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SUMMARY 
Linear hotspot tracks indicate relative motion between some hotspot sources and the 
overlying lithosphere. In order to better understand the effects of plate motions and mantle 
convection on mantle plumes and associated hotspots, we consider the path of a continuous 
plume of buoyant material in a shear flow. Laboratory experiments show that steady plumes 
bent over by a linear velocity profile follow parabolic trajectories. Plume trajectories are also 
shown to evolve quadratically in time toward a new steady shape after a change in the 
ambient flow. A remarkably simple description of plume dynamics provides good agreement 
with the experimental data: the plume trajectory is determined by the combination of 
horizontal advection by mantle flow and vertical rise according to a modified Stokes law. 
These results are applied to some idealised examples which demonstrate effects of 
depth-dependent mantle viscosity and return flow. At least some mantle plumes are likely to 
be sufficiently robust that they remain close to vertical and, therefore, stable. 
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INTRODUCTION Laboratory experiments with weak plumes in a shear flow 

Plumes of hot, buoyant and geochemically distinct material 
rising from deep in the mantle are the likely cause of major 
mid-plate volcanoes or hotspots such as Hawaii and Iceland 
(Morgan 1972; 1982). Hotspot tracks such as the 
Hawaiian-Emperor seamount chain and the Line Islands- 
Tuamotu chain imply relative motion between some 
hotspot sources and the oceanic lithosphere, hence a 
gradient of horizontal velocity with depth. Relative motions 
of hotspots are smaller by at least a factor of 2 or 3 than 
relative oceanic plate motions, although the assumptions of 
a fixed or absolute hotspot reference frame (often used in 
global plate reconstructions) is questionable (Molnar & 
Stock 1987). To whatever degree it exists, the apparent 
independence of hotspot locations from plate motions 
implies that the boundary layer or thermal sources 
responsible for hotspots are not strongly coupled to 
convection associated with the lithospheric plates. 

As plumes rise through the mantle, they will be deflected 
from the vertical by the shear flow and return flow due to 
plate motions. However, the magnitude of this deflection 
will depend upon the strength of the plume. A large plume 
might rise almost vertically through the mantle. A weaker 
plume could be deflected so that its surface expression 
(hotspot) is displaced horizontally a large distance from its 
source. If a plume or conduit is bent to angles greater than 
about 60" from the vertical, conduit instabilities result. 

- -  
show that these instabilities break up the plume into discrete 
blobs or diapirs which rise independently (Skilbeck & 
Whitehead 1978; Whitehead 1982). 

Plume instability due to velocity gradients in the upper 
mantle or asthenosphere was initially suggested as an 
explanation for episodicity of volcanism and discretization of 
hotspot tracks into a chain of volcanic centres, or islands. 
This hypothesis was dismissed when further laboratory 
experiments (Whitehead 1982; Olson & Singer 1985) 
provided unreasonable scalings for the size and periodicity 
of diapirs formed on a sheared conduit. Instead, Olson & 
Nam (1986) and Griffiths, Gurnis & Eitelberg (1987) show 
that only very large diapirs of diameter 400-500km can 
explain the topographic swells surrounding hotspots. We 
believe the evidence for such enormous, discrete mantle 
blobs to be very weak, at least for Hawaii. However, the 
issue of discrete blobs versus continuous (though not 
necessarily steady) plumes remains an open question in need 
of more experimental, theoretical, and observational work. 

Evidence from hotspot tracks for the interactions of 
plumes with plate motions offers a rich variety of natural 
experiments. As examples, the Galapagos hotspot has 
passed through an active spreading ridge, and Iceland 
imposes a very regular trend of geochemical anomalies 
along the slow-spreading Reykjanes Ridge (e.g. Poreda, 
Craig & Schilling 1980) with respect to which it remains 
almost stationary. The most spectacular feature, however, is 
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the sharp bend in the Hawaiian-Emperor Seamount chain 
due, apparently, to an abrupt change in Pacific plate motion 
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about 40 Ma. This bend has a radius of curvature of 200 km 
or less, implying a very rapid adjustment of the plume to the 
more recent direction of plate motion. We believe this to be 
a key piece of information constraining the size and 
configuration of the plume beneath Hawaii. 

Although conduit instabilities and conditions for their 
formation have been investigated in detail by Whitehead 
(1982), the deflection and adjustment of a continuous 
conduit in a shear flow has received little attention. We were 
motivated to study the deflection of stable, continuous 
plumes in order to understand the Hawaiian-Emperor 
bend: it did not seem reasonable that a plume deflected a 
large distance horizontally (say a large fraction of the upper 
mantle depth) could adjust so rapidly. Our subsequent work 
strongly supports this view, and we present the results in 
two separate papers. 

In this paper we address the physics of deflection of a 
steady, continuous plume in a shear flow. Laboratory 
experiments are shown to verify a remarkably simple and 
straightforward theory describing plume trajectories, which 
can be applied to any prescribed sheartreturn flow due to 
plate motions. In a following paper (in preparation) we 
discuss the detailed application of our results to observations 
from the Hawaiian-Emperor island and seamount chain. 

A SIMPLE HYPOTHESIS 

The trajectory (or shape) of a mantle plume from its source 
involves two competing effects: the tendency of the plume 
to rise vertically and the tendency of the plume to be 
advected along with the background mantle flow. Advection 
of the plume must be determined from constraints on the 
larger scale flow in the mantle, e.g. by continuity of viscous 
stress associated with shear flow beneath moving lithos- 
pheric plates. The main aim of our experiments is to 
characterize the vertical rise component of the plume due to 
its own buoyancy in the presence of a given shear flow. 

We hypothesize that each plume element has a 
characteristic rise velocity which can be added vectorially to 
the background flow velocity field in order to determine its 
trajectory. Further, we hypothesize that this rise velocity 
can be written as a modified Stokes velocity 

kdpga' 
t) 

us=-, 

where A p  is the density contrast between the plume and the 
mantle, g the gravitational acceleration, a the plume radius, 
t) the mantle viscosity, and k is a constant to be determined 
experimentally. Note that our hypothesis applies to plume 
or conduit elements, not to fluid parcels which flow through 
the plume. It is to be expected that fluid velocities within the 
plume are, at least for low viscosity plumes, much greater 
than the Stokes velocity of the conduit itself. 

The form of (1) is that of the Stokes formula for the rise 
of a buoyant sphere or cylinder, except for a numerical 
factor allowing for the differing geometry of a plume. (Note 
that the validity of (1) applied to conduits carrying buoyant 
fluid, possibly of very low viscosity, is not obvious. Indeed, 
Skilbeck & Whitehead (1978) attempted to characterise the 
rise of an inclined plume in terms of a rigid cylinder whose 
axis was inclined at an angle to the vertical.) Theoretical 
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Figure 1. Diagram of a simple shear flow and a plume advected 
horizontally from its source. 

prediction of this numerical factor an arbitrary plume is 
difficult. Hence we aim to determine the constant k (and 
whether it is, indeed, a constant) experimentally. We can 
make two specific predictions using equation (1) which serve 
to clarify our hypothesis and which guide the experimental 
work. 

Case 1 :  Steady-state deflection. Consider a plume rising from 
a fixed source at the rigid base of a tank into a uniform fluid 
of viscosity t). Let the fluid be in a state of shear, driven by a 
rigid plate at the top moving horizontally with constant 
velocity uo (see Fig. 1). The horizontal velocity in the fluid 
must increase linearly from zero at the bottom of the tank to 
uo at the moving top plate: 

where h is the depth of the fluid. The plume will be bent as 
sketched in Fig. 1. We ask: What is the steady-state profile 
after both the plume and plate motion have been turned on 
for a long time? The horizontal position, x ,  of a plume 
element at height z is given by 

(3 )  

where t ( z )  is the time for a plume element to rise to height 
z. This vertical rise time is the height z divided by the 
modified Stokes rise velocity which, according to our 
hypothesis above, is a constant us: 

(4) 

Substituting (4) into (3) we obtain 

x(z) = 4 f .  dz. 
0 u s  

Upon integration and substitution from (1): 

t) UOZ' x ( z )  =--- 
kgdpa' h 2 ' 

In non-dimensional form 

(7) 

Equation (7) predicts that the steady state profile of the 
plume in a simple shear flow should be parabolic. Solving 
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(7) for k,  

gives an equation which allows us to determine the value of 
the constant for various combinations of experimental 
parameters. The value of k is likely to be dependent upon 
the viscosity of the plume itself. However, as long as the 
plume viscosity is much less than the tank fluid viscosity, the 
variation with viscosity should be small. We also note here 
an obvious oversimplification which is discussed more fully 
later: because the inclination of the plume is a function of 
height, the plume radius, a, is not constant (Whitehead 

1982). Thus for large excursions, -, equations (7) and (8) 

may have to be modified. 

Case 2: Transient adjustment. We also wish to know how the 
plume evolves in time when the shear flow is altered. 
Consider a plume bent to its steady-state configuration as in 
Fig. 1. If the horizontal plate motion is suddenly turned off, 
how does the plume profile relax toward the vertical? If our 
hypothesis leading to (1) is correct, then the conduit at 
x(z ,  t )  should relax to position x ( z ,  t + At)  (Fig. 2) as the 
plume element at x ( z  - Az, t )  rises the distance A z .  This 
behaviour is expressed in the difference equation 

-42) 

h 

X ( Z ,  t + At)  - x ( z ,  t )  = X ( Z  - Az, t )  - x (z ,  t )  (9) 
01 

dx -dzdx 
at at dz 
-=-- 

- a2 

dt 
According to our hypothesis, - = us so that 

d X  
-us - . ax 

at a2 
- _ -  

This is a simple one-dimensional wave equation with 
solutions of the form x ( z ,  t )  = x ( z  - u,t, 0). For a plume 
stretched out to the profile given by (6), the horizontal 
displacement will ‘relax’ according to 

UO 

2hus x ( z ,  t )  = - (2 - u,t)2, 

vertical plume, the horizontal displacement will ‘stretch’ 
after plate motion commences according to 

U 
x(z,  t )  = L! t(22 - v,t). 

2h 

Equations (12) and (13) show that the plume adjusts to its 
new steady state in the time t = z/v,. Hence the adjustment 
time for a plume in a simple shear flow increases linearly 
with height, z ,  from the source. 

EXPERIMENTAL METHODS 

A simple shear flow was generated using the cylindrical, 
plexiglass tank illustrated in Fig. 3. A lid with a radius about 
5 mm less than the inside diameter of the tank was fitted on 
an axle so that it could rotate freely. The lid was rotated at a 
constant rate by a small electric motor via a pulley system 
(not shown). The distance between the bottom of the lid 
and the bottom of the tank (about 1Ocm) was deliberately 
made small with respect to the tank diameter (60 cm) so that 
flow mid-way between the axis and sidewall would closely 
approximate the linear increase with depth of a simple shear 
flow (see Fig. 1). The plume was injected through a small 
opening at the bottom of the tank 12 cm away from the axis 
and 18cm from the sidewall. The plume fluid was fed 
through a plastic tube from an elevated reservoir, and the 
flow was controlled by a simple in-line needle valve. The 
tank fluid was almost pure glycerol (with some contaminat- 
ing water) of density 1.26 g/cm3 and kinematic viscosity 
790cS. Plume fluids consisted of mixtures of glycerol and 
water having lower densities and viscosities than the tank 
fluid. 

where t is the time after plate motion ceases. For an initially 

Figure 2. Sketch of a displaced plume, showing the coordinate 
notation used to analyse the motion of a plume element. 

source 

Figure 3. The laboratory apparatus in plan and side view. 
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Figure 4. The measured velocity profile over the depth of the tank. 

We anticipated one practical problem: as experiments 
proceeded, buoyant low viscosity plume fluid would collect 
beneath the rotating lid and reduce coupling between the lid 
and the tank fluid. This was overcome to a large extent by 
cutting holes in the lid at the same radius as the plume 
source and filling the tank to a height above the top of the 
lid (see Fig. 3). As the top of the plume was wrapped 
around the axis at a fixed radius by the shear flow, the 
plume fluid would escape through the holes to the surface of 
the glycerol above the lid. This modification worked well, 
with only slight effects on the rise of the plume fluid within 
1 cm of the lid-where the plume approached solid portions 
of the lid it rose more slowly than where it approached a 
hole. 

Each experiment was recorded by taking photographs 
through the side of the tank at regular time intervals with a 
35 mm camera. Measurements were made by projecting the 
negative against a screen, tracing the plumes onto graph 
paper, and digitizing the plume profiles. The vertical and 
horizontal scales were set along the cylindrical surface at the 
source radius by photographing a plastic cylinder, radius 
12 cm, placed inside the tank. This cylinder had regularly 
spaced vertical and horizontal lines which defined the length 
scale along the plume trajectories. 

The shear velocity profile in the tank at the position of the 
plume was measured as follows: a very narrow plume, dyed 
red, was injected and brought to a steady state with no plate 
motion, i.e. a vertical plume. Its position was recorded 
photographically. Then the plate motion was turned on and 
another photo was taken a short time (30s) later. Since the 
plume was very weak, it offered almost no resistance to 
being advected horizontally by the shear flow, and its 

displacement between the two photographs gave the shear 
velocity profile directly. The velocity profile obtained is 
shown in Fig. 4, and it is indeed very close to linear. The 
extrapolated velocity at the bottom of the lid is 0.064cm/s 
(at radius 12cm), which agrees with that determined by 
measuring the rotation rate of the lid. Therefore, our 
attempt to create a simple shear flow between the top and 
bottom of the tank was successful. 

In order to fully test the theory for plume deflection by 
shear flow, equations (6) and (13) must be shown to hold for 
a single constant value of k regardless of the plume 
parameters. We varied both the plume radius, a, and the 
density contrast, A p ,  in the experiments that follow. The 
relevant parameters for each experiment are given in Table 
1. The radius was varied over a range sufficient to span 
steady state plume shapes from those having very little 
deflection up to those having very large deflections (>60" 
from the vertical). Plume radius was varied by controlling 
the plume flow rate from its reservoir (see Fig. 3). The 
plume fluids were mixtures of glycerol and water plus a 
small amount of red dye: 80% glycerol +20% water by 
volume in experiments Al-A3, and 90% glycerol +lo% 
water for Bl-B3. The plume viscosities were estimated from 
standard mixing curves and were much less than the tank 
fluid viscosity. 

The plume radii were measured from photographs of the 
steady, vertical plumes without plate motion. The plume 
radius in the middle of the tank was slightly smaller (but by 
less than 10 per cent) than near the top and bottom, and the 
values given in Table 1 are an average over four 
evenly-spaced heights above the source. Some uncertainty in 
radius measurement arises due to the refractive index 
contrast between plume and tank fluid: light is refracted at 
the edges of the plume, and the edge itself appears fuzzy in 
the photographs. We estimate an uncertainty in plume 
diameter of about 10.3mm. This is probably the largest 
source of error in the experiments. 

EXPERIMENTAL RESULTS 

Two series of experiments were run (A and B) with different 
density (and viscosity) contrasts. For each series, three 
different plume radii were used. For experiment A2 (see 
Table 1) several plume profiles are shown in Fig. 5. These 
photographs show the plume before the plate motion is 
turned on (Sa), at a short time after plate motion is started 
(Sb), at a steady-state (>240 s) of horizontal deflection (Sc), 

Table 1. Experimental parameters for six plumes, along with the values of the modified 
Stokes constant k found by fitting the steady state trajectories of plumes in a linear velocity 
profile. 

&(pcm-3) 2arcm) - k - h ?ll?hdl& 
A1 10.5cm 0.07 0.05 1 (.I61 (0.79) 

A3 .60 0.55 
B1 9.5cm 0.25 0.026 .34 0.56 
B2 .55 0.52 
B3 .83 0.5 1 

A2 .32 . 0.54 
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Figure 5. Photographs showing the shape of the plume in run A2 
(a) before plate motion is begun; (b) 60 s after plate motion began; 
(c) in its steady state 240s after motion began; and (d) 60s after 
plate motion is stopped. The plume eventually becomes vertical 
again. The solid vertical bar is the axial shaft supporting the lid. 

and at an intermediate time after the plate motion is turned 
off (5d). Such photographs constitute the basic data used 
here. Note that photos 5b and 5d are quite different: in 5d 
the upper parts of the plume have relaxed slowly compared 
to the lower parts leading to greater curvature, while in 5b 
the plume deflection is initially linear with height. Equation 
(13) shows that this is to be expected, predicting that the 
upper part of the plume is slower to adjust toward either of 
the two steady states (plate motion on or off). We also note 
that the plume is stable at all times, including when bent 
over to the maximum extent. The dependence of adjustment 
time t upon z is better illustrated in Figs 6(a),(b), where 
profiles of the centerline of the plume are shown at the 

- 1  0 1 2 3 4 5 
Horizontal displacement (cm) 

1 0 1 2 3 4 5 
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Figure 6. The shape of the centre line of the plume in run A2 at 
various times (a) after the plate motion began (‘stretching’) and (b) 
after the plate motion stopped (‘relaxing’). In (a) the plume is 
initially close to vertical and is progressively displaced toward its 
final steady shape. In (b) the plume relaxes toward the vertical. 

complete set of time intervals. The ‘stretching’ profiles show 
deflection after plate motion is turned on, and the ‘relaxing’ 
profiles show deflection after plate motion is turned off. 

Steady-state deflection profiles are shown for experiments 
Al-A3 in Fig. 7. The deflection decreases with the square 
of increasing plume radius, and all three profiles are 
approximately parabolic as anticipated in (6). Values for the 
constant k, defined in ( l ) ,  can be estimated by fitting 
parabolas to the x versus z data for the steady-state 
displacement profiles. 

Referring to (6) we wish to determine k’ for each plume 
such that the form 

x(z) = k’z2 

gives an optimum fit. Here k ’ =  ”’ so that a 

determination of k‘ results in a determination of k with all 
the other parameters known for each experiment. 

One practical modification to (14) is required to estimate 
k accurately. This results from the fact that the plume must 
undergo a rapid adjustment as it enters the tank from the 
small (2mm diameter) source hole. Over a small vertical 
distance the plume widens and reaches a constant diameter. 
We estimate this distance to be less than 1.5cm in our 
experiments, and we have arbitrarily taken a ‘virtual’ plume 
source to be at a height of 1.4 cm above the tank bottom. A 
review of (3)-(6) shows that this is a trivial modification 

2kg Apa’h 
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Figure 7. Photographs of the final steady state form of the plumes 
in the presence of plate motion in runs A l ,  A2 and A3. The plume 
is carried from left to right between the viewer and the axial shaft. 

since, according to our theory, we could take any point 
along the plume trajectory to be a virtual source. More 
explicitly, if we take the virtual source to be at height z, and 
define the x coordinate of the plume to be zero at this 
height, then (4) becomes 

X ( Z )  = k'(Z2 - 2:). (15) 
For N data points along the plume profile, we obtain the 
least squares estimate for k' (and thus k )  

N c x i ( z ; - z @  ,. i = l  

k =  L r  

and we model 

Pi = L(2: - z;) .  

Figure 8 shows the steady-state plume profiles X ( Z )  and 
the least-squares fits P for all experiments. The plume 
profiles are described quite adequately by the best-fit 
parabolas. However, in order to confirm our initial 
hypothesis, it is necessary to show that the resulting 
estimates for k are independent of the experimental plume 
parameters ( A p ,  a, T,J~,~,,,~). Note that (16) can be applied to 
estimate k'  for any maximum number of data points N ,  
hence any cut-off height in the box. By varying this 
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Figure 8. The measured steady state plume profiles in the presence 
of plate motion and the parabolas fitted using the least-squares 
method. The lid lies at a height of 10.5 cm from the base in (a) and 
at 9.5 cm in (b). Data from close to the lid are omitted because the 
rise of the plume there is influenced by proximity to the holes in the 
lid. Horizontal displacement is relative to the plume position at a 
height 1.4 cm from the base. 

maximum height for which the parabolic fit is obtained, we 
gain some further idea as to how appropriate the parabolic 
curves really are. In Fig. 9 we show values of k determined 
as a function of cut-off height for the fit. The estimates level 
off above about 4cm and give an average value of 
k = 0.54 f 0.02. One notable exception is experiment A1 in 
which estimates for k are systematically a factor of about 30 
per cent higher than for the other experiments. We believe 
this one anomaly results from inaccuracy in the determina- 
tion of the exceptionally small plume radius in that 
experiment. Estimates for k are inversely proportional to 

1.0 I 
t 

o.8 t 
0.4 

k 

0 2 4 6 a 10 

Figure 9. Estimates for the scaling constant k, as detined in (8), as 
functions of the maximum height used in the parabolic fit for six 
experiments. Only experiment A1 gives estimates significantly 
different from one fixed value, and this difference can be attributed 
to a small error in measurement of the plume diameter. 

Height above source (cm) 
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the square of the plume radius, a', and an underestimate of 
the diameter 2a by only 0.15mm in experiment A1 could 
explain the discrepancy seen in Fig. 9. As discussed above, 
measurement errors of order f0 .3  mm in the diameter are 
expected. The other experiments, having larger radii, are 
not so susceptible to this source of error. Furthermore, the 
results for A1 show an almost constant estimate for k as a 
function of maximum height, so we are confident that the 
plume behaviour is not significantly different from the other 
plumes. 

The similarity of all the estimates for k in Fig. 9 confirm 
the original hypothesis that each plume element trajectory 
can be described in terms of a modified Stokes velocity. The 
value of k does not depend upon the plume radius, density 
anomaly of viscosity contrast. It increases slightly, perhaps, 
with height, noting that the angle of inclination of the plume 
increases with height, but we find no dependence of k upon 
the magnitude of maximum deflection, which varies greatly 
between experiments. Note from Fig. 8 that phme  
deflection increases slightly faster than z2 near the top of the 
tank. This is expected, since the rigid upper plate will retard 
the conduit rise within several conduit diameters of the 
plate: our theoretical model is not applicable immediately 
beneath the plate, but this is not a serious restriction in 
applications to the Earth. 

The time evolution of the horizontal displacement is 
shown for each experimental plume in Figs lO(a-f). The 
displacement was measured as a function of time at three 
almost equally spaced heights in the tank (3.8 cm, 5.7 cm, 
and 7.7 cm above the bottom of the tank). At time zero, the 

10 
Time Evolution of Plume Profile (Exp. A l )  
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Figure 10. Horizontal displacement of plumes as a function of time 
in each experiment. The symbols give the time history at heights 
3.8 cm, 5.7 cm, and 7.7 cm above the bottom of the tank. The solid 
curves are theoretical predictions based on the previous, empirical 
determinations of k from steady-state plume shapes. 

plate motion is turned on and the plume begins to stretch. 
At a later time plate motion is turned off and the plume 
relaxes. 

Equations (12) and (13) above predict the time evolution 
at each height for the simple shear flow, and theoretical 
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Figure 10. (continued) 
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values based on these expressions are shown as soiid lines in 
Fig. 10. These curves are calculated for the single best-fit 
value of k determined in each experiment. The relaxation 
parts of the curves fit a little better than the stretching parts, 
but the agreement is quite good in both cases. We conclude 
that our initial hypothesis, equation (l) ,  predicts the 
approximate time evolution of a plume conduit in a shear 
flow in addition to its steady-state profile. 

DISCUSSION 

We have shown that the shapes of plume conduits formed 
from a continuous, fixed flux of buoyant fluid in a simple 
shear flow are determined by the sum of the horizontal 
advection by the surrounding fluid and a constant velocity of 
rise for individual plume elements. This vertical velocity can 
be expressed as a modified Stokes velocity which scales as 
the square of the plume radius times the density contrast. 
The modified Stokes velocity is shown to depend only 
weakly, if at all, on the angle of inclination of the plume to 
the vertical. 

The numerical constant for the Stokes law scaling is 
k=0.54&0.02, which is close to twice that for the motion 
of a sphere ( k  = 0.33). This is reasonable, since each plume 
element is actually a segment of a cylindrical conduit, and 
since the Stokes constant for a cylinder is always larger than 
that for a sphere. We cannot fully justify the fact that k is 
approximately constant regardless of plume deflection or 
inclination. Our initial hypothesis resulted not from 
theoretical considerations, but sprang largely from the 
observation that a steady plume in a simple shear flow is 
bent into a simple parabolic shape. 

In their treatment of conduit instability, Skilbeck & 
Whitehead (1978) used the formula for the rise of an 
inclined, rigid cylinder to approximate the rise velocity of 
plume elements 

(sin 0)112 ' 

where l / a  is a 'reasonable' cylinder length to radius ratio 
and 0 is the conduit inclination to the horizontal. (The 
factor l/(sin 0)112 is included to account for the change in 
plume radius with inclination.) They assumed that l la  = 10 
which, for a weakly deflected plume (0 = 90") implies that 

1.e. k = 1.15. According to our experiments this is incorrect 
by more than a factor of 2. Since the 0-dependent factor in 
equation (18) varies by only 13 per cent for 30" < 8 < 90", 
we might improve (18) by simply choosing a 'correct' value 
for f l a ,  namely 1Ja = 2.9. However, this is  a completely ad 
hoc remedy which contains no more of the physics of the 
problem than equation (1). 

Although (18) accounts for the effect of inclination on the 
rise of a rigid cylinder, there is no reason to believe that the 
appropriate value of l la  should remain constant. The fact 
that l / a  enters (18) logarithmically and the weak 
$-dependence do  suggest that the effective value for k in (1) 
may change very little with conduit inclination. We note, 
however, that (18) predicts a small decrease in k with 

increasing deflection where, if anything, our experiments 
suggest a small increase. 

Of course, we have shown only that (1) approximates 
plume trajectories; the fits to data and the constancy of k 
are not perfect. The above discussion is not intended as a 
criticism of Skilbeck and Whitehead, but we wish to 
emphasize the following points: our hypothesis [equation 
(l)] describes quite accurately the deflection of low viscosity 
plumes and this description should be adequate for studying 
the deflection of stable plumes in the mantle. Equation (1) 
has the merit of great simplicity which is very helpful in 
understanding the evolution of plumes responding to 
changing mantle flow and plate motions. We have no 
theoretical reason to believe that (1) is exact or that any 
similar exact expression exists. For this reason we have not 
included an exhaustive discussion of the fit between data 
and theory: the simple theory is clearly a good 
approximation over a wide range of conditions. In 
applications to mantle plumes, other first-order uncer- 
tainties, such as the ambient mantle viscosity structure, are 
likely to be more important than any inadequacies of our 
simple theory for plume deflection. 

One additional observation made during our laboratory 
experiments but not previously noted is worth a mention 
here. Along the axis of the plume above a height of two to 
four centimetres from the source there appeared a thin 
vertical stripe of non-dyed fluid from outside the plume. This 
stripe became even more clearly visible when the plume was 
laid down beneath the rigid lid and began to spread 
horizontally. The stripe indicates a bifurcation of the flow 
within the plume, from a simple nearly vertical flow near the 
source (this flow would exist along the whole length of 
vertical plumes) to a cylindrical vortex at positions where 
the plume axis is inclined to the vertical. The cylindrical 
vortex involves two oppositely directed recirculating eddies 
with axes parallel to the plume axis and is a natural corollary 
to our description of the rise of the plume conduit according 
to a modified Stokes velocity (a similar but spherical vortex 
occurs in a rising sphere). The entrainment of surrounding, 
non-dyed fluid into the conduit may be a result of viscous 
stresses, or may result from molecular diffusion of water out 
of the dyed plume fluid, making buoyant a small amount of 
outer fluid (Griffiths 1986a,b). This cylindrical vortex flow is 
superimposed on the relatively rapid flow of buoyant 
material upward along the conduit. 

Our experiments involve chemical plumes only, and it is 
wise to consider the extent to which these will model 
thermal plumes in the mantle. In a thermal plume, 
conduction of heat has the potential to influence the density 
and viscosity structure. Indeed, for vertical plumes in a 
stationary environment, the coupling of purely axial flow 
with purely radial (horizontal) conduction of heat will 
generate profiles of temperature, density anomaly and 
vertical velocity which all decrease with distance from the 
plume axis. Viscosity is strongly dependent on temperature 
and increases with radial distance. However, in a tilted 
plume radial diffusion of heat is coupled to the internal 
recirculation of the cylindrical vortex, as well as to the axial 
flow. This coupling previously has been discussed for the 
case of the spherical vortex which is generated in a rising 
diapir (Griffiths 1986a,b). For large Peclet number the 
vortex circulation maintains an approximately uniform 
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temperature throughout a diapir and temperature gradients 
resulting from conduction are confined to a very thin 
boundary layer around the edge of the diapir. A diapir 
slowly enlarges and cools as it rises and entrains surrounding 
material. For a tilted conduit the Peclet number based on 
the modified Stokes velocity will again be large (assuming 
radii greater than 1 km). Furthermore, the relatively rapid 
axial flow will maintain a close communication with the 
plume source. Hence diffusion of heat is likely to have only 
small effects on the temperature, viscosity and density 
structure of the plume. The conduit's rise through the 
mantle and the associated cylindrical vortex also imply that 
an extensive thermal halo such as that around a vertical 
plume in a stationary environment cannot develop and any 
temperature gradients within the plume will be limited. 

We conclude this paper by considering two general 
examples of stable plumes interacting with mantle shear 
flow. These simple models illustrate the usefulness of (1) in 
understanding mantle plumes. 

Simple shear flow with layered viscosity 

Consider a simple shear flow driven by an upper plate 
having velocity u,,, with a rigid bottom as shown in Fig. 
l l(a).  Also, let the bottom part of the fluid (0 I z sfh) 
have viscosity q1,  and the upper part ( f h  < z < h )  have 
viscosity q2. If q1 > q2,  the horizontal velocity profile u(z )  
will be as illustrated in Fig. l l(a).  Using analytical 
expressions obtained for u(z) ,  it is easy to show using ( 5 )  
that a steady plume injected at the bottom of the fluid will 
have a trajectory given by 

The trajectory (20) is the same as the uniform viscosity 
case except for the constant factor in brackets. Thus, the 
plume trajectory remains parabolic. This shape will occur 
whenever shear stress is constant throughout the depth of 
the fluid. Another way to look at this result is that both the 
horizontal force acting on the conduit and the vertical force, 
or drag, resisting the rise of the conduit are proportional to 
the local background fluid viscosity. We conclude that, at 
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X 

, 
4 

"ridg "trench" 

H 

Figure 11. (a) Diagram of plume deflection in a plate-driven shear 
flow with vertical viscosity stratification. (b) Diagram of plume 
deflection in a simple return flow model. 

least for this simple case, it is the shear stress applied at the 
surface by the moving plate that determines the plume 
deflection and the vertical structure does not alter the shape 
of the trajectory. We note here that we have assumed that 
the plume radius remains constant with height. As long as 
the plume viscosity is much less than the surrounding fluid 
viscosity this will be approximately correct (see Richards, 
Hagar & Sleep 1987). 

Simple return flow (uniform viscosity) 

Flow in the mantle due to plate motions and, perhaps, other 
modes of convection must involve a return flow component 
such that there is little or no net horizontal advection of 
mantle material. In the case of Hawaii and other Pacific 
hotspots, there must be a large component of return flow 
directly to the East Pacific Rise owing to the size of the 
Pacific plate subduction and its large spreading and 
subduction rates (Hager & O'Connell 1981). Here we 
calculate the trajectory of a plume in a very simple return 
flow model. 

Figure l l (b)  illustrates the return flow model. Again, the 
moving lithospheric plate, of thickness H ,  drives flow in the 
mantle below, but we require a return flow such that no net 
mass flux occurs through a vertical section. Here we take the 
mantle, or at least that part of it involved in plate-driven 
flow, to be of uniform viscosity r]  and thickness h. The flow 
can be modelled as being driven by a uniform pressure 

gradient, -, driving material back toward the spreading 

ridge from the trench or subduction zone. We have used a 
rigid bottom boundary to serve as a 'fixed' plume source. 

The velocity profile (see e.g. Turcotte & Schubert 1982) is 
given by 

3P 
d X  

Using (9, the plume trajectory is given by 

The shape of this trajectory is also shown in Fig. l l(b) for 
the case H l h  = 116, which corresponds to a return flow 
confined to the upper mantle. The most negative horizontal 
excursion of the plume occurs at 

zmax - 1 
--1- 

h 

In Table 2 we show the maximum horizontal excursion 
x(z,,) and the surface (hotspot) excursion x ( h )  with 
respect to the plume source for three different values of 
H l h .  Results are given for return flow confined to a shallow 
low viscosity channel, to the upper mantle and to the whole 
depth of the mantle. The previous example with viscosity 
stratification, which demonstrates that shear stress rather 
than viscosity is important, shows that the low viscosity 
channel case is probably not meaningful, unless convection 
associated with plate motion is strictly confined to this 
'decoupling' channel. 
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H/h z m a h  x(zmax) 

-.58 3 h 
"S 

low viscosity channel 112 .83 

upper mantle 116 .75 -.28 3 h 

-.17 %h 

VS 

VS 
whole mantle 1/29 .69 

x(h) [surface] 

-.5 !?Q h 
VS 

-.17 $h 

-.03 3 h 
VS 

First, we note from (23) and Table 2 that the height zmaX 
is quite a large fraction of the layer depth h. Thus, as 
illustrated in Fig. l l (b) ,  the maximum excursion ~ ( z , , , )  
occurs near the top of the layer. We also note that the 
difference between this maximum excursion and the surface 
hotspot position is small for the case of upper mantle 
recirculation. For all of the cases considered, the surface 
hotspot position is the result of a plume bent over from its 
source in the opposite direction to the plate motion. 

We conclude this example by estimating ~(z,,,) for some 
possible combinations of mantle and plume parameters, If 
we let the plume radius be a = 70 km, the density contrast 
A p  = 0.05 g/cm3, and the mantle viscosity r]  = 1OZ2P, then 
we find from (1) us = 5 cm/yr. If the plate velocity is 
uo = 10 cm/yr then we obtain x(zma,) = 350 km for upper 
mantle return flow and ~(z,,,) = 1000 km for whole mantle 
return flow. The corresponding surface positions will be 
210 km and 180 km, respectively, from the source. The 
plume radius value of a = 70 km may at first thought seem 
quite large. However, if the uppermost mantle has a 
viscosity as small as -1O2'P, a plume radius an order of 
magnitude smaller would lead to the same deflection. These 
numerical examples are not intended as actual estimates for 
any particular mantle plume, but only to show that modestly 
deflected and stable plumes are within the range of 
reasonable parameter choices. 

As a prelude to a discussion of the behaviour of specific 
mantle plumes (paper in preparation), we point out that a 
horizontal plume excursion of as much as half of the upper 
mantle depth appears to be precluded by the sharpness of 
the bend in the Hawaiian-Emperor seamount chain. Since 
each plume element behaves like an independent Stokeslet, 
a change in the direction of plate motion leaves the old 
plume trajectory 'stranded' in horizontal position. Noting 
again that the maximum excursion occurs very near the base 
of the lithosphere, the join between the steady-state plume 
tracks before and after the change in plate motion would be 
expected to show a radius of curvature comparable to the 
maximum horizontal change in the plume trajectory. 

The range of applications of (1) in understanding mantle 
plumes and hotspots is potentially large. Most researchers 
have tended to concentrate on the Hawaii hotspot, but other 
hotspot tracks may be just as interesting. Sufficiently weak 
mantle plumes may be deflected so far as to be unstable in 
the manner demonstrated by Whitehead (1982). The surface 
expression of these weak plumes (which will generate only 
small seafloor swells) are likely to show stronger evidence 

for episodicity , resulting from instability, in volcanism and 
lithospheric heating. Although our description of plume 
trajectories is only approximate, it does show that various 
effects due to mantle flow and plate motions are not, 
fundamentally, very complicated. 
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