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PROBLEM 7.3.5 The system (31) involves seven equations in seven variables. Can you
reduce it to a five-equation system in the variables vy, w, ¢y, and 87

PROBLEM 7.3.6 Derive a system of equations, governing hydrostatic flow, that
utilizes Exner’s function 7= ¢(p/pao YR/€p a5 the vertical coordinate. Here we shall
generally take po; = 1000 mbar.

7.3.2 Isentropic Coordinates

Another commonly employved meteorological coordinate system utilizes the potential
temperature as the measure of vertical position. The surfaces of constant potential
temperature are also surfaces on which the entropy is constant and thus they are called
isentropic. Hence one of the advantages of isentropic coordinates is that parcels in
isentropic motion remain on the coordinate surface. Another is that representation in
isentropic coordinates provides maximum resolution in the areas of greatest interest
such as baroclinic zones and frontal areas, as illustrated in Fig. 7.10.

Many of the relations we derived for isobaric coordinates are valid with only
slight modification. In this case the essential requirement for the validity of the
transformation is that 38/dz > 0; in other words, that the stratification is everywhere
statically stable.

Thus we have z = hy(x,»,0,1) along with the differential relations for a scalar

function ¢
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Furthermore, we have again
dhg
o 1 V.hy=0 (36)
and thus
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FIGURE 7.10

Comparison of resolution in isobaric and isentropic coordinates. The cross
section on the left is the traditional form of presenting isotachs and isentropes
with pressure as the vertical coordinate. An upper-level front or baroclinic zone
is identified by the shaded area on the cross section. The figure on the right
shows the same area as it would be represented in isentropic coordinates,
making it clear that the dynamics of this structure could be analyzed or
predicted more accurately in isentropic coordinates. (Mustration provided by
Dr. Rainer Bleck, National Center for Atmospheric Research. The fleure on the
left iz from M. A. Shapiro and J. T. Hastings, 1973 "“Objective Cross-Section
Analysis by Hermite Polynomial Interpolation on Isentropic Surfaces,” J. Appl
Meteorol, 12:753-762.)

Use of this equation in Eq. (34) provides the result

e\ ' a 3
Ve = Vyop —(a_;) j?ﬂha = Voo — a—j?eha (38)

af
In order to evaluate the forcing term in the equation of motion, we need to compute
V:p, and with Eq. (38) we have

a
Vep = Vop — ﬁ?aha (39)
and with Poisson’s equation
R,Fcp
0= T(‘%ﬂ) (40)
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we find that

r 1
cp VoT = 5R Vop=13Vop (41)

s0 that with the aid of the hydrostatic equation, Eq. (39) may be written

1
5Vp = cp VoT + g Vohy = Vo(c, T+ ghe) (42)

This potential, known as the Montgomery stream function, is given a symbol of its
own, ¥ = ¢, T+ ghy.

When hydrostatic conditions prevail, we will want to express the fact in
isentropic coordinates and not have to rely on the (x,y,z) representation. With Eq. (33)
we find that in hydrostatic conditions

e o @3

6 T 28 <cpP a8 “44)
With Eq. (43) this may be rearranged as

aT ., dhg ' & Iep
o e = oy =) 4s)

Thus we have derived a hydrostatic equation for isentropic coordinates in the form

W o) o

The continuity equation in these coordinates follows from the basic principle of
mass conservation, just as it did in isobaric coordinates. Thus for a material volume we
have

dh
M= fp—"a:xdyda (47)
v of
(]
and so for a small volume
dhig
M—pa—eVﬁ (48)

Hence dM/dt = O implies that [see Eq. (26)]

d{ ohg dhg 1 dVy d( aﬁﬂ) dhy
—_ — e — — T — — + — - —
a*:(" ae)*‘” MV, @ o)t Ve e=0 (44}




ISOBARIC AND ISENTROFIC CODRDINATES [7.3] 247

Upon noting that the correct form of the divergence must be (V-v)y =
Vo + v+ 30/a0, where § = d8/dt, we have

i ah&) ( oo\, 3 % diy _ 50
asﬂ( e/ TV P Tl ar )= O 0)
For purely hydrostatic motion, Eq. (43) implies that this may be expressed as
3 _(op (ap ) (ap dﬂ)
a1, (aa) *Ve 36"/ * 36\a6 ar) = ° 1)
The first law of thermodynamics in isentmpic coordinates is simply
g8

In many cases in the study of large-scale Mflow the fact that motions tend to be
isentropic allows Eq. (52) to be replaced by 8 = 0.
The full set of equations for hydrostatic flow in isentropic coordinates is

vy do vy _
ap VT 4 o9 =

l‘;: " _p“R,Fcp
a6 "'P(pm)

dp dif
ara(aa) V- ( )+ (a rfr) g
df

e cT[ﬂ fn)

~Vo ¥ — fk X Vg + (F, 1)g

(53)

Note that T and fig have been combined in ¥ and do not have to appear explicitly in
order to complete the system. We can of course add the equations
—Rfe
o= r(%) L W=, T+ (54)
to determine T and hy explicitly.

The equations in isentropic coordinates share the feature with those in isobaric
coordinates that the forcing term is linear—in this case, linear in the Montgomery
stream function ¥. The price for this linearity, however, is the nonlinearity that
appears in the hydrostatic equation with the Rfc, power of pressure. A major
advantage of these equations is that the wertical wvelocity term appearing in the
cartesian coordinate equations is replaced with a direct function of the heating, d8/dr.

The advantages of both isobaric and isentropic coordinates will appear as we
proceed in the next two chapters. It is worth emphasizing again that these advantages
are created primarily by the simplification introduced by the hydrostatic assumption,



