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23.1 Scalars and Vectors

23.1.1 Basic definitions

23.1.1.1 A scalar quantity is completely defined by a single real number (positive

or negative) that measures its magnitude. Examples of scalars are length, mass,

temperature, and electric potential. In print, scalars are represented by Roman or

Greek letters like r, m, T , and φ.

A vector quantity is defined by giving its magnitude (a nonnegative scalar), and

its line of action (a line in space) together with its sense (direction) along the line.

Examples of vectors are velocity, acceleration, angular velocity, and electric field.

In print, vector quantities are represented by Roman and Greek boldface letters like

ν, a, Ω, and E. By convention, the magnitudes of vectors ν, a, and Ω are usually

represented by the corresponding ordinary letters ν, a, and �, etc. The magnitude of

a vector r is also denoted by |r|, so that

1. r = |r|.
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A vector of unit magnitude in the direction of r, called a unit vector, is denoted

by er , so that

2. r = rer .

The null vector (zero vector) 0 is a vector with zero magnitude and no direction.

A geometrical interpretation of a vector is obtained by using a straight-line segment

parallel to the line of action of the vector, whose length is equal (or proportional) to

the magnitude of the vector, with the sense of the vector being indicated by an arrow

along the line segment. The end of the line segment from which the arrow is directed

is called the initial point of the vector, while the other end (toward which the arrow

is directed) is called the terminal point of the vector.

A right-handed system of rectangular cartesian coordinate axes 0{x, y, z} is one

in which the positive direction along the z-axis is determined by the direction in

which a right-handed screw advances when rotated from the x- to the y-axis. In

such a system the signed lengths of the projections of a vector r with initial point

P(x0, y0, z0) and terminal point Q(x1, y1, z1) onto the x-, y-, and z-axes are called

the x, y, and z components of the vector. Thus the x, y, and z components of r

directed from P to Q are x1 − x0, y1 − y0, and z1 − z0, respectively (Figure 23.1(a)).

A vector directed from the origin 0 to the point P(x0, y0, z0) has x0, y0, and z0 as

its respective x, y, and z components [Figure 23.1(b)]. Special unit vectors directed

along the x-, y-, and z-axes are denoted by i, j, and k, respectively.

The cosines of the angles α, β, and γ between r and the respective x-, y-, and

z-axes shown in Figure 23.2 are called the direction cosines of the vector r. If the
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components of r are x, y, and z, then the respective direction cosines of r, denoted

by l, m, and n, are

3. l =
x

r
, m =

y

r
, n =

z

r
with r = (x2 + y2 + z2)1/2.

The direction cosines are related by

4. l2 + m2 + n2 = 1.

Numbers u, v, and w proportional to l, m, and n, respectively, are called direction

ratios.

23.1.2 Vector addition and subtraction

23.1.2.1 Vector addition of vectors a and b, denoted by a + b, is performed by

first translating vector b, without rotation, so that its initial point coincides with the

terminal point of a. The vector sum a + b is then defined as the vector whose initial

point is the initial point of a, and whose terminal point is the new terminal point of b

(the triangle rule for vector addition) (Figure 23.3(a)).

The negative of vector c, denoted by −c, is obtained from c by reversing its sense,

as in Fig. 23.3(b), and so

1. c = |c| = |−c|.

The difference a − b of vectors a and b is defined as the vector sum a + (−b).

This corresponds geometrically to translating vector −b, without rotation, until its
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initial point coincides with the terminal point of a, when the vector a−b is the vector

drawn from the initial point of a to the new terminal point of −b (Figure 23.4(a)).

Equivalently, a−b is obtained by bringing into coincidence the initial points of a and

b and defining a − b as the vector drawn from the terminal point of b to the terminal

point of a [Figure 23.4(b)].

Vector addition obeys the following algebraic rules:

2. a + (−a) = a − a = 0

3. a + b + c = a + c + b = b + c + a (commutative law)

4. (a + b) + c = a + (b + c) (associative law)

The geometrical interpretations of laws 3 and 4 are illustrated in Figures 23.5(a) and

23.5(b).

23.1.3 Scaling vectors

23.1.3.1 A vector a may be scaled by the scalar λ to obtain the new vector b = λa.

The magnitude b = |b| = |λa| = |λ|a. The sense of b is the same as that of a if

λ > 0, but it is reversed if λ < 0. The scaling operation performed on vectors obeys

the laws:

1. λa = aλ (commutative law)

2. (λ + µ)a = λa + µa (distributive law)

3. λ(µa) = µ(λa) = (λµ)a (associative law)

4. λ(a + b) = λa + λb (distributive law)

where λ, µ are scalars and a, b are vectors.
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23.1.4 Vectors in component form

23.1.4.1 If a, b, and c are any three noncoplanar vectors, an arbitrary vector r may

always be written in the form

1. r = λ1a + λ2b + λ3c,

where the scalars λ1, λ2, and λ3 are the components of r in the triad of reference

vectors a, b, c. In the important special case of rectangular Cartesian coordinates

0{x, y, z}, with unit vectors i, j, and k along the x-, y-, and z-axes, respectively,

the vector r drawn from point P(x0, y0, z0) to point Q(x1, y1, z1) can be written

(Figure 23.1(a))

2. r = (x1 − x0)i + (y1 − y0)j + (z1 − z0)k.

Similarly, the vector drawn from the origin to the point P(x0, y0, z0) becomes (Figure

23.1(b))

3. r = x0i + y0j + z0k.

For 23.1.4.1.2 the magnitude of r is

4. r = |r| = [(x1 − x0)
2 + (y1 − y0)

2 + (z1 − z0)
2]1/2,

whereas for 23.1.4.1.3 the magnitude of r is

r = |r| =
(

x2
0 + y2

0 + z2
0

)1/2
.
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In terms of the direction cosines l, m, n (see 23.1.1.1.3) the vector r = x i + yj + zk

becomes

r = r(li + mj + nk),

where li + mj + nk is the unit vector in the direction of r.

If a = a1i + a2 j + a3k, b = b1i + b2 j + b3k, and λ and µ are scalars, then

5. λa = λa1i + λa2 j + λa3k,

6. a + b = (a1 + b1)i + (a2 + b2)j + (a3 + b3)k,

7. λa + µb = (λa1 + µb1)i + (λa2 + µb2)j + (λa3 + µb3)k,

which are equivalent to the results in 23.1.3.

23.2 Scalar Products

23.2.1

The scalar product (dot product or inner product) of vectors a = a1i+a2 j+a3k

and b = b1i + b2j + b3k inclined at an angle θ to one another and written a · b is

defined as the scalar (Figure 23.6)

1. a · b = |a||b| cos θ

= ab cos θ

= a1b1 + a2b2 + a3b3.

If required, the angle between a and b may be obtained from

2. cos θ =
a · b

|a||b|
=

a1b1 + a2b2 + a3b3
(

a2
1 + a2

2 + a2
3

)1/2(

b2
1 + b2

2 + b2
3

)1/2
.

Properties of the scalar product. If a and b are vectors and λ and µ are scalars,

then:

3. a · b = b · a (commutative property)

4. (λa) · (µb) = λµa · b (associative property)

5. a · (b + c) = a · b + a · c (distributive property)
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Special cases.

6. a · b = 0 if a, b are orthogonal (θ = π/2)

7. a · b = |a||b| = ab if a and b are parallel (θ = 0)

8. i · i = j · j = k · k = 1 and i · j = j · k = k · i = 0.

23.3 Vector Products

23.3.1

The vector product (cross product) of vectors a = a1i + a2 j + a3k and b =

b1i + b2 j + b3k inclined at an angle θ to one another and written a × b is defined as

the vector

1. a × b = |a||b|sin θn = ab sin θn,

where n is a unit vector normal to the plane containing a and b directed in the sense

in which a right-handed screw would advance if rotated from a to b (Figure 23.7).

An alternative and more convenient definition of a × b is

2. a × b =

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

.

If required, the angle θ between a and b follows from

3. sin θ =
|a × b|

ab
,

though the result 23.2.1.2 is usually easier to use.

Properties of the vector product. If a and b are vectors and λ and µ are scalars,

then

4. a × b = −a × b (noncommutative)

5. (λa) × (µb) = λµa × b (associative property)

6. a × (b + c) = a × b + a × c (distributive property)

n

θ

a

b

FIGURE 23.7
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Special cases.

7. a × b = 0 if a and b are parallel (θ = 0)

8. a × b = abn if a and b are orthogonal (θ = π/2)

9. i × j = k, j × k = i, k × i = j

10. i × i = j × j = k × k = 0

23.4 Triple Products

23.4.1

The scalar triple product of the three vectors a = a1i + a2 j + a3k, b = b1i +

b2 j + b3k, and c = c1i + c2 j + c3k, written a · (b × c), is the scalar

1. a · (b × c) = b · (c × a) = c · (a × b).

In terms of components

2. a · (b × c) =





a1 a2 a3

b1 b2 b3

c1 c2 c3



.

The alternative notation [abc] is also used for the scalar triple product in place of

a · (b × c).

In geometrical terms the absolute value of a · (b × c) may be interpreted as the

volume V of a parallelepiped in which a, b, and c form three adjacent edges meeting

at a corner (Figure 23.8). This interpretation provides a useful test for the linear

independence of any three vectors. The vectors a, b, and c are linearly dependent

if a · (b × c) = 0, because V = 0 implies that the vectors are coplanar, and so

a = λb + µc for some scalars λ and µ; whereas they are linearly independent if

a · (b × c) �= 0.

The vector triple product of the three vectors a, b, and c, denoted by a × (b × c),

is given by

3. a × (b × c) = (a · c)b − (a · b)c.



23.5 Products of Four Vectors 361

The parentheses are essential in a vector triple product to avoid ambiguity, because

a × (b × c) �= (a × b) × c.

23.5 Products of Four Vectors

23.5.1

Two other products arise that involve the four vectors a, b, c, and d. The first is

the scalar product

1. (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c),

and the second is the vector product

2. (a × b) × (c × d) = a · (b × d)c − a · (b × c)d.

23.6 Derivatives of Vector Functions of a Scalar t

23.6.1

Let x(t), y(t), and z(t) be continuous functions of t that are differentiable as many

times as necessary, and let i, j, and k be the triad of fixed unit vectors introduced in

23.1.4. Then the vector r(t) given by

1. r(t) = x(t)i + y(t)j + z(t)k

is a vector function of the scalar variable t that has the same continuity and differen-

tiability properties as its components. The first- and second-order derivatives of r(t)

with respect to t are

2.
dr

dt
= ṙ =

dx

dt
i +

dy

dt
j +

dz

dt
k

and

3.
d2r

dt2
= r̈ =

d2x

dt2
i +

d2 y

dt2
j +

d2z

dt2
k.

Higher order derivatives are defined in similar fashion so that, in general,

4.
dnr

dtn
=

dn x

dtn
i +

dn y

dtn
j +

dnz

dtn
k.

If r is the position vector of a point in space of time t , then ṙ is its velocity and r̈

is its acceleration (Figure 23.9).

Differentiation of combinations of vector functions of a scalar t. Let u and v be

continuous functions of the scalar variable t that are differentiable as many times as

necessary, and let φ(t) be a scalar function of t with the same continuity and differ-

entiability properties as the components of the vector functions. Then the following

differentiability results hold:
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1.
d

dt
(u + v) =

du

dt
+

dv

dt

2.
d

dt
(φu) =

dφ

dt
u + φ

du

dt

3.
d

dt
(u · v) =

du

dt
· v + u ·

dv

dt

4.
d

dt
(φu · v) =

dφ

dt
u · v + φ

du

dt
· v + φu ·

dv

dt

5.
d

dt
(u × v) =

du

dt
× v + u ×

dv

dt

6.
d

dt
(φu × v) =

dφ

dt
u × v + φ

du

dt
× v + φu ×

dv

dt

23.7 Derivatives of Vector Functions of Several Scalar Variables

23.7.1

Let ui (x, y, z) and vi (x, y, z) for i = 1, 2, 3 be continuous functions of the scalar

variables x, y, and z, and let them have as many partial derivatives as necessary.

Define

1. u(x, y, z) = u1i + u2 j + u3k

2. v(x, y, z) = v1i + v2 j + v3k,
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where i, j, and k are the triad of fixed unit vectors introduced in 23.1.4. Then the

following differentiability results hold:

3.
∂u

∂x
=

∂u1

∂x
i +

∂u2

∂x
j +

∂u3

∂x
k

4.
∂u

∂y
=

∂u1

∂y
i +

∂u2

∂y
j +

∂u3

∂y
k

5.
∂u

∂z
=

∂u1

∂z
i +

∂u2

∂z
j +

∂u3

∂z
k,

with corresponding results of ∂v/∂x, ∂v/∂y, and ∂v/∂z.

Second-order and higher derivatives of u and v are defined in the obvious manner:

6.
∂2u

∂x2
=

∂

∂x

(

∂u

∂x

)

,
∂2u

∂x∂y
=

∂

∂x

(

∂u

∂y

)

,
∂2u

∂x∂z
=

∂

∂x

(

∂u

∂z

)

, . . .

7.
∂3u

∂x3
=

∂

∂x

(

∂2u

∂x2

)

,
∂3u

∂x2∂y
=

∂

∂x

(

∂2u

∂x∂y

)

,
∂3u

∂x∂z2
=

∂

∂x

(

∂2u

∂z2

)

, . . . .

8.
∂

∂x
(u · v) =

∂u

∂x
· v + u ·

∂v

∂x

9.
∂

∂x
(u × v) =

∂u

∂x
× v + u ×

∂v

∂x
,

with corresponding results for derivatives with respect to y and z and for higher order

derivatives.

10. du =
∂u

∂x
dx +

∂u

∂y
dy +

∂u

∂z
dz (total differential)

and if x = x(t), y = y(t), z = z(t),

11. du =

(

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
+

∂u

∂z

dz

dt

)

dt (chain rule)

23.8 Integrals of Vector Functions of a Scalar Variable t

23.8.1

Let the vector function f (t) of the scalar variable t be

1. f(t) = f1(t)i + f2(t)j + f3(t)k,

where f1, f2, and f3 are scalar functions of t for which a function F(t) exists such

that

2. f(t) =
dF

dt
.

Then
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3.

∫

f(t) dt =

∫

dF

dt
dt = F(t) + c,

where c is an arbitrary vector constant. The function F(t) is called an antiderivative of

f(t), and result 23.8.1.3 is called an indefinite integral of f(t). Expressed differently,

23.8.1.3 becomes

4. F(t) = i

∫

f1(t) dt + j

∫

f2(t) dt = k

∫

f3(t) dt + c.

The definite integral of f (t) between the scalar limits t = t1 and t = t2 is

5.

∫ t2

t1

f(t) dt = F(t2) − F(t1).

Properties of the definite integral. Ifλ is a scalar constant, t3 is such that t1 < t3 < t2,

and u(t) and v(t) are vector functions of the scalar variable t , then

1.

∫ t2

t1

λu(t) dt = λ

∫ t2

t1

u(t) dt (homogeneity)

2.

∫ t2

t1

[u(t) + v(t)] dt =

∫ t2

t1

u(t) dt +

∫ t2

t1

v(t) dt (linearity)

3.

∫ t2

t1

u(t) dt = −

∫ t1

t2

u(t) dt (interchange of limits)

4.

∫ t2

t1

u(t) dt =

∫ t3

t1

u(t) dt +

∫ t2

t3

u(t) dt

(integration over contiguous intervals)

23.9 Line Integrals

23.9.1

Let F be a continuous and differentiable vector function of position P(x, y, z) in

space, and let C be a path (arc) joining points P1(x1, y1, z1) and P2(x2, y2, z2). Then

the line integral of F taken along the path C from P1 to P2 is defined as (Figure 23.10)

1.

∫

C

F · dr =

∫ P2

P1

F · dr =

∫

C

(F1 dx + F2 dy + F3 dz),

where

2. F = F1i + F2j + F3k,

and

3. dr = dx i + dy j + dz k

is a differential vector displacement along the path C . It follows that

4.

∫ P2

P1

F · dr = −

∫ P1

P2

F · dr ,
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while for three points P1, P2, and P3 on C ,

5.

∫ P2

P1

F · dr =

∫ P3

P1

F · dr +

∫ P2

P3

F · dr.

A special case of a line integral occurs when F is given by

6. F = grad φ = ∇φ,

where in rectangular Cartesian coordinates

7. grad φ = i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z
,

for

8.

∫

C

F · dr =

∫ P2

P1

F · dr = φ(P2) − φ(P1),

and the line integral is independent of the path C , depending only on the initial point

P1 and terminal point P2 of C . A vector field of the form

9. F = grad φ

is called a conservative field, and φ is then called a scalar potential. For the definition

of grad φ in terms of other coordinate systems see 24.2.1 and 24.3.1.

In a conservative field, if C is a closed curve, it then follows that

10.

∫

C

F · dr =

∮

C

F · dr = 0,

where the symbol
∮

indicates that the curve (contour) C is closed.
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23.10 Vector Integral Theorems

23.10.1

Let a surface S defined by z = f (x, y) that is bounded by a closed space curve

C have an element of surface area dσ , and let n be a unit vector normal to S at a

representative point P (Figure 23.11).

Then the vector element of surface area dS of surface S is defined as

1. dS = dσn.

The surface integral of a vector function F(x, y, z) over the surface S is defined

as

2.

∫

S

F · dS =

∫

S

F · n dσ.

The Gauss divergence theorem states that if S is a closed surface containing

a volume V with volume element dV , and if the vector element of surface area

dS = n dσ , where n is the unit normal directed out of V and dσ is an element of

surface area of S, then

3.

∫

V

div F dV =

∫

S

F · dS =

∫

S

F · n dσ.

The Gauss divergence theorem relates the volume integral of div F to the surface

integral of the normal component of F over the closed surface S.

In terms of the rectangular Cartesian coordinates 0{x, y, z}, the divergence of the

vector F = F1i + F2j + F3k, written div F, is defined as

4. div F =
∂ F1

∂x
+

∂ F2

∂y
+

∂ F3

∂z
.
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For the definitions of div F in terms of other coordinate systems see 24.2.1 and 24.3.1.

Stokes’s theorem states that if C is a closed curve spanned by an open surface S,

and F is a vector function defined on S, then

5.

∮

C

F · dr =

∫

S

(∇ × F) · dS =

∫

S

(∇ × F) · n dσ.

In this theorem the direction of unit normal n in the vector element of surface area

dS = dσn is chosen such that it points in the direction in which a right-handed screw

would advance when rotated in the sense in which the closed curve C is traversed. A

surface for which the normal is defined in this manner is called an oriented surface.

The surface S shown in Figure 23.11 is oriented in this manner when C is traversed

in the direction shown by the arrows. In terms of rectangular Cartesian coordinates

0{x, y, z}, the curl of the vector F = F1i+ F2j+ F3k, written either ∇ ×F, or curl F,

is defined as

6. ∇ × F =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

× F

=

(

∂ F3

∂y
−

∂ F2

∂z

)

i +

(

∂ F1

∂z
−

∂ F3

∂x

)

j +

(

∂ F2

∂x
−

∂ F1

∂y

)

k.

For the definition of ∇ ×F in terms of other coordinate systems see 24.2.1 and 24.3.1.

Green’s first and second theorems (identities). Let U and V be scalar functions of

position defined in a volume V contained within a simple closed surface S, with an

outward-drawn vector element of surface area dS. Suppose further that the Lapla-

cians ∇2U and ∇2V are defined throughout V , except on a finite number of surfaces

inside V , across which the second-order partial derivatives of U and V are bounded

but discontinuous. Green’s first theorem states that

7.

∫

(U∇V ) · dS =

∫

V

[U∇2V + (∇U ) · (∇V )] dV,

where in rectangular Cartesian coordinates

8. ∇2U =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
.

The Laplacian operator ∇2 is also often denoted by �, or by �n if it is necessary to

specify the number n of space dimensions involved, so that in Cartesian coordinates

�2U = ∂2U/∂x2 + ∂2U/∂y2.

For the definition of the Laplacian in terms of other coordinate systems see 24.2.1

and 24.3.1.

Green’s second theorem states that

9.

∫

V

(U∇2V − V ∇2U ) dV =

∫

S

(U∇V − V ∇U ) · dS.

In two dimensions 0{x, y}, Green’s theorem in the plane takes the form

10.

∮

C

(P dx + Q dy) =

∫

A

(

∂ Q

∂x
−

∂ P

∂y

)

dx dy,
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where the scalar functions P(x, y) and Q(x, y) are defined and differentiable in some

plane area A bounded by a simple closed curve C except, possibly, across an arc γ in

A joining two distinct points of C , and the integration is performed counterclockwise

around C .

23.11 A Vector Rate of Change Theorem

Let u be a continuous and differentiable scalar function of position and time defined

throughout a moving volume V (t) bounded by a surface S(t) moving with velocity

v. Then the rate of change of the volume integral of u is given by

1.
d

dt

∫

V (t)

u dV =

∫

V (t)

{

∂u

∂t
+ div(uv)

}

dV .

23.12 Useful Vector Identities and Results

23.12.1

In each identity that follows the result is expressed first in terms of grad, div,

and curl, and then in operator notation. F and G are suitably differentiable vector

functions and V and W are suitably differentiable scalar functions.

1. div(curl F) ≡ ∇ · (∇ × F) ≡ 0

2. curl(grad V ) ≡ ∇ × (∇V ) ≡ 0

3. grad(V W ) ≡ V grad W + W grad V ≡ V ∇W + W∇V

4. curl(curl F) ≡ grad(div F) − ∇2F ≡ ∇(∇ · F) − ∇2F

5. div(grad V ) ≡ ∇ · (∇V ) ≡ ∇2V

6. div(V F) ≡ V div F + F · grad V ≡ ∇ · (V F) ≡ V ∇ · F + F · ∇V

7. curl(V F) ≡ V curl F − F × grad V ≡ V ∇ × F − F × ∇V

8. grad(F · G) ≡ F × curl G + G × curl F + (F · ∇)G + (G · ∇)F

≡ F × (∇ × G) + G × (∇ × F) + (F · ∇)G + (G · ∇)F

9. div(F × G) ≡ G · curl F − F · curl G ≡ G · (∇ × F) − F · (∇ × G)

10. curl(F × G) ≡ F div G − G div F + (G · ∇)F − (F · ∇)G

≡ F(∇ · G) − G(∇ · F) + (G · ∇)F − (F · ∇)G

11. F · grad V = F · (∇V ) = (F · ∇)V is proportional to the directional derivative

of V in the direction F and it becomes the directional derivative of V in the

direction F when F is a unit vector.

12. F · grad G = (F · ∇)G is proportional to the directional derivative of G in the

direction of F and it becomes the directional derivative of G in the direction of

F when F is a unit vector.


