, (4.55) becomes

_ _ v
V2 —5215111’01 = [—5215111 1]|:U;:|
Since v is asymptotically multivariate normal, this scalar expression is asymp-
totically normal, with mean zero and variance

_ —S1' S12
o [_5215111 1] Sx7x { li ] )
where, since Sxrx is symmetric, S1o is just the transpose of Ss;. If we now
express SxTx as a partitioned matrix, the variance of (4.55) is seen to be
_ S1 S —S1' Sz .
27 1 11 912 11 _ 2 _ 1
or [ 521511 1] |:521 S22:| |: 1 [ (522 521511 512). (457)
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The denominator of (4.51) is, thankfully, easier to analyze. The square of the
second factor is

n_lcchleg = n_la:Qchg — n_lzchleg
_ _ _ —1 _
=n ey —n 1w2TX1(n 1X1TX1) n~1 X, x,.

In the limit, all the pieces of this expression become submatrices of SxTx,
and so we find that

1. T -1
n "Is leg — S22 — 521511 Slg.

When it is multiplied by o2, this is just (4.57), the variance of the numerator
of (4.51). Thus, asymptotically, we have shown that ¢z, is the ratio of a normal
random variable with mean zero to its standard deviation. Consequently, we
have established that, under the null hypothesis, with regressors that are not
necessarily exogenous but merely predetermined, ¢, AN (0,1). This result is
what we previously obtained as (4.52) when we assumed that the regressors
were exogenous.

Asymptotic F' Tests

A similar analysis can be performed for the F' statistic (4.33) for the null
hypothesis that B2 = 0 in the model (4.28). Under the null, Fg, is equal to
expression (4.34), which can be rewritten as

n~12eT M Xo(n X0 M Xo) 'n~ V2 X5 Mg /r
e"Mxe/(n — k) ’

(4.58)

where € = u/0g. It is not hard to use the results we obtained for the t statistic
to show that, as n — oo,
rFg, ~ x*(r) (4.59)

under the null hypothesis; see Exercise 4.12. Since 1/r times a random vari-
able that follows the x?(r) distribution is distributed as F(r, 00), we can also
conclude that Fg, ~ F(r,n — k).

The results (4.52) and (4.59) justify the use of ¢ and F' tests outside the
confines of the classical normal linear model. We can compute P values using
either the standard normal or ¢ distributions in the case of ¢ statistics, and
either the x? or F' distributions in the case of F statistics. Of course, if we
use the y? distribution, we have to multiply the F statistic by r.

Whatever distribution we use, these P values will be approximate, and tests
based on them will not be exact in finite samples. In addition, our theoretical
results do not tell us just how accurate they will be. If we decide to use a
nominal level of a for a test, we will reject if the approximate P value is
less than «. In many cases, but certainly not all, such tests will probably be
quite accurate, committing Type I errors with probability reasonably close
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to a. They may either overreject, that is, reject the null hypothesis more
than 100a% of the time when it is true, or underreject, that is, reject the
null hypothesis less than 100a% of the time. Whether they will overreject
or underreject, and how severely, will depend on many things, including the
sample size, the distribution of the error terms, the number of regressors
and their properties, and the relationship between the error terms and the
regressors.

4.6 Simulation-Based Tests

When we introduced the concept of a test statistic in Section 4.2, we specified
that it should have a known distribution under the null hypothesis. In the
previous section, we relaxed this requirement and developed large-sample test
statistics for which the distribution is known only approximately. In all the
cases we have studied, the distribution of the statistic under the null hypo-
thesis was not only (approximately) known, but also the same for all DGPs
contained in the null hypothesis. This is a very important property, and it is
useful to introduce some terminology that will allow us to formalize it.

We begin with a simple remark. A hypothesis, null or alternative, can always
be represented by a model, that is, a set of DGPs. For instance, the null and
alternative hypotheses (4.29) and (4.28) associated with an F' test of several
restrictions are both classical normal linear models. The most fundamental
sort of null hypothesis that we can test is a simple hypothesis. Such a hypo-
thesis is represented by a model that contains one and only one DGP. Simple
hypotheses are very rare in econometrics. The usual case is that of a com-
pound hypothesis, which is represented by a model that contains more than
one DGP. This can cause serious problems. Except in certain special cases,
such as the exact tests in the classical normal linear model that we investi-
gated in Section 4.4, a test statistic will have different distributions under the
different DGPs contained in the model. In such a case, if we do not know
just which DGP in the model generated our data, then we cannot know the
distribution of the test statistic.

If a test statistic is to have a known distribution under some given null hy-
pothesis, then it must have the same distribution for each and every DGP
contained in that null hypothesis. A random variable with the property that
its distribution is the same for all DGPs in a model M is said to be pivotal,
or to be a pivot, for the model M. The distribution is allowed to depend on
the sample size, and perhaps on the observed values of exogenous variables.
However, for any given sample size and set of exogenous variables, it must be
invariant across all DGPs in M. Note that all test statistics are pivotal for a
simple null hypothesis.

The large sample tests considered in the last section allow for null hypotheses
that do not respect the rigid constraints of the classical normal linear model.
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The price they pay for this added generality is that ¢ and F' statistics now
have distributions that depend on things like the error distribution: They are
therefore not pivotal statistics. However, their asymptotic distributions are
independent of such things, and are thus invariant across all the DGPs of
the model that represents the null hypothesis. Such statistics are said to be
asymptotically pivotal, or asymptotic pivots, for that model.

Simulated P Values

The distributions of the test statistics studied in Section 4.3 are all thoroughly
known, and their CDF's can easily be evaluated by computer programs. The
computation of P values is therefore straightforward. Even if it were not,
we could always estimate them by simulation. For any pivotal test statistic,
the P value can be estimated by simulation to any desired level of accuracy.
Since a pivotal statistic has the same distribution for all DGPs in the model
under test, we can arbitrarily choose any such DGP for generating simulated
samples and simulated test statistics.

The theoretical justification for using simulation to estimate P values is the
Fundamental Theorem of Statistics, which we discussed in Section 4.5. It
tells us that the empirical distribution of a set of independent drawings of a
random variable generated by some DGP converges to the true CDF of the
random variable under that DGP. This is just as true of simulated drawings
generated by the computer as for random variables generated by a natural
random mechanism. Thus, if we knew that a certain test statistic was pivotal
but did not know how it was distributed, we could select any DGP in the
null model and generate simulated samples from it. For each of these, we
could then compute the test statistic. If the simulated samples are mutually
independent, the set of simulated test statistics thus generated constitutes a
set of independent drawings from the distribution of the test statistic, and
their EDF is a consistent estimate of the CDF of that distribution.

Suppose that we have computed a test statistic 7, which could be a t statistic,
an F' statistic, or some other type of test statistic, using some data set with n
observations. We can think of 7 as being a realization of a random variable 7.
We wish to test a null hypothesis represented by a model M for which 7 is
pivotal, and we want to reject the null whenever 7 is sufficiently large, as in the
cases of an F statistic, a ¢ statistic when the rejection region is in the upper
tail, or a squared t statistic. If we denote by F' the CDF of the distribution
of 7 under the null hypothesis, the P value for a test based on 7 is

p(f)=1—F(7). (4.60)

Since 7 is computed directly from our original data, this P value can be
estimated if we can estimate the CDF F' evaluated at 7.

The procedure we are about to describe is very general in its application, and
so we describe it in detail. In order to estimate a P value by simulation,
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we choose any DGP in M, and draw B samples of size n from it. How
to choose B will be discussed shortly; it will typically be rather large, and
B =999 may often be a reasonable choice. We denote the simulated samples
as y;, j = 1,...,B. The star (*) notation will be used systematically to
denote quantities generated by simulation. B is used to denote the number of
simulations in order to emphasize the connection with the bootstrap, which
we will discuss below.

Using the simulated sample, for each 7 we compute a simulated test statistic,
say 7/, in exactly the same way that 7 was computed from the original data y.
We can then construct the EDF of the 7} analogously to (4.44):

B

F*(z) = %ZI(T; < ).

Jj=1

Our estimate of the true P value (4.60) is therefore

pH(7) =1—F*(7 Z Z . (461)

The third equality in (4.61) can be understood by noting that the rightmost
expression is the proportion of simulations for which 77 is greater than 7, while
the second expression from the right is 1 minus the proportion for which 7
is less than or equal to 7. These proportions are obviously the same.

~

We can see that p*(7) must lie between 0 and 1, as any P value must. For
example, if B = 999, and 36 of the 7/ were greater than 7, we would have
p*(7) = 36/999 = 0.036. In this case, since p*(7) is less than 0.05, we would
reject the null hypothesis at the .05 level. Since the EDF converges to the true
CDF, it follows that, if B were infinitely large, this procedure would yield an
exact test, and the outcome of the test would be the same as if we computed
the P value analytically using the CDF of 7. In fact, as we will see shortly,
this procedure will yield an exact test even for certain finite values of B.

The sort of test we have just described, based on simulating a pivotal sta-
tistic, is called a Monte Carlo test. Simulation experiments in general are
often referred to as Monte Carlo experiments, because they involve generat-
ing random numbers, as do the games played in casinos. Around the time that
computer simulations first became possible, the most famous casino was the
one in Monte Carlo. If computers had been developed just a little later, we
would probably be talking now of Las Vegas tests and Las Vegas experiments.

Random Number Generators

Drawing a simulated sample of size n requires us to generate at least n random,
or pseudo-random, numbers. As we mentioned in Section 1.3, a random
number generator, or RNG, is a program for generating random numbers.
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Most such programs generate numbers that appear to be drawings from the
uniform U(0,1) distribution, which can then be transformed into drawings
from other distributions. There is a large literature on RNGs, to which Press
et al. (1992a, 1992b, Chapter 7) provides an accessible introduction. See also
Knuth (1998, Chapter 3) and Gentle (1998).

Although there are many types of RNG, the most common are variants of the
linear congruential generator,

zi = Azi—1 + ¢ [mod m], ni:%, i=1,2,..., (4.62)
where 7; is the i*" random number generated, and m, X, ¢, and so also the z;,
are positive integers. The notation [mod m| means that we divide what pre-
cedes it by m and retain the remainder. This generator starts with a (generally
large) positive integer zg called the seed, multiplies it by A, and then adds ¢
to obtain an integer that may well be bigger than m. It then obtains z; as
the remainder from division by m. To generate the next random number, the
process is repeated with z; replacing zg, and so on. At each stage, the actual
random number output by the generator is z;/m, which, since 0 < z; < m,
lies in the interval [0,1]. For a given generator defined by A\, m, and ¢, the
sequence of random numbers depends entirely on the seed. If we provide the
generator with the same seed, we will get the same sequence of numbers.

How well or badly this procedure works depends on how X\, m, and c are
chosen. On 32-bit computers, many commonly used generators set ¢ = 0 and
use for m a prime number that is either a little less than 232 or a little less than
231, When ¢ = 0, the generator is said to be multiplicative congruential. The
parameter A, which will be large but substantially smaller than m, must be
chosen so as to satisfy some technical conditions. When A and m are chosen
properly with ¢ = 0, the RNG will have a period of m — 1. This means that
it will generate every rational number with denominator m between 1/m and
(m — 1)/m precisely once until, after m — 1 steps, zp comes up again. After
that, the generator repeats itself, producing the same m — 1 numbers in the
same order each time.

Unfortunately, many random number generators, whether or not they are of
the linear congruential variety, perform poorly. The random numbers they
generate may fail to be independent in all sorts of ways, and the period may
be relatively short. In the case of multiplicative congruential generators, this
means that A and m have not been chosen properly. See Gentle (1998) and
the other references cited above for discussion of bad random number genera-
tors. Toy examples of multiplicative congruential generators are examined in
Exercise 4.13, where the choice of A and m is seen to matter.

There are several ways to generate drawings from a normal distribution if we
can generate random numbers from the U(0, 1) distribution. The simplest,
but not the fastest, is to use the fact that, if n; is distributed as U(0, 1), then
d~1(n;) is distributed as N (0, 1); this follows from the result of Exercise 4.14.
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Most of the random number generators available in econometrics software
packages use faster algorithms to generate drawings from the standard normal
distribution, usually in a way entirely transparent to the user, who merely
has to ask for so many independent drawings from N(0,1). Drawings from
N(u,0?) can then be obtained by use of the formula (4.09).

Bootstrap Tests

Although pivotal test statistics do arise from time to time, most test statis-
tics in econometrics are not pivotal. The vast majority of them are, however,
asymptotically pivotal. If a test statistic has a known asymptotic distribution
that does not depend on anything unobservable, as do t and F’ statistics under
the relatively weak assumptions of Section 4.5, then it is certainly asymptot-
ically pivotal. Even if it does not follow a known asymptotic distribution, a
test statistic may be asymptotically pivotal.

A statistic that is not an exact pivot cannot be used for a Monte Carlo test.
However, approximate P values for statistics that are only asymptotically
pivotal, or even nonpivotal, can be obtained by a simulation method called
the bootstrap. This method can be a valuable alternative to the large sample
tests based on asymptotic theory that we discussed in the previous section.
The term bootstrap, which was introduced to statistics by Efron (1979), is
taken from the phrase “to pull oneself up by one’s own bootstraps.” Although
the link between this improbable activity and simulated P values is tenuous
at best, the term is by now firmly established. We will speak of bootstrapping
in order to obtain bootstrap samples, from which we compute bootstrap test
statistics that we use to perform bootstrap tests on the basis of bootstrap
P values, and so on.

The difference between a Monte Carlo test and a bootstrap test is that for
the former, the DGP is assumed to be known, whereas, for the latter, it is
necessary to estimate a bootstrap DGP from which to draw the simulated
samples. Unless the null hypothesis under test is a simple hypothesis, the
DGP that generated the original data is unknown, and so it cannot be used
to generate simulated data. The bootstrap DGP is an estimate of the unknown
true DGP. The hope is that, if the bootstrap DGP is close, in some sense,
to the true one, then data generated by the bootstrap DGP will be similar to
data that would have been generated by the true DGP, if it were known. If
so, then a simulated P value obtained by use of the bootstrap DGP will be
close enough to the true P value to allow accurate inference.

Even for models as simple as the linear regression model, there are many
ways to specify the bootstrap DGP. The key requirement is that it should
satisfy the restrictions of the null hypothesis. If this is assured, then how well a
bootstrap test performs in finite samples depends on how good an estimate the
bootstrap DGP is of the process that would have generated the test statistic
if the null hypothesis were true. In the next subsection, we discuss bootstrap
DGPs for regression models.
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Bootstrap DGPs for Regression Models

If the null and alternative hypotheses are regression models, the simplest
approach is to estimate the model that corresponds to the null hypothesis
and then use the estimates to generate the bootstrap samples, under the
assumption that the error terms are normally distributed. We considered
examples of such procedures in Section 1.3 and in Exercise 1.22.

Since bootstrapping is quite unnecessary in the context of the classical normal
linear model, we will take for our example a linear regression model with
normal errors, but with a lagged dependent variable among the regressors:

ye = Xy B+ Zyy + dys—1 +wg,  uy ~ NID(O, 02)7 (4.63)

where X; and 3 each have k; — 1 elements, Z; and ~ each have ko elements,
and the null hypothesis is that v = 0. Thus the model that represents the
null is

v = Xy B+ 0ys—1 +ug, u ~ NID(0,0?). (4.64)

The observations are assumed to be indexed in such a way that yg is observed,
along with n observations on y;, X;, and Z; for t = 1,...,n. By estimating
the models (4.63) and (4.64) by OLS, we can compute the F' statistic for
v = 0, which we will call 7. Because the regression function contains a lagged
dependent variable, however, the F' test based on 7 will not be exact.

The model (4.64) is a fully specified parametric model, which means that
each set of parameter values for B3, §, and o2 defines just one DGP. The
simplest type of bootstrap DGP for fully specified models is given by the
parametric bootstrap. The first step in constructing a parametric bootstrap
DGP is to estimate (4.64) by OLS, yielding the restricted estimates 3, 6, and
§%2 = SSR(3,6)/(n — k1). Then the bootstrap DGP is given by

i = XiB+ 0y, +u;, uj ~NID(0,5), (4.65)
which is just the element of the model (4.64) characterized by the parameter

estimates under the null, with stars to indicate that the data are simulated.

In order to draw a bootstrap sample from the bootstrap DGP (4.65), we first
draw an n-vector u* from the N (0, §2I) distribution. The presence of a lagged
dependent variable implies that the bootstrap samples must be constructed
recursively. This is necessary because y;, the t*® element of the bootstrap
sample, must depend on y;_; and not on y;_; from the original data. The
recursive rule for generating a bootstrap sample is

yf = X1,5+5y0+u’{

ys = Xof + Oy} + ul
(4.66)

y;kz = XnB + Sy:;—l + u;kz
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Notice that every bootstrap sample is conditional on the observed value of .
There are other ways of dealing with pre-sample values of the dependent
variable, but this is certainly the most convenient, and it may, in many cir-
cumstances, be the only method that is feasible.

The rest of the procedure for computing a bootstrap P value is identical to
the one for computing a simulated P value for a Monte Carlo test. For each
of the B bootstrap samples, y;, a bootstrap test statistic 77 is computed
from y7 in just the same way as 7 was computed from the original data, y.

The bootstrap P value p*(7) is then computed by formula (4.61).

A Nonparametric Bootstrap DGP

The parametric bootstrap procedure that we have just described, based on the
DGP (4.65), does not allow us to relax the strong assumption that the error
terms are normally distributed. How can we construct a satisfactory bootstrap
DGP if we extend the models (4.63) and (4.64) to admit nonnormal errors? If
we knew the true error distribution, whether or not it was normal, we could
always generate the u* from it. Since we do not know it, we will have to find
some way to estimate this distribution.

Under the null hypothesis, the OLS residual vector u for the restricted model
is a consistent estimator of the error vector w. This is an immediate conse-
quence of the consistency of the OLS estimator itself. In the particular case
of model (4.64), we have for each ¢ that

plim @, = plim (y; — X; B — dyr—1) =y — XeBo — doye—1 = us,

n—oo n—oo

where By and §y are the parameter values for the true DGP. This means that,
if the u; are mutually independent drawings from the error distribution, then
so are the residuals u;, asymptotically.

From the Fundamental Theorem of Statistics, we know that the empirical dis-
tribution function of the error terms is a consistent estimator of the unknown
CDF of the error distribution. Because the residuals consistently estimate the
errors, it follows that the EDF of the residuals is also a consistent estimator
of the CDF of the error distribution. Thus, if we draw bootstrap error terms
from the empirical distribution of the residuals, we are drawing them from
a distribution that tends to the true error distribution as n — oo. This is
completely analogous to using estimated parameters in the bootstrap DGP
that tend to the true parameters as n — oo.

Drawing simulated error terms from the empirical distribution of the residuals
is called resampling. In order to resample the residuals, all the residuals are,
metaphorically speaking, thrown into a hat and then randomly pulled out one
at a time, with replacement. Thus each bootstrap sample will contain some
of the residuals exactly once, some of them more than once, and some of them
not at all. Therefore, the value of each drawing must be the value of one of
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the residuals, with equal probability for each residual. This is precisely what
we mean by the empirical distribution of the residuals.

To resample concretely rather than metaphorically, we can proceed as follows.
First, we draw a random number 7 from the U(0,1) distribution. Then we
divide the interval [0, 1] into n subintervals of length 1/, and associate each
of these subintervals with one of the integers between 1 and n. When 7 falls
into the ['" subinterval, we choose the index [, and our random drawing is the
[*h residual. Repeating this procedure n times yields a single set of bootstrap
error terms drawn from the empirical distribution of the residuals.

As an example of how resampling works, suppose that n = 10, and the ten
residuals are

6.45, 1.28, —3.48, 2.44, —5.17, —1.67, —2.03, 3.58, 0.74, —2.14.

Notice that these numbers sum to zero. Now suppose that, when forming
one of the bootstrap samples, the ten drawings from the U(0, 1) distribution
happen to be

0.631, 0.277, 0.745, 0.202, 0.914, 0.136, 0.851, 0.878, 0.120, 0.259.
This implies that the ten index values will be
7, 3,8, 3,10, 2, 9,9, 2, 3.
Therefore, the error terms for this bootstrap sample will be
—2.03, —3.48, 3.58, —3.48, —2.14, 1.28, 0.74, 0.74, 1.28, —3.48.

Some of the residuals appear just once in this particular sample, some of them
(numbers 2, 3, and 9) appear more than once, and some of them (numbers 1,
4, 5, and 6) do not appear at all. On average, however, each of the residuals
will appear once in each of the bootstrap samples.

If we adopt this resampling procedure, we can write the bootstrap DGP as
yr = X;B+oy;_, +uf, uf ~EDF(a), (4.67)

where EDF (@) denotes the distribution that assigns probability 1/, to each
of the elements of the residual vector @. The DGP (4.67) is one form of what
is usually called a nonparametric bootstrap, although, since it still uses the
parameter estimates B and 0, it should really be called semiparametric rather
than nonparametric. Once bootstrap error terms have been drawn by resam-
pling, bootstrap samples can be created by the recursive procedure (4.66).

The empirical distribution of the residuals may fail to satisfy some of the
properties that the null hypothesis imposes on the true error distribution, and
so the DGP (4.67) may fail to belong to the null hypothesis. One case in which
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this failure has grave consequences arises when the regression (4.64) does not
contain a constant term, because then the sample mean of the residuals is
not, in general, equal to 0. The expectation of the EDF of the residuals is
simply their sample mean; recall Exercise 1.1. Thus, if the bootstrap error
terms are drawn from a distribution with nonzero mean, the bootstrap DGP
lies outside the null hypothesis. It is, of course, simple to correct this problem.
We just need to center the residuals before throwing them into the hat, by
subtracting their mean 4. When we do this, the bootstrap errors are drawn
from EDF (@ — @), a distribution that does indeed have mean 0.

A somewhat similar argument gives rise to an improved bootstrap DGP. If
the sample mean of the restricted residuals is 0, then the variance of their
empirical distribution is the second moment n=!'>""  47. Thus, by using
the definition (3.49) of 52 in Section 3.6, we see that the variance of the
empirical distribution of the residuals is §2(n — k1)/n. Since we do not know
the value of 03, we cannot draw from a distribution with exactly that variance.
However, as with the parametric bootstrap (4.65), we can at least draw from
a distribution with variance 2. This is easy to do by drawing from the EDF
of the rescaled residuals, which are obtained by multiplying the OLS residuals

by (n/(n—ky))Y/2. If we resample these rescaled residuals, the bootstrap error
distribution is
EDF ( n )1/2 y (4.68)
— ), :

which has variance §2. A somewhat more complicated approach, based on the
result (3.44), is explored in Exercise 4.15.

Although they may seem strange, these resampling procedures often work
astonishingly well, except perhaps when the sample size is very small or the
distribution of the error terms is very unusual; see Exercise 4.18. If the
distribution of the error terms displays substantial skewness (that is, a nonzero
third moment) or excess kurtosis (that is, a fourth moment greater than 303),
then there is a good chance that the EDF of the recentered and rescaled
residuals will do so as well.

Other methods for bootstrapping regression models nonparametrically and
semiparametrically are discussed by Efron and Tibshirani (1993), Davison
and Hinkley (1997), and Horowitz (2001), which also discuss many other
aspects of the bootstrap. A more advanced book, which deals primarily with
the relationship between asymptotic theory and the bootstrap, is Hall (1992).

How Many Bootstraps?

Suppose that we wish to perform a bootstrap test at level a. Then B should
be chosen to satisfy the condition that a(B + 1) is an integer. If o = .05, the
values of B that satisfy this condition are 19, 39, 59, and so on. If a = .01,
they are 99, 199, 299, and so on. It is illuminating to see why B should be
chosen in this way.
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Imagine that we sort the original test statistic 7 and the B bootstrap sta-
tistics 77, j = 1,..., B, in decreasing order. If 7 is pivotal, then, under the
null hypothesis, these are all independent drawings from the same distribu-
tion. Thus the rank r of 7 in the sorted set can have B + 1 possible values,
r = 0,1,...,B, all of them equally likely under the null hypothesis if 7 is
pivotal. Here, r is defined in such a way that there are exactly r simulations
for which 77 > 7. Thus, if r = 0, 7 is the largest value in the set, and if r = B,
it is the smallest. The estimated P value p*(7) is just r/B.

The bootstrap test rejects if r/B < «, that is, if » < aB. Under the null,
the probability that this inequality will be satisfied is the proportion of the
B + 1 possible values of r that satisfy it. If we denote by [aB] the largest
integer that is smaller than aB, it is easy to see that there are exactly [aB]+1
such values of r, namely, 0,1,...,[aB]. Thus the probability of rejection is
([aB] +1)/(B 4+ 1). If we equate this probability to a, we find that

a(B+1)=[aB]+ 1.

Since the right-hand side of this equality is the sum of two integers, this
equality can hold only if a(B+1) is an integer. Moreover, it will hold whenever
a(B + 1) is an integer. Therefore, the Type I error will be precisely « if and
only if a(B + 1) is an integer. Although this reasoning is rigorous only if 7 is
an exact pivot, experience shows that bootstrap P values based on nonpivotal
statistics are less misleading if a(B + 1) is an integer.

As a concrete example, suppose that a = .05 and B = 99. Then there are 5
out of 100 values of r, namely, r = 0,1, ..., 4, that would lead us to reject the
null hypothesis. Since these are equally likely if the test statistic is pivotal, we
will make a Type I error precisely 5% of the time, and the test will be exact.
But suppose instead that B = 89. Since the same 5 values of r would still
lead us to reject the null, we would now do so with probability 5/90 = 0.0556.

It is important that B be sufficiently large, since two problems can arise
if it is not. The first problem is that the outcome of the test will depend
on the sequence of random numbers used to generate the bootstrap samples.
Different investigators may therefore obtain different results, even though they
are using the same data and testing the same hypothesis. The second problem,
which we will discuss in the next section, is that the ability of a bootstrap test
to reject a false null hypothesis declines as B becomes smaller. As a rule of
thumb, we suggest choosing B = 999. If calculating the 7 is inexpensive and
the outcome of the test is at all ambiguous, it may be desirable to use a larger
value, like 9999. On the other hand, if calculating the 7 is very expensive
and the outcome of the test is unambiguous, because p* is far from «, it may
be safe to use a value as small as 99.

It is not actually necessary to choose B in advance. An alternative approach,
which is a bit more complicated but can save a lot of computer time, has
been proposed by Davidson and MacKinnon (2000). The idea is to calculate
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a sequence of estimated P values, based on increasing values of B, and to
stop as soon as the estimate p* allows us to be very confident that p* is either
greater or less than «v. For example, we might start with B = 99, then perform
an additional 100 simulations if we cannot be sure whether or not to reject the
null hypothesis, then perform an additional 200 simulations if we still cannot
be sure, and so on. Eventually, we either stop when we are confident that the
null hypothesis should or should not be rejected, or when B has become so
large that we cannot afford to continue.

Bootstrap versus Asymptotic Tests

Although bootstrap tests based on test statistics that are merely asymptotic-
ally pivotal are not exact, there are strong theoretical reasons to believe that
they will generally perform better than tests based on approximate asymp-
totic distributions. The errors committed by both asymptotic and bootstrap
tests diminish as n increases, but those committed by bootstrap tests dimin-
ish more rapidly. The fundamental theoretical result on this point is due to
Beran (1988). The results of a number of Monte Carlo experiments have pro-
vided strong support for this proposition. References include Horowitz (1994),
Godfrey (1998), and Davidson and MacKinnon (1999a, 1999b, 2002a).

We can illustrate this by means of an example. Consider the following simple
special case of the linear regression model (4.63)

yr = B1 + (o Xy + Baye—1 +ug,  upg ~ N(0,07), (4.69)

where the null hypothesis is that 53 = 0.9. A Monte Carlo experiment to
investigate the properties of tests of this hypothesis would work as follows.
First, we fix a DGP in the model (4.69) by choosing values for the parameters.
Here 53 = 0.9, and so we investigate only what happens under the null hypo-
thesis. For each replication, we generate an artificial data set from our chosen
DGP and compute the ordinary ¢ statistic for #3 = 0.9. We then compute
three P values. The first of these, for the asymptotic test, is computed using
the Student’s ¢ distribution with n — 3 degrees of freedom, and the other two
are bootstrap P values from the parametric and semiparametric bootstraps,
with residuals rescaled using (4.68), for B = 199.> We perform many replica-
tions and record the frequencies with which tests based on the three P values
reject at the .05 level. Figure 4.8 shows the rejection frequencies based on
500,000 replications for each of 31 sample sizes: n = 10,12, 14,...,60.

The results of this experiment are striking. The asymptotic test overrejects
quite noticeably, although it gradually improves as n increases. In contrast,

5 We used B = 199, a smaller value than we would ever recommend using in
practice, in order to reduce the costs of doing the Monte Carlo experiments.
Because experimental errors tend to cancel out across replications, this does
not materially affect the results of the experiments.
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Figure 4.8 Rejection frequencies for bootstrap and asymptotic tests

the two bootstrap tests overreject only very slightly. Their rejection frequen-
cies are always very close to the nominal level of .05, and they approach that
level quite quickly as n increases. For the very smallest sample sizes, the
parametric bootstrap seems to outperform the semiparametric one, but, for
most sample sizes, there is nothing to choose between them.

This example is, perhaps, misleading in one respect. For linear regression
models, asymptotic ¢ and F' tests generally do not perform as badly as the
asymptotic ¢ test does here. For example, the ¢ test for f5 = 0 in (4.69)
performs much better than the t test for 3 = 0.9; it actually underrejects
moderately in small samples. However, the example is not at all misleading in
suggesting that bootstrap tests will often perform extraordinarily well, even
when the corresponding asymptotic test does not perform well at all.

4.7 The Power of Hypothesis Tests

To be useful, hypothesis tests must be able to discriminate between the null
hypothesis and the alternative. Thus, as we saw in Section 4.2, the distribu-
tion of a useful test statistic under the null is different from its distribution
when the DGP does not belong to the null. Whenever a DGP places most of
the probability mass of the test statistic in the rejection region of a test, the
test will have high power, that is, a high probability of rejecting the null.

For a variety of reasons, it is important to know something about the power
of the tests we employ. If a test with high power fails to reject the null, this
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tells us more than if a test with lower power fails to do so. In practice, more
than one test of a given null hypothesis is usually available. Of two equally
reliable tests, if one has more power than the other against the alternatives
in which we are interested, then we would surely prefer to employ the more
powerful one.

The Power of Exact Tests

In Section 4.4, we saw that an F’ statistic is a ratio of the squared norms of two
vectors, each divided by its appropriate number of degrees of freedom. In the
notation of that section, these vectors are, for the numerator, Pps, x,y, and,
for the denominator, Mxy. If the null and alternative hypotheses are classical
normal linear models, as we assume throughout this subsection, then, under
the null, both the numerator and the denominator of this ratio are indepen-
dent x? variables, divided by their respective degrees of freedom; recall (4.34).
Under the alternative hypothesis, the distribution of the denominator is un-
changed, because, under either hypothesis, Mxy = Mxu. Consequently, the
difference in distribution under the null and the alternative that gives the test
its power must come from the numerator alone.

From (4.33), r/o? times the numerator of the F statistic Fg, is
1
—5 ¥ MiXo(X M Xo) ™ X My, (4.70)

The vector Xy My is normal under both the null and the alternative. Its
mean is X M; X535, which vanishes under the null when 8 = 0, and its
covariance matrix is 02X M; Xs. We can use these facts to determine the
distribution of the quadratic form (4.70). To do so, we must introduce the
noncentral chi-squared distribution, which is a generalization of the ordinary,
or central, chi-squared distribution.

We saw in Section 4.3 that, if the m-vector z is distributed as N(0,I), then
|z||? = 2"z is distributed as (central) chi-squared with m degrees of freedom.
Similarly, if z ~ N(0, §£2), then "2 'z ~ x?(m). If instead z ~ N(u, 1),
then z'z follows the noncentral chi-squared distribution with m degrees of
freedom and noncentrality parameter, or NCP, A = p'p. This distribution
is written as x?(m, A). It is easy to see that its expectation is m + A; see
Exercise 4.17. Likewise, if © ~ N(u, §2), then 22 'z ~ x2(m, n'02 ).
Although we will not prove it, the distribution depends on p and {2 only
through the quadratic form p"$2~ . If we set u = 0, we see that the x?(m, 0)

distribution is just the central x?(m) distribution.

Under either the null or the alternative hypothesis, therefore, the distribution
of expression (4.70) is noncentral chi-squared, with r degrees of freedom, and
with noncentrality parameter given by

1 1
A= ;BzTXzTMle(XQTM1X2)71X2TM1X2K‘32 = ;ﬁJXJMleﬁz«
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Figure 4.9 Densities of noncentral X2 distributions

Under the null, A = 0. Under either hypothesis, the distribution of the
denominator of the F statistic, divided by 0?2, is central chi-squared with n—k
degrees of freedom, and it is independent of the numerator. The F' statistic
therefore has a distribution that we can write as

X2 (r, A)/r
x2(n—k)/(n—k)’

with numerator and denominator mutually independent. This distribution is
called the noncentral F' distribution, with » and n — k degrees of freedom and
noncentrality parameter A. In any given testing situation, r and n — k are
given, and so the difference between the distributions of the F' statistic under
the null and under the alternative depends only on the NCP A.

To illustrate this, we limit our attention to the expression (4.70), which is
distributed as x2(r, 4). As A increases, the distribution moves to the right
and becomes more spread out. This is illustrated in Figure 4.9, which shows
the density of the noncentral x? distribution with 3 degrees of freedom for
noncentrality parameters of 0, 2, 5, 10, and 20. The .05 critical value for the
central x?(3) distribution, which is 7.81, is also shown. If a test statistic has
the noncentral x?(3) distribution, the probability that the null hypothesis will
be rejected at the .05 level is the probability mass to the right of 7.81. It is
evident from the figure that this probability will be small for small values of
the NCP and large for large ones.

In Figure 4.9, the number of degrees of freedom r is held constant as A is
increased. If, instead, we held A constant, the density functions would move
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to the right as r was increased, as they do in Figure 4.4 for the special case
with A = 0. Thus, at any given level, the critical value of a x? or F test will
increase as r increases. It has been shown by Das Gupta and Perlman (1974)
that this rightward shift of the critical value has a greater effect than the
rightward shift of the density for any positive A. Specifically, Das Gupta and
Perlman show that, for a given NCP, the power of a x? or F test at any given
level is strictly decreasing in 7, as well as being strictly increasing in A, as we
indicated in the previous paragraph.

The square of a t statistic for a single restriction is just the F' test for that
restriction, and so the above analysis applies equally well to ¢ tests. Things
can be made a little simpler, however. From (4.25), the ¢ statistic tg, is 1/s
times

x) My

-_ 4.71
(CCQTM1332)1/2 ( )

The numerator of this expression, €2 My, is normally distributed under both
the null and the alternative, with variance o2ao M x5 and mean xo' M s (5.
Thus 1/0 times (4.71) is normal with variance 1 and mean

A= %((E;lez)l/Qﬁz. (472)
It follows that ¢g, has a distribution which can be written as

N(A 1)
(2(n—k)/(n—k))""*

with independent numerator and denominator. This distribution is known as
the noncentral ¢ distribution, with n — k degrees of freedom and noncentrality
parameter )\; it is written as t(n — k,\). Note that \> = A, where A is
the NCP of the corresponding F' test. Except for very small sample sizes,
the t(n — k,A) distribution is quite similar to the N(\, 1) distribution. It
is also very much like an ordinary, or central, ¢ distribution with its mean
shifted from the origin to (4.72), but it has a bit more variance, because of
the stochastic denominator.

When we know the distribution of a test statistic under the alternative hy-
pothesis, we can determine the power of a test of given level as a function of
the parameters of that hypothesis. This function is called the power function
of the test. The distribution of ¢3, under the alternative depends only on the
NCP \. For a given regressor matrix X and sample size n, A in turn depends
on the parameters only through the ratio (33/0; see (4.72). Therefore, the
power of the t test depends only on this ratio. According to assumption (4.49),
as n — 00, n” X TX tends to a nonstochastic limiting matrix Sxvx. Thus,
as n increases, the factor (zo Mi22)'/? will be roughly proportional to n'/?,
and so A will tend to infinity with n at a rate similar to that of n'/2.
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Figure 4.10 Power functions for ¢ tests at the .05 level

Figure 4.10 shows power functions for a very simple model, in which x5, the
only regressor, is a constant. Power is plotted as a function of 35 /o for three
sample sizes: n = 25, n = 100, and n = 400. Since the test is exact, all
the power functions are equal to .05 when § = 0. Power then increases as 3
moves away from 0. As we would expect, the power when n = 400 exceeds
the power when n = 100, which in turn exceeds the power when n = 25, for
every value of # # 0. It is clear that, as n — oo, the power function will
converge to the shape of a T, with the foot of the vertical segment at .05 and
the horizontal segment at 1.0. Thus, asymptotically, the test will reject the
null with probability 1 whenever it is false. In finite samples, however, we can
see from the figure that a false hypothesis is very unlikely to be rejected if
n'/23/c is sufficiently small.

The Power of Bootstrap Tests

As we remarked in Section 4.6, the power of a bootstrap test depends on B,
the number of bootstrap samples. The reason why it does so is illuminating.
If, to any test statistic, we add random noise independent of the statistic, we
inevitably reduce the power of tests based on that statistic. The bootstrap
P value p*(7) defined in (4.61) is simply an estimate of the ideal bootstrap
P value
p*(7) = Pr(r > 7) = plim p*(7),
B—oo

where Pr(r > 7) is evaluated under the bootstrap DGP. When B is finite, p*
will differ from p* because of random variation in the bootstrap samples. This
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Figure 4.11 Power functions for tests at the .05 level

random variation is generated in the computer, and is therefore completely
independent of the random variable 7. The bootstrap testing procedure dis-
cussed in Section 4.6 incorporates this random variation, and in so doing it
reduces the power of the test.

Another example of how randomness affects test power is provided by the
tests zg, and tg,, which were discussed in Section 4.4. Recall that zg, follows
the N(0,1) distribution, because o is known, and t¢g, follows the t(n — k)
distribution, because o has to be estimated. As equation (4.26) shows, ¢, is
equal to zg, times the random variable o /s, which has the same distribution
under the null and alternative hypotheses, and is independent of zz,. There-
fore, multiplying z, by o/s simply adds independent random noise to the
test statistic. This additional randomness requires us to use a larger critical
value, and that in turn causes the test based on tz, to be less powerful than
the test based on zg,.

Both types of power loss are illustrated in Figure 4.11. It shows power func-
tions for four tests at the .05 level of the null hypothesis that 5 = 0 in the
model (4.01) with normally distributed error terms and 10 observations. All
four tests are exact, as can be seen from the fact that, in all cases, power
equals .05 when g = 0. For all values of 3 # 0, there is a clear ordering of
the four curves in Figure 4.11. The highest curve is for the test based on zg,,
which uses the N(0,1) distribution and is available only when o is known.
The next three curves are for tests based on tg,. The loss of power from using
t, with the ¢(9) distribution, instead of zg, with the N (0, 1) distribution, is
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quite noticeable. Of course, 10 is a very small sample size; the loss of power
from not knowing o would be very much less for more reasonable sample sizes.
There is a further loss of power from using a bootstrap test with finite B. This
further loss is quite modest when B = 99, but it is substantial when B = 19.

Figure 4.11 suggests that the loss of power from using bootstrap tests is gen-
erally modest, except when B is very small. However, readers should be
warned that the loss can be more substantial in other cases. A reasonable
rule of thumb is that power loss will very rarely be a problem when B = 999,
and that it will never be a problem when B = 9999.

4.8 Final Remarks

This chapter has introduced a number of important concepts, which we will
encounter again and again throughout this book. In particular, we will en-
counter many types of hypothesis test, sometimes exact but more commonly
asymptotic. Some of the asymptotic tests work well in finite samples, but
others do not. Many of them can easily be bootstrapped, and they will per-
form much better when bootstrapped, but others are difficult to bootstrap or
do not perform particularly well.

Although hypothesis testing plays a central role in classical econometrics, it
is not the only method by which econometricians attempt to make inferences
from parameter estimates about the true values of parameters. In the next
chapter, we turn our attention to the other principal method, namely, the
construction of confidence intervals and confidence regions.

4.9 Exercises

4.1 Suppose that the random variable z follows the N(0,1) density. If z is a
test statistic used in a two-tailed test, the corresponding P value, according
to (4.07), is p(z) = 2(1 — ®(|z|)). Show that Fjp(-), the CDF of p(z), is the
CDF of the uniform distribution on [0, 1]. In other words, show that

Fp(z) == for all z € [0,1].

4.2 Extend Exercise 1.6 to show that the third and fourth moments of the stan-
dard normal distribution are 0 and 3, respectively. Use these results in order
to calculate the centered and uncentered third and fourth moments of the
N (p, 02) distribution.

4.3 Let the density of the random variable x be f(x). Show that the density of
the random variable w = tx, where t > 0, is ¢t~ f(w/t). Next let the joint
density of the set of random variables z;, i = 1,...,m, be f(x1,...,2m). For
i=1,...,m, let w; = t;x;, t; > 0. Show that the joint density of the wj; is

1 (wl wm>
Wiy ewny W = — e, — .
f( ! m) H:-iltif t1 tm
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4.4

4.5

4.6

4.7

4.8

4.9

4.10

Hypothesis Testing in Linear Regression Models

Consider the random variables x1 and xo, which are bivariate normal with
x1 ~ N(0, a%), xg ~ N(0, ag), and correlation p. Show that the expectation
of x1 conditional on x3 is p(o1/02)z2 and that the variance of 21 conditional
on xo is a%(l - pz). How are these results modified if the means of 1 and x9
are pu1 and po, respectively?

Suppose that, as in the previous question, the random variables 1 and 9
are bivariate normal, with means 0, variances 0'% and 0’%, and correlation p.
Starting from (4.13), show that f(z1,x2), the joint density of z; and x2, is
given by

1 1 —1 x] T1T2 w%)
2 ex =L _9 +=)).
21 (1 — p2)/20109 p(2(1 —p?) <0% P or0 o3

Then use this result to show that z; and zo are statistically independent
if p=0.

Consider the linear regression model

Yyt = P1 + B2 Xe1 + B3 Xe2 + ut.
Rewrite this model so that the restriction #3 — 33 = 1 becomes a single zero
restriction.

Consider the linear regression model y = X3 + u, where there are n obser-
vations and k regressors. Suppose that this model is potentially subject to r
restrictions which can be written as R3 = r, where R is an r X k matrix and
T is an r-vector. Rewrite the model so that the restrictions become r zero
restrictions.

Show that the ¢ statistic (4.25) is (n — k:)l/2 times the cotangent of the angle
between the n-vectors My and Mxs.

Now consider the regressions

y= X161+ Bz +u, and

(4.73)
T2 = X171 + 72y +v.

What is the relationship between the t statistic for o = 0 in the first of these
regressions and the ¢ statistic for v9 = 0 in the second?

Show that the OLS estimates 31 from the model (4.29) can be obtained from
those of model (4.28) by the formula

B =81+ (X1 X1) X' X5 8.

Formula (4.38) is useful for this exercise.

Show that the SSR from regression (4.42), or equivalently, regression (4.41),
is equal to the sum of the SSRs from the two subsample regressions:

y1 = X181 +u1, ui~ N(0,0°I), and
Yo = XoB2 +uz, uz ~ N(0,0°1).

Copyright © 1999, Russell Davidson and James G. MacKinnon



4.9 Exercises 175

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

When performing a Chow test, one may find that one of the subsamples is
smaller than k, the number of regressors. Without loss of generality, assume
that no < k. Show that, in this case, the F' statistic becomes

(RSSR — SSR1)/na
SSR1/(n1 — k)

)

and that the numerator and denominator really have the degrees of freedom
used in this formula.

Show, using the results of Section 4.5, that r times the F' statistic (4.58) is
asymptotically distributed as x2(r).

Consider a multiplicative congruential generator with modulus m = 7, and
with all reasonable possible values of A, that is, A\ = 2,3,4,5,6. Show that,
for any integer seed between 1 and 6, the generator generates each number of
the form /7, i = 1,...,6, exactly once before cycling for A = 3 and A = 5,
but that it repeats itself more quickly for the other choices of A\. Repeat the
exercise for m = 11, and determine which choices of A yield generators that
return to their starting point before covering the full range of possibilities.

If F is a strictly increasing CDF defined on an interval [a, b] of the real line,
where either or both of a and b may be infinite, then the inverse function F' -1
is a well-defined mapping from [0, 1] on to [a,b]. Show that, if the random
variable X is a drawing from the U(0,1) distribution, then F~1(X) is a
drawing from the distribution of which F' is the CDF.

In Section 3.6, we saw that Var(ii;) = (1 —h¢)oa, where iy is the t*" residual
from the linear regression model y = X3 + u, and h¢ is the ¢th diagonal
element of the “hat matrix” Px; this was the result (3.44). Use this result to
derive an alternative to (4.68) as a method of rescaling the residuals prior to
resampling. Remember that the rescaled residuals must have mean 0.

Suppose that z is a test statistic distributed as N (0, 1) under the null hypo-
thesis, and as N (A, 1) under the alternative, where A\ depends on the DGP
that generates the data. If co is defined by (4.06), show that the power of
the two-tailed test at level o based on z is equal to

DN —ca)+P(—ca — N).

Plot this power function for X in the interval [—5, 5] for & = .05 and a = .01.

Show that, if the m-vector z ~ N(u,I), the expectation of the noncentral
chi-squared variable z'zism+ .

The file classical.data contains 50 observations on three variables: y, xo,
and x3. These are artificial data generated from the classical linear regression
model

y =1L+ Poxs + P3xs+u, u~ N(O,O‘QI).

Compute a t statistic for the null hypothesis that g3 = 0. On the basis
of this test statistic, perform an exact test. Then perform parametric and
semiparametric bootstrap tests using 99, 999, and 9999 simulations. How do
the two types of bootstrap P values correspond with the exact P value? How
does this correspondence change as B increases?

Copyright © 1999, Russell Davidson and James G. MacKinnon



176 Hypothesis Testing in Linear Regression Models

4.19 Consider again the data in the file consumption.data and the ADL model
studied in Exercise 3.22, which is reproduced here for convenience:

ct = a+ Bei—1 + 0yt +y1ye—1 + ue (3.70)
Compute a t statistic for the hypothesis that 79 +~; = 0. On the basis of this

test statistic, perform an asymptotic test, a parametric bootstrap test, and a
semiparametric bootstrap test using residuals rescaled according to (4.68).
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Chapter 5

Confidence Intervals

5.1 Introduction

Hypothesis testing, which we discussed in the previous chapter, is the foun-
dation for all inference in classical econometrics. It can be used to find out
whether restrictions imposed by economic theory are compatible with the
data, and whether various aspects of the specification of a model appear to
be correct. However, once we are confident that a model is correctly speci-
fied and incorporates whatever restrictions are appropriate, we often want to
make inferences about the values of some of the parameters that appear in
the model. Although this can be done by performing a battery of hypothesis
tests, it is usually more convenient to construct confidence intervals for the
individual parameters of specific interest. A less frequently used, but some-
times more informative, approach is to construct confidence regions for two
or more parameters jointly.

In order to construct a confidence interval, we need a suitable family of tests
for a set of point null hypotheses. A different test statistic must be calculated
for each different null hypothesis that we consider, but usually there is just
one type of statistic that can be used to test all the different null hypotheses.
For instance, if we wish to test the hypothesis that a scalar parameter 6 in a
regression model equals 0, we can use a t test. But we can also use a t test
for the hypothesis that 8 = 6y for any specified real number 6y. Thus, in this
case, we have a family of ¢ statistics indexed by 6.

Given a family of tests capable of testing a set of hypotheses about a (scalar)
parameter 8 of a model, all with the same level o, we can use them to construct
a confidence interval for the parameter. By definition, a confidence interval is
an interval of the real line that contains all values 6y for which the hypothesis
that 8 = 6y is not rejected by the appropriate test in the family. For level «,
a confidence interval so obtained is said to be a 1 — « confidence interval, or
to be at confidence level 1 — a. In applied work, .95 confidence intervals are
particularly popular, followed by .99 and .90 ones.

Unlike the parameters we are trying to make inferences about, confidence
intervals are random. Every different sample that we draw from the same DGP
will yield a different confidence interval. The probability that the random
interval will include, or cover, the true value of the parameter is called the
coverage probability, or just the coverage, of the interval. Suppose that all the

Copyright (©) 1999, Russell Davidson and James G. MacKinnon 177



178 Confidence Intervals

tests in the family have exactly level «, that is, they reject their corresponding
null hypotheses with probability exactly equal to a when the hypothesis is
true. Then the coverage of the interval constructed from this family of tests
will be precisely 1 — «.

Confidence intervals may be either exact or approximate. When the exact
distribution of the test statistics used to construct a confidence interval is
known, the coverage will be equal to the confidence level, and the interval will
be exact. Otherwise, we have to be content with approximate confidence inter-
vals, which may be based either on asymptotic theory or on the bootstrap. In
the next section, we discuss both exact confidence intervals and approximate
ones based on asymptotic theory. Then, in Section 5.3, we discuss bootstrap
confidence intervals.

Like a confidence interval, a 1 — « confidence region for a set of k£ model para-
meters, such as the components of a k-vector 0, is a region in a k-dimensional
space (often, the region is the k-dimensional analog of an ellipse) constructed
in such a way that, for every point represented by the k-vector 6y in the
confidence region, the joint hypothesis that 8 = 6y is not rejected by the
appropriate member of a family of tests at level . Thus confidence regions
constructed in this way will cover the true values of the parameter vector
100(1 — )% of the time, either exactly or approximately. In Section 5.4, we
show how to construct confidence regions and explain the relationship between
confidence regions and confidence intervals.

In previous chapters, we assumed that the error terms in regression models
are independently and identically distributed. This assumption yielded a sim-
ple form for the covariance matrix of a vector of OLS parameter estimates,
expression (3.28), and a simple way of estimating this matrix. In Section 5.5,
we show that it is possible to estimate the covariance matrix of a vector of
OLS estimates even when we abandon the assumption that the error terms are
identically distributed. Finally, in Section 5.6, we discuss a simple and widely-
used method for obtaining standard errors, covariance matrix estimates, and
confidence intervals for nonlinear functions of estimated parameters.

5.2 Exact and Asymptotic Confidence Intervals

A confidence interval for some scalar parameter 6 consists of all values 6, for
which the hypothesis § = 6y cannot be rejected at some specified level a.
Thus, as we will see in a moment, we can construct a confidence interval
by “inverting” a test statistic. If the finite-sample distribution of the test
statistic is known, we will obtain an exact confidence interval. If, as is more
commonly the case, only the asymptotic distribution of the test statistic is
known, we will obtain an asymptotic confidence interval, which may or may
not be reasonably accurate in finite samples. Whenever a test statistic based
on asymptotic theory has poor finite-sample properties, a confidence interval
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based on that statistic will have poor coverage: In other words, the interval
will not cover the true parameter value with the specified probability. In such
cases, it may well be worthwhile to seek other test statistics that will yield
different confidence intervals with better coverage.

To begin with, suppose that we wish to base a confidence interval for the
parameter 6 on a family of test statistics that have a distribution or asymptotic
distribution like the y? or the F distribution under their respective nulls.
Statistics of this type are always positive, and tests based on them reject
their null hypotheses when the statistics are sufficiently large. Such tests are
often equivalent to two-tailed tests based on statistics distributed as standard
normal or Student’s ¢t. Let us denote the test statistic for the hypothesis that
0 = 6y by the random variable 7(y, ). Here y denotes the sample used to
compute the particular realization of the statistic. It is the random element
in the statistic, since 7(+) is just a deterministic function of its arguments.

For each 6, the test consists of comparing the realized 7(y, 8y) with the level «
critical value of the distribution of the statistic under the null. If we write the
critical value as ¢, then, for any 6y, we have by the definition of ¢, that

Pro, (7(y,00) < ca) =1 —c (5.01)

Here the subscript 0y indicates that the probability is calculated under the
hypothesis that 6 = 6. If ¢, is a critical value for the asymptotic distribution
of 7(y, 0p), rather than for the exact distribution, then (5.01) is only approxi-
mately true. For 6, to belong to the confidence interval obtained by inverting
the family of test statistics 7(y, ), it is necessary and sufficient that

7(y,060) < ca. (5.02)
Thus the limits of the confidence interval can be found by solving the equation
T(y,0) = ca (5.03)

for 6. This equation will normally have two solutions. One of these solutions
will be the upper limit, 8, and the other will be the lower limit, 8;, of the
confidence interval that we are trying to construct.

If ¢, is an exact critical value for the test statistic 7(y, ) at level «, then the
confidence interval [0;, 6,] constructed in this way will have coverage 1 — a,
as desired. To see this, observe first that, if we can find an exact critical
value ¢, the random function 7(y, 6y) must be pivotal for the model M under
consideration. In saying this, we are implicitly generalizing the definition of a
pivotal quantity (see Section 4.6) to include random variables that may depend
on the model parameters. A random function 7(y, 6) is said to be pivotal for M
if, when it is evaluated at the true value 6y corresponding to some DGP in M,
the result is a random variable whose distribution does not depend on what
that DGP is. Pivotal functions of more than one model parameter are defined
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in exactly the same way. The function is merely asymptotically pivotal if only
the asymptotic distribution is invariant to the choice of DGP.

Suppose that 7(y, 0p) is an exact pivot. Then, for every DGP in the model M,
(5.01) holds exactly. Since #y belongs to the confidence interval if and only if
(5.02) holds, this means that the confidence interval contains the true para-
meter value 0y with probability exactly equal to 1 — «, whatever the true
parameter value may be.

Even if it is not an exact pivot, the function 7(y, fp) must be asymptotically
pivotal, since otherwise the critical value ¢, would depend asymptotically on
the unknown DGP in M, and we could not construct a confidence interval with
the correct coverage, even asymptotically. Of course, if ¢, is only approximate,
then the coverage of the interval will differ from 1 — « to a greater or lesser
extent, in a manner that, in general, depends on the unknown true DGP.

Quantiles

When we speak of critical values, we are implicitly making use of the concept
of a quantile of the distribution that the test statistic follows under the null
hypothesis. If F(x) denotes the CDF of a random variable X, and if the PDF
f(z) = F'(z) exists and is strictly positive on the entire range of possible
values for X, then q,, the a quantile of F', for 0 < a < 1, satisfies the equation
F(gs) = a. The assumption of a strictly positive PDF means that F' is strictly
increasing over its range. Therefore, the inverse function F~! exists, and
do = F~1(a). For this reason, F'~! is sometimes called the quantile function.
If F' is not strictly increasing, or if the PDF does not exist, which, as we saw
in Section 1.2, is the case for a discrete distribution, the a quantile does not
necessarily exist, and is not necessarily uniquely defined, for all values of a.

The 0.5 quantile of a distribution is often called the median. For a = 0.25, 0.5,
and 0.75, the corresponding quantiles are called quartiles; for o = 0.2, 0.4,
0.6, and 0.8, they are called quintiles; for & = i/10 with ¢ an integer between
1 and 9, they are called deciles; for o = i/20 with 1 < i < 19, they are called
vigintiles; and, for o = i/100 with 1 < i < 99, they are called centiles. The
quantile function of the standard normal distribution is shown in Figure 5.1.
All three quartiles, the first and ninth deciles, and the .025 and .975 quantiles
are shown in the figure.

Asymptotic Confidence Intervals

The discussion up to this point has deliberately been rather abstract, because
7(y, 6p) can, in principle, be any sort of test statistic. To obtain more concrete
results, let us suppose that

7(y,00) = (é —% )2, (5.04)

S6

where 6 is an estimate of 0, and sy is the corresponding standard error, that
is, an estimate of the standard deviation of 6. Thus 7(y,0y) is the square
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Figure 5.1 The quantile function of the standard normal distribution

of the t statistic for the null hypothesis that 6 = 6,. If 6 were an OLS
estimate of a regression coefficient, then, under conditions that were discussed
in Section 4.5, the test statistic defined in (5.04) would be asymptotically
distributed as x?(1) under the null hypothesis. Therefore, the asymptotic
critical value ¢, would be the 1 — a quantile of the x*(1) distribution.

For the test statistic (5.04), equation (5.03) becomes

(é — 9)2
= Cq-
S

Taking the square root of both sides and multiplying by sg then gives

0 — 0] = sgcl/2 (5.05)
As expected, there are two solutions to equation (5.05). These are

0, = 0 — 5901/2 and 46, -0+ 3903/2,

«

and so the asymptotic 1 — « confidence interval for 6 is
[é —sgcl/? 0+ sg 05/2]. (5.06)

r{‘his means that the interval con§ists of all values of 8 between the lower limit
0 — sgcl/? and the upper limit 6 + sgcl/2. For a = 0.05, the 1 — o quantile

[e% [0}
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Cca = 3.8415

0

1.9634 X 1.96sg— >
0; 0 Ou

Figure 5.2 A symmetric confidence interval

of the x?(1) distribution is 3.8415, the square root of which is 1.9600. Thus
the confidence interval given by (5.06) becomes

[0 —1.9650, 0+ 1.96s5]. (5.07)

This interval is shown in Figure 5.2, which illustrates the manner in which
it is constructed. The value of the test statistic is on the vertical axis of the
figure. The upper and lower limits of the interval occur at the values of 6
where the test statistic (5.04) is equal to ¢,, which in this case is 3.8415.

We would have obtained the same confidence interval as (5.06) if we had
started with the asymptotic ¢ statistic (6 — 6y)/ss and used the N(0,1) dis-
tribution to perform a two-tailed test. For such a test, there are two critical
values, one the negative of the other, because the N (0, 1) distribution is sym-
metric about the origin. These critical values are defined in terms of the
quantiles of that distribution. The relevant ones are now the «/2 and the
1 — (@/2) quantiles, since we wish to have the same probability mass in each
tail of the distribution. It is conventional to denote these quantiles of the
standard normal distribution by z,/o and 2;_(4/2), respectively. Note that
Zo/2 is megative, since a/2 < 1/2, and the median of the N (0, 1) distribution
is 0. By symmetry, it is the negative of z1_(4/2). Equation (5.03), which has
two solutions for a x? test, is replaced by two equations, each with just one
solution, as follows:
7(y,0) = *ec.

Here 7(y,0) denotes the (signed) t statistic rather than the y?(1) statistic
used in (5.03), and the positive number ¢ can be defined either as z;_(4/2)
or as —z4/2. The resulting confidence interval [0;, 6,] can thus be written in
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two different ways:
[é + S0 2a/2; 6 — Sg Za/g] and [é — 8021 (a/2) 6 + 8921_(a/2)]. (5.08)

When « = .05, we once again obtain the interval (5.07), since z o5 = —1.96
and Z.975 = 1.96.

Asymmetric Confidence Intervals

The confidence interval (5.06), which is the same as the interval (5.08), is a
symmetric one, because 6, is as far below 6 as 6, is above it. Although many
confidence intervals are symmetric, not all of them share this property. The
symmetry of (5.06) is a consequence of the symmetry of the standard normal
distribution and of the form of the test statistic (5.04).

It is possible to construct confidence intervals based on two-tailed tests even
when the distribution of the test statistic is not symmetric. For a chosen
level a, we wish to reject whenever the statistic is too far into either the
right-hand or the left-hand tail of the distribution. Unfortunately, there are
many ways to interpret “too far” in this context. The simplest is probably
to define the rejection region in such a way that there is a probability mass
of @/2 in each tail. This is called an equal-tailed confidence interval. Two
critical values are needed for each level, a lower one, ¢, which will be the

)
«/2 quantile of the distribution, and an upper one, ¢!, which will be the
1 — (a/2) quantile. A realized statistic 7 will lead to rejection at level «
if either 7 < ¢, or 7 > ¢}. This will lead to an asymmetric confidence
interval. We will discuss such intervals, where the critical values are obtained

by bootstrapping, in the next section.

It is also possible to construct confidence intervals based on one-tailed tests.
Such an interval will be open all the way out to infinity in one direction. Sup-
pose that, for each 6y, the null § < 6y is tested against the alternative 6 > 6.
If the true parameter value is finite, we will never want to reject the null for
any fp that substantially exceeds the true value. Consequently, the confidence
interval will be open out to plus infinity. Formally, the null is rejected only
if the signed t statistic is algebraically greater than the appropriate critical
value. For the N(0,1) distribution, this is z1_, for level @. The null 6 < 6,
will not be rejected if 7(y, 0p) < z1_q, that is, if — 0o < 8p21—a- The interval
over which 6y satisfies this inequality is just

~

[«9 — 8021—as —i—oo]. (5.09)

P Values and Asymmetric Distributions

The above discussion of asymmetric confidence intervals raises the question of
how to calculate P values for two-tailed tests based on statistics with asym-
metric distributions. This is a little tricky, but it will turn out to be useful
when we discuss bootstrap confidence intervals in the next section.
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If the P value is defined, as usual, as the smallest level for which the test
rejects, then, if we denote by F' the CDF used to calculate critical values or
P values, the P value associated with a statistic 7 should be 2F(7) if 7 is
in the lower tail, and 2(1 — F'(7)) if it is in the upper tail. This can be seen
by the same arguments, based on Figure 4.2, that were used for symmetric
two-tailed tests. A slight problem arises as to the point of separation between
the left and right sides of the distribution. However, it is easy to see that
only one of the two possible P values is less than 1, unless F'(7) is exactly
equal to 0.5, in which case both are equal to 1, and there is no ambiguity. In
complete generality, then, we have that the P value is

p(7) =2min(F(7),1 - F(1)). (5.10)

Thus the point that separates the left and right sides of the distribution is
the median, ¢ 50, since F'(g50) = .50 by definition. Any 7 greater than the
median is in the right-hand tail of the distribution, and any 7 less than the
median is in the left-hand tail.

Exact Confidence Intervals for Regression Coefficients

In Section 4.4, we saw that, for the classical normal linear model, exact tests
of linear restrictions on the parameters of the regression function are available,
based on the t and F' distributions. This implies that we can construct exact
confidence intervals. Consider the classical normal linear model (4.21), in
which the parameter vector 3 has been partitioned as [3; i (2], where B is
a (k — 1)-vector and 2 is a scalar. The ¢ statistic for the hypothesis that
Bo = PBog for any particular value By can be written as

32 - ﬁ20

- (5.11)

where s, is the usual OLS standard error for 3s.

Any DGP in the model (4.21) satisfies §3 = [¢ for some fgy. With the
correct value of (o, the ¢ statistic (5.11) has the t(n — k) distribution, and so

Pr(ta/g S M S tl(a/2)> =1- a, (5.12)
52

where t, /o and t;_(,/2) denote the /2 and 1 — (c/2) quantiles of the t(n—k)
distribution. We can use equation (5.12) to find a 1 — « confidence interval
for B5. The left-hand side of the equation is equal to

Pr(saota s < B — P20 < S2t1-(a/2))

= Pr(—sata/s > P20 — o > —s2t1_(a/2))
PY(BQ — Satayo = P20 = Ba — $211_(a/2))-
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Therefore, the confidence interval we are seeking is

[32 — S2l1(a/2); Ba — 5275a/2]- (5.13)

At first glance, this interval may look a bit odd, because the upper limit is
obtained by subtracting something from Bg What is subtracted is negative,
however, because /o < 0, since it is in the lower tail of the ¢ distribution.
Thus the interval does in fact contain the point estimate ﬁg

It may still seem strange that the lower and upper limits of (5.13) depend,
respectively, on the upper-tail and lower-tail quantiles of the ¢(n — k) distri-
bution. This actually makes perfect sense, however, as can be seen by looking
at the infinite confidence interval (5.09) based on a one-tailed test. There,
since the null is that 0 < 0y, the confidence interval must be open out to +oo,
and so only the lower limit of the confidence interval is finite. But the null is
rejected when the test statistic is in the upper tail of its distribution, and so
it must be the upper-tail quantile that determines the only finite limit of the
confidence interval, namely, the lower limit. Readers are strongly advised to
take some time to think this point through, since most people find it strongly
counter-intuitive when they first encounter it, and they can accept it only
after a period of reflection.

In the case of (5.13), it is easy to rewrite the confidence interval so that
it depends only on the positive, upper-tail, quantile, ¢;_(,/2). Because the
Student’s t distribution is symmetric, the interval (5.13) is the same as the
interval

(B2 = s2t1_(ay2)s B2+ s2t1_(a/2)]; (5.14)
compare the two ways of writing the confidence interval (5.08). For con-
creteness, suppose that @« = .05 and n — &k = 32. In this special case,

t1—(ay2) = to7rs = 2.037. Thus the .95 confidence interval based on (5. 14)
extends from 2.037 standard errors below ﬁg to 2.037 standard errors above
it. This interval is slightly wider than the interval (5.07), which is based on
asymptotic theory.

We obtained the interval (5.14) by starting from the ¢ statistic (5.11) and
using the Student’s ¢ distribution. As readers are asked to demonstrate in
Exercise 5.2, we would have obtained precisely the same interval if we had
started instead from the square of (5.11) and used the F' distribution.

5.3 Bootstrap Confidence Intervals

When exact confidence intervals are not available, and they generally are not,
asymptotic ones are normally used. However, just as asymptotic tests do
not always perform well in finite samples, neither do asymptotic confidence
intervals. Since bootstrap P values and tests based on them often outperform
their asymptotic counterparts, it seems natural to base confidence intervals
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on bootstrap tests when asymptotic intervals give poor coverage. There are
a great many varieties of bootstrap confidence intervals; for a comprehensive
discussion, see Davison and Hinkley (1997).

When we construct a bootstrap confidence interval, we wish to treat a fam-
ily of tests, each corresponding to its own null hypothesis. Since, when we
perform a bootstrap test, we must use a bootstrap DGP that satisfies the
null hypothesis, it appears that we must use an infinite number of bootstrap
DGPs if we are to consider the full family of tests, each with a different null.
Fortunately, there is a clever trick that lets us avoid this difficulty completely.

It is, of course, essential for a bootstrap test that the bootstrap DGP should
satisfy the null hypothesis under test. However, when the distribution of the
test statistic does not depend on precisely which null is being tested, the same
bootstrap distribution can be used for a whole family of tests with different
nulls. If a family of test statistics is defined in terms of a pivotal random
function 7(y, 6p), then, by definition, the distribution of this function is inde-
pendent of y. Thus we could choose any value of 6§, that the model allows for
the bootstrap DGP, and the distribution of the test statistic, evaluated at 6,
would always be the same. The important thing is to make sure that 7(-) is
evaluated at the same value of 6y as the one used to generate the bootstrap
samples. Even if 7(-) is only asymptotically pivotal, the effect of the choice
of 6y on the distribution of the statistic should be slight if the sample size is
reasonably large.

Suppose that we wish to construct a bootstrap confidence interval based on
the t statistic £(Ap) = 7(y,600) = (8 — 6y)/se. The first step is to compute 6
and sg using the original data y. Then we generate bootstrap samples using a
DGP, which may be either parametric or semiparametric, characterized by 0
and by any other relevant estimates, such as the error variance, that may be
needed. The resulting bootstrap DGP is thus quite independent of g, but it
does depend on the estimate 6.

We can now generate B bootstrap samples, ¥, j = 1,..., B. For each of
these, we compute an estimate 67 and its standard error s} in exactly the
same way that we computed 6 and sy from the original data, and we then
compute the bootstrap “t statistic”

t;=1(yj,0) = prant (5.15)
J

This is the statistic that tests the null hypothesis that 6 = é, because 0 is the
true value of @ for the bootstrap DGP. If 7(-) is an exact pivot, the change
of null from 6 to § makes no difference. If 7(+) is an asymptotic pivot, there
should usually be only a slight difference for values of 6 close to 6.

The limits of the bootstrap confidence interval will depend on the quantiles of
the EDF of the ¢;. We can choose to construct either a symmetric confidence
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interval, by estimating a single critical value that applies to both tails, or
an asymmetric one, by estimating two different critical values. When the
distribution of the underlying test statistic 7(y,6y) is not symmetric, the
latter interval should be more accurate. For this reason, and because we did
not discuss asymmetric intervals based on asymptotic tests, we now discuss
asymmetric bootstrap confidence intervals in some detail.

Asymmetric Bootstrap Confidence Intervals

Let us denote by F* the EDF of the B bootstrap statistics t;. For given 0o,
the bootstrap P value is, from (5.10),

p(#(6)) = 2min (F*(f(eo)), 1- F*(f(eo))). (5.16)

If this P value is greater than or equal to «, then 6y belongs to the 1 — «
confidence interval. If F'* were the CDF of a continuous distribution, we could
express the confidence interval in terms of the quantiles of this distribution,
just as in (5.13). In the limit as B — oo, the limiting distribution of the 7;
which we call the ideal bootstrap distribution, is usually continuous, and its
quantiles define the ideal bootstrap confidence interval. However, since the
distribution of the ¢7 is always discrete in practice, we must be a little more
careful in our reasoning.

Suppose, to begin with, that #(f) is on the left side of the distribution. Then
the bootstrap P value (5.16) is

B

where () is the number of bootstrap ¢ statistics that are less than or equal
to £(6p). Thus fy belongs to the 1 — o confidence interval if and only if
2r(6p)/B > «, that is, if r(6y) > aB/2. Since r(6y) is an integer, while aB/2
is not an integer, in general, this inequality is equivalent to r(6g) > r, /25
where 7, /5 is the smallest integer not less than a3/2.

First, observe that r(fp) cannot exceed r, /o for 6y sufficiently large. Since
(00) = (0 — 0g)/se, it follows that #(Ay) — —oco as g — oco. Accordingly,
r(0g) — 0 as Oy — oo. Therefore, there exists a greatest value of 6y for which

7(0p) > r4/2. This value must be the upper limit of the 1 — a bootstrap

confidence interval.

Suppose we sort the ¢} from smallest to largest and denote by ¢, /2 the entry
in the sorted list indexed by /2. Then, if £(6y) = ca/z, the number of the ¢}
less than or equal to () is precisely 7, /2 But if £(fp) is smaller than ¢ /2 by
however small an amount, this number is strictly less than 7 /5. Thus 0., the
upper limit of the confidence interval, is defined implicitly by t(6,) = ¢, /2
Explicitly, we have X

Ou =0 — soCp /o

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



188 Confidence Intervals

As in the previous section, we see that the wupper limit of the confidence
interval is determined by the lower tail of the bootstrap distribution.

If the statistic is an exact pivot, then the probability that the true value of 6
is greater than 6, is exactly equal to a/2 only if a(B + 1)/2 is an integer.
This follows by exactly the same argument as the one given in Section 4.6
for bootstrap P values. As an example, if @« = .05 and B = 999, we see that
a(B +1)/2 = 25. In addition, since aB/2 = 24.975, we see that r,/, = 25.
The value of ¢, /, is therefore the value of the 250 bootstrap t statistic when
they are sorted in ascending order.

In order to obtain the upper limit of the confidence interval, we began above
with the assumption that £(6y) is on the left side of the distribution. If we
had begun by assuming that #(f) is on the right side of the distribution, we
would have found that the lower limit of the confidence interval is

‘9l = é - SQCT—(a/Q)a

where ¢]_(, /) is the entry indexed by r1_(4/2) when the {7 are sorted in
ascending order. For the example with o = .05 and B = 999, this is the
975" entry in the sorted list, since there are precisely 25 integers in the range
975—999, just as there are in the range 1—25.

The asymmetric equal-tail bootstrap confidence interval can be written as

~

[91, Qu] = [é - SQCI—((X/2)7 0 — 8902/2] . (517)

This interval bears a striking resemblance to the exact confidence inter-
val (5.13). Clearly, ¢j_(,/2) and ¢, o, which are approximately the 1 — («/2)
and «/2 quantiles of the EDF of the bootstrap tests, play the same roles as
the 1 — («/2) and «/2 quantiles of the exact Student’s ¢ distribution.

Because the Student’s t distribution is symmetric, the confidence interval
(5.13) is symmetric. In contrast, the interval (5.17) will almost never be sym-
metric. Even if the distribution of the underlying test statistic happened to be
symmetric, the bootstrap distribution based on finite B would almost never
be. It is, of course, possible to construct a symmetric bootstrap confidence
interval. We just need to invert a test for which the P value is not (5.10),
but rather something like (4.07), which is based on the absolute value, or,
equivalently, the square, of the ¢ statistic. See Exercise 5.7.

The bootstrap confidence interval (5.17) is called a studentized bootstrap
confidence interval. The name comes from the fact that a statistic is said to
be studentized when it is the ratio of a random variable to its standard error,
as is the ordinary ¢ statistic. This type of confidence interval is also sometimes
called a percentile-t or bootstrap-t confidence interval. Studentized bootstrap
confidence intervals have good theoretical properties, and, as we have seen,
they are quite easy to construct. If the assumptions of the classical normal
linear model are violated and the empirical distribution of the t7 provides a
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better approximation to the actual distribution of the ¢ statistic than does the
Student’s t distribution, then the studentized bootstrap confidence interval
should be more accurate than the usual interval based on asymptotic theory.

As we remarked above, there are a great many ways to compute bootstrap
confidence intervals, and there is a good deal of controversy about the rel-
ative merits of different approaches. For an introduction to the voluminous
literature, see DiCiccio and Efron (1996) and the associated discussion. Some
of the approaches in the literature appear to be obsolete, mere relics of the
way in which ideas about the bootstrap were developed, and others are too
complicated to explain here. Even if we limit our attention to studentized
bootstrap intervals, there will often be several ways to proceed. Different
methods of estimating standard errors inevitably lead to different confidence
intervals, as do different ways of parametrizing a model. Thus, in practice,
there will frequently be quite a number of reasonable ways to construct stu-
dentized bootstrap confidence intervals.

Note that specifying the bootstrap DGP is not at all trivial if the error terms
are not assumed to be IID. In fact, this topic is quite advanced and has
been the subject of much research: See Li and Maddala (1996) and Davison
and Hinkley (1997), among others. Later in the book, we will discuss a few
techniques that can be used with particular models.

Theoretical results discussed in Hall (1992) and Davison and Hinkley (1997)
suggest that studentized bootstrap confidence intervals will generally work
better than intervals based on asymptotic theory. However, their coverage
can be quite unsatisfactory in finite samples if the quantity (6 — 6)/sg is far
from being pivotal, as can happen if the distributions of either 6 or sy de-
pend strongly on the true unknown value of 6 or on any other parameters
of the model. When this is the case, the standard errors will often fluctuate
wildly among the bootstrap samples. Of course, the coverage of asymptotic
confidence intervals will generally also be unsatisfactory in such cases.

5.4 Confidence Regions

When we are interested in making inferences about the values of two or more
parameters, it can be quite misleading to look at the confidence intervals
for each of the parameters individually. By using confidence intervals, we are
implicitly basing our inferences on the marginal distributions of the parameter
estimates. However, if the estimates are not independent, the product of the
marginal distributions may be very different from the joint distribution. In
such cases, it makes sense to construct a confidence region.

The confidence intervals we have discussed are all obtained by inverting ¢ tests,
whether exact, asymptotic, or bootstrap, based on families of statistics of the
form (60 — 0y)/se. If we wish instead to construct a confidence region, we must
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invert joint tests for several parameters. These will usually be tests based on
statistics that follow the F or x? distributions, at least asymptotically.

A t statistic depends explicitly on a parameter estimate and its standard error.
Similarly, many tests for several parameters depend on a vector of parameter
estimates and an estimate of their covariance matrix. Even many statistics
that appear not to do so, such as F' statistics, actually do so implicitly, as we
will see shortly. Suppose that we have a k-vector of parameter estimates 6
of which the covariance matrix Var(6) can be estimated by Var(@) Then, in
many circumstances, the statistic

(6 — 8y)T(Var(8)) (0 — 6y) (5.18)

can be used to test the joint null hypothesis that 8 = 6.

The asymptotic distribution of (5.18) can be found by using Theorem 4.1. It
tells us that, if a k-vector x is distributed as N (0, §2), then the quadratic
form x'$2 'z is distributed as x2(k). In order to use this result to show
that the statistic (5.18) is asymptotically distributed as x?(k) under the null
hypothesis, we must study a little more asymptotic theory.

Asymptotic Normality and Root-n Consistency

Although the notion of asymptotic normality is very general, for now we will
introduce it for linear regression models only. Suppose, as in Section 4.5, that
the data were generated by the DGP

y=XBy+u, u~IID0,0:T), (5.19)

given in (4.47). We have seen that the random vector v = n~!/2 X Tu defined
in (4.53) follows the normal distribution asymptotically, with mean vector 0
and covariance matrix o2 Sxrx, where Sxrx is the plim of n !X X as the
sample size n tends to infinity.

Consider now the estimation error of the vector of OLS estimates. For the
DGP (5.19), it is
B—B=(X"X)"X"u. (5.20)

As we saw in Section 3.3, ,é will be consistent under fairly weak conditions.
If it is, expression (5.20) tends to a limit of 0 as the sample size n — oo.
Therefore, its limiting covariance matrix is a zero matrix. Thus it would
appear that asymptotic theory has nothing to say about limiting variances for
consistent estimators. However, this is easily corrected by the usual device of
introducing a few well-chosen powers of n. If we rewrite (5.20) as

N —1
nV2(8 — By) = (%XTX) n~2X Ty,

then the first factor on the right-hand side tends to SXTX as n — oo, and

the second factor, which is just v, tends to a random vector distributed as
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N(0,0% Sxx ). Because Sxrx is deterministic, we find that, asymptotically,

Var(n'/?(8 — By)) = 08 Sxtx Sxrx Sxix = 76 Sxrx-
Moreover, since the vector n'/ 2(,5 — Bo) is, asymptotically, just a determinis-
tic linear combination of the components of the multivariate normal random
vector v, we conclude that

n'?(8 - Bo) * N(0,05 S5 x)- (5.21)

Thus, under the fairly weak conditions we used in Section 4.5, we see that the
vector 3 is asymptotically normal, or exhibits asymptotic normality.

The result (5.21) tells us that the asymptotic covariance matrix of the vector
n2(3 — By) is the limit of 62(n 1 XTX)"! as n — oo. In practice, we divide
this by n and use s2(XTX)"! to estimate Var(3), where s is the usual
OLS estimate of the error variance; recall (3.49). However, it is important
to remember that, whenever n ' X "X tends to Sxrx as n — oo, the matrix
(X 'X)™!, without the factor of n, simply tends to a zero matrix. As we saw a
moment ago, this is just a consequence of the fact that B is consistent. Thus,
although it would be convenient if we could dispense with powers of n when
working out asymptotic approximations to covariance matrices, it would be

mathematically incorrect and very risky to do so.

The result (5.21) also gives us the rate of convergence of B to its probability
limit of Bp. Since multiplying the estimation error by n'/? gives rise to an
expression of zero mean and finite covariance matrix, it follows that the esti-
mation error itself tends to zero at the same rate as n~ /2. This property is
expressed by saying that the estimator B is root-n consistent.

Quite generally, let 6 be a root-n consistent, asymptotically normal, estimator
of a parameter vector 8. Any estimator of the covariance matrix of 6 must
tend to zero as n — oo. Let 6y denote the true value of 6, and let V_denote
the limiting covariance matrix of n'/2(@ — 6). Then an estimator Var(8) is
said to be a consistent estimator of the covariance matrix of 6 if

plim (n Var(9)) = V. (5.22)

n—oo

We are finally in a position to justify the use of (5.18) as a statistic distributed
as x2(k) under the null hypothesis. If 0 is root-n consistent and asymptotically
normal, and if Var () is a consistent estimator of the variance of 6, then we
can write (5.18) as

n'/2(6 — 60)"(n Var(8))'n'/2(6 — 6,). (5.23)

Since nt/ 2(é — 60y) is asymptotically normal under the null, with mean zero,
and since the middle factor above tends to the inverse of its limiting covariance
matrix, expression (5.23) is precisely in the form "2~ 'x of Theorem 4.1, and
so (5.18) is asymptotically distributed under the null as x?(k).
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Exact Confidence Regions for Regression Parameters

Suppose that we want to construct a confidence region for the elements of the
vector (33 in the classical normal linear model (4.28), which we rewrite here
for ease of exposition:

Yy= Xlﬁl + X2/82 + u, u -~ N(07 021)7 (524)

where 31 and (3; are a ki1-vector and a ko—vector, respectively. The F' statistic
that can be used to test the hypothesis that B2 = 0 is given in (4.33). If we
wish instead to test B2 = (329, then we can write (5.24) as

y — XoBo0 = X1v1 + Xov2 +u, wu~ N(0,0°1), (5.25)

and test o = 0. It is not hard to show that the F' statistic for this hypothesis
takes the form

(B2 — B20) "X My Xo(B2 — B20)/ ko
y'Mxy/(n— k)
where k = k1 + ko; see Exercise 5.8. When multiplied by ks, this F' statistic

is in the form of (5.18). For the purposes of inference on (35, regression (5.24)
is, by the FWL Theorem, equivalent to the regression

: (5.26)

M,y = M, X582 + M u.

Thus Var(3;) is equal to o2(X5'M; X,)~L. Since the denominator of (5.26) is
just s2, the OLS estimate of the error variance from running regression (5.24),
ko times the F' statistic (5.26) can be written in the form of (5.18), with

@(32) - 82 (XQTM1X2)71

providing a consistent estimator of the variance of B32; compare (3.50).

Under the assumptions of the classical normal linear model, the F' statistic
(5.26) follows the F'(ky,n — k) distribution when the null hypothesis is true.
Therefore, we can use it to construct an exact confidence region. If ¢, denotes
the 1 — a quantile of the F'(ky,n — k) distribution, then the 1 — « confidence
region is the set of all B85y for which

(B2 — Ba0)"Xo My X (B — Bao) < co ks (5.27)

Since the left-hand side of this inequality is quadratic in B9, the confidence
region is, for ko = 2, the interior of an ellipse and, for ko > 2, the interior of
a ko—dimensional ellipsoid.
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Figure 5.3 Confidence ellipses and confidence intervals

Confidence Ellipses and Confidence Intervals

Figure 5.3 illustrates what a confidence ellipse can look like when there are
just two components in the vector 35, which we denote by ; and (32, and the
parameter estimates are negatively correlated. The ellipse, which defines a
.95 confidence region, is centered at the parameter estimates (ﬁl, Bz), with its
major axis oriented from upper left to lower right. Confidence intervals for (3;
and (35 are also shown. The .95 confidence interval for 3; is the line segment
AB, and the .95 confidence interval for s is the line segment FF. We would
make quite different inferences if we considered AB and EF, and the rectangle
they define, demarcated in Figure 5.3 by the lines drawn with long dashes,
rather than the confidence ellipse. There are many points, such as (57, 3%),
that lie outside the confidence ellipse but inside the two confidence intervals.
At the same time, there are some points, like (3], 35), that are contained in
the ellipse but lie outside one or both of the confidence intervals.

In the framework of the classical normal linear model, the estimates Bl and Bg
are bivariate normal. The ¢ statistics used to test hypotheses about just one
of 81 or (B are based on the marginal univariate normal distributions of (3
and ,@2, respectively, but the F' statistics used to test hypotheses about both
parameters at once are based on the joint bivariate normal distribution of the
two estimators. If Bl and Bg are not independent, as is the case in Figure 5.3,
then information about one of the parameters also provides information about
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the other. Only the confidence region, based on the joint distribution, allows
this to be taken into account.

An example may be helpful at this point. Suppose that we are trying to model
daily electricity demand during the summer months in an area where air con-
ditioning is prevalent. Since the use of air conditioners, and hence electricity
demand, is related to both temperature and humidity, we might want to use
measures of both of them as explanatory variables. In many parts of the
world, summer temperatures and humidity are strongly positively correlated.
Therefore, if we include both variables in a regression, they may be approx-
imately collinear. If so, as we saw in Section 3.4, the OLS estimates will be
relatively imprecise. This lack of precision implies that confidence intervals for
the coefficients of both temperature and humidity will be relatively long, and
that confidence regions for both parameters jointly will be long and narrow.
However, it does not necessarily imply that the area of a confidence region
will be particularly large. This is precisely the situation that is illustrated in
Figure 5.3. Think of 3; as the coefficient of the temperature and (32 as the
coefficient of the humidity.

In Exercise 5.9, readers are asked to show that, when there are two explana-
tory variables in a linear regression model, the correlation between the OLS
estimates of the parameters associated with these variables is the negative of
the correlation between the variables themselves. Thus, in the example we
have been discussing, a positive correlation between temperature and humid-
ity leads to a negative correlation between the estimates of the temperature
and humidity parameters, as shown in Figure 5.3. A point like (57, 5Y) is
excluded from the confidence region because the variation in electricity de-
mand cannot be accounted for if both coefficients are small. But /3] cannot be
excluded from the confidence interval for (3; alone, because 3}, which assigns
a small effect to the temperature, is perfectly compatible with the data if a
large effect is assigned to the humidity, that is, if Gy is substantially greater
than (5. At the same time, even though (3] is outside the confidence interval
for (31, the point (31, 35) is inside the confidence region, because the very high
value of (3} is enough to compensate for the very low value of /3.

The relation between a confidence region for two parameters and confidence
intervals for each of the parameters individually is a subtle one. It is tempting
to think that the ends of the intervals should be given by the extreme points
of the confidence ellipse. This would imply, for example, that the confidence
interval for (37 in the figure is given by the line segment C'D. Even without
the insight afforded by the temperature-humidity example, however, we can
see that this must be incorrect. The inequality (5.27) defines the confidence
region, for given parameter estimates B; and (32, as a set of values in the
space of the vector Bg. If instead we think of (5.27) as defining a region in
the space of BQ with B9 the true parameter vector, then we obtain a region
of exactly the same size and shape as the confidence region, because (5.27) is
symmetric in By and Bg. We can assign a probability of 1 — « to the event
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that Bg belongs to the new region, because the inequality (5.27) states that
the F statistic is less than its 1 — «. quantile, an event of which the probability
is 1 — «, by definition.

An exactly similar argument can be made for the confidence interval for (3;.
In the two-dimensional framework of Figure 5.3, the entire infinitely high
rectangle bounded by the vertical lines through the points A and B has the
same size and shape as an area with probability 1 — «, since we are willing
to allow 5 to take on any real value. Because the infinite rectangle and the
confidence ellipse must contain the same probability mass, neither can contain
the other. Therefore, the ellipse must protrude outside the region defined by
the one-dimensional confidence interval.

It can be seen from (5.27) that the orientation of a confidence ellipse and
the relative lengths of its axes are determined by Var(Bz) When the two
parameter estimates are positively correlated, the ellipse will be oriented from
lower left to upper right. When they are negatively correlated, it will be
oriented from upper left to lower right, as in Figure 5.3. When the correlation
is zero, the axes of the ellipse will be parallel to the coordinate axes. The
variances of the two parameter estimates determine the height and width of
the ellipse. If the variances are equal and the correlation is zero, the confidence
ellipse will be a circle.

Asymptotic and Bootstrap Confidence Regions

When test statistics like (5.26), with known finite-sample distributions, are
not available, the easiest way to construct an approximate confidence region
is to base it on the statistic (5.18), which can be used with any k-vector of
parameter estimates 6 that is root-n consistent and asymptotically normal
and has a covariance matrix that can be consistently estimated by Var(@) It
e, denotes the 1 — a quantile of the x?(k) distribution, then an approximate
1 — « confidence region is the set of all 8y such that

(6 — 680)T(Var(0)) ' (6 — ) < ca. (5.28)

Like the exact confidence region defined by (5.27), this asymptotic confidence
region will be elliptical or ellipsoidal.

We can also use the statistic (5.18) to construct bootstrap confidence regions,
making the same assumptions as were made above about 6 and Var(H) As we
did for bootstrap confidence intervals, we use just one bootstrap DGP, either
parametric or semiparametric, characterized by the parameter vector 6. For
each of B bootstrap samples, indexed by j, we obtain a vector of parameter
estimates 67 and an estimated covariance matrix Var*(67), in just the same
way as 6 and Var(@) were obtained from the original data. For each j, we
compute the bootstrap “test statistic”

= (6]

—0)7(Var*(62))"' (6% - 6), (5.29)

J
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which is the multivariate analog of (5.15). We then find the bootstrap critical
value ¢, which is the 1 — a quantile of the EDF of the 7. This is done by
sorting the 77 from smallest to largest and then taking the entry numbered
(B+1)(1 — «), assuming of course that a(B + 1) is an integer. For example,
if B =999 and a = .05, ¢, will be the 950*" entry in the sorted list. Then

the bootstrap confidence region is defined as the set of all 8y such that
(6 — 6,)"(Var(8)) (6 — 6y) < ct.. (5.30)

It is no accident that the bootstrap confidence region defined by (5.30) looks
very much like the asymptotic confidence region defined by (5.28). The only
difference is that the critical value ¢, which appears on the right-hand side
of (5.28), comes from the asymptotic distribution of the test statistic, while
the critical value ¢}, which appears on the right-hand side of (5.30), comes
from the empirical distribution of the bootstrap samples. Both confidence
regions will have the same elliptical shape. When ¢}, > ¢,, the region defined
by (5.30) will be larger than the region defined by (5.28), and the opposite

will be true when ¢, < ¢,.

Although this procedure is similar to the studentized bootstrap procedure
discussed in Section 5.3, its true analog is the procedure for obtaining a sym-
metric bootstrap confidence interval that is the subject of Exercise 5.7. That
procedure yields a symmetric interval because it is based on the square of
the t statistic. Similarly, because this procedure is based on the quadratic
form (5.18), the bootstrap confidence region defined by (5.30) is forced to
have the same elliptical shape (but not the same size) as the asymptotic con-
fidence region defined by (5.28). Of course, such a confidence region cannot
be expected to work very well if the finite-sample distribution of 0 does not
in fact have contours that are approximately elliptical.

In view of the many ways in which bootstrap confidence intervals can be
constructed, it should come as no surprise to learn that there are also many
other ways to construct bootstrap confidence regions. See Davison and Hink-
ley (1997) for references and a discussion of some of these.

5.5 Heteroskedasticity-Consistent Covariance Matrices

All the testing procedures we have used in this chapter and the preceding
one make use, implicitly if not explicitly, of standard errors or estimated
covariance matrices. If we are to make reliable inferences about the values of
parameters, these estimates should be reliable. In our discussion of how to
estimate the covariance matrix of the OLS parameter vector 3 in Sections 3.4
and 3.6, we made the rather strong assumption that the error terms of the
regression model are IID. This assumption is needed to show that s2(X T X)™!,
the usual estimator of the covariance matrix of ,5, is consistent in the sense
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of (5.22). However, even without the IID assumption, it is possible to obtain
a consistent estimator of the covariance matrix of 3.

In this section, we treat the case in which the error terms are independent
but not identically distributed. We focus on the linear regression model with
€X0genous regressors,

y=XB+u, E(u)=0, E(uu')= £, (5.31)

where §2, the error covariance matrix, is an n x n matrix with ¢** diagonal
element equal to w? and all the off-diagonal elements equal to 0. Since X
is assumed to be exogenous, the expectations in (5.31) can be treated as
conditional on X. Conditional on X, then, the error terms in (5.31) are
uncorrelated and have mean 0, but they do not have the same variance for all
observations. These error terms are said to be heteroskedastic, or to exhibit
heteroskedasticity, a subject of which we spoke briefly in Section 1.3. If,
instead, all the error terms do have the same variance, then, as one might
expect, they are said to be homoskedastic, or to exhibit homoskedasticity.
Here we assume that the investigator knows nothing about the w?. In other
words, the form of the heteroskedasticity is completely unknown.

The assumption in (5.31) that X is exogenous is fairly strong, but it is often
reasonable for cross-section data, as we discussed in Section 3.2. We make
it largely for simplicity, since we would obtain essentially the same asymp-
totic results if we replaced it with the weaker assumption (3.10) that X is
predetermined, that is, the assumption that E(u; | X;) = 0. When the data
are generated by a DGP that belongs to (5.31) with 8 = By, the exogeneity
assumption implies that ,é is unbiased; recall (3.09), which in no way depends
on assumptions about the covariance matrix of the error terms.

Whatever the form of the error covariance matrix 2, the covariance matrix
of the OLS estimator 3 is equal to

E((B-B0)B-B)") = (X X) ' X E(uu) X(XTX)
= (X' X)) X'2x(X'X)" (5.32)

This form of covariance matrix is often called a sandwich covariance matrix,
for the obvious reason that the matrix X '$2X is sandwiched between the
two instances of the matrix (X 'X)~!. The covariance matrix of an inefficient
estimator very often takes this sandwich form. We can see intuitively why the
OLS estimator is inefficient when there is heteroskedasticity by noting that
observations with low variance presumably convey more information about the
parameters than observations with high variance, and so the former should
be given greater weight in an efficient estimator.

If we knew the w?, we could easily evaluate the sandwich covariance matrix
(5.32). In fact, as we will see in Chapter 7, we could do even better and
actually obtain efficient estimates of 3. But it is assumed that we do not
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know the w?. Moreover, since there are n of them, one for each observation,
we cannot hope to estimate the w? consistently without making additional
assumptions. Thus, at first glance, the situation appears hopeless. However,
even though we cannot evaluate (5.32), we can estimate it without having to
attempt the impossible task of estimating {2 consistently.

For the purposes of asymptotic theory, we wish to consider the covariance
matrix, not of 3, but rather of n'/ 2(6 — Bo). This is just the limit of n times
the matrix (5.32). By distributing factors of n in such a way that we can take
limits of each of the factors in (5.32), we find that the asymptotic covariance
matrix of n'/2(3 — Bo) is

lim (£ X7X) " lim (2 x"2X) lim (LX7X) ) (5.33)
n—oo \T n—oo \1 n—oo \T
Under assumption (4.49), the factor lim(n~'X "X )~!, which appears twice in
(5.33) as the bread in the sandwich,! tends to a finite, deterministic, positive
definite matrix (Sx7x)~!. To estimate the limit, we can simply use the matrix
(n~!XTX)™! itself. What is not so trivial is to estimate the middle factor,
lim(n~'XT2X), the filling in the sandwich. In a very famous paper, White
(1980) showed that, under certain conditions, including the existence of the
limit, this matrix can be estimated consistently by

LxTax, (5.34)
n

where £2 is an inconsistent estimator of §2. As we will see, there are several
admissible versions of £2. The simplest version, and the one suggested in
White (1980), is a diagonal matrix with ¢'! diagonal element equal to 42, the
tth squared OLS residual.

The k x k matrix lim(n~'X $2X), which is the middle factor of (5.33), is sym-
metric. Therefore, it has only % (k? + k) distinct elements. Since this number
is independent of the sample size, this matrix can be estimated consistently.

Its it element is
. 1
lim_ (ﬁ > watith> . (5.35)
t=1
This is to be estimated by the ij ' element of (5.34), which, for the simplest
version of {2, is

LN i XXy (5.36)
t=1

1 1t is a moot point whether to call this limit an ordinary limit, as we do here, or
a probability limit, as we do in Section 4.5. The difference reflects the fact that,
there, X is generated by some sort of DGP, usually stochastic, while here, we
do everything conditional on X. We would, of course, need probability limits
if X were merely predetermined rather than exogenous.
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Because ,é is consistent for By, ; is consistent for u;, and 4? is therefore
consistent for u?. Thus, asymptotically, expression (5.36) is equal to

(Wi + ve) Xei Xy

3=
NE

n
1 2
D Ui XuXej =
t=1

ﬁ
I
_

(5.37)

n
2 1
wi Xy Xej + n E v X4 Xij,
t=1

M=

1
n

ﬁ
Il
=

where v; is defined to equal u7 minus its mean of w?. Under suitable assump-
tions about the X;; and the w?, we can apply a law of large numbers to the
second term in the second line of (5.37); see White (1980, 1984) for details.
Since vy has mean 0 by construction, this term converges to 0, while the first
term converges to (5.35).

The above argument shows that (5.37) tends in probability to (5.35). Because
(5.37) is asymptotically equivalent to (5.36), the latter also tends in proba-
bility to (5.35). Consequently, we can use (5.34), the matrix with typical
element (5.36), to estimate lim(n~'X "42X) consistently, and the matrix

(' XTX) I XT2X (n X TX) ! (5.38)

to estimate (5.33) consistently. Of course, in practice, we will ignore the
factors of n~! and use the matrix

Vary(8) = (XTX) ' X' 2X(X'X)! (5.39)

directly to estimate the covariance matrix of B.Q It is not difficult to modify
the arguments on asymptotic normality of the previous section so that they
apply to the model (5.31). Therefore, we conclude that the OLS estimator is
root-n consistent and asymptotically normal, with (5.39) being a consistent
estimator of its covariance matrix.

The sandwich estimator (5.39) that we have just derived is an example of
a heteroskedasticity-consistent covariance matrix estimator, or HCCME for
short. It was introduced to econometrics by White (1980), although there
were some precursors in the statistics literature, notably Eicker (1963, 1967)
and Hinkley (1977). By taking square roots of the diagonal elements of (5.39),
we can obtain standard errors that are asymptotically valid in the presence
of heteroskedasticity of unknown form. These heteroskedasticity-consistent
standard errors, which may also be referred to as heteroskedasticity-robust,
are often enormously useful.

2 The HCCME (5.39) depends on §2 only through X "2X, which is a symmetric
k x k matrix. Notice that we can compute the latter directly by calculating
k(k + 1)/2 quantities like (5.36) without the factor of n =1,
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Alternative Forms of HCCME

The original HCCME (5.39) that uses squared residuals to estimate the diag-
onals of §2 is often called HCy. However, it is not the best possible covariance
matrix estimator, because, as we saw in Section 3.6, least squares residuals
tend to be too small. There are several better estimators that inflate the
squared residuals slightly so as to offset this tendency. Three straightforward
ways of estimating the w? are the following:

e Use 47 (n/ (n — k:)), thus incorporating a degrees-of-freedom correction.
In practice, this means multiplying the entire matrix (5.39) by n/(n—k).
The resulting HCCME is often called HC.

e Used?/(1 — hy), where hy = X3 (X X)X} is the t*® diagonal element of
the “hat” matrix Px that projects orthogonally on to the space spanned
by the columns of X. Recall the result (3.44) that, when the variance
of all the wu; is 02 the expectation of 47 is o2(1 — hy). Therefore, the
ratio of 47 to 1 — h; would have expectation o2 if the error terms were
homoskedastic. The resulting HCCME is often called HC5.

e Use 42/(1 — hy)% This is a slightly simplified version of what one gets
by employing a statistical technique called the jackknife. Dividing by
(1 — hy)? may seem to be overcorrecting the residuals. However, when
the error terms are heteroskedastic, observations with large variances will
tend to influence the estimates a lot, and they will therefore tend to have
residuals that are very much too small. Thus, this estimator, which yields
an HCCME that is often called HC'3, may be attractive if large variances
are associated with large values of h;.

The argument used in the preceding subsection for HC\ shows that all of
these procedures will give the correct answer asymptotically, but none of them
can be expected to do so in finite samples. In fact, inferences based on any
HCCME, especially HCy, may be seriously inaccurate even in samples of
moderate size.

It is not clear which of the more sophisticated procedures will work best in any
particular case, although they can all be expected to work better than simply
using the squared residuals without any adjustment. When some observations
have much higher leverage than others, the methods that use the h; might be
expected to work better than simply using a degrees-of-freedom correction.
These methods were first discussed by MacKinnon and White (1985), who
found some evidence that the jackknife seemed to work best. Later simulations
by Long and Ervin (2000) also support the use of HC3. However, theoretical
work by Chesher (1989) and Chesher and Austin (1991) gave more ambiguous
results and suggested that HC might sometimes outperform HCj5. It appears
that the best procedure to use depends on the X matrix and on the form of
the heteroskedasticity.
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When Does Heteroskedasticity Matter?

Even when the error terms are heteroskedastic, there are cases in which we
do not necessarily have to use an HCCME. Consider the ij*" element of
n~1X 02X, which is

n
1
- Z W2 X1 X5 (5.40)
t=1
If the limit as n — oo of the average of the w?, t = 1,...,n, exists and is

denoted o2, then (5.40) can be written as
n n
1 1
0'25 ZXtith + E Z(w? — UQ)Xtith.
t=1 t=1

The first term here is just the 75" element of o?2n !X "X. Should it be the
case that

lim + 5 (w? — 02 XXy, =0 (5.41)
fori,7=1,...,k, then we find that

lim (lXTnX) = 62 lim (lXTX). (5.42)
n n

n—o0o n—oo

In this special case, we can replace the middle term of (5.33) by the right-
hand side of (5.42), and we find that the asymptotic covariance matrix of

nl/2(3 — By) is just
—1 —1 —1
lim (% XTX) o2 lim (% XTX) lim (% XTX) — o2 lim (% XTX) .

The usual OLS estimate of the error variance is
1 n
2 A2
§° = us,
n—k tz_:l ¢

and, if we assume that we can apply a law of large numbers, the probability
limit of this is

. 1
nh—>r20 - Zw% = o? (5.43)
t=1

by definition. Thus we see that, in this special case, the usual OLS covariance
matrix estimator (3.50) will be valid asymptotically. This important result
was originally shown by White (1980).

Equation (5.41) always holds when we are estimating only a sample mean. In
that case, X =, a vector with typical element ¢, = 1, and

n

n n

1 2 _ 1 22 _1 2 2

EE th“th_ﬁE Wtbt—ﬁg w; — 0° as n — o0.
t=1 t=1 t=1
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This shows that we do not have to worry about heteroskedasticity when cal-
culating the standard error of a sample mean. Of course, equation (5.41) also
holds when the error terms are homoskedastic. In that case, the o2 given
by (5.43) is just the variance of each of the error terms.

Although equation (5.41) holds only in certain special cases, it does make
one thing clear. Any form of heteroskedasticity affects the efficiency of the
ordinary least squares parameter estimator, but only heteroskedasticity that
is related to the squares and cross-products of the Xj; affects the validity of
the usual OLS covariance matrix estimator.

HAC Covariance Matrix Estimators

All HCCMESs depend on the assumption that §2 is diagonal. We are able to
compute them because we can consistently estimate the matrix n= !X 02X,
even though we cannot consistently estimate the matrix {2 itself. For essen-
tially the same reason, we can obtain valid covariance matrix estimators even
when {2 is not a diagonal matrix. However, in order for us to be able to
estimate n ' X '2X consistently when §2 is unknown and is not diagonal, all
the off-diagonal elements which are not close to the principal diagonal must
be sufficiently small.

When the error terms of a regression model are correlated among themselves,
then, as we mentioned in Section 1.3, they are said to display serial correla-
tion or autocorrelation. Serial correlation is frequently encountered in models
estimated using time series data. Often, observations that are close to each
other are strongly correlated, but observations that are far apart are uncor-
related or nearly so. In this situation, only the elements of §2 that are on
or close to the principal diagonal will be large. When this is the case, we
may be able to obtain an estimate of the covariance matrix of the parameter
estimates that is heteroskedasticity and autocorrelation consistent, or HAC.
Computing a HAC covariance matrix estimator is essentially similar to com-
puting an HCCME, but a good deal more complicated. HAC estimators will
be discussed in Chapter 9.

5.6 The Delta Method

Econometricians often want to perform inference on nonlinear functions of
model parameters. This requires them to estimate the standard error of a
nonlinear function of parameter estimates or, more generally, the covariance
matrix of a vector of such functions. One popular way to do so is called the
delta method. It is based on an asymptotic approximation.

For simplicity, let us start with the case of a single parameter. Suppose that we
have estimated a scalar parameter 6, which might be one of the coefficients of a
linear regression model, and that we are interested in the parameter v = g(#),
where ¢(+) is a monotonic function that is continuously differentiable. In this
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Figure 5.4 Taylor’s Theorem

situation, the obvious way to estimate vy is to use 4 = g(é) Since 6 is a random
variable, so is 4. The problem is to estimate the variance of 4.

Since 4 is a function of 0, it seems logical that Var (%) should be a function of
Var(0). If g(0) is a linear or affine function, then we already know how to cal-
culate Var(%); recall the result (3.33). The idea of the delta method is to find

a linear approximation to g(6) and then apply (3.33) to this approximation.

Taylor’s Theorem

It is frequently necessary in econometrics to obtain linear approximations
to nonlinear functions. The mathematical tool most commonly used for this
purpose is Taylor’s Theorem. In its simplest form, Taylor’s Theorem applies to
functions of a scalar argument that are differentiable at least once on some real
interval [a, b], with the derivative a continuous function on [a,b]. Figure 5.4
shows the graph of such a function, f(x), for = € [a, b].

The coordinates of A are (a, f(a)), and those of B are (b, f(b)). Thus the
slope of the line AB is (f(b) — f(a))/(b— a). What drives the theorem is the
observation that there must always be a value between a and b, like ¢ in the
figure, at which the derivative f’(c) is equal to the slope of AB. This is a
consequence of the continuity of the derivative. If it were not continuous, and
the graph of f(z) had a corner, the slope might always be greater than f’(c)
on one side of the corner, and always be smaller on the other. But if f/(z) is
continuous on [a, b], then there must exist ¢ such that

Fb) = fla)

R
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This can be rewritten as f(b) = f(a)+ (b—a)f'(c). If we let h = b— a, then,
since c¢ lies between a and b, it must be the case that ¢ = a + th, for some t
between 0 and 1. Thus we obtain

fla+h) = f(a) + hf'(a+th). (5.44)

Equation (5.44) is the simplest expression of Taylor’s Theorem.

Although (5.44) is an exact relationship, it involves the quantity ¢, which
is unknown. It is more usual just to set ¢ = 0, so as to obtain a linear
approximation to the function f(z) for z in the neighborhood of a. This
approximation, called a first-order Taylor expansion around a, is

fla+h) = f(a) + hf'(a),
where the symbol “=” means “is approximately equal to.” The right-hand
side of this equation is an affine function of h.

Taylor’s Theorem can be extended in order to provide approximations that
are quadratic or cubic functions, or polynomials of any desired order. The
exact statement of the theorem, with terms proportional to powers of A up
to AP, is

Ly WP
fla+h) = f(a) + ; ﬁf@)(a) + Ef@)(a + th).

Here f*) is the i*" derivative of f, and once more 0 < ¢ < 1. The approximate
version of the theorem sets t = 0 and gives rise to a pth-order Taylor expansion
around a. A commonly-encountered example of the latter is the second-order
Taylor expansion

fla+h)= f(a) + hf'(a) + 5h*f"(a).

Both versions of Taylor’s Theorem require as a regularity condition that f(x)
should have a p*® derivative that is continuous on [a,a + h].

There are also multivariate versions of Taylor’s Theorem, and we will need
them from time to time. If f(x) is now a scalar-valued function of the
m~-vector x, then, for p = 1, Taylor’s Theorem states that, if h is also an
m~vector, then

f(@+h)=f(@)+>_ hifj(x+th), (5.45)

j=1

where h; is the j' component of h, f; is the partial derivative of f with
respect to its j** argument, and, as before, 0 < ¢t < 1.
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The Delta Method for a Scalar Parameter

If we assume that the estimator @ is root-n consistent and asymptotically
normal, then
n'2(0 — 69) ~ N(0,V>(9)), (5.46)

where f denotes the true value of 6. We will use Voo(é) as a shorthand way
of writing the asymptotic variance of n'/2(6 — 6;).

In order to find the asymptotic distribution of 4 = g(é), we perform a first-

~

order Taylor expansion of g(f) around 6. We obtain:

422 g(60) + g’ (60) (0 — o), (5.47)

where ¢’ () is the first derivative of ¢g(), evaluated at 6. Given the root-n
consistency of é, (5.47) can be rearranged into an asymptotic equality. Two
deterministic quantities are said to be asymptotically equal if they tend to
the same limits as n — oo. Similarly, two random quantities are said to be
asymptotically equal if they tend to the same limits in probability. As usual,
we need a power of n to make things work correctly. Here, we multiply both
sides of (5.47) by n'/2. If we denote g(fy), which is the true value of v, by 7o,
then (5.47) becomes

n2(5 —50) £ ghn'/2(0 — 0y), (5.48)

where the symbol £ is used for asymptotic equality, and g, = ¢’(6p). In
Exercise 5.13, readers are asked to check that, if we perform a second-order
Taylor expansion, the last term of the expansion vanishes asymptotically. This
justifies (5.48) as an asymptotic equality.

Equation (5.48) shows that n'/2(§—~y) is asymptotically normal with mean 0,
since the right-hand side of (5.48) is just g(, times a quantity that is asymp-
totically normal with mean 0; recall (5.46). The variance of n'/?(§ — 7o) is
clearly (gh)2V>°(6), and so we conclude that

n'2(5 = 70) © N (0, (g))>V>=(9)). (5.49)

This shows that 4 is root-n consistent and asymptotically normal when 0 is.

The result (5.49) leads immediately to a practical procedure for estimating
the standard error of 4. If the standard error of 6 is sy, then the standard
error of 4 will be

Sy = ‘gl(é)

This procedure can be based on any asymptotically valid estimator of the
standard deviation of §. For example, if 8 were one of the coefficients of a
linear regression model, then sy could be the square root of the corresponding
diagonal element of the usual estimated OLS covariance matrix, or it could

S0 (5.50)
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be the square root of the corresponding diagonal element of an estimated
heteroskedasticity-consistent covariance matrix.

In practice, the delta method is usually very easy to use. For example, consider
the case in which v = 6% Then ¢/(f) = 26, and the formula (5.50) tells us
that s, = 2|é|59. Notice that s, depends on 0, something that is not true for
either the usual OLS standard error or the heteroskedasticity-consistent one
discussed in the preceding section.

Confidence Intervals and the Delta Method

Although the result (5.50) is simple and practical, it reveals some of the lim-
itations of asymptotic theory. Whenever the relationship between 6 and v is
nonlinear, it is impossible that both of them should be normally distributed in
finite samples. Suppose that 6 really did happen to be normally distributed.
Then, unless g(-) were linear, 4 could not possibly be normally, or even sym-
metrically, distributed. Similarly, if 4 were normally distributed, 6 could not
be. Moreover, as the example at the end of the last subsection showed, s,
will generally depend on 6. This implies that the numerator of a t statistic
for v will not be independent of the denominator. However, independence
was essential to the result, in Section 4.4, that the t statistic actually follows
the Student’s t distribution.

The preceding arguments suggest that confidence intervals and test statis-
tics based on asymptotic theory will often not be reliable in finite samples.
Asymptotic normality of the parameter estimates is an essential underpinning
of all asymptotic tests and confidence intervals or regions. When the finite-
sample distributions of estimates are far from the limiting normal distribution,
asymptotic procedures cannot be expected to perform well.

Despite these caveats, we may still wish to construct an asymptotic confidence
interval for v based on (5.08). The result is

[ = 5y21-(ay2)s A+ SyZ1—(a/2)]» (5.51)

where s, is the delta method estimate (5.50), and 2z;_(q/2) is the 1 — (a/2)
quantile of the standard normal distribution. This confidence interval can
be expected to work well whenever the finite-sample distribution of ¥ is well
approximated by the normal distribution and s, is a reliable estimator of its
standard deviation.

Using (5.08) is not the only way to obtain an asymptotic confidence interval
for ~, however. Another approach, which usually leads to an asymmetric
interval, is to transform the asymptotic confidence interval for the underlying
parameter 6. The latter interval, which is similar to (5.08), is

~

[0 — 5021 (a/2): 0+ $021—(a)2))-
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Transforming the endpoints of this interval by the function g gives the follow-
ing interval for ~:

~

[9(9 — 892’1,(04/2)), g(é + 8921,(0[/2))}. (5.52)

This assumes that ¢’(6) > 0. If ¢/(d) < 0, the two ends of the interval
would have to be interchanged. Whenever g(6) is a nonlinear function, the
confidence interval (5.52) will be asymmetric. It can be expected to work
well if the finite-sample distribution of 0 is well approximated by the normal
distribution and sy is a reliable estimator of the standard deviation of 0.

The bootstrap confidence interval for 6, (5.17), can also be transformed by ¢
in order to obtain a bootstrap confidence interval for . The result is

~ ~

[9(0 = s6¢7_(0a/2))s 9(0 = s0¢0)], (5.53)

where ¢, 5 and ¢_, /9y are, as in (5.17), the entries indexed by (a/2)(B +1)
and (1 — (a/2))(B + 1) in the sorted list of bootstrap ¢ statistics ¢}.

Yet another way to construct a bootstrap confidence interval is to bootstrap
the t statistic for « directly. Using the original data, we compute 6 and S0,
and then 4 and s, in terms of them. The bootstrap DGP is the same as the
one used to obtain a bootstrap confidence interval for 6, but this time, for each
bootstrap sample j, j = 1,..., B, we compute 7; and (57)’;. The bootstrap
“t statistics” (v; —4)/(s4)} are then sorted. If (c,)7, o and (¢y)]_(, /2y denote
the entries indexed by (a/2)(B+1) and (1 — («/2))(B + 1) in the sorted list,
then the (asymmetric) bootstrap confidence interval is

ﬁ - S’Y(C’Y)T—(a/2)7 Y- 57(07):;/2}' (5.54)

As readers are asked to check in Exercise 5.16, the intervals (5.53) and (5.54)
are not the same.

The Vector Case

The result (5.49) can easily be extended to the case in which both 6 and - are
vectors. Suppose that the former is a k-vector and the latter is an [-vector,
with { < k. The relation between 6 and ~ is v = g(6), where g(0) is an
[-vector of monotonic functions that are continuously differentiable. The
vector version of (5.46) is

n'/2(6 — 6y) ~ N(0,V>=(8)), (5.55)
where V() is the asymptotic covariance matrix of the vector n'/2(8 — ).
Using the result (5.55) and a first-order Taylor expansion of g(@) around 8,
it can be shown that the vector analog of (5.49) is

n'2(§ = 40) £ N(0,GoV=(0) G ), (5.56)

Copyright (©) 1999, Russell Davidson and James G. MacKinnon



208 Confidence Intervals

where Gy is an | X k matrix with typical element dg;(0)/00;, evaluated at 6y;
see Exercise 5.14. The asymptotic covariance matrix that appears in (5.56) is

an [ x [ matrix. It has full rank [ if V'°°(0) is nonsingular and the matrix of
derivatives G has full rank [.

In practice, the covariance matrix of 4 may be estimated by the matrix
Var(4) = G Var(6) G, (5.57)

where @(é) is the estimated covariance matrix of 8, and G = G(6). This
result, which is similar to (3.33), can be very useful. However, like all results
based on asymptotic theory, it should be used with caution. As in the scalar
case discussed above, 4 cannot possibly be normally distributed if 0 is.

Bootstrap Standard Errors

The delta method is not the only way to obtain standard errors and covariance
matrices for functions of parameter estimates. The bootstrap can also be used
for this purpose. Indeed, much of the early work on the bootstrap, such as
Efron (1979), was largely concerned with bootstrap standard errors.

Suppose that, as in the previous subsection, we wish to calculate the covar-

~

iance matrix of the vector 4 = g(0). A bootstrap procedure for doing this is:

1. Specify a bootstrap DGP, which may be parametric or semiparametric,
and use it to generate B bootstrap samples, y.

2. For each bootstrap sample, use y; to compute the parameter vector 67,
and then use 87 to compute ;.

3. Calculate ¥, the mean of the v;. Then calculate the estimated bootstrap
covariance matrix,

1
B

J

(3 =) =7
1

B
Var®(3) =
If desired, bootstrap standard errors may be calculated as the square
roots of the diagonal elements of this matrix.

Bootstrap standard errors, which may or may not be more accurate than ones
based on asymptotic theory, can certainly be useful as descriptive statistics.
However, using them for inference generally cannot be recommended. In
many cases, calculating bootstrap standard errors is almost as much work as
calculating studentized bootstrap confidence intervals. As we noted at the
end of Section 5.3, there are theoretical reasons to believe that the latter will
yield more accurate inferences than confidence intervals based on asymptotic
theory, including asymptotic confidence intervals that use bootstrap standard
errors. Thus, if we are going to go to the trouble of calculating a large number
of bootstrap estimates anyway, we can do better than just using them to
compute bootstrap standard errors.
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5.7 Final Remarks

In this chapter, we have discussed a number of methods for constructing confi-
dence intervals. They are all based on the idea of inverting a test statistic, and
most of them are in no way restricted to OLS estimation. We first construct a
family of test statistics for the null hypotheses that the parameter of interest
is equal to a particular value, and then the limits of the confidence interval are
obtained by solving the equation that sets the statistic equal to the critical
values given by some appropriate distribution. The critical values may be
quantiles of a finite-sample distribution, such as the Student’s ¢ distribution,
quantiles of an asymptotic distribution, such as the standard normal distribu-
tion, or quantiles of a bootstrap EDF. Procedures for constructing confidence
regions are very similar to those for constructing confidence intervals.

All of the methods for constructing confidence intervals and regions that we
have discussed require standard errors or, more generally, estimated covar-
iance matrices. The chapter therefore includes a good deal of material on
how to estimate these under weaker assumptions than were made in Chap-
ter 3. Much of this material is widely applicable. Methods for estimation of
covariance matrices in the presence of heteroskedasticity of unknown form,
similar to those discussed in Section 5.5, are useful in the context of many
different methods of estimation. The delta method, which was discussed in
Section 5.6, is even more general, since it can be used whenever one parameter,
or vector of parameters, is a nonlinear function of another.

5.8 Exercises

5.1 Find the .025, .05, .10, and .20 quantiles of the standard normal distribution.
Use these to obtain whatever quantiles of the x?(1) distribution you can.

5.2 Starting from the square of the t statistic (5.11), and using the F(1,n — k)
distribution, obtain a .99 confidence interval for the parameter 2 in the
classical normal linear model (4.21).

5.3 The file earnings.data contains sorted data on four variables for 4266 indi-
viduals. One of the variables is income, y, and the other three are dummy
variables, dy, d2, and d3, which correspond to different age ranges. Regress y
on all three dummy variables. Then use the regression output to construct
a .95 asymptotic confidence interval for the mean income of individuals that
belong to age group 3.

5.4 Using the same data as Exercise 5.3, regress y on a constant for individuals
in age group 3 only. Use the regression output to construct a .95 asymptotic
confidence interval for the mean income of group 3 individuals. Explain why
this confidence interval is not the same as the one you constructed previously.

5.5 Generate 999 realizations of a random variable that follows the x?(2) distri-
bution, and find the .95 and .99 “quantiles” of the EDF, that is the 950 th
and 990" entries in the sorted list of the realizations. Compare these with
the .95 and .99 quantiles of the x*(2) distribution.
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5.6

5.7

5.8

5.9

5.10

5.11

5.12

Confidence Intervals

Using the data in the file earnings.data, construct a .95 studentized bootstrap
confidence interval for the mean income of group 3 individuals. Explain why
this confidence interval differs from the one you constructed in Exercise 5.4.

Explain in detail how to construct a symmetric bootstrap confidence interval
based on the possibly asymptotic ¢ statistic (6 —6p)/sg. Express your answer
in terms of entries in a sorted list of bootstrap t statistics.

Show that the F' statistic for the null hypothesis that 82 = B2g in the model
(5.24), or, equivalently, for the null hypothesis that v2 = 0 in (5.25), can be
written as (5.26). Interpret the numerator of expression (5.26) as a random
variable constructed from the multivariate normal vector 3s.

Consider a regression model with just two centered explanatory variables,
and xo:
y = biz1 + faxa + u. (5.58)

Let p denote the sample correlation of &1 and 2. By the sample correlation,
we mean

Yoy X1 Xeo
n n 1/2°
() X2)(S, X3)

where X1 and X;o are typical elements of 1 and x2, respectively. This can
be interpreted as the correlation of the joint EDF of 1 and x».

p

Show that, under the assumptions of the classical normal linear model, the
correlation between the OLS estimates 1 and B2 is equal to —p. Which, if
any, of the assumptions of this model can be relaxed without changing this
result?

Consider the .05 level confidence region for the parameters 81 and (2 of the
regression model (5.58). In the two-dimensional space 8(x1, x2) generated by
the two regressors, consider the set of points of the form B9z 4+ B20x2, where
(P10, B20) belongs to the confidence region. Show that this set is a circular
disk with center at the OLS estimates (w1ﬁ1 + 332,32). What is the radius of
the disk?

Using the data in the file earnings.data, regress y on all three dummy variables,
and compute a heteroskedasticity-consistent standard error for the coefficient
of d3. Using these results, construct a .95 asymptotic confidence interval for
the mean income of individuals that belong to age group 3. Compare this
interval with the ones you constructed in Exercises 5.3, 5.4, and 5.6.

Generate N simulated data sets, where N is between 1000 and 1,000,000,
depending on the capacity of your computer, from each of the following two
data generating processes:

DGP 1: y; = 1 + 2 Xp2 + 33 X3 +us, wup ~ N(0,1)
2
DGP 2: y; = 081 + BoXso + B3 X3 +ug, up ~ N(070t2); Ut2 = (E(y))".

There are 50 observations, 3 = [1 i 1 i 1], and the data on the exogenous
variables are to be found in the file mw.data. These data were originally used
by MacKinnon and White (1985).
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5.13

5.14

5.15

5.16

5.17

For each of the two DGPs and each of the N simulated data sets, construct
.95 confidence intervals for 31 and (2 using the usual OLS covariance matrix
and the HCCMEs HCy, HC, HC5, and HC3. The OLS interval should be
based on the Student’s ¢ distribution with 47 degrees of freedom, and the
others should be based on the N(0, 1) distribution. Report the proportion of
the time that each of these confidence intervals included the true values of
the parameters.

On the basis of these results, which covariance matrix estimator would you
recommend using in practice?

Write down a second-order Taylor expansion of the nonlinear function g(é)
around 6y, where 0 is an OLS estimator and 0o is the true value of the
parameter 6. Explain why the last term is asymptotically negligible relative
to the second term.

Using a multivariate first-order Taylor expansion, show that, if v = g(0), the
asymptotic covariance matrix of the [-vector nlt/ 2(’7 —~p) is given by the
I x | matrix GoV>=(8)Gy'. Here 8 is a k-vector with k > I, Go is an | X k
matrix with typical element Jg;(6)/00;, evaluated at 6y, and V() is the
k x k asymptotic covariance matrix of nl/z(é —6p).

Suppose that v = exp(3) and B = 1.324, with a standard error of 0.2432.
Calculate 4 = exp(3) and its standard error.

Construct two different .99 confidence intervals for . One should be based
on (5.51), and the other should be based on (5.52).

Construct two .95 bootstrap confidence intervals for the log of the mean in-
come (not the mean of the log of income) of group 3 individuals from the
data in earnings.data. These intervals should be based on (5.53) and (5.54).
Verify that these two intervals are different.

Use the DGP
yr = 0.8ys—1 +ug, ur ~ NID(0,1)

to generate a sample of 30 observations. Using these simulated data, obtain
estimates of p and o2 for the model

yt = pyi—1 +ug, E(ur) =0, E(upus) = o261,
where d;s is the Kronecker delta introduced in Section 1.4. By use of the

parametric bootstrap with the assumption of normal errors, obtain two .95
confidence intervals for p, one symmetric, the other asymmetric.
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Chapter 6

Nonlinear Regression

6.1 Introduction

Up to this point, we have discussed only linear regression models. For each
observation t of any regression model, there is an information set €2; and a
suitably chosen vector X; of explanatory variables that belong to £2;. A linear
regression model consists of all DGPs for which the expectation of the depen-
dent variable y; conditional on €2; can be expressed as a linear combination
X; 3 of the components of X;, and for which the error terms satisfy suitable
requirements, such as being IID. Since, as we saw in Section 1.3, the elements
of X; may be nonlinear functions of the variables originally used to define €2,
many types of nonlinearity can be handled within the framework of the lin-
ear regression model. However, many other types of nonlinearity cannot be
handled within this framework. In order to deal with them, we often need to
estimate nonlinear regression models. These are models for which E(y; | ;)
is a nonlinear function of the parameters.

A typical nonlinear regression model can be written as

e = 24(8) +ug, ug ~1ID(0,0%), t=1,...,n, (6.01)
where, just as for the linear regression model, y; is the t*!' observation on
the dependent variable, and 3 is a k-vector of parameters to be estimated.
The scalar function z,(3) is a nonlinear regression function. It determines
the mean value of y; conditional on €2;, which is made up of some set of
explanatory variables. These explanatory variables, which may include lagged
values of y; as well as exogenous variables, are not shown explicitly in (6.01).
However, the ¢ subscript of z;(3) indicates that the regression function varies
from observation to observation. This variation usually occurs because x(3)
depends on explanatory variables, but it can also occur because the functional
form of the regression function actually changes over time. The number of
explanatory variables, all of which must belong to );, need not be equal to k.

The error terms in (6.01) are specified to be IID. By this, we mean something
very similar to, but not precisely the same as, the two conditions in (4.48). In
order for the error terms to be identically distributed, the distribution of each
error term wu;, conditional on the corresponding information set €2;, must be
the same for all £. In order for them to be independent, the distribution of wu;,
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conditional not only on €); but also on all the other error terms, should be
the same as its distribution conditional on {2; alone, without any dependence
on the other error terms.

Another way to write the nonlinear regression model (6.01) is
y=z(8) +u, u~IID(0,s%), (6.02)

where y and u are n-vectors with typical elements y; and us, respectively,
and z(83) is an n-vector of which the ¢'" element is x;(3). Thus x(3) is the
nonlinear analog of the vector X3 in the linear case.

As a very simple example of a nonlinear regression model, consider the model

1
ye = B1 + BaZi + ﬁ—ztz +ug,  u ~ 1ID(0,0%), (6.03)
2

where Z;1 and Z;9 are explanatory variables. For this model,

x4(B) = B1 + P22 + iZﬂ-
&)

Although the regression function x(3) is linear in the explanatory variables,
it is nonlinear in the parameters, because the coefficient of Z;5 is constrained
to equal the inverse of the coefficient of Z;;. In practice, many nonlinear
regression models, like (6.03), can be expressed as linear regression models in
which the parameters must satisfy one or more nonlinear restrictions.

The Linear Regression Model with AR(1) Errors

We now consider a particularly important example of a nonlinear regression
model that is also a linear regression model subject to nonlinear restrictions
on the parameters. In Section 5.5, we briefly mentioned the phenomenon of
serial correlation, in which nearby error terms in a regression model are (or
appear to be) correlated. Serial correlation is very commonly encountered in
applied work using time-series data, and many techniques for dealing with it
have been proposed. One of the simplest and most popular ways of dealing
with serial correlation is to assume that the error terms follow the first-order
autoregressive, or AR(1), process

ug = pug_q1 +ep, e ~1ID(0,02), |p| < 1. (6.04)

According to this model, the error at time ¢ is equal to p times the error at
time t — 1, plus a new error term ¢¢. The vector € with typical component &;
satisfies the IID condition we discussed above. This condition is enough for €,
to be an innovation in the sense of Section 4.5. Thus the ¢; are homoskedastic
and independent of all past and future innovations. We see from (6.04) that,
in each period, part of the error term w; is the previous period’s error term,
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shrunk somewhat toward zero and possibly changed in sign, and part is the
innovation ;. We will discuss serial correlation, including the AR(1) process
and other autoregressive processes, in Chapter 7. At present, we are concerned
solely with the nonlinear regression model that results when the errors of a
linear regression model are assumed to follow an AR(1) process.

If we combine (6.04) with the linear regression model
Y= XiB+ w (6.05)

by substituting pu;_1 + &; for u; and then replacing u;_1 by y;—1 — X3 10,
we obtain the nonlinear regression model

Y = pyr—1 + XuB—p Xy 1B +er, e ~1ID(0, 052)- (6.06)

Since the lagged dependent variable y; 1 appears among the regressors, this
is a dynamic model. As with the other dynamic models that are treated
in the exercises, we have to drop the first observation, because yy and Xj
are assumed not to be available. The model is linear in the regressors but
nonlinear in the parameters 8 and p, and it therefore needs to be estimated
by nonlinear least squares or some other nonlinear estimation method.

In the next section, we study estimators for nonlinear regression models gen-
erated by the method of moments, and we establish conditions for asymptotic
identification, asymptotic normality, and asymptotic efficiency. Then, in Sec-
tion 6.3, we show that, under the assumption that the error terms are I1D, the
most efficient MM estimator is nonlinear least squares, or NLS. In Section 6.4,
we discuss various methods by which NLS estimates may be computed. The
method of choice in most circumstances is some variant of Newton’s Method.
One commonly-used variant is based on an artificial linear regression called
the Gauss-Newton regression. We introduce this artificial regression in Sec-
tion 6.5 and show how to use it to compute NLS estimates and estimates of
their covariance matrix. In Section 6.6, we introduce the important concept
of one-step estimation. Then, in Section 6.7, we show how to use the Gauss-
Newton regression to compute hypothesis tests. Finally, in Section 6.8, we
introduce a modified Gauss-Newton regression suitable for use in the pres-
ence of heteroskedasticity of unknown form.

6.2 Method of Moments Estimators for Nonlinear Models

In Section 1.5, we derived the OLS estimator for linear models from the
method of moments by using the fact that, for each observation, the mean
of the error term in the regression model is zero conditional on the vector of
explanatory variables. This implied that

E(Xyu) = E(X(y: — X:8)) = 0. (6.07)
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The sample analog of the middle expression here is n~ !X '(y — X3). Setting
this to zero and ignoring the factor of n~!, we obtained the vector of moment
conditions

X'(y - XB) =0, (6.08)

and these conditions were easily solved to yield the OLS estimator B We now
want to employ the same type of argument for nonlinear models.

An information set €); is typically characterized by a set of variables that
belong to it. But, since the realization of any deterministic function of these
variables is known as soon as the variables themselves are realized, €); must
contain not only the variables that characterize it but also all determinis-
tic functions of them. As a result, an information set 2; contains precisely
those variables which are equal to their expectations conditional on €2;. In
Exercise 6.1, readers are asked to show that the conditional expectation of a
random variable is also its expectation conditional on the set of all determin-
istic functions of the conditioning variables.

For the nonlinear regression model (6.01), the error term u; has mean 0 con-
ditional on all variables in ;. Thus, if W; denotes any 1 x k vector of which
all the components belong to €2,

E(Wiu) = B(Wi (s — 2(8))) = 0. (6.09)

Just as the moment conditions that correspond to (6.07) are (6.08), the mo-
ment conditions that correspond to (6.09) are

Wi(y—=z(8)) =0, (6.10)

where W is an n x k matrix with typical row W,. There are k nonlinear
equations in (6.10). These equations can, in principle, be solved to yield an
estimator of the k-vector 3. Geometrically, the moment conditions (6.10)
require that the vector of residuals should be orthogonal to all the columns
of the matrix W.

How should we choose W7 There are infinitely many possibilities. Almost
any matrix W, of which the ¢t** row depends only on variables that belong
to 4, and which has full column rank k asymptotically, will yield a consis-
tent estimator of 3. However, these estimators will in general have different
asymptotic covariance matrices, and it is therefore of interest to see if any
particular choice of W leads to an estimator with smaller asymptotic var-
iance than the others. Such a choice would then lead to an efficient estimator,
judged by the criterion of the asymptotic variance.

Identification and Asymptotic Identification

Let us denote by ,3 the MM estimator defined implicitly by (6.10). In order to
show that 3 is consistent, we must assume that the parameter vector 3 in the
model (6.01) is asymptotically identified. In general, a vector of parameters
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is said to be identified by a given data set and a given estimation method if,
for that data set, the estimation method provides a unique way to determine
the parameter estimates. In the present case, 3 is identified by a given data
set if equations (6.10) have a unique solution.

For the parameters of a model to be asymptotically identified by a given es-
timation method, we require that the estimation method provide a unique
way to determine the parameter estimates in the limit as the sample size n
tends to infinity. In the present case, asymptotic identification can be for-
mulated in terms of the probability limit of the vector n*1WT(y — w(,@)) as
n — o0o. Suppose that the true DGP is a special case of the model (6.02) with
parameter vector By. Then we have

Wiy —2(B0) = 5 > Wi . (6.11)
t=1

By (6.09), every term in the sum above has mean 0, and the IID assumption
in (6.02) is enough to allow us to apply a law of large numbers to that sum. It
follows that the right-hand side, and therefore also the left-hand side, of (6.11)
tends to zero in probability as n — oo.

Let us now define the k-vector of deterministic functions a(3) as follows:

a(B) = plim LW (y — z(8)), (6.12)

n—oo

where we continue to assume that y is generated by (6.02) with By. The law
of large numbers can be applied to the right-hand side of (6.12) whatever the
value of 3, thus showing that the components of v are deterministic. In the
preceding paragraph, we explained why a(8p) = 0. The parameter vector 3
will be asymptotically identified if Bq is the unique solution to the equations

a(B) = 0, that is, if a(8) # 0 for all 8 # (.

Although most parameter vectors that are identified by data sets of reasonable
size are also asymptotically identified, neither of these concepts implies the
other. It is possible for an estimator to be asymptotically identified without
being identified by many data sets, and it is possible for an estimator to
be identified by every data set of finite size without being asymptotically
identified. To see this, consider the following two examples.

As an example of the first possibility, suppose that y, = (1 + (22, where z;
is a random variable which follows the Bernoulli distribution. Such a random
variable is often called a binary variable, because there are only two possible
values it can take on, 0 and 1. The probability that z; = 1 is p, and so
the probability that z; = 0 is 1 — p. If p is small, there could easily be
samples of size n for which every z; was equal to 0. For such samples, the
parameter (o cannot be identified, because changing B> can have no effect
on y; — 81 — (2z;. However, provided that p > 0, both parameters will be
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identified asymptotically. As n — oo, a law of large numbers guarantees that
the proportion of the z; that are equal to 1 will tend to p.

As an example of the second possibility, consider the model (3.20), discussed
in Section 3.3, for which y; = (1 + B21/¢ + u¢, where ¢ is a time trend. The
OLS estimators of 31 and 5 can, of course, be computed for any finite sample
of size at least 2, and so the parameters are identified by any data set with
at least 2 observations. But (35 is not identified asymptotically. Suppose that
the true parameter values are 3 and 9. Let us use the two regressors for the
variables in the information set 2, so that W; = [1 1/;] and the MM estimator
is the same as the OLS estimator. Then, using the definition (6.12), we obtain

nIS (8 = Bu) + (B9 — B2) + ue)
nUE (L (BY — B) + Y2(89 — Ba) + Yrur)

It is known that the deterministic sums n=*> ;" | (1/t) and n=*>"}  (1/t?)
both tend to 0 as n — oco. Further, the law of large numbers tells us that the
limits in probability of n=!'>""  u; and n=*>"7" | (us/t) are both 0. Thus the
right-hand side of (6.13) simplifies to

a(fr, f2) = plim

n—0o0

]. (6.13)

a(B, B2) = [ﬂ(l) N ﬁl]-

0

Since a3y, 32) vanishes for 3; = Y and for any value of 5, whatsoever, we
see that 5 is not asymptotically identified. In Section 3.3, we showed that,
although the OLS estimator of 35 is unbiased, it is not consistent. The simult-
aneous failure of consistency and asymptotic identification in this example is
not a coincidence: It will turn out that asymptotic identification is a necessary
and sufficient condition for consistency.

Consistency

Suppose that the DGP is a special case of the model (6.02) with true parameter
vector By. Under the assumption of asymptotic identification, the equations
a(B) = 0 have a unique solution, namely, 8 = (y. This can be shown to imply
that, as n — oo, the probability limit of the estimator 3 defined by (6.10) is
precisely Bp. We will not attempt a formal proof of this result, since it would
have to deal with a number of technical issues that are beyond the scope of
this book. See Amemiya (1985, Section 4.3) or Davidson and MacKinnon
(1993, Section 5.3) for more detailed treatments.

However, an intuitive, heuristic, proof is not at all hard to provide. If we
make the assumption that B has a deterministic probability limit, say B,
the result follows easily. What makes a formal proof more difficult is showing
that B, exists. Let us suppose that B, # Bo. We will derive a contradiction
from this assumption, and we will thus be able to conclude that 3., = (3, in
other words, that ,é is consistent.
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For all finite samples large enough for 3 to be identified by the data, we have,
by the definition (6.10) of 3, that

%WT(y - :E(,é)) =0. (6.14)

If we take the limit of this as n — oo, we have 0 on the right-hand side. On
the left-hand side, because we assume that plim 3 = (B, the limit is the same
as the limit of

%WT(y - m(ﬁw))

By (6.12), the limit of this expression is (8. ). We assumed that 8., # Bo,
and so, by the asymptotic identification condition, a(B~) # 0. But this
contradicts the fact that the limits of both sides of (6.14) are equal, since the
limit of the right-hand side is 0.

We have shown that, if we assume that a deterministic 3, exists, then asymp-
totic identification is sufficient for consistency. Although we will not attempt
to prove it, asymptotic identification is also necessary for consistency. The
key to a proof is showing that, if the parameters of a model are not asymp-
totically identified by a given estimation method, then no deterministic limit
like B exists in general. An example of this is provided by the model (3.20);
see also Exercise 6.2.

The identifiability of a parameter vector, whether asymptotic or by a data set,
depends on the estimation method used. In the present context, this means
that certain choices of the variables in W; may identify the parameters of a
model like (6.01), while others do not. We can gain some intuition about this
matter by looking a little more closely at the limiting functions a(3) defined
by (6.12). We have

a(B) = plim - W' (y — z(3))

= plim |- W ((8)) — x(8) + u)

oo o (6.15)
= a(B) + EE?O W (z(Bo) — 2(8))
— EE?O%WT(w(ﬁo) —z(8)).

Therefore, for asymptotic identification, and so also for consistency, the last
expression in (6.15) must be nonzero for all 3 # Bo.

Evidently, a necessary condition for asymptotic identification is that there be
no B1 # By such that «(B1) = x(By). This condition is the nonlinear analog of
the requirement of linearly independent regressors for linear regression models.
We can now see that this requirement is in fact a condition necessary for the
identification of the model parameters, both by a data set and asymptotically.
Suppose that, for a linear regression model, the columns of the regressor
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matrix X are linearly dependent. This implies that there is a nonzero vector b
such that Xb = 0; recall the discussion in Section 2.2. Then it follows that
XBo = X(Bo + b). For a linear regression model, z(8) = X3. Therefore,
if we set 31 = Bo + b, the linear dependence means that x(81) = x(8p), in
violation of the necessary condition stated at the beginning of this paragraph.

For a linear regression model, linear independence of the regressors is both
necessary and sufficient for identification by any data set. We saw above that
it is necessary, and sufficiency follows from the fact, discussed in Section 2.2,
that X "X is nonsingular if the columns of X are linearly independent. If
X "X is nonsingular, the OLS estimator (XX )™ 'X Ty exists and is unique
for any vy, and this is precisely what is meant by identification by any data set.

For nonlinear models, however, things are more complicated. In general, more
is needed for identification than the condition that no 31 # (B3¢ exist such that
x(B1) = ©(Bo). The relevant issues will be easier to understand after we have
derived the asymptotic covariance matrix of the estimator defined by (6.10),
and so we postpone study of them until later.

The MM estimator B defined by (6.10) is actually consistent under consider-
ably weaker assumptions about the error terms than those we have made. The
key to the consistency proof is the requirement that the error terms satisfy
the condition

plim W u = 0. (6.16)

n—oo
Under reasonable assumptions, it is not difficult to show that this condition
holds even when the u; are heteroskedastic, and it may also hold even when
they are serially correlated. However, difficulties can arise when the u; are
serially correlated and x;(3) depends on lagged dependent variables. In this
case, it will be seen later that the expectation of u; conditional on the lagged
dependent variable is nonzero in general. Therefore, in this circumstance, con-
dition (6.16) will not hold whenever W includes lagged dependent variables,
and such MM estimators will generally not be consistent.

Asymptotic Normality

The MM estimator 8 defined by (6.10) for different possible choices of W
is asymptotically normal under appropriate conditions. As we discussed in
Section 5.4, this means that the vector n'/ 2([3 — Bop) follows the multivariate
normal distribution with mean vector 0 and a covariance matrix that will be
determined shortly.

Before we start our analysis, we need some notation, which will be used exten-
sively in the remainder of this chapter. In formulating the generic nonlinear
regression model (6.01), we deliberately used z:(-) to denote the regression
function, rather than f;(-) or some other notation, because this notation makes
it easy to see the close connection between the nonlinear and linear regression
models. It is natural to let the derivative of z;(3) with respect to 3; be de-
noted X¢;(3). Then we can let X;(3) denote a 1 x k vector, and X (3) denote
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an n x k matrix, each having typical element X;;(3). These are the analogs of
the vector X; and the matrix X for the linear regression model. In the linear
case, when the regression function is X3, it is easy to see that X;(8) = X;
and X(3) = X. The big difference between the linear and nonlinear cases is
that, in the latter case, X;(3) and X(8) depend on (3.

If we multiply (6.10) by n~1/2, replace y by what it is equal to under the
DGP (6.01) with parameter vector By, and replace 3 by (3, we obtain

nVPW T (u+ z(By) — x(8)) = 0. (6.17)

The next step is to apply Taylor’s Theorem to the components of the vec-
tor :c(,é), see the discussion of this theorem in Section 5.6. We apply the
formula (5.45), replacing @ by the true parameter vector By and h by the
vector ,é — Bo, and obtain, fort =1,...,n,

5
z4(8) = 2:(Bo) + Y_ Xui(Be)(Bi = Boi); (6.18)

i=1

where (p; is the i*" element of By, and B;, which plays the role of x + th
in (5.45), satisfies the condition

1B = Bol| < |18 = Bol|. (6.19)
Substituting the Taylor expansion (6.18) into (6.17) yields

nYPWTu —n V2PWTX(B8) (B — Bo) = 0. (6.20)
The notation X (/3) is convenient, but slightly inaccurate. According to (6.18),
we need different parameter vectors 3; for each row of that matrix. But, since
all of these vectors satisfy (6.19), it is not necessary to make this fact explicit
in the notation. Thus here, and in subsequent chapters, we will refer to a
vector 3 that satisfies (6.19), without implying that it must be the same
vector for every row of the matrix X(3). This is a legitimate notational
convenience, because, since B is consistent, as we have seen that it is under
the requirement of asymptotic identification, then so too are all of the B;.
Consequently, (6.20) remains true asymptotically if we replace 3 by By. Doing
this, and rearranging factors of powers of n so as to work only with quantities
which have suitable probability limits, yields the result that

n"V2WTu — n T 'TWTX(8o) n'/2(8 — By) £ 0, (6.21)

This result is the starting point for all our subsequent analysis.

We need to apply a law of large numbers to the first factor of the second term
of (6.21), namely, n~!W T Xj, where for notational ease we write Xq = X (8o).
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Under reasonable regularity conditions, not unlike those needed for (3.17) to
hold, we have

plim L WX, = lim LW E(X(80)) = Swrx,

n—00 n—oo

where Syyrx is a deterministic £ x k& matrix. It turns out that a sufficient
condition for the parameter vector 3 to be asymptotically identified by the
estimator ﬁ defined by the moment conditions (6.10) is that Symx should
have full rank. To see this, observe that (6.21) implies that

Swx n1/2(B —Bo) En V2w, (6.22)

Because Syyx is assumed to have full rank, its inverse exists. Thus we can
multiply both sides of (6.22) by this inverse to obtain a well-defined expression
for the limit of n'/2(8 — Bo):

n2(8 - Bo) £ (Syx) 'n 1V 2W . (6.23)

From this, we conclude that 3 is asymptotically identified by ,3 The condition
that SyyTx be nonsingular is called strong asymptotic identification. It is a
sufficient but not necessary condition for ordinary asymptotic identification.

The second factor on the right-hand side of (6.23) is a vector to which we
should, under appropriate regularity conditions, be able to apply a central
limit theorem. Since, by (6.09), E(Wju;) = 0, we can show that n~/2WTu
is asymptotically multivariate normal, with mean vector 0 and a finite covar-
iance matrix. To do this, we can use exactly the same reasoning as was used in
Section 4.5 to show that the vector v of (4.53) is asymptotically multivariate
normal. Because the components of n'/ 2(B — Bp) are, asymptotically, linear
combinations of the components of a vector that follows the multivariate nor-
mal distribution, we conclude that n'/ 2(,3 — Bo) itself must be asymptotically
normally distributed with mean vector zero and a finite covariance matrix.
This implies that B is root-n consistent in the sense defined in Section 5.4.

Asymptotic Efficiency

The asymptotic covariance matrix of n=/2WTu, the second factor on the
right-hand side of (6.23), is, by arguments exactly like those in (4.54),

of plim L W'W = 03 Sy, (6.24)

n—oo

where o2 is the error variance for the true DGP, and where we make the defini-
tion Sy = plimn ™' WTW. From (6.23) and (6.24), it follows immediately
that the asymptotic covariance matrix of the vector n'/2(38 — By) is

Jg(SWTx)_lszW (S;l;—VTX)_l, (625)
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which has the form of a sandwich. By the definitions of Sy,Tw and Sy Tx,
expression (6.25) can be rewritten as

o2 plim(n " 'W' X)) 'n ' WW (n "1 X W) ™!
— o2 plim (n "' X W (W W) 'WTX,)™

= o plim (n ™' Xy Pyw Xo) 7}, (6.26)

n—oo

where Py is the orthogonal projection on to §(W), the subspace spanned by
the columns of W. Expression (6.26) is the asymptotic covariance matrix of
the vector n'/ 2(B — Bo). However, it is common to refer to it as the asymp-
totic covariance matrix of ,é, and we will allow ourselves this slight abuse of
terminology when no confusion can result.

It is clear from the result (6.26) that the asymptotic covariance matrix of
the estimator ,@ depends on the variables W used to obtain it. Most choices
of W will lead to an inefficient estimator by the criterion of the asymptotic
covariance matrix, as we would be led to suspect by the fact that (6.25) has the
form of a sandwich; see Section 5.5. An efficient estimator by that criterion is
given by the choice W = Xj,. To demonstrate this, we need to show that this
choice of W minimizes the asymptotic covariance matrix, in the sense used in
the Gauss-Markov theorem. Recall that one covariance matrix is said to be
“greater” than another if the difference between it and the other is a positive
semidefinite matrix.

If we set W = X to define the MM estimator, the asymptotic covariance
matrix (6.26) becomes o2 plim(n~' Xy X,)™!. As we saw in Section 3.5, it
is often easier to establish efficiency by reasoning in terms of the precision
matrix, that is, the inverse of the covariance matrix, rather than in terms of
the covariance matrix itself. Since

X0 Xy — Xo PwXo = Xo My Xo,

which is a positive semidefinite matrix, it follows at once that the precision
of the estimator obtained by setting W = X is greater than that of the
estimator obtained by using any other choice of W.

Of course, we cannot actually use X, for W in practice, because Xy = X (o)
depends on the unknown true parameter vector B3y. The MM estimator that
uses Xy for W is therefore said to be infeasible. In the next section, we will
see how to overcome this difficulty. The nonlinear least squares estimator that
we will obtain will turn out to have exactly the same asymptotic properties
as the infeasible MM estimator.
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6.3 Nonlinear Least Squares

There are at least two ways in which we can approximate the asymptotically
efficient, but infeasible, MM estimator that uses X, for W. The first, and
perhaps the simpler of the two, is to begin by choosing any W for which W;
belongs to the information set {2; and using this W to obtain a preliminary
consistent estimate, say ,3, of the model parameters. We can then estimate 3
once more, setting W = X = X (,6) The consistency of 3 ensures that X
tends to the efficient choice X, as n — oo.

A more subtle approach is to recognize that the above procedure estimates the
same parameter vector twice, and to compress the two estimation procedures
into one. Consider the moment conditions

XT(8)(y — (8)) = 0. (6.27)

If the estimator 3 obtained by solving the k equations (6.27) is consistent,
then X = X(8) tends to Xy as n — oco. Therefore, it must be the case
that, for sufficiently large samples, B is very close to the infeasible, efficient
MM estimator.

The estimator ,3 based on (6.27) is known as the nonlinear least squares, or
NLS, estimator. The name comes from the fact that the moment conditions
(6.27) are just the first-order conditions for the minimization with respect
to 3 of the sum-of-squared-residuals (or SSR) function. The SSR function is
defined just as in (1.49), but for a nonlinear regression function:

SSR(B) = > (e — 2:(8))" = (y — x(8)) (y — z(8)). (6.28)

t=1

It is easy to check (see Exercise 6.4) that the moment conditions (6.27) are
equivalent to the first-order conditions for minimizing (6.28).

Equations (6.27), which define the NLS estimator, closely resemble equa-
tions (6.08), which define the OLS estimator. Like the latter, the former can
be interpreted as orthogonality conditions: They require that the columns of
the matrix of derivatives of x(3) with respect to 3 should be orthogonal to
the vector of residuals. There are, however, two major differences between
(6.27) and (6.08). The first difference is that, in the nonlinear case, X(3)
is a matrix of functions that depend on the explanatory variables and on (3,
instead of simply a matrix of explanatory variables. The second difference is
that equations (6.27) are nonlinear in 3, because both x(3) and X(3) are,
in general, nonlinear functions of 8. Thus there is no closed-form expression
for B comparable to the famous formula (1.46). As we will see in Section 6.4,
this means that it is substantially more difficult to compute NLS estimates
than it is to compute OLS ones.
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Consistency of the NLS Estimator

Since it has been assumed that every variable on which x¢(3) depends belongs
to €, it must be the case that x(3) itself belongs to Q; for any choice of 8.
Therefore, the partial derivatives of z;(3), that is, the elements of the row
vector X;(3), must belong to ; as well, and so

E(X:(8)u:) = 0. (6.29)

If we define the limiting functions a(8) for the estimator based on (6.27)
analogously to (6.12), we have

. 1
a(B) = plim - X(8)(y — z(8)).
It follows from (6.29) and the law of large numbers that a(8y) = 0 if the true
parameter vector is Bg. Thus the NLS estimator is consistent provided that
it is asymptotically identified. We will have more to say in the next section
about identification and the NLS estimator.

Asymptotic Normality of the NLS Estimator

The discussion of asymptotic normality in the previous section needs to be
modified slightly for the NLS estimator. Equation (6.20), which resulted from
applying Taylor’s Theorem to w(,é), is no longer true, because the matrix W
is replaced by X(3), which, unlike W, depends on the parameter vector .
When we take account of this fact, we obtain a rather messy additional term
in (6.20) that depends on the second derivatives of x(3). However, it can
be shown that this extra term vanishes asymptotically. Therefore, equation
(6.21) remains true, but with Xy = X(8y) replacing W. This implies that,
for NLS, the analog of equation (6.23) is
—1
nY2(8 — By) 2 <plim %XJX0> 12X u, (6.30)
n—oo

from which the asymptotic normality of the NLS estimator follows by essen-
tially the same arguments as before.

Slightly modified versions of the arguments for MM estimators of the previous
section also yield expressions for the asymptotic covariance matrix of the
NLS estimator 3. The consistency of 3 means that

plim %XTX = plim %XOTXO and plim %XTXO = plim %XOTXO.

n—oo n—oo n—oo n—oo

Thus, on setting W' = X , (6.26) gives for the asymptotic covariance matrix
of n'/2(8 — By) the matrix

—1 —1
o2 plim (%XJ PXXO) = o2 plim (%XJ XO) . (6.31)

n—oo n—oo
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It follows that a consistent estimator of the covariance matrix of 3, in the
sense of (5.22), is

Var(B8) = s2(X X)), (6.32)
where, by analogy with (3.49),

n

S En—k 1 gyt—xt (6.33)

Of course, s? is not the only consistent estimator of o2 that we might reason-

ably use. Another possibility is to use

Q>
Il

zn: (6.34)

BIH

However, we will see shortly that (6.33) has particularly attractive properties.

NLS Residuals and the Variance of the Error Terms

Not very much can be said about the finite-sample properties of nonlinear
least squares. The techniques that we used in Chapter 3 to obtain the finite-
sample properties of the OLS estimator simply cannot be used for the NLS
one. However, it is easy to show that, if the DGP is

=x(B) +u, wu~IID(0,s21), (6.35)

which means that it is a special case of the model (6.02) that is being esti-
mated, then

E(SSR(8)) < nag. (6.36)
The argument is just this. From (6.35), y — x(8y) = u. Therefore,

E(SSR(By)) = E(u'u) = nog.

Since ,é minimizes the sum of squared residuals and (3 in general does not,
it must be the case that SSR(B) < SSR(Bo). The inequality (6.36) follows
immediately. Thus, just like OLS residuals, NLS residuals have variance less
than the variance of the error terms.

The consistency of B implies that the NLS residuals @; converge to the error
terms u; as n — oo. This means that it is valid asymptotically to use either
s? from (6.33) or 62 from (6.34) to estimate o2, However, we see from (6.36)
that the NLS residuals are too small. Therefore, by analogy with the exact
results for the OLS case that were discussed in Section 3.6, it seems plausible
to divide by n — k instead of by n when we estimate . In fact, as we now
show, there is an even stronger justification for doing this.
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If we apply Taylor’s Theorem to a typical residual, u; = y; — xt(ﬁ), expanding
around (g and substituting u; + x+(3g) for y;, we obtain

Uy = yp — xt(ﬁo) - Xt(/é - ﬁo)
= u; + 2:(Bo) — 2:(Bo) — X¢(B — Bo)
= Ut — Xt(B - /60)7

where X; denotes the t** row of X(3), for some 3 that satisfies (6.19). This
implies that, for the entire vector of residuals, we have

a=u—X(8-0B). (6.37)

For the NLS estimator B, the asymptotic result (6.23) becomes

n'/2(B — Bo) = (Sxx) 'n" 2 X u, (6.38)
where
Sxx = plim 1 X Xo. (6.39)
n—oo

We have redefined Sxtx here. The old definition, (3.17), applies only to
linear regression models. The new definition, (6.39), applies to both linear
and nonlinear regression models, since it reduces to the old one when the
regression function is linear. When we substitute Sxtx into (6.37), noting
that B tends asymptotically to By, we find that

4= u—n"Y2Xo(Sxx) tnT 2 X u
Lu— nilXo(nleoTXo)*lXoTu

6.40
=u — Xo(Xo Xo) 1 X' u (6.40)

=u — Px,u = Mx,u,

where Px, and Mx, project orthogonally on to 8(Xj) and 8+(Xj), respec-
tively. This asymptotic result for NLS looks very much like the exact result
that w = Mxu for OLS. A more intricate argument can be used to show that
the difference between @ '% and u' Mx,u tends to zero as n — oo; see Exer-
cise 6.8. Since Xy is an n X k matrix, precisely the same argument that was
used for the linear case in (3.48) shows that E(u'a) < 02(n — k). Thus we
see that, in the case of nonlinear least squares, s2 provides an approximately

unbiased estimator of 2.
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6.4 Computing NLS Estimates

We have not yet said anything about how to compute nonlinear least squares
estimates. This is by no means a trivial undertaking. Computing NLS esti-
mates is always much more expensive than computing OLS ones for a model
with the same number of observations and parameters. Moreover, there is a
risk that the program may fail to converge or may converge to values that
do not minimize the SSR. However, with modern computers and well-written
software, NLS estimation is usually not excessively difficult.

In order to find NLS estimates, we need to minimize the sum-of-squared-
residuals function SSR(3) with respect to 3. Since SSR(3) is not a quadratic
function of 3, there is no analytic solution like the classic formula (1.46) for
the linear regression case. What we need is a general algorithm for minimizing
a sum of squares with respect to a vector of parameters. In this section, we
discuss methods for unconstrained minimization of a smooth function Q(3).
It is easiest to think of Q(3) as being equal to SSR(3), but much of the dis-
cussion will be applicable to minimizing any sort of criterion function. Since
minimizing Q(3) is equivalent to maximizing —Q(3), it will also be appli-
cable to maximizing any sort of criterion function, such as the loglikelihood
functions that we will encounter in Chapter 10.

We will give an overview of how numerical minimization algorithms work,
but we will not discuss many of the important implementation issues that can
substantially affect the performance of these algorithms when they are incor-
porated into computer programs. Useful references on the art and science of
numerical optimization, especially as it applies to nonlinear regression prob-
lems, include Bard (1974), Gill, Murray, and Wright (1981), Quandt (1983),
Bates and Watts (1988), Seber and Wild (1989, Chapter 14), and Press et al.
(1992a, 1992b, Chapter 10).

There are many algorithms for minimizing a smooth function Q(3). Most
of these operate in essentially the same way. The algorithm goes through a
series of iterations, or steps, at each of which it starts with a particular value
of B and tries to find a better one. It first chooses a direction in which to
search and then decides how far to move in that direction. After completing
the move, it checks to see whether the current value of 3 is sufficiently close to
a local minimum of Q(B3). If it is, the algorithm stops. Otherwise, it chooses
another direction in which to search, and so on. There are three principal
differences among minimization algorithms: the way in which the direction
to search is chosen, the way in which the size of the step in that direction
is determined, and the stopping rule that is employed. Numerous choices for
each of these are available.

Newton’s Method

All of the techniques that we will discuss are based on Newton’s Method.
Suppose that we wish to minimize a function Q(3), where 3 is a k-vector and
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Q(B) is assumed to be twice continuously differentiable. Given any initial
value of 3, say B(o), we can perform a second-order Taylor expansion of Q(3)
around B in order to obtain an approximation Q*(8) to Q(8):

Q*(8) = Q(B)) + 9(0)(B — By + %(5 — Bw) Ho)(B—Boy), (6.41)

where g(3), the gradient of Q(3), is a column vector of length k& with typ-
ical element 0Q(8)/00;, and H(3), the Hessian of Q(3), is a k x k matrix
with typical element 8*Q(3)/83;00;. For notational simplicity, g(o) and H g,
denote g(Boy) and H(B()), respectively.

It is easy to see that the first-order conditions for a minimum of Q*(3) with
respect to B can be written as

9(0) + Ho)(B — By)) = 0.

Solving these yields a new value of 8, which we will call B(;):
By = By — Hg) 9(0)- (6.42)

Equation (6.42) is the heart of Newton’s Method. If the quadratic approxi-
mation Q*(3) is a strictly convex function, which it will be if and only if the
Hessian H ) is positive definite, B(;) will be the global minimum of Q*(3).
If, in addition, Q*(3) is a good approximation to Q(3), B(1) should be close
to B, the minimum of Q(3). Newton’s Method involves using equation (6.42)
repeatedly to find a succession of values B(1), B(z).... When the original
function Q(3) is quadratic and has a global minimum at 3, Newton’s Method
evidently finds B in a single step, since the quadratic approximation is then
exact. When Q(3) is approximately quadratic, as all sum-of-squares func-
tions are when sufficiently close to their minima, Newton’s Method generally
converges very quickly.

Figure 6.1 illustrates how Newton’s Method works. It shows the contours of
the function Q(B) = SSR(f1, B2) for a regression model with two parameters.
Notice that these contours are not precisely elliptical, as they would be if
the fun