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PREFACE 







1- BASIC PRINCIPLES AHD ONE-DIkR3NSfONAL MOTIONS 

Qwhm phamem am oftea n&gUgkble in t2re 'macm~lcepc" wr~dd. 
Sbw this numaidly for the Eolhing c a m  

{a) The m@Zibude of the mwiat &tb# for a p W u m  of length 
l = i r n m d m a s s r n = l & .  

(bj Th tmdhg prob&Ility for a w r b b  of mass rn = 5 g moving d ra 
speed of 161 ca irn  a rigid o b W  of height B = I m 4 width 
w = l m  

(c) The ,Wcaa%ian of a Wis baa wf ,mass m = Q.1 kg m a  at B 

sped e! = 0.5 by a widow of sic-l v 1.6; ma. 
( W ' C ( ~ M ~ )  

Thus >the tsempoiartr m c W i o n ,  of a mWwmpi'c pehdduin is eagtigibk* 
If wer& the width and height of the rigid oMact as the width 

and he&ht d a g r a v t ~  p o W  b m h ,  the t w & g  grob&&y is 



(a) The ektron Compwn mdtqth. 
The ektzon Thomon CWB &ion. 

'(4 The Bohr radius of hydrqgen. 
Id) The i m h t i o n  for atomic h y m .  
(k)  The byperfine ~plitting of the gmund4ate ,ener$gr lewd in atomic 

wf%m- 
[f )  The -@tic dipole moment of %iP (3 = 3) nudeus. 
(%) The proton-neutron m&= m m .  
(h) The Iifetime of fief? ~ E P O n .  
[i) The Wng energy uf a herium-4 audms. 
(j) The radius ofthe l a p s t  stable nuclew. 
(k) TL W i  of a # maimon. 
(1) The lifetime of a p- meason. 

[a] A, = h / n o  = 2-43 Y 8. 
(b) o = $$ = 0.66 X m2. 
(c) a = 4 = 0.53 A. 

m!e (dl I E & = 13,6-eV. 
ce) The splitting of the g r o W z @  e m g y  W is 

m p = 1.67 x lokw J T-'. 
(g] Am = rra, - pn, .= - 2 3  x 10-rn kg. 
(h) r,= 1 6 m i n = 9 ~ @ 8 .  

I (i) E = 4  x '7MeV=IMeV. 
Cj)Thradltrsr canmpoadstoa regionofspacein which~1~dmrEaxm 

i$dktive.Tbus 

(k) T = 8.28 x 10-'~ s. 
(1) The decay of p' is hp wmk interaction, md so T = 2.2 x lob6 a. 



E x p l h  whrnt mu h d  about qmti%atba ofxadiatidor m&&l 
system frora m Or the foPmiIkg tmpdmentia: 

(a) Pbhlectda &&. 
(b] B M  body radiakbn s p w .  
(c) Flanck-Eem &xp#immt. 
(d) Davissg- mpekimt, 
(el CgmpEon matte-, 

%ldon: 
(a) P h ~ l ~  EEkt 
This &&'the ~ o f ~ o ~  w b e n w e ~ ~ a  

& uuda m u m  with &ravioM light. It was fwad that thsmagdhh 
d the- d&de merit thus produced b proportional to the i&&Q of the 

radiation provided $hat the bqwwy of the E&t is gxwter than s 
mWmm d u e  &mmterWc of the metal, while the speed of the ele&mns 
do- not depend 031 tlae hght i n M t y f  but cia its frequency. These results 
could not be - la id  by clWd p H = .  

EWt&aia 1!405qhined ~ ~ t a  bya~barmiqglight~initsinter- 
action with maer, d w r p ~ ~ d s  of wagy hv, & phatons. 
When a phobn enm~ul~'an electron d the met4 it is en- a b r M ,  
and the elmton, af%w mi* the en- b4 spa& an -9ot of work 
W equal toits binding energy i-n t h e d ,  and team with a k b t i i m  

T h  qusratihtie fiearg of ~ ~ r i e i t y  h been mmpl&ly veriild 
by expmimmt, tb ~~ the mpw* rm&w of light* 

[b) B F   sod^ Ihdhfion 
A bla& body h one which &mfb all the r d a n  h b g  on it. Thdl 

sptd -bution of* d i h n  emittdw s b h k  body can be derived 
h m  the gem4 Lzvws of jntertLetitm between matter and radiation. The 



wa- -% performed with dmfmns by h-n wd h z w  (ISW$i: The 
incident b w n  waa sbtaimd by acmleraeiag electrons .throu&~d&&aI 
potential. Kmwibg th panmetem of the crystal lttim it was pudb1e.h 
deduce apdnmtal due for the d&rm wptvdeagth a d  Shs& 
w w  in perfect wit4 t h  & B d i e  r & t h  A = h/p, w h  h ts 
Ftancfrk masban* md p is the momen- of the elecho= 9 h i b ~ e r -  
hmh w m  h%r performed by 0th- with hems of helium atom and 
~ m e r ~ q & ~ t h a t t h e w ~ s t r a c t u r e ~ n o ~ ~  
to ebtmw. 

(9) Comptoa h*b 
Compton a- th scatterbg of X-rays by h e  {or d y  hand), 

&mm and found time waw1ength ofthematt& r d i t i o n m  tha4 
of t b  Wdeat rdhtion. The difhmw AA vsried =a function dthe -1e 
4 hotween the e t  s c z & b d  dhwtiom 

w h k f  Phck~scxmsmtandmh~mtmassof~d~rafl. 
more, AA is Independent of the &&dent I~wl&gth The k p u h  && 
~ t b e ~ b y a a y ~ c a l w a v e ~ d ~ d i s t ~  
a confirmation of tb photon theow d W. 

In the days before Qtlmtwn Meehanim, a big thearetical pmbIwa was to 
#stop3' an atom from emitting light. Explain. A f k  Qlww Me&&=, 
a bi themtic&l problem wm to m a  amms in excited emit Iigbt. 
Explain. What dms make excited atoms emit light? 

( W ~ d n )  

So1utS6n; 
In bhe days More Quantum Mdanicabl, according to the R e d  

atomic model electmm mow wund the nucleus in elliptical orbb. Chi- 
d dectzodynmia mpim radiationto be emitted w h  acharged partide 
d a t a ,  Thus the atam musk emit light. This that khe electrons 
would lose energy continuonsly and ultimately be captured by the nucleus. 
W h e r e a s , i n ~ u a l f a & t h e ~ d o m t E a l l t o w a r d s t h e m r h a n d  

ahma ia ground state me &able and do not emit light. The p m b h  then 
was to invent a m w  which mutd pm€at the &bm f b m  emitting 
light* An such &t$mpts ended 33 Mum. 

A M c  prlaeipf of Qmtun'i M&bnics is that, without ex- inter- 
@on, the Ehiftunb of aa atom is timeindepend&. This - that 
a n b m  i a m a u ~ ~ ~ ( d a ~ ~ ~ ~ b ) ~ u l d ~ o n s r n d n o t  
& s p o e t m ~ .  In d i y ,  bwtmr, spaWWtls t t d t i d n  Of an 
Wted Wms w occur and light ia emits 

A a r d b g  to Quantum Ebtmdynamia, the Bhm&ipa of the t d &  

tion Md and the dectrbns in an atom, which forvn ~ t m  s m ,  
cmt&m a term of the shglephotan ctmtion operrabr a+, whi& does not 
mn&bmmiftbereisnaphuniaiWyY ItisWkerm,thatmalresatpnm 
in axcited &tes emit wt, musing spomeous trwitfon. 



@)'The prabab'fi$y MecW at t h  h;e i s  that of theeImtmns p&& 
h q h  slit B: 

I2 = IB(x) - 
It] Ic = I ~ a ( x )  = 11 + I3 + ~ntwfemm term f + 12. 

(dl The ei-b of the eIectmna piing thm@ slit A ig &reat 
from that of the d&rons p m i q  through slit 8, and sa there is na iaber- 
k e n 3  term. The ifftensity on the s c m  is just the sum of the intensities 
of the shgbdit caws: 

4 =&+Ig. 

Cej m;&r to (4, ' b ~ t  the Wauiv is hdf that in (cj: 

B & x 3  of Ofe m l f - i r t t ~ *  of khe ='We hractwla af the  el^^, the 
w w e m  a h  r d n  d i d  even when t h  Lecident: el&~m bdlam inteasSrtp 
b s: Ifow that ddy one. elman wmm through J a %]me. 

Find the force P (rj. 

The mrdbte  and momentum remrr8atiotot.r of a wave fundan we 
relaw by 



and the b 4 s  

r d 
FErl= - W ( x )  = -- - vtt.l = -&. r dr 

CMlrrkk the ~ n w i h e n e i d  thmiarkspendent -ger aquation 
kr Wnie ~ b i t r m y  pdenw Via). Prow that if a solution gb(x) has &$ 
property &at $ (XI 4 0 as a -+ Aoq, then the Eidution must he mad- 
mate a d  Ehehre raal, - from a pwible avmaIt p b  factor. 

Hht: Show that the mntrtwy wamption Ir:& to a ~)ntr&tb.  
IMd%rI 

Suppow EM thm ex& functiw &(x )  which &i&w the 
stme EkhrWnger @ation with the same enam E as $ md h suda that 
limp,- $[zJ = 0. T h  

$# - (BF$ = QP*k&,, 

The bll~l.dary oanditlw at at ;t: m then give 

Jntarating >we hawe In 4 =In 4 + M&W, oy $ = constant x 6 Tb- 
fm, $ ahd $ reprwent a e  same state amording b a s t a t i s t i d  Werpr& 
tatbn of wave funcdoa. Tbat is, the' d u t h  L noabe@r#rat& 

When V(x)  f a xaal function, md # tatisfj the same equation wifh 
the m e  a r g y  and the smne bu&uy&ndition limI+, f = Q H a m  
@*= 4, ur $ = f $ P , h m  which we have I,, o - r ~ = e d ~ p ( i d ) ,  where 
d ~ o ~ a u m b ~ ~ U w e c b ~ o e r e d = ~ t ~ c = l ~ ~ i s a d ~ c t j o n .  

1009 

bmider a o-d baund partide, 

(a) Shm th& 

[$ need not be a shthnptry state). 
(b) -Shm that, if M Wicle i s  la a st-abnary &ate at a given time, 

thagit w i I l d w & y s ~ j m a & ~ s t & ~ .  
( c ) I f & t = d t h e r n w W b n h ~ i n t h e @ o n - a < n : < a  

and rn b b m ,  q r ~ r s a  t;bb& a r n ~  m~ -tion at R -at' 
the 3n terms of the elgm&afes of the @em. 

ISolatiwx 
(a) M d e r  the S M n g e r  equation and its ooqjugate 



Basic Principltn and One-Dimensional Motions 13 

For the one dimension case we have, integrating owr all space, 

If d) is a bound state, then rlr(x + km) = 0 and h ~ n r . ~  

(b) Supposing the particle is in a stationary state with energy E at 

t = to,  we have 
fiy',(x, t o )  = W ( x ,  t o ) ,  

where & dops not depend on t explicitly. At any later time t ,  the Schrij- 
dinger equation 

iFia$ (z, t )/at = H4 (r, t 

applies. As fi does not depend on i, explicitly, the Schrijdinger equation 
has the formal solution 

+(5,  t )  = e x p [ - i ~ ( t  - t o ) / h ] $ ( s ,  t o ) .  

Multiplying both sides by H from the lrft nnrl noting the cornmutability 
between $1 and exp [-i (l - to )fi/h], we find 

Hence $(IF, t )  represents a stationary state at any later time t. 
(c) The wave function given For t = 0 can be written as 

G, 
$ ) ( x ,  01 = 

0, otherwise, 

where C is a constant. Normalization J:g I[)*I/JCIX = Z r ~ r p i r e s  that 
1 1  c = (;i;;)=. 

Suppose the eigenfunction of the hoond state is {r 17,) and H 1 n) = 
En [ n). Thcn 

and 

1 d ~ ( x , t ) ) = ~ ] n ) ( n l l l ( r . 0 ) )  7l exp 

Hence 

Ti 

with 

dt{x,  t )  is a solution of the Schradinger equat.inn for a free particle of 
mass m in one dimension, and 

(a) At time t = 0 find the probability amplitllde in momentum space. 
(b) FInd T/I,,(x, t ) .  

(Berkeley) 



14 Pmblpmq and SoEutiotas on Hectwmagnetisrn 

Solution: 

(a) At timc t = 0 the probability amplitude in momentum space is 

exp (-r2 /a2 - i p z / I i )  dx 

(b} The Schriidinger eqt~ation in  momentarn space for a frm particle, 

gives 

At time f = 0, we have B = @ ( P ,  0). Hence I 

We can also expand t h e  wave Function as a. linear superposition of plane 
waves and get 

Bmic fincl'nciples nnd One- Dimensional M o f i o m  15 

L 
$(., t )  = 

( 2 7 ~ h ) l / ~  
"I/J ( p ,  O) e'(kz-w') dp 

which agees with the previous result. 

A ~rart~icle of mass m is confined to a one-dimensional region 0 < x 5 n 
as shown in Fig. 1.2. At t = 0 its normalized wave function is 

$(I, t = 0) = [l + m s  (:)I sin ( ~ x / a )  . 

(a) 'What is the wave function at a later time t = to? 
(b) What is the average energy of the system at t = 0 and at t = to? 
(c) What is the probability that the particle is found in the lnft  hall of 

the hox (i.e., in the region 0 5 z 5 n/2) at t = to? 

( M i n  

Solution: 

The time-independent SchriEdinger equation for 0 < x < a is 

It has solution $(z) = A sin ks, where k is given by k2 = v, satis- 
fying @(O) = 0. The boundary condition $(a) = 0 then requires ka = na. 
Hence the normalized eigenfunctions are 



I6  problem^ and Sobtsom o n  Ebctmgnetrsm 

Pig. 1.2 

$. = \ii sin (y) , 

and the energy eigenvalues are 

Any wave function $Is, t) can be expnndcd irr $,: 

with 

( ;y ) .  A, ( t )  = A, (0) exp - - 

we have 

2 1 
A 1 ( 0 ) = -  Az{O)=- 6' A,(O) = O  fosn # I ,  2 .  fiq 

Bmrc Pnnctplcs and One-Dimenqional Mnt inm 17 

(a) TIztls 

d7r2fi.to 7r.T 
T / ~ ( X ,  t o )  = @*p ( -  2ma2 sin - a 

-12a2fi;lo T X  + exp ( , ) cos 71 sin e. 

(h) The average energy of the system is 

(c) The probal~ility of finding the part,ide in 0 5 s 5 at t = to  is 

~ / 2  

P ( o < ~ < ? )  2 = 1 Id (z ,  t . )I2dx 

8 a/? 

= - J sin2 (2) [I + ms2 
5a e a n 

r x  
$ 2  cos - m cos 

- I 16 cos (-). 37r%tto 
2 15a 3ma2 



Pmhlem~ and Salutimq on Elec'tromagnetism 

1012 '\ i 
A particle of mass m moves: in a one-dimensional box of length I with 

the potential 
V = m ,  T < O ,  

v=o,  O < x < I ,  

V = m ,  a > l ,  

At a certain instant, say t = 0,  the wave h~nction nf this partide is 
known to  have the form 

= x i - ) ,  O < s < l ,  

1J, = 0, otherwise. 

Write down an cxprcssion for 4~ (2, f > 0) nq a series, and expressions 
for t.he coefficients in ~ I I P  series. 

( Wisconsin) 

Solution: 

The ~i~enfrmctions and the corresponding energy eigcnvnlues are 

Thus 

where 

( n  $ i t  = O ) )  = 1(p sin (z n) f i X ( l - x ) d x  
. o  I 1 

3 

(1 - cos na) 

and hence 

I Rmic Principles and h e - D i m a 4 i m a l  Motions 

A rigid body with moment of incrtia of I, rotata frwly in the x-!/ 
plane. Let q5 I)e the angle hetween the z-axis <and the rotator axis. 

1 (a) Find the energy eigenwlues and the corresponding eigenfi~nctions. 
(h) At time t = O the rotator is described by a wave packet $(O) = 

A sin2 4. Find $( t )  for t > 0. 
( Wisconsin} 

Solution: 

(a) The Wamiltonian of a plane rotator is 

I H = -(h2/2f,) d2/dh2 

and sn the Schriidingrr ~quntion iq 

-(fi2/21, ) = E$ . 

i Set-ting a2 = 21,E/R< wwp write t,he solution as 

4~ = A eeLm& + B e-iacb, 

where A, R are arbit,rnry constants. For the wave function tn 1~ single- 
valued, i.e. 711 (05) = d~ (+ + 25~1, we r ~ q u k ~  

a=rn=0,  41,f2 , . . . .  

The ~igenvalues nf energy are then 

Em = m.Zh.'/21,, m = 0, &I, . . . . 

I and the corresponding eigenfi~nctions are 

aRer normalization J? ri,bWmdd = 1. 

(h) At t = 0 

A 4, (0) = A sin" = - (1 - cas 24) 
2 

(ei24 + e-i24 = ,412- - 
4 r 

1 which corresponds to m = 0 and m = f 2. The angular speed is given by 
Em = 1 1,d2, or 4 = F. Hence we have for time t 



20 Problems ancf .Solutions on Elec6romagfletism 

An electron is confined in the ground state in a one-dimens~onn~ brjx of 
width m. its energy is 38 eV. Calculate: 

(a) The energy of the electron irl its first excited state. 
(b) The average force on the walls of the box when the electron is in 

the ground state. 
( Wisconsin) 

Solution: 

(a) An electron confirlctl to a oiw-dimensional box can have cnergv levels 
(Probl~m 1011) 

Thus for the first excited state (n = 2$, the energy is E2 = 4E3 = 

152 PV. 
(b) The average force on the walls of the box is 

Differentiating the equation of a stationary state (I? - En )?I>, = O, we 
have 

and hence 

Integrating the left-hand side of the above, we have 

which is zero since H is real. Integrating the right-hand side of t h ~   quat ti on 
then gives 

(aB/&) = aE, /aa .  

Rwzc Pt$nciples and One-Dimensional Motions 

Hence 
F = - a E t t / L  

For the ground state, n = 1 and 

F = 2 E l / a  = 7.6 x 10' eV/cm = 1.22 x dyne. 

,./ ' f 

1015 
(-- L 4 

Give the cncrRy Icv~ls E?) of the anc-dimensional patentin1 in 
Fig. 1.3(a) as well as the energy levels E!:) nf the potential in Fig. 1.3(h) 

( Wi-wowin) 

Fig. 1.3 

Sdution: 

(a) Use coordinate system as shown in Fig. 1.4. The Schriidinger qria- 
tion is 

- "0 
Fig. 1.4 



PmbIems and Solutions on Electronngnctism 

h V 2  $ 
-- - + v-11, = Ed). 

2m, dx2 

V = 0 for z > n (r~gion I } ,  
I/ = -Vn for - n < 3: < a (region TI) , 
V = 0 for s < -a (regin11 111) . 

For bound states wc requir~ -Vo < E < 0. Lpt 

Thr Schfidinger qcluatition 1)ecornrs 

d"$ , 
- t k L $  = Oi for rcgion Il , 
dx2 

a lld 
d2@ -- h:'Zd~ = O Ior region I and III , 
dx2 

which have snlutions 

$ - A sir1 k.l: !- B ros AT Ior - n < x < a ,  
$, = c~-~'J + D$'" forz<  -a ands  > a .  

The requircm~nt that ,II, -> 0 as x -+ -foe dcrnandq that 

d~ = C C - ~ ' ~  for z > (region 1) , 
+ = ~ ~ " l '  for a < o (regiorl 111) . 

The bou~~dary condit,ions that $ and 4' b~ continuol~q at 3: = f a  then 
g i v ~  

A sir1 ka -1 B cos k:a. = c~-"Q , 
-A sin kn t R ccls fin = ~ e - ~ ' " ,  

Ak cos fin - Bk sir1 kn = -Ck' eLkIa , 

Ak cos I;R t Bk sin kn = Dk' e-k'" ; 

Basic Princzples and One-Dtrnem~onal Mottons 

2A sin ka = (C - D) e-"' , 

2B cos ko = (G $ D) e P k r n ,  

2Ak cos ka = -(C - D )  k' e-"a , 

2Bk sin La = (C + D)kr c - ~ ' ~ .  

For solut iorls for which not all A, B, C, D w i s h ,  we must have either 
A = 0, C = D giving k tan ka = k t ,  or B = 0, C = -D giving k cot. kn = 

- k t .  Thus two classcs of solutions are possiblt?, giving rise to bound st,at,rs. 
Let f = ko., q = k'a. 

CICLPS 1: 

Since [ and q arp restricted to positive valucs, the mmgy levels arc 
Iound from the intersections in t h ~  first quadrant of thc cirrl~ of radius 
y wit,h the c u r v ~  of < tan < plottrd against 5,  as shown in Fig. 1.5. Thc 
number of discrete levels depet~ds on Vo and (1 ,  which detcrmi~ie 7 .  For 
small y only one soli~tion is possible. 

Pig. 1.5 



24 Pmbkrn$ and SOI~L~.B'DTM on El~c1r~rnagneti.m 

Chs  2: 
Fcot  f = - q ,  

<2 f q2 = 72. 

A similar r:onst,ruction is shown in Fig. 1.6. Hcre the stnallcst valur of 
VOU-' gives no solution while thc larger two give onp solutin~l each. 

Fig. 1.6 

N0t.e tha t  C = 0 , q  = 0 is a .solution of ( tan C = q and so no tnatter how 
small y is, there is always a class I solation, wllercas y has to bc above a 
minimum for a class 2 solution to exiqt, given by E cot 5 = fi which has a 

minimum solution C = 5 ,  i.e. y = or Voaz = a. 
H m  

(b) Use coordirlatrs a. showrl iu Fig. 1.7. 

Fig. 1.7 

Hmic Pmnciplcs and One- Dtnrensionol kIotzoras 

The SchrGdinger eqttntion h s  solutions 

rb = A sin kr 4- B cos ks for 0 < z < n , - ~ e - k ' x  for x > a,  

41 = 0 for x < 0 ,  

satisfying t.hc requirement y', t O as z -+ m. The boundary condit.ions at, 

z = 0 and :c = n thcri give B = 0, 

A sin kn = C P - " ~ ,  

Ak ros kn = -~k:'r-"' ; 

< cot < = -77, 
<",- 11'1 = ?S I 

as for the class 2 snlutions ~lmvc.  

Consitlcr 1,lit. our-dim~nsional prolrlem sf ;t particle of mass 7n in a 
potential (Fig. 1.8) 

v = 00, x < o ,  

V = 0 ,  O < x < n .  

V = V o ,  z > a .  

(a) Show that. the hortrld state energies (E < Yo) are given by t.he 
equation 

l,m - 
vn-E'  

(b) Withoilt solvirlg any furt.her, sketch t.he ground state wave function. 
( B ~ ~ f f d a )  

Solution: 

(a) T ~ P  Schrddingcs cq~rations for the  two rcgions are 



26 Problem and Solutions o n  Electromagnetism 

with respective bolmdaq conditions 7) = 0 for z = 0 and $t 4 0 fox 
x t +m. The solutions ibr E < Vo are then 

9 = sin ( r n : t . / l t i ) ,  0 5 r < a ;  
$I = A ~ - - x / ~ ,  3; > a, . 

where A is a constant. The requirement that t,l~ and 2 are continuous at  
s = a gives 

tan { K ~ u / h )  = - [E / (V ,  - F ) ] ' / ~ .  

(b) The ground-state wave funct,ion is a s  shown in Fig. 1.8 

Fig. 1.8 

The dynamics of a p;trticlc moving one-dimensionally in a potential V ( x )  
is governed by the Hamiltonian Ho = p2/2m + V(3:) ,  where p = -iA. d/dx 
is the momentum operator. Let $I, R = 1, 2, 3, . . . , be the eigenvalues 
of Ho. Now consider a new Hamiltonian H = HI, + Xp/rn ,  where X is a 
given pararn~t~er. Given A ,  rn and E!:), find the eigenvalues of H .  

(Princetom) 

Solution: 

Tlie new Harniltonian is 

Basic Pnnmples and One-Dimensiod Motions 

h2 whereH1= H +  %, y'=p+A.  
( 0 )  The eigenfunctions and eigenvalues of H' are respectively E::) and q'~, . 

As the wave number is R' = $ = k ( p  + A), the new eigenfunctions are 

,$ = e-'x"/" I 

and the corresponding eigenvalues are 

E, = E::) - ~ " 2 m  

Consider the nne-dimensional wave function 

$(x) = A ( X / X O ) ~  e-x/xo, 

where A, n and so are constants. 
(a) Using Schrijdingcr's equation, find the potential V ( x )  and energy E 

Lor which trhis wave funct,ion is an eigenfunction. (Assume that as x + oo, 
V ( x )  -t 0). 

(b) What connection do you see between this potent,ial and the effective 
radial potential for a hydrogenic state of orbital angular monient,um I? 

( wis wnsin) 

Solution: 

(a) Differentiating the given wave funct,ion, 
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and siihstitutir~g it in the time-independent SchrGclinger equateion 

As V (x) -+ O w11~1.n 3: 3 m, we have E = - h . ~ / 2 m z ~  and hence 

(b) The effective radial potential For a hydrogen atom is e 2 / r  - 1 ( 1 +  I) 
h2/2~ir'.  Cornparing thus with V (x) wc see that t hc l / r 2  term is forrrially 
identical with the l /x2 term wit,h the angular momentum 1 t a k i n ~  t,he place 

of n. The $ term of V ( x )  drpcnds on t t  = 1, while t,he (Coulomb) term in 
t.he effective potcntial for t11c hydrogen atom is inclcpendent of the orbital 
angular momcrltum I. This is t h r  differ~ncr. l)ct,we~n Ihc two potentials. 

1019 

Corlsider t,he following one-dirnmsional yotcntial wells: 

Fig. 1.10 
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(a) Can cach well support a bound  stat^ for an arbitrarily small depth 
( d  = 1, 217 Explain qualitatively. 
(1)) For Vl = V2, what is the relationship between the energies of the 

bound states of the two wells'? 
(c )  For colltilluum states of a givcn energy, how many independent sa- 

lutions can cayh well have? 
(dl Explain rlualitativcly how it, is possible t o  have bound states for 

which the particle is inore likely to be outsick the well than inside. 
( W~SCO?~S~.?L) 

Solution: 

(a) For l~ourid states, WE must have -V < E < 0. Let 

2m(E + V )  21-r~ E k2 = -- kt' = - -- 
h.2 ' h," 

where V = V , ,  VJ for Ihr two c w s ,  and set $. = krt, q = k'a, y = -a. !a 

'The discussion in Problem 1015 shows t , h ~ t  for the potential in Fig. 1.9, 
the solutions nrr givcn by 

The energy lrvrls are given by the intersection of tile curvr 5 cot .- - r l  

with a circlo of radius 7 with cmlcr at i,he origin (Fig. 1 . G )  in tlw first, 
illladrant. As t,hc figure shows, y must be g r ~ a t ~ r  than thc valuc nf for 
which [ cot E = 0, i.e. $ 2 ;. Hence for a bound statt t~ to exist, we require 

-n2h" " F > ; , o r v , > x *  
For the  potpntjal shown in Fig. 1.10, t.wn classes of solutions are possiblr. 

( h e  class arr the sarne as llrose for thr  case of Fig. 1.6 and are 110t possible 
li>r artritrarily small V2. The other class of mlulions are given hy 

As t h ~  C I I ~ V ~  of [ tan < = start.s from the origin, y may be arbitrarily 
:,tnall and yet an intersection with t.hp curve exists. Howcver small V2 is, 
ILInre is always a bound state. 

(b) For I/; = V2, Lhe bound states of the poteiltial of Fig. 1.9 are also 
Iu~ilnd states of the pote~ltial of Fig, 1.10. 
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(c )  For continuum states of a given energy, there 1s only one independent 
solution for well 1, which is a stationary-wave solution with ?(, = 0 at x = 0; 
there are two independent solutions corresponding t,o traveling waves in -tx 
and -a directions for well 2. 

(d) Let p l ,  pz denote resp~ctively the  prohahilities that the particle is 
inside and outside the well. Consider, for example, tlie odd-parity solution 

y', = A sin I z  for 0 < n: < a ,  
,,b = c e - k r x  for a < x ,  

5 - A2 sin2 R:c tix ~2 ktrr 
- - sin 2kn - - -  

P2 Jam C"-"l= dx 

The continuity of 4 at :r = n gives 

A e-k'a 
- -- - 
C sin ka 

Setting, as before, 7 = k'o,, f = k a ,  havp 

sin 2< 

Thp odd-parity solutions are giver1 by 

{ 
< cot [ = -9, 

t2 -t v2 = y, 
where y2 :. (i = 1, 2). 

An analytic solution is possible if y -+ (n -t +) a, or 

for which the ~nlut~ion is ( + (n t $)r, 3 4 0 ,  and 

The particle is t8hen more likely oi~t~side the well than inside. 
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Obtain the b i d i n g  energy of a particle of rnass m in one dimension due 
to the lollowing short-range potential: 

Solution: 

The Schriidinger equation 

r 1 1 1  setting 

r-;Ln be written as 

Integrating both sides of the above equation over z from - c to E ,  whcrc 
is an arbitrarily snidl positive nurnbcr, we get, 

wtkich becomes, by letting E -+ 0, 

At x + 0 (d(x) = 0) the Schrijdinger eqllation hcu solutions 

- e x p - k x )  for z > 0 ,  

$ ( X I  - exp (kx} for x < 0.  

It, Iolkows from Eq. (1) that 

A comparison of the two results gives k = Uo/2. Hence the binding 
4.rlt:rgy is - E = h 2 k 2 / 2 m  = rnV:/2h2. 
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Consider a particle of mass rn in the one-dimensional b functiori 
potential 

V ( x )  = & 6(x). 

Show that if Vo is negative there exists a bound state, and that the 
binding energy is rnV: / 2 h 2 .  

( Columbia) 

Solution: 

In thr: Schrodingn. equation 

WP set E < 0 for a bound state as well aq 

and obtain 
,E%/drc2 - k2+ - Uo d(z)+ = 0. 

Int,egrating; both sides over z from - E  to +E ,  whew E is an arbitrarily 
small positive number, we obtain 

With E -+ Of,  t h k  becomrs +TOf) - ~r,b'{O-) = & $(O). For x # O the 
Schrodinger qilation ha.; thr  formal solution $(z) - exp (-k I z 1) with k 
positive, which gives 

and henre 
?,bt(O+) -$'(or) = -2k+(O) = U"@(O). 

Thus k = -U0/2, which requires Vo to be negative. The energy of thp 
hound state is then E = -% = -rnVz/2h2 and the binding energy is 
Eb = 0 - E = mV2/2h2. The wave function of the boirnd state is 
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where the arbitrary constant A ha? been obtained by t,hc normalization 
J':~ $2 dx + Jr $2 dx = 1. 

A partic](> of mass m moves non-relativistically in one dimension in a 

potei~tial give11 by V ( x )  = -ub(xj, where b(a) is the usual Dirac delta func- 
tion. Thc part,iclc is bonnd. Find the value of zo such that the probability 
o f  finding the particlc with I z I < xa is exact,ly equal to I /2. 

( Col~~rn,bia) 

Solution: 

For bou~ld states, 6 < 0. The Schrijdingcr etluat,inn 

I I:LS for 5 # 0 t,he snliltionu finitr! at r = koc us klllows, 

A e x  for n: < 0, 
d.1 = 

A e-'" for x > 0 ,  

wllcrr k = a d  A is an arbitxary constant. Applying li~n,,o+ 

1' '  , d x  to the Sc.hriidinger eqllst,joll giws 

I1 l r h  finite $(O}. Substitution of $ (z) in ( I )  givw 
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On account of symmetry, the probabilities are 

As i t  is given 

we have 

A partidc of mass rn. moving in onp dim~nsio~i is crlnfined to the region 
0 < x < L by an infiuite square well potential. In addition, the particle 
experiences a delta function pateirtial of strength X locatrrl a t  the center nf 
the well (Fig. 1.11)- The Sclt16ding~r equatioxl which dt:srrib~s this system 
is, wit,hin the well, 

Fig. 1.11 

Find a transcendental equation for the energy eigenvalues E in terms of 
the mass m,, the potential strength A ,  and the size L of the system. 

( Columbia) 
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SoIut ian: 
L / 2 + c  

Applying lim,-+o .lL/2-E dx to both sides of the Schrijdinger equation, 
we get 

$' ( L / 2  -t E) - $' (L/2 - E )  = / 2 r n ~ / h ? )  $ [ L / 2 )  , 
since 

Subject to the boundary conditions $(0) = $(L) = O, the Schrti- 
tliliger eqnatiotl has solutiorls for z # $ : 

A, sin{kx), 0 5 2 : < L / 2 - ~  
T,b (x) = 

Az sin Ik(z - A)\, L / 2  -k E I x I L, 
- 

where k = d F  and E is RII arbitrariIy small positive number. The 
4,ontinuity of the wavc ftinctiorl a t  S/2 requires Al sin(kL/2) = -Az 
sin ( k L / 2 ) ,  or A, - -Az.  Snbstituting the wave furlction in (I) ,  we get 

Azk cos ( k L J 2 )  - A,  k cos ( k L J 2 )  = (2rnXAl/hZ) sin (kL/2), 
kh2 = -E 2, which is the transcen- whence tan = - =, or tan Zh 

cl4,ntal equation for the energy cigenvaluc E. 

An infinitely deep one-dimensio~lal square we11 potential confines a par- 
I ~c.le to the region 0 < x < L, Sketch the wave function for its lowest 
Ilcargy eigenutate. If a repulsive delta hrnction potential, H' = X6(a - L/2 )  

( \ > D), is a d d ~ d  at the crnter of the well, sketch the llew wave function 
, L I I L ~  statr whether the energy incrcasus or dccreascs. If it was originally ED, 
wl~itt does it btxame when A -> cm? 

( W~sconsin) 

Strlr~tion: 

For the square we11 potential thr  eigen€unct,inn cnsresponding to  the 
I~*wcst enern state and its energy value arc respectively 

+D (x) = J$Z sin ( r x / L ) ,  
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A sketch of this wavp function is shown in Fig. 1.12 
With the addition of the delta potential H' = XG(x - L / 2 ) ,  the  Schrij- 

dinger equation becou~cs 

$" + [k2 - ab(x  - L/2)]  = 0, 
where k2 = 2mE/h2, cr = 2rnA1f1.2. The boundary ronditinrls are 

Fig. 1.12 

' Note that (2) erisn from taking Lirn,,. ~2:: _i:z rvrr  both sides of the 

Schrijdinger eqtiatjon and (3) arises from thr  continuity of $(s) at x = $. 
The solutions for .?: f $ satisfying (1) are 

0 5  z 5 LJ2,  

A2 s in[k(x-S)] ,  L J 2 5 z 5 L .  
Let k = kn for the ground state. Condition (3) requires that  Al = - 

A;! = A, say, and the wave function for tlie ground state becomes 

A sin (ko z), Q . < r r : _ <  L / 2 ,  
$0 (2) = 

-A  sin[ko(x- L)[, L / 2 5 x <  L. 
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Corldition (2) then shows that ko is the smallest root of the transcsn- 
dental equatior~ 

n 5 X  
cot ( k L / 2 )  = -7. 

kh 

As cot (%) is n~gat ive,  7712 5 ko L / 2  5 n, or T J L  < ko < 29/L. 'The 
new ground-sta,tr wave function is shclwn Fig. 1.13. The correspondir~g 

energy is E = haaz kg/2m 2 6) = f?;:, , sinrr ko 2 $. Thus tho energy of 
t,he ncw ground s t i ~ t e  incr~ases. 

Furthermore, if A + +m, ko - t .  27r/L and the riew ground-state enprgy 
E + 4E0. 

Fig. 1.13 

A nonr~lativistic particlr of mass m UI IC~~~RC)PS  one.-dirncnsior~al motion 
ill t h ~  potential 

V(T) = -1J [6 (1 : -n )+6(x - t -a ) ]  

wllert! g > 0 is a co~istant and 6(2) is the Dirw delta function. Find the 
,!round-statc Pnergy rigenfunrtion and ol~tajn arl quatio~ion which r c l a t ~ s  ithe 
4 r vresponding energy cjgci>vnlue to thc constant g. 

( B e d e l e  7~) 

Solution: 

Since V (s)  = V (-z), the energy eigenfi~nctions have definite parity. 
'I'l~e ground state has even parity, $!(-x) = $(XI. It is a bound state a11d 
11,s enprgy is negative, G < U. 

For r 2 0, the Srhradinger equation is 

[- (h2/2m.) d2/da2 - 96 (s  - njj $ (z) = E+ (s) , 
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whose solutions for x # n are 4 - exp (f kx), where k = m / h .  
With the conditiu~~ that the wave function remains finite as x -+ cm and 

11% even parity, we obtain 

The continuity of TI) at z = a r~rluirw that A = ~ e "  ~roh (ka). Thus 

Reka eosll (ka) e-kr, ,: > a ,  
d ) ( x )  = 

D cash ( kn:) , O < r S a .  

Normalization J: pb2 d:c + J$ $":z = 5 gives 

At x = n ,  t,here is a c~iseontinuity of the first diff~rttiltial of the wavr 
function (cf Problem 1024): 

v'l' (a') - ?I)' (a-) = - (2m,g/h2) 4) (a) . 

Substitutiorr of 4~ givcs 

which is to be satisfied hy k. By symmetry the wave function far the entire 
space is 

An approximatt! model for the problem of an atom near a wall is to con- 
sider a particl~ moving under the influence tof t h ~  one-dimemional potential 
given by 

V ( Z ) ~ - V ~ ~ ( X ) ,  .7:> - d ,  

V (x) = 03, :t.< - d ,  
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where 5 (2) is the so-called "delta function". 
(a) Find the modification of the boi~nd-state energy ca~ised by the wall 

when it is far away. Explain aiso how far is "far away". 

(b) What is the exact condition on Vo and d for the existence of a t  least 
one bound state? 

(B?lffaEo) 

Solution: 

(a) The is as shown in Fig. 1.14. Jn the Schrodinger equation 

I t 4  k = J--2rn,~/fi, where E < 0. This ha5 t.he formal .solutions 

aek* + be-" for - d < a: < 0, 
7/;(:r) = 

for x > O ,  

ir,s $lr(x) is finite for x + m. The continuity of the wave function and the 
discontinuity of its derivative at 3: = 0 (Eq. (I) of Problem 102(3), as well 
;w the requirement y')(z = -d) = 0, give 



Solving these we find 

The wall is "lar away" from flw particle if kd ,> 1, for which k = 
7nVD/h2. A better approximation is k = ( r n ~  / h 2 )  [I - enp (-2mVo d / h 2 ) ] ,  
which gives the bounrl-state energ;y its 

The second term in the 1s t  expression i.; the modificat,ion of ezrergy 
ca~~scd  Ily the wall. Thus for the mndification of elrcrgy to hr small we 
require d >> 1 / k  = h2/m%. This is the rncaning of being "far awaf"' 

Fig. 1,15 

(1)) Figure 1.25 shows line 1 rcpre~ent~ing 11 = k and curve 2 r~,presentin~ 
9 = yle [ I  -EXP (-ZM)], wlrere y, = mVo/h? The condition for the equat.ior1 
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to have a solution is that the slope of curve 2 at the origin is greater than 
t,hat of line 1: 1 = 2rn&d/h2 > 1 .  

dk k=(I 

Thr wave iullctiatl of t,he grr~nnd state of a hnmlonic oscillator of force 
r:ot~~tant k and mar% 711. is 

Obtain a11 ~xpression for the prohahi1it.y of finding thc yarticle oiltside the 
rlassical region. 

( Wzscnnszn) 

Soiution: 

The particle is  said to he outside the classical region if E < V(z). 
I;hr the grountl state, E = huro/2 and the nonclassical r~gion is 4 Iiwo < 

The probability of finding the particle i n  this noncla~sical region is t h e r e  
fore 

k = m.V, [I - exp (-2kd)j  /h2 
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Consider a linear harmonic oscillator ,and let ylro and qbl be it,s real, nor- 
malizcd ground arid first excited st,atc energy eigenfutictions respectively. 
L P ~  Aq0 + B$r with A and R real numbers I,e t h ~  wave function of the 

at some instanl, of time. Show that the average value of x is in 
genera1 diffcr~nt from zero. What values ol A and I3 maximize (x) and 
what, values rninimizc it,? 

{ Wzsconsin} 

Solution: 

The orthonormal condition 

~ v p s  A2 1. fi2 = 1. G e n ~ r a l l ~  A and B me not zrro, su t,hc avcrage V ~ U P  

of x, 

(x) = / ~ ( A $ o  -k 1' d3: = 2AD (,dl0 1 x ( 

is not equal to zero. llcwrit.i~ig the above a s  

and considering f - AD = A (1 - AZ ) k ,  which has ext,rlcnlums at A = f f , 
v'5 

we s c ~  that if A = R = I/  fi, {z) is maximixtul; if A = -B = I/&, (5) is 
mini~niserl. 

Show that the minimum energy of a simple harmonic oscillator is b / 2  
if AaAp = h/2, where (Ap)' = ((8 - (p))2}. 

( Wisconsin) 

Solution: 

For a harmonic osciIlator, {z) = (p )  = 0, and so 

Then t,he Hanliltonian of a harmonic oscillat.ur, I-I = p2/27n + m w 2 x 2 / 2 ,  
gives the average energy as 

(H) = (p') /2m + nw2(z2) /2 = ( ~ ~ ) ~ / 2 r n  + w'(Ax)~ /2.  

As for a, b real positive we have (J71- t/i;12 2 0, or a + b > 2&, 

An electron is confined ~ I I  thc ground stiit,r of a one-dirnensiunal har- 
monic oscillator such !,hat d- = 10-lo m. Fincl thc enerffy (in 
eV) required to excitc it to its first excited stat,e. 

[Hint.: Tlw virial theorem can help.] 
( Wisconsin) 

Solution: 

The virial theorem for a one-dimr~lsional harmonic oscillator states that 
(T) -I { V ) .  Thus Eo = { H )  = (T j  -t- {V) = 2{V) = mew2 (xa), or, lor the 
ground state, 

fLw - 2 = m*pw2 (i2), 

giving h 
W = -- 

2771, (z2) 

As (2) = 0 h r  a harmonic oscillator, wt! haw 

The energy reqllired to excit.e t.he elt?ct,ron to it,s first excited stmate is 
therefore 
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The wnvc function at tirne t = O for a part,icle in a harmonic osalhtor 
I 

potcntia1 V = 4 kr2, is of the forin 1 
sin /3 

$ ( x ,  0 )  = ,o No (ax) t - H2 (ax) , z v 5  I 
where /3 and A are real  constant,^, or2 = m / h ,  and t l~e  Hrrrnite polyn& 
mixts are normalleeti so that 

(a) Write an expression for $ (s, f ) .  
(b) What are tlre possible results of a m~asurernent of the energy of the 

particle in this state, and what aare the relative probabilities of gctting thesc 
values? 

( c )  What is (x} at t = 07 How tfnes ( r }  changc with tirne'? 

( IYisconsin) 

Solution: 

(a) The Schrodinger equation for t,he syst,Prn is 

ih.&q~(z, t )  = f i $ ( 2 ,  t ) ,  

where $(x, t )  takes t h ~  given value + (s, 0) al t = 0. As fi docs not (depend 
on t exp2ieitl~; 

$,, (x, f )  = 6, (x) e-fEn*Jh , 

where $, (x) is the energy eige;enfunct.ion satisfying 

Expanding $ ( x ,  0) in terms of $, (x): 

where 

a. = J$;(r)dr(~.  o ) d x .  

For a harmonic oscillator, 

rlln (5) = Nn e -a'Lx2 / 2  H,, (ax) * 

sin p +- ~g(nx)] dx. 
2 d2 

As tilo functions P X P  (- x 2 )  IjfL (x) are orthogonaI, all a, = O except 

Hence 

-+- 2 f i  sin o*$? (2) E - ' ~ ~ ' ' " ]  . 
7 1 ' -  Er, @ = A ( 2 )  * lcO. 13 d,o (a) e - ' 7  i sin 0 2/12 (2) e-'-' , "'I 

aZ -C 1 1 

as Iv, are given by 3 f I ~ n  (r)j2 dz = 1 to be No = (lr). , Nz = %( ?r) . 
(11) Thp observable erlergy val~les for this state are IT0 = b / 2  and 

Ez = 5 hw J2, 'md the relative probability 01 gett,ing these %dues is 

(c) As $(r, 0) is a linear cornhinat.ion of or11y $o (5) and $2 (x) which 
have evcn parity, 

?t l , ( -~,  n> = PIJ(Z, 0)-  
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Hence for t = 0, 

It folIows that the avcrage vdns of B docs not change with time. 

(a} For a particle of mass m in a onc-dimensional harmonic osci1lat.or 
putnitid V = rraw22"2, write down the most general soIutiolr to the time- 
dependent Sdlrodinger equation, $ (s, t . ) ,  in terms of harmonic oscillator 
eigenstates d ,  (x). 

(b) Using (a) show that the expectation MIUC of x:, (x), as a filnctio~l of 
time can be written as A cos wf  + sin wt,  where A and B are ronstant.~. 

(c) Usirrg (a) show ~x~1licit1-y that the tirnc a,vcmage of thc pot~ntkbl 
energy satisfies { V )  = ( E )  f ix  a general 4 ( x ,  t ). 

Note the equalit,y 

Solation: 

(a) From the timedependent Schrljdinger equation 

as H docs not dqend on time explicitly, wr! get 

We can expand $ ( x ,  0) in terms of #n (2): 

where 

Bacic Pririczplesr and One-Dtnrensional Motions 

and (z) are t.he eigenf~nct~ions of 

) E n (  with E,,= - fiu ( 3 
Hence 

g!~ (z, t ) = an& (2) e-"~" t/" . 

(b) Using the given equality we have 

= A cos w t  + B sin wt , 

where 

and we have u s 4  En+1 - En = fiw. 
(r) The time average of t.he potential energy can he considered as 

the time average of the ensemble average of the operator on ~,6 (x, t ). It 
is sufficient to take time average over one period T = 2nJw. Let ( A )  and A 
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denote thy time average and ensemble average of an operator A respectively. 
As 

we have 

wherp 5, is the phase of a:,+, a, . Averaging over a period, as thc second 
term bernrnes zero, we get 

On the other hand, 

and { E }  = E ,  Therefore { V )  = {E) /2 .  

1033 

Considrr a particle oF mass rn in the onedimensional ppotcntial 

wlierr 4) >> h2/rrtb2 >> rw, i . ~ .  a harmonic oscillator potentid with 5 high, 
thin, nrnrly iinpenctr,zhle barrier st :I: = 0 (see Fig 1.16). 

Fig. 1.16 

(a) What is the low-lying cnprgy spNtrmn under the apprvxirriat,ion 
that the barrier is complctely irnpcnetrabIe? 

(b) Describe q u a l i t a t i v ~ l ~  the effect on the spertrum of the finite prne- 
trability of the barrier. 

(MITI  

Solution: 

(a) For the law-lying Energy spertrum, as the Ixi,rrier is colnptctely im- 
penetrable, the potential is ec~rrival~nt to two separate halves of a harmonic 
oscillator potential and the low-lying eigenfunctians must satisfy the con- 
dition .() (2) = O at z = 0. The low-lying energy spectrum thla corresponds 
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t,o that of a normal harmonic oscillator with odd puant,um numbers 2 n  + 1, 
€or which dln (x) = 0, at  x = 0 and En = (2n+3/2)lhw, n = 0, 1, 2, . . . with 
a degeneracy of 2. Thns only the odd-parity wave funct.ions are allowed for 
the Low-lying levels. 

(b) There will be a weak penetration of the barrier. Obviously the prob- 
ability fnr the particlc to be in 1x1 < b, where the barrier exists, becomes less 
than that for the case of no potential barrier, while the probability outside 
the barrier becomes relatively larger. A small p~r t ion of the even-parity 
solutions is mixed intr, the particle states, w h i l ~  near the origin the prob- 
ability distribution of even-parity states is greater than that of odd-parity 
states. Correspondingly, a small portion of the energy EL = (271 + 1/2)Tw is 
mixed into the energy for the case (a). Since (T) I barrier potential ($) > 0, 
the energy levels will shiR upwards. The level shifts for the even-parity 
states are greater than for add-parity stat,es. Furthermore, the energy shift 
is smaller for greater ener$es for states of the same parity. 

The Harniltonian for a harmonic oscillator can be written in dirnension- 
less units (rn = A = w = 1) as 

' I  
I 

where 
&=(?+@)/a, i i + = ( * - i , f i ) / &  

One unnormalized energy eigenfunct,ian is I 
Find two other (unnormalized) eigenfunctions which are closest in en- 

ergy to  $,- 
I 

IMJT) I 
Solution: I 

In the Fock representation of harmonic oscillation, ii and G+ are the 
annihilation and creation operators such that 

&sic Princaples and One- Dzrnensioaal Modions 

we have n = 3. Hence the eigenfunctions closest in energy to $a have 
n = 2, 4, the unnormalized wave functions being 

where the unimportant constants have been omitted. 

1035 

At time t = 0 a particle in the potentid V ( x )  = mu2x2/2 is described 
by the wave function 

$(., 0) = A  C n ( l / f i ) )"  $n(x), 

where &, (2) are eigenstates of the energy with eigenvalues En = (n + 
1/21 h. You are given that (&, & I )  = bn,,. 

(a) Find the normalization constant A. 
(b) Write an expression for $ (x, t )  for 1 > 0. 
(c) Show that I (2, t ) I 2  is a periodic function of time and indicate the 

longest period T .  

(d) Fid the expectation valne of the energy at  t = 0. 
(Berkeley) 
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Solution: 

(a) The norrnalixatio~i rondi tion 

givrs A = 1 /tf2, taking A as posit,iw rral. 
(h) The time-dep~ntlcnt wavc funt:tic~n is 

(c) The pr~habilit~y density is 

Note that the timr factor cxp [ - fw(n  - 7 1 ~ ) 1 ]  is H fiinct,inn uit,h peri~tl 
2" thr rnmirniln~ p~riod \wing 27t/w. 

( ~ t - m ) w  ' 
(d) The expectation value of energy is 

or, by diff~rent~iatinn, 
CC; 

- 71 - 1 

Co~~fiidf'r thl: 0nt,-di1ili*11sic)ll~il ~riotior~ 1 1 1  a 11art~ir.1~ of nlass 11 in thr 
potr~iti;rl 

V ( x )  = vo (a./a)'l'" 

whrrc. n is iL  p~sif ivc! i ~ ~ t ~ g r r  and Vo > (1, niscuss qu;~lit;ttivrly thr tliwtri- 
but-ion rjt '  rrtrrEy P ~ ~ ~ : I I V ~ I ~ ~ I P Y  i t ~ l c l  t h ~  jjitritirh, il my, r ~ i  tlrr c.rrrrrspcaldi~ig 
cig~~:cllfmrc.i ir~ris. Us(- tllp 111it*rrt;li11ty principPr to grt ;in nrrIc:r-of-nrirgnit11~1~ 
est,imatc% for fltr 1owc.st rrnargy rigenval~m. Spccii~li./.[' this ~stirrtatr) to t . 1 ~  

cases 7s --7 I itlit1 II -+ m. S t i t t ~  what V( . r )  l,rcomt>s iri thrsr c.asrs a i d  
conip;lrt* tfir vstirnatrs with your prrvious cxprri~1zc.r. 

(B11flu10) 

Srrlut ion: 

Si11c.r ~ I L P  potc+ntid V(.c) 4 cm xlq .r + w, tlicrr* is an in f i t~ i t r  numb~r of 
bound s t i ~ t r s  in t l~c  pot,e~ltial arid the erlcrgy eigerlvalucs ;IKF* disrrrte. Also. 
thr rrttli rxritrrl .;t;itr dmulrl hevr m nodes in the rcgic~ti of IT > V ( r )  given 
by ~ A : K  ( m  i 1)x. Ax iricrri-ISPS slowly aq 7n ilicrrwrs. Fr'mrtl tllr viriill 
theorcm 2T nc 2rhV, wrB have 

Generally, as rr. incrras~s, the differenc~ betwcrrl ad.jaccnt wergy Icvr!ls 
increases too. Since V(-:r) = V(a) ,  the eigenstatcs have dcfinite parities. 
The ground state a11d the second, fourth, . . . extitetl states have even parity 
while the other statcs have odd parity. 



The energy of the partirle can bp estimated using the uncertainity prin- 
riplr! 

P-E ry h/2h ,  

where 

h =  Jm. 
Thus 

1 
E - - (h/2b)' + & 

ZP 
For thr! lowest r~wrgy let d E / d h  = (0  and obtain 

Hence the lowcst mc:rgy is 

For n = 1, V ( x )  is thct 1)otcntid of a harmonic oscillator, 

In this case E eqnals Srw/2, consist,ent with the rmsrilt of a precise oal- 
culat,ion. For n = m, V(:c) is itn in fin it^ sqtrare-well poterxtbial, anrl 

to be compared with tlx: accurate result h.'a2 

l(137 

Cnmidpr a pnrticla 111 one di~nension wit.h Hamiltmian 

H = p2/27n t V ( x )  , 
where V ( x )  5 0 For all 2, V(km) = 0, and V is not everywhere zero. 
Sllaw that there is at, least one bolind state. (One method is to use the 
Rayleigh-Ritz variational principle with a trial wave function 

${x) = ( b / r ) ' / *  exp I-bx2/2)  . 

However, yon may LUSF! any method you wish.) 
( Cok~mbin) 

Basic Princtple.~ and One- Dimensirnu[ M o t i o ~ s  

Solution: 

Mcthorl 1: 
Asslirnr n pnt,er~tial Y ( z )  = (s) as shown in Fig 1.17. We take a 

square-well potenti;~l V' (:c) in ttir! potc.ntia1 V ( x )  such tlrnt 

V = - 1x1 < n, 

V y x )  = 0, 1x1 > a, 
V 1  (x) 2 f (2) for all .r . 

Fig. 1.17 

Wc k w w  tIlr.rr! i s  ;kt  Ic;~st a 1)ountl st.nt~ p ( ~ )  in thr: wrll potrntial V1(sr) 
for which 

WE t.hen have 

Let - - .q),-l (x), t/~,(x), - . - denote the cigenfunctions of H, and expand 



56 Fmblenas and Sa!utions on Electwrnagnetism 

there is at Iehst an eigeniunct ion .JI, (2) satisr,ving the inequalitmy 

H ~ n c e  there exists at; least one I~ound state i11 V IT). 
Met.horl 2: Let the wave f i ~ n c t i o ~ ~  bc: 

where b is an undetermint:d paramctrr. We haw 

= P b / h  4- { V )  , 

where 

( V )  = (h/.rr)'/" Y (z) c:xp I--hx2) dx, 

and tlms 

giving 

Substitution in the expression for { H }  yields 

AZ 
[z{rav) - ( V )  

E = { H )  = 

2 (T")- - [ 4m "I - 

As V (r) 5 0 for all s, V (Am) = 0, and I/ is not cvrarywhere zero, WP have 
(V) < 0, (.I? If) < O and hent-r E < 0, b > 0. 

In fact,, ur~der thc ronditioi~ that thr. tot,sl rncrgy has ;I rc.rtnin n~giitive 
i~lrrc (which must )_rc grrat,rr t.1ian { V )  to ~unkr (T) l)ositivr). w h n t ~ v ~ r  the 
fat-111 of I/ n partic.lc- ill it r.;k~iirr,t mnvr to inti~iity ilnrl rriust qtay in a hound 
statr. 

T ~ P  witvt! fil~lr.tiou for a pnrtivlr af miws M il a r)li~-cIitiu~risional pntm- 
tiid V ( . r )  is t:ivc*u I)y t,I~c c~xprrssiorl 

whrrt* tu ,  [i nntl 7 ivr all positive! ~ : o ~ I R ~ ~ ~ w ~ ~ ~ s .  

( a )  1s t h ~  partirlt* l~~~i i11(1 ' !  E x p l ~ ~ ~ i .  
( I , )  Wlat is t I r t1  I,n)l)at,ility r l (~~s i t  y p (E)  for ,k ~ilc~i~s~lrolnc~ntt of t . 1 1 ~  t.ol;zl 

r:itc.rgy E of thr. p;~rti(*lr'! 
(t:) Fiattl t l l r *  lowt'st FnrVrKy :y~ilytiv;~luc. (IE V(:l:) ill tcar~l~h of thy ~:ivt't~ 

rlo;u~titic's. 
( hflr)l 

Solution: 

(I)), (I-) Slil?stit~lting t h ~  wavr hti1t.tio11 for J. > O ill thr St:hriidirlg~r 
clr l i~ntio~~ 

a h-2 
ih - $1 (r, t )  = - - + v @)] vb (x, 1 )  

df 3 M c ) l ~ : ~  
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whence the potential Tor x > 0: 

As the stationary wave function of the partidp in V(z) sat,isfies 

allrl I l j~  (x )~*o,  WP w(! that tlw a h v e  cquation is t?lrt! same as that sat- 
isfied by the radial w:ivt: funrtion of a 11yclrogm atom with 1 =- 0. Thr 
corresponding Dohr radius is a = f i i / M r 2  = 1 /8 ,  wllile tlw energy levels 
are 

EL = - M P ' / ~ P ~ ~  = -f l2h2/2~5f~~?, TL = 1, 2, . . . . 
I-lence 

En= -y+(~"fL"/2hf}(l  - - l / r i 2 ) ,  r l = l ,  2 ,... , 
ant1 consequently t h ~  lowest P I I P T ~ ~  eelgcnvaIut. iq El -- -y with the wavc 
function 

$(:I-, b) = ax exp (-ox) cxp ( i y t Jh )  (T) exp ( - iEl t / l i ) .  

The probability rl~nsity ppIE) -. $* $ = @;:l is therefarc 

1 for E =  -7,  
plE) = 

0 f o r E # - y .  

1039 

A particle of mass rn is released at t = 0 in the onedimensional double 
square well shown in Fig. 1-14 in such a way that its wave function at S = 0 

B m c  Pnnctpbes and Onc+Uimerwioriad Motions 59 

is just onc sinusoidal loop ("half a sine wave") with nodcs just at the Pdges 
of the left half of the potential as shown. 

0 

Pig. 1.18 

(a) Find the avcragc vzttutl of thr: cllergy at t = 0 (in t-ernzs of symbols 
defined tlbovr). 

(b) Will the atvrikge value of tho cwrgy be constant for times subsequcrlt 
to the release of the pitrticlr? Why? 

(c) Is this a state i i f  drfinite e~icrgy? (That is, will a measurement of 
the energy in th is  state dways give the xnmt! value?) Why? 

(d) Will t,he wave function rha~rgc with tilnc from its value at, 2t = PO'! If 
'Lyes", explain how you wnultl at,t,empt to calctllatr tElc cllauge in the wavc 
function. If  to", explain why not. 

(e) Is it possible that the particle could escape from the pntent,ial well 
(from thr: whole patrntial well, from bath halvrs)? Explain. 

( Wisconsin) 

Solution: 

(a) Thp normalized wave hrnctian s t  t = 0 is $(z? 0) - & sin y.  
Thus 

h2 2 d2 KT (fi,f=D = - - - - J," sin (3) - sin (--) $3 
2m a dz2 

(h) (A}  is a. constant for t > 0 since a (fi)/af = 0. 
(c) It is not a state of definite energy, because the wave function of the 

initial state is the eigenfunctian of an infinitely deep square well potential 
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with widtb a., and not of the givrn potential. It is a superposition state of 
the different energy ~igcnstates of the given pote~itial. Therefore different. 
measur~m~n1.x af the etrerby in this state will not give the  sanlr: value, but 
a group of enerrgie2 according to their prnbabilitirs, 

(d) The shape of t h ~  wave hr~lct~ion is time deprrdent since the soluticl~~ 
satisfying the given renditions is a suycryosil.io~l st;\tc,: 

$ ( x ;  U) = sin (7) = c c , ~ , , ,  (:r) , 
I8 

The shape of +(x.  1 )  will vhangr with tirr~e bcraust~ E,, changes with 71,. 

(P) 'I'he particle can escnpc frola the wl~ol t  ~)otcxntii~l wrll if the fallowing 
condition is satisfied. h2a2/2rrtn > Vo That iq ta say, if the wid111 uC tlri: 
potnntial well is small ~110ngh (i.e., 1 . 1 1 ~  kinetic. rnrrgy of f  he partirle is Inrgc- 
enough), t.he depth is not very larg~ (i.c., t11r. vdnc of Vo is not very largr.), 

and thr  rtlergy of t.kr ~~arbirlr is pnsitivc, t,ltc. ~k~rticlr c . i l r i  esc:apr f~orrr 111.1: 

whole pot,ential well. 

10413 

A free particle of mass na nioves in one dirnrilsion. At time 2 = t t ~ c  
uor~naliaed wave f~trrnction of thr! part.icle is 

where 0; = {x2 1. 
(a) corn put^ the rliornentum spread o;, = t/w mociated with 

this wave function. 
(h) Show that Fit; t , i rn~ t. > O t,br ~ ~ m l ~ a l ~ i f i ~ y  dcnsitmy of the partick llns 

the form 
lQ',(z, t)(" [ylr(.I:, 0, a: +cr;f<2/m2)1? 

(c) Iiit.erpret the results of parts (a) and (b) above in terms of tIie 
unc~rt.aint,y principle. 

( Columbia) 

Basic Pnnaplrs and One-Dtrnemonnl Motions 

Solution: 

(a) As 

Then 

where 
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for a free particle. By inverse Fourier tsansformat.ion 

(c) Discussion: 
(i) The rtslilts ii:(li(:;ttc the witlt h of thr Gai~ssin~l wave packet at tiinc 

I (whucl~ was origi11;llly n;, at t = 0) i s  

wIlt?re mz = fi?/4r:. 

(ii) As m,a, = lr./2, thr  uncertainty princiglc is satisfied. 

A particle of lriass mr. movcs in onp: tlirilal~sion under the influence of a 
potent;ial V (1:). Suppose it. is in an Encrgy cigcilstate @(z) = (y"~)1/4 

exp (-7%2/2) with energy E -= h"'/2.n~.. 

(a) Find the meat1 position of the particle. 
(b) Find the mean morncntum of the particle. 
(c) Find V (x). 

Basre Pnnciptes und he-Dimenszonal Motions 63 

(d) Find the prohabi1it.y P ( p )  d p  that the part,icle's momentum is be- 
!.ween p slid p + dp. 

( Wisconsin) 

Solution: 

(a) The mean posit.iori of the particle is 

m 2 2 

@* (x) x$ (2) dx = - xe-7 dx = 0 

(h) The mczn mamol~tum is 

(c) The Schriidingcr equation 

can he written ~w 

we have 

(d) The Schriidinger equation in rnomelltll~n representation is 
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and substituting it int,o the above erluation, we get 

As the parametm a is indcpertdcnt of  y, the above relation can he sat- 

isfied by a = 1 / 2 h Z T Z .  Hence 

This is the rigrnfundirm of the stak u~itli PnPrgy hZy2/27~  ill t h ~  ~ 1 0 -  

menturn r.~pr~srntat, inn. Nortnalizat,ion givrs fir = fl/h2y2.rr)'/4. Thus t,hc 
probability that the particlr nlomentum Iq bctwrcn p and p + d p  is 

Note that d)  b) can 11t: obtttined dircctly by the Fo i~r i~r  tratlsforrll of 
,q> (XI : 

t / 4  
'r e - i p  + r/fi (f) e- 72z2/2 

= J (2sl)l/2 

2 1/4 
- ( )  w p  [ ( L  - %) 1 ..p (i) - / (2ngL /2  n a h , T  fi 2 fiZy2 

In one dimension, a particlt. of mass na is in the grourld stab  af a 
potcniial which ronfines the particle to a small rrgion al space. At t,irn~ 

I = 0, the potential sudd~nly disappears, so that the particle is frep for t i m e  

t > 0. G i v ~  a formula for thr prnhahility per lanit timr that tllc particle 
:~rrivrs at. time t at arr, ohsrrvcr wbo is a dlstarlrc L awav. 

wisconbzn) 

Solution: 

Ltt  I)~(:C)  br the tvavr fi~uction at t = 0. T11cl1 

Thus 
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Represent +.he particle as a Gaussian wave packet of dimension a: 

The last integral Ihcn givrs 

- -- \lm+i 4 exp -- - 
it- 1 2n2 aJ y 

whence the current density 

By putting s = L,  we get the probability per unit time !.hat. the pnrticlc 
arrives at the <)bs~rvcr a distance L away. 

A free particle of mass ?n mwes in one dimension. The initial wave 
function of t h ~  j)article i~ $(x, 0). I 

(a) Show that afirr a strfficiuntly long time t t.he warn function of the 
particle spreads to reach a unique limiting form given by 

$(x, t )  = exp (- i?r/4) exp (irnz"/~rzt) p(mx/Fit) , 

Baszc Principles and One-DitnmwonaI Motions 

witere cp is the Fourier transform of t h ~  initial wave function: 

(b) G i v ~  a plausible physical irltlterpretation of the limiting value of 
l~1){5, t)I2- 

Hint: Notr that whet) n -+ w, 

By Fourier trmsfr~nn, we cim writ,c 

and the cquation 1)ecainE~ 

Integration gives 

~ ) ( k , t ) = $ ( k , O )  exp -8% , ( " ">  
where 

Hence 

$ ( k ,  fi) = - d ~ e - ' ~ "  y1, (2, 0) G q (k) . 

$(k, t)  = ip(k) exp 
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giving 

$( . r ,  t )  =- 

1 " =- J dkv (k) pxp ( i k x  - i =) k2ht 
Jzlr -03 

- 1 -- fi ~ X P  (i g)  1: (fk 

With 5 = k - mx/M,  this brromrs 

1 
d t ( x ,  t )  =- 
6 

11.t 
XCXF (-ig<') P (t+F) . 

For a -t m, 

e-iaqi2 + 6 exp (-i ; ) d(t*) 

arid so after a long tinw t ( t  -i w), 

exP ( - i$< ' )  + E6(<) ex.) ( - i t )  , 

and 

+(x, t )  =- & exP (2  g) /_m_ dC 

x a(o P (< + z)  PXP (-i 9) 
1 =- 
J ~ R  exP (ig) exp (-i p (F) 

= exp ( 1  -z- exp (.m.P) 
mr) ?i;t ~ ( l t  - 

Baste Pnnctples and One-Dbrnenszonal Motions 

I%r:causr p(k) is tlw F o ~ i r i ~ r  tra~lsfonn of (x, 0), we hiwe 

On the nther hand, we h a m  

which sllc~ws thc r.onscrvatio11 of total 1~ro1)ability. For tlic li~nitirlg (:as<? of 
f + m, we have 

I*II.'(z, t ) [ L  0 .  lcp(0) 1" 0, 

which indicates tlrirt thc wave functinn of t,he p=zrtirlr will tliffi~sr iofinitrly. 

The onc-dimensional qun~ltum mccllariical poteatial cliurgy of a particle 
of mass wr is given l)y 

as sholvn in Fig. 1.1'3. At t i ~ n ~  1: = 0, t h ~  w w p  f~inct~ion of the pa-tick 
i s  completely confined t,o t h ~  region -a < 3. < 0. [Define the qua~itit~ies 
k = m j i i  and rr = 2m&/h2] 

(a) Write down the normalized lowst-energy wave function af the par- 
ticle at time t = 0. 

(b) Give the boundary conditions which the energy eigenfunctions 

mnst satisfy, where the region I is -a < r < 0 and the region I1 x > 0. 
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Fig. 1.19 

(c) Find the (real) solutions for thc cncrgy rigcnfunctions in the two 

regions (up to a11 overall constant) which satisfy the ltonndary conditinrts. 
(cl) The t = 0 wave function car1 be cx~rrnsscrl a an int~gral over cnrsgy 

eigenhnctions: 
m 

(z) = J__  j (L-)  $* (.) dk . 

Show how (k) can bt* tlratrrmin~d fro111 the  solutiol~s ?/'k (:s). 
(e) Give an expressiorl for the timr dcvt.!lopment of thr wavc fnnrtion i t1  

terms o f f  (k). What V R I I ~ P S  of  R are cxpr(:t~t1 ~ C I  govrr11 t h ~  ti111e 1)~Fiavior 
at  large times? 

( Wzuconsir~) 

Solution: 

(a) Thr rcquired w a w  function +(x)  must sat,isfy the boundary candi- 
tions G(-a)  = $(0) = 0. A cornpIete orthonormal set nf wave Cunctior~s 
definrtl in -a < :c < 0 and satisfying the Schrijtlingcr nqnation consists of 

where n = 1, 2, . . . , with 

The normalized lowest.-energy wave functian is given by n. = I as 

I (4 outside [-a, 01. 

Bast PnnrzpIas and One-Dtmensronul Motxons 

(h) The Schrijdinger equation for x > -a is 

I >T 

(z) + k2tj, (5) = a6 (z) (z) 

with 

The bo~indary ronditinns and the discontinuity condition to be satisfied 
a re 

$' ( -a)  = 0, t/tl (0) = 9'' (o) ,  II," (tco) = finite, 

TjP' (0) - I/,'' (0) = ct.# (0) * 

The last rqnation is obtnincd by ir~tcgrating the Schriidinger cquiltio~l 
over a snlnll interval I-&, E] and letting & 3 0 (src Problem 1020). 

(c) In both thc r~gions 1 and 11, thc wavt: equation is 

whose real solutions nrr sinusnirld hlnctirrta. The solut1ions that satisfy the 
boundary contlitions ;utl 

The discontinuity and nnrrnalizat,ion condit.ions then give 

cr;a 
Ak = - sin kn , 

k 

(d) Expand the wave function $(XI in terms of d~~ (x), 



and obtain 

,(I;, (-2.) , I ~ ( X )  d3: = / / f (k) q h ( : c )  $if (:r) dkdr  

(e) As 
m 

we have 
t m 

dk 

At tinlo I = 0, tllr parliclrr is in the grouxlcl stilt(. oI ari infjnit.~ly (IPPI) 
square well potential of width n, it i s  i l  wave p;icket. Wherr t > 0, sillcr th(1 
6(z) potential harrier is penetrable, the wavc packet will spr~:rd over to 11~ :  

region z > 0. Quantito~tivrly, wr comp~ltc first 

0 
f (k )  = J _ n  4 s i n k ( z + o )  - 6 sin d : ~  

- 
sin ka - - 

Ck 

" (%I 

$(z, o =. a 8 J-m ck sin ka 
-W k 2 - - ( : ) 2  

sin k ( x  + a )  e - t E k f / h  

{sin t ( z  + a )  + f sin ka sin kx dk, 

where Ek = h2k"/2m. In the last expression the upper mcl tower rows are 
For regions I and I1 r~spectivdy- 

When f + m, the osrillatory fartor ~ x l > ( - ~ E ~ t / h )  rhungw PVPII more 

rapidly, wllilr tltr othrlr fitnrtior~s of thr intrgrand b~havr: quite ~rorrnally 
(k = n / n  is not a polr). Thils @[:r, t )  tend to zero for ally givtm 31:. W h ~ n  
1. is very kargc. coinpnrlcnt waves of small wave nurnhrr I; play the principal 
role. At that t,inic t h ~  particle hiw pract,ic.ally escapeti from the r~gion 
I-a, 01. 

Thc radinxtive isot,opr 8s13i''2 tlvrays to 81TI'L0")Y rll~ittillg a11 alpliit 
particlc with the pilergy E = 6.0 Mt%V. 

(a) In a11 attcnipt to c-r71t:rlbtr3 thc lifpti~nt:, first c.01lsirlrr thr finite pcb- 
tentid harrirr shown in Fig. 1.20. Cal(.rd;ttc* tllr. tri~risitioll ~~mhat,ility 7' 
for a ~ ) ~ r t i r I r  of niass rn iuckbmt from t,hr lrft with imcrL7 .E ill thr: lindt 
T << 1. 

(b) Using t,lie ahavr rcsult, obti~in i L  rntigh riui~leriral fistimate for thcl 
lifdirn~. of t,he n1;ir1~11s EiP12. ~ 1 1 0 0 s ~ :  sc11sihlt' b n ~ r i ~ r  para111~trm to ayprox- 
irnatr thr true a l ~ ~ h a  pi~rticlt. pot elit.ial. 

( C U S )  

Fig. 1.20 

Solution: 

(a) If T << I ,  the inridctlt wave is rrflwtpd at s = 0 as if the potential 
barricr were infinitely thick. We thus have 

$(x) = elkx + ( t l  - 1) e - zkz ,  x < 0, 

$((5 = t l e -k 'x ,  O < x < b ,  
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where is the amplitude transmission coefficient and 

The continuity of 7b' (5) at x = 0 gives 

Consider the reflection at b. We havc 

and so 

-k1 (2  - t 2 )  = iktp,  or t2 = 2 i k t / ( k  + ik') . 

Hence thc: transition prol~ability is givm by 

(b) To estimate the ratme oi *.-decay 01 *.Ri2I2, WF: treat, in first approx- 
imation, the Coulomb potential cxperienred by tlie a-particle in thr slTl 
nliclrus as a rectangular potential harrier. As shown in Fig. 1.21, the width 
of thr barrier m car1 be taken to he 

2Ze2 2(83 - 2) e2 hc 
To=- -  - -- 

E 6 fit MeV 
162 1 = -  x - x 6.58 x 10-'5 3 x 110'" 

G I37 
= 3.9 x lo-'= cm. 

Basic Principles and One-Dimensiond Motions 

The d i n s  of the nucleus oC TI is 

corresponding to a Coulo~mb yotcntial height ol 

v =  ??f - 2 : 3 9 M p V .  
Po R 

An cr-particle, moving with speed 71 in the nl~cleus of TI, mi~ke-7 & 
cullisionq pnr wcond with the walls. Hnnee the lifetime r or R 3 ~ P 1 2  is given 

by v 
T I T I '  zn = 1'  

or 2R 
're-. 

1) 1 T l 2  
W i n g  for the rectangular potential harricr a height Vo $ (39 - 6) +6 

22.5 MeV, l, = r u - R  = 33x10-'%1n (see pig. 1.21), e = 4% = @ c  = 
D.Zc, we find 

~ J ~ r n , c 2 ( v o  - E )  21/2 x 940 x 16.5 x 33 x 10-l3 
2k'b = h =  = 59, 

hc 6.58 x lo-"" 3 x 
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An electron with energy E = 1 PV is iticident upon a rectangular barrier 
of potential energy Vo = 2 eV (see Fig. 1.22). Allnut liow wide must tht. 
barrier be so tha t  the transmission prohability is 

Solution: 

Thr transmission prohallility is (Problem 1045) 

= 4 exp [- J-] , 

whence 

Co~~sider a on&dirnensional square-well potential {set. Fig 1.23) 

V(z)=O,  : c < o ,  

V ( x )  = -V,, 0 < a < n,  

V ( z )  = 0. x > 01, 

where Vo is positive. If a particle wit,h mass rn is incident from the left with 
ilonrelativistic kinetic enprgy E, what is its p r~bah i l i t ,~  for trarlsmission 
I hrough the potential? For what values of E will t,his probabilib Ire unity? 

( Cohmbia) 

Solution: 

Lct t311r w;~vt. f'utrrtio~t hc! 

where 

T~ IP  ~ons t~an t s  12, S, A, 13 are ti, tic determined From t 1 1 ~  hoiinriary cotl- 

ditions tha t  $ ( T )  and $'(z) are both continuous at s = 0 and J: = n, w'tlirh 
give 

( l + R = A + I I ,  

Bence 4kk'e-"'"" 
S = ( k  + kr)Z e - ~ k ' a  - (k - kt)Z eik'n 
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and the  probability For transmissiorl is 

4 k ~ k f 2  
- 

4 (kk' cos k'n)" (tk:" kf2)2 sin"(k:'a) 

R~sanance transmission occurs w h ~ n  kta = nr7 LC., when tthe kinetic 
eilcrgy E oT the inridcnt particle is 

The pmbahilit,y for transmission, P, t,hen bvconncs unity. 
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Consider a on<.-rlim~nsianal sqtiar+wc.ll put~nt i id  (sr?e Fig. 1.24): 

Pig. 1.24 

{a) For E < 0, find the wave function of a partic-le hot~nd in this poten- 
tial. Write a n  equation which determines t,hc allowed values of E. 

(b) Suppose a particha with rnerRy E > 0 i~ incident upon this potential. 
Find the phase relation het~veen the incident and the outgoing wave. 

( Cohm bia) 

Sc~lution: 

The Sehradinger ~quat ions for thr  diff~rent regions are 

(a) s < 0. 
{ i} C o ~ ~ q i d ~ r  first the: ca.: of Vo < - E ,  for which the wave function is 

where 

'I'he contiriuity cor~rlitlorrs of t l~c  W ~ V L V ~  hn~ction givr 

A sinh (Ar t )  = 13eCVQ , 

Ak rosh (ka) = - ~ k ' c - ~ ' "  

As coth x > 0 for 3: > 0, t,hcrr 'is rro soIut.ion for this casa. 

(ii) For Vn > -E, i,k 4 k, k: = d m / h ,  and the ecluatlon . . 
tleterrninirlg thc cmcrgy bt?i:onle,s k cot (kn)  = -k'- The wave function is 

horn the contilluity and normalization of thr! wave fullction we get. 

2 

& sin2 (kn)  f n - & sin (2k-a) 
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L 
e"l" sin (ka) . 

= 1 sinZ (kn) + a - & sin (2kn)  
(b) E > 0. The wave function is  

where 

As a In$/Blnx is continuous at. :c = n, 

(ka) cot. (kn) = (k'a) cot. (k'a + cp), 

whence 

y = arecot, ($ cot ( kn ) )  - k'n. 

For x > n, 

where 

Hence the phase shift of the outgoing wave in relation to the irlcident 
wave is . - 

6 = 2p = 2 [arr.cot (6 cot (ko)) - k'a] 
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Consider a one-dimensional system with potentid energy (see Fig. 1.25) 

Bas3c Principles at~d  One-DimewamaI Motaons 81 

11tsre Vo is a positive constant. If n. beam ol particle? with cnergy E is 

c a r (  rtlerrt frotr~ the left (i.r., from x = -m), what fraction oC thc bcam is 
I r . ~ ~ ~ s r n i t t ~ d  and what fraction reflcc.trtl? Considcr all possil>l~ values of I?. 

( Golrrmhza) 

- X 
0 

Pig. 1.25 

Sr~Iution: 

For x < 0, tht* S(:liriitlilip*r c:cluatic>~l is 

whose sol~l t io~l  l l i~s tIit: For111 

where 

(i) If E < Vu, writ[ thr: abovc? as 

As d~(zj  must br  finite for a + m, the solution has the form 

'~,(sc) = teck'%, 
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The continuity conditinns thrn g i v ~  

w h ~ n r r  r = C k t  4 i k ) / ( i k  - k t )  = (1 - r k P / k ) / ( l  k i k t / k ) .  Thi-relnrp t,ltr 
fraction r~f l~c ted  is X == jrer/jmr = l r = 1 ,  the €tactmion transmitted .Rv 

T=1-RrO. 
(ii) E > Vo. For n. > O. wcl havc 

where 

Noting that thrrp arr only n~~ tgo inz  wavw for r -+ m. WP h a v ~  I + r = t, 
i k  - i k ~  -- ik'f, and thrls r = ( k t  - k ) / ( k t  - C  k). H ~ n c c  fhp fmctiorl rrfIcrt~rI 

is R - [(k' - k ) / ( k '  -1 k)I2, the fract inn trrtnsn~itt~d is T -- I - R = 
4kk'J(k + k t ) > .  

A pnrtic:lr of ntass rn *?11d rnozn~ilturn p is incid~nt from thr Ztfr 011 the 
pntmti:tl step shawn in Fig. 1.26. 

C:+lrnlate t,hc ~~rnbal~ilitp thaL khr partidr i s  sratt.ertv1 backward by tthr 

pntmtial if 

(a) p'J2m < Vn, 
(b) p2 J2m > fils 

(Cohtmbia) 

Basic Princiyrlcs mid (kc-l>irncnsional mot inn^ 

Fig. 1.26 

Solution: 

l'he Srhrdin~rr pqrlat.ic)ns are 

(a) ZI I<? < I$,, w t v  I~avc! 

the  condition ,,hat dr(x)  is finite For :c -+ cm lia,vit~g berr~ 111ar1e IUP uf. 
Tiit* continuity con<litir,m giw I -t r = I ,  i k  - t k r  r - k f l ,  wl~c.t~ct- 1. = 
(b' I , k ) / ( i k  - A?). The pmbsbility of r~flret~ion is fl - & / j .  = lr l 2  1. 

(b) IF E > V<,. We haw 
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tloi.in:: that thew IS 011ly nutf:oiug for s > zo. T h r  tnrlfirmity c r ~ x ~ r l i -  
finrls givr 1 + r = t ,  ik - ikr - ik'b, atltl I~clr~i-r T = (A: - k J ) / ( k  + k : ' ) .  Tllp 
prnhahility of rrflrctint~ is t(11r11 R = ( r. 1" [(k - k t )  / ( k  + k')12. 

Find tire rcflertiotr and trnzwmissbu raeffic.iclr~ts for t h4. nnc-dirnrt~sionill 
potential step sliowr~ in Fig 1.27 if tlw ~>art.ic-1t.s :Ire i11c-irlcnt frr>m t hr right. 

( !Vx.&r-onsin) 

Solution: 

As the pnrtirl~s art* incident frnm thc: right w r  must haw E > Vfl. 
.4nd t I~ere arr Imth incident and rrfirrtrd waves in t h e  rrgion x 3 0. Tttr 
SchriitLinger ~quxtir~rt far .r > 0, 

whrrt* kl = J 2 7 n ( ~  - % ~ ) / h ,  has soltltions rrl. t h ~  form 

' I ' I~ere arc only transmitt,ed waves in the r e ~ i o n  3: < 0, where the 
.. Is$ ticlinger equation is 

1 1  11 k2 = m / h ,  and Ilits thc solutiotr 

IJsing t he  conti111lit.y c.o~~ctiticrns o f  tlle wave Irjnrtion at, 2: = 0, we ~ p t  
t I I t  = S. PSoln tlnb r-o~rt i l~rr~ty of t h ~  tirst drrivrtt~vr of t h ~  wave lilnction, 
I: 4 ,  firvt k 1  (1 - R )  = k 2  S. H P I I ~ P  R = (kt - k2)/(iL.l -t k2). giving thr rrRection 

Consirler, r~rlar~trrrtl rnrc.h<.iuicaUy, a s t r ~ a m  nf pat'tirl~s n l  rrlass m, rarh 
~r~ov ing  in the yohitivr .r tlirectirn with k i ~ ~ e l i r  cgia.rgv E tnwirrcl a pol~ntial 
brrrnp Iorated at a. = 0. The ~w)trntial is xrrn fr~r :I: 5 O arid :I E/4 ffir r > 0. 
What frfirtion of thr particlm itre rc1lcrtt.d s t  :E = 0:' 

(Bzcfl~lo) 

Sthution: 

R lolls arc' The Srhrijdiuger cqu t' 

.q,'/ .I kzd, = a for .c 5 0 ,  

dl'' -F (k /2 )2$  = 0 for :C > 0,  

whc!re k = =E/JL. AS for T < 0 there wili also be rt.flt"ctcd wavrs, the 
wlutions ilre of thc Zortn 

4~ = pxp (ikx) -t I- exp{- ik~) ,  x <. 0, 
dl = t cxp ( i kx /2 ) ,  s > O .  



From the cuntinrdty co~~dit,ions of the wave funct,ion at  x = 0, we obt,ain 
t + r = t, k (1 - r) = k t / 2 ,  and hencc r = 1/3. Thus onc~iintli  of the 
part,ir.les are reflert,ed at .x = 0. 

ConsirJer a particle bean1 ;y)prt)xi~natrrI 1)y it ~) laar  wave dirertcd ;ilong 
thr. x-axis from t,he lpft and incidriit upon a pnt,ent,ial V (a) = y 6(2), y > 
n, h(x) i s  the Dirac drlta fiinrtio~~. 

(a) Givt. the forin of the wavr h~nrt io~l  for i 0. 
( I ) )  Give t , h ~  form c ~ f  the wave function for .c > 0. 
(c) Give the con~litiotls on the wave funrt~on at t hr l~ouridary hctwr~u 

thr regions. 
(d) Calculate thr  prolmhility uf transt~ilssicrii, 

(BrrA-rL!y) 

Solution: 

(a) For x < 0, t h r r ~  ilrr iircidrnt w>tvrr of thc! for111 ('XI) ( z k )  illi(l rc- 
flectd waves of t h ~  form R ~p ( - r k z ) .  Thus 

$(z) = cxp ( i k x )  + R c x l , ( - i h ) ,  1- < 0. 

(b) For x > 0, t h v r ~  cmly exist tra~islnitt~rti wi1vi.s of the form S cxp 
( t k : ~ ) .  Thus 

d~(.r)  = S exp ( i k x ) ,  3: > 0. 

( c )  Thc Sc:hriitlilqgcr cquatiou is 

and its solutio~ls satisfy (Problem 1020) 

As t he  wavr funct-ion is cont,inuous at  z = 0,$)(0+) = $(0-). 
((1) From (a), (b) a ~ l d  (c) we have I + R  = S , i k S - . i k ( I - R )  = 27n,yS/h2, 

giving S = 1 /(1 + i ~ n . ~ / h ~ k ) ,  Hence t,he transmission co~ffic.ient is 

where E = h2k2/2m. 
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I ~l~sider a one-dimensional pml,lc~n of a particle of mass r r ~  incident 

8 1 1 . .  . I  l~otential of a shape show11 i l l  Fig. 1-28. Assume that t,he energy 
I a I I + -m is greater than I/o, where Vo is tht= ilsymptotic value of the 
1 ..&I 1 I ) {  i i d  m x + m. 

-,tlclw that, the sum of ref lwt~d and trnnsnlitted i~it.ensities divided by 
r I ll 111c.ident intensit.y is one. 

(Princeton) 

' ;,*111t,ion: 

)\IS E > Vg we may assume t,hc asymptotic forrtw 

,dl + eika + .I"Cl-ikz f i r  z -4 -00, 

.$) + terPX for x + +m, 

~ r ~ l l l * ~ ~  r, f ,  k ,  p are ronstant,s. The incident int.rilsity is drfincd as the 

111ll111jer of particles incident prr unit time: I = Frkb .  S~~nilarly, tlie 

I 8 4 l(.c-ted and tra~lsn~itted intcrwit it5 are rcsprrtiv~ly 

Multiplying the Schrbdinger equation by d)*,  

; r . ~ ~ r l  the conjugate Schrodinger equation by 47, 
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and t.aking the difference of the t.wo equations, we have 

7,b*v27) - 7/,v2?,!5* = V * (7)*V$ - 1(>V+*) = 0. 

This mcans that 

f (z) = $~*0!1/,/d:c - 7)d1/,* /d:c 

is a. const-ant. Then equating f and f (-m), we find 

k(1 - lr12) = ,Dltt2. 

Multiplyi~~g both sidcs by 2 gives 

I-n+r.  

A Schrijdinger equation in one rlimcnsiot~ rt:ii.ds 

(a) Show t.11at exp(ikx)(tanh a 4- const) is i i  solutin11 for a pnrticubu. 
vrtluc! of thc? consta~it~. Calculate the S-tn~tr ix (trausn~iusion ;\.11(\ rc!flrctiol~ 
coefficients) for this prol>lcm. 

(bj The wirve function sechx happens to satistjr t*hc Schrodi~igcr qua.- 
tion. Calculat,~ I.he energy of the corresponding bor~nd stpate a.nd give a 
sirnple argument that it nlust be the grous~d state of the potential. 

(c) Oi~t~lint. how yo11 inight have proceedml to estitnate the grouad-stat(: 
energy if you did not know the wave frlntrt,ion. 

(Buflalo) 

Solution: 

(a) Letting t.he con~t~ant. in the given soliltion $ be K and stlbstituting 
7 / ~  in t,he Schriidinger ~quat ion,  we obtain 

k2 (tanh 3: + 1 0  - 2(ik  + K )  sech2 z. = E (tanh x + K) . 
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'L'his equation is satisfind if we sct K = - ik  and E = k2. Hence 

+(x) = eikK (tanh z - i k )  

I . .  ; I  solldiorl of ttlc equation arirl the t:orrcsponding enrrgy is k2. Then as 
1.tt111 3: + 1 for A: -4 cm ancl tanh ( - : r )  = - t a lh  3: we havr 

Since V(z)  5 0,: > 0, t.lw t,r;u~sn~ission r:onffir:icllt is T = 1 : L I ~  the 
,,nllection (:ocfficicut is R = O ;ls ttu! p;lrti<:le t,r:vcls throi~gh V(a). So the 

.'; matrix is 

1 - ( I  - ik)/(l  + ik) 
-(I - ik ) / ( . l  -k ak) 0 

(b) Lcttilig $) =srch x it1 tl~t! Schriidiu~cr rrlii;~tion wc h;wc! -I/? - ~ $ 1 1 .  

tlcltlce E = -1. Bcc;~~~sc!   d dl :1: i5 il 11011-110d(? 1)0111111 5t,ilt(' u1 ttl(* W ~ ( I ~ P  

~~oorclinat~e spitcr, it ~ t i~ i s t  bc t,llc! graurirl st.;lt.~. 

(c) Wc? tnight I)r~ceed by ;~sslul~iiig n rlol t-llorlr I~oirnd cvc11 f~~nct,ion w it.h 
:I. pararnetc?r itn-ntl obt,ain an ;tpprc>xi~uat,c! w~Ii1(~ ~f t , h ~  grou1it1 ~ t , i ~ . t . ~ !  r~letgy 
I q  the v~r ia t iond  ~uc!thoc\. 
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A rnonocnrrget,ic ~)arallrl heat11 of nonrc?la.t.ivist.ir: ~lcutrolls o f  ell(?rgy E 
is incident outo tlie plane surface of a p1at.r o f  nlil.tter of thickriess t. 111 

the matt,cr, tlie ~lciltrons move in a nnifonn at.t.r;lc:tive ~)ot,ent.i;tI V. The 
irlcident, 13cn.m l n ~ k e s  a11 angle @ wit,h respect, to t.he uortnnl t.o the ~ ) l i ~ l f ?  

surface as shown i11 Fig. 1.29. 
(a) What fritc:tion of the incident beail1 is reflected if f. is irdinite'! 

(h) Whttt fraction of t,he incident hcam is reflected if V is repulsive and 
V = E? Consider t finite. 

(CUS)  



Fig. 1.29 

Solution: 

(a) Let ko l ~ e  the wave numlver of arr incident ilrutro~l, given by k: = 
2 m E  - For x < 0, thc w a v ~  fiir~ction i~ 

With t infinite and thr potrntinl nrgativc, for x > 0 t,hc Sc:hrii(lirlgc.r ~1411;~- 

tion is 

Assuming a solutio~l 

and srlhstituting it t h ~  cquation, we obtain k: + ki = 2m(E i- V ) / l i 2 .  
Th? boundary conditions at x = 0 

then give 

=ikoy sin 8 + R ~ L ~ O I I  sin R - - T F ~ ~ * Y ,  

iko co8 #eikoy sin ' - RikO cos deikby "in 6 - - ~ i k ,  e ikyu  
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As t,he potent.ial does not vary with g, kg = ko sin B and the above 
t 14 .c .r  I ~ I P  

1 + R = T ,  

u t1ic.h give R = (ko ros 8- k,)/(Eo cos B+kT).  The probabiIity OF reflect,ion 
I : l hen P = 1 R l2 = (ko ms 8 - k, j2/(ko cos B + k , )2 ,  with k: = 2rn ( E  + 
I ' )/h2 - ki sill2 8, ki = ~ T I L E I J ~ : ~ .  

(b) For z < 0 the w a v ~  function has the same form as that in (a}. For 
I I ., z < t, E - V = 0, and thr Schrijcling~r equation is 

As the potc~ltial is u~liform in ?J wr! assurtw $ = exp (ik'lj) exp ( k t : ) ,  

where k' = ko sin 0. Substit,utio~i g iv~s  -k'2 + k" 0, or k = f kt. FIellc~ 
I l l r ,  w a w  Function for O < s < t is 

k'x 
"v,b2 ( 5 ,  !/) = (ae + be- k'" ) ezk'~. 

Writing ?) (x, ?,) = $(z) ezkffl, w t  have for the three regions 

with 

k, = JF COY 8, kr = \ / w h ?  s i n 0 .  

'The boundary conditions 

give 

l + r = a + b ,  

zkX(l-~)=kr(a-b~, 

c exp (ik,t) = n exp (k't) + b exp { -k ' t )  , 

ik,c exp (ikxt) = k'a exp (k't)  - k'b exp (-k't) , 
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whose solution is 

", /b  = [(k' + ikX)/(kl - ik,)] - e-2k' t .  

Hence 

with 

and the fraction of neut,rons reflected is 

A1 ternative Solution: 

The solution can also l r  obtni11c.d i)y sulrrpn;it,i(,n of bdfi~xit~t? ampli- 
tudes, similar to Lhr case of a Fahry Pmjt ist2erfcro~nc<tr?r i11 opt.iw 
Fig. 1.30). 

Fig. 1.30 

We nwd o111y consitler the x-component of the waves. Let T12. Ri2 tip- 

note the coefficients of amplitude transmission and reflection * a wavr 

goes R)m mnlium 1 t o  medium 2, respec tk ly  Let Tlr, R2, de~lotr  
coefficients of amplitdude transmission arld reflection from medium 2 t,o 
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1114.1lium I.  Take the amplitlldc of i~lcidcnt wave as 1. Then the an~plit-ude 
4 1 1  1.l1e wave tlint is trrtnslnitted to ~ncdium 2 is trhe sum 

T = ~ ~ ~ e - '  - T2] + ~ ~ ~ e - "  ~ ~ ~ z l e - ~ % ~ ~  + TZl 

+ ~ ~ ~ e - "  ( R ~ ~ ~ - " R ~ ~ ) ~  . T2, + . - -  

= T ~ ~ ( ~ - ~ T ~ ~  [l + R ; ~  P - ~ '  + (R:~ + . . - 1  

I I \  sthe abovc mp(-6) is thc nttrnuatio~i cocffiricalit of a wave i11 m~ctiurn 2, 
rv l wre 

6 = k'i. with I;' = J27n E (1 - cos' H ) / h  = sin 6'1 h,. 

Rorn (a) wr hi~vr. t hc  roc?l%cict~ts of t,mnsini~tqion slid rc>flcc:t,ion 

Ria = (ktZ - X:2,)/(h:lT + k d ,  

As 

kt, = SE cns 6 / h ,  

= ik' = i SE sin O/h . ,  

we find 
2 cos 0 

TLa = 2kl,/(h:l, + k2r) = = 2 cos B C - ~ O ,  
cos I3 + i sin 0 

21 sin B 
T21 = 2k2r/(kla + kaZ)  = = Z i  sin i ? ~ - ~ * ,  

cos B + i sin 8 

i sin 0 - cos I3 e-2io 
R21 = (kzz - kl,)/(k:h + La,) = - - 

i sin 8 + cos Q I 

itnd hence 

- 4i cos 0 sin ~ e - ~ " '  - eVk'" - 1 - e-4i"-2k't 



The tra.nsmissivity is lhcrefnre 

and t , h ~  rcficctivity is 

where k:' = VJ~Z' sitr O / h .  

Find ttlr wavtl l~utc.t,ioli for a pnrtirl~ rl~nvillg in nur tIirttmsi<,r~ in ;i 

ror~vt ant ilnagilr~jry pott~nti:d -7:V whrrr V E. 
Cillruliit,~ t.ht\ pn)llai>ihty lvrrrnt aad show t h a t  au inlagi11:iry ~ ~ b i p , l t i i ~ l  

r~prrspl~ts  absorptiolr or pnrtir.1~-5. Find an r*xprrs*Bl~ hr tbr iil,M~rI~l.ion 
coeffic:i~nt ill t , ~ n n x  of V .  

Solution: 

The Schriidinger rqu a t. iou is 

Suppcaing 4 3  = eXIJ (-EEt/h) exp ( i k r ) ,  wp havy k2 = ( z m ~ / h ? )  (1 + 
i V / B ) .  As V << E,  
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1 ~ I u . r ~  $+ slid .#- refcr t.o t,he ~xpanentially attenuaterl right- aid left- 
r I .rvraling waves respectively. The probability nirrent, is 

These arc thp  exponent,iallp ;tttcnuatrd ri~rrmnts in the respect.ivc dircc- 
i $ 1  111s. The al>sorpt,inn coefficient is thcn 

The i~n:~gintrry prrtr~itid iV i s  rrs~ronsi?dc for t h ~  absorptic~n of the 
I';~T"ticle, since the. PXI)OIIPII~, in j wm~111 IIP irnaginwy. IIenr~ there wouLl 
1 1 , .  no absorption if V wrrr rcal. 

Let the solution to the one-di~~~msiotlal free-part.icle tirnt?-drpcndent 
Srhriidinger equation of definitr wnv~length X he $ (z, 1 )  as d~scri l~cd by 
sonw observer 0 in a frame with conrdintlt.~~ (:c, t ) .  Now consiclcr the same 
l~art ic l~  as de~rrib~d by wave funrtian tl,' ( x ' ,  f') according to obsprver 0' 
with coordinates ( z l ,  t l )  related to (x,  t )  by the Galilean transformation 

(a) Do d~(s, t), d ) ' ( x l ,  t ' )  describe w a v ~  nf the same wavelength? 
(b) What is t,he relationship between p5 (z, t )  and $'(xl, t') if both sat- 

isfy the Schrodinger equation in their r~spect~ive coordinates? 
(Berkeley) 
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Solution: 

(a) The on~dimensional ti~rlr-deprndent Schrijdi~lgcr qua ti or^ for a frw 
particle 

sfiiItl/l (x, f . )  = (-ft2/2mj a& (2, t.) 

has a solution correspoliding to a definite wavrlcrrgttl A 

with 

A = 2x/k  = 2nh/p, w = hk2/2nr.. 

As tllr partick inommtum p is diflkrrnt i. tbr two r c f ~ ~ r c ~ i r  frmnls, th+ 
wtzv~len~.h h is a1.w dilfrrent. 

(1)) Applying the Galil~nrl t ri~osfornwtion ;uul 1n;~king llse nf thr Sthlrrii- 
dirtger equation in ttir (T', f') framr WP find 

Basic Principles and One-Dzmensiond Motions 

e~t,llting use of Eq. (1) and the dcfinitic~ns of k and w.  we sre t,llat 

This is jnst thr: Srhr6dingrr cquzrtion that $ ( : x ,  1 )  satisfies. Henre, 

.I#.(-urate to ;I [ ) h a . ~  factor, wr hilvt= t h r  mb~tian 

A particlr- of maqs In lrou~rrl in a on~-rlin1rusir1nnl hnrnmnir* o.;r.illnt\or 

t~c~tential OF €rt*qnrnry w and in t h ~  grnuitd st.atn i s  sillljrcttd t.0 it11 iii~~)nlsivt* 
Irrce p t Y ( f ) .  

Find tllr l~rol,al,ility it rrrtiair~s in its gro~ii~rl stt1t.r. 
( Wisco.n.s77r) 

Solution: 

Thc partlrlr rrceivw art inst>~nt;rl~rnl~s rno~nmtum p at zt = U allrl its 
~r~locit ,~  C I I H U ~ M  t,o y / . ~ r r  iilst;mt;r~lc~ously. Thr drirat.ion of t . 1 ~  iln~~ulsr is, 
Irt,wevrr, too sllort for thc  wavr ftlnt*tit,n to rhnngt.. Hmcr>, ill tllc virw of 
;L framc K' movbg wit.11 tht~ partirlr, thc l i ltt~r is stJill in t h ~  ground state 

t r i  the hnrmtmic. nsrilllntr>r I / ) ~ ( J ' ) .  l311t in thr vicaw t ~ f  a starionary frame 
IC, it is in t,hr statr ( x ' )  exp ( - i p . c / h ) .  WP trirry r~asonably treat the 
1,osition of the p:~rticlr as ronstnrlt during I he proc~ss, so that at the end 
o f  the  irnp~tlw thc, coordin;ktr of thc particle is the same for both K and 
,fit. IILp~lrr the initial wave fimctian in is 

Thus, the probability that the particle remains in its ground state aft,er 
the  impuke i s  
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An idealizpd ping 11o11g ball of mius rrr is baiurririg i s  its grolmtl rt,at,r (111 

a recoilless table in a on+dimarlsio~lal wclrltl wit11 o ~ ~ l y  ;I vertir:aI tiirpcticln. 

(a) Provr that t,lrr Pnc.rgy (lepnals on T r x .  ,q. Ir ;~c.(.onling I,o: E = I(lntl 
( ~ n , " / f ~ , ~ ) ~  ant1 rlr.trrrriinr tu. 

(h) By a ~ r i . ~ t i ~ ! l i d  ralctilation r*ti~nattc t,hr canstant K al.l rcdtmtc: 
E for nh - 1 granl i l l  rrgs. 

(Pre'nccllmn) 
Solution: 

(a) By t11~  n~rthocl of tli~nnl~sinnaI a~laly~is, if we have 

[ln] [Lj' (rnJ nJLj1-3" -- - - 
P 1 "  IT/" I 

1 thhsn n = -?. Thus, provitlrd n = -3 ,  thr sxpressitm gives the cncrp, of 
the ball. 

(b) Take the x coordinate in the venica! up ilircction with origin at the 
table. The Hamiltoniru~ is 

p2 Ra d2 
f f = 7 + m g z = - -  Zm - + mgz, 

2m d$ 
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I rt .t~~g the table surface as thc reference point of gra~itat~ional potentid. 
I r 1 ; I  ground state wavp function of t,he form $ = x exp(-Xr2/2), where 
t I . t.o be det.crmined. Consider 

Thp following theore111 conrrrns the energy eigenvalues E,, (El < E2 < 
& < . . . ) of I ~ P  Schrodinger equat,ion in one dimension: 

Thwrpm: If the potential Vl (z) gives t,he eigenvalues E l n  and thc PO- 

tential If2 (2) gives the eig~nvalnes E2, and I/; (x) 5 Vz (r} for all a, then 
El,  I E2n .  

(a) Prove this theorem. 



Hint: Consider a potent,ial V(A, r), whpre V(0,  r )  = Vj (x) and V(1, 2) 
= Vz (z) and dV/aA 1 0 (for all .c), and calc!ulntc (3E,,/aA. 

(h) Now consider the ~mtrntial (Fig. 1.31) 

WP want M drtrr~rritl~: khr nutnb~r  d 1)olmcl st,iltes tlli~t this ~ x ~ t ~ a t i d  
can halti. Assumc this r~riml)cr N is >, 1. It 111iiY 1 1 t h  h r l p f ~ ~ l  to ilr21w a 
qualitative picture of tkrt. wave funvtiotl h r  thr highe~t, bound statr.. 

Chnosc a solvable rc~lnparison potential mitl llsr t 11~  tl~mrnn al lo~v~ to 
drtcr~nine pither a rils;oror~s upper bounrl t.o N or x rigorous 1owc.r I)t~llrid 
to N. (noth c-all bc dor~r hilt yoti are iwkrtl for ttnly onp.) 

(Bc~A:elcy/) 
Solution: 

(a) D~fine V(h, :c) = AVr ( . t :)  t (1 - A) V ( )  Obvio~dy  V(0,  r )  = 
V, (x) ,  V(1, ;r) = V2 (4, aV/GA = V2 (3.) - Vl (x) 1 0. T l i ~  Hamiltunirm is 
then 

and t h e  eigenequation is 

where En (A) = (71, A ]  B{A) ) 11. A). 

Bmic Principles and One-Dimensional Motions 

,,I. liave El,, = E,, ([I) 5 E,, (1) = E2,, , aivl tliib thcorrrll is pl-ovrtl. Note 
I I ):I I WP h;tvc 1 1 r i ~ ; J  (1aX 1 7th) = 1. 

(11) Let V ( ; I : )  = h:x2/2. 1 ( I :  U :  It' E,, is a11 c>larEy level 

1 1  II hhe pot,cnt.ial tJ(2), t,l1~11 &, < ( ) I  -t 1/2) h u ,  whew w = m- For a 

1 1 4  r,md st,atr, E,, 5 k n z / 2 .  Solvi~lg ( N  + 1 /2) f1*, 2 ko"2, wc fi11d 

ivllc~re [A] indic.;~t,tw thr ~nnximinn intrgrr that is 1r:ss t I1ii11 A .  
WP now c.11oosr i t ~ l .  V(:r) ii sc l l ia l~  wrll of Iiil~tr ( I r l~ t l~ ,  

The mrmhrr of hol~nd statcts of U ( x )  is l ~ s s  than t,hnt c ~ f  V( : r ) ,  wllic-11 
1 ,  lr t h  1nttc.r is [27nwn" / ~ h l  + 1. We can bakr thr: uypcr 't)ounrl to t l l ~  
11111nber of ht~~inrl st , i~ t .~s o f  FJ(x) a s  [27nwn2/~l l j  its Tor N >> 1 thr: lortrl 1 
I i l l 1  he neglrr-tnd. Ti~km togntllcr, wr gcvt t,hat t,ha n~inlhcr of bmintl stalps 
In I-retwc~ll [nrwr~,~/2h]  and [ 2 r r w n 2 / ~ h j .  

where Jrr) are rill orthonormal hrrsis, {n 1 n!} = fin,? ; Eo and W arc pa- 
rameters. Asslime periodic boundary conditintw so that 1 N + j ) = ( j ). 
Calcnlntc: t l ~  energy levels and wave functions. 

( Wi~coasin) 
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Solution: 

From the  fact tha t  111) form a cornplcte set of o r t h o ~ ~ o r m a l  functions, 
where n = 1,  2 ,  3,  . . . . N, arld 

or 

with 

and 

we know tha t  H , A  ant1 A'- IL:LVC thr s m r  eigc:llvt:c:tfors. Heucc wrx ollly 
n e ~ d  to  find t h r  c8igc:ilvec:tors and  eigcnvahlcs of t h c  operator A+ to solve: 
the pro1)lnn. As 

Akfk = ( k ' )  A  1 k )  = 6 / ; 1 , k . ~ ,  

Basic Frinczples and One-Din~ens iona l  Motions 

and so 
- A 1  0 . .  U 

A - X i =  

. . 
N x N  

i.e., 
(let (A - XI) = ( A ) ~  + ( - I ) ~ + '  = ( - I ) ~  (XN - 1) = 0 ,  

giving 
27l . . 

A. =(:"O-', 6, - - J ,  J X O ,  l , 'L ,  . , ,  , N - 1 .  .I N 

then 

= (23" + 'LW c:os 6.j ) 1 E j )  . 

Hrllc:c thc cigc:nv;ilucs of H are 

2 7 l  
E, = Eo:o+2W ros B,, with 6, = - N J ,  ( j  = 0,  1, 2, . . .  , N -  1) 

T h c  corrcsl,ondi~ig cigcnfunctiolls can he obtained from the matrix rqna- 
tions 

( A - X , ) \ E j ) = O  



Give a brief discussion of why tlicre arc energy ballds in a crystallinc 
solid. Use the ideas of quantum ruechanics but do rlot att,em~,t t,o carry 
out any complicated calculatiolls. Yo11 shollltl assllrnc that anyone reading 
your discussion undrrstands (~uallt~llm rnc:cha~lic:s I)~lt docs rlot ulldcrstar~~l 
anything abolit the tl~eory of solids. 

( Wiscorrsrn) 

Solution: 

A crystal rnay l)e regarded as all infirlitc, ~)criotlic: array of j)otc:llti;tl 
wells, such as thc latticc structure givt:n in Problem 1065. B1o(:llls tllc:o- 
rem states that the solution to the S(:hrijtliilgcr c:q~l;~tiol~ then 11;~s the: forlll 
v(z)exp(iKz),  where K is a cori~t,ant a 1 ~ 1  ,~I.(z) is j)eriodic wit11 t11~ pc- 
riodicity of the lattice. The contillrlit,y c:olitlitiolls of ,(,, (3:) all(1 &I, (3 : )  Id3: 
at the well boundaries lirnit the energy of t,hc propagating particlc t.o ce:r- 
tain ranges of values, i.e., energy 1)alltls. All cx;il~~t)le is givcrl in dctitil ill 
Problem 1065. 

A particle of mass nlovc:s in one dilncllsion in a periodic potcrltial of 
infinite extent. The potential is zero at most j)laces, Ijut in narrow re&. m n s  
of width b separatcd by spaces of length a (b << a)  the potential is Vo, whcrc 
Vo is a large positivc potential. 

[One may think of the potcntial as a sun1 of Dirac delta functions: 
00 

V(2) = C Vobd(x-r~a,). 
n.=-DO 

Alternatively onc call arrive at the same answer in a somewhat more 
messy way by treating the intervals as finite and then going to thee li~nit. ] 

(a) What are the appropriate boundary condit,ions t,o apply to the wave 
function, and why? 

Baszc Principles and One-Dzrnensional Molrons 
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(b) Let thc lowest energy of a wave that can propae te  through this 
~,otential be Ea = hL2k~/2i11 (this definw ko). Writ,(: down a transcendental 
, ,(pation (not a ilifferentisl i:(luatio~l) that can h: solved to give ka and thus 
It;(, . 

(c) Writr (low11 t,he wavc fliri(:tio~l at energy EO vttlid ill tllc region 0 5 
< a (For ullif(ariiit,y, let 11s cliooso nors1i~lisi1t,io11 ;111(l pliaso sllch that 

, / I ( ~  = 0) = 1). What h a l q ~ n ~ s  to t,lir: wave hil~(.t,io~l I)ct,w(:(:~l I. = a and 
.i: = a + I)'! 

(d) Sllow that there arc rimg(:s of v:~l~i(:s of E l  gr~at(:r tllitil Eo, for which 
I llwe is no cipo~ifilli~:t,io~~. Find ((:xit(:tly) tllc t:Ii(:rgy at w1iic:ll t.11~ first sllch 
1;ap begins. 

Solution: 

(a) Tllcx S(:llriitlillgm aclu;~t,ioll is 

.+' ((1,' ) - ,I/)' (a- ) = 'Lb2,Jt (a,), 

whercb 12 = ,IILV;~I,/IL~. This ;~nd  t,lic, ot l~cr  1)oundi~ry condition 

apply to the wavc f~llictiorl at :I: = r ln, wllcrc n = c o ,  . . . , -1, 0, 1, . . . , 
fm .  

(b) For 3: # ,rm, tllcre arc two fundalrielltal sol~lt,ioss to tllc Sc:lirijdiager 

equation: 
% k z  

,111 (z) = C. , l b 2  (z) = c - " ~ ~ ,  

the corresponding energy being 

Let 
$(z) = AeikZ + ~ e - ' ~ " ,  0 < z 5 a,. 
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According to Bloch's Theorem, in the region a 5 x 5 2a 

whcre K is the Bloch wavc riurnl)cr. Tlle boundary contlit,ions give 

For norlzcro solut.io~ls of A and I3 wc rerluirc. 

( ; ~ . l i a .  -. cika. e % K a  - ( : - i k ( ~  

,ikciKa -- (%k  + 262) -i,-(+lCa + ( i k  - 262) c-ik'h = 0: 

or 
61 . cos k n  + - sill -- (:OS K ~ L ,  
k 

which determines t l ~ c  Bloc:11 wavc 11111111)(:1. K. Cor~scquclltly, tli(: :~llowc(I 
values of k  are limited t,o thc: range givc.11 I)y 

ko is the iriir~irnurn of k  t,hat satisfy t,his inclcluality. 
(c) For E = Eo,  

where ko = J z r n ~ .  - 
Norn~alization $ ( x  = 0 )  = 1 givcs 

$ ( s ) = 2 i A s i n  kox+e-"o" ,  0 i . r F u .  

The boundary conditions at x  = a give 

ezKa - 
- 2i A sin Icon + e-lkoa, 

Basic Principles and One-Damensaonal Motions 

, ,>( )  

i K o  sin koz + e - i kox  
$ ( )  = ( e  

e--ikoa) 7 , 0 < x . < a  
sin kon 

For x E [a ,  a  I b], t,he wave function has the form exp ( % k l ,  2) ,  where 

kl  = J2m(Vo  - Eo)/h. 

(d) For ka = 71.x + 6 ,  wh(:rc b is a small positivr number, we have 

When cF is qliitc s~riall, the lcft side z 1 + 626/k > 1.  Therefore i r~  c:crtain 

region of k  > ~ L K / ( J , ,  t,h(:rc is 110 cig(:1!fllii(:t,io11. 011 thc other hand, k(l. = 7rK 

corresI,olids to c:igciivalues. So th(: c:nergy at which the first cncrgy g:~p 
begins satisfies t,hc rc:lat,ion k a  = K ,  or E = n2 h2/2nta2.  

We wish to  study partid(:-wavc: pro~)agation i11 a 011e-dir1iensiona1 pcri- 
odic potc:ntial co~istruct,ctl by itcrating a "single-potentia1" V ( x )  at  intcr- 
vals of length 1. V(3:) V ~ L I I ~ S ~ C S  for / 3: 1 > 112 and is symmetric in z (i.e., 
V ( x )  = V ( - 2 ) ) .  The scat,terirlg propcrties of V ( : L )  can be summarized as 
follows: 

If a wave is incidcnt from the Icft, $+(z) = exp ( i k z )  for x < -112, 
it produces a transmitted wavc ,$+(z) = exp( l ,kx)  for x  > 112 and a re- 
flected wave +-(x )  = e x p ( - i k x )  for x < -112. Transmitted and reflected 
coefficients are given by 
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and 6, and 60 are the phase shifts due to t,he potential V(z).  Take these 
results as given. Do not derive them. 

Now co~isider an infinite periodic potential V,(z) constructed by iter- 
ating the potential V(z) with centers separatcd by a distance 1 (Fig. 1.32). 

Call the points at which V , ( z )  = 0 "interpot,ential points". Wc shall 
at,t,ernpt to construct. waves propagating i r ~  the potential V,(z) as super- 
positions of left- and right-moving waves ++ a r~d  4_. 

Fig. 1 .:12 

(a) Write recursion relations w1iic:ll rclatc t,he an~plitutles of the right- 
and left-moving waves at the nth illterpotential point,, @$, to the alnplitntlcs 
at t,he (n - 1)th and (n, + 11th intcrpotclltial poillt,s, dl;-' a.nd @it'. 

(b) Obtain a recursion relation for 4- or 4+ alone by elirninatirig tlic 
other from part (a). 

(c) Obtain an expression for the ratio of amplitudes of 4+ to c j -  at 
successive interpotential poirits. 

(d) Find the condition on X: ,  6 ,  and 60 such that traveling waves arc 
allowed. 

(e) Use this result to explain why it is "normal" for conductioll by 
electrons in metals to be allowed only for bands of values of energy. 

(MITI 
Solution: 

For the wave incident from the left, the pot,ential being V(x), let 
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For the wave incident frotll the right, let the t,ransmission and reflectiorl 
I (,c4licients be t' and r' respect,ively. It can be shown that t' = t ,  r' = 

r.*t/t*. In the periodic potcrltial, the transmission and reflection co- 

~,llicient,s at adjacsr~t interpote~ltial points have relations t,, = tn-l and 
I . , ,  = rn-1 exp ( i2k l ) .  So the transnlission coefficient can be denoted by a 
:;ingle notation t .  

(a) Tllc waves at adjacent inter~mtential points are as shown in 
I:ig. 1.33. Ot)viously, only thc reflectiotl tern1 of @ and the translnission 
t.cwn of 4:-' contribute to a;: 

Similarly, 
I r ~ + l  8: = r,,4!1 + t 4- 

Fig. 1.33 

(b) With 7% replaced by n + 1, Eq. (1) givcs 

Equations (3), (4) ,  (5) then give 
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Let r o  = r .  Then r, = r exp(22nkl). Assume r:, = -r, tit* Then 
rk = r1 exp ( - i 2~~k l ) .  Hence 

Similarly, 

(c) As the period of'the potential is 1, if 7/1(3:) is tllr w11ve fu~lctio~i in the 
region [:c,,,-1, x,.], then $(r - 1) exp (26) is the wave fuii(:tion i11 tlir region 

[x, , 3:,,+1]. Tlilis 
($:+I I ez(6-kl) 4n+, 
,$:+I = f:~(6+kl) 62. (7) 

Let c,, = 4';/@. From (4) and (5) we obtain rcs~)c<:t,ivr?ly 

4 n +  1 + (6"l - = T ; -  + tc,, . 
4: 42 

Using (7), (9) can be written a.s 

or, using (8), 

i.e., 

i2 k l  r.c; + (t2eZZki - rTIr:,e - 1) c, + rLriZki = 0. 

Solving for c, we have 

Basic Principles and One-Dimensional Motions 

(d) The necessary condition for a stfable wave to exist iri the infinite 

~~oriodic field is 
+n++l/47~ - f:16~ + -  

where is rcal and independent of n. If this were not so, when r~ -t co 

one of @; ant1 457" would bc infinite. Fkoin (7), we sec that 61 = 6 - k1. 
I'rom (6), wc obtain 

Substitlitiiig 7.' ---r* t/ t* iri t l ~ c  a.t)ovc cqliation arid using rr* + tt* = 1, 

we obtaiii 
tr:ikl + t*c- ik l  = 2tt* cos 6, 

which mcans 

or, using the definitioil of t ,  

cos (26, + kl) + (XIS (2h0 + k1) 

1 + (:OS [2 (6, - do)] 

cos (6, + + kl) 
cos (6, - do) 

In general, only some of the values of k satisfy the above inequality, 
i.e., only energy values in certain regions are allowed while the others are 
forbidden. Thus we obtain the band structure of energy levels. 

( e )  In metals, the distribution of positive ions is regular and so the 
conduction electrons move in a periodic potential. (d) Shows that the 
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electron waves can only have certain Ic values, corresporlding to bands of 
electron energies. 

You are given a real operator A satisfying the quadratic equation 

This is the lowest-order equation that A ol~eys 

(a) Wha.t are the eigenvalucs of A'! 
(b) What are tjhe eigenstates of A'! 
(c) Prove that. A is an observat,le. 

( B I  ~fl(il. lo) 

Solution: 

(a) As A sat isfirs :i quadratic equation it can t)(, rcprc~sc~itc~tl by a 2 x 2 
matrix. Its eigenval~lcs are the roots of the rlu;~(lratic. c,clr~ntioli X":jX+2 = 
0, X I  = 1, X2 = 2. 

(b) A is represented by the inatrix 

The eigenvalue equatiori 

then gives (L = 1, b = 0 for A = 1 and n = 0, b = 1 for X = 2. Hence th r  
eigenstates of A arc ( h )  and ( y ) .  

(c) Since A = A+, A is Hermitian and hence a11 observable 

If 1 II,,) is any eigenstate of the electric charge opcrator Q corresponding 
to eigenvalue q, that is to say, 
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I I I ( :  "chargc: corijuga.tionl' operator C a.pplied to I $,) leads t,o an eigenstate 
1 r l , - , )  of Q c:orrcsponding to cigenvalue -4: 

(a) Find thc cigc~lvalucs of t,hr opcra.tor C Q  + Q c .  
(b) Call a state si~~lllltali(:or~sly 1 ) ~  an cigcnstate of C and of CJ'? 

( Chicasgo) 

Solution: 

(a) L(:t 

(CCJ -1 QC) I ,,!I,) -= qC ~I/I,)  .+ C,! 1 4',L,1) = (1 I ,!I-~(!) - (1 I JjLrl) = O .  

Thus t,tic: (:ig~11~:~111(~ of t,li(b op(:ra.tor CC) + C,!C is zero. 
(b) As C is the: c.llargc: (:oi!j1igi~t,io11 t,ransfOrn1at,io11, C&C-- ' = - (2, or 

C Q  + ($3 - - 0, i.c,., C ; L I I ( ~  (2 (lo not cornmut,e (they ;~nt~ic.oinililitc) t,l~cy 
c.;~nnot hi~v(: (:011111101i (ig(:l~sti~t,(:s. (Urlless q = 0,  in which case it is cpitc: 
~iieaniilgl(~ss to  i~lt,rotluc.c, c.hnrgc: c:oiljugatioll.) 
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A cl~l;~l~ttiill-l~l(:(:lli~lli(:al syst,clll is known t.o possess only two energy 
eigensti~tc:~ tl(:ilotctl I I )  i~li(1 12). Tlic: systc:ln ;ilso inchides three other ob- 
servablcs (t)csiclos t,hc c,ilc:rgy), known as P, I) aild R. The st,ntes 11) and 
12) arc ilornlalisccl t)iit, t,llry are not necessarily (igc:nstji~t(?s of P, (2 or R. 

Det,c:rrriinc: ~ L S  111illiy oE t,hc cigcnvalues of PI I2 i ~ n d  R as possit~le on the 
basis of t,hc followi~lg sct,s of "cxperi~nental (latan. [Waruiilg: one data sct, 
is unphysical.] 

(a) (1 1 P 1) = 2 (1 ( P" 1) = 114. 

( 1 ) )  (1 1 Q 1 1) = 112, (1 1 Q2 1 1) = 116. 

(c) (1 1 R 1 1 = 1 (1 1 R~ 1 1) = 514, (1 / n" I 1) = 714. 
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Solution: 

We are given three observables P, Q, R, which satisfy the Herrniticity 
(n 1 P (m) = (m 1 P 1 n)*, and that the mechanic:al system has a complete 
set of energy eigenstates 11) and 12). 

(a) The cornpletcness of thc two statcs and thc "experimental dtxta'!, 
give 

where a is a constant to be determined. The orthogonality of the eigenstt~tes 
and the Hermiticity of P give 

So we have 

P ( 2 )  = tr* ( I )  + /3(2),  

where /3 is to be determineci. The11 

As P y l )  - accordi~lg to expcrimtiit, cr"n - 0 and hencc a = 0. 
Therefore, 

i.e., at  least one of the cigenvalues of P is 112. 

(b) Let 

where y is to be determined. By a similar procedure, we get y'y - 116 - 
114 < 0.  So this data set is unphysical and the cigenvalue of Q collld not 
be determined. 

(c) As ( 1  ( R  ( 1 )  = 1 ,  we can write 

Basic Principles and 01l.e-Dim.ension,al Motions 

~v lwre A is to be determined. Then 

.Ilowing that 
R 12) = A* 11) + 77 12). 

wliere 77 is to be determined. Consider 

Then as 

we have 

;md so 

and 

It follows also 
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Experimentally (1 1 R" 1) = $. Thus 2 + (1 + ,r,) = $, giving q = 1. 
Hence on the bases 11) and 12) the matrix of R is 

To find the rigrnvalucs of R, sotve 

i . .  1 - A)" $ = (1 - A - ?) (1 - X + A )  = 0, and ot)t,ain tlic cigc~iv;l.l~ic:s 
2 2 

o f R = +  3 
2 '  2 '  

1069 

For a charged 1)artic:lc in a. inagnctic field, fintl t,llo corrimutt~tioli rlil(:s 
for the operators corrc~s~)ondirig t,o t,hc c:o~rlporlent,s of tlic: vc:loc:ity. 

(B(:~kel(:?y) 

Solution: 

Suppose t,hc inagnctic: field :irises froln a vc:c.t,or potc:rltia.l A. Tli('11 t,ll(: 
velocity cornporlcnts of the: ~)art~iclc a.rc 

Hence 

where ~ i j k  is the Levi-Civita density, use havirrg been made of the corre- 
spondence rule pi -i) $ &. 

Basic Principles and One-Dzmenszonal Motions 

1070 

Using the coordinate-momentum commutation relation prove that 

where E,, is thc c:ncrgy c:orrc:sponding to tllc: cigrnstatc \TI.). Ol)t,ain the 
value of thc (:onstarit,. Tlic: I-Iarriilt,orlia~l has the: f i ~ r ~ l l  H = p 2 / 2 ~  + V (z).  

(Be~ke1e:y) 

Solution: 

As 

we havr 

and so 

On thc: o t l ~ t r  hand, 

= 2E,, I ( r n  I r 1 r l )  1' - 2  En I ( i r ~  1 " 1") 1' 
I1 n 

In the above we have used 
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H 1 m) = Em 17n) , 

(711 j z2 7n) = x (~rn 1 z 1 71,) (n 1 2: I rn) 
11 

= x I(1rt. 1 :C 7 ~ ) '  

1, 

( s r r t ,  1 :LHX 1 711,) = x (rr~, 1 :I:H 1 71,) (,rt, 1 :I;  1 ~ r t , )  

11. 

= x ET1, (srrt, 1 :L: 1 T I , )  (TI, I:]: 1 s r r ~ , )  

71 

= x ET1 1 (7rL 1 :L: 1 Tb) 1' . 
71. 

Equat,ing the t,wo rc:sult,s and setting 7r1. = 0, we 01)ti~ili 

(a) Givcil a, H(:rli1itii~11 Op<:ri~t,ol. A wit,h (:ig~ll~i~111(:~ an RIKI (:ig(:llfilll(:- 
tions 11, (:c) [TI, = 1, 2, . . . , N; O 5 :I: 5 L ] ,  show tli i~t t > l i ~  01)~'rat~or (\xp(,iA) 
is unit,ary. 

(1)) Conversely, give11 the matrix U,,,,, of a iinitary operator, c:ollst,r~lc:t 
the matrix of ;L Hermitian operator in t,crlrls of U.,,,,, . 

(c) Given ;I scconcl Hcrmitian opcrat,or B with cigcnvalues b,, and c:igcrl- 
functions 11,, (3:), (:onstrli(:t a rcprc:sc:rltatiori o f  thc 1irliti3,ry operator V tallat 
transforms the eigcr1vcc:tors of B into t,hose of A. 

( C/~,ica.go) 

Solution: 

(a) As Af = A, A being Hermit,ian, 

{exp (iA)If = exp (-iAf ) = CXI) (-iA) = {exp ( i A ) I 1  

Hence exp(iA) is unitary. 
(b) Let 

Cmn = Umn + U,TTn = Umn + ( U + ) m n ,  

Basic Principles and One-Dimensional Motions 

As U++ = U, Cf = C. Therefore C,,,,, = U ,  ,.,, + U:,, is the matrix 
represerltatioll of a. Hermit,iarl opcrator. 

(c) Tlic cigcrlkcts of n H(:rlnitian opcrator for111 a c:orrlpl(:tc: nrlcl orthonor- 
ma1 set. Thus any I 11,,,,) c;m 1)c ~ x p i ~ ~ i d ( : d  i11 thc (:o~npl(:tc s(:t l,~,,): 

which d(:firlc:s VkTrr1 

Similarly, 

Hence 
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showing that V is unitary. Thus V is a unitary opcrator transforlrlirlg the 
cigenvectors of B into those of A 

1072 

Corlsider a or~e-dirnensior~al osc:illat,or with thc Halniltonian 

H = p7/27n + ,rrw2::l:"/2. 

(a) Find thc tinw d~prnd(t11ce of the cxpec:tatioii values of thc "init,i;~l 
position" and "init,i;~l inomenturn" o1)t:r;Ltors 

(b) Do these operators c:o~iiln~~t,c with tl~c: FI i~~ri i l t ,o~~i ;~~~'!  
(c) Do you fiild your rc:s~llt,s for (;I) arid (1,) t,o I ) ( ,  c:ou~patil)lc'! Discy~ss. 
(d) What are tllc 111otioli ~ ( l ~ i : ~ t i o i ~ s  of th(: op(:r;~tors ill th(: II~is(\~~l)(,rp,  

picture? 
(e) Coinplitc the (:ommutator [ p o l  :c:o]. W l ~ a t  is its sigiiific:;~~~c.o for III(:;L- 

sureinelit theory? 

( I'rincr: t on.) 

Solution: 

(a) Making ~ s c  of thc rclatiorl 

df 1  
- -- - a"f 

- If .  H I + % ,  dt ih, 

we have 

-- 
1  

"xO) - - [ ( :L . )  cos wt, 111 - W(X) sill wt 
dt ih.  

- L [- (") sin wt, H - - cos wt 
it? mw ] !? 

1-  
= - [x, H] cos wt - w (z) sin wt 

.i ti 
1 1 -  1  

[p, H ]  sin wt - - (p) cos wt = 0 ,  
mw ih 731. 

Baszc Prznczples and Or1,e-Dirnensio~l,nl Motions 

1  '"PO) - [(p) cos wt, HI - (~)a sin wt 
dt i/L 

1  + - [~nw(.:l.) sin wt, H] + rrw"(:r.) cos wt 
l,h 

1 -  
= - [ p ,  II] c:os wt - w(p) sill wt 

ifi 
7TLW - + [ x ,  HI sin wt + rrwyx) c:os wt = 0 
7. J L  

Thus t,lic cxpcct;~t,ion v;~luc:s of t,l~c:sc: operators ; x c :  ii1d~:p(:11(1(:11t of time. 
(1)) Consider 

Thlls t,l~c: op(:r;~t,ors :KO, po (lo not c:oll~rlilltr with H .  

( c )  Tl~c, rctsult,~ of (;I.) a i ~ d  (1)) ;i.rc: still c:o~npatible. For whilc thc cx- 
press io~~s for a:() ; I I I (~  pg ( :o r~ t i~ i i~  t (xl)li(:itly, their non-commutation with H 
does i ~ o t  c:xrlutl(: t>hc:ir l)c?irlg c:oi~sc:rvc:cl. In  fact 

showing that t1ic:y ;m: ac:t,llnlly c:o~~servetl. 
((1) 111 t,he Hciscn1)c:rg pic:ttirc:, thc rnotion cq~l;it,ion of an  opcrat,or is 

1  i)A 
dA/dt = - [A, H ]  + - 

l f r  Bt 

Thus the rnotion ccl~iations o f  TO and pg are respectively 
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(e) Using t,he exprcssions for zo ant1 po, we have 

[po , :Q] = [ p  c.os w t  + m w z  sin w t ,  zo] 

= [ p ,  :I:o] cos wt  + [:c, . L ~ ]  7 1 1 ~  sill wt  

[ 
P + :r,  :I: c:os w t  - - sin wt 711w sin w t .  

711w I 
= [ p ,  I:] (:osa w t  - [ x ,  p] sina wt  

= - [3: ,  p] = --,if)., 

as [x, = [ I ) ,  = 0, [:L., p] = ill,. 
In gcncr;~l, if two obsc:rv;il)lc:s A arid B satisfy tlic: c:clriiition 

[A, B] = if,., 

then their root,-meail-sclliare deviiltiolis AA, AB, whc:~~ t1ic:y riic:;~slirc.tl 
simultaneously, nlust satisfy t,hc: ~iric:c:rt,;~irlt,y priiic.ipl(: 

111 the prcsc~lt citsc:, thc: sirrlull,arlc:orls rllc;Lslirc:irlc:rlt,s of posit,ion ;~rltl 
inomc~rit~im in t,hr s;unc tlircc:t,iorl inrist rc:slilt in 

The relation shows 

It  is a relation between possi1)lc. upper limits to the precision of the two 
quantities when we measure thcrn simlultanc-ously. 

2. CENTRAL POTENTIALS 

2001 

An e1cc:tron is confined in a three-di~ncllsio~lal infinite potential well. 
'l'he sidcs p;irallc:l to t,hc z-, y-, ;~rld z-axc:s arc of lcilgth L  each. 

(a) Write the ;ippropriatc Schriitlingor cqliation. 
(b) Writc the tirne-iildcpent1t:rlt wave frlnctioil corresponding to t,he stat,e 

o f  the lowest possil)lc cnc:rgy. 
(c) Givc ail exprcssiori for the rllirnl)cr of states, N ,  having crlcrgy less 

I.han somc: givc:ri E. Asslnrlc N >> 1. 
( Wzscon,s,in) 

Solution: 

(a) The S(.hriiclingclr cqriatiori is 

zhi)d~(r,t)/i)t=-(h,"l'L~rr)V".J/(r,t), 0 5 2 ,  y , z <  L ,  
,d) = 0, otherwise. 

(b) By sc:parat,iori of vxri;iblos, wc: (:a11 take t,llat tlic wavc fiir1c:tion to hc:  
I lie prodoc:t of t,hrcv wave: frinc.t,ioris oac:h of a orle-dimensional infinite wcll 
ootential. Thc: w;ivc: fiin(:t,io~i of t h ~  lowest energy level is 

where - 

2 .  
= J/ sin (: z) , etx. 

Thus 

312 

$,,,(z, y, z )  = (E) sin (9) sin (7) sin (7) 
The corresponding energy is Elll = 3 f i ' 1 ~ ~ / 2 ? n , L ~ .  
(c) For a set of quantum numbcrs n,, n,, n, for t,he three dimensions, 

Hence the number N of states whose energy is less than or equal to E is 
(qua1 to the number of sets of three positive integers n,, n,, n, satisfying 
t,he inequality 
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Consider a Cartesian coordinnte system of axes I),, n,, n,,. Thc number 
N r~quiret f  is numerically equal t,o the volurnc in the first quadrant of a 
sphere of radius (2rn ,L2~/ f i27r2) ' l" ,  yrovitled N > 1. Thus 

A 'qn2~rk' (mass -- n l p / 3 )  is confinetl in a (:111)i(:t~l l)ox wit.11 si(1cs of 
lengt,h 2 ferinis = 2 x nl. Fintl the c:xcitatiori c:ric:rgy from thc: grourltl 
state tlo the first cxc:itcd st,at,c in MeV. 

( wist:orl..si7l) 

Solut ion:  

The energy lcvcls irl the, cul)ic.al box arc, givcm l)y 

Thus the energy of thc grouild statc is E l l l  = ~ ~ I . ~ T ~ / ~ , ~ I L ( I , ~ ,  t,lli~t of 

the first excitetf st,a.te is E2" = ~h.%~/27r~c~" 3Slb2.rr2/nr.n2. H(:rl(:c: t,h(: 
excitation energy from the ground stat,(: to  t,ho first c:xc:it,otl statc: is 

- - 
1 . 5 ~ 7 6 . 5 8  x x ((3 x 10')" 

= 461 MeV (F) x ( 2  x 10-'5)2 

A NaCl crystal has some negative ion vacancies, each containing orle 
electron. Treat these electrons as moving freely inside a volume whose di- 
mensions are on the order of the lat,tice constant. The crystal is a t  room 
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I ,,mperaturc. Give a numeric:al estirnate for the longest wavelength of elec- 
I I-omagnctic ratfiation absorhetl strongly by t,liese c1ec:trons. 

( M I T I  

S o l ~ t ~ i o n :  

The c:nc:rgy 1cvc.l~ of an elt.ct,ron in a cul)ical l)ox of sidcs a are given by 

wherc 71,  , r r ~  and k ;\re positive int,egcrs. Taking a -- 1 A, t,he grorlrltl state 
t*rlergy is El = 3/,,2.rr"2m,a% 112 cV. Ei)r a c:rystal a t  room tc?rri~)crirt8~irc, 

\.he electrons arc t~lnlost all in t,hc gro1111tl statc. The lorlgcst wavc:lc:ligt,h 
c:orresI)orltls to  i L  trih1lsiti011 fro111 th(: ground stsate to the nt:arc:st c:xc:it,c:d 
state: 

for w1iic:li 

2004 

Ari c:l(:c:Lrori is c,ollli~lc:tl t,o t,hc interior of a hollow spherical cavity of 
radius R with ii~ij)c~~ic~t,r~~l)l(: walls. Find an expression for the pressure 

exert,ctl o11 tho walls of' tlic: c:;ivit,y by tlie electron in its ground state. 
( M I T  

Solut ion:  

For tho groliritl stat,(:, 1 = 0, and if we set tlie radial wave function as 
R ( r )  = - y ( r , ) / , r . ,  t,hcn ~ ( r )  is give11 by 

where p is the elcctron rest mass. R ( r )  is finite a t  r = 0, so tha.t ~ ( 0 )  = 0. 
The solutioris satisfying this condit,ion are 
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for which 

The average force F acting radially on the walls by the electron is given 

by 

As the electron is in thr grouiicl statc, = 1 and 

The prcssure rxcrtrd on the walls is 

A particle of mass m is c:oi~st~ri~incd to move I)c:t,wcc~ll two c~orlc,c:nt,ric: 
impermeable sphcrcs of radii r = a and r - b. Thrrc; is iio other 1)otc:lltial. 
Find the ground statc ciicrgy ailtl riorinalizcd wave fuiict,iorl. 

( M I T )  
Solution: 

Let the radial wave fililction of t,hc pi~rti(:lc bc R(r) = ~(7.)/7.. Tllc11 
~ ( r )  satisfirs thr cquatiori 

For the ground state, 1 = 0, so that only the radial wave function is 
non-trivial. Since V(r) = 0, letting K 2  = 2 n ~ ~ / h ~ ,  wc reduce the cquation 
to 

+ K" = 0 ,  

with 
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\ ( a )  = 0 requires the solution to havc thc form 

x(r) = A sin [K (7. - u,)] . 

Then from ~ ( b )  = 0, we get the possiblc v;~luc:s of Ir': 

For thc particle in thc ground state, i.e., = 1, we obt,ain the erlcrgy 

we get A = d m .  Hr~icc for thr  gro~lild state, tllc nornlalizcd radial 
wave fu1ic:tiori is 

1 , 7r(,r - a)  
- Slll - , 

b-(L T b - a  

and the norinalizcd wave fi~nc.tiorl is 

1 . 7 r ( ~  - a) 
- sin - . 

b - a  

(a) For a simple harrnonic oscillator with H = ( p 2 / m  -t kx7/2,  show 
t,hat the cilcrgy of tlie ground state has the lowest value compatible with 
tjhe uncertainty principle. 

(b) The wave function of tlie state where the uncertainty principle mini- 
inum is realized is a Gaussian function exp(-ax2). Making use of this fact, 
1)ut without solving any differential equation, find the value of a. 

(c) Making use of raising or lowering operators, hut without solving any 
differential equation, write down the (non-normalized) wave function of the 
first excited state of the harmonic oscillator. 
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(d) For a three-dinlensional oscillator, write down, in polar coortlinates, 
the wave functions of the degenerate first excited statre which is an c:igen- 
state of I,. 

(Berkeley) 

Solution: 

(a) The ground st,at,e of the harnloriic oscillator has even parit,y, so that 

and so 

The uncertainty pririciplc rctluircs 

- -  I!? Ap2 . Ax2 > - 
- 

4 

It follows that 

as 6 = w Thus tlie cncrgy of the ground st , i~tc has the lowcst v:~lac 
compatible with the uncertainty principle. 

(11) Using the given wave function we calcula,tc 

and hence 
li2 k 1 

E = - a + - .  - .  
2m 2 4 a  
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From = 0 we see that when a = &/ah = mw/2t,  the energy is 

I liinimum. Therefore tr = 1nw/2h. 
(c) In the  Fock rcprr:sc!~it,ation of harrnonic ost:illation wc define 

f i  = i ( - imw?;)/J2mfrw, 

iit = -i (e + Z T ~ I , W ~ ) /  J'GZZ. 

Then [ci, G,+] = 1, 
H = (ti+&+ 1 / 2 ) I w .  

Denot,ir~g thc: gro~irlcl st.i~.t,<~ wave fi111c:tion 1)y 1 0). As H 1 0) - i h w  1 O ) ,  
I,he last c:cl~latiou givcs ci,+ci 10) = 0. I t  also givt:s 

-- '1, 

( 
i) 

0 )  - i I~ ,+ imwz 
v t a ~  &I: ) exp (-% 2) 

in the c~oorclinatc rcprescntation. 
(d) For i~ 3-tli1ne1lsiollal osrillator, the wave function is 

For the grountl state, (n,I, 112, 113) = (0, 0,  0). For the  first excited 
stat,es, (711, n2, ,113) = (1, 0,  0);  (0, 1,  0);  (0, 0,  1). 

(r) = N i  N12crx exp (-i #) , 

,bolo ( r )  = N: N12uV exp (-i a 2 r 2 )  , 

~ J O O ~  ( r )  = N; N12az exp (-i a%z] 
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Expanding z, ?I, z in spherical harmonics and recornbini~lg the wave 
fiinctions, we get the eigeristates of 1, 

where 

N7z1 = 

Note t,lii~t hcrc tu = Jq, which is tlic usual definition, diff(?rc:r~t 
from t,hxt given in (1)). 

2007 

Thc iliagra~n (Fig. 2.1) sliows tall(: six lowest. onorgy 1i:vcls and tlic :I.SSO- 

ciat,ed ang~llar ~lioineritn for :L spirilcss pi~rticlc moving ill a c:crt:~iri three?- 
dimensional c:cntral pot,i,~iti;ll. T1ic:rc arc: iio "ni:c:idi:litfnl" d(.gc?ilc:rai:ics ill 

this energy spcctr~im. Give tlie il~iinl)c~r o f  iloilcs (i:linrigc:s in sign) i r ~  i.hc 
radial wave furictioii assoi:iat,i:tl witli i::~c:h l(:vcl. 

( M I T I  

Solution: 

The ra.dial wavc fimc:tioil of a. pnrtii:l(: ill a thrcc-tlimrnsioi~i~l c:cntral 
poterltial c:a,n hc written as R(r) = ,Y(T)/T. Witli a givc:n a.nglrlar clu;~ntrlrri 
number I,  t,he equation satisfic:d 1)y X(T) h i~s  tali(: for111 of a. orie-dinl(:risiollal 

Schrodingcr eqriation. Bcncc, if all cncrgy spci:tr~iin has no "accidt?nt;~l" 
degericr:~cics, the rolc of the nodes ill thc radial wavo filnctioll of thc partii:lc 
is t,he same as that in t,he one-dimensional wavc function. For 1)olind states, 
Sturm's theorc:m rcinains applic:at)lc, i.e., ,Y(T) obeys Sturin's t,hcorerri: the 
radial wave func:tion of the ground state has no node, while that of the 7rt,h 
excited state has n nodes. Thus, for a. 1)ouncl statc: of energy En,  wliicli has 
quantum number n = n, + r! + 1, the radial wave has 7r,. nodes. 

For angular quant,~im riumbcr I = 0, the numbers of nodes for thc three 
energy levels (ordered from low to high energy) arc 0, 1 and 2. 

Similarly, for 1 = 1, the numt)ers of nodes arc 0 and 1; for r! = 2, the 
number of nodes is 0. 

Thus, the numbers of nodes in the energy levels shown in Fig. 2.1 are 
0, 1, 0, 0, 1, 2, from low to high energy. 
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Fig. 2.1 

A part,ii:le of Inass Tn, arid c:liargct q is bo~ind to t,hc origin by a. s~)lii:ric:ally 
symmetric: linear rc:storing for(:(:. Tlic c:ilt;rgy levcls arc i~clna~lly spaced at 
iiltervals lrwo al)ove thc ground statc: energy Eo = 31iwo/2. The states 

can be dcscri1,c:d altcriiat,ivc:ly ill a. Cnrtcsian basis (three ollc-dirncnsio~ial 
Iiarmonic: osc:ill;~tors) or in i~ sp1icric:al basis (cent,r;tl fii:l(l, separatetl int,o 

i~ngular and radial motions). 

(a) I11 tlic Cartesian basis, ta1)le the oi:c:upation nurn1)crs of tllc vari- 
ous statc:s of thn oscillat,ors for the gror111d and first three ex i : i t~ l  levels. 
I>eterrninc t,llc tot,al di:gcncracy of each of these levels. 

(b) In tlic spherii:al basis, write down (do not solve) the radial equation 
of motion. 

(Note that in sp1icric;ll rooriliriates V2 - $ $ (rZ $) - 5 , where L' is 
the oper;rt,or of tot,al orl)it,al arlg~ilar moment~im scluared in units of ti'.) 

Identify the cRective pot,ential and skctcll it. For a given angular mo- 
mentum, sketch the "ground state" radial wavc function (for a given 1 value) 
and also the radial wave functions for the next two states of the same 1. 

(c) For the four levels of part (a), write down the angular momentum 
content and the parity of the states in each level. Compare the total de- 
generacies with the answers in (a). 

(d) Does tlie secorld excited stat,e (E2  = 7 h o / 2 )  have a linear Stark 
effect? Why or why not'! Compare similarities and differences between this 
oscillator level and the second excited level (n = 3 )  of the nonrelativistic 
hydrogen atom. 

(Berkeley) 
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Solution: 

(a) 

Problems and Solutions on Electronragnt!tism 

Energy level 0ccup;~tion Numbers 1 Dege11cra.c~ 

(b) Let 

+(r) = R(r) KT,, (0, cp ) .  

The radial wavc function E(r)  satisfies thc cclu, '1 t,' lo11 

so that the effective potential is 

which is sketched ill Fig. 2.2, where ro = [h"(l 4 l)/7n,"w"]114. The shapes 
of the radial wavc functions of the three lowcst states for a given 1 are sllowri 
in Fig. 2.3. 

Fig. 2.2 

Crntral Potentials 

rl';ll)i(! 2.2 

E I nr. P 

Eo 0 0 + 
E,  1 0 , * 1  - 

E2 2 0,*1,*2 -t 
0 0 

E:{ 3 0 ,  11,  *2, *3 - 

1 O]*l 
-- 
N o t ~ :  I' = parity, I1 = degeneracy. 

(d) Thc: sc:corld cxc:itcd state does not have a linear Stark effect because 
: I :  is an opcrator of odd parity whilc all the degenerate states for Ez have 
w e n  parit,y, wit,li the rcsult that thc matrix elements of H' in the subspace 
of the energy level E2 a.rc all zero. 

On t,he other hancl, for the second excited level of the hydrogen atom, 
= 3, its degenerate states have both even and odd parities, so that linear 

Stark effect exists. 

(a) A nonrelativistic particle of mass 7?2 lnoves in the potential 
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where A > 0, B > 0, I X I < 1, kt, is arbitrary. Find the cnc:rgy eigcnvalues. 
(b) Now consider the followirlg modified problcm with a new potential 

qlcw: for z > -p  and ariy n: and ?I, V,,,, = V ,  where V is the same as in 
part (a) a.bove; for z < p i ~ n d  any :r: and y ,  v,,, = +cx. Firicl the grourld 
stfate energy. 

( CUS 

Solution: 

(a) Wc c.hoosc two rlcw v;~riablvs /L, t dcfined by 

a,nd writc tlir: pot,erltial as 

and the diffcre~lt~inls as 
a - a 1  i) 1 

a z  a p  f i  a t  & ' 

a" 
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Then Schrodirlger equation becomes 

Let 4(p, t ,  z) = U(p)T(t)Z(z) .  The above equat,ion can be separated 
Illto 

with 
El +E2 + E3 = E. 

By scttir~g z' = z + /L, E; = E3 + Bp2, all thc: a1)ovr: t,llrr:e ecluatiorls car1 
I ) ( :  reduccxl to t,hat for a hi~rrnorlic: osc:illator. Tll~is tllc enorgy cigenvallies 

(7bl, 7L2, 7123 = 0, 1, 2, 3, . . . ) 

(b) With a new potential V,,, such that for z < -p, q,,, = cx and for 
.: > -p, V,,,, is the same as tha.t in (a), the yave function must va.nish for 
: + -p. The 2-equation has solution 

Z ~ ~ ~ ~ ( < ) e - ~ ~ ~ ~ ,  

where < = (2mB/h2) '14(z + p),  H,,, (<) is thc n3th Herrnite polynomial and 
has the parity of 713. Hcnce 713 rnust be an odd integer. The ground state 
is the state for 711 = 712 = 0 and n3 = 1, with the corresponding energy 
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A particle of mass 7n moves in the logarithmic pot,er~tial 

Show that: 

(a) All cigcnst,ates have the same meari squarc:d velocity. Find t,liis 1nc:;l.ri 
squared vclocit,y. 

(b) The spacing between any two levels is indcpcndcnt of thc: mass 7 r r .  

(CUS)  

Solution: 

(;I) We have 

and, for a stationary statc, the virial law givc.s 

1 
( T )  = - ( I - .  V V )  

2 
Hence 

which is true for any cigenstate. 
(b) Since 

- - 
C 

-- 

27n ' 
aE, , /am is independent of n. It  follows that 

( E n -  C C 
- -- + - = 0 ,  

am 2m 2m 
i.e., En - En-1 is independent of the mass 7n,. 
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Assume that the eigenstates of a hydrogen at,onl iso1ntc:d in space are 
;111 known arid dnsignated ns usiia.1 1)y 

Si~pposc tllc: nucleils of a l~ydrogcri atoni is located a t  a distancc $ from an 
iufinite potcnt,ial waH which, of c:ourse, tc:nds to distort the hydrogcn atom. 

(a) Find the exp1ic:it form of t,hc groulld state wave fur1c:tioll of this 
l~ydrogen ;~tolrl as d ;~l)l)roi~(:h(:s Xcro. 

(b) Find all ot,llcr c:igc:nstiit,c:s of this l?ydrogcn atorn ill half-spa(:(:, i.c. 
t l  t 0, in tc:rrns of the It,,,( and K ,,,. 

( B,uflalo) 

Solution: 

(a) Choosa a, c:oortlina,tc: syst,c:m with origin a t  t,hc cclltcr of t,he rlllc:lci~s 
:I rld z-axis pc:rpc:ndi(:ul;~r. i,o t,lic will1 surfs(:(: i ~ s  ~110~11 ill Fig. 2.4. AS (J! t 0, 
I Iic solutiolis of tlic: S(:liriicli~igcr (:quation arc: strill R,,(K,, in t,hc half-space 

> 0 i.e., 0 < 8 < 7r/2, I ) i~t  111llst sat,isf:y tall(: c:olitlitioll $ = 0 21.t 0 = ~ / 2  
where V = cm. T11a.t is, only solut,iolis satisfying I + ,m, =odd i1itc:gc:r arc 
:~.c:ceptablc. As I rrt. I 5 I ,  tlic: first silit,at)lc spherical harmonic is 

YL0 = Jjlq, cos 8. 

1 V = m  

Fig. 2.4 
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Since n > 1 + 1, the ground state wavc function is R21Y10. 
(b) All the other eiger~states have wave functiorls RnrK,, where 1 + 7r1, = 

odd integcr. For a. given 1, we have m, = 1 - 1, 1 - 3, . . . , -1 + 1 and hence 
a degeneracy 1. 

2012 

At the time t = 0 the wave func:tion for hytlrogeli atorri is 

where the subscri1)ts a.rc va1uc:s of the? q~iant,lllil nuin1)ers n,, I ,  7n,. Igilorc 
spin and radiative tr;rilsitioi~s. 

(a) What is the cxpccta.tioii V ~ L ~ I I C  for t,he energy of this syst,c:n1'! 
(b) What is the probability of fintlillg the systcln with 1 = 1, 7n = +1 

as a function of time'! 
(c) What is thc probability of findirig the e1c:ctrou withiii 1 O p I 0  (:in of 

the proton (a.t tilnc t = 0):) (A gootl :~p~)roxirilate rc:sult is ac:cc:ptal)lc: her(:.) 
(d) How does this wave f'ii11c:tioll c:volvc: ill tiinc; i.c., w1i:~t is $(r, t )?  
(e) Suppose a measurement is nla.tln w1iic:h shows t,hat L = 1 a i d  L, = 

+ l .  Dcscribe t,hc wave fi1nc:tion ii1ilrlc:tli:~tc:ly aftm sllc:h a ~nc:asurc:lllc:~it ill 
terms of the ~isod al)ove. 

(Bcrkclcy) 

Solut ion:  

(a) Making 11sc of the orthoi~orinality of thc wavc filnctiolis, thc: c:x~)c:c'- 
tation valuc for the ellerg-y is 

1 
E = (4 I H I I,) = % (2y"ioo + $210 + f i~zJ j211  + h421-1 1 2E1~J)100 

Central Potentzals 

;is El = m e 4 / 2 h 2 ,  E2 = ;El for the hydrogen atom. 
(b) Since 

we have 

= ,,, 6 exp (-am) , 

11sing the given wave function for t = 0. Hcnce thc 1)rol)a.bility required is 

Thus if 71 = 2, P = 115; ot,hc:rwise P = 0. 
(c) Let cw = 10- lo tin. WP have. 

Itlaking usc of the given wave function as in (a). Here for the hydrogen 
; I  [.om 

.111d a = 5.29 x 10-"m. As r 5 a << a ,  we can make the approximation 

Then 
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(d) The wave functiorl at time t is 

,$(r, t)  =exp H t  $(r, 0) [ n ]  

=g [2e-'Y1',dloo + e - i ~ 2 '  dl2 10 

+ J Z C - ~ ~ ~ ~ $ ~ ~ ~  + he-iwzt,*21-l]r 

where wl = El /h ,  w2 = E2/h. 

(e) Sirice n 2 L + 1, witli L - 1 we have r~ = 2. Conscq1lc:litly t,he 
required state vector has the forin 

1 ) = c+ 1211) + co 1210) + C 121 - 1) .  

Using L, = (L+ + ~ - ) / 2 ,  wit11 L-K ,,, = J (1  - + 1) (L +  TI,) ~ , , ~ , - - l ,  
L+&, = J ( I  + rn, + 1)(1- *rn) we (:an write L,I) = 1 )  as 

1 
- { J Z C O  1211) + &(c+ + C-)  1210) + JZco 121 - 1))  
2 

= c+ 1211) + c, 1210) + C -  121 - I ) ,  

and obtain 
c o  c + c - = - .  - 

Jz 
Hence 

1 1 ) = - c o  (JZ 1211) + 2 1210) + JZ 121 - 1 ) ) .  
2 

Normalizatiorl 
c,2 ( 1 )  = - ( 2 + 4 + 2 )  - 1 
4 

gives Co = ' Therefore JZ' 

1 I ) =  - ( 1 2 1 1 ) + J Z 1 2 1 0 ) + ) 2 1 - 1 ) ) .  
2 

2013 

The ground state energy and Bohr radius for the hydrogen atorn are 
Eo = -e2/2ao, a0 = h2/me2, where m is the reduced mass of the syst,em. 

lrrhe = 9.11 X g , m p  = 1 . 6 7 ~  g, c = 4 . 8 0 ~  10-lo e.s.u., h =  
1.05 x erg sec.] 

(a) Compute the ground state energy and Bohr radius of the positron- 
i11n1. 

(b) What is the t1cgerier;~c:y of the posit~roiliurn gronnd state clue to 
~~lcctron spill'? Writr down the possible spill wavr functions which have 
1 Icfinite values of t,lle tot,al spin togctllor witli t,he corresponding cigenvaliics. 

(c) Tlic grollnd state of posit,roiliurn can decay 1)y annihilation into 
~)liotons. Calculate the enrrgy and angular iriolnent~im re1e;~srd in this 
1)rocess a.rid prove: tallat there nllist bc at laast two photons in th(: firial 

Solution: 
1 (a) The? rotl~icctl inass ,rn of the positrorlilirrl is given 1,y & = 7n_ + 

I I:., ,rn. = 7lb,:/2. 1t.s llS(: i11 th(: f o r ~ n ~ l l i ~ . ~  givm 

(b) Thc d(:gc~licrac:y of thc ~)ositronium ground state is 4. Denote the 
~~osi tron by 1 ailtl thc? rlcc:tro~~ by 2, and let the spin eigenstates in the z 
1 lir.c:ction of a single 1);~rticle 1)e r u  i~ritl P,  corresponding to eigenvalues h/2 
11lt1 -h/2 rc~spcc:tivcly. The11 the ground cigenstates with definite total spin 
, , , s l  + s2 ant1 z-component of tlic total spin S, = sl, + s2, are 

(c) The energy released in the anrlihilation process nlostly comes from 
I 1 1 , .  rest masses of the electron and positron, A E  = 2771.,c2 = 1.02 MeV. 
'I'II(: released a.ngular momentum depends on the state of the positronium 
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before the annihilat,ion. For the ground state S = 0, no angular momcn- 
tllm is released. For the stat(% S = h, the angular nloment,um releasccl is 
A J  = fi, = a h , .  There must be at  least t,wo photons in thc firial 
state of ;Ln annihilation, for if t,here wc:rc only one photon producccl in the 
arlriihilation of a positroniurn, the erir!rgy and rnoincntuln of tlie systcin 
could riot both be c:orlscrvctl. This car1 t)c shown by a sirnple argnincnt. 
If thc single phot,on has cncrgy E ,  it rrlust havc mornentunl E / c  a t  the 
sarne tirric. Thus the rnorncrit,urn of t,hc pliot,oii (:annot be zero in ally rcf- 
ercncc fra.rne. But in tlie posit,roni\rrri's rest frarnc thc monlerlturrl is zc:ro 
throughout t,llc ari~iihilation. 1Henc:c wc havc tJo t:oiic:liide that th:ro iil~ist 
be a t  least two phot,ons in the firi;~l s t ; ~ t , ~  of an  ariniliilat,ion wllosc inorilcrit,a 
cancel out in the rctst. fril~ne of t,lic positronium. 

2014 

Consider an r:lcc:tron inoviiig in ;L splic.ric~;illy syrnirict,ric pot,c:rlt,i;~l V = 

kr ,  where k > 0. 

(a) Use the unccrta.int,y 1)rinciplc to cstirri;~t,c: t,lic: groiintl st,;~tc c:iic.rgy. 
(b) Use t h t  Bolir Somrnctrfcltl clu;~ntiz;it,ion rill(: t,o c:al(:ulat,c: t h t  gro~incl 

st,ate energy. 
(c) Do the sa.nlc: usirig t,hc variat,ioii;~l 1)riiic:iplc ;r.rltl a trial w;wc fi1nc:tiori 

of your owri clioicc. 
(d) Solve for tlic energy c:igc?rivahie arid c:igcnf\irlction cxac:tly for t,hc: 

ground st,atc. 
(Hint: Use Fo11ric:r trarisforrrls.) 
( e )  Write down t,lle effective pot,cnti;~l for nor~zcro angular rnomcrlturn 

states. 

Solution: 

(a) The uncertainty principle st;~tc:s that 

fl 
A P A ~  2 2, 

where 

nP = [(P - p)yl l2  = [(p2 - zpfi 4- F ) ] l 1 2  

2 112 4 2 - P )  , 
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The potent,ial is spherically symmetric, so we can take fi = 0, i.e. Ap x 

J?. For an  estimate o f  the energy 

we shall also ttake 
AT - r. 

For thc grouilcl st,at,c encrgy E, wc 1i;~vc: 

(b) Thc Bolir Sorrirric:rfcltl quantization rule gives 

Choose polar coordinates such that  the particle is moving i r ~  the plane 
O = 7 r / 2 .  The ground state is given by n,,. = 0, 71.4 = 1, and the orbit is 
circular wit,li radius a .  The second integral gives 

'['he central force is 
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Combining we have a = (hI2/7nk)'/< and hcrlce 

(c) The notion in the grolmci state does riot dcpclnd on 0 ant1 (j Take a 
trial wave functior~ $J = cxp (-Xr) it~ld c,villuatc 

where 

As 

For stable motion, H is n minimum. Then taking 

we find 

I I 11 [ hence 
1/3 

(d) The, Srl~rridirlgcr c,cluatioll for the radial motion can be written as 

\vllc:re x = ,I.R, I2 1x:iug the r~itlial wavc: function. For the ground state, the 
. I  11gu1ar wa.vc: fiinc:t,ion is coilstant. By the transformation 

I llc. Schriidiiigcr c:clllnt,ioii \)c:c~)illc~s tall(: Airy c:clu;l.tion 

whose soliit,ions iL1.C: A%(-:I:) :111(1 Ai(:/:) ,  wh(%r(: :C :=: - ) :1 /1 ,  for ;y < 0 a11(1 ?/ > 0 
~ri~spect,iv(~Iy. Tlw l)o~ili(li~ry (:o~idit,iolls that R(,I.) i~n(1 R1(,r) l)c c:o1iti111io11~ 

I' . 
; \ ( ,  r = , i.(%. 7, :- O ,  s;~tisfi(:(l ; ~ l i t o ~ ~ ~ i ~ t , i ( : ~ ~ l l y  as  Ai(3;) = A~,( -x ) ,  
.2i1(z) = A,;'( - - : I : )  for :c - b  0 .  Thc: c:ollcIitiorl that  R( r )  is fir~it~c: a t  r --t 0 
I-c:quircs 1,lii~t. Ai ( - s )  == ~I{(,I.) -+ O as 7. --t O. Thc first zero of Ai(-z) 
I )(:curs i~t.  : I .  - : I : ~  = '2.35. H(:lic:c t,llc: groirncl stat,e energy is 

;1nd thc grourltl stiLt(? c:igc:rifiiric:tioll is 

(e) Tlic: c:fl(:c:livc: potc:~lt,ial for riorlzcro ;~rlgular momentum is 

The interactions of llcavy quarks are often a.pproxinl;~tctd by a spin- 
indepcndcnt nourclativistic pot,ential which is a linear filllction of t,he radial 
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variable r ,  where r is the separation of the quarks: V(r) = A+ BT. Thus the 

famous "charmoniunl" particles, the ant1 $J', with rest energies 3.1 GcV 
and 3.7 GcV (1 GeV- lo9 cV), arc t)elicved t,o be t8hc n = O and 71 = 1 

bound states of zero orbital angular mo~nerlturn of a "charm" quark of mass 
nr, = 1.5 GcV/c" (i.e. E = 1.5 GcV) ant1 ill1 anti-qllark of the same nlass 

irl t,he above linear potentiill. Sirnili~rly, the rc:ccrltly cliscoveretl upsilo11 
particles, the Y ; ~nd  Y', are bclievcd to 1x1 the rt. = 0 and n, = 1 zcro orbital 
angular momc:ntuln bound statrs of a. "t)ottomn quark i ~ l ~ d  anti-quark pair 
in t,he same pot,c.~ltial. The rest rrlass of I)ot,torn quark is rnb = 4.5 GeV/c2. 
The rest eliergy of Y is 9.5 GcV. 

(a) Usirlg dilnc:nsiollal analysis, &:rive a rc:lat,ioll t)ctwocll the c:ncrgy 
splitting of the 4) ;r,nd ,lbl ant1 that of t,hc: Y a,nd Y', i~n(1 t1l~ri:l)y OV:I.~II:L~(: 

the rest energy of tbc: Y'. (Exprc:ss all c:llc:rgic:s ill units of GcV) 
(h) Call t,he r), = 2, zero orl~ital  a11g111i~r 111orrler1t,1l1ll c l i i~r~nol l i~~ln ~);xrticlc 

the $J" . Usc t,hc. WKB a1)proxilrl;ttioll 1.0 t!st,illlat,e tllc crlcrgy splittillg of 
t,lie $' ant1 thc $I" ill  tc:rrns of  thc cnorgy split,t,ir~g of t,hc: *(/, :LII(I thr (111, ;~rld 
thereby give a n11lncric:i~l estilnilt,(: of thc: rc:st arlcrgy of thr: I/J". 

(PI.inr:c ton) 

Solution: 

In the centcr-of-I~I~SS systc:111 of ;L (11li~rk i~lld its arltiqtlark, tlu: cq~~ ;~ . t i o r~  
of relat,ive mot,iorl is 

where El3 is the rclativc. ~llotion c:liorgy, nr,, is thc rnass of t,he quark. Wk1(:11 
t,hc angular mornentllm is zc:ro, tho ;~l-)ovc: c:cl~lil.tioll ill spherical coortli~latc:~ 
can he simplified t,o 

Let R( r )  = xo (r)/r. Then yo (r) satisfies 

(a) S u p p o s ~  thc energy of a bound state depends or1 the principal quan- 
I 11111 number n, which is a dirncnsionlcss quantity, the collstarlt B in V(r ) ,  
I \ I ( -  quark redllced mass / L ,  and Ti, rlamcly 

. I I I ( I  hence 
E = f (vr) (EJh)"l" (p - ' / "  , 

(Bfl)2/" ( ~ h ) 2 / 3  
AE. ,  -- E,,y - Ed, = f (1) - 1 /3  - f (0) -7 

ILc PC 

I I I ~  1 similarly 

E T ~  - Er % 0.42 GeV, 

Erj = Ey + 0.42 = 9.5 + 0.42 ZZ 9.9 GcV. 
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(b) Applying the WKB approxilna.tion to the equa.tion for ;yo wo obtain 
the Bohr-Sommerfeld qua.ntization rule 

2 1 "  J 2 p ( E ~  - A - ~ r ) d r  = (71 t 314) h with n = - EIZ - A  
B '  

which gives, writing E,, for ER,  

Application t,o the clicrgy splitting givcs 

and hence 

Thus 

E,pi - E,y = 0.81 x (Ed,, - I?+) = 0.81 x (3.7 -- J . l )  

z 0.49 GeV , 

and 

2016 

Two particles, each of Inass A f ,  are attxactecl to  ~ a c h  other by x potc~itial 

where d = fi/.mc with rric" = 140 million electroll volts ( M e V ) ,  Ale" 
940 MeV. 

Central Potrntials 149 

(a) Show t,li:tt for 1 = 0 the radial Schriidinger e q ~ l a t i o ~ l  for this system 
can be reduced to  Bessel's differcntia.1 ecluation 

d2 .Ip (x) -+ - 1 (it/,, - ( x )  

dl:" :I; t [ I :  + ( 1  - $) J ,  (z) = 0 

by ln(;alls of t,ll(: challg(l of v;~rial)lc 3: = t x  (:XI) ( - / + I . )  for a suitak)le choice 

of i ~ ~ l d  /j. 

Fig. 2.5  
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(h) Suppose that this system is fou~ld to have only one bound sttlte 
wit,h ii binding riiergy of 2.2 MeV; evaluate g"lllc ntrlncrically and stat,e its 
units. 

[Not,c: a graglr of values J,, (r) ill r - 11 plan(: lralr been providecl witli 
the infor~aation ; ~ t  t,he bcginning of tlif, cxal~l i~r~t iol l  (Fig. 2.5)]. 

((1) What wolllil t 11~  iniriirli~ilri value of g"/.(, lri~w: t)o i)r in ordrr t,o 1law 
two I - 0 hourlti st,atc:s (d aritl nl rcrr1:~illilrg tho snlnc)'!. 

( M T )  
Solution: 

(a) When 1 = 0, tllr r;diiil w:mr fun(:tiorr X(7.) = , y ( r ) / ~  Siltisfi(l tlI(: 
equa.t,ion 

the reduced mass 1)c:irlg /L = M/2. By the, (:hi~llg(: of vi1ri;~l)lt: 

T - , z  == tuc:-P", .I:E [ O ,  ( Y ] ,  

and writing X(T) -- .J(:I:), w(: hi~v(: 

we can reduce thc Schriidilig-er cquatiorl to Ltcssc:17s different,inl cq~lation of 
order p 

Thus the (~ilinorrnaliscd) radial wave f11rlc:tiorl is 
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(h) For bound states we require that for T -+ co, R(T) + 0, or Jp remains 
finrte. This demands that p 2 0. R(T) must also he finite at T = 0, which 
me;Lns that X(0) = Jp ( a )  = 0. 

This equation has an infinite nunl1)t.r of real roots. For E = 2.2 MeV, 

Figure: 2.5 shows the c:ont,olirs of .J,, (3.)  for tlifI(:rc:lrt vn11ic:s (irltlicated by 
right aritl t,op nliir11)crs) of tall(: fi1rrc:tioii in t,ho :I: - ~)li~lif:. Thtr 1owt:st zero 

of J,, (:c) for p - 0.65 is 3.3, tho llc'xt, 6.6. Tlrus for (1 z 3.3, t,lic: syst,(:ll~ has 

ollct i! - 0 l)o~irrtl st,;~t(>, for whi(.li 

w1iic:lr is ;L tli~nc~llsiorll(:ss c:orrstalrt. 
((:) R)r ( k  x (j.6, t,lic:r(: is iitldit,iorli~l 1 = 0 l)o~llld st,i~t,c. T h ~ s  t h :  

rllirrillllllll viilllc: of tu for two 1 = 0 i)o~llrtl st;~t,(!s is 6.6, for whic:h 

wllcrr ,41(0) is t,la wavc fun(:t,ion :it the origin, 711, tht: piirt,iclc lllass, ~ L I I ~  L~ 
the squan: of t,hc: or1)it;tl anglilar ~i io~r~cnt~i i l l  opc:r;itor (let I L  = 1). Givc: a 
c:lassic:al intc:rprc~tation of this ecluation for the c:a.sc: of a stat,(: wit,h angular 
rnolncrlt~irrl # 0. 

(Golurn.bia) 

Solution: 

(a) I11 the fitdcl of central force, thc Schrodiuger equa.tion is 
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Let 
1 

$(., 8, p )  = R(r)  x m  (8, p )  -- - u( r )  Zrn (8, P) 1 

7' 

where u(r)  = , ~ R ( T ) ,  arid we have for thc radial inotiol~ 

Multiplying tJhc two sidw of the i~bovc with u l ( r )  ancl iritegra.tiiig from 
r = 0 t o r  = MI, we get 

For the eigcnst,atcs wc may assurne 7r1 ( m )  = 0, IL(CXI) = .II,(O) --: 0. With 
zt~'(0) -- [R(T) + rR1  (T)] , .=~ = R(O), partial i~i t~grat ior i  givw 

Hence 

L 2 

[R(,r) F,,, (8, p)]  7 [R(T) X,,, (8, p)]r"kr(1fl , 
7" 

(b) For I # 0, 1 qi/(O) l 2  = 0, and so 

Its corresponding classical expression is 
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d V ( r )  . Hn-c F,. = - IS the c:cnt,ripc:tal forc:e, anti 

where l i t  is t,llc: t , ; ~ i l g ~ ~ l t i i ~ l  v(:Io(:ity iilolig t,l1(: sphcric:al surf:j.c:e of r, is mass 
," " 

rnultiplic~tl 1)y thc c:c?i~t.ripc:tal i~(.(:(?l(:~iit,io~l -- +. T11(: (:(l~ii~tioll thus 
expressc:s Nowt,or~'s sc:c:ol~tl 1i1.w of iriot,iol~. 

(a) W11i1,t is 1.11(, i i~ i i~ i i~ i l i i~ i  (l(:~)t,l~ of t,ll(r ~)ot,o~it , i i~l  ii(~~1(:(1 t,o i~(:lii(:~(: t,wo 
1)ound st,i~t;os of mrro i i l ~ g ~ ~ l i ~ r  I I I ~ I I I ( ~ I I ~ , I ~ I I I ' !  

(b) Wit,h i i  ])o~,(:llt,ii~.l Of t,liis (l(!~)I,ll, wlliit iLr(: tll(! (:ip,(~ll~iLlll(:~ Of tll(: 
~~anlilt,oilii~.ll t,h;~f. \)(~1011g t,o m1.0 ~ , O I , ; L ~  il.llj!,llliLr ~llolll(:llt.lllll'! (If ll(:(:(?SSiLI-y 
you may ox1)1.c~ss 1ji~1.t of y o ~ i r  ;LIISW(:~ t ,h~.ol~gh t.li(: sollit,ioi~ of ;L ~~ ;L~Is ( :o I I -  
clental ( : ( l ~ ~ i ~ t i o ~ ~ . )  

(c) IT t,hc: pitrt,ic:l(: is ill t,11o p,rol~i~(l st,i~t,(:, sk(:t,c:h tllc: wiivc fii~lc.t~ion ill t,Ilc: 
c:oordiili~t,(: 1)i~sis il.11(1 t,llo (:orr(:s~)o~i(l i~~g c:oortliriatc proba.bility tlist,ril)ution. 
15xplaiii (:i~r(,fiilly t,ll(, physi(.i~l sigilifi(:i~i~(:~ of the latter. 

(d) Prc:tlic:t tlltr rc!s~~lt, of a (sirlglc) incasureinent of the particle kinetic: 
cxergy iii t,c>rllls of t.l~is W;LV(: fi111(:t,ioli. YOU may express your prediction 
I.11rougli oiic:-di~~~t:~isioi~id (l(>fi~~it,(: iiit.c:grals. 

((3) 011 t,llc? 1 ) i ~ ~ i s  of t,11(: ~ i i l ( . ( > r t i ~ . i ~ ~ t ~  ~)rinciple, give a qualitative conriec- 
(,ion betwc:cli p i ~ r t , ~  ((.) iiii(1 ((I) 1~1)ovv. 

(Bcrkcley) 

'iolut ion: 

(a) Tlic: at;tr;~c:t,ivc l)ot.(:litii~l iIliiy I)(: r(:~)r(:s~~it,c:(l by V = -w/;), whrrc Vo 
is  a positivc ( : o ~ ~ s t i ~ i ~ t , .  For l)o1111(1 st,;it(:s 0 > E > V o .  Thns for 1 = 0 t,hc 
I-;~.(lial wavc fuiic:tioli IZ(,r) = X(T)/T s;~t,isfics t,hc (:qui~t,ioils 
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with ~ ( 0 )  = 0 and ~ ( o o )  finite. To suit these conditions the wave function 
may be chosen as follows: 

~ ( r )  = sin crr, 0 < r  < T O ,  

x(r) = Bexp (-Pr), r o  < r < 00, 

where N = J2m(E + Vo), p = a Jq. 
Frorn the boundary condition that a t  7 -- 7.0, x arid y' should be con- 

ti~luolis wc get a cot ~ ~ 7 . 0  = @ Defining < = (rr0, q = pro, we have 

Each set of the positive 1lurllbc:rs t, 71 satisfying t,lic:sc: ccluat,ions givcs 
a bound state. Irl Fig. 2.6 clirvc 1 represents 71 - -( t:ot arid curvc 2, 
t2 + {' = 22, for example. As sllowrl in the figurt:, for a giver1 vi~lllc of Vo, 
to have two int,ersec:tions ill thc clliatlrant wc require 

which is the miiliinli~rl potential tlcpth nec?dcd to acl1ic:ve two bound states 
of zero angular inoinc~ilt,urn. 

Fig. 2.6 

(b) With a potential o f  clrpth given above, one intersection occurs at  

7 = 0, for which /3 = d m  = 0, i.e., E = 0. The other intersection 

occurs at  t2 + r12 = ( % ) 2 ,  i.e., ( = 31 1 - ( )  and -t cot f = 7, i .c ,  
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- TO (F) im cot [$ i'm] = 0 

Solving for /3, we gct the scco~ld eigcnvalue of the Ha~ililtonian, 

(c) Sctting the normalized gronrld state wave function as 

~ ( r )  = A sill txr-, O < r < ~ o ,  

,(,r) = A sin aro cxp[/j(l-o - r)], r > r o  

.I I-, 

1 1 - = -  
1 

(arO - sin ar-0 cos firo) + - sin2 aro 
47rA-2a 2P 

The wavc fur~ction a ~ i d  probat~ility distribution are shown in Figs 2.7(a) 
and 2.7(b) respectively. 

I t  can be seen that the probability of finding the particlc is very large 
for r < r g  arid it attenllates exponentially for r > ro, and we can regard 
t,he particle as being bound in the square-well potential. 

(d) The kinetic energy of the particle, ET = p2/2m, is a function depen- 
dent solely on the momentum p; thus the probability of finding a certain 
value of the kinetic energy by a single rneasurement is the same as that of 
finding the correspontli~lg value of the momentum p, 1 ,$(p) I? Here $(p) 
is the Fourier transform of the ground state coordinate wave function, 
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X i r j  

The integratior~ call be affcc:tc:ci when the expression for ~ ( r )  ill ((:) is 
substituted in t,hc in te~ra~i t l .  Thci avcraee kinet,ic ~ I I P I - P V  l?v is  
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sin 2aro 
= El + 2aV0A2 

(t:) From the above we see that the wave fiiiict,ioli in space coordinates 
in (c) gives thc space probability dist,rihutiorl, whcrcas thc wave function in 
pspac:c in (d) gives t,he momentum probability tlistribution. The product 
of unccrt;~initics of one sim~lltarleous mcasurcrnent of t,hc position and the 
momc~lturri must satisfy the unccrtaint,~ principle 

Tliat is to say, t,hc two corrlplcmerlt cw:h other. 

2019 

(a) Givcii a ouc~-tliinc~risio11;~l pot('ntiii1 (Fig. 2.8) 

show that thcrc is always a.t loast olie bound state for attract,ive potentials 
Vo > 0. (You lrmy solve t11c cigcrlvalue condition by graphical means.) 

(b) Coniparc t,he S(:hriitlillgcr equation for the above one-dimensional 
case wit11 that for thc ra.tlia1 part U(r )  of the three-dimensional wave func- 
tion when L = 0,  

$(r) = .-'U(r) Y r , ~ ( o ) ,  

where $(r) is the sollit,ion of the Schrijdinger equation for the potelitis1 

Why is there 11ot always a bound state for Vo > 0 in the tliree-dimen- 
sional case? 

( M I T )  



Solutiori: 

(a) For 
- 
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The continuity of the wave function and its derivative a t  x = &a requires 
k t,an kn = k'. Set ka = (, k'a = 7. Then the following equations determine 
the energy levels of t,he bound states: 

These equations must in general be solved by graphical means. In 

Fig. 2.9(a), curve 1 is a plot of q = < tan F ,  and curvp 2 plots t2 + q2 = 1. 
The dashed line 3 is t,he asymtotic curve for t,he former with < = r/2. Since 
curve 1 goes through the origin, there is a t  least one solution no matter how 
small is the value of Voo2. Thus there is always at least one t~ound state 
for a one-dimensional symmetrical square-well potential. 

1 ,  147 I T 

has solutions 

whcrc 

Fbr 1 rc 1 < a ,  the Schrodinger equation 

has solutions 
$(x) .- coskx, (even parity) 

$(x)  sin kx, (odd parity) 

where 

provided E > -Vo. Here we need only consider states of even parity which 
include the ground state. 

0 1 2  3 - L S  

Fig. 2.9(b) 
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d2U 2mE -+- 
dr2 h2 

U = 0, 

has so l~~t ion  U(r)  = A exp(-K'T), where 

For r. < a ,  the equation is 

d2U 2m -+  - ( V o + E ) U = O  
dr2 h2 

and the solution that sa.tisfies the boundary condition U(T)'-O is U(r) = 

B sin K,T, where 

The cont,inuity of the wave function and its derivative at r = a,, rcq11irc.s 
ti cot tia = -d. Setsting Ka = (, n'n = 71 we get 

( co t  ( =  -7 ,  

t2 + 772 = 2rnv0a2/fi2. 

Thesc: arc: again to 1)e solved by graphical means. Fig. 2.9(b) shows curve 1 
which is a plot of ( cot ( = -71, and the dashed line 2 which is its asymptotic 
if ( = 7r. It can be seen that only when 

t2 t 7j2  = 2 m ~ ~ a ~ / h ~  > 
or 

voa2 > 7r2h2/8m, 

can tlie cquations have a solution. Hence, unlike the one-dimensional case, 
only when Voa2 > 7r2h2/8m can there be a bound state. 

2020 

(a) Consider a particle of mass m moving in a three-dimensional squa.re- 
well potential V(I r I). Show that for a well of fixed radius R,  a bound state 
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~kxists only if the depth of the well has a t  least a ccrtain minilnum value. 
( lalculate that rninirnur~l value. 

(b) The analogous problrrrl in one dinlension leatls t,o a different answer. 

What is that ariswer'? 

(c) Call you skiow that tlie general nature of the answers to (a) and (b) 

.rl)ove relnairis the sarnc for a wcll of arbitrary sh;~pe'! For example, in the 
1 ,lie-dimclisioll:~l c:a,sc (b) 

( onsidcr v;-rrious valuc~s of X wllilr krcpirlg f ( r )  ~iiicharlgcd. 
( CUSPEA) 

Solution: 

(a) Stil)posc: t,hi~t, t,hc:rr is a bouritl stat,c ?j,(r) nrrd ttlilt it is the groullti 
,.t,ate ( 1  = O ) ,  so that, ,I/,(r) - +(T). The eigcriequ;~t,ion is 

where E < 0, and 

V(T) = 0, r > R,  

V(T) = -Vo, 0 < r < R, 

with Vo > 0, a.s shown in Fig. 2.10. The solution is 

Fig. 2.10 
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wherc. A and B are nornlalizatio~l co~lst~ants. The continuity of .Ij> ancl 4' a t  
.r = R, or  equivalently 

gives 

k cot (k1Z) = - I ; ' ,  

while tlic tlcfinitiorls of k,  I;' rcquire 

These equatiorls c:a.rl be solvccl grapl1ic:ally s.s in Problem 2018. 111 a 
similar way, we (:all show t11a.t for thcrc tjo 1)c a t  least i i  bound st;l.tc? wc 
require 

2rnl.;,R2 
p (i)' 

l.e., 

(b) If  t,he 1)oterltial is a onc-dimensional rectang111a.r well pot,ontial, 110 
matter how dcep the well is, there is always a b o u ~ l d  state. Tlle ground 
state is always syrnm~t~ric: about the origin which is t,he center of the  well. 
The eigsnsqnat.ion is 

where, as shown in the Fig. 2.11, 

Fig. 2.11 

For bound states, we requirc 0 > E > -Vo As V(J;) = V(-J:), t l ~ :  
equation has solution 

where k ,  kr hnvc tlic same dnfinit,iorls as in (a). T h c  c:ontinllity of 4 and $' 

Since Vo > - E  > 0,  there is always a bound-state solution for any Vo. 
(c) For a onc-dimensional potential well of arbitrary shape, we can al- 

ways define a rectangular potential well l/,(~) such that  

V,(X) = -Vo, z 1 < R / 2 ,  

V5(z) - 0,  I > R / 2 ,  

and  -Vo 2 V(z)  always (see Fig. 2.12). F r o ~ n  (b) we see tha t  there always 
exists a 1 ,t/,o(z)) which is a bound eigenstate of V,(x) for which 
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V(x1  

Fig. 2.12 1 

This means that thcrc is always a bound st,at,e for a oric-tliinciisioilal 1 
well of any shape. 

Calculate Green's function for a rionrelativistic electron in tllc potcnti;r.l 

V(z, y, t) = m, x 1 0 ,  (any 11, z)  

V ( z ,  y, z)  = 0, x > 0, (any y, z) 

and evaluate ( G(r,  r', t )  (5 Dcscribc thc cvolution in timc of tlic pattcrn 
of probability and interpret physically the reason for this behavior. 

(Berkeley) 

Solution: 

The potential in this problenl can be replaced by the boundary conditiori 
G(r,  r', t )  = 0 and a = 0. The boundary problem can then be solved by 
the method of images. Suppose at  r" is the image uT the elect.ro11 aL r' 

about x = 0. Then 

(ih& - H )  G(r ,  r', t )  = d(t) [d(r - r') - b(r - r")] . (1) 
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The Grcm's function is zcro for .I: 5 0 and for a > 0 is equal to the 
.r. > 0 part of the solution of (1). Let 

1 
G(r ,  r', t )  = - G(k, r', W )  dw . (2) 

( 2 ~ ) ~  . 

We have: il,,aLG = f,wG and H = e, and thc sub~tit~utioll of (2) in (1) 
~ i v e s  

We first i~it,c:grat,c: with rc:spcct to w .  Thc: pat,h r is choscll to  satisfy thc 
c.ausality c:ontlitio~~. 

Ca1is;~lity rc:quiros that wllc:il t < 0, G(r ,  r', t )  = 0. First let thc polar 
1)oint of w shift, a little, say by -ie, whcrc E is a small posit,ivc: iiurnber. 
Li7inally letting E -t 0, we: get 

G(r,  r', t )  =- )d3k 

Hmce when both x aiid t arc, grcatcr than zero, the Green's functiorl is 
given by (5); otherwise, it is zero. Whr.11 n: > 0 and t > 0, 

If the potential V(z, y, z) were absent, the Green's function for the free 
space, IG(r, r', t )  1 2 ,  would be proportional to t - 3 .  But because of the 

I'resence of the reflection wall the interference terrrl occurs. 
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An rlectron moves ahove an inlpenctrahle conc1lic:ting surface. It is 
attracted toward this surface by its own image chargo so that classically it 
bounces along the surface as showii in Fig. 2.13. 

(a) Write the Schriidi~igcr cquation for the erlergy cigc~istat,cs aiid crlcrgy 
eigtnvalucs of t,he electron. (Call y the distai1c:e above the sl1rfac:c.) Ignore 
inertial cffects of thc imagc. 

(1)) What is the :c and z dcpcridcrlc:e of tlic eigeilstat,cs'? 
(c) What arc the remaining boundary corlditions? 
((1) Find the ground state and its energy. 
[Hint: they are closely related to those for the usual hydrogc:~~ at,oln). 
(c) What is the coinplet,e set of discrete and/or c:ontinuous cricrgy eigeii- 

valries? 

Solution: 

(a) Figure 2.14 shows the electron and its image. Accordillgly the elec- 
t,ric energy for the systern is V(r) = xi y i  V - [c . + . C ]  = 

% - L  2"J ZY 
-e2/4y. The Schriidinger equation is then 

(b) Separating the variables by assuming sollrtions of the type 

l i ) ( ~ ,  Y, z) = $n (Y) 442, z)  - ,7bn, (y) 9, ( 5 )  4, (z) , 
we can write the above equation as 

with 

Fig. 2.14 

Not(, that sinre V(y) = - 5; depends 011 
only, p, and p, are constau~ts 

of the inotion. Heilcc 

( c )  The remaining 1)oendary condition is $(x, y, I) = 0 for y < 0. 
(d) Now consider a hydrogen-like atom of nuclear charge 2. The Schro- 

dinger equation in the radial directioll is 

On setting R = xlr,  the above becomes 
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In particular, when I = 0 we have 

whicli is identical witli (1) with the rcp1;~cernents 7. --t y, % i i. Hence the 
solutions of (1) are simply ?j multiplied by tllc, radial wavc func:tions of the 
ground state of the atom. Thus 

where a = &. With Z = 1, we 1laW 
4 

Note that thc 1)onridary coiidition iri (c) is satisfied by tliis wavc filnc- 
tio~i.  The grorliltl-state energy due t,o y rnotion is similarly o1)tairictl: 

(e) The complete energy eigenvalue for quantum state n is 

with wave Rlnction 

where A is the normalization constant. 

A nonrelativistic electron rnoves in the region above a large fiat 
grourided conductor. The electron is attracted by its irnage charge but 
carinot penetrate the conductor's surface. 
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(a) Writ,c down t,he appropriate Hamiltonian for the three-dimensional 
lnotion of this electron. What boundary conditiorls must the electron's 
wave functiorl satisfy? 

(b) Firltl thc ctrlergy levels of the clectroli. 
((:) h l r  t l l ~  st,ate of k)wcst energy, find the avcragc (listnncr of the dec- 

tron ;ll)ovc the c:ontluctor's surface. 
(Co l~~rn~b ia )  

Soll~tion: 

(a) Take Cartesian (:oordinatc:s with tllr origill on and tlie z-axis ))*I- 

peilclic:ul;u t,o the cr)ndu<:tor surfa(:c s11c:h that the cond1a:tor orr:el)ies t'he 
half-sl);lc:c z < 0. As in Problem 2022, the elcctron is subjc(:t to poterl- 

tial V ( s )  = - &. H(:iicr thc Halr~iltoniari is 

Tllr w;lv(; fllll(:tion of the cl(:ctron satisfies tile \)olllltlary ~:OIltlition 

+(z, 1)' z) = 0 for Z 5 0. 
(1)) As sl~own in Problem 2022 the energy eigenvalues are 

(c) Thr groliritl stilt? has cwrgy 

and wave function 

where 
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and A is the llornlalizatio~l constant. Hence 
3. SPIN AND ANGULAR MOMENTUM 

Consider four Hermit,ian 2 x 2 matrices I, o1, u 2 ,  and a3, where I is the 
unit matrix, and the others satisfy ai aj + aj oi = 26ij.  

You must prove the followillg wit,liout using a specific representation or 
form for the matrices. 

(a) Prove that Tr(o i )  = 0. 
(b)  Show that the eigenvalues of ai are 3z1 alicl that det (a i  ) = -1. 

(c) Show t,h& t,he four mat,rices are linearly independent and therefore 
that any 2 x 2 matrix can be cxpanded in terms of them. 

(d) F'roiri (c) we know that 

whcre M is any 2 x 2 matrix. Dcrive an expression for rn, (z = 0 ,  1, 2 ,  3).  
(Buffalo) 

Solution: 

(a) As 
a a .  = -ojai 

a 3 (i # j ) ,  ajaj = I ,  

we have 
a, = rsiajaj = -ajoioj , 

and t,hus 

Hence T r  (oi)  = 0. 

(b) Suppose ai has eigenvector 4 and eigenvalue X i ,  i.e. 

Then 
oiai4 = ajxi4 = x i f f i 4  = ~ 5 4 .  

On the other hand, 
aiai4 = 14 = 4 .  
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Hence 

or 

the two eigenvalucs of ai are X1 = t l ,  X2 = -1, and so D(:t(ni) = 

X l X 2  = -1. 
(c) If I, a .~,  i = 1, 2, 3, were linearly dependent, thcn four c:orist,ailts 

I 
mo, mi could 1)c fount1 such that, 

and 

Multiplying by a, froin the right a.nd from the left wc 1ia.v~ 

3 

z= 1 

Adding thc a.hove two equations gives 

As Tr  (uj ) = 0, we would have m j  = 0, and so mo = 0. Therefore the 
four matrices I and a ,  are linearly independent and any 2 x 2 matrix can 

. . .  - .  / T I , ' ~ ~ o n m  c i m )  be expanded in terms of them. 
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Solution: 

The matrix forers of the spin ang~llar momentum operatnr jS = 1) in 
the ( s 2 ,  s,) rcpreselltation, in which s2 ,  s, are diagor~al, are 

S z  = 

0 0 -1 

Dircct calculatiorl gives 

Three matrices M z ,  Af,, M,, each with 256 rou7s and cohmmns, arc 
known to obey t~lir corilmutation rules [ILI,, M?]] = zM, (with i:yclic per- 
mutations of x,  y and z). Tlie eigenvalues of the matrix 11.1, are f-2, each 
once; * 3 / 2 ,  each 8 times; -tl, each 28 limes; &1/2, enah 56 timcs; ;md 0, 
70 times. Stsate the 256 eigenvalues of the matrix M 2  = hl: + M i  + hi:. 

( Wisconsin) 
Solution: 

~ f '  com~nutes with kf, So we can select the common eigenst,ate 
IAf, M$) .  Then 

M ' I M , M ~ )  = m ( r n i - l ) ~ ~ ,  M , ) ,  
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For the same in, nl, car1 have the values i , r n ,  n~ - 1, . . . , -nl,  while 
I? l 2  has eigenvalue m(m t 1). Thus 

3/2 emn n rimes - 
4 

l each 27 timcs 2 
0 } 

3 
112 *1/2 each 48 limes 

- 
ft 

0 0, t:,tch a12 tinics 0 

3 x 27 = 81 times 

2 x 48 = 96 t,imes 

3004 

A cert,win st,at,r 14)) is ;m cigenstat,~ of L%arld L,: 

L" 4)  = l ( 1  + 1) ii2 I $ I ) ,  f A Z  I T / ) )  = m i  1 ,?,!I) . 

For this stat,e calculate (L,) and (L;) .  

Solutio~l: 

As L, is a Hermitian operat,or, we have 

LZ 1 $) = mfi 1 4,) -+ ( $ 1  L, = mh (4) 1 . 

Then 
I 1 1 I ( L ~ )  = ($ 1 [&, L] I $) = ($ I f J J Z  - L z  Lv I d l)  

rr~h -- 
- i h ( ( + \ ~ y l $ ) - ( + l f J y l d ) j ) = O ~  

Considering the symmetry with respect to x, y ,  we have 

1 - 1 - A < 

( L )  = ( L )  = - 2 ( 1  + L )  = - 2 ( L ~  - ~ f )  , 
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and so 
1 1 

( = 5 ( 1 L - L 1 ) = - [l(L + 1) - m,"] h' . 
2 

It can also be calculated using the "raising" and "lowerillg" operators. 

The spin functions for a free e1ect)rorl in a basis where d, is tliagonal 
can be writt,en as (A) and ( ) with eigenvalues of 6 ,  being +1/2 ant1 1 / 2  

respectively. Using this basis find a normalized eigerlfunc:tiorl of .?, with 
eigenvalue - 1 /2.  

(MIT ) 
Solution: 

111 the diagonal represc~ltat~ion of d2, .?,, we car1 rel)rcsmit. .??, k)y 

Let thc rccluired cigenfun~t~ion of 6, be a, = ( i ) .  Tlicn ;IS 

we havca. = ib, andsou ,  = b ( i ) .  
Normalizat iori 

gives b = ' Hence 
v5' I 

3006 

Consider a spinless particle represented by the wave function 

$ = K (z + y + 22) e-"l‘ , 

= d m ,  axid K and n are real const,ants. 

(a) What is tllr t,ot,al culgular inomdtunr of tjhr partaide? 
(I)) What is tla: exyn(:ti~t,im vr~,l~l(: of t,he r-componmt of angular mo- 

melltllrn? 
(,:) If tho z-rolepoaallt of iu~guLr molnel~tum, L,, wrrc mr.rrnred, what, 

is the prol)i~,bility that t . 1 ~  result would be L, = +K? 
((1) Wli:~,t is t l a  prohnl)ilit,y of finding tllc part,i(:1~ at 8, 4 and in solid 

anglo dil'! Herr H ,  y\ arc tlic U S U ~ I ~  :~egles of sph(aic::~l coordinat,i-s. 

Yoll 111:iy fintl t hc, following cxprcssiolis for the first f ~ w  spherical har- 

monics uscful: 

Solution: 

The: wa,v(, f,lll(.t,i~)ll llli~y r(:writ,t.(:ll in sp1ic:rica.l c:oortlin?~tc:s a.s 

,(/I = K,r (c:os (1) sill H -1 sill 4 sill H + 2 cos 8) e-"' , 

it,s aligular p;~,rt being 

,1/1(8, 4) - I(' (COS (I, sill 8 -t sin 4 sin 8 + 2 cos 8) , 

whc~rc. K' is thc: iiorlrlalizat,ioll c:ollstalit such tlhatj 

K" lT d8 IT sill 0 ( c . 0 ~  4 sill B + sin 4 sin 8 + 2 cos 812 d 4  = 1 . 

Sinc:c 

1 'ib - e - i d l )  
(:os (1) = L ((:i$ + e-i+), sin 4 = 7 ( e  , 

2 22 

we have 
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Tile normalizatiorl condition and tllc orthonormality of y,m tllcIl give 
3007 

A particle in a. central potcntinl has an orbital angular momentllm 1 = 2 f i  
, ,ud a spin 3 = lh. Find the energy levels and degeneracies associated with 

or 
;I spin-orbit, int,erac:t,ion term of the form Hso = A L  . S, where A is a 

(.onstant. 

and thus 
(MITI 

Solution: 
choose { H ,  J" .JZ:  L\ SS"} as a complet,e set of inechanical variables. 

'The wave furlctiorl associated with angle and spin is ~ J , , ~ , L , ~ ,  for which 

J ~ ( " ~ ~ ~ ~ ~ ~  = h 2 j ( j  + 1)  4;rn,ls, L 2 d j m j l s  = hS"l(l - t  l )  $3ntils , 

S2~; ,n , ,~ ,7=hS"~(~+1)d371- l ,~s ,  Jzbjnljl ,$ =h771,jdjm;ls, 

with 
1 

H , ~  = AL . s = - A ( J ~  - L" s 2 ) ,  
dm= J i o h = & h , .  its J  = L I S .  Thus tile energy lcvels 2 ancl clagelicracies are respect,ively 

as t,he wave filnction corresponds t,o 1 = 1, ti" 
E,, = - A [ j ( j  + 1) - 1 ( 1  + 1 )  - s ( s +  I ) ]  

(b) 'rh(! z-component of the angular momentum is 2 

ZAP, j = 3 ,  

= { -Ah" , = 2 ,  

-3Ah" j  = 1 ,  

7 ,  j = 3 ,  

d = 2 j + l =  5, j = 2 ,  

3, j = l .  

(d) The probability of finding the particle in tlie solid arigle W at 8 , ~  
is I 

1 1 y',* ( 0 , ~ )  41 (0, 9) 09 = - [sin @(sin $ + cos 6) + 2 cos 01' lm . 
8 n 

One can show that the "raising" and "lowering" operators for angular 
momentum, J *  = J ,  k iJ,, conlrnute with J2, and that,  if j ,  7n are tlle 
eigenvalu~s of .I, . J z ,  then 

. ~ * l j , m ) = f i J j ( j + 1 ) - r n ( m f 1 )  l j , m & l ) ,  

for appropriately chosen phase conventions of the state vectors. Use these 
properties to  express those states 1 j ,  m) for which m = 1 - 112 in terms of 
the states / 6 ,  mi; s ,  m,) with s = 112. 
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Solution: 1 

According to the theory of angular rnoment~~nl conpling, the ~)ossihle 
values of t,he tot,al angular nlomentunr arc j = 1 + 112 ulcl j = 1 - 112 for 
,$ = $ 

2 .  

Using thc: pro~)erties of J ,  I ,  arid S~ 

The orthonormality of t.he eigenvect,ors givcs I 

Spin and Angular Momentum 

Using t,he result of (a), Eq. (1) car1 be written as 

Similarly, Eq. (2) can bt: writt,en as 

The last t,wo c:cl~i;~t;iolis show that a,  I),) arc: I)ot,h red a.lic1 c:;ul be t,i~k(:n ;IS 

r,. = - d m t  I),) = Jw. H(:llcc: 

Suppost an c,l(,ctro~l is in a. statc dcscrihed by the wave function 

1 
Q = - (ci+ sin H + cos 0) g (r)  , 
6 

where 
00 

~ ~ ( r ) \ ~ r ~ d r - =  1 ,  

;rnd 4, 0 are the azi~liuth and polar angles respectively. 

(a) What arc the possible rc:sults of a measurenlent of the z-cornponent 
L, of the angular momelltllrn of t,hc electron in this state? 

(b) Whal is the probability of obtaining each of the possible results in 
part (a)? 

(c) What is the expectation value of L,? 
( W.iscon,sin,) 
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Solution: 

the wave ftlr~ct,ion (:ail 1)o writ,ten as  

ri) = & (-&Y,, + YI,)~(,.) 

Hmcc the possiblc valucs of L, arc +ir, 0. 
(1)) Sincc 

t,lle given wave ft1nc:tiori is norm;tliaocl. Thc proi,;~I)ility tlolisity is t;hc,ll givell 

1 ) ~  I' = 1 1'. Tllus the probJJi1ity of L, = +h is (&)' or 2/3 ;lll(l tllilt 

of L, = O is (' or 113. "5) 
(<:I 

If U(P, 9) refers to a rotation through an angle /3 about t,hc y-axis, show 
that the matrix elcrncnts 
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. , I ( -  polynomials of degree 2 j  wit,h respect t,o the va.riables sin (P/2) and 
( t ,s (P/2). Hrre ( j ,  TTL) refers to an  eigcrlstate of t,he square and z-component 
o !I [.he angular momenturrl: 

3" jj; 711,) = j(j t 1)  hZ / j ,  na) , 

3, 1 j ,  111,) = 71th I j ,  TIL) . 

( Wisconsin.) 

:iolution: 
We use the method of ~nathen~a.tical inductioll. If j = 0, t,hrn 7n - 

,I,,' = O and t.hc st;~tenic?nt is o1)viously c:orrcc:t. If j = 112, let, 

Consiclcr Pauli's ~n;it,rict:s or;, where k = : I : ,  y or z. Sinre 

I lle unit nltitrix, we h i ~ v ~  fbr ( Y  =(:011~t,i~iit 

= cos ct f ior; sin (Y 

p 2 . u  
= cos - - 2 - jy sin - , 

2 Ti 2 
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(a) Show that f ,  J2 and J z  can be simulta.neously measured. 
(h) Derive the rna.trix representation for f irl the I .J, M ,  jl, jz) basis. 

(Label rows a.nd cohirriris of your matrix). 
(c) Derive thc nmtrix representation for f irl thc I jl, j2, ,rrllbl, m , ~ )  t)a.SiS. 

( Wisconsin) 

Solution: 

(a) f ,  J2 and .Jz (can be measured sirilulta~leo~lsly if c!ac:h pair of them 
cornmute. We know tha.t J%nd J, comrnute, also that eit,her c:omrrl,ltes 
with a ,  a corlstarlt,. 

From dcfirlitior~, 

(TI . a 2  = - - - (u' + o L )  h 2 2 1  2 

Now for CI-LCI~ pa.rticle 

2 2 2 2  = a , + u , + o ,  = 3 I ,  

Thrrcforc, f ,  ~%alld J, can be measured s inlul taneo~sl~ 

(h) In the I J, M,  jl, j 2 )  basis, 
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where J, M are row labels, J', M'  are column 1at)cls. 
(c) Denote the state of J = 0 and t,he state of J = 1 and J, = M as 
and x l ~ ,  respectively. Since jl = jz = 112, we (:an denote the state 

( ;jl, j2, m l ,  rn2) simply as I n ~ 1 ,  m2). Then as 

we have 

Using the above expressiorls and the result of (b) we can write the matrix 
c,lernents (ml,  m2 I f (mi ,  711;) in t,he basis ( jl, j 2 ,  m l ,  ma) as follows: 
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3012 

Corisider t11~ following two-particle wave fiinctioil in position spare: 2 1 
where a and b a.re a.rbitrary coilstant vectors, f aiid {I a.rc ark)it,r;l.ry fi~ilc- 
tior~s, aiid a, and y are corista.nts. 

(a) What arc tlic eigcnvalues of the squarctl angu1a.r iriomciituiii for c;~ch 
part,icle (Lf and L:)? 

(11) With an ;~.pl~ropriate choice of a, p and y ,  ,,h2(rl, ra) (:ail illso be 
ail eigerifuiic:t,ion of thr: t,otal angular momcnt~ilri sclli;irc:tl J" (Ll + L?)'. 
What a.rc thr: possik~lt: v;xhics of the total anglllnr irioiiic:iit~llil scl~~;~.rc,tl 2i1id 
what arc: tlic appropriate V ; L ~ I ~ C S  of ( Y ,  P a.nc1 y for (:;i(:li stat,(,? 

( M I T I  

Solution: 

(a) Wc first note t,lia.t 
r 

V f  (r)  = .ff ( 7 .1  1 1 

and that 

r x V(a  - r )  = r x a ,  

As L = r x p = i l i r  x V,  WP have 

~ : ~ + b ( r ~ , r ~ )  = - fi2(rl x Vl )  . (rl x V l )  {f(ry),q(~:) [((a . rl)(b . r2) 

+ B(b . r1) (a . r 2 )  + y(a  . b) (r1 - r2)I) 

= - h2 f ( ~ f ) ~ ( r i )  (rl x V1) . (rl x Vl )  [tw(a r l )  ( b  . r2) 

+ B(b . rl) (a . r ~ )  + y(a  . b) ( r ~  . r ~ ) ]  

=-h2f ( r ; ) ! / ( r i ) ( r l  x V 1 )  . [a ( r l  x a ) ( b  r ~ )  

+ p(r1 x b)  (a . r 2 )  + y(a . b)  (rl x r2)1 

= 2h2 f (r:)9 (r,") [a (a . rl) ( b  . r 2 )  + p ( b  . r l )  ( a  . r,) 

+ y(a  . b)  (rl  . r ~ ) ]  

= l ( l +  1) h2+(r1, r2) , 
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and sirnilarly 

~ ; $ ( r ,  . r2 )  = -h"rz x V2) . ( r 2  x Vz)$(r l  . r2) 

= l ( 1  + 1) h2$(rl, r 2 )  . 

Hcllct: tllc cigerivalucs of L'f a.nd L; arc cac:ll equal to 2fi" so each 

partic:lc 11a.s t,he quantum number 1 = 1. 
(1)) Wc further note that 

( r x V ) .  ( a . r ) e = ( r x a )  . c ,  

( a x b ) .  ( c x d ) = ( a . c ) ( b . d ) - ( a . d ) ( b . c ) .  

Tlius we rr:qliirc 

L~ . ~ ~ y i ( r ~ ,  r 2 )  = - 11,"rl x VI) . (3 x V2) {f (,ry)!/(rZ) [ ~ ( a  . rl) 

x (b . r 2 )  + P ( b  - r l ) ( a  . r2) +$a . b ) ( r ~  . rz)l> 

= - f,,"(rf)!l(~i) (rl x V1) . (r2 x V2) [ (~(a  - rl) ( b  . r2) 

+ @(b . rl) (a - r 2 )  + y(a  . b) ( r ~  . rz)] 

= - tl."(,rf)9(,r;)(r1 x V l )  . [(,(a . r1)(r2 X b )  

-I- a(b . rl) (r2 x a) + y ( a  . b) ( r 2  X ril l  

= - h2 f (r:) ( r i )  [a(r1 x a) . ( r z  x b )  

+ p(r l  x b) . ( r 2  x a) + y ( a  . b) (2rl . r z ) ]  

= - h2 f (r?)!/ (r;) [-@(a. rl) (b . r 2 )  - a ( b  . rl) ( a .  r2) 

t (a  + P + 27) (a . b) (rl . r 2 ) l  

= - fL2X$(r1, r 2 )  

for $(rl, r2) to be an eigenfil~ict,ion of L1 . La. This denlands that 

-p = X a ,  -N = Xp, a + 0 + 27 = Xy 1 

which give three possible values of A: 

3 
-1 a = p =  - - y ;  

2 
X = + l ,  a = - p ,  y = o ;  

X = 2 ,  a = p = o .  
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Therrfore the possl1)lc values of the total angular momenturri squared, 
J" L! + Lz + 2L1 . La, ant1 thc correspo~lding values of a, [j aalid y are 

3013 

A qu;~~lt~iln-~lie<;lii~liic:al ~ t i ~ t , ~  of a particle, wit11 Cartesian c:oc~rdinittes 
:c, 71 i-\,rid Z ,  is dcsc:ril)c(l by the iiorrnalized wiwc filiic:t,ion 

Show tliiit t,lic: system is in a stat,e of definite ailgrilitr ~noliiclit~i~n itlid 
g-ivcx tho vt~1uc.s of L2 and L, associated wit.h the st,iitcr. 

( wis(:o , l ,<~,t l I , )  

Solution: 

?i-arlsforirliilg to sp1icric:al coordinat,es by 

:c = 7, sill N c.os p, y = 7- sin B sin p, z = r c.os B , 

Hcilcc the partic:le is in a st,ate of definite angular rrioiric:ntllm. For this 
state, 1 = 1, L" l (1+  1) h2 = 2h2, L, = 0. 

3014 

A frec atom of carbon has four paired electrons iri s-states :l.nd two more 
electrons with p-wave orbital wave funct,ions. 

(a) How inally states are ~)crmitted by the Pauli cxclusioll principle for 
the l a t h  pair of electrons in this configuration'? 
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(b) Under the assumption of L-S coupling what are the "good" quantum 
iiumbers? Give sets of values of t.hese for t,he configuration of the t,wo pwave 
rlectroiis. 

(c) Add up the dtgencracies of the terms found in (b), and show that it 
is the samc as the number of terms found in (a). 

(Buffalo) 

Solution: 

(a) Each electron (:an occupy onr: of the (21 + 1) (2s + 1) = 3 x 2 = 6 
st,at,es, but it is not perniitt,ed t,hat two electrons occupy the same state. So 
t,he nulnber of psrmitt,cd states is Cg = 15. 

(b) Tlle "good" cluant,um riulrll~ers are L< S2, J2 a i d  J,. Under the 
itssumption of L-S couplirig, t,he total spin quantum numbers for two elec- 
I;rons, S = s l  + 5 2 ,  are S = 0, 1 a11d the t,otal orbital quantum nlimk)ers, 
L = l1 4- 12, are L = 0, 1, 2. C!onsitlering the symmetry of exchange, for 
t,he singlet S = 0, L shoulti 1)s rvcil: L = 0, 2, <:orresponding to 'So, 'Dz 
respectively; for the triplet S = 1, L odd: L = 1, corresponding "0, l , 2 .  

(c) The dcgencracy equals to 2.7 + 1. For J = 0, 2 and 0, 1, 2 iri (b), 
the total ii~lrnber of dcge11crac:ics is 1 + 5 + 1 + 3 + 5 = 15. 

(a) Det,erininct the energy lcvrls of a particle bound by the isotropic 
potential V (r) = kr2/2, where k is a positive constant,. 

(b) Dcrivc a forrnula for thc degeneracy of the N th  excited state. 

(c) Identify t,he angular momenta and parities of the N th  excited state. 
( Col~~mbia) 

Solution: 

(a) The Hamiltonian is 

Choose (H, i2, f,) t,o have comrnon eigenstates. The energy levels of 
I)ound states are given by 
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(b) The degeneracy of the stat,es is determined by n,, and I. As N = 
2n, + 1 ,  the odd-evcn feature of N is the same as that of I. For N even 
(i.e., 6 even), the dcgerleracy is 

1 
= - ( N  + 1) ( N  + 2 ) .  

2 

For N odd (i.e., 6 odd), 

N IV (N- 1)/2 

f =  ( 2 I + l ) =  x [ 2 ( I - 1 ) + 3 ] = 1  x ( i f + : )  
1 = 1 ( 1  odd) l = l ( l  odd) I'=O 

Hcrlce the dcgc~lcracy of the Nth  excited state is f = (N + 1) (N + 2)/2. 
(c) 111 the c:oinmon eige~~st~ates of (H, 1 2 ,  l , ) ,  thc: wa.vc func:tiorl of the 

syst,c:~n is 

TL,L 0, P) = R(7.1 Km (0, P) , 
and thc eigcnenergy is 

As N = 271,. + 6 ,  the angular momentum I of thc Nth cxcit,cd sttttc? 112s 
$ + 1 values 0, 3, 4, 6 ,  . . . , N for N even, or f ( N  + 1) valuir, 1, 3,  5, . . . , 
N for N odd. Furthermore, the parity is 

The ground state of the realistic helium atom is of coursc ~iotidcgcncrate. 
However, consider a hypothetical helium atom in which the two electrons 
are replaced by t,wo identical, spin-one particles of negative charge. Neglect 
spin-dependent forces. For this hypothetical atom, what is the degeneracy 
of the grour~d slate? Give your reasoning. 

( aJs  ) 
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Solution: 

The two rlcw p;t.rtic:lcs arc Bosons; thus the wave function must be 
;ymmetrical. 111 the grouritl state, t t ~ c  t,wo particles nll~st stay in 1s orbit. 
I'hen tllc spacc wavc hlnct,ion is synlrrlc:trica.l, and conscq~lcntly the spin 
w;Lve functiorl is syrr~mctric;tl too. As s l  = 1 and s 2  = 1, the total S has 
i.l~ree possible v;~lncs: 
S = 2, tll(: sl,in w;wc funct,ioll is syr~lrnctric: ;l,rld its d[:gcnera.cy is 

:!,sf 1 = 5. 
S = 1, tllc: sl)i11 wave fullc:tion is arltisymrnc:tric a,ritl its tlrgencracy is 

:!S + 1 = 3. 
S := 0, the spin wavc functiol~ is syrnrrictric: and its tlcgcrlora.cy is 

:!is + 1 = 1. 
If tllc s~)i~~-rlcl)nndr.nt forcrs arc nrglcrt,cd, t,hc dcgcnera.cy of t,he ground 

statre is 5 + 3 + 1 = 9. 

Thr  z-c:o~rq)cx~(~r~t of t,l~c spill of nrl c:l(.c:troli irl frcle spa,(:(: (no c?l(:ctro- 
~r~agnctic: fic:ltls) is ~r~c;~surcitl i~rltl folllld t,o t)c +fi,/2. 

(a) If a sllk)sc:clucrit rr1c:asurcrnorlt is illad(? of thc, z:-c:nrril~~r(:nt of t , l ~ ~  
spin, what arc: tlic possiblc rrs~~lt~s'!  

(b) What is the I)robal)ility of fir~tlii~g thesc various results? 
(c) If the axis tlefinirig tllc rrlcasured spirl directior~ ma.kcs an a.~igl(: H 

with rcspcc:t, t,o t,hc original z-axis, what is the probability o f  t11c v;~rious 
possiblc rcsl~lts'! 

(d) What is thc: cx~>cc:tat.ion valuc of the spill measurernellt i r ~  (c)? 
(Berkeley) 

Solution: 

(a) 111 the (T; rclprcselrt,ation, thc spin wa,w function is ( k ) ,  the cigcn- 
I 1 functiorls of cr, are - JZ ( 1 ' ), 5 ( ), corres1)onding to eigenvalues +l, - 1 

respectively. Expanding ( h )  in these two stat,es, wc see that the possible 
results of n rneasuremerlt of s, are f h./2 since 5, = ;a,, the mean value 
being zero: 
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(b) Th r  probabilitirs of finding tllc rcsult to  be +$ ant1 -4 are P+ and 
P- respectively: 

(c) Supposc? tlie spill axis is n = n(H, cp) =. (sin Q c:oscp, sin Hsin cp, 
cosH). Then tlie cigcrlstates for s,, = s . n are 

c:orrcspondillg to c:igc~lival~ics +h/2 and -h/2 rcspect,ivc:ly. The ~)rol);~.l)ility 
of filidirlg thr  cigcnv;lhios + h / 2  ;l.rltf -h./2 arc? cos"0/2) a ~ l d  sirl"0/2) 
rcsptct,ively. 

(d) The cx~)c<:ti~tioll vi1.1(1(! of the: spill is 

(a) Consider ;L system of spin 112. What are the t:igenvalues a.rltl rlor- 
ma1izc:cI cigenvtrc:tor of thc opc:ra.tor A g u t  B g, , whcrc &, , .?, are tllr: a11gtlla.r 
morncnt~irn opcra.tors, ant1 A and B are real constants. 

(b) Assume t1)a.t the system is in a state corresponding to th(: tipper 
eigen\.aluc. Wliat is th r  proba.bility that a measurclricnt o f  iY will yic:l(1 thc 
va.lue h/2? The Pauli matrices are 

Solution: 

(a) Using t,he definition of angular momentum operators let 

Spin  and Angular Momentum 

'I'hen 

Hrncc tlie two eigcnva1ut.s of T arc 

In t,hc rc:prcscrltation of G" and .ir,, 

a, Ion is Let t,hc cigrnvcc:tor t)t: (t). Thcll the cigcncqll t '  

where * J Z V  
0 

Hence 
a. : 11 = iA : B d m ,  

and so the normalized eigenvect.or is 

1 

( i )  = [a- + ( B  f 

] 'I2 ( B  + + z A  I . 
(b) In the representation of i2 and 2,, the cigenvector of Sy is 
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Hence the proi>ahllity of finding s,, = h/2  is 

Note that  P- is thc probability correspo~ltlillg to t , l~c system in t,lic state 

A system of three (norl-itI(:~ltical) spin one-half part,ic:las, whoso spin 
operators ;Lrc: s l ,  s 2  ailtl s:$, is govcrlletl 11y thc: Haulilt,olliall 

H = As1  . sz/h% B ( s l  + s:!) . s : ~ / / ? .  

Firld the c:iic:rgy I<:v(:ls illld t1llc:ir tlr.gclicracios. 

(Pri7r cc t on,) 

Solution: 

IJsing a c:clrriplctc? set of tlyrlarrlica.1 vari;~bl(?s of t,llc? sys tcu~ (H, s :~ ,  

s2 ,  ~:i), whcrc s l 2  = sl + s:!, s = sl:! + s:( = S]  + s:! t s:], th(: c:ig(:lifilrlc:tio~l 
is ( sl:! sa S , I T L , ) ,  nlld the stationary state cquat,iol~ is 

H 1 sl:!s:~sn~,~) = h' 1 S I ~ S : ~ S ~ ~ , , ~ )  . 

we have 

Spin and Ang?~lar Momentum 

Now a, thc  expectation value of s is s(s + I ) ,  etc., we have 

. \ild hence 

I t  follows ,,hat, for s12 = 0, s = 112 : E = -3A/4, t,hc dcgc:nc:rac:y of 

I,he crlcrgy l(:vc:l, 2 s  -+ 1, is 2;  for slz = 1, .s = 112 : E = A/4  - B,  t'he 
t1egeneru:y of t,hc c:ne:rgy Irvc?l, is 2; for s l . ~  = 1, s =; 312 : E = A/4 -t B / 2 ,  
[,he dego~lcrac:y of t,lic: c1ic:rgy 1nvc:l is 4. 

A particle of spill one is s~il~jec:t, t o  the  Hamiltonian H = As, + Bs:, 
where A and B arc c:onst,;~nt,s. Calculat,e t,he energy levels of t,his syst,en~. 
If a t  t,ili~(! ~('1-o t,li(: spin is ill ail cigenstate of s with s, = +h,, calculate the 
cxpect,atio11 vahlc: of t.he spill at t,inlr t .  

(Princeton.) 

Solution: 

a r e  first filld the statiollary energy levels of the sys t rn~ .  The stationary 

Schr i id i~l~er  equation is 

where 
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is a vector in the spin space. As 

whorc A' - A/;,, B' = Bf12. The energy levels arc givcii 1)y t,hv ~igc:livil.l~le~ 
of t,hc a l~ovc  r~intrix, which are roots of thc ccluatiori 

l.C., 
( E  - B')  ( E ~  - B'E - A') = 0 

Thus the  cwcrgy 1t:vcls are 

Eo = B', E* = (B" & w)ri./2, 

where w = \/BIZ + 4A1"h, B" = B1/fi  = Bti.. T h e  corrcspondii~g eigc:n- 
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/ 1 \ 

The  general wave functio~r of t,he system is therefore 

cps  ( t )  = Clcpso exp [ - - ] t + C2 ps+ exp [ -  2 % t]  

Initially, 
s, cp, (0) = hcps (0) 

Let 

The abovc reqllircs 

i.e., 
@ = , a ,  y = O .  

Thus we can take the init,ial wave fiinct,ion (normalized) as 
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We can now find the expcr:ta.tion value of the spin: 

+ ( s z )  = P, ( t )  szps ( t )  = 0 ,  

where we havr: usc:d thr: orthogoriiilit,y of pso, ps+ arid pas-. Similarly, 

{%,) = 0 , 

js,) = pG (t)s, cps ( t )  -- 

A systc>rii of two particles each with spin 1/2  is d(~sc,ril)ctl by all c,ff(,ctive 
I-Iar~iilt,onia~~ 

H = A(s1, + ~ 2 , )  + Bsl - S . L ,  

whcrc st alitl s j  are the twu spins, sl, and 5 2 ,  a.re tliclir z-c:oinpoi~c:rits, ;ind 
A arid B arc c:olista.nts. Find all the energy levcls of t,liis I I~ni l t ,o~i ia i i .  

( W,iscon,sin,) 

Solution: 

We choosc ~ , s ~ ~ ~  as the common eigenstate of S" ( s ,  + s d z   rid 

S, = $1, + szz For S = 1, M s  = 0, * I ,  it is a triplet niid is syii~iiietric 
whcr~ the t,wo cilcc:tro~is arc ext:hanged. For S = 0, hfLs = 0, it is a si~igl<,t 
arid is ;uitisyn~inet,ric:. For statioilary st.ates we use the t,ilrie-ind(:pci~tlcr~t 
Schriiclingcr equatiorl 

H X S M ~  = ExsiLr,. 

As 

we have 

Sprn and i l l rgc~lnr  Momentum 

11ltl 

S Z x ~ ~ r s  = (s lZ + szz )  X I M ~  = n/lLsf)xi~la , 
s,x,J,J - 0 .  

Hence for thc, tril)l(,t state, the cric,rgy lcvcls are 
h2 

E = ibIs/tA + - 4 B, with M y  = 0, f 1 ,  

For t.lic: siriglct st,;~t,c:, tlic: ciic:rgy level c:orlsists of o11ly on(: linc: 

sup~losc  ;ill :it,()i~i is i11iti;~lly in :LIL (:x(:it(xl 'So st;lt(: (Fig. 3.1) :~ll(i S L ~ ~ S C -  

,luently illt,o ;i lower, short-1ivc:d state wit,h c~lilission of iL photon 

y, (Fig. 3.2). Soon af t r r ;  it (1oc;~ys illto thi' 'So g r o ~ l i ~ ( ~  s ta t r  by rlnitt,ing 
;L secon(l pll()t,on r, (Fig. 3.3). Lot 6' I)(: t,lie ariglr: betwrnli tla: tjwo i:mittrd 

Fig. 3.1 
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(a) What is tlic rc:lat,ivc: prok)a.l)ilit,y of 8 in this proc:ctss? 
(I)) Wliat is t l ~ :  rat,io of firidi11g l)ottll pliot,olis wit,li t,kl(: ~i~111(: (:ir(:lll;lr 

~)olarizi~t,iori tjo tJhat of fiiitli~lg till(: ph0t$011~ wit>h o~)~)osit,(: (:ir(:llli>,r I)ol;lrizll,- 
t,io~ls'! 

It 111;l.y I)(: of solnc: 11(:11) tlo k110w the: rot,;lt,ioii ili;r.t,ric:c:s (i,,,,,,,,, wllic,ll 
rc:lat,c on(. i~riglila.r nlorn(?lltlilli ~.(:~)~.(:~(:~lt~i~t,ioli ill o11(: (:oordi~li~.t,(: S ~ S ~ , ( : I I I  t,o 
arlot,hc:r a~lglilar niolric~ltrirn rc:~)rc:sc:ril,i~t~io~i ill a rot,;~t,(:(l (.oor(iilliLt,(: syst,(:~,l, 
given below: 

whcrc: tr is t,he angle bc:t,w(:(:ri the: z-axis of o~ic: syst,c~rl ant1 t,llc: of 
the othctr. 

( Cok~rt~biu.) 

Solution: 

The atom is initially in the cxc:itctl statc 'So .  Thus the proj(:c:t,ion 
of the atomic angular momentum on arl~itrary z directio~l is L, = 0. 
We can take the direction of the first photo~l c~nission as thc z tlirct:t,io~l. 
After the emission of the photon and the iit,onl goc:s into the 'PI  state, if the 
angular momentum of that photon is L, = f h, correspondingly the a11gula.r 
momentum of the atomic state 'PI is L, = ~ h ,  i.e., m, = $1. If we let t,he 
direction of emission of the second photon be the zl-axis the projection of 
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the eigenstate of the z-component of anglilar mornenturn on the z1 direction 
is equivalerlt to multiplyirlg the initial stat,e wit,h the d,,~, matrix. Only 
atoms that are in states 7r1.', = f 1 (:all elllit photo11 (as L', = f h must 
be satisfied) in z' tlircctio~l and rnixk(: the at0111 decay into the 'So  state 
( m i  = 0). Then the t,ra.nsit,ions ara from 7~1, = f1 to 7n1 = *I, and we have 

(a) The rclativc: 1)rol)ability of 8 is 

(b) The ratio of the probability of fi~ldirlg both photons with the same 
circular polarizatiorl to t,llat of firlciirlg the photons with opposite circular 
polarizations is 
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Colisider an  electron in a llriiforlrl magrletic: ficl(l in tjhe positjive z cli- 
rt!ctiorl. The  result of a rneasurcrnrllt has show11 that, t,he elc(:t,ro11 sI)ir1 is 
alollg the l)osit,ive 1: tlircctio~l a t  t = 0. Usc E11rnll:st's t l r~x)~e i r~  to i.orrll,iit(: 
the gn)bal)ilit,y for 1 > O tjl~;\t tjlle clcctroll is i l l  t,llr stilt? (iL) s ,  = 112, (1)) 

sz = 1 / 2 ,  (c) S, = 112, (d) s ,  = -1/2, (c:) s Z  = 112, (f) = 1 / 2 .  
Elircnfcst's thcorcm states that thc cxl)f:ct,;itio~l v;~lllcs of a (111;1,1lt11111 

mccha~iical optr<r.tor obcy the classical crliii~tio~l of rllotioll. 
[Rirlt: Rn:all the r:orr~xx:tir~~~ betwccil (:xo(a,ti~tion v:~l,~c!s i ~ ~ r d  I)n)l);Ll)ility 

co~lsidcratio~~s] . 

( w7,.9(:o~t,,si~rl,) 

Solution: 

111 the (:lassic:i~I ~ ) i ( . t ~ l r ( ~ ,  :LII cl(:(:tro~l S I ) ~ I I I I ~ I I ~  wit11 i ~ l l ~ t ~ l i ~ r  I I I O I ~ ~ ( ; I ~ ~ ; ~ ~ ~ I I  

s ill n m:i,gnatic: fi(:I(I B will, if tlrc (lircx:tio~~s of s i~lltl B (10 1101 (:oill(:i(I(:, 
pn?c:rss nlroi~t t,hc: tlirc:c:tior~ of B with ;I,II allglllar vchloc.ity w givc.11 1,y 

wIlc,rc: w =. B, 711. l)(:illg t , h ~  (:lc:(:tro11 I ~ ~ ~ I S S .  El~r(:~~S<xst's tjll(:or(:lll t,ll(,ll 
statcs t1ia.t i r l  ( ~ U ; L I I ~ ~ I I I I  IIIC(:~:LII~(:S w(! ~I ;LV( I  

d 
- (s) = (s) x B . (it '111(' 

This (:an l)c d(:rivc:tl t1irc:c:tly ; ~ s  follows. 
AII c ~ ! ( : ~ ~ w I I  wit,h spill ir,llgl~l;lr IIIOIII(:II~~~IIII  s llils ;I lll;~g~~(:t,i(: IIIOIII(!I~~,  

p = $ s a  nd c:oliscclr~c~iitly n IIarniltorli;~~l 

taking the z axis along the direction of B. T1lc.11 

d (s) 1 A -- P B  - 
d l  - H l = - ~ [ ' 9 z ~ ' t ~ g y + c ~ Z ~ ,  s,] 

1 hrr~ c 
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in agrr:cmr:rit with the above. Note that use has been lnr~dr  of the  commu- 
ti~tioll relations [s,, su ]  = i h . ~ , ,  etc. 

I~iit , i~Ily (,si) = 112, (sy) = (I=) = 0, and so we can write for t > 0, 
(.s,:) -- ((:oswt)/2, (-5,) = (sinwt)/2, (s,) = 0. 

L(:t th(: I)rol)al)ility for t > 0 of t,lle rh;c:tn)n being in tllr sfatc s, = 1/2 
I)(: r inl\ \)(!i1lg ill the sta,t,r s ,  = -112 be 1 - P since t l l e ~ c  arc the only 

t,wo statcs of s,:. Then 

Silliil;Lrly, k t .  1,11(~ l~rol~~~l~ilit,ic:s for thc olcctroll l)c,iilg in tjh(: s t ~ t c s  S ,  = 

2 ,  s -=  - 1 1 :  P ; 1 - P rcspc:ctivc:ly. Thc.11 

ll(:llc.O 1 - p = ( y  - %). La,stly for ((1) ;r,ntl ( f ) ,  we 11avc: 

3024 

A Ix~,rti(:la wit,li nliig~rrtii: ~noirlrnt p = pas and spill s ,  wit,ll magllitude 

1/2,  is I~l;nrxl ill a cx)~ist;mt inagi~ct,ic ficlcl pointing alollg the x-axis. At 
t = 0, tla: pnrti(:lc is found to  llave i, = + 1 / 2  Find the probahilit,ics a t  
; L I ? ~  l;r.tc:r time of findirlg the 1)article with s ,  = *I/". 

( Col~umbia) 

Solution: 

Tllc: IIa.lllilto11ian (spin part) of t,hc system is 
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as s = i ho,, being in the x direction. In the n, representation, the 
Schrodinger equation that the spill wave function (a:  ) satisfies is 

Wnlcn havc solutions 

1 
( L ~ , L  = A1.2 ptWt  + B1 v p - l W t .  

I 

where 

and A I , ~ ,  B I , ~  arc constants. As 

and 
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,, 1 1 . 1 ~  the solution A1 = A2 = B1 = -B2 = 112. Substitution in the 

.* r . I  )~'cssions for a,l,2 results in 

dt 

As the cigenstat,e of s, = +1/2 is 
1 

ih-a1 + -p,oBa,a = 0 ,  
2 

2h-a2 + - p o B n l  = 0 .  
dt 2 tlltl that of s, = -112 is 

(1" B 2  
dt" a1,2 + . (11,2 = 0 ,  

4r,.L r I I C ,  probabi1it.y of fincling s!, = +1/2 is 

P(+)  = 1 (.s, (+) 1 , fJ~( t ) )  l 2  

.- 

Po B w = -- 
1 

= - (1 + sin 2wt) . 
2 h 2 

Similarly the ~)rol)al)ility of finclirig s?, = -112 is 

1 
s Z  = - P )  = 1 ( (  ) I ,q,(t)) 1" = (1 - sin 2wt) . 

2 2 
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The Hamiltonian for a spin-$ particle with charge +e in an  external 
I I mgnetic field is 

H =  E s .  B .  
2m.c 

d. 1 (0) dn2(0) . /LOB = 0 ,  - - - t -  
Calculate the operator d s / d t  if B = By. What is s,(t) in matrix form? 

dt d t  2 f i  = iw. ( Wisconsin) 

Solution: 

the initial spin wave function is (A), i.e. n l (0)  = 1, az(0) = 0. Tile 
Schrodirlger cquat,iorl then gives 

These four initial conditions give - 
In the Heisenberg picture, 

A l + B i = I ,  A 2 + B 2 = 0 ,  

w(Ai - B i )  = 0, w(A2 - B2) = W ,  
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As 

[ s , S .  B ] = [ s , ,  s .  B ] x i - [ s l i ,  S .  B ] f + [ s Z ,  s .  B ] i  

and 

[ s Z ,  s . B] = [s,, s,] B, + [ s Z ,  sli] By + [s,, s,] B, 

= i A  ( s ,  B, - s, B,) 

= i f i , (B  x s),, etc 

we have 

[s ,  S .  B] = i h s  x B ,  

and hence 
ds 
-- 

9 C 
= +-s x B .  

dt 2 7 1 1 ~  

If B = By,  thc: almva givc:s 

ds,(t) g c B  
-- -- - 

dt 27r1,(: ( t ) ,  

ds , ( t )  g e B  - - = S,(t) , 
dt 2mc  

and so 
d2sZ  ( t )  + ( ge B ) 

dt2 
-- s , ( t ) = O ,  
2nrc 

with the solution 

s,(t) = c~ cos (gwt )  + ca sill (gwt)  , 

where w = e R / 2 ~ n , c .  At t = 0 we have I 
s,(O) = C l ,  s',(O) = c2gw -- gws,(O) , 

and hence 

sz ( t )  = s , ( ~ )  cos -- t + S ,  (01 sin (@ t )  (;: ) 2mc 

3026 

Two electrons are tightly bound to  different neighboring sites in a cer- 
I .1111 solid. Thcy arc?, th(:roforc, distilig~iishable p;rrticl(:s which can be de- 
.,.~-ibed in tc:rnls of their respective Pttuli spin matrices n(')  and d2). The 

I 1.1iniltonia1i of t,licsc: el(:c:t,rolis takes the forin 

(a) How lrialiy enorgy lcvcls doc+s thc, syst,cni llavc:'! Wlint arc their 
<.~l!:rgics? What  is t,llc d(:go~lcrnc:y of thc tIii~f(:rc:llt lcvcls? 

(b)  Now ;~.d(l a ni;tgiict,ic fic:l(l ill the  z t1irc:c:tioii. What arc? tlic ncw 
~~lc:rgy lcvc:ls'! Draw ail c:licrgy l(:vc,l tli;\.gr;rri~ as a f11nc:tion of L3,. 

( Clj.icngo) 

:iolut ion: 

(a) Thc: H;r.~iiilt,oiiitrii of the, syst,c:111 is 

_ , [ ( l  ) - u(l) '  -- u(1)2 

2 
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is t,hc total spin of the systern and 

is its total z-c:ornponcnt. s2, ,s, and H arc c:orrimutablc. Usirig the above 
arid the coupling thcory of angular mome~lturrl, we havc! (noting the eigen- 
value of s2 is S(S + l)h2) 

(a) As seen from tJhc table, thc systcm has thrcc cricrgy l(:vf:ls -25, 0, 

25, each wit,li a dcgcricracy of 2. Notc that if thc: clcct,rons arc: i~~tlistin- 
guishable, thc seco~ld arid fo~irth rows of t l ~ e  t,able wolll(l 1 ~ :  diffi:rc:~it from 
the above. 

(b) 111 thc presenc:c of a ~n ;~g~ ie t i c  field I B 1 = B,, 

H =  up) up)  + uJ1) (T2)] - p . B , 

where 
C 

-e  and m bring the electrori charge arld Inass respcctiv~ly. Thus 

s2, s, and H are still commutable, so the new energy levels are: 25, 
eB,fi/mc, -eB,fi/mc, -25. The energy level diagram is shown in Fig. 3.4 
as a function of B, (lines 1, 2, 3 and 4 for the above levcls respectively). 
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A frcc ator11 of cart)o11 has four paired elect,rons in s-st,ates and t,wo 
,.lectrons in pstatcs.  Assume there is the finc structure coupling L . S ,  i.e., 

lJ2, S2 and .J2 are "gootl" quantu~n numbers. 

(a) Give t,hc values of S, L aud J of possible states by a table, indicating 
I,he correspollding ml11til)licitics. 

(b) Which stntc has the lowest energy? Give your reasoning. 
(Columbia) 

Solution: 

(a) A carbon atom has two I s  elect.rons and two 2s electrons, which form 

1 wo closed shells. Thus the atolliic st.ates are det,errllined by the combination 
c )f the two 2p electroris. In L -- S coupling, as 11 = l 2  = 1, sl = s2 = 112, 

we have L = Ill + l2 1 = 0, 1, 2; S = 1 s l  + s2 ( = 0, 1. Taking into a.ccount 
I'auli7s exclusiori principle and the antisymmetry of the total wave funct,ion, 
we obt,ain the following table. 

(b) According t,o Hund's rule, the 3 ~ o  state has t,he lowest energy. 



(a) What is thc! orl)it,al angular n lo i r l c~~t~ l~r i  of t,lic: ~ic:ut,ron pair'! 
( 1 ) )  What is t,lic:ir t,ota.l spill 2~ngula.r ~no i l i c~~tu ln?  
(c) What is tali(: 1)rol)al)ility for finding I)ot,h 11ci1tro11 spins (lir(:(:t(:(l op- 

posite t o  the spin of the dcutc:ro~i? 
(d) If thc tleuteron's spi11 is iilit,ially 100% po1arizc:d ill thc R tlircc:t,ion, 

what is the angular tlist,ril)ut,ioil of the nc:utron e~rlissiorl proI)il.I)ilit,y (per 
unit solid angle) for ;L lielltron whose spin is opposit,c. t o  t,lli~t of t,lic, initial 

P,roble~ns and .~01u1zons on Quantum. Mech,(~ni(:s 

deuteron? 
You lnay find some o f  the first f ~ w  (not normalizc~tl) splic~ric~,~l liarliionics 

I, 

0 

1 

1 1  

1 

2 

useful: 
Y d l = l ,  ~ : ~ = ~ s i r l H e * " ,  

YF = cos 6, Y , '  =  sin 26 pi'&. 

(CUS)  

Solution: 
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A negatively c:hargc:tl n meason (a psclldosca1a.r part,ic:l(:: zoro spill, 
odd parity) is iilitia.lly l)ou~lrl in tllr, lowost-cnt:rgy Coulo1111) wi~vo fiirlction 
around a deutc:ron. It is c:a.pturc!d by thc tlclitc:ro~~ ( i ~  protoil ii~l(l i L  iic~itron 
in a st,ate), which is c:onvc:rtctl into a pair of 11c:utrons: 

n + d + 71. + IL. 

S 

0 

1 

1 

0 

(a), (b) Because of the coilservatior~ of parity in strong interactions, we 
have 

p(.-) ~ ( d )  (-l)L'  = p(n)  p(n)  (-1IL" 

where L1, Lz are the orbital angular momenta of n + d and n + n re- 
spectively. As the n- ,  being captured, is in the lowest energy state of the 

j 

0 

2 

1 

0 

2 
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I 'orilomb potenti;~l befort, the reaction, L1 = 0. Sillrr p(n-)  = -1, p(d) = 

I p(n,) p(n,) = 1, we have 

( -qL2 = -1 , 

-- 
'"+'L,, 

IS" 

3 ~ 2  

" P ~  
"I'" 

IDa 

The dcutron has ,J = 1 ant1 n -  1i;ls xcro spin, so that  .I = 1 I~rfore the 
I (,action t,akcs p1ac:c:. Tht: coriscrvat,ior~ of a.ngular rnornt?nttlrrl requircs t,hat, 
. , I~ .er  thc reaction, Lz + S = J.  The itleutity of n ant1 n dc11la.nds that t,he 
I, ,l,al wave fuilct,ion be antisyinrnctric. The11 sirlce tllc spac:i:~l wavc function 
I . .  ;~ntisyii~i~lc~t,ric:, t,he spin wavc furlct,ion rnust 1)e syrnrnc:t,ric, i.e. = 1 

.111( i  so L2 = 2, 1 or (I. As L2 is odtl, wc must have Lz - 1, S = 1. 

rnr~ltiplicity 

1 

3 

1 

Fig. 3.6 

The t,ot,al orbital anguli~r rnonlenturil i ~ n d  tllc total spill i~rlgular 1110- 

111entum arc both J m q  /L = h. 

(c) Assuine that the dcut,cron spin is in the direction .J, = 1/i beforc the 
I (:action. If both neutrons had spills in t,he revcrsetl tlircctioli, we would 
I ~ i ~ v e  S, = -1fi,, L, = 2h, which is in~possible since L2 = 1. Hence the 

[,robability is zero. 

(d) Take the z-axis along the R direction. Then t,he initial state is 

1 .J, J,) = I I ,  1). In the nollcoupling representation, the st,at,e is lL, L,, 
,C;, S,), with L = 1, S = 1. Tlius 
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The stsate 

1 1  l , O ) = ~ ( B , ( ~ O ) = - ~ s i n ~ e ~ ~ " ( 1 , 0 )  

has S,  = 0 a.nd so thcrc lnust 1)r one neutron wit,h S, = -h)./2. H c I ~ ( : ~  the 
pro1)al)ility distribution required is 

1 3 ,  3 
dP(B, 4)/d62 = - . - sin B = -- siu2 0 .  

2 87r 1Gx 
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An 62- hypc?ron (spiri 312, mass 1G72 MeV/(:< intrinsic parity +) c;~ri de- 
cay via the wcak iilterac:t,iorl into a A llyperon (spin 112, rrr;~ss 1 116 Mc:V/c2, 
intrinsic parity +) and ;t K -  rnesorl (spin 0, mass 494 M(:V/(:" iiutrinsic 
parity -), i.c., 62- -t A + K-- .  

(a) What is the nlost gcrlcr;~l for111 of tjhc nilgu1:~r tlistril)~rtior~ of t,he 
K -  ~ncsorls rc!l;~tive to t,hc spin t1ircc:tiorl o f  tllc: 6 2  for t,llr: (:;IS(: w l l c ~  the 
R- has a rn;~xini~nn possi1)lc c:olnpo~lcrit of angular r~lolrlc>~~t~lrll i ~ l o ~ l g  the 

+:3/2  z-axis, i.v., t,llc i11it~i;l.l st,atjc 152"') = 1 6 2  :3,2 ). (Assllll~c: t,l~a.t, t,ho 5 2 ~ -  is at  
3 

rest). 
(1)) What rc,st,ric:t,io~ls, if any, woul(1 1 ~ :  illlposc,d oil t,llc: for111 o I  the 

angular distrit)utiorl if parit,y wcrc: c:ollscrvc:tl in tllc: d(:c:;~y proc:c:ss'! 

(Bcr.kcley) 

(a) Tllc illitrial stat,(: of the systc:in is ( 312, 3/2),  whorc: thcl v;~luc:s are 
the ort)ital and spin rno~nc?rlt,a of t;he 62-. Thc s1)in 1):~rt of the fiil;~l state 

is 1 112, s,) 10, 0) = ( 112, s,) ,  and t,be orbital part is (8, p) .= I I ,  ,m). 
Thus thc tot,al firm1 stat,? of this systcrn is 

By conser-vation of angular Inomerlturn I = 1, 2; r n  = 312 - s,. Thus 
the final state is a p wavc if 1 = I ,  t,he state t)c:ing I I ,  I )  / 112, 112); a 

d wave if 1 = 2, the statc 1)eing a coml)inat,ion of 12, 2) 1112, 1 / 2 )  and 

121 1) 11/21 112). 
Hence t,he wave fiinctions are 

Spin and Angular Mome.nt.c~m 

Thrrcforc 

i.c., thc intcrisit,y of the: c~ni t tcd partic:los is 

where 
tu = -2Rc  ujncl/() (L, ) a,l 12). 

'l'his is tlic:   no st general forrii of t,he anglllitr dist,ribtlt,iorl of the K mesons. 
(b) If I)t~rit,y wcre c:onscrved in the decay process, tllc final sta.t,e would 

lmve positive parit,y, i.e. 

Since 
PKPA = (-1) (+I )  = -1 1 

we get I = 1. It would follow that 
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Hence parity conservation would impose an angular distribution of the 
form 

I 0: (1 - cos2 6 ) .  

Given two angular n~orrlcrlta J1 a.nd J 2  (for example, L arid S) and the 
corresponding wave ful~ctions, where jl = 1 and j2 = 112. C 'olr~~)l~tc  the 
Clebsch-Gordan coefficients for the states with J = J 1  +.T.,. nr. = , tr , . ,  4 m . 0  

-, 
where: 

(a) j = 312, n,, = 312, 
(b) j = 3/2 ,  m = 1/2 .  
Considcr tho rci~ctiolls 

Assume they proceed through a resonance arid hcn<:c a, pure I-spin sta.te. 
Find t,he relative rates based on I-spill co~lservatiorl: 

(c) for an I = 1 resonance state, 
(d) for an I = 0 resonance stat,e. 
Use the C'lebsch--Gordan cofficicnt,~ supplied. The I-spins for K, 7r., C, 

and .rr are 1 /2 ,  112, 1 ,  a,nd 1 respectively. 

Solution: 

(a) AS jl = 1, j2 = i, we have 
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(b) Defining tlle opcrat,or J- = J1- r J2-,  wc have 

t 1 1 ,  using the 1jropc:rties of J _  (Problem 3008),  

. I  I 1(1 hence 

13/2 ,1 /2)  = mil, 0) 11/2 ,1 /2)  + mil, 1) 1112, -112) 

To ca.l(:rilatc: tl~c? rc<l;~tive reaction c:ross sectior~s, wc use the coupli~lg 
I 1.l)resentation to d(:scril)c tllc i~l i t i i~l  ~ L I I ~  final I-spin states: 

I K - p ) =  11/2, - 1 / 2 ) 1 1 / 2 , 1 / 2 ) =  Jgql, O ) - . l , , ' i p ~ O , O ) ,  

~Z-T') = 11, -1) 11, 1 )  = 12, 0) - 11, 0 )  + dl13 10, 0) , 

+ )  = 1 ,  1) 1 ,  I )  = Jl/ti i 2, O)  + mi 1 ,  11) + ~ I O ,  O)  , 

IC0T") = ( I ,  0 ) / 1 ,  0)  = m 1 2 ,  0) - , / q I O ,  O), 

I K - r ~ )  := \ 1 / 2 ,  -112) 1112, -112) 11, - - I ) ,  

I E - T ~ )  = 11, -1) 1 1 ~ 0 )  = m l 2 ,  - mil, - I ) ,  

T )  = 1 ,  0) 1 -1) - 2,  -1) + 0 11, -1). 

To ICpp rc:ac:t,iorls going thro~igli tlie resonxnt:p st,a.te I = 1, t,he fi- 

1,:,1 st,a,t,es 1 Epn i )  (:oiltl-iljutrs - fi I I ,  O), 1 x + ~ - )  contributes fi 1 1 ,  0 ) ,  

ivllile 1 E o r 0 )  tlocs not (:ontribute. Hence 

Similarly for K-71, reactions we have 

Only the I<-?) reactions go through the I = 0  resonance state. A similar 
~.onsideratior~ gives t,he following react,ioll cross sect,ion rat,ios: 
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(a) Compute tjhe Clebsch--Gordan coefficients for the states wit11 J = 

J1 + J 2 ,  M = rr~1 + rrl.~, where jl - 1 and j2 = 112, anti j = 312, M = 112 
for the various possible rrll arid In2 values. 

(b) Consider thc rc ac. *t' ions: 

71+p + .ir+p 

.ir-p + 7--p 

.ir-p + 7-Ovn 

These reactions, which conserve isospin, can occ:ur in tllc isospin I = 312 
statje (A resonance ) or the I = 112 state (N* rc,sonarlc:c:). C;~lt:ulate the 
ratios of thtse cross-~ect~ions, ai : aii : aiii , fc)r iLll ellc:rgy c:orrc:sporltlillg t,o 
a A resonance ant1 an N* rc:sorianc:c rcspcc:tivcly. At :L r(:son;Lll(:c cn(:rgy 
you can neglect the effect due to t,llc? otllcr isospill stntc:~. Notc: that the 
pion is an isospin I = 1 stat,(: and thc: nuc:lcorl a11 isospil~ I = 112 state. 

Solution: 

(a) As M = srbl + 711,~ = 112, (7111, n r 2 )  can o111y I)(: (1, - 112) or (0, 112). 
Consider 

1312, 312) = 11, 1) 1112, 112). 

As 

M- 1312, 312) = & 1312, 1 /2) ,  

and 

M- 1312, 312) = (MI- + M2-) 11, 1) 11/2, 112) 

= d'5 I l , O )  1112, 112) + 11, 1) 1112, -1/2), 

we have 

(1, 1, 112, -112 1312, 112) = I /&, 

(1, 0, 11'2, 112 1312, 112) = J2/3. 1 ; 
.ir+ = 11, l ) ,  .irO = / 1, O) ,  .ir- = 11, - I ) ,  

P = 1112, 1/2), n = 1112, -1/2),  

Spin and Angular Momentum 

!v( have 

I T'P) = 11, 1) 1 112, 112) = 1312, 3 /2) ,  

= 11, -1) 1112, 112) = a 1312, -112) + b 1112, -1/2),  

(.iron) = 11, 0) 1 112, -112) = c 1312, -112) + d 1112, -112). 

From a t,able of Clebsch-Gordan coefficients, we find a = m, b = m, c = m, d = m. For the A resollance state, I = 312 and the 
I .~l,ios of the cross sections are 

1 2  
ai : o i i :  u i i i = l :  l a 1 4 :  I a c I 2 = 1 :  - 9 : - .  9 

For the N* rcsonancr st,at,e, I = 112, aild the ratios are 

4 2 
ai : a i i  : niii=O : ( b 1 4  : l b d I 2 = O :  - 9 : - .  9 

Consid(:r an c:lect,rorl in a uniform magnetic field alorlg the z direction. 
I,c:t the rc:sult of a incasurernellt be that the electrorl spin is along the 
,,ositive y dircctiorl a t  t = 0. Firld the Schrodiilger state vector for the 

:,l)in, and the average polarization (expectation value of s,) along the z 

clirection for t > 0. 
( Wzsconstn) 

Solution: 

As we are only interested in the spin state and the magnetic field is 
111liform in space, we can leave out the space part of the wave function. 
'I'hen the Hamiltonian can be taken to be 

where p = -pea, w = peB/R = eB/2mc, pe being the Bohr magneton 
As the electron is initially along the y direction, the initial spin wave 2mc ' 
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Let the spin wave function at, a later tiine t be (F). Thc Schrddinger 
equation 

ih d+/dt = H$ 

then gives ih ( ) = ( 0 -1 >(abj:l 
ih, (i) = &, ( l  o -1 O )  (i) iiiat ( ~ ( t )  = IL<! B&) , 

or i l la t  b(t) = -k~,Bb(t). 

(i = -iwcy, I(j = iwp ,  

with the solution 

- iw t  

( )  = ) = ( , i w  ) = ( c-'iwt ( ; - "wt  ) ' 
Hence 

I Spzn and Angular Mom.entzlrn 

I wliere p, = 1 e 1 h/Zm,c is the inagnitudr of the magnetic moment 
~,l(xctron. As B is along the z direction, the abovr becom~s  

Thc solutiorls are 

n(t)  = *,(to) c-t v.."(t-"o) 

b(t) ..; b(to) (:B " " D ( t - " n )  , 

At tirnc to ,  t,hc clcctron s1)iri is ill thc positivc y t1ircc:tion. Thus 

1 i n(t0) = b(t,) . 

Thc normnlizat,iori c.oilciitiorl 
2 I (~(t,,) l 2  + ) l)(tO) = 1 ,  

l hen gives 
1 

Ia(to) l2  = I b(to) l Z  = 1 
2 ' - - - I  

As "0 = i ,  wc, can take 
l ~ ( t , l )  

111s are 

( t o ) ,  b ( to )= i / . \ /Z .  
3033 

Hence for time t > to ,  thc polarizations along z and 2 directi( 
Consider an  clectron iri a uiliform magnetic field pointing along the z 

;,, respectively 
direction. The electroil spin is measured (at time to) to be point,ing a.long $ 
the positive y-axis. What is the polarization along thc z and z direct,ions 1 
(i.e. the expectatiori valucs of 2s, a.nd 2s,) for t > to:) 

( Wi.scon,sin,) f 1 
Solution: 5 

'1 The Schrodinger equation for the spin state vector is 

( 2 . ~ ~ )  = h(a*, b*) ( i) (:) 
2 ~ 1 ,  

=fj,(a*b+b*a)= - f i s h  ? B ( t - t o )  ; [ I 
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3034 

Two spin-; particles form a corilposite systern. Spill A is in the cigen- I 
st,ate S, = +1/2 and spin B in the eigcnstate S:, = +1/2. What is the 
probability that a rneasuremellt of t,he total spin will give t,hc value zcro? 

(CUS)  

Solution: 

111 the uncouplirlg rcpresclntation, t,hr statc in w1lic.h tlic total svin is I 
zero can be writ 

where SA, and SH, tl(:rlotc: tllle z-co~npoiic:r~t,s of t,llc? s~)ins o f  A i111d B 
respectively. As t,hc:so t)wo sl)iri-$ ~)art,ic:l(xs arc riow ill t,llc: st,atc, 

j 

I Q )  = ISA, = t 1 / 2 )  ISnZ = +1/2), I 

! 
the probability of fill(1iiig t,he tot,al spill to I)(: m:ro is 

P = l(0 ) I J )  1 2 .  

S, is clefined its 

Solving thc rigcnecl~i:~tiorl of 5 ,  we find thiit its cigrrlfunction 1 S, = 

+1/2) call bc expressed in the reprcsc11t:ttion of S%aricl S, as 

Thus 
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;I ud hence 

Therefore 
1 

P = 1 ( [ ) I & )  1" - = 225% 
4 

(a) An electron has becri obscrvetl t,o have its spin iri t,hc direction of 
z-axis of  it rec:t:l~lgular c.oordirlate syst,em. What is the probt~bility t,llat 

;I  second ot)servat,ion will show the spin to be directed ill z - z plane itt, an 
.~.ngle 8 wit,h reslxct to the z-axis? 

(b) The total spin of the nclltroil and proton i r ~  a deuteron is a t,riplet 
:;t,ate. Tllc: resliltailt. spin ha.s been ol)servcd to be parallel to the z-axis 
OF a rectariglilar coordinate system. What is the probability that a second 
~l)servation will show the proton spin to be parallel to the z-axis'? 

h (Berkeley) 

Solution: 

(a) The initial spin state of the electron is 

The st,ate whose spin is directed in x - z plane at an angle 8 with respect 
l,o the z-axis is 

/ 8\ 
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Thus the probability that a second observatioil will show the spin to be 
directed in z - z plane at an angle 0 with respect to the z-axis is 

(b) The initial spin st,a.te of the neutron-proton systein is 

Suppose a second observation shows the proton spill to be paritllcl to the 
z-axis. Since the neutron spill is ~)arallcl to the protoll spin ill t,hc dclrtcron, 
the final state remains, as l)cfore, 

Her~cc thc proba1)ility that a sccoiid obsc,rvation will show tllc proton 
spin to be parnllrl to  thc z-axis is 1. 

The deutcrori is a bound state of a protoil ant1 a ileutron of toti1.1 nngular 
rnomentum J = 1. It is known to be principally all S (L = 0) statr with a 
slna.11 admixture of a D ( L  = 2) state. 

(a) Explain why a P statc cannot contribute. 
(b) Explain why a G statc carinot contribute. 
(c) Calculate t,he magnetic moment of the pure D state 71 - p system 

with J = 1. Assume that tlie n and p spins are to be coupled to make 
the total spin S which is then coupled to the orbit,al angular momentum 
L to give the total angular momentum J. Express your result ill nuclear 
magnetons. The proton and neutron magnetic momellts are 2.79 and 1 . 9 1  
nuclear magnetons respectively. 

( CUS 

Solution: 

(a) The parities of the S and D states are positive, while thc parity 
of the P state is negat,ive. Because of the conservation of parity in strong 

~~~terac t ion ,  a quailtuln state that is initially an S state cannot have a P 
::Late componerit at any later moment. 

(b) The possible spin vi~lncs for ;I system corrlposed of a proton and a 
~icutron arc 1 and 0. We are given J = L + S and J = 1. If S = 0, L = 1, 

(.he syst,rm would bo iri  a P state, which rrlust be excluded as we have seen 
I 11 (a). The allowcd valucs are the11 S = 1, L = 2, 1, 0. Therefore a G state 
( I, = 4) ~i~11110t coiit,ril)~it~. 

(c) The total spill is S = s,, + s,,. For a pure D state with J = 1, the 
, rrbital arlgular inorncilt,~irn (reli~tivc: to the center of inass of the 7, and p )  
is L = 2 arid tllc t,otal s~)ili iilnst k)c S = 1. The total m:~grletic rnornerit 

;r.rises frorn the coupling of tllc nlagnctic nloment of the total spill, p, with 
ILllat of t,he orl~ital ang~ilar iiiornenttlrrl, p ~ ,  wherc p = p ,  + p , ~ ,  p,, pn 
lrcing thr spill rliagrictic: inonlc:rits of p it11d 71, r(~s~)ectively. 

The a,vcragf: valllc: of tlic coi~1l)orlcrit of p in the direction of thc: totaiL1 
:;pin S is 

where 

;IS sp  = S T ,  = + S. 
The r~iot,ion of the:  r rot oil relative to t,he center of mass gives rise t,o 

;I. magnetic: irioiiici~t, wllilc tllc motioii of the neut,ron does not as it is 
llnchargcd. Thus 

PI, = P N L ~  I 

where L, is the angular lnolnenturrl of the proton relative to the center of 
Illass. As L,+L,, = L and we may sssurnc L, = L,,, we have L, = L/2 (the 
(.enter of mass is at tllc mid-point of the connecting line, t,aking m, rn m,). 
<:onsequently, pL = pNL/2. 

The t,otal coupled magnetic: moment along t,he direction of J is then 

Since J = L + S, S . L = 4 (J" L" S? With J = 1, L = 2,  S = 1 
;Ind so JL 2, L L  6 ,  S2 = 2, wc have S - L = 3 and thus L . J = 3, 

S . J - -1. Hence 
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1 1 
PT = [l PN . 3 + 2 ($1' + 9 n )  P N ( l ) ]  512 

1 1 
= [ I 5  - 5 ( g p  + gn,)] 5 ~ N J  = 0.31/iNJ. 

Taking the direction of J as the z-axis alid lcttiiig J ,  ta.ke the inaximuni 
valuc .I, = 1,  wc have 1- -- 0 . 3 1 ~ ~ .  

3037 

A preparatory St,e~-11~-Gcrlr~ch experiment llas c:st,al)lishcd that the z- 
component of the spin of all clcctron is h / 2 .  A l~iliforrn in;~.grictic: field in 
the 2-direct,iol~ of rnagnit,ude B (usc c:gs uriit,s) is the11 swit,cllcd on at time 
t = 0. 

(a) Predict the rc:sult of a sirlglc ~ric:nsrlrcrilcilt o f  t,lic z-c:olnpoilcnt of 
the spin after clapsc of tilllc T .  

(b) If, irrst,c:i~d of ~ncasliri~lg t,llc z-c:orilporlrilt of tlic spill, t,lic :I;-compo- 
nent is measured, prctlict tho rc:sult of suc:li iL singlc ~ I ~ C ~ L S I ~ T C I I I ( : I I ~  after 
elapse of t,imc T .  

(Be~.keley) 

Solution: 

Method 1 
Thc spill wave functio~i (:) satisfies 

where w = eB/2.rnc, or 
 it^, = wb, 

i b =  wn. 

Thus 
{ .  

2 = i w b  = -w a ,  

the solution being 
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where A and C are arl,it,rary constants. From the initial condition a(0) = 0 
and b(0) = 1 as the initial spin is in the z direction, we get A = -112, C = 

112. Hence 1 
= - (e--"t - e"t) = - 2 ' slrl ' wl , 

) = coswt, 

and the wave funct,ioii at time t is 

(a) At t = T ,  

As (i) aIltl ( y )  a,rc: the (:ig(:~ivcctors for a, wit,h ( : i g ~ ~ l ~ i l l ~ ( ? ~  +1 arid 1 
respectively t,hc prol,at)ilit,y that the mcasurcd z-c:orn~)o~~cnt of t,hc sl)in is 
positive: is siIl"T; t,hc pro1)al)ility that it is ncgativc is (:os2 wT. 

(1)) 111 the diagonal rcprcsentation of a,, the cigellvcctors of a, 

As we can write 

the probabilities that thc measured 2-component of the spin is positive and 
is negative are equal, being 

Method 2 

The Hamiltonian for spin energy is 
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H = -p  . B = e B h a X / 2 n r c .  

The cigenst,ates of u, are 

We can writr t,lie init,ial wave function as j 

The Hamilt,onian thc:rl gives 

(a) As 

Spin  and Angular Mom.entum 

Solution: 

The Hamiltoiliail 

I e l f i H  I;T = --p . H = - (T, = I j u ( T , ,  
27nc 

!:ives t,he ecluatioil of lnotioil 

;land hcncc: 
2 ?jj1 + w ,G1 = 0 .  

-,i, sin w t  

the probal~ilitics a t  t = T arc 

PZT -  sin"^, PZL = cos2 w T  . I 
(b) As in inrthotl 1 abovr, 

3038 

An alkali atom in its ground state passes through a  stern^-Gerla.cli ap- 

paratus adjusted so as to transmit atoms that have thcir spins ill the +z 
dire~t~ion. The atom then spends t,ime T in a magnetic ficld H ill the 
x direction. At the end of this tirnc what is the probability that thc atom 
would pass through a Stern-Gerlacli selector for spins in the z direction? 
Can this probability he made equal to unity? if so, how? 

(Berkeley)  

The sol~it~ioli is Y/) - (:: ), witah 

( (t,) = + l)(!-iwt , 

= s t  ( ) - i sin wt ( ) 
0 In t,he a,bovc: (,) is the eigenvector a, for eigenvalue -1. Hrilce the 

probability that t,he spins are ill the z direction at time T after t,hc at,om 
passes through the St,crn-Gerlach selector is 

. 2  1 - COS 2 ~ 7  

' t  sin w~ 2  



230 Problems and .Solut~ons o n  Quantum Mecll.anics 

The probability equals 1; if 

~ - c o s ~ w T = ~ ,  
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u . n =a, sinHcoscp + cr,sillHsi~lcp + azcosH 

cos 19 sin 19 e-'' 

where 

Hence t,he probability will becolllc, llliity at t,inlc,s T = (271 + 1) 7rrcnl 

I e l H .  

A bean1 of I);~rt,ic.lcs of spin 112 is scrlt t,liroligll ;L St,c:rn Ger1;~c:h appa- 

ratus, which tlivid<ls t,Ilc ir1c:itlcrlt t)c::~rrl irlto two sp;l.ti:~lly scp;~rat,c:d c:orrl- 
ponents clc~)cr~clirlg 011 tllc qllarltulrl rillrlll)or ,rrr. of tllc: p;~rt,ic:l(:s. Onc of tllc: 
resulting t)carns is rcl1lovc:d and tllc ot,lrc:r 1)c:;~rn is sant t,hroligh ariot,llc:r 
similar ap~)ar;~t ,~ls ,  thc ~lli~gl~cti(: fi(:l(l of whi(:ll has an iii(:lill;~tioll ( .  wit11 
respect to t,ll;~t, of t,llc first ;~pp;~r:~tlls (s(:(: Fig. 3.6).  Wlmt arc tlic: rc1:~- 

tive nurn\)crs of psrt,iclcs that appear ill thc two 1)c:arns 1c;~ving tllc: sc.corld 
apparat,usa? 

Derivc t,hc rcsult using t,hc Pauli spin formalism. 
(Berkeley) 

Solution: 

For an arbitrary dirc,ctiou i r ~  space n = (sin 19 cos cp, sin H sin cp, cos 6') tlle 
spin operator is 

A B 

Fig. 3.6 

are Pauli's spin matrices. Lct its eigenfunction and eigcnvahie be ( i )  and 
X rcspec:tively. Then 

a (cos H - A) + 0 e-" sir1 H = 0 , 

n ew sir1 H - b ( X  + cos 0) = 0 . 

For a, O 11ot tto vanish idcritically, 

or 1, i . ~ . ,  X = I f l ,  (.orresponding to spin angular momenta If; h. Also, 
norm;llization requires 

cos 6' - X epZ' sin 19 

cL' sin H -(A + cos 6') 

For X = +I.  we have 

= X2 - cos2 H - sin2 H = 0 ,  

0 O 1 - cosH sin 5 
- - - - - e'l' 

0 ' a sine cos 

and, with normalization, the eigenvector 
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cos e + 1 0 
b cos 5 
- - - - - - - 

a e - ~ v  sin 6 e-"v sin 

and t l ~ c  ratio of the numbers of the two bea.ms of the particles is 

and, with normalizatioll, the eige~lvcctor 

For the first Stern~-Gerlacll a p ~ ) a r a t ~ i s  t,ake the dirc:c:t,ioir of the inagnc:t,ic: 

field as thr: z direction. Ta.kc n ;dong tlre rrlagnct,ic ficrlcl irl tkic scc.orid St,c:rri 
Gerlach apparnt,us. Tlrcn cp = 0, 0 = n ill thc above. 

If th(: part,iclcs which are sent iiito t,llc sccond S - G ; ~ p p a r ; ~ t ~ i s  11;~vc: 
spill up, we havti 

c = (T 71,) 2) = (COS ((r/2), sill ( ( ~ 1 2 ) )  (i) = cos (ct/2) , 

Therefore, aft,er they lcavc the second S - G ap~)aratus,  t,lic ratio of thc 
nunlbers of the two boains of particles is 

I c I\(:OS"Q/~) - (I - - = c:ot" --. 
( d l 2  sin" (a /2)  2 

If the particles which are sent int,o thc second S - G apparatus have 
spin down, we have 

c = (T n 1 J z) = (COS (a/2) ,  sin ( ~ 1 ' 2 ) )  ( ) = sin ( a / 2 ) ,  

Thc~ i~ii~gri(: t i~ nio111ent of a silvcr at,onl is csscrit,ially equal to the mag- 
11c:tic: ~i~orric:iit o f  its ~inpaircd valcncc c:lcctron which is p = -ys, where 
y = (!/?ILc i~11(1 s is t l i ~  (:lc(:t8ro~1's spin. 

Si~ppose t,lia.t a bear11 of silvcr at,oms having. vrloc:it,y V is passed t,llroligh 
a Stc:rri Gor1;lc:h ;~~)I)aratus  llaving its field gradicnt iri the z dircctiori, ant1 
t,lint only tjlic: 1)carrl with 7rr, = I L / ~  is t,o 1x1 c:orisidered iri what follows. 
This 1)c:ain t,hcn c>ritc:rs a region of l(:rigt,li L having a c:oristailt 111ag11c:tic 

fic:ltl Bo tlirc,ctly along thc axis of the: 1)cain (y-axis). It rrcxt, erltcrs an- 
ot,lic!r Stc:rri G(:rlnc:l~ apparatlis idcrit,ic:nl to tlic first as sliown in Fig. 9.7. 
D(:sc:ril)t: rlvarly what is sccn wlicrl tkic bcarrl c:xits from the second Stcr~l-.- 
Gor1ac:li n~)para t~ i s .  Express t,lic: iiltc:~isitic:s of t,l~c: rc:sult,ing 1)eams in t,crrrls 
of V, L, Do and tkic: c:oiistarlt,s of the ~)rol)lcin. 

Us(: cl~i;~.i~t,urn ri~ecllariic:;il ccluatioris of motion to derive your result. 

(Berkeley) 

Fig. 3.7 

Solution: 

If we took a picturc a,t the exit of the second S -  G apparatus, we would 
see two black lines arising from the deposition of the two kinds of silver 
atoms with nt, = h.12 and r r ~ ,  = -h/2. 

Denote the st,ate of the syst,eill in the rcgion L by It). If we consider 
only atoins of m,, = h/2 in the beam t,hat enters the region L a t  t = 0) then 
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Then as 

H = (AE/4)  (a1 . az) - (PI + p 2 )  . H 

= (AE/4)  ( a l , ~ ~ ,  + al,az, -1 a l , ~ , )  

where we have used p = gpos = 4 gpoa,  we havc 

and hellce 
1 

El = A E / 4  - - 2 (gl + g2) 

Similarly, 

Then as 

we have 
~ $ 2  = (AE/4)  ( 2 d S  - 1) $ 2 ,  

Spin and Angular Momentum 

By the same procedure we obtain 

(6) As particle 2 is ulipolarizetl and can be considered as in a mixed 
stat(,, its s t i~ tc  E2 (.a11 1 ) ~  cxpancled iri terirls o f  (12 and PL: 

wlicrc. 1 a l 2  = 11) l 2  = 112. Tlicri thc initial total wavc functiori is 

Thcn using the relations 
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we obtain 

(c) I11 thc: lirnit p,"H/AE >> 1, i.e., :I: >> 1, we havc: 

A E  g1+(/2 E ----: 
1 

1 - 4 2 
poH = -5 ('11 + '12)  1 ~ o H  , 

LIE 1 
E2 = - ( 2 f i 1 7  - I) = (AE/4)  x 2:r = - ((12 - 91) ,"OH, 

4 2 

A E  1 
3 - - (1 + 2 = -- ( 9  - ' / l ) pOH,  E: - 

4 2 

A E  91 +fi E 4 = - + L  
1 

4 2 
poH = 5 (91 -1 92) poH.  

PI, (t)  z5 1 .  

When poH/AE << 1, i.c., z << 1, we have 

pi, (t) = 1 - sin2 (AEt/2h) . 

A hydrogen aton1 is in a 'PII2 state with total angular rnomentum up 
along the z-axis. In all parts of this prol,lern show your computations and 
reasoning carefully. 

(a) With what probability will the e1cc:tron be found witah spin down? 
(b) Coinpiite the probat~ilit~y per unit solid anglc P(0 ,  p) that the elec- 

tron will be found a t  spherical angles 6,  p (indepcndcnt of radial distance 
arid spin). 

((:) An expt:rimcnter applies a weak ~nagnetic field along t,he positivc 
z-a.xis. What is the cffc:ct,ivc magilctic rriolnent of the atom in this field? 

(d) Starting from t,he oriRibal state, the cxperin~cnter slowly raiscs the 
magiictic: ficltl until it overpowers the fine struct,ure. What are the orbital 
and spir~ quailtl~m riurn1)ers of t,llc filial state'? 

[Assn~ntr the Ha.inittoriia.rl is lincar in tllc rriagnetic field.] 
((:) What is tlic c:ffcc:t,ivt: nlag~lctic: i~iornc~iit of this final stat,e? 

(Berlcelc y) 

Soll~tion: 

(a) I'or the statc 2P, /2 ,  1 = 1, s = 112, J = 112, Jz = 112. Trans- 
forming thc coli~)liiig rcprcsc~ritatioii into the uncoupling representation, we 
~ ~ L V C  

Thcrcforr~ PL = 213. 
(b) As 

we have 
1 

P(0,  p) dfZ = ; 3 (2YA Yi1 + YA Yio) df2 

Hence the prob;~hility per unit solid angle is 
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(c) In the weak magnetic field, J and J ,  are "good" quantum numbers 
and the state remains unchanged. The effective magnetic mosnent is 

where m is t,he electron mass and 

Hcnce p = e\i/6rnc. 
(d) In a strorig niagnetic field, thc ir~tcractiorl of t,llc 111:rgnctic inorncilt 

with the field is rnuc,h stronger than thc cou1)ling intoraction of spill a i ~ d  
orbit, so that the latter can be negl(:ctcd. Here 1 ; ~ r i t l  s arc good qliaiitliir~ 
nurnbcrs. The Ha~niltoriian re1atc:d to the magnctic ficltl is 

When thc: magnct,ic fic:ltl is increnscd slowly from zero, tlic: stat,(: remains 
at the lowest, energy. From the exprcssio~l of W, wn sc:c: that when thc 

magnetic field becoincs strong, only if 1, = h , ,  .s, = -1t,/2 can t,he stlate 
remain a t  the lowest energy. Thns tlic: clusi~tuln nulnbcrs of t l ~ c  filial stat,(: 
are 1 = 1, 1, = -1, s = 1/2, s, = -1/2. 

(e) the effective magnetic momcr~t of the filial state is 

3043 

Consider a neutral part.icle wit,h intrinsic angular rnoment~i~n d m ,  
where s = h/2, i.e., a spin-1/2 particle. 

Assurne the particle has a magnetic moment M = ys, where y is a con- 
stant. The quantum-mechanical state of t.he particle can bc described in a 
spill space spanned by the eigenvectors I+) and I-) representing a1ignment.s 
parallel and ant(iparalle1 to the z-axis: 

Spzn and An,gular Momentum 24 1 

At tiirie t =; 0 the state of the system is J$(t = 0)) = I+). The particle 
moves along the y-axis through a uniform magnetic field B = By oriented 
i~l011g the y-axis. 

(a) As expressed iri thc I+), I - )  hasis, what is 1 .J,(t))? 
(t)) What would be t,he expc~ctation values for rneasurcnlent,~ of the 

o1)servnblcs s,, s,, .s, a.s functions of time? 

(CUS)  

Solution: 

(a) The H:~iniltoniaii of thc, particle is 

In t,llc: rcyrc~seritation of i2, d,, 

t ~ i i t 1  so th(: two (:ig(:iist,at(:s of .qll 1~rc 

1 
~ I . ; , , = ~ h ) = - ~ ~ ~ h l ~ , = i ~ ) ,  2 

f i l s ,  = -$ n )  =TB a h i s y  = -+ h ) ,  

ally ~ t i ~ t ~  of the part,iclr car1 be expressed as 

1 
Id( t ) )  = c l  I .s, = fi) exp (+  i y ~ t )  

+ c ~  i S1/ - -- h) exp ( - i a y ~ t )  . 

The11 the initial condition 

I $J(t = 0)) = / s, = h/2) 
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and so 

+ 

1 1 .  
= i 1) (i) = 

+ 

1 1 .  
= - (-i 1) (i) = -- 
fi fi z .  

Therefor(? 

' 

( vxp (,i ; y ~ t )  1 ,$(t)) = - ,I, - 4 fi 

fi 
1 

0 s  ( t )  , = ) s i n  (1 ? ~ t )  I s ,  = 2 

(1)) 

(,5,) = (,,, (1 , ~ t )  - sin (a . ~ t ) )  TL ( l  o -1 ') 

= - h cos (yBt) . 
2 

-sin (; y ~ t )  

Spin w r ~ d  At~qular Momentum 

(s,) = 0, because (s,) = 0 at t = 0 and s, is conserved. 

A partic 1e of spin 112 aiid inagrictic r~lonlcnt p is placed in a ~rlagrictic 
fi(>l(l 

B = B o z +  B lcoswtx -  B l s inwty ,  

which is oftc.11 crnployctl in ~nagnctic resonance experiments. 
Assume that tlic particle has spin up along the +z-axis a t  t - 0 

( n ~ ,  = +1/2). Derive thc probability to find the particle with spin down 
(m,, - -112) at tirnc t > 0. 

(Berkeley) 

Solution: 

Tlie Haniiltoliian of the system is 

Letting 

wo = pRolh, W 1  = PBlIf2., 

we have 

H = - p(Boa, + Blu, cos wt - Bla, sinwt) 
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where 

0 ())> 1 g y =  (; -;), o z =  (; -;) 
Let the wave functiori of t,he systcrn be 

I t )  = (;;;;I 
Tlie Schriidirigcr equa.tion i h a t  I I) = H I t ) ,  or 

,l (i) = -wo (; -;) (;) - w l  (cp:wt (;) , 

givcs 
il.= iwon -t i ~ ~ c ~ " ~ h ,  

b = -iwoO + iwlcp'"'n . 

Try a sollitioii of tlic, type, 

S~bs t i tu t~ ion  iri t,he abovc oquatioiis gives 

Asslilrlr t,hat cu ant1 ,O liave the forms 

where A l l  A2, i~11d f 2  are constants. Suhstitutiori gives 

(-2wo + w + 0) A l  - w1A2 -- 0 ,  

-wlAl + RA2 = 0 .  

For this set of equations to have ilontrivial solutioiis t,he det,errniriant of 
the coefficierits of A l ,  A2 must be zero, i.e., 

Spin and Angular M o m e n t u m  

giving 

Tlicreforc the gtncral forirl of 0 is 

p = A2+ exp (i62+t) + A2- exp ( i f ) - t )  , 
t111tl that of a is 

f i  cxI, j i ( 2 w o  + w) t ]  
rr = 

iwl 

+ f 2 . _ A 2  (:XI) (if2Lt)l . 

Iiiitially tlic spi11 is 111) alorig t,lic z-axis, so 

r 7 I lic sollitiori is 

A2+ - - 112- = wl/ (O+ - O p )  

w 1 - 

2 J(wo - w/212 + wf 
13cll(;(? 

h(t) = exp (-iwot) P ( t )  

= exp (-iwot)A2+ 

x [exp (i62+t) - exp ( iR- t ) ]  

= ex11 (-iwt/2)2iA2+ 

- 
iwl exp [-i(w/2)t] 

- J(w0 - ~ 1 2 ) ~  + w: 

x sin ( J(wo - ~ 1 2 ) ~  + W: t )  
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The probabi1it.y that thc particle has spin down along the z-axis a t  time 
t is 

A spin-; syst,c~n with ~nagrict~ic ~no~nc i i t  p = pea is loc:at,c:d ill ;i ui~iforrn 
til~~c-il~clc~)crldcl~t magnct,ic: ficltl Bo in t,lic. positive: z tliroctio~~. R) r  tlic 
tilnc interval 0 < t < T arl atltlitioli;il  illi if or in t , i l ~ l c : - i i i t l ~ ~ ) c ~ ~ ~ c l ( ~ i ~ t .  fi(!l(l B I  
is ;ipplictl ill thc: positive, : I :  t1irc:c:tioil. During t,liis iiit,(:rv;~l, t,110 syst,(:ln is 
i ~ g ; i i ~  in :i ~iliifornl (;ollst,:ilit, iliag~l(:t,i(~ fi(:l(l, but of (liff(:rc,iit il~i~giiit,il(lc~ :1,11cl 

dirc,c.tioli z' fro111 t,llo init,ii~l oil(,. At ;i11(1 I)(:for(: t -- 0, t,li(: syst,(~ili is i l l  t,hc 
I ~ I ,  = 112 statc with rc:spc:c:t to t,llc: z-iixis . 

(a) At t = O+, what arc: thc: ailiplit~ltlcs for Iilitlilig t . h ~  syst,(>ili wit11 spin 
projc:c:t,ions ,rr~.' = f 112 with rcspc:c:t to thc z' clirc:c.tioi~? 

(1)) What is the t,imc t1cvclopmc:nt of t,ho clicrgy ( \ ip ,~l l~t , i~t , ( '~  wit,li r(:sp(:ct 
to t,lic z' dirc:c:t.ioii, tlurilig the t,iln(: i~it,(~rv:il 0 < t < T'! 

(c) What is t,lw prol)al)ilit,y :~111plit,li(l(: :it t = T of  o1)sc~rviilg t,ll(l systcili 
in t,hc spill st.;itc 7r1. = -112 along t,lic: origillal z-axis'! 

[Express your answers in trrills of t,lic. i ~ i i g l ~  8 l)~t,wc:c~i t,li(: z i~i1c1 z' ilx(:s 
and thc frcqllellcy wo = poBo/lr.] 

(Bf!~.kf:/f!!/) 

Solution: 

(a) 111 the rcprcscntation of sZ, the eigcnvrctors of s , ~  arc: 

corresponding to the eigenvalues s,, = 112 ant1 -112 respect,ivcly. Then 
the probability amplitudes for *m,' = *1/2 arc respectively 
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8 
sin 9 2 (i) = - 2 , 

(1)) The Hainiltoilian ill tlic interval 0 < t < T is 

The initial cigcrifiiilctio~is arc> 

Slil)st,it~itioli in t;hc: Scliriidinger cquat,ion H x *  (0) = *Ex+ (0) gives 

At a later tiiiic t ill 0 < t < T, the eigenstates are 

x*(t)  = cxp ( ~ i E t l h , )  x*(O) = exp (*ipoBt/h,) x*(O). 

(c) The probability amplit.ude a t  t = T is 

C- (T)  = (0 1) exp ( - 2  H T l h )  

= ( i ~ i /  J m )  sin ( p o ~  J m / j i )  

- i sin 8 sin (po B T l h )  . 
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An alternative way is to  make use of 

and so 

e 
$ ( t )  = X +  ( 0 )  cos - exp ( i p ~ B t l h )  

2 

e 
- X -  ( 0 )  sin - exp ( - i l roBt lh)  , 

2 

to get 

e e 
C- ( T )  = P+y'/(T) = cos - sin - 

2 2 

x {exp ( ip ,oBT/h)  - exp ( - i p g B T l f l ) )  , 

poBT 
= i sin 0 sill - , wllere = 

f 

A spin-; system of magnetic rriorrle~it p is plt~cecl in a dc inagnetic field 
Hoe,  in which t,he energy of th r  spin state I + 112) is Two, t,hiit of I - 112) 
being taken as 0. The system is in tlic stat,c - 112) wh(:n a t  t = 0, a 
magnetic field H ( e ,  cos wot + e ,  sin wot)  is sudtl(:lily tur~ic+d ori. Ignoring 
relaxation find the energy of the spin syst,ern as  a function o f  wo, H I  c and 
t ,  where 

c = (+1/2 I pz + i p y  I - 112). 

Why is the energ; of tllr spin s y s t ~ m  not consc~rved'~ 
(Columbia) 

Solution: 

The  Hamiltonian is 

= - ~ ( H u : ,  cos w0t + H f f y  sin wot + Hog,) 

In the Schrodinger equation 

setting 

wc gct 

- = - [ H  cxp (iwot) a - Hob] 
dt h, 

Try a so111tion of tlic typc 

wllcrc A, B i~lld 12 arc c:orlst;rnts. Sul)stit,ut,iori gives 

wliere 

For riontrivia.1 sollitions we require 

Ho H exp (-iwot) 
= - iJ ( H exp (iwot) H o  
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where 

the subscripts 1, 2 c.orrcspondirlg to the valucs of 62 with +, - signs rc,sI)cc- 
tively, arid 

0 At t = O the systeni is in the, I - +) state and (1 = ( Thus Bl + 
B z  = 1, Al + A2 = 0. Then as 

we have 
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giving 

Thcrcfore thc wave function of thc system is 

w' 
$(t) = - i sin (Qt) exp 

Q 

I (w + ; wo) 
+ cosQt -- 2 

Q 
sin ~t exp (i t) p, l 

and the energy of thc system is 

Note that as 

c = ( + i l p z + i p y / - i )  

=p + -  nz+iny - -  ( : I  I : )  
C 

p = - .  
2 
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As the energy of the system changes with time t ,  it is not conserved. 
This is because wit,h regard to spin it is not an isolated system. 

A beam of neutrons of velocity v passes from a region (I) (whcrc the 
magnet,ic field is B = Ble,) to a region (11) (whcrc the field is B = Bze,). 
In region (I) the beam is completely polarized in the +z direction. 

(a) Assuming that a givcn particle passes from (I) to  (11) a t  timc t = 0, 
what is the spin wave function of tha.t particle for t  > 07 

(b) As a function of timc, what fractioii of the part,iclcs wotild t)c 
observcd to havc spins in thc +J: dircc:tion; the +?j tlircct,ion; t8tlt +z 
direction'? 

(c) As a practical ma.t,tcr, how abrupt must the transition l)ct,worrl (I) 
and (11) be to havc t,hc above dcscript,ion valid? 

( Wisconsin,) 

Solut ion:  

(a) Coi~sidcring oilly thc spin wavc fiinct,ioii, tho St:liriiclillger oclu CL t,' 1011 

is 
ihi3 I x ) / a t  = H / S) , 

where 
H = -  p . B = - / L , ~  Bzu, , 

with p,, = -1.9103 p~ l~eing t,he a.iiolnalo~is ma.gnctic nioinent of t,lic! rleli- 
tron, LLN = eh/2,tn,, c t,hc nuclear magneton, m, thc ma.ss of a prot,ori. Thus 

1 h L p L  I R2 . Let I S )  = (i ). The above givrs where wz = 7 

The initial condition is a(0) = 1, b(0) = 0 as the beam is initially 
polarized in the +z direction. Solving for a and b and using the initial 
condition we obtain for t > 0 

cos w2t 

i sin wz t 

(b) The 111ei~r1 value of the spin in the state / x) ,  i.e., the polarized vector 
for ricutron. is 

Thus in the region (11), the ncutrori spin is in thc ?jz plane arid precesses 
about the 2: direction with angli1a.r vt?lot:it,y 2w2. 

( r )  For the dcscriptioris in (a,) arid (1)) t,o t)e valid, the time of the 
t,rarisitiori b(.twccrl (I) arid (11) rnust satisfy 

For example if B2 - 10" Gs, the11 t  << 0.7 11,s. 
If tlie kinetic ericrgy of tlic i~icid(:iit n(:litrons is givcn, we riLn c;tlciilate 

thc 1ipp(:r lirnit of t,he widt,li of the transitioil rc:gion. 

Tlic Harniltoniari for a (p+ F )  atorn in the n = 1, 1 = 0 state in an 
extc~riial rnagr~ctic ficltl B is 

(a) What is the physical significance of each term? Which term domi- 
nates in the interaction with the external field? 

(t)) Choosing the z-axis along B and using the notation (F, M), where 
F - s, +s,, show that (1, + l )  is an eigenstate of H and give its eigenvalue. 

( c )  An rf field can be applied to  cause transitions to the state (0, 0). 
Describe qualitatively how an observation of the decay p+ + e+v,v, could 
be used to detect thc occurrence of this transition. 

( Wisconsin) 

Solution: 

(a) The first term in H is due to the magnetic interact.ion between LL 

and e, the second and t,hird terms respectively account for t,he magnetic 



254 Problems and Solutions on  Quantwn Mechanics 

int,eractions of /L and e with the external field B. Of t,he latt,er, the term 
1 e I s, . B/m,,c is dominant as m., - m,/200. 

(b) As 

Corisidcr the  state 

AS tlic t:igciivalucs of F" s;, s:, s,,, s,, arc: 1(1 + 1) TI:" , (+ + l)lr.", 
1 1  
5 ( 5  + 1) i i ' ,  4 h, 11. r c s ~ ~ c c t i v ~ l y ,  w(:  hi^^(: 

(c) The  decay p+  + c+v,:v,, (:an h(: d(:tcc:tctl t l~ ro~ ig l i  thc o1)scrvation 
of the alinihilation of the positroili~im e+e- + 27. For t,he stat,c (1, + I ) ,  
the total angular rnornc:nturn of the e+e- system is 1 ,  a.rld so c+e- cannot 
decay into 27  whose total angular ~nomentum is 0. For the state (0, O ) ,  the 
total angular morncnturn of the e+e- system is 0 and so it can decay into 
27. Hence, detection of e+e- + 27 implies the dct:;ty p+  + e+v,v, of the  
(p+e-) system in the  state (0, O ) ,  as well as the  transition (1, +1) + (0, 0) .  

4. M O T I O N  I N  E L E C T R O M A G N E T I C  F I E L D  

W(: Itlay gc:ric:ri~lizc the st:ini-c:l;~ssic:al Bolir-Sonlnlcrfcl(1 relation 

(where t,lic i11tt:gral is aloiig a c:losetl orbit) t,o apply to  thc cast: where 
elect,rorliagiictit: fic:ltl is prcscirit 1)y rc1)lac:irig P with p - f:A/c! w1ic:rc: r: is 
the  c:lii~rg(: of tlic: 1)a~rtic:le. Usc this aritl thc cquatiori o f  iiiot,ioii for thc: 1ino;rr 
~lloiric:nt,riiri p to tlcrivc: i~ qriimtixation c:oiitlitiorl oli tho ~ i i i ~ g i ~ t ~ t i ( :  flrix of a 
seirii-c:l;~ssic:al crl(:c:t,roii w1iic:li is ill ;L tn;~gric:tic: fieltl B ill i ~ r i  i~rbi t r ;~ry  ort)it,. 
For t , l rc t ro~~s ill  solids this c:oiitlitioii (:nu t)ci rc:stntctl ill tc:riris of t h t ~  size .S 
of t , l~c  ort)it i l l  k-s1)i~c:c:. 01)tiliii t,li(: ( l l i i~~l t i~i~t , ior i  (:oii(litioii or1 S in tt:i-111s of 
B (Igilorc: s~) i i i  c,tF(:c:ts). 

( C1ric:ngo) 

Solu t ion :  

w1ic:rc p is t,lic: c:i~lioiiic:a.l rnoinentum, e is the charge of particle. The  gen- 
era1ixc:tl Dolir Soillrrlc:rf(:ltl relation becomes 

whcrc 

& =  /;B d s = L ( V x A )  - d s =  A d r ,  f 
using S t o k ~ s  tlieore~il T h e  classical equation of the rnot~oli of an  clcctron 
in a constaiit magnetic field B, 

gives p = -er  x B / c  and 
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(a)  Prove tfhat p, ant1 p, a re  constarlts of motZion. 
(b) Find the  (cl~la~ltum) energy levels of this systcni. 

( M I T ?  

Solu t ion :  

The  I-I;r,n~iltoniarl for t,lie particlc ca.rl l)c writ,t,c:ii ;IS 

(;I) As H docs liot tl(~pcnd on z a.iltl z oxl)lic:itly, the? l~asic: c:oirlirlut,;~tio~i 
rel;ltions iri qlli~1it11111 iri(:(:liani(:s 

[x:., p j ]  = %!ik,i, [pi, p:,] =: 0 , 

rc:qliirc: 

[ p E ,  HI = 0, [p , ,  H] :~: 0 , 

w1iic:h show t,liat p,, 11, 'LK: (:onst:tiit,~of tlic 11iot;ioli. 
(1)) In vicw of (a) wf: (.ilrl c:lioosci {H, 71.. , pz } i1.s :I. (:01111)1(:t(: s(:t of 

I~I(:(:~I;LII~(.;L~ v;~rial)les. Tlic: c:orrc:sporitlirlg cigc:~lhiiic:t,ioii is 
,(,, z) := ( : % ( : I . T ) " + ~ P ~  

' ? / J  (:I;, , )"I, *(?J) , 

wli(:rc: p,, p ,  arc IIO lorigcr opc:r:~t,ors I)lit ; ~ r c  iiow c:oiist;iiiits. S(:lirii- 

dirigcr cqli:rtio~i 
H$(x:, y ,  z )  := E$(:I;, yj, z) 

thcri givc:s 

a ion as we can write t,kic cqll t '  

which is the energy eigclicql~ation for a oiic-di~ncrlsio~~:~l liarirloriic osc:illator. 
The  energy eigenvalues are therefore 

El = E - p 2 / 2 m  = (n, + 112) iiw, n = 0 ,  I ,  2 ,  . . . . 

Hcllce thc  ellergy levels for the system are 

E ,  = p ; / 2 r n +  (,n,+ 1 / 2 ) T w 1  n = 0 ,  1 ,  2 ,  . . .  

Ari clcctroii of Inass rrl arlcl c:hargc -c rnoves in a region where :L uniform 
m;rgiic:tic ficltl B - V x A exists in z direction. 

(a) S(:t 111) thc: Sc1irijtliiigc:r c:cluat,iori iri rcc:tanglilar (.Oordi~li~t(:s. 
(11) Solvo the, (:q~i;~tioii for i l l1  c:ri(?rgy lcv(:ls. 
((:) Ilisc:~iss t,lic: iiiotioii of t,lic: c:lcc:tron. 

( Br~ffalo) 

S o l u t i o n :  

(ir) T h c  I~I:~iiiiltorlii~~l is 

DA, dA, 
= 0 ,  

2.z d x  
a A y  aA, - B 1  
az a y  

wc (:;111 ti~k(: A, = A, = 0, A?/ = Bs, i.e. A = Bzy ,  and write t,he 
Scliriiciirlgcr e q u  t,' ion as 

(b) As [R,, H I  = [k ,  H ]  = 0, Py and P, are  conscrvrd. Choose 

H ,  P,,, P, :rs a co inp l~ te  set of mechanical variat~les and  write the Schrod- 
inger equatiorl as 

Let ( = :t. + c P , / c B ,  & = pT. Then [[, &] = ih and 



BC(:~LIIS<: t,hc (:xpr(:ssion of L;il ~ O C S  11~)t (~Oti t i~ i~i  I?!) c:xplic:it,ly, t;lic: tl(tg(:ri- 
eracies of thc  cnc>rgy lcvcls are iiifiriit,c,. 

((:) Iri tlic coortlinatt: fr;~iii(i (:liosc11, t11c t:ilc:rgy c:igc~~st,iit.c~s c:orrc:spor~(l t,o 
free inotiorl ili t 1 1 ~  z cliscctio~i a11(1 cis(:uli~r iliot,ioll ill t , l ~ r  :I; .- ;I/ 1)1;~1i(:, i.c. :L 
he1ic:i~I motion. 111 tlit: z tlisc,c~t,io~l, tho ~i~( : ( :h i~i~i ( : ;~ l  111011i(:iit;11111 , ~ I L ~ I ,  -- P ,  is 
corlsc~rvc:tl, tl(~sc:sil)iiig ;L ~ r i~i f i )s~i i  linci~r niotiori. 111 t,lic: 3: tlirc:c:t,ioll t,llc>rc: is i~ 

siml)l(~ liil~~llO~ii(: os(:illiitioli so11ii(l t,Ii(: (:cl~lilil)ri~lin poitit, :I: .-:: -~~~(:I '!,/(:B. 111 
tht; (lir(:(,t,io~~, tll(1 ~~i( : (~l~;~r i i ( : ;~ l  I ~ I ~ I I I ( : I ~ ~ , I I I I I  is T ~ L . O ! ,  := I:,) .I- (;B:I;/(: : rB</ 
c  = rrt.w( i ~ ~ l < l  so t,l~(:r(: is i~ si1111)1(: li;~ririo~ii(~ os(.illiit,iotl wil,h t,li(: s ; L I ~ ~ ( '  i~111-  

plitutlc :iritl frc:cl~ic~l~c:y. 

Write (low11 tllc 1ft~1riiltoliit~1i for i~ spirll(:ss (:llarg(:(l pt~.rt,i(:l(: i11 i i  I I I ~ L R -  

netic ficltl. Sliow t,hat thc ~ ~ L I ~ K C  t , r a ~ i ~ f ~ r ~ ~ i i ~ t i ~ ~ l  A ( r )  --1 A ( r )  1. V / ( I - )  is 
equivialcrlt t o  rri~ilt,ii)lyi~ig tlit: wave filnct~ioli 1)y thc: fiictor (:XI) [ i c :  / (r)/l~,c:]. 
What  is t 1 1 ~  signifi(:;ili(:(: o f  t.11is rcs~llt'! Corlsi(l(>r t,lic: (.;Ls(: o f  :L 1iilifor111 ficl(1 
B dircc:tcd i~1011g t,li(: z-i~xis. Show t,lii~t the (:~ic>~gy levc:ls c:tLrl I)(: writ.tc:il ;LS 

T L  I ~ , ~ k i  
E = (n. + 112) - B + - .  

' rr~c 2111 
Discuss t , l~e  ~ll l i i l i t i i t i~e fcatllrcs of t.he U ~ R V C  fini(:tiolis. 
Hint: use t,lir gauge where A, = -B?j, A, = A, = 0. 

( Wisconsin.) 

Solution: 

The  Hamiltoniaii for thc partickc is 

B = V x A  

Tl~cx Scliriitlingc~r equation is thrn  

A ( r )  + A r ( r )  = A ( r )  -1- V,f (r) , 

S~il)st,it,~rtiori iri S(:1iriitliilgcr1s cquat,ion gives 

This sllows tllat ~rrltlrr the gauge transformat,ion A' = A + V f, the  
Schriitlirigrr cclu;~tiorl roiriains the same and that  t,fiere is only a. phase dif- 
fercricc 1)ctwc:cri tllc: original a ~ d  the new wave f~lnctioris. Thus t,lic syst,rrn 
has g;llige irtvariarlc:c:. 

Now c:onsiclcr tlrc c;ise of a uniform field B = V x A = Be,,  for which 
we have 

A , = - B y ,  A , = A , = O .  

T h t  H a r r ~ i l t o i ~ i i ~ ~ i  (:an be written as 

where A is related to  the magnetic field by 



Sitlcc, [ f i x ,  H] = [$,, H I  = 0 H dot's 11ot (1(:1)(:1id 011 3: ,  z ~xpli(.it,ly, 
we may t:hoosc tt~c: co~riplctc set of rricct~ailit~al v;~ri;il)lcs ( f i , ,  $,, H). Tllc 
c:orrc*s~)o~i(li~~g (:ig(:~~st;~t.(> is 

l / , ( f , ; ;  ; l j ,  z) = ( ; J ( I ~ - ~ ~ ~ I J z ~ ) / / ~  x ( ! / I  
S ~ ~ l ) s t , i l ; ~ ~ t ; i ~ ~ g  it i ~ ~ t , o  t 1 1 ~  S(:lit-ij(li~~~;(:r (~(111;~tio11, WP t1;ivo 

wlic~i-c. X : ,  - pr / l ] , ,  ;111(1 tali(, W;LVO f i ~ ~ ~ ( : t , i o ~ ~ s  i~.rr 

,q, (:c, ;l j ,  z) : f ; 1 ( 7 1 c  .r t l J z z ) ' / ' ,  ,Y,II, ( ! I  - ? j o )  I 

HI, t)c,i~ig EI(:r111it,c p o l y ~ ~ o ~ ~ ~ i i ~ l ~ .  AS t,h(, ( :x~)rossio~~s for c.lic,rgy tloc:s 11ot 
del)entl ~ I I  p,,: a~i t l  p, c,x~)lic:it,ly, them ;~.rc, i l ~ l i ~ ~ i t ( :  (l(~gv11(~1.~(.ios wit,h r t , s~)(~: t ,  
to  p, autl p,. 
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A point l);~rti(.l(~ Of l11;Lss 7n iilld (:h;irg(: f ]  I I IOV( 'S ill ~1)iltially (:Oll~til.ll~ 
crossed nla.gnctic ant1 electric ficlds B -: Uoz, E = EOX.  

(a) Solve for thc co~nplctc energy spct.t,rru~l. 
(b) Evaluate the expectation value of the  velocity v in a st,ate of zcro 

rnomerlt,um. 
(P.r.irt,ct:ton,) 
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Solution: 

(a) Cl~oosc, IL galigc A = Bo : ~ y ,  p = E o x  so that  V x A = Boi ,  
-V p = Eo. Thrn 

As II tlocs not tlcpc:~lcl on y aritl z r:xl)licit,ly, p, ant1 p, r:;ic:h commutes 
with so t,hi~t py ; L I I ( ~  p,  iirC COIIS(:~-VC(I. T ~ I ~ I S  thr:y (:all I)(: rcplaccd by 
t,hc:ir ~ i g c ~ ~ v i ~ l ~ i c s  (lirc(:t,ly. HCI~CC 

arc. a 11c:w pair of c:o~!j~~gatc: v;~ri;~l)lcs. L(:t w :- / q I Bo/rrrc. B y  corril)arirlg 
thc cxl)l.t-ssio~~ of H with t11;it for a o r l c ~ - t l i ~ r i c ~ ~ i s i o ~ ~ i ~ l  hi~r~rlorlic: oscillator, 
we gct tlw O ~ ~ ( ~ I I V ; L ~ I I C S  of H: 

E,, = ( r ,  + 112)  i l i~ -1- p"/2,rn - , r r t , C " ~ i / 2 ~ ;  - c p W E ~ / B ~  , n = 0 ,  1 ,  2 ,  . . . . 

Thc: fii(:t t , l~a t  only p,  ;r.ricl p,, hut not y and z ,  appea.r in t,he expression 
for c,ticrgy i~~(li(:;itc:s illfillit(: tlf:g(~rl(:racy exists with respect t,o p,  a.nd to 

P z .  
(1)) A st,atc: of zcro I I I O I I I ~ ? I ~ ~ \ L I I ~  s igr~if i~s  ~ I I C  ill which tkic: eigenvalues of 

p ,  ;x11(1 11, as well as tlic, ex l>c( . t i~ t i~~ l  value of p ,  arc all xc,ro. As vc.loc.ity is 

its expc:c:tatio~~ value is 

Then as 
cp, mc"Eo nlc2Eo 

( L ) = ( ( ) + - + ~ = - ,  
qBo qB, qBo" 
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since (6) -- O for a llnrinonic oscillator ant1 p, = 0 ,  we 11;tve 

CEO A 

(v) = -- y 
Bo 

1 .  H.l/! = [ fi4 4.- f i x  -1 @!I - F~~:rx: /  c) 2] ,l/, = m/, , 
2,/11, 

whcrc: c is thc: c:lc:c,t,roi~ c:l~a.rgc: ((: < 0).  

AS [fI, fi,] - [fI, f i z ]  = 0, f i e ]  = 0,  w(: (:all <:~Ioos(: il, ;i,?,, f i ,  iLS ;t 

corr~plc>t,(: sc:t of' ir~c;(:l~t~i~i(;;~I v:tri;~l)l(:s, tho (:or~(:s1)o11(li11g (:ig(:~if~rr~(;I;ior~ l)(,ir~g 

?/) yz ( , ~ ( / J ~ , ! / - ~ / J * ~ ) / ~ ~  $0 (:I.) , 

whcrc p,, p, arc: arl)it,rary red rlll1111)c~rs. Slil)st,it.lltioli of ,1/) in t,hc: S(:hrii- 

dingcr ccl~ii~tiori g-ivcs 

1 
- [ f i :  t ( c  Ho / c )  "2: - / e  HO)" ,l/io = Etl c/,(~ , 
2711. 

where Eo = E - p ' i /2~~1, ,  or 

Fi2 2 711, 
- -- 2 tl",(i/o/d:x + - (H0e/crrt,)"(:c - x o )  ,dio = EIJ'l/jo , 

2111, 2 
where z o  - cp,,/cHa. 

The  last equatiou is thc cr1c:rgy c:igc:nccluittion of a, orie-tlilnc:llsio~~iil osc:il- 

lat,or of na.tural frc:quc:rlcy wo = H o e / r n c  arid cquilibri~nrl ~ )os i t io i~  3: = :~:o, 
t,he energy eige~lvalllcs 1)c:irig 

EO = ( n +  1/2)Fiwo, 71 = 0 ,  1 ,  2 ,  . .  . , 

or 

E = p ; / 2 m  - (n + 112) Hoeh/rnc,  n = 0 ,  1 ,  2 ,  . . . . 

Motron. in, E 1 c c t ~ o m n g n e . t ~  Field 

whc:rc: HI, i~r( .  H ~ ~ r ~ i ~ i t , c ~  polyt~oillii~ls. 
As 110 o!, t.c,riiis oc.cxr it1 t,tlo oxprc~ssiori for c:rlc,rgy lcvds arid py can be 

ally :~rl)itrary rc,al 11111111)(:1., t l ~ c  cl(\fi(>~~(:r;~(:i(:s of (:11crgy l(:v(:ls itrc infinite. 
r 7 111c: c:igc:rihii~c:l iolls for 1,11(: or ig i~l i~l  s y s t ( : ~ ~  iLr(: th(:r(:for(: 
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( ' o ~ ~ s i t l ( t ~  :L lool) of t,hiri wirc~ ill tlic: slit~pc: of ;t c:irc:lr of riitlil~s R (Fig. 4.1). 

A ( ~ ) i ~ s t , i ~ ~ ~ t ,  l~li~grl(:l,i(; fi(:l(l ~ ) ( ~ r ~ ) ( ! ~ i ( l i ( ~ ~ ~ l ; ~ r  t,o t,l~(: 1)lii11(: of t,l~(: loop pro(l~~(:(>s 2 i  

rn:igr~(~Li(~ kI11x 1)i~ssillg tliro~rgli t11(: loop. 111ii~giri(: tll;it, tall(, wiw (:oiltairis orlly 

on(, c:l(tc,t,roi~ whic.11 is fr(:(x to 111ovc:. This ol(.c:trorl has ;L wavc furictiori $ ( O )  
whir11 tl(:pc:ritls orlly 111)orl I,hc: ;tl~glllitr (.oor(liil;~t,c 0. Ncglect all interactions 

bct,wc:c:li tali(: c:l(:c:tror~ spill a r~t l  t,hc i~~ ; ig l~ ( - t i ( :  fic:ld a s  well as all magnetic 

ficltls l)rotluc.c:tl 1)y t,hv c,l(,ct,rorl itsc,IE. 

Fig. 4.1 

(a) How tloes thc grorlrid sta.te energy of the electron t1epc:ntl 111)nn t,hc 

vahv  of t,hc, :~pl)lic:d ~llngl~ctic: ficld in the  approximi~t,ior~ wc have drscribrd? 

Derivc it forr~iula i ~ t 1 ( 1  givf, a rough picture of the result. 
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(11) Iiliagine that we sirart with the wirc in its ground state ill the prr:s- 
ence of a magwt,ic flux 4. Next the nlagiletic field is tllrrictl OR. Calculate 
thc: currc:lit in the loop. 

(c) C;tlculat,e the currelit ill  airips assurliiiig R = 2 (,ill anti tp - 0.6 
gallss clrl '. 

( Clt.i~tl~l0) 

S o l u t , i o ~ ~ :  

(11) 111 (:ylin(lri(:111 coo1.(iilia.tcs 7-, 0, Z ,  HS V x A - -  B gZ wlierc: 11 is a 
(:onstalit, wc: ~1111 t,ak(: A,,. - A, = 0,  A ,  = $, i.t:. ,  A =- 9 60,  and 
c:olisicicr the Scliriidiligc~ (:(llii~t,ioii for t , l i ~  (:l(:(:t,l.oli, 

:= (:XI) ( 2  / ' r  A - tlx ) @/)' ; 

the Schriidirigcr cquatioli k)ccoli~cs 

Since the electron is cor1finc:d to ;L loop of r ~ ~ d i l l s  R, w(: h i ~ ~ c :  

Note that  +' = +'(O) and $ = -$ $. Thus we have 

with solution 

+'($) -- elC1' , 
A'c' where cl is a constant given by E = &. Thus 

q(O) -- exp [i(cl + eAR/ch) $1 . 

For single-valuedness, +(O) = $(B + an) ,  i.e., 

where n is zero or a n  integer (0, *l, *2, . . . ). Solving for cl we have 

and hence 

where q5 = 7 r R 9 ,  $0 = -ch/e. I t  is seen that t,he dependence of E,, on the 
external rnagnet,ic field B or the flux i++ is parabolic, a s  shown in Fig. 4.2. 

Fig. 4.2 

As n is a n  integer, the ground state (lowest energy level) energy Eg is 
given by 

h2 
E - [n* - e ~ ' B / 2 c h ] ~  , 
" 2mR 
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where TL* is the integer nearest to e ~ % / 2 c f i  (or e$/cll), w1iic:li is i i~g;~t iv( :  
as e is negative for a n  electron. 

(1)) Suppose we start  with a s ta te  E,, w1iic.h is tlic: grourltl stat,(:, 71, will 
rc,niniil the sanlc whcn B is trlrned off. Thlis thc: wav.vc: hiiic:t,iori will 

,JI = Cc:xl) (i71H) iiil(1 th(, (+lectric c ~ i r r ~ r i t  d(>~isi ty is 

where C is tlir: norn~i~lizi~tioli  cor~st i~i i t .  Let S (1(:11otc th(: (:TOSS s(:(:t,ioli of 
the  thin wirc:. W(: 1i;~vc: froiii t l ~ :  ~iorin;~lizatioii c:ontlitioii 

tha t  
1 1cl2=-------- 

~ T R S  

Notc that  j has 1)r.en c:onsidcrc:d t,o 1 )~ :  ~iiiili)l.iii ill ilily (.ross s('(.(.io~i ilS 

thc  wire is thin. 
Br,callse the electron is iriitia.11~ in t,hc groliiltl s t ;~t ,c~,  for wliic.li E,, is t,l~c, 

miniiillinl c:nc,rgy, wr, lit~vc: 

where [A] d(,notes t,he greatwt iiitcgcr w1iic:h is not grc:atc,r t,hi~ii A. 
For the case of macroscopic inag~le tudr :~  ~ L S  ill p i ~ r t  ((:), t l i~:  (llli~nt,ll~li 

number is numctrically largc: :\.rid we can sirriy)ly ilsc: 71, -- c(b/(:l~, in w1iic:li 
case 

I - (."/4n2R27r~,r 

(c) For R = 2 cnl, 4 = 0.6 gauss ern2, wc have iri SI rillits 

Motzon I n  E k c t ~ O m ( L 9 n e t z ~  Field 

( i ~ )  Ass~nniilg t h i ~ t  11o11r(:lativisti(: qliantlinl inc~hanics  is invariant un- 
dtrr t i ~ n c ~  rcvcrsal, tl(:rivc: thc: timc: rc:vcrsctl forrri of t,he Schriidinger wave 
fr~llctioli. 

(1)) What  is thc ( l l~ i~i l t l l~ l i  1riec1i;aiiic:al H;~iriiltoniarl for a frec electron 
wit11 iti;~.giict,ic ~nolnciit p in t,hc c:xtc:rllal c:oiist,;~nt rnagrwtic: ficld H z  in the 
z-tliroc:t,ion, ill t l ~ :  rc:Scrc:lic:c: fri~mc: of tlic: c:l(:c:t,ron'? 

((:) Sripposc: t11a.t (:xtr;~ (:onstt~lit nlagii(:ti(: ficltl FIY is iinposctl ill the  
y-tliroc.t,ioll. L)(,t,(:rliiiil(: th(: for111 of tall(: (11i:~lltlnri ril(:(:ha.rlic:a.l o p ~ r i ~ t o r  for 
thc: tiill(' rat,() o f  (:lii~ilg(: of p ill this (:;Ls(:. 

( B , I L ~ ~ ( I , I ~ )  

Sollltion: 

(;L) Colisi(l(~r t , l ~ :  S(:lirii(liiig(~r (:cl~iat,ioii 

If H * ( - t )  - ~ ( t ) !  then the  Schriidinger equation is covariant under 
timc r(:vc:r~i~l i~n(1 tall(: t>inle reversed form of the wave function is $* (-t). 

(11) 1,ct c 1)c tlic: c:liarge of the electron. Then p = - & a ailtl in t ht: 
ref(+rc~ncc fr;i111(> of tile r,lectron, 
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1 . >-. 1 f (!Ti \ 

2 

= ( [(n, H ,  - n I )  -- n,, H,:,; I I 
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A ~)art,ic:l(> 11;~s 111;~s~ lit,, c.liirrgc: (1, i i~t , l . i~~si( .  ~ I . ~ I K I I ~ ~ L I .  L ~ I O ~ I I ( ~ ~ I ~ , I ~ I ~ I  s (S is 
not ~ic(:(:ssi~rily ( Y ~ I I ~ L ~  t,o 11,/2) : ~ ~ i ( l  ;L I I I ; I , ~ I I ( : ~ ~ ( :  (lil)ol(! ~ ~ i o ~ t ~ o i ~ t ,  /L - ~ l ( ~ s / 2 ~ ~ t , ( ~ .  

The  part,i(:l(: I I IOV(~S in t i  t i~~iforni  rrii~gn(:t,i(. ii(>l(l B wit,l~ i~ v(:lociLy s11ta11 

C:C)IIII);L~(:(~ wit,li ('. 
a 

(:L) Writ(, (low11 th(: H ; L I I ~ ~ ~ ~ , O I I ~ ~ I I I  for tallis s,yst,(,~r~. ('Ill(: vv(:t,or pot,( :~~t, i i~l  P 
! 

for thc uriifor~n ~il;ign(:t,i(. ii(\l(l 111;ly I)( '  w r i t , t , r~~  21s A = B x 1-12) 

(b) Dcrivc: thc: ( I I I ~ L I ~ ~ I I I I ~  I ~ ( \ ( . ~ I ~ I . I I ~ ( : ; L ~  (II(~is(:nl)(:rg) ( : ( l l ~ i ~ . t , i o ~ ~ ~  of ~ i l o t , i o ~ ~  

Ero~ri this Ba~nilt,o~lia.il,  for t110 l i ~ ~ ( l i ~ r  I I I O I I ~ ( : I ~ ~ ~ I ~ I ~ L  P ; L I I ( ~  for i,11(' ~ I . I I ~ ~ \ I ~ ~ L T  

rr~ornc:iitt~rn s. Ttic A2 t(,r111 1 1 1 2 ~ ~  tw ~~(:gl(:(:t,(:(l ill t ,l~is i~o~~r(~lir.t,ivist,i(: t q -  

proxi~na.t,i(>~i. 

(Notc t,hat t,llc rc:sults look cxac:t,ly lik(1 t,l~c, c.li~.ssic:;rl t!cl~iatior~s of 111otior1.) 

(c) Witllout solvir~g tli(:sc: c'cltlntio~~s, itlvl~tify 1 . 1 1 ~  va.luc: of t,l~c: ( :o~ i~ t j i~~ l t ,  
g for which t11(1 11c:lic:ity will rc:ni;r.in corlst,i~.r~t. (tIolic:it,y is tl(:fii~c:ci 1lc:rc. ;is 

the  cosine of thcl ;~rigl(> t)etwc,c:~i the vcc.t,ors P a11t1 s) 

(d) Wha t  is thc a.c:t~in.l value of' thc: c:ol~st;r.l~t (1 for ~ L I I ~  O ~ I C  of tllc following 

particles: e ,  p, 71, T? 

(Berkeley)  

Solution: 

(a) The  Hamiltoriian for the sys t e~n  is 
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- - - E ' ( B  x s ) ,  , 
2mc 

as [s,, s J ]  = z ~ L ~ s ~ .  Notc tha t  we have used the convention that  repetit,ion 
of a sr11)sc:ript irrip1ic:s summatiorl over that  subscript. 

(c) As P ant1 s rornmute we can consider the problem in the c:ornmon 
eigensta.tcs of P, s 5 1 n d  s, . 

The  helicity 11, is tlcfincd as 

and as 
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which rcquircs !I = 1. 

(d) Thc  vtalucs of for t,lic: va.rious 1);~rticlc's arc5 

In a recent classic tahlc-top experiment, a rrlorroc:hro~rltLtic nc~ltroil l)(~a111 
( A  = 1.445 a) was split by Br i~gg reHc:ction a.t point A of ail iiitctrfc-rorllc~tw 
into two beams which were rc:corilbiiied (after anothcr rc:Acctioii) ;at poirit, 
D (see Fig. 4.3). One beail1 passes through a region of t,rtailsvc:r-sc: irli~giict,ic 

ficlrl of str(:rigt,li B for i t  (list,i~rl(:e 1. Assli11i(: t ha t  t , h ~  two pat,hs from A to  
D ;Lrc i(l(:lil.i(:i~I ~:x(:cl)t for thc rcgioil of thc fi(:l(l. 

'I'liis is :I, l)l-ol)l(~i~i oil spi~ior iilt,(;rf(:r(:11(.(:. Co1isi(lsr :L i i(~itroi1 111 t,lic 
bciar~i. Tli(:r(! is ia  i i i ;~~ i i (~ t , i ( .  fi(~l(1 B iii t,li(: rcgioil wki(:r(: t,kif: S(:lirijdingcr 
eqll;it,iori Lor t,li(\ (~~i~(:kii~rg(:( l)  11(:11t,rori is 

S111)1)osirig B t,o kx: c:oilstailt and uniform, we have 

wlicbrc t o ,  t arc  rc:spc:ctivcly the instants when the  lieutroll critcrs i~11(1 I(>~LVCS 
the  irl:ag~l(:ti(~ fi(:l(l. 

Writ,(. $(t)  = ,c/)(r, t ) $  (s ,  t ) ,  where $ ( r ,  t )  a.nd $ ( s ,  t )  arc: rcsl)c:c:tivc4y 
the spac:c t ~ i l ( 1  spill 1);~rts of ,$. Then 

which is tlrc s t~ inc  a s  thc: wave f~irict,iori o f  a. frc:c! 1):artic:lc, aild 
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The i1iterferenc:e ;~risc!s from the a.ction of B on tlic, spill w;avt: fi111(:ti011. 
As ,$(I-, t )  is t11c wave filrictio~~ of a, f r c ~  p:art,ic:lc, wo h;avc t I  - to = 1/~1 -: 
~n,l/hk ; ~ n d  

where k = " = is tht: wa.ve nuln1)cr of thc: ~-lc:~~t,ror~. 'I'll(: i~it,c:r~sity OF 
X A 

the interfcrcnce of tlic two 1)t:i~ms at  D is t,lic:n proporl;ioll;d I,o 

(1) 
cx I ,dl,] ( s ,  t )  - F  ,I/,{;) ( s ,  t )  12 = 1 ,dl(2) (s, to)  + ,,,, (2)  t , )  12 

1 +(')(s, to) + ,d,(')(s, t i )  1' = 

2 ~ i i ~ n , l  XB 2.irk~71~1XB 
= 1 + cos f ia sill 

/I" f r 2  I 

2.irp:rr~l X B .ir/~,,rr~,I X B + sill"- = 4 cos" 
h, " /L2 

Therefore, the int,erference iliterisity :at D cx c:os2 (.rr/~~rrr.lXB/h"), w11c:re 
p. is the intrinsic magnetic moment of the neutron ( / I  < 0). 

A neutron int,c:rferonleter bean1 splitter plus r ~ ~ i r r o r s  as shown in 
Fig. 4.4 has lleer~ 1)uilt out of a sil~gle c:rystal. 

out 

thin plate 

Fig. 4.4 

(;I) By v i ~ r y i ~ ~ g  thv t,hic:kl~(:ss of il tallill pli~~t;i( :  sh(:(:t pl:ac:~(I i11 t 1 1 ~  ~ O ~ L I I I  

in OIIC ;arIii of tli(! i~~t,(-rf(!roii~(!t(:r on(! (.;LII vary t l ~ :  r(!liativc: pll;~,st: ;III(~ ~ I C I I ~ P  

shift t,hc fri11gc:s. Givc: ;L 1)ric:f ( l i l ; ~ l i t , i ~ t i ~ ~  C X I ) ~ ~ L I I ; L ~ ~ ~ I ~  of t h ~  o r i g i ~ ~  of t,l~cx 
ph;isc shift. 

(1)) By illsc~ting i r i  o ~ ~ c :  nrrn ;L rr1:agrictic: ficltl which is normal to the 
be ;~r l~ ,  ti~r~ct i~~t lepcr~d(:~i t  i ~ i 1 ( 1  vory 11(:iarly ul~iform SO that  the force on the 
ne l i t ro~~s  (:;LII 1)t: ~iegl(:c:t,cd,   rid l)y choosiilg t,he field so each neutron spin 
vector prcc:csscs tlirougll just one rotat,iori, one finds the  relative phase of 
t,he t,wo t~carns is shift,cd 1)y .ir radians, or one-half cycle. Explain, with 
appropriate cquat , io~~s,  why this is so. 

(P~inctrton) 

Solution: 

(a,) W11c11 ;I neutrori passes through the t,hin plastic sheet, it is under t,lie 
action of ;a11 additio~ial potential, and so it,s moment~im charlgcs togcther 
with it,s clc Broglie wav~lengt,h. The phase change of the neutron when 
it pa.sst,s through t11c plastic sheet is different from t,liat when it passes 
through a vacuum of the same thickness. If the tliirkncss of the plastic: 
sheet is va.ried, t , l~e rclative phase of the two bcarlis (originating from the 
sallle beam) also changes, causing a shift in the fringes. 

(1)) The neutron possesses an anomalous m;xgnc,tic: moment p,, = -p.,, u 

and its S(:l~riidinger equation is 



.#I,,,p 
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( p 2 / 2 ~ r ~ , n  -/- p, u . B)$ = IT,(, . 

We l i ~ i ~ y  neglect the reflection tha t  occurs whcr~ a ~ic:lltror~ w;~vc: is ilic:i- 
tlcnt orr tllc "surfiicc:" of t,h(: shr:c:t-likr: rrlagl~c%t,ic: fic:lcl ;I.S tlrc: ;~c:t,iolr of thct 
fioltl or1 thc: l lc l~t ror~ is rather w~i tk .  Ulit1c:r sl~c:l~ ;LII ;i~)L)roxirl~;~t,iori w(: llliLy 
show (by solving thc ;~.l)ovc t:wo-spirl-co~rll,o~~clit, S(:lirij(li~~g(:r ( : (~ t~ ;~ t , io r~  for 

o~~c:-dirrrc:rrsio~~i~l sql1;Lrc: wcll): Tlic wt~vc: I~lr~c:t,ior~ ,1/4,,, for ;L r~c:t~l,ror~ irlc:i- 
(l(:nt l ~ o r ~ r ~ t ~ l l y  or1 tall(: sli(:c:t,-like r r ~ ; ~ ~ l ~ ( : t , i ( :  fi(:l(l is r(:lat(:(l t,o t.,11(, l , ~ ; ~ ~ ~ s ~ r ~ i t , t , ( , ( l  
wave fur~c:tiori ,,b,,,L out. of thc: lic:l(l by i i  1111it,;~ry I;r;~~isfor~~iiit~,ioii 

where p = w r , r e n ,  wit#h wr, = 2 p r ,  B / h  1)c:ing the, L ;L~I I IOI .  fr(:(lll(:li(:y, r 
L ~ n ~ / / i , k  t 1 1 ~  t,i111(: tak(:11 for t,11(, 11(\t1tro11 t o  ~ L S S  t,11ro11gli t , l~(:  ~il;~g~i(:t,i(: li(:l(l 
of thic:krlc:ss I,, en  thc l l l~it  v(:(:t,or i l l  t l ~ ( :  (lir(x:t,ioll of B, k: th(: w;I,v(, I I I I I I I I ) ( : I .  
of the ill(:i(Iorit, r i ( :~~ t ro~ i .  

If i i  11(:11t,ro11 is poIt~riz(~(1 in 1;11(: (Q, p) (lir(,(.t,io~~ l)(:for(: (:ilt,(:ril~g lLli(\ li(~l(1, 
i . ~ . ,  it,s ~)ol;~riz,,c:tl vc:c:t,or is 

wherc: 0 is thc: i~rlglc t,hc: pot;irizctl vc:ctor illiik(,s wit,l~ t,h(: (lir(:(:t;ioll of t,h(: 
~n:~gric,t,ic: field. ' h k i l ~ g  t,li(: lilt,t(:r 11s th(: z (lir(:(:t,iori, w(' ~ ; L v ( :  p . u . : om,. 

T h c ~ i  as 

we have 
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By acljllstilig B (or L) so that  /) = 27r, we rr~ake the polarized vector 
of a nclltror~ prcccss t,hrough orlc rot;itiorl as it traverses the region of the  
rn;~gr~etic: fic~l(1. T11c:ri 

(21) A l~y( l rog, ( :~~ il.t,0111 is ill it.s 21' ~ t , i ~ t , ( > ,  ill ;L s t i~ t ,~ :  of I,, - ~ L  I - ~ I , .  At t,i111(: 
t = 0 :L s l , r o ~ ~ g  ll~iig,r~(:t~i(: f i ~ l ( 1  of st~,r(~ligt,li 1 B 1 p o i l ~ t i ~ ~ g  i11 l,h(: z (lir(:(:t,ioi~ is 
switc:hc~l 011. h s s ~ l r ~ ~ i i ~ g  t,h;at thc: c:fk:c:t,s o f  c:l(,c,t,roil sl)i~l (:;a11 1 ~ :  rlc:gl(:c:t,cvl, 
cal(:lll~l~tl(~ t,ll(! t,illl(! (l(:p(:ll(l(:rl(:(: of t>IlC ~ : x ~ ~ ~ : ~ : t ~ L t ~ i o l l  v~Llll(~ of Lx:. 

(1)) 1 1 0 ~  ~tl.Ollg 11nlst t.h(: llli~gll(~t,i(: fi(:l(l ill 1)ill-t (ii) I)(' SO t l l i~ t  t,h(: (:lf(:(:t;s 
of c:l(:cl,roli s1)ili (:;a11 ;~(:t,~i;~lly 1~ ~~(:gl(:(:t,(:(l'! 'I'll(, :~r~sw(:r slio111(1 1)r: (:xpr(:sse:(l 
in s t , ; i~~( l i~ r ( l  111;~(:ros(:o1)i(: 1111it,s. 

((.) Srlpposc: t , l ~ i ~ t ,  ilist,(:a(l, t,hr: 111i.~grl(:ti(. field is very wrak. Suppose, 
furtlicr, t,h;it i ~ t ,  t - .  0 thc: i~t01li h i ~ s  L:c = +f i  and s,  = 4 f i ,  and the 
maglict,ic: lic:ltl is st.ill oric:rltc:tl ill t h r  z tiirectiori. Sketch how you would 
calclil;at,c: thc: I.,illl(: (~(:I)(:II(~(:II(:c of t h ~  expectation value of L, in this case. 
You rlc:c:tl riot (lo t,llc: flill c:al(:~ll;~t,ion, but  explain clearly what the  main 
steps wolll(1 bc. 

Not,(:: All c:fk:cts of nuc1c:ar spin are t o  be ignored in this prol)lcn~. 
(P?-in.c:c  to,^^) 

Solution: 

(a)  Thc: il~ititil WAVC fii~ict~iori of the  atom is 

wherc 



is the cigc~ist,;~tc of L,  = / I .  

At t = 0 a st,rong inagslctic: ficlcl Be, is switc.lic~tl 011. Tlicii for t 2 O tlic 
Harniltoiiian of t,lic sys tc~n  is 

For 2. not. too st,rosig ~i~i~gi i ( ' t ; i (~  ficl(1 B - 105 Gs, w(: (.ill1 ii('gl(~,t t,h(: B2 

Thc  Scliriiclisigc~r c3clr~. ,L t '  1011 

For t = 0, wc: tlic~ri havo 
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Thc cxpcctation value of L,  is given by ($(r, t )  L ,  i $( r ,  t ) ) .  As L,  = 

(L+ + L-112, 

and k ~ ( : t i ( ~ ,  
rlBt L,(t) - (,c/~(r, %) I I,,, ,e/)(r, t))  - 11. c.os ;- 

L//l.,:c. 

(1)) Ttic (:fI(~.t,s of (,l(;(~trosi spill (:ill1 I)(, I I ( ~ ~ I ( T ~  (!(I if' tlic i~(l(1itiosl:~l (,Ii(,rgy 
due to tlic, st,rorig iii;igii(~t,i(. ficl(1 is inri(.h gr(';it,(,r t , l i i~ l  tli(' ( : o ~ s p l i ~ ~ g  (,li(:rgy 
for spiri-or1)it iiit,c,r;ic.t,ioii, i.c,., 

or  
U > 10" G s .  

Tlilis wlic~i~ t,lic, iriagrlc:t,ic: fic~l(1 B is greater than lo6 Gs, the effects of 
elec:t,rori spin can I)c ilcigl(~ctctl. 

((:) If t,lic, ii1;~g1i(:t,i(: ficltl is vcry weak, the  effect,^ of electron spin must 
1)e ta.l<c~ii irit,o c:orlsid(:r;xt,ioii. To calculate the time dependence of t,lie cx- 
pect;lt,ioii ~ ~ 1 1 1 ~ :  of L,, follow the steps outlined below. 

( i)  Tlic Hasnilt,orii~~i~ is now 

w1iic:ti is tlic H;iriiilt,oriian for anomalous Zec?rriari effcct ant1 we can usc 
the coupling representation. When calculating tlie ad(lit,ional energy due 
to thc .s', tcrin, we can rcgartl 5, as approximately tliagonal in this repre- 
sentatioii. 
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(ii) Writ,e tlowl~ the tirne-depeiident wave f u ~ ~ c t i o ~ ~  which satisfies t,llc: 
initial condition L,  = +h, and s,  = h,. At tiirle t = 0 the wave hiiiction is 

$o(r, s,) = R 2 1 ( ~ )  (3 (0,  9) 0 , s  , 
wllerr (3 arid qbs arc t,hc: eigcl~func:tio~ls of L,  - 11. ;~ricl s, = h,/2 ill tlic: 
rtyrc:sclitations ( 1 2 ,  I , ) ,  (.s< .s,) i-ctspec:tivc~ly. Explicitly, 

+ b '3( jLL 2 2 + (/)A 2 - 2 ) )  2 

whcrc: (j,,,,,, is tho c:igellhirictioll of (j2, j,) for tllc cLrlorgy l(,vc:l  IT,,^,,,,, 
Tlic:rc:forc, t,hc: tirrlc.-t1t:l)c:iitlr:llt wii.vc f ~ l ~ ~ ( . t , i o i ~  for t,ll(: syst,c:i11 is 

L + hcj ; ;  cxp - 1 2  
( h  

Ex i- t ) ]  
+ 4 + - +  exp - z a  

2 2 ( li 

(iii) Calculate the expectation value of L, in t,hc ~ l sua l  inal1lic.r: 

($(rl S1 t )  I Lz I ICl(r, S,  t ) ) .  
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Coiisidcr t,hc onc>-dirn~nsion:L1 mot,ioil of ,211 uncharged particle of spin 
112 aild inagilct,ir n l o l n c ~ ~ t  /L = 2bos /h , , , .  Thc: part,icle is confined in a n  
infiriitc S<llliLrc w(:ll (:xteiidii~g froin I: = L to  .I. = L. In rcgion I ( r c  < 0) 
thwc  is R 11rliforiii irii~gi~(,ti(. fi(:l(l in the z (lir(ictioi1 B -- Doe,; in region 
11 (z > 0) t,hc:re is i~ 1111ifori11 fi(:1(1 of tllc SiLllie iriagi~itli(l(: t ) l ~ t  pointing in 
th(: :r: (lir(x.tio11 B = 130e,. I Im:  e ,  ulcl e,  ;~rc: uiiit vc~.t,ors ill tllcx :r and z 
dircc.tioiis. 

( i ~ )  Usr ~ ) ( % r t , ~ ~ r f ) i ~ t , i o ~ l  t,li(:ory t,o fiii(1 t 1 1 ~  grolln(1 st,tltc w(:rgy ai1(1 grollncl 
stat,(: wixv(\ S I I I I ( , ~ , ~ O I I  (I)ot,l~ SI);I,(:P i~, l i( l  s1)ili ~ ) i ~ r i , s )  iii t,li(: w(:i~k fi(:l(l liinit, 
B0 << (l,,/I,)'/2~1r.~r~~. 

( I ) )  Now c:ol~sitl(>r 1ic:ltls wit,li Do o f  ;~rt)it,riiry st,r(>iigt,t~. Firi(l t,tw g(:n(\r;~l 
for111 of t,li(x (!ii(!rgy ( ~ i g ( ~ ~ i l ~ l i i ( ~ ~ , i o ~ ~  (t)ot , l~ SI) ;L(Y~ i111(1 spill pi~rt,s) i i ~  r(>gioi~ I 
wlli(,l~ s21,t,isfi(:s tlic l(~Si:-lii~~~(l l)o~ii~(l i lry ( , o ~ ~ ( l i t , i o ~ ~ .  F i i~ ( l  ~ l s o  i , l~(> for111 
that tllc c~ igc~~~f ' l i~~c . t , i o~~  I I ~ L S  ill r(:p,iol~ I1 wlli(91 s;lt,isfi(\s t l i ~  I-igtit,-lii~i~(l t)olii1(1- 
ary  c.o~~tlit,iori (Fig. 4.5). 

((:) Ol)t,2~iri 2\11 ox~)li(:it, ( l ( x l , ( ~ r ~ ~ i i ~ ~ i l ~ ~ t , ; ~ l  ('(111i~t,iOl1 wl~os(, sol~it,ioi~s wol11(1 
give t,llc> ct1iorgy (:ig(~iiv;~l~i(~s k;. 

( M I T )  

Fig. 4.5 

Solut.ion: 

( i ~ )  111 t,l~(: ~ L I ) S ( ~ ~ I ( ' ( :  of ~rl:~glict,i(: Ii(:l(I, H = : ~ r i ( l  t h r  (!ilcrgy eigcnf~iiic- 
tioils (sl)iL(.(: 1)iLrt) iL1111 ~ig~n~:L111(:~ iLT(' rcspe('t,iv(:ly 

' T J T ( : I ;  + L)  
JI,, = J1/L sin 

2L ' 
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As for the  spin par t ,  we know tha t  each eriergy lcvr?l has a tlegcncracy 
of 2.  When a rnagnetic field is present, H - Ho + H' ,  whr:rc 

If the ficld is wcnk, lct , I L ~  = (z) (A), ' 1 ~ 2  = ,01(3:) (CI)) be t l ~  t)as(> 
vectors. Then 

arid fro111 det (HI - E(')I) = 0 wc: get 

The  ground s ta te  eriergy levcl is thcrcforr 

Motion i n  Electromagnettc Field 

we get the  ground s ta te  wave functiori 

(b) The  space part  of the  wave fiinction in regior~ I is 

The  coritir~uity c:o~ldition of the  wave ful~ctioir givcs B = 0. 111 rcgioil I, 
the  spin is aligned t o  the  z direction, the  cigenvcctors t,c:i~ig ( y )  for z 4, il11(1 

( i )  for z T. I-Irnce 

In a siriiilar way we obtain the  eigenfunctions for region I1 (0 < x < L) 

I ~ I I  = sin k2(x - L)  2 m  POBO ; 

$11 kzZf  = sin k2(x - L)  2 m  + poBo . 

(c) Considering the  whole space the  energy eigenfunction is 

A $ I ~ , ~ J + B $ I ~ ; ~ ~ ,  L S X ~ O ,  

k 2 z . ~  + D$II qZf ,  O < X < L ,  

elsewhere. 

Thus 
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ancl so L l  -: k.L = k : ,  k.', = k; .= k'. 
Thew t.hv c.oiitiiiriity of t,llc: wavc: hiric:t,ioi~ a t  :I: .:= 0 givcls 

Bk:' c:os k ' L  - C:k c.os k L  -1- Dk:' c:os k ' L ,  

Ak c:os k:L .-= ---Ck: c.os h L  t DX:' c.os k l I J .  

To solvc: for A ,  B, C, D ,  for nollzcro sollit,iol~s wcx rc,cli~irc, 

O sin k 'L  sill k L  sill k 'L  

sin k  L  O s i n  k L  sill k 'L  
= 0 , 

O k:' c:os k 'L  - k  c.os k  L - k:' c.os k:'L 

k: c:os k  L  0 k  ros k L  k '  cos k 'L  

l.e., 
k  sin k L  cos k'L - k.' sill k ' L  cos k  IJ = 0 
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4015 

Consider an  infinitely long solenoid w11ic:h carries a current I so t,hat, 
thcrc is a, constailt 1na.gnctic: field inside the  solenoid. Suppose in the  region 
outsiclc thc solenoicl t,he ~ n o t i o i ~  of a. partic:l(: witah c,ha.rgc c and mass m is 
dcsc:rit)cd by t,he Schriidingcr ccll~ntiorl. Assulnc that  for I  = 0, the solution 
of the  cqua.tion is give11 l)y 

T/,"(x, t )  = cL""" ,J,o(x) . ( h  = I )  

(;L) Writ(: down a.nd solvc thc: Sc:liriidirlgt~r (~qu i~ t ion  ill the rc,gio~l o~lt,si(le 
t,hc solc~ioicl for tlie ca.sc I  # 0 .  

(1)) Co~lsi(lc:r a t,wo-slit, clifiri~ct,io~~ (:xp(:ri111(!1it for t,li(: [)i~rticl(:s (l(~s(~ril)c:(l 
abovc: (sc:c: Fig. 3.6). Assu~~lc: tha t  t,l~c: (list,i~11(.(: (I! ~)(:~wc(:II t h ~  two splits 

is large, c,o~~il);~rcycl t,o t,l~rx tlit~lllc:ter of thc: sol(:~~oid. C o ~ ~ i p u t ~ e  t,hc: sliift A S  

1 so lenoid 

Fig. 4.G 

of tho (liffri~(.t.ioli ~ ) i ~ t t ( , r ~ i  011 the  screen due to the  presence of the  solenoid 
with I  f 0 .  Assrl~nc: 1 >> AS. 

Hint: Let 

+(x ,  t )  = +o(x, t ) + ~  ( 4  , 
whm:  

e 
7/~,~(x) =O. (Ti= 1 ) .  

(Chicago) 

Solution: 

(a) In the prcsciicc: of a vect,or pot,ent,ia.l A, p 4 p - eA/c. In the 
absc11c:c of clcctro~nagiietic field the  Schriidinger c:quatioll is 

det,ermine t,he eigenvalues E + V(X) +o(x, t ) ,  I 
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where, a.s l)c4ow, we slla.11 use units such tha.t li, = 1. Thc  S(~l~riiding-er 
equation in the prescncc of a n  electroluagnctic field t h ~ i s  l)r ot)taiiied 
(using thc. rrliriiiii~iili (:l~(:tr~llii~glleti(: coupling thc:ory) ;LS 

wlii(.h is t , l lv  S(~l~rii(liiip,(:r (:(l~ii~t,iol~ for w r o  iii:~gii(:ti(: fic,l(l. 11(: i i(~ 
t I 

,$, (x, L )  :z ,,I,() ( x ,  L) : (:l";ill  , ( /I()  (x)  , 

(I)) This is a ~)rol)l(~ili oil tlicl Ali;iroi~ov Uoliili (%l l i~ . t , .  Wli(~i1 I -.- 0, 

for :~iiy poilit oil 1.11(: s(.r(,(:li t.11~: ~)rol);~l)ilil,y ; i l~ i~ ) l i t ,~ i ( l (~  ,f is ,f f + t ,f . , 
w1ic:rc: f I ;~11(1 f - r(spr(~s(:iit, t,lir (:oiit,ril)~it,ioi~s of t,lir I ~ I ) I ) ( ~ ~  i1,1i(1 low(,i- slits 
r(~s1)(:(~t,iv(sly. W I I ( ~ ~ I  tlic (:urr(,ilt, is on,  i.v., I # O ?  w(, l i i ~ v ~  tali(: prol)i~l~ilit,y 
; ~ i ~ i ~ ) l i t , ~ i ( l ( ~  f '  - L  f'+ t f /  with 

where c+ anti c_  dc1lot.c iilt,cyy-nl 1);~tlis ;~l)ovc: i ~ i i ( 1  l)(:Iow tlic soI(:iloi(l r('- 
spectively. Thus  
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on dividing the  two coiit,ributions by a common pllase factor exp(i  sc: :A - 

d x ) ,  which does not affect the  iiiterference pattern.  The  closed line int,egral, 
t o  br  taken conilterclockwise aloiig an  arbitrary closc~l path  around t,he 
solenoid, gives 

where 4 is t,lic: rliagiictic flux through the  sol(:iioid. 
Thus thc  introductioii of t,hc solclioid gives a ph:~se fi~c.t,or ccblc t,o the  

proba1)ility alnplitud(: a t  poii~t,s or1 t,llc sc:rc:r:rl c:orltril)utc:d l)y t,hc, lowcr slit. 
Usii~g a, nicthotl aiialogolis t,o the t,rcat,rncnt of Youlig's irltc~rf(~rt:lic,c in 

opt,ic:s, wc: sec tllat, tlic i~lt~rfor(>n(.(: ~ ) i ~ t , t , ( : r ~ ~  is s1iiftc:d by AS. Assurriing 
1 >> d ant1 1 >> AS,  wc: liavc: 

k bcirig tlic: wnvc: ii1iiril)c:r of thc p;l.rticlcs, ;~rld so 

Not,e t,hc: t,rc.;~t,~rient is only valid rlonrrl;~t,ivistica.lly 

( i ~ )  Wha.t arc: t,llf: cmergies and energy eigenfunct,iorls for a rlonrelativistic 
particle of mass 7n, rnoving on a ring of ra.dius R as shown in the Fig. 4.7.? 

Fig. 4.7 

(b) Wha t  are the  energies arid energy eigenfunctions if the ring is dou- 
bled (each loop still has radius R)  as shown in Fig. 4.8? 
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0 
Fig. 4.8 

(c) If the particle has charge q,  what a.re the cilc:rgics and energy eigcri- 
functions if a very long solenoid containing a iriagrictic flux pa.sscs tllc rings 
in (a) as shown in the Fig. 4.9.? and ill (b)'! Assurrlc the systcrll docs not 
radiate electromagnetically. 

ct-, 
3 

14'ig. 4.9 

Solution: I I 
(a) As 

we have the Scliriidingcr equation 

where 
I  = ~ , L R ~ ,  

with 

Thus the solutions are 

For single-valuedness we require 

H(:ric:c tlic c:igcxifli~lc:tio~is a.rc 

(1)) 'I'll(: s;I.II~(: H;~.lililtoiiiil.li a .~)~)lics,  i ~ 1 1 ~ 1  so wc still have tlic s;~riic 
Scllriiciiiigcr c:clliiat,ioii 

It,\d2 
-- 

21 dt)" 
(P (8) = EQ (6 ) )  

I-Iowc~vc.r, tlic sirigl(, v;rlliedness of the solutions now requires 

Hciic:c tlic iioriiializcd cigenfunctions and the energy eigenvalues are now 

and 

(c) Thc  H;~rniltoniail in the prcserlct of a, r~iagnc,tic ficltl is 
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111 t,he region where the  part,ic\e movcs, B = V x A = 0 and we can 
choose A = V p .  From the syininetry, we have A = Aoeo, A. = (:onstant. 
Then 

AH RdQ = 2 r R A o  - 4, SiLY. 

Thus 
4% A - ---- = V(4Q/27r), 
27r R 

ant1 we call takc p = 4Q/27r, ricgl(:c:t,irig possibly ;L ~oiist , i~ii t  ph;ts(: fiu:tor ill 
t,he wave fuiictioris. Thc Schrijdir1gc:r cy~~at, ioii  is 

2 (1 cb V - - - V ( )  Q 
27rfl 

.- - 
h." 
-- 

? 
2711 

On writing 

it bcco~ncs 

with solut,ioiis 

For the ring of (a), the single-valuediiess condit,ion 

Mot ion  i n  Electrwmagnet.lc F ~ e l d  

and 

Siiriilarly for ttic ring of (I)), wc 1i;~vc: 

and 

where 
rt, 0, *Il *2> . . . . 
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(1)) For the statioriary statc, 

(a,) Show that in the usual stationary statc pcrt~~rl)at,ioii thcory, if tjhe 
Harniltoniari can t)c writtcn H = Ho + H' with f1040 = Eo4(), t h ~ n  the 
correctiorl AEo is 

AEo % (401H1140) . 

(b) For a spherical nuc,l(:~is, the rlucleons may t)c assr~nlotl to 1 ~ :  irl a 5 1 
r .  < 12, 

syhcr~cal potcritial wrll of ra(liris R givot~ by K p  - 
- r.. . , , 

For a, slightly dcforrrietl nuc:l(:r~s, it iriay be c:orrcs~)oildingly :LSSIILLI(:(~ t h i ~ t  I 
the nucleons are in arl c:lliptic:al wc:ll, again with irifir~it,~ w;~11 liciglit,, t,h;~t, 
is : 

:,,2 z 2  

0 irisitlc the c,llipsoitl 7 + - = 1 , 
hL a 2  Vel = 

whcrc u E R ( l  + 2P/3), b N R ( l  - P/3),  ; ~ t i ( 1  10 << 1. 
Calclllatc t,he al)proxirn:~t,c (:lli~rig(: ill tlic groriri(1 ~t,iLtC (:rlcrCy Eo (IIIC 

to the dl ipt ic i t ,~  of the rion-splicrici~l nuc:lcus by firitlir~g an ;~l)l)ropriat,c? £3' 
anti using the result ot)t:~inc:c1 in (a). HINT: Try to find a tr;~risforrrla.tior~ 
of variablcs that will make thc: well look spkierici~l. 

( B,~~fjulo) 

Solution: 

(a) Assuming that H' is vcry srri;~11 c.o~ripared with Ho so that thc wilvo 
funct,ion XP can be expandetl :IS 

where A1 . . . A, . . . arc small pararrietcrs. The Schrotlingc?r cqrlatiori is ttieri 

Considering only the first orcler corrcction, we have 

H'l4o) + Ho(X1141) + . . .  + Anl4,) + . - . I  
= AEolbo) + Eo(AI 141) + . . . + An + . . 

Multiplying both sides of the equation and noting the orthonormal- 

ity of the eigeilfunctions we get 

R ~ l ) l i ~ ~ i i l g  the vi~ri;~l)l(?s Z, j j ,  z by 2 <, $ 71, % C rcsp(:c:t,iv(?ly, w(: ( : i ~ r i  writc 
the cqr~i~t,iori of the ~l l i~)soid as t2 + 712 + <' = R2 arid 

fi" 
- - -  Ti" P2 a2 ~ ' 2 -  - 

27n 37n (at2 2 

The sc.c:orltl terrrl iri H can be considered a perturbation as ,D << 1. Thus 

where djo is the ground state wave function for the spherical potential well, 

As 40 is spherically symmetric, 

and so AEo = 0. 
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Employing first ol.clc:r pcrtrlrl~ation theory, calculatt: the c:rlergy o f  the 
first t,hree st,ixt,cs for i ~ i i  infinitc: square well of widt l~ ( I , ,  whose portior~ AB 
has 1)een s1ic:ctl off. (Note: The line OA is a str;~ight li~~c!). 

and t,hc energies of the first three states are 

?r2h2 Vo 2-ir2h2 Vo 97r2h2 
-+7, - +T, - vo + - .  
2pa" p a 2  2 p ~ 2  2 

I A particle of ma.ss r n  moves one-dimensionally in thc oscillator potential 
V(z)  = $ , I I L W ~ : C ~ .  In the ~lonreli~tivistic limit, where the kinetic energy T 
and ~ r ~ o n ~ e ~ i t , ~ ~ r n  p are relatcd by T = p ' / 2 r r i ,  the ground state ellcrgy is 
well know11 to be $ Fw. 

4 Allow for rcla.tivistic corrt>ctioris in the relixt,ion between T and p and 
E comprltc the g r o l ~ ~ l d  stat(: lcvcl shift A E  to order $ ( c  =speed of light). , 

( D~/,J-r~>lo) 

Solut ion:  

The inotlification t,o thcr H i ~ l l ~ i l t o ~ l i i ~ ~ i ,  H1 :-- ::I: (0 5 : I :  < rr), (.a11 
be consitlcrccl ;~.s a pcsrt,lirl);ltion. The ii11pcrt11rl)c:tl t:igc:11S1111c:tio11~ ;~i1(1 thc: 
correspontli~~g c igc~~va l~ i r s  of t,hc first thrco stat,c:s arc 

The first ordcr energy correc:tions are tht:n 

Solut ion:  

111 rcsla.tivistic: lriotiori, the kiiictic cncrgy T is 

P2 p4 
- 

2 r n  8rr1."~ 

to orrlrr 5 .  The term may be considered as a perturbation. Then 
the cnergy shift of the ground st,at,e is 

mw 1 / 4  

= . Irn -03 (x) exp [- 2 2 1  

h4 d 4  m,w a m t u  
x (- -- 8 m 3 c 2  ) d x 4  (x) ' exp [ x2]  dx 
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An electron rnoves in a. Coulomb field centered a t  the origin of coor- 
dinates. With neglect of spin and relativistic corrections the first excited 
level (n = 2) is well known to be 4-fold degenerate: 1 = 0, r n l  = 0;  1 = 

I ,  ml = 1, 0, -1. Consider what happens to this level in the 1)rcscnc:c of 
an additional non-central potcrltial Vpert : Vpert = f (~):cy, where f (T) is 
some central function, well-bc:l-laved but not otherwise specified (it falls off 
rapidly enough as r. + a). This perturbation is to l)c trcatcd t,o first or- 
der. To this order the originally degenerate 71 = 2 l(:vcl splits into scvcral 
levels of different c~lergics, e;lcli chnracterizcd by all energy shift A E  aiid 
by a degeneracy (perhaps singly degcncrate, i.e., iio~ldcgciicratc:; perhaps 
multiply degenerate). 

(a) How rnany distinct c:riergy levels are t,llcrc:? 

(b) What is the dcgc11crac:y of cac:h'! 

(c) Given the cricrgy shift, (:all it A (A > 0), for olic of tlic: lcvc:ls, what 
are the values of the shifts for all thc: otlic:rs'! I 

(P~.,kncet orr) 
I 

Solution: I 
With V = f ( r ) q  = f (r)r%in2 H sin cp cos cp trcatcd ,is pcrturl)ation, the, 

unperturbed wave functio~ls for cncrgy lcvcl 71 = 2 ,ire 
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Corlsid(:riiig the f;~ct,or involving cp in the ~na t r ix  c:lclliclits HL,,,,,tl,, wc note 
that all sllch elemcirits lii~vc oil(: of t h ~  followi~lg f i i ~ t o r ~ :  

l= sin cp c:os cpdcp = 0, 1,'" cf 22p sill cp cos cpdp = 0 , 

except Mi,pI,  l ,  and [ , -  L ,  which have riollxero values 

/ [Rzl (7.)]'r4 f ( r )  & 1" sill5 8dH f I ; , - l , l , l  = - 
8~ . 

1 = 1, rn l  = -1, R Z , ( T ) Y ~ , - ~ .  I 
A, one-fold degeneracy, 

A E = {  A ,  one-fold degeneracy, 

As they all correspond to the sarne cnergy, i.e., degentracy occurs, we have 0, two-fold degeneracy. 
first to calculate 

Thus therc are three distinct energy levels with n = 2. 

W(: t,lien (:;tl(:~il:~tc the s(:(:ular (:(11i:~tio11 

= 1 Rzs (r )  R~~ (r)r2  f ( r )  q:m sinz H sin cp cos cpx,., d V  . 5005 

A particle moves in a one-dimensional box with a small potential dip 

The required spherical harmonics are (Fig. 5.2): 

[! ! ! iq A E I  

0 -iA 0 0 

wliosc: sollitio~ls arc A E  = 0, A E  = 0 ,  A E  = A, AE = -A. 
Tlilis wit,li thc pcrt,nrl)ation there are three distinct energy levels with 

n = 2. The cilc:rgy shifts and degeneracies are as follow. 

= 

A E  0 0 0 

0 A E  0 iA 

0 O A E O  

0 -iA 0 A E  

= 0 ,  
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Thus the energy of the ground state with first order perturbation correction 
is 

li27r2 0  E 1 ~ ( 0 )  + ~ ( 1 )  = - - 
2m.12 2  . 

Fig. 5.2 

V  = oo for :E < 0  a n d  :E I 1 ,  

V  = 1 )  for 0 < :I: < (1 /2)r! ,  

V  = 0  for (1/2)1 < .c < I .  

Treat the potential dip as  a pcrturb;~tion to a "rcgu1;~r" rigid 11ox ( V  = 

oo for z < 0 and :r I I ,  V  = 0 for 0  < z < I ) .  Firltl tllct first ortl(,r crlcrgy 
of the ground state. 

( W~sconsin,) 

Solut ion:  

For thc regular rigid box, tllc clic,rgy alltl wave. fun( tlon of tllcl gro~rrid 
state arc respectively 

The perturbation is H(') - -0, 0 5 z 5 4. Hence the energy c:orrec:tion of 
first order perturbation is 

An infinitely deep one-dimensional square well has walls a t  z = 0  and 
z = L. Two small perturbing potentials of width a and height V  are located 
a t  z = L / 4 ,  z = ( 3 / 4 ) L ,  where a is s~na l l  ( a  << L/100,  say) as  shown in 
Fig. 5.3. Using perturbation ~nethods,  estimate the difference in the energy 
shifts t)ctwee~i the n = 2  and n = 4  elic:rgy levels due to  this perturbation. 

( Wiscon,sin.) 

Fig. 5.3 

Solu t ion :  

The  energy levels and wave functions for a one-dimensional infinite po- 
tential well a.re respectively 

2  n.7r 
I )  = / sin , r l =  1 ,2 ,  

The shift of the energy level n, E;) = HA,, according to  first order per- 
turbation is given by 
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As a << L/100, we can apply thc mean value thcorern to  the, irltcyy-als and 
obtain 

Tlicreforc:, the charigc of energy t1iff~:rc:ric:c I~c:twc!c:n cmcrgy l(:vc:ls 7 r  = 2 t~ricl I 

7l E;l) - = ----- 37l 2 
sin2 - + sin2 - - sin 7r - sill2 37r) ( 2 L 2 

A particle of mass ,m. moves in a one-dimensional potc:ritial box 

( cx for 1x1 > 31~1 ,  

L VO for - a < z < a ,  

as shown in Fig. 5.4. 

Consider the Vo part as  a perturbation on a flat box (V = 0 for 3 a  < 
x < 3a1 V = cx for 1x1 > 3jal) of length 6a. Use the first order perturbation 
method to  calculate the energy of the ground state. 

( Wzscor~s7rl) 

Sollltion: 

Tllc: c:ncrgics :111(1 W;LV(: fuii(:tions of H part,icle in a flat t)ox of length Ga 
arc rcspc:c:tivcly 

1 Pi~.rLi(:llli~l.ly for t,li(: ground state, wc have 
7 

?,>jO) (x) = J 1 7rx 
- COS - 
3a 6a 

The, c,rlc,rgy c.orrcctiori of first order perturbation is given by 

I E(') = ($;O)(x), v$iO)(x)) , 

whcrc V = Vo for -a 5 .c 5 a. Thus 

Hence the cncrgy of ground state given by first order pert,urbation is 
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5008 5009 

A one-dimerisior~al simple harmonic oscill;lt,or is sr~bjccted to a small A perfect,ly plastic ball is bouncing between two parallel walls. 
pertlrrbirig potential 6V(z ) ,  protlucing a "diinl)len a t  thc: ccntc!r of the rno- (a) Using classical mechanics, calculate the cliaiige in energy per unit 
tion. Thus  time of the I d 1  as tllc walls arc slowly and unifornily moved closer together. - 

(b) Show that  this c:harige in energy is the sarrlc ;IS the quantum rne- 

? ! I charlical result if the ball's quariturn number does riot c1i;~ilge. 

Calculate the corrcc:tiori t,o thc ground st , i~tc cnorgy of the oscilli~tor t,o first (c) If tlic ball is iri tlie quanturn s ta te  with 7). = I, uiltler what conditions 

orcler in X ill the cvcrit that j: of wall nlotion will it rcrnairi in that  state'? 

(a) n << JG, ( CIr icugo) 
(b) a >> JW. ', I 

Hints: t,hc norrri;~lixctl grorirld strate wave fuiic:t,ion of ;L siin1)lc lli~rrrlorii(: 
oscillator is 

I 
?t,W 

d ~ ~ ( : r )  = (x) exp(-711~1'/2h,), 

arid I 
1 ~ ? - - ~ *  X 

d:c 7r 0 L 

I 
i Fig. 5.5 ( CoI1~7n.biu) 

Solution: I Solution: 

The  energy corrcc:tiori for the ground state given 1)y first ortlcr 1)c:rtrrr 
1)atiorl is 

(a)  n << JG, 

! (a) Iri c:l;rssic:;~l rnc?c:ll:rriic:s, tllc criergy of t,lic: 1)all is 

I s o u = & *  
(1t 711 ( 1 1 '  

At ;I c:ertnin iilst,arlt t ,  t,lie w:tlls il1-e s(:parilt(:d by L arid tlie 1)all rnoves 
to tlic right with s ~ ~ e e d  u;. Bccausc th(: c:ollisio~i is perfectly elastic, tlie 

! speed of thr: 1)i~ll relative to tlic riglit will1 1)c:forc illid after bouriciiig from 
it rc:rn;rins the same: 

7 4  + V l  = u2 + ( - v l ) ,  

where is the s p c ~ d  of the ball after bouncing. Thus, 

P dP 7) A P -  - P u2 p 1 u 2  dE/d t  = - - - - -- 2 m u l .  - = -- 
,m,dt m a t  m 2L L ' 
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where At = 2L is tlie t , i~ne interval between two successive collisioiis. As 
U? 

the  right wall moves very slowly, 

wliicli is the rate of change of the energy of the ball ac:rortling t,o c:l;issic,al 
mechanics. 

(h) As the ~ n o t i o ~ l  of tlie right wall is very slow, thr. ~)rol)l(:ni ( ~ ~ 1 1  I)(: 
t reattd as one of pc:rturbatioli. If the wall motion can l)c ricglcc:tctl, wc: 

have 
n7r2h? E -- 

n - 2mL2 ' 

samt  as the classical result. 
(c) If thc energy change during one collision is in~ich s111;tllt:r tliari Ex - 

El,  the l~a l l  can rcinnir~ in the state n = 1 (analogoils to i~clii~l)i~tic. proc.cx-ic3s 
in thcrmodyna.mic:s). Mort, precisely, as 

we have 

The  coriditiori 
E2 - El >> lAEJ 

then gives 

Prrturbntion Theory 305 

This means that  the speed of the right wall should be much smaller than 
3nti 
4m 1, ' 

Consitl(:r ill1 c lc( : t , ro~~ in a "oric:-(1imcnsiorlal box" of length 1 A. 
(a) Fintl t,llc: first 4 wiwc furic:t,iorls (11orrrl:~lizc t l ~ c  wave f~~nc t ions )  and 

skctc:li t,lic:~n). 
(1)) Co~riput~c: tali(: c:orrt:s~)oi~tlilig 4 c n r q y  Irwc+i i~ild skct,c:h an  energy 

1cvc:l clii~gri~rn. 
((.) At L = 0,  tlic pi~rt,ic:lc is krlown t,o t)c i l l  t,tlr, s tate for whic:h ,I?. = 1. 

At t I -  0, iL ~.(:(:t,iL~lglllil~. ~)Ot,(:lltii~l ~ ( ' 1 1  -- - 10 cV, c:c:ntcrc:d a t  a/2 and 
of witltjli lO- ' \ c : r l i ,  is s~~clclc:r~ly ir~trocli~c~c~ti illto tllc wc:ll and kept t,l~c:rc: for 
5 x 10 - '"sc~:, ; ~ t  wliic~li t,iiric: it is rc:rrrovc:d. Aft,c:i- rrs~novi~l of t,hc ~)c>rt,,~rl)at,iorl, 
wh i~ t  is t,llc: ~)r.ol)i~l)ilit,y t11;lt thc: syst,c:rn will f i )~l i~( l  in (:i~(.h of t,he statcs 
n = 2 ,  , rr 3 ,  i~11(1 71. -- 4'! (rl?l~(: ll(\ight i l i l (1  wi(lt,li of tali(: ~ ) o t ~ n t , i a l  well is 
~ll i~r; i(~t ,(~rist , i( ;  of :L 11(:1itroi1 iiit(x~(:t,ing wit11 : ~ i i  (:l<:(:t,ron). 

Not,(,: you (:a11 IIS(> yo~ir. sk(:t,(.li to h(:lp yo11 ( :s t , i~~~i~t , ( :  tall(: r(:l(:vi~~lt lni~trix 
elcrl~c:iit,s. 

(Bei.X:cley) 

0, o< : l :< ( l , ,  
v (3;) = 

cc, ot,hc,rwisc, 

1 whc:rc: ( I .  = 1 A is th(: lcngth of the box. Tlic sc~hriidi~igcr ccl~ratiorl for t,lic: 
e1cc:trori is 

2 , r r ~ E  
I "  ( 1  + ( 1  = 0,  z E [0, (11 , 

fl, 

I $(x) = 0,  z E [ O ,  a] . 

As E = T + V is posit,ivc, the sol~rtions must l)e sii1usoid;ll with nodes a t  
z = 0 i~nc1 :r: = n.. I-Icilc:c the norrnalizccl sol~it,ions arc 

7 
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The first 4 wave fullctiorls in [O, a ]  are a s  shown in Fig. 5.6: 

qJ (X I  

Fig. 5.6 

(b) Substitutiori of $, in the. Schrodinger equation gives 

T h e  first four energy levels are 

El  = h21r2/2,ma2 = 0.602 x 10-"erg = 37.4 eV 

E2 = 4E1 = 2.408 x 10-lo erg = 149.6 eV 

T h c x  are shown irl Fig. 5.7. 

I Fig. 5.7 

I ((.) Thc  probability for finding the system irl state 11, after the prrturba- 

where 
1 

WT,,' = - (En - E l ) ,  li 

7 6 l r 5  . lr 
sin -- slrl - . dx . 

a a 

As b << n ,  the mean value theorem can be applied t o  the  above integral 

1 with z -. ;, dn: = 2b and we have 

2 x  10-128x lo4 = 2 eV. Therefore, Thus Hzl  = 0, H41 = 0, H.31 = lo- 
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l6 sin' (i wsitO) = 1.45 x l o - " ,  P,j = - 
h2w& 

with 

Solution: 

Ti~kc: t21c: t1irc:c:tioii of c:l(:c:tric: fic:l(l ;is t,llc: 2:-tlirc:c:t,ior~. Tllc: I I i i ~ ~ i i l t , o ~ ~ i i ~ r ~  
of t,hc systc111 is 

whcrc H' := -qE:l: is t,o bc t,rc:i~tc:tl ;IS ii ~)(:rtlirl)i~t,ioii. 
T l ~ o  wi~vo hinc:tioil of t,hc: grourltl stilt,(: of it hiarrrlor~ic: osc:illn.t,or is 

where 
/71)W lk 

As $o is an  even hlnction, t,k~c first ordcr corrcct,iorl (OIH'IO) = 0 itlit1 w(: 
have t o  go t o  the  second order. For the  harrnoiiic: osc:illntor wc: 11i~vc: 

arlti hence 

HA,, = - q E ( O z n )  = - ( q ~ / h ~ )  bll,,l 

Thlrs the c,ilc,rgy c'orrcction for the ground stat(, to order E2 is 

For a oil(:-dirr~c:risio~~:~l h;rnrloilic: osc:ill;~tor, iritroclllc:tioi~ of t,hc clirr~c:n- 
siorll(:ss ( :oor( l i~~i~t( :  i~11c1 c:ric:rgy vari;~l)lcs :y -- : c ( ~ r ~ w ~ / l r ) ~ ~ ~ i [ ~ t l  E.,, = 

2 E.,l,//~uo givc:s a S(:hrijtliilgc:r c:cl~~;itior~ with kiilotic: cricrgy o l~or i~ to r  T = 

$ iLI11I 1)otolrtii~l (!ll(!rgy v -- ?j'. 

(21)  Usillg tall(: fil.(:t t,lliit tall(: Ollly 1lo11-~i~1li~hiilg (lil)ol(: 111:it~rix (:1(:1ncnt is 

( , r ~  + ll;ylr~,) = @ (;ii~(i it,s ~~~r111itc::l.il (:or~jtignt(:), fi11~1 v;i~u(:s for all the  

non-v;~rlishir~g ~na.t,rix c:lo~~ic:r~ts o f  y" t,liat c:onnc?c:t t o  the  groulltl sta.tc 10). 

(1)) Thc? usci1l;~tor is pcrturl)c:cl 1)y ~ L I I  l larmoi~ic potcnt,ial V' = tu :c / " .  

Fincl tlic: c:orrec:tioi~ t o  tllc: grouiltl st:~t,c: c:ric,rgy in the  lowest non-var~ishing 
order. (If yo11 clicl riot. gcrt c:oi~l~)l(:tc: ;LIISW(:~S i l l  I ) l ~ r t ( i ~ ) ,  leave your rcsult in 
t8ernls of c:l(:arly dcfir~c:cl lnat,rix cl(:inci~ts, ct,c:.) 

(Berkeley) 

Solution: 

(a)  As 

the  non-vdnislling matrix clcrn~ilts conncctcd to  IO) ,  



are thosc with rrr = 3, k = 2, 1 = I ,  and with m = 1, i ~ ~ l d  k = 0, 1 = 1, or 
k = 2, 1 = 1, namely 

(1)) Bcc:ause ,$o is ;an cvcrl f'uric:t,iori, (0111'310) = 0, or thtr first ortler 
c?rlergy c:orrcc:tiori (01 t ~ ~ y : '  (0) is zc:ro, ant1 wc: liixvct t,o (.i~l<:llli~t(! t,h(: SC(:OII(~ 
ortlcr ericXi-gy corrc?c:tio~i: 

Co~isid(:r ia ollc:-clirrlcrisio11i1~1 lia,riiioiiic osc:illiator of Ir-ocl~lc:ric:y wo. D(,llot,(: 
tlir: eiic:rgy cigcnst,iatc:s by .it ,  st;art,irig wit11 ,rr I- 0 for t,llc: 1owc:st. To t,lit: 
origiilal lii1.rn1oni(: os(:ill;at,or l)ot(:~itital ;a t,i11i(:-iil(l(r1)(~ii(l(:1it, p(~rt,~lrl):atio~i 'fi : 
V ( x )  is ;x(l(lcd. Iiist(~ia(1 of givi~ig t,li(! foriii of tlic l ) (~r t~i r l ) i~ t io i i  V(: I ; ) ,  w(: s1i;~ll 
giv(, (;xL)li(:itly it,s ~ii;at,rix (:1(:111(~1its, (,ial(:~~l;~t(:(i ill tll(, r(:1)r(~s(:iitiatioii of' t,li(: 
unpcr t~~r l ) e t l  (:igciist,i~t,(:s. 'I'll(: ~iliatrix e1(~11i(~nts 'fi uril(:ss rn n ~ i d  
n are cvc?ri. A portion of t,hc, ~lliatrix is giv(:ii l)(:low, wli(:r(: E is a s~riall 
di1nensionlcss (:onstia~it. [Not,(: t l i i~ t  th(: i~i(li(:(>s 011 t,liis ~iiiat,rix rllll f'roni 
n = 0 t o  4.1 
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(11) Thc cnergy lcvcls t o  first ordcr in pert,url)at,ion tlicory are 

(a) Find the ncw energies for t,he first five cnergy levels t o  first order in 
perturbation theory. 

(1)) Finti t,he new energies for 71 = 0 and 1 t o  second order in perturbation 
theory. 

whcrc, En = ( r ,  + i)frwol HAn = (11 / 'H/~L) .  T1111s t h ~  cric,rgy Lor the  first five 1 
energy I(~vc~1s arc, I 

1111 

II 

(1)) Thc  c~nc~rgics for n = 0 and 1 t o  the secorld order ill pcrturbiation '11 

(Berkeley) 

I 
Solution: 

theory arc 
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A rnass m is attached by ;I. rriassless rod of length I to a pivot P and 
swings in a vertical plane uridcr tlic i~~fllic.rlc:c of gravity (sce Fig. 5.8). 

Pig. 5.8 

(a) In the  small a.ligle approximation find the  energy levels of the systc:irl. 

(b) Find the  lowcst order correction to the groulld s t i ~ t c  energy restlltillg 
from inaccuracy of thc sinall angle approxirnntion. 

(Columbia) 

Solution: 

(a) Take the  equilibrium position of the poilit mass as the zero poillt 
of potential energy. For small angle approximation, the  potential ellcrgy of 
the system is 

and the  Hamiltonian is 

Pertlirhatzon Theory 

By cornparirig it with the  one-dirnensioiial 1i~1.rrnonic oscillator, we obtain 
the  energy Iev(11s of the systelrl 

wit,h t u  - ,/y. Tlw lowcst ord(,r corrcc.t,ioli to thc: ground sttrtc. ciwrgy 
res~ilt,iiig fro111 ini~(.(:~ir;~(:y of th(: sir~;~.ll ~ L I I ~ ~ O  ;~~)~) rox i i r i i~ t , i o~ i  is 

5015 

A qliant,tnn mcc:hanical rigid rotor coilstraincd to rotil.t,c ill one plane has 
moment of inertia I about its axis of rotation ant1 electric dipole moment 
p (in t hc  plane). 
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This rotor is placed in a weak uniform cllectric field E ,  which is in the 
plane of rotation. Treat,irig the electric field as a perturbation, find the first 
nori-vanishing corrcctions to the energy levcls of the rotor. 

( W.scon.sirl) 

Fig. 5.9 

Solllt ion: 

Ti~kc tllc: plt~ric. of rot,i~t,ioii of t,lic rot,or iLs thc: :cy p l i ~ i ~ :  with t,h(: :I:-iixis 
pari~11(,1 to E ;is sliowii ill Fig. 5.9. Ill t h ~  :~l)sc:ric:c: of (:xt,t:rl~i~l (:lc(:tric: fi(:l(l 
thc JIi~111iIt~o11i~~11 of rotor is 

h-I" fI" = - - 
2 1  3BL ' 

i~ i i c l  t,lic cigc:llc:clu;~tiori is 

[r"i32,(l/ 
-- - I -dl , 

whic:h has sol~it,ions 

corresponding to encrgy levcls 

When the external elect,ric field acts on the system a11d may be trc:~tctl 21s 
pert,urbation, the Hamiltonian of perturbation is 

The first order energy correction is 

The second order rrlergy c:orrrction is 

5016 

The polarizatio~i of a diatomic r~lolecule iri weak electric fields may be 
treated by corlsidering a rigid rotator with mornerlt of inertia I aiid elect,ric 
dipole inomerit d ir l  a weak electric field E. 

(a) Ignoring t,he rriotion of the center of mass write down t,he Haniilt,o- 
nian H of t,he rigid rot,ator in the form of No + H t .  

(b) Solve the ~lilperturbed problem exactly. How are the levels degen- 
erate? 

(c) Calculate the lowest order correction to all t,he energy levels by non- 
degenerate perturbation method. 

(d) Explain why is nondegenerate perturbation method applicable here 
and how are t,he levels degenerate. 



316 Problems and Sol~~tzons on Quantumn hfechanzcs 

T h e  following relation may b~ useful: 

- v' (I + 1 - 71~)(1 + 1 + m )  v' (1 + 7~1,) (1 - m )  
cos OK,, - 

(21 + 1)(21 + 1) 
K+l,, + 

(21 + 1)(21 - 1) K-l,," 

Solution: 

(a) Take the z-axis iri the direction of the field. Thc  Hninilt,oiii;~ii of tlic 
rotator is 

Considering d E  c:os 0 ;is a pc:rt~irl);~tion, we have 

w1ic:rc: 7r1,  = - j ,  ( - j  + l) ,  . . . , ( j  -- 1)) j ,  ;~ i i ( l  tlic (wvrgy (-ig(~iiv:~,l~i(~s ;~r(:  

E ( O )  1 I n  = dw. ~ l i c  l(:v(:ls arc: ( 2 j  -+ l)-f01(1 (~(:g(:ii(!r;~t <: sill(:(: (lo(:s iiot 
dcpciltl oil ,rn a t  ;~ll. 

(c) Tlie first, or(1cr (:ii(>rg,y corr(!(:tioil is 

For the  sccoilcl ortlor c.orrc:c:t,ioii we calcul;~t,c 

where n,, i denote pairs of j, ,171, ant1 the prime signifies c:xc:lusion of I = rr ill 
the summation. As the non-va~iishing matrix elements arc only 

v' ( j  + 77~) ( j  - 712) 
( j  - 1 ,  ml - dE cos Bljn~) = -dE 

( 2 j  4 1 ) ( 2 j  - 1) ' 

Perturbation Theory 

the  lowest order eriergy correctiorl is 

((1) Bc~.:~usc: fI1 is alr(:;ul,y diilg011itl ill th(: j S I ~ ~ ) S ~ ; L C ( : ,  t l i ~  11011(1(:g~1i(:r;ttC 
pert,rirl);itioii t,ticory is still al)plicat)lc. Howcvcr c:vcl~ with the pcrturbi~tioll, 
degoiic:r;~c:y tloos ilot c.oil~pl(:tcly disa~)p(:;~r. 111 fi~(:t statcs with sarnc j t)lit, 
opposit,c: r r L  arc: still tl(:gc!lic,ratc. 

A rigicl ro t t~tor  wit,li clcctric tlil)olc ~ ~ ~ o m c i i t ,  P is confinetl t.o rot,;~tc in 
a p1;trlc:. Tllc. ro t ;~lor  has irlornciit of illcrt,ia I at)out thc (fixctl) rotatior1 
axis. A wc,ak ~iiliforrri c:lcc:t,ric: fielcl E 1ic:s in tllo rotatior1 plttrle. Whttt are 
the  ciic~i-gics of the t,llrc?c: lowest, ~ I ~ ; L I L ~ , I ~ I I ~  states t,o ordcr E"! 

(MITI  

Solution: 

Tllc. F1arniltorli;~rl for the  frcc rotator is 

Fig. 5.10 
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A Schriidinger equa.tion then gives the eigenvalues and eigerifunctions 

When a weak ul~iforrn clcctric: field E is ap~)lictl, the pc:rt,iirl)atio~i I-1;~lriil- 
toriian is 

I = E . P  = Xc:os(/,, 

0 )  >Lll(l exp?l,ll(i 1 )  ill IT!,,) = ,?/I:,, (4):  

(fIo + HI) C C,,, ( ~ r r )  = 1 C,, E(rrr) , 

Multiplying bot,h sides by (711 we have, on account of tlic: orthonormality of 
Im) and the property of (,rllIT117n) given abovc, 

P e T t ~ T b a t i ~ ? ~  Theory 

Expanding E arid C,, as  power series in A: 

and substitutirlg ill the above, we obtain perturbation equations of different 
orders: 

TO firltl tile energy lt:vcl E:, we first see t,hat the zeroth order ecluation 

(EP)  - E!:)) c::) = 0 r(xluires C!:) = 0 if k  # 71. Hence WC! write 

Substitutiori i r i  tlic first ordcr ecluat,iori gives 

Wtieri 7~ = * k ,  we have 
E(') = 0 .  

When 71 f f k ,  we have 
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Substituting c;') in the second order equation gives for n = k 

1 (E?) - E ~ , O ) ) C ; , ~ )  + E ( ~ ) C ( O )  - - ~ ( l )  (1) - 
71 2 n - l - ~ ~ r r + ~ O i  

1.e., 

1 E(qCf) = - ( ~ ( l )  + c(l) ) 
2 k - 1  k+l 

1 

1 
- - 

1 

k+L - E k  

For thc gro~lrid sta.t,e k = 0 ,  Eq. (1) givos c?) # 0, c(!! = CiO) = 0, ;r.rid 
, 

so Eq. (2) bccomcs 

For the first exited state k = f 1, Eel. ( I )  givcs CY? # 0 ,  arid Eq. (2) 
becomes 

and 

Thc:se arc hornogcncous cqunt,ions in Cy a.nd CU I .  Solving the sccl~lar 
equ;itioii, wc o1)ta.in for tllc first cxcitcd st;itct two cncrgics 

For the sc:cond exit,cd state k = f 2, Eq. (1) givcs ~ $ 1  # O ;ind Eq. (2) 
becoinr:~ 

Thus 

Therefore, the encrgy correction to thc sccontl ordcr perturbation for the 
ground state is 
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for the first cxitrd state is 

and for thc sc,cond exited state is 

A rod of length d ancl ~iiliforir~ Inass distril)~itioll is 1)ivot.otl i ~ t  its c:ciit,c:r 
and const,raiiicd t,o rotate ill a plaiic,. Thc: rod has riiass M i ~ i i t l  c:hi~rge +Q 
and Q tixc:d a t  c:it,hcr end. 

(a) Dcsc:ril~e this systrili cllia~ituii~ inac:hn.iiically, fiiitliiig its II;tiililt,oniaii, 
cigr:nf~irictioris ~ L L L ~  thoir c~igcnvalucs. 

( I ) )  If ir. ( : ~ i i ~ t i ~ i i t  weak clcc:tric: fic:l(l E lyiiig in t,lic: 1)li~ilc: of rotir.tioii is 
i~p~)liccl to this systcrri, what arc t,hc nc:w c:igc:rif~iilctioiis il.iitl c:iic:rgicts to 
first ordvr ill E? 

(c) If thc: i~p1)lic:d c:lcc.tric: ficl(1 is vc:ry strorig, f i i l t l  ill1 i~1)1)~ .o~ i i l i i~ t ,~  W ~ L V C  

f~iii(:t~iori i~ritl cncrgy for thc: groliiid s t i~t ,~? .  

(GUS)  

Fig. 5.11 

Solut ion:  

(a) Take the plane of rotation as thc zy plane as shown in Fig. 5.11. 
The Hamiltonian of thc system is 

Perturbation Theory 

where I = & Md2,  and the cigcnrquation is 

T h r  sohitions of the, cigenrcl~iation are 

2 -21E,, whc1.c k:,,, - . For single-valuctliiess, i.e. $,,, (0 + 2n) = $,,(6), we 
requirc 

k 1 , , = O , & l , f 2  , . . . .  

T h ~ i s  t he c:igrnfrinc~tions are 

and thc: c:orrc:sponding cigc:rlvalurs are 

(b) Take the tlirec.t,ion of the consta.nt field E as the x direction. Then 
E = Ee,, and the Hami1tonia.n of the systern is 

where 
V(8) = -P . E = -QdEcosO. 

Let 

and consider V(8) as perturbation, i.e., H' = -QdEcos8. 
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T h e  unperturbed eigenfunctions and  eigenvalues ha.ve bee11 given in (a) 
and are respectively 

1 e ~ ~ n ~  / r 2 ~ r r b 6 h 2 i n 2  
$in (Q)  = p , E m = -  - - 

6 2 I Md" 

As El, is determined by irl" ,$,,, (0) aritl c/L,,,(H) 2tr.c: tl(:gc:~~c:rute. Howc:vc:r 

we can still ust: tllc rc:sult,s o f  rlontl(:gcutrr;~tc ~)c:rturl);~tior~ t,lic:ory: 

Hence in first order perturbat,ion, the energies and  wave fiinc,tions as are a.s 
follows: 

1 1(7,1+ L)O 1 C l ( r r I - l ) o  -k - 
1 - 2rn I - 

((.) If the  cl(:c:t,ric: ficltl is very strong, thc  1)rol)ability tha t  H is in the  
srntill-:ir~glc region is very largc:. Thus  cos 19 FZ 1 - 4 Hhat~tl  thc  Harniltonian 
is 

This has t,lic form of t,lic I-Inrrliltoni;~11 of a linrrr~orlic: osc:ill:rtor ( P r o b -  

l e m  5008)  wit,]) w" = 1 : r t l t i o ~  I = Q ~ E .  ~ l r c r r  
for 1,hc: gro~ilitl st,i~t(: wc I I~LV( :  

(a) Stittc a11 the  crlcrgy levels of a synirrictric top  wit11 prirlci~);~l rnomerlts 
of inertia II = I 2  = I # 13. 

(1)) A sliglit,ly asymmetric top has no two I ' s  exactly equal, but  II - I 2  = 

A # 0, I, + I, = 21, ( A l a I )  << 1. Compute the  J = 0 and J = 1 energies 
through [)(A). 

(Berkeley) 

So lu t ion :  

(a) Let (x, y, z) denote the  rotating coordillat,rs fixed in the  top. T h e  
Hanliltonian of the  system is 



Problerns and Solutions on  Quantum Meclranics 

Hence a state with q~ianturn  nunlbers J ,  7 r ~   hi^^ txiit:rgy 

which givrs t,lie criergy lcvcls of tlic syniliit:trit: t , o~) .  
(b) For tlic sliglitly asyrnrnrtric top tlic EIailiiltoliiiiri is 

= fr, t H ' ,  

where H' = & (5;  - .I:), to  1)e t:o~isideretl as il. pc:rt~irl);~tioii. 
Dcfinirig .J* = .J, * i ,J ,  we 1l;ivc 

we have 

2 J+joo) = J ~ O O )  = 0 ,  

2 J+llO) = J" 10) = 0 ,  

J:Il, 1)  = 0 ,  J:lll -1) = 2h2111) , 
2 J - I -  = 0 ,  ~Ll i i )  = 2fi211, -1). 

Perturbation Theory 

Hence for the  perturbed states: 
(i) J = 0 ,  m = 0 ,  (nondegenerate): 

(ii) J = 1, ,rn = 0, (rlontlegcneratc): 

(iii) .I = I ,  m = *1,  (two-fold degenerate): 
As dcgenerary occurs, we first calculatt~ 

We tllcil f o r ~ n  tlic scctiliir (quation 

which nic:ans tha t  t he  energy of the  states J = 1, rn = * l ,  El,*1, splits 
into two levels: 

fz2 h2 A h 2  
El,*l = - + - * - 

21 I 412 ' 

a li." 

5020 

(a)  Using a simple hydrogenic wave functiori for each electron, calculate 
by perturbation theory the energy in the ground s ta te  of the He atom as- 
sociated with the  electron-electron Coulomb interaction (neglect exchange 
effects). Use this result t o  estimate the  ionization energy of helium. 

X -- 
41L 

A h 2  
-- 

= 0 

41" 
This c~cltiatioli has t,wo soltitions 
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(b) Cal(:lilat,e the ioriization energy by using the varia.tiona1 method, 
with the cHcct,ive charge Z in the hydrogenic wave function as thc varia- 
tional paran~rt ,er.  Compare the res~ilts of (a) and (1)) with the experinlent,al 
ionization c:nc:rgy of 1.807Eo, where Eo = [12mc2/2. I 

Note: 

( Col l ~ , r i l / )  1 (L) 

Solution: 

(a) Thc  nnperturbcd Hitniiltonian of tlic: syst,c~ii is 

For t,tic: grollr~tl statc, 

with oo = h2/rr~e' Treating thr  r1ritn)n-clcctroii n i t (~ rx t ion  & iI.5 i L  I 

perturbation, the energy correction to first ordvr 111 pt~rturt)ntroil thcory is 

d"rltl"r2 
A E  = ( H ' )  = e2 ~ ~ $ I o o ( ~ I ) / ~ ~ ~ $ I ~ o ( ~ z ) I ~  

lrl ~ L ' I  

Perturbation Theory 

The energy levels of a Iiydrogen-like  toin in itre given by 

and so the criergy o f  t,he ground statc of the system excluding the electron- 
elect,ron Co~ilomt) interac:tion is 

Henccs tllcs corrcctctl c.ncrgy of the ground statc of lic~liurri is 

wit,h Z - 2 for hciililli n~i(:lc~is. 
The: io~i iz i t t io~~ ~11t1rgy is t11(: energy reclliircd to  rc:niove the two e1ec:trons 

of hc~liu~rl ;1to111 to illfi~lit,~. T ~ I I S  for t h ~  grolind s t i ~ t c  

with Z - 2 for h(~liliii1 I I I ~ ( ~ ( Y I S ,  i.('., 

with 

a being the fine structure co~ist~ant.  
(b) The  Hamiltonian of He with electron-electron interactiori is 

with Z = 2, rl2 = jrI - rzl. For the ground state use a trial wave function 
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Let IL(T) = ePXT. Then 

Set,t ing 

we have, using thc, a l~ovc rc,sults, 

- - 
X2 ti '  
m 

A If Letting = 0, we get 

Therefore, the  energy of the ground s ta te  is 

as Z = 2 a" = 2, and the ground state ionization energy is 

Thus  the result from the variational method is ill better  agreement with 
experiment. 

5021 

A I);~rt,icle of iriass rn rrioves in oiic di1lic:nsiorl in the  periodic potrntial 

2Ts  
V(%) = V" cos (_) 

We know that, thc: c:nc:rgy cigorist,at.cs car1 I)(: dividecl into c l a s s ~ s  c:tiarac:ter- 
ized 1)y a n  angle 0 with wnvc: fulictions 4(:c) tha t  obey 4(:r: + a )  = ci"(z) 
for all :c. Ei)r thc (:lass 8 = 7 r ,  tliis 1)cc:orncs 4(2 + a )  = -@(n) (antiperiodic 
over lcilgt 11 a). 

(a)  E V C I ~  when V" = 0, we can still classify r:igc:ilst,atc:s by 8. For which 
values of k docs tho planc wave d(z) = ezk" satisfy thc  antiperiodic con- 
dition ovcr length a? What  is t he  crlergy sprctrum of  the class 8 = T for 
V" = O? 

(1)) Whcn Vo is small (i.e. Vo << h2/rrra2), calc~ilate the  lowest two 
energy eigriivalucs 1)y first ordcr perturbation theory. 

( MIT ) 

Solu t ion :  

(a) For the  plane wave $,(:I:) = cLk", we have 

If k satisfies 
k a  = (2n + l ) ~ ,  ( n  = 0, *1,*2,. . . )  

the  plane wave satisfies the antiperiodic condition 
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The corresponding energy spectrum is 

(1)) If Vo << $, one can treat 

2nz 
H' = Vo cos (T) 

as a perturbation ii11l)ost:d on tllc free motiori of a particle. For t11c groliiitl 
state, the eigenvaluc aiitl cigenhlnction of the free p;~rt,iclc arc rc:spi!ct,ivc:ly 
(n = 0,  1 ;  i.c., ka  = n ,  n )  

Let 5 = p arid considcr (rn,I H' ln) .  We have 

Hence for ground state, 

and the secular equation for first order perturbation is 

Perturbntzon Theory 

giving 

Thus the groln~d st,atc energy level splits into two levcls 

Thest, arc) tho lowc,st c,ric,rgy c~igc~rival~ics of the systcm. 

Ail c:lcc:tron is rnovilig ill one dirrierlsion (2) sll1)jcct to  the periodic 
bountlt~ry coritlit,ioii t.li;~t thc: wilvc fur1c:tiori rc:protl~lccs itsclf nftc:r a lcligtll 
L (L is li~rgc). 

(;L) W h i ~ t  is t,llc: EI i~i i~i l to~~i i~i i  for the free ~)art,i(:le, slid what arc the 
statioi~tiry st;~t,c:s of t,lic: syst,c~n? W l ~ t  is the t1egcrlc:racy of thcse st,ates? 

(1)) Now ;~tltl :L ~)(:rtllrl)i~tior~ 

wherr rlL - 2 n N  ( N  is a largc: int,c:gcr), rcralciil;it,c the energy levels and 
stat,ioll;lry st,;~tc:s t,o first order ill E for ail rl(~c.trori rnomcntum of q/2. 

((:) Citl(.l~liit,(' t,l~o (:orr(:~tion to  t11c (:Iwrgy of order your answer in 
part (1)). 

((1) 1tcpc:at part (1)) for c:l(:c:t,rori rrioll~c:nturr~ ric:ar, but not equal to, q/2. 
(Omit t,lle ci~l(:ulation for statioliary stt~tcs.)  

(Berkeley) 

Solution: 

(a) Thc Harniltoriian of a free particle of mass m is 

The wave functions of its stationary states are 
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where 

A11 thc criergy states E = ra' have two-fold dc!gc~lcr;tcy. 

(b)  Because N is a largc integer, we car1 treat $ = as tllc ~nid(llr: 
point of the Brillouili zonc arid takc 

as t,hc statc vcctors. On irit,roc~uc:ing the pcrtur1)atioli H' = E c:osq:c, whcrr 
q = y, we first cal(:ul;~tc: (71~1 H' ln ) :  

i i l 
q '/Z 

= $ A I' sin - (:os - cos q:1x!:c = 0, 
2 2 

Hcnce the perturt~ation matrix is 

As it is already diagonalized the encrgy corrcctioris to first orclcr pcrturba- 
1 

tion are f 5 .  Thus the ericrgy levels and wavc functions of the systcm ar t ,  
1 , 

respective1 y, i 
h2 2 E 

E' - 
- 2 ,  ( Y )  + T 1  $1 (x) = g(:os 7 ; 

h2 2 E 
EL = ( Y )  - - ,$k(x) = E S i n  . 

2 ' 2 
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(c) The energy corrections accuracte to order E' are given by non- 
degenerate perturbation theory as 

+ ($ 1' c s  kl x ( : s  q x  cos 
2 

I, q" 
;; x '  1 [ ($ 1 sill k;.: cos q.: sin - (.:I: 

E2 - El 
1 

2 

Hence thc corrected energy levels arc 
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j 
I (d) Let the  morne~itunl 1)e + A ,  whtre A is a small n11ml)tr of eithc,r 

sign, and take for the  wave fiinctions I 
C 

f Followiilg t,he ~)roc.otlurc irl (I)), we find that  the  el(xncnts of tllc first,- : 
order perturbation 11i;~trix are the  same as in (1)) if sninll q~li~~lt i t , i ( :s  of or(l(:r 
&A are  neglccted. Thus  thc  first order energy c:orrcct,ions arc rcl11;il to thosc 
given ill (b). 

Corisidcr the  orit:-clir~icnsio~lal inotio~i of ;LII c:lcc.t,ro~i c:o~ifirlc~i t,o ;L po- 
tential wt.11 V(3:) = A k:c2 illid s111)jcctcd ~ L ~ S O  t o  a l)(:rt,llrl)i~ig (:l(>(:tri(: fi(:l(i 
F = FX. 

(a) Deterrrli~ic t,hc shift in t,lre e1ic:rgy l(:vc:ls of this systc,~ri ciuc, t o  thc: 
el(,c:tric: field. 

(1)) The  clipole rnoincnt of this systctm in stntc 71, is tlcfiiictl ;I.S P,, = 

-e(:c),,, whcrc (: I :) , , ,  is the  oxpcc:tatioli V ~ L I U C  of :I: ill tlic stat(, 71,. Fiiid the: 
dipolt 1lionic:rlt of the  systcnl ill thc: 1)rosf:iic:c: of the cl(:c:tric: ficltl. 

( Wisconsin) 

Solution: 

(a) The Ha~niltoninn of the system is 

l'erttrrbatzon Theory 

H t ~ l c c  the, cncrgy shift due to  tlic perturbing electric field F x  is 

(b) The  cxpc:c:tatio~l vi~luc of :x in stat,e n is 

If i~ v(:ry SI I I ;L I I  u l~ifor~~i-(l( :~isi ty sph(:r(: of charge is irl an  clcc:t,rost;it,ic 
potc:iit,i;l.l V(,r) ,  it,s ~)ot,(:~it,i;~l CIICL-gy is U ( r )  = V ( r )  -t riV"(r) + . . . , 
whc1.c. r is t,lic, ~)osit,ioii of the  c.c.11tc.r of thc c.lii~rgc i~ntl  ro is its vc,ry siiiitll 
radiiis. 'rlio " I i ; i~~i l )  shift" can 1)c t,lioiiglit of ;LS tkic: s~riall c:orrec:tioii t,o t,lic' 
energy l(~vc,ls of' t,t~c: hytlrogc:n ; L ~ , ~ I I L  l)(:(.ails(> t,l1(: ~)hysi(: i~l  c:I(~;troll docs IELVC 
this l,rol)cr.t,y If t,hc r; t,c,r~n of U is trc$at,c:d as ;L vcxry srnall pcrt~irl),zt,ior~ 
com1)arc:tl t,o the, Coulonll) illt,c:rac:t,ion V ( r )  = -c"r., what arc t,hc: L i~~r i t )  
shifts for tlic, I s  ; L I I ~  21) I ( IV(~ IS  of th(: hy(lrog(:ii ;~t ,o~ri? ExI)~(,ss your rcslilt 
it1 tcr1lls Of r.0 iL1ld fllll(~i~lll(:llt~i~.~ (:011~t,;Lllt,~. 

Ttic: uii1)(:rt,lirl)(:(i W~LVI '  fiin(.t,io~is arc 

-312 - 

.$ls (r) = Z a ,  . e 

Solut ion: 

T h c  st;~tc: I s  is rio~idegelier~~t,c, so the: crLcrgy correct,ion is 

where x' = x - $. 
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we have 

Positroiii~rili is a 1iydrogc:n ; ~ t o ~ l l  but  with i i  p o ~ i t ~ r o n  as ' L ~ i u ( : l e ~ ~ ~ l l ,  in- 
strntl of ;L prot,oii. 111 tl1c ~ionr~lativist i( :  lirnit, t,lrc: clrorgy 1cvc:ls and wave 

functions arc thc  s1~111t: ;LS for hydrogr:rl, c:xc:c:~)t fix sc:i~lc. 

(a)  Fro111 your krlowlcdgc of t t ~ c  lrydrogcn at,orn, write tlowrr thc: norrrlal- 
ized wavc furiction for tlic: 1s gro~rrltl s tatc of positrorriurri. Us(: s~)lrerical 
coordirlates and thc hytlrogeliic Bohr radius no as n sc*al(: 1)ar;~rnetc:r. 

(b)  Evaluate thc root.-nlcari-stluare ra.tlius for the  1s stsat,(: in urlits of no. 
Is this a n  estimate of the  physical diameter or the radins of positrorli~inl'? 

(c) In  the  s states of positrorriunr there is a conta.ct 11y1)crfiric: iilt,c:raction 

87l 
Hint = -- pe . pp  b(r)  , 3 

where pe and p, are  the  electron and  positron rn;~gnetic: nloilrrrits 

For electrorls and positrons, lgj = 2. Using first order perturbation theory 
colllpute the energy differcncc hetween the  singlet and triplet ground states. 
L)etcrminc which s ta tc  lies lowest. Express the  crlergy splitting in GHz (i.e., 
energy divitlcd hy Plarlck's constant). Get a il~rmber! 

(Berkeley) 

Solution: 

(a) By analogy with t h ~  hydrogerr  torn thc  norrnalizcd wave function 
for thc  1s ground s ta te  of positrolliurll is 

with (LO = 3, 7r1. t)cing tlrc clcctri)i1 rrst  rriass. Not,(: tlmt the f;ic:tor 2 in 
front of no is to  ac:courrt for thc  fact t,lr;lt t he  rcd~rc:c:tl rriass is p = inr. 

(h) T h e  ~lleari-squarc radi~rs for tlic: 1s statc: is 

and tlic: root-rrl(:;~ii-sq~ri~r(: racli~rs is 

This (:an be considcrccl a physical c,stirrr;ltc: of the  ratli~rs of positroniurn. 
(c) Ta.ki~ig the  spill into ;~cco~lnt  a st;~t,c of thc  systerrr is t o  he tlescribed 

hy In, 1, 711, S, S,), whcrc S aricl S, are respectively the  t,otal spin and the  
z-component of the  spiri. Thus 

s ) .  
( p = g z i l ~ c  
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where we have used 
S = s ,  + s,  

For the singlet stat,(,, S = 0, S, = 0, 

For thc trip1c.t strat(%, S == 1, S, = 0, k 1 ,  

Considcr tho protor1 to  1)e a sp11eric:al sl~cll  of c:hargc of ratiius R.  Using 
first order perturbation theory calculate the c:hallgc: ill tl~c: l ) i ~ ~ c l i ~ ~ g  c:riorgy 
of hydrogen due to the 11011-poirit-like nature of thc: pl.otori. Doc:s the, sign 
of your answer make sense physically? Expla.in. 

Note: You may use the  approximation R << a0 throughout t,his prohlcm, 
where a0 is the  Bohr radius. 

( M I T )  

Solution: 

If u7t, consider the protoil to be a spherical shell of radius R and charge 
e ,  the potelltial clicrgy of thc t:lcc:tro~i, of charge -e ,  is 

Takc: tl~c: tliff(:rc!nc:c bc:t,woc:ri tlic ;~l)ovc: V(7.) i111cl t,li(> ~)ot ,e~i t i i~l  energy - $ 
due t,o a poi~~t,-c:h;irgc: protori ;LS p c r t ~ ~ r l ) i i t i o ~ ~ :  

As A15 > 0,  t,hc: grou~ltl statc crlcrgy lcvcl of thc hytlrogcr~ a t ,o~n wol~ltl 
irlcrc:isc: ( 1 1 1 ~  to t,li(: r~o~i-~)oi~i t - l ikc  riaturc of the prot,orl, i.e., thc 1)inding 
energy of the 11ytirogc11 atoll1 would tlccrcase. Physically, cmrr~paring t , h ~  
point,-likt: a11t1 sllcll-sliapc ~nodcls of tlic proton r~uclel~s,  we see that  ill the 
lattcr 1llot1t.l thcre is a n  additional repulsive action. As the hydrogen a tom 
is held together by attractivc forcc, ally non-point,-like niiture of the proton 
would wc;ikcn the attractive intcrac:tion in the system, thus rcduc.iilg the 
binding cncrgy. 

5027 

Ass~l~rit: that  the prot,on has a nonzero radius r,  - lop1" cm and that  its 
charge is distributed uniformly over this size. Find the shift in the energy 
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of the I s  and 2p states of hydrogen due to  the tliffcrc,nce between a point 
charge distribution and this extended chargt. 

(Colu~nt),ia) 

Solution: 

The  Coulomb for(:(: an  c1cc:tron i~lsidc the  spl1t:re of tllc ~ ) ro t ,o l~  cxpcri- 
ences is 

The e1ectric;tl l)otc'~itinl cwcrgy of the electron is 

(12 ,, v ,=-/,. - .  kC for r 5 r 1 , ,  
2r7j 

(: 2 v, = -- - for r > rp , 
I' 

The Hnnlilt,o~lia~l of tlir systc~111 is 

where 

Pcrtwbntron T h e o ~ y  

with ( L  = $ . 
As .r.,, << wo (:;III t;r.k(: (:-'/'" = 1. Ilitcgratil~g thc a1)ovc: givcs t,he 

energy shift,s of 1s ant1 21) st;~.tc:s: 

A11 atmn has ;I. ~lrlc:lc!r~s of c.t~a.rgc: Z ;r11(1 one c ' l (~: t , ro~~.  Thc 1111clcl1s 11;~s 
a r a t l i ~ ~ s  R, iilsidc wliic:li t , l~e ch;rrgc (~)rot,o~ls) is ~ ~ ~ l i f o r ~ n l y  distri t)~~tctl .  We 
want t,o st,~idy t,llc cffec:t of t,llc: fiilitc six: of tlic n~ic:l(:ils or1 t,lic: e1cc:tron 
energy lcvels: 

(a) Calcr11;~tc tha potei~tial taking into accollnt the fillit(: size of tjhe 
~lucleus. 

(h)  Ca1cul;~te the level shift, d11e to  the finite size of the 11uclt:us for the 
1s state of usilig p~rtrirt)at,io11 theory. 

(Assurilc that IZ is nlrlc:h srnallcr than thc Bohr ratlius ant1 approximate 
t,he wave finlction accordingly) 

(c) Give a llll~nerical answer to (t)) in ~111-' ass~i lni~lg  IZ = r o ~ ' i 3 ,  where 
1.0 = 1.2 fermi, 

(Columb,ia) 
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Solution: 

(a) The electric field E of a uniform sphcrc of radius R and cllnrgfl Q is 
given by Gauss' tlieorcni 

and treat V' as  a perturbation. The cnersy correction for the, 1s state to  
first order is 

where a = 7,Le as 

for I- < R < n. 
((.) Pl)"" has Z = 82, A = 208, thlis 

The  c~o~.rc~s~)ontliiig wavc:nliiril)c:r is 

Coiisitl(,r t,lic: liytlrogen-like atom resulting when an aluminum atom 
(Z = 13, A = 27) has l~ecn  stripped of all but one of its electrons. Com- 
putr, t,lic, c:fi.,c:t of t,hc finite size of the nucleus (assumed to be a uniformly 
charged sphc:rc:) oil the electronic ground stat,e, i.e., compute the diffcrence 
l~etwc~cbil t>hc: g1.01ind st,at,e energy when the nucleus has a physically rcalist,ic 
size : L I I ( ~  t h ~  grourid state energy for a point-nucleus. Express tllc rcsult,: a )  
in elr>c.t.ron volts, 1)) as  a fraction of the ionization energy of this at,om. 

(Berkeley) 

Solution: 

If wc: tnwt  t,hc: nlic~lrus as a uniformly c:harged sphere, tllc cl(:c:t,rical 
potelitrial energy of thc electron is 

Vl = -zc2/7 for 7- > p ,  
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p b e i ~ ~ g  the radius o f  the nuclcus. Inside the 1itic:llics t,he cdectron suffers a 

Coulomb forcc F = -Ze2 (:) ;?I = - z ~ ' T - / ~ ' ~ ,  tlir mrrespondillg poten- 
. , 

tial ellcrgy bc:ing V = ?!$ r2  t C ,  wliorc C is ;L constailt,. Tlre c:ont~iiillity 
2 p. 

of  the potrritial a t  tha surfac:e of the ril~c:lcus, Vl (0) - V2(p), rcqllirc:~ tllilt 
C = - '1 &, TIluS 

2 P 

Zc" 

' I '  
1. 2 /) , 

V(1.) = 
2 

": [(a) - 3 1  , ;;/.. I ::' 
wlicrc, 

%(," 
Vo(r) = -- -- 

I' 
, (oo > r. > O ) ,  

is t,o l)c tre;itctl ;LS i1, 1)(;rt,llr1)at,ioii. 
Tlic tirst ortl(:r ciicrgy c:orr-(:(:tioil is thc:11 

where a = h2/m,e2 = 5.3 x 10-%.nl (Bohr ri~dills). 
As 

Perturbatton Theonj  

we can take e -2z r /a  -- 1 and 

A E  = (1001 H11100) 

1 

i 

A propos;~l has bccn inadc t,o study the propcrt,ics of ;LII atom c:ornposed 
of a zf  (In,, = 237.2711,~) aritl ;L / L - ( I I ~ , ,  -- 206.77rnC) in order to  mcastirc? 
the  chargc r ; td i~~s  of the pion. Assurrie t,liat all of t,lie pi011 c:hargc is sprrad 
uniformly or1 a sphc.ric:al slicll a t  Ro - 10-'" crri and that  tlic. LL is a point 
charge. Express the  potcritial ;LS a. Coulorrll) potcrltial for a. poirlt charge 
plus a pertlirbatio~i arid list: pcrtllrbatiori t,heory to  calculate a nurrierical 
valuc for tlie percentage shift iri t,hc 1s -2p energy diffcrc~icc A. Neglect spin 
orbit effects arid La.ml) shift,. Give11 

( Wisconsin) 

Solution: 

The  Coulomb potential energy of the muon is 
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I t  car1 be written in the  form 

e2 
V = V 0 + V f = - - + V f ,  

7' 

( 0  for ,r 2 R ,  

is to be trcatc>tl as ii pert l ir l) i~ti~ri ,  
The  cncrgy levcnls arltl wave frirlc:tioils of the uiiportur1)c~tl systc:rri arc 

As spill orbit ;tritl L;liul, c:ff(~:t,s arc: to k)(! ilegl(:c:t,c:d, wc: iic,c:tl oiily c:orisitl(:r 
RTPL iii p(>rt,lrrt):~tio~l cal(~~il t~tioiis .  Tlilis 

wlicrc no = 2, 1)c:irig tlic r(:(lli(.(xl iililss of t,ll(; syst,(~iii: 

with 

Hcrrce 

Thus  a,o >> R arld the  factor cxp(-2r/no) in the intcgrantl ; i l )ov~ rnay 1)e 
neglected. Hence 

Perturbation Theory 

Therefore 

Mrioiiic: i~toiiis (:oi~sist o f  11111 in(:soiis (~liass mi, = 206711,:) \)c)lind to 
atoiiiic: 1iuc:loi ill liytlrogciiic ort~its .  Tlic circrgics of tlic rrlu riicsic lcvcls 
are shiffvtl rc.lii.t,ivc: t,o tlrcir values for ;L poiilt i~ric:l(:tis 1)c:c;~usc: the rluclcar 
charge. is tlist,ril)ut,c~tl ovc:r a rcgion with rntlius 11. Thc c:fFcct,ivc: Coulonlb 
potc~iit,i;~l c:ii.ii 1)(1 ;ipproxirrratc:tl as 

Zr:" f 1. 7. 2 R ,  

(a) St.i~t,f' qriiilit,;ltiv(:ly how t h ~  ~ i i ~ r g i c s  of t,h(: IS, 2 ~ ,  2p, 33, 3p ,  3d 
inlio~iic l(:vc%ls will 1)c siiiftc:tl al)solutcly ; ~ r l t l  rc:l;~tivc: to c:;~cli otllcr, iill(l 
expl:iiii p1iysic:~lly 2iriy tliff(:rc:iic:cs irl tlic shiftas. Sk(:tcll the  uiipertur1)cti 
and ~)cr t~l r l )c~t l  cworgy lcvcl diagrams for thc?sc: states. 

(1)) Givc i ~ i i  ( ~ ~ ~ ( ~ s s ~ o I I  for the  first orclcr change in crlcrgy of tllc 1s s ta te  
assoc:iatc:(l with tho bict tha t  thc rluclcus is not poirit-like. 

(c) Estiin;itc thc 2s-2p ericrgy shift under the  ass~irllptiorl that  Rln,, << 
1, whc:rc a,, is tlrc "Bollr radius" for the  rnuorl a.nd show that  this shift 
gives a rrlcasure of R. 

((1) When is the rnet,hod of part. (1)) likely t,o fail? Does this rnethod 
undercst,iinatc or overrstinlatc t,lie energy sliift.'? Explaiii your answer in 
physical tcrms. Useflll infr~rmatioii: 

= 2 ~ ~ e - ~ ~ ~ +  Yoo(0, 4) , 
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wherc 
3 / 2  

No = (;) 
( Wisconsin,) 

Solution: 

(a) If the n~icler~s wcrc a, point particlc of (~11:~rgc. Z e ,  the Couloinb 
zr,' potential r:nergy of the rnuo~i would 1 ~ :  &) - - . L?t H' = V - V, 

a i d  corisid(:r it its ~)( ' r t ,~i~.l) i~tioil .  Tlr(1'11 t 1 1 ~  p ( ' r t~ l r l ) i~ t . io~~  H i ~ ~ l l i l t ~ ~ l i i ~ ~ ~  of tht: 

Wll~11 , I .  < R, 11' > 0 ;~llcl t,llc: c,rlc.rgy l(:vc:ls shift. 111) 011 ~ L ( . ( : ~ I I I I ~ ,  of t , h ~  
~)c'rt,r~rl);lt,io~~. Tlic: sliift,s of c:ncrgy 1ovc:ls of s st;ltc,s ;~r( :  1;~rgc:r t,h;rri t,hosc: of 
.(., il11(1 (i St,ilt,('~ l)('(:llil~(: il 11111011 ill S St,i~l(: 11;~s iL gr(';Lt>(:r 1)~01)iLk)ilit,y Of st,iLyillg 

i l l  t,liv r - 0 r(:gioll tll;~,ii ;L i1111o1i in J) i ~ . i i ( l  (1 st,i~,t(:s. J3(:si(l(:s, tlw litrg(:r 
tllc: c~l~;~llt~lllll 1111111~)('~ 1 ,  t,ll(, gr('ilt,(:~. tll(' (:O~.~.(~~~)Oll(lillg Ol.l)lt,;l.l illlglll;~~. 
~~loi i i ( : r i t ,~~i~i  ;1.11(1 1;11(' fi~,rt,ll('r is t,ll(' s~)r( ' i~(I  o P  1 1  (.1011(1 h.0111 t,li(: (~: i~t ,or ,  l(,atliilg 
to  less olic.rgy cwrrc:c.t,io~~. III Fig. 5.12, t,llc, solitl li11c:s reprc~sc:i11 ~ i ~ ~ ~ ) c : r t , ~ ~ r l ) c ~ d  
(:ii(:rgy l(:v(:ls, wllilc: t , l ~ v  tlot,t,(~i I ~ I I ( > S  r ( y r ( > ~ ( ~ i ~ t  ~ ) ( ~ r t ~ i r l ) ( ~ ( l  (~l(:rgy l(:v(:ls. I t  
is scc:~i that  thc: uii1)c:rt11rl)c~cl c,ilc,rgy I(ivc,l of tl st,;rt,c: :r.llnost ovc:rla~)s t,hc 
pc:rturl)ccl c:rlc:rgy I(:vc:l. 

(1)) Tl~c: c:rlc:rgy sliilt of Is  st.;lt,c, t,o first orclor p(~rt,~irl);~tioil is g ivm 1)y 

Fig. 5.12 

As R << a,, we can take e-'/"&' -- 1. Thus  

(c) By t,hr same proc:ed~~re, 

1 Ze2 2 

AE2,< N - - 
20 a,, ( l 

and so 

wherc: (LO is t,lie Bohr rirtlius. Thus  1)y ~ n c ~ : ~ s ~ ~ r i ~ i g  t,hc t:rlcrgy shift,, we can 
deduc:o thc: V;LIII(? of R. Or,  if w(: ~ S S ~ ~ I I I ( :  R = 10 ' ' ' ( : n l ,  Z = 5, wc get 
AE2s - AE2p N 2 x 10-'(:V. 

((1) 111 the c;rl(:~llation in (1)) tali(: npproximatio~l R << a,, is ust:cl. If R 
is not 1n11c:h srnal1f:r thau a,,, tlicr c~i~lculat,ioli is riot c:orrcct. 111 s11c11 a case, 
the  actual c:riergy shifts of p and (1 st,atc!s arc 1argc:r thil~l  what we obtain in 
(b) while the ixctual energy shifts of s states arc srnaller than those given 
in (b). In fact the calculation ill (1)) ovc~rcstimatcs the probability that  the  
muon is located inside t,he rlucleus (pro1)ixbility dmsity n: IJ)1s(0)12). 

(a) Using a n  energy-level diagram give the complete set of elrct,ronic 
quantum numbers (total angular rnomerltum, spin, parity) for the ground 
state and the  first two excited states of a helium atom. 

(b)  Explain qualit,atively the role of the  Pauli principle in determining 
the  level order of these states. 
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(c) Assuming: Coulomb forces only and a knowledge of Z = 2 hydrogcnic 
wave functions, denoted by Ils) ,  /2s) ,  12p), ctc., togcthcr with associated 
Z = 2 hydrogcnic energy eigenvalues El,, EZ,~, E2,, . . . , give pc:rturl)ntion 
formulas for the energies of these helit~rn st;lt,es. Do not evalu,zt,c irlt,c,gr;~ls, 
but carcfully cxplnin the notation in which you express your rc:s~ilt,. 

(Bc7-kelcy) 

Solut ion:  

(a) Figure 5.13 shows tlie g ro~md arld first two c:xc:it,c:cl states of a hcli~mi 
atom in para. (left) arid ortlio states with thc q~i ;~r i t~l l l i  n1111i1)0rs (.I, S, P ) .  

(b) Pauli's c:xc:l~lsiori pririciple requires that  ;L syst,c:ln of c:l(:c.t,roris iri~ist; 
be described 1)y ari ;~litisylrllnctric total wavc: fiil~r:tioli. For thc: two c:l(:c:troris 
of a hcliunl atom, ;is tlic: triplet stat,cs liavc: syrlllrlc:t,ric: spin w;~vc% fullc:t,ior~s 
the. space wnvc: f~lnc:tioiis rrlust t)o i~litisyrlilllc:try. I,ik(:wisc:, tlrc: siliglct st,;~t,c:s 
must have symrrictric SI);L(:C W;LV(: filn~tiolis. 111 t,h(: li~t,t('r ci~s(:, tlic ov(:rl;~p 
of tlie electron clo~itls is larg& ant1 as  t,llc: rc:pulsivc: c:llc,rgy l)c:t,wc:cll t , l ~  
c1cc:trons is grcatc:r (1)cx:nusc: Irl - r is s ~ l l r ) .  So the (:orr(~s~)oli(li~ig 
r n c q y  lcvcls arc hig11c:r. 

Fig. 5.13 

(c) The Hamilt,oniall of a hcliuln ;~torri is 

Treating the last term as perturbation, the energy corrc.ct,iori of l l s l s )  state I 

Thc  pertur1)ation energy correction of spin triplct states is 

Thc  first t,crrii of thc: ;~l)ovc resnlt is c:allecl direct, illt,c:gri~1 i~11d t,ll(: s~co l ld  
terrri, ('~(:lii~iig(: ii1tc:gr;~l. 

A p;~.rt,ic:lc o f  rn;~ss ~ r t ,  is (:o~~firi(:(l to a (:ir(:l(? of ri~dius a ,  111rt is ot1it:rwist: 
free. A pc.rt~irl)irig potc:ritial H = A sir10 c:os O is ;~~)~)lic:d, wlicrc: 6' is tlie 
angular positioii or1 tlia circle. Firid the c:orrc:c:t zcro-order wnvc S~liic:tiolis for 
the two 1owc:st st;~t,cs of tlris systerrl arid calculate t1ic:ir pcrturt)c:cl crlc:rgics 
to  scc~oiid ordcr. 

(Bc~kclcy) 

Solut ion:  

The ~inpert,lirbed wa.ve functions arid cricrgy levels of the systcrn are 
respcc:tively 
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The two lowest stat,c:s are given hy n = il, which corrcsporld t,o the same 
energy. To first order perturbation, wc: calculat,e for the two clegenerate 
states 7~ = il 

(cos 20 - i sin 20) sill 26,$6, 

Dii~gol~i~lizillg, wc 01)ti~ill LIE(') = +$. H(:I~(.(: t11~ two ~lo~i-vil~lisL~i~lp wave 
filrlct,io~is i~11(1 t,ti(: co r r ( : s~)o~~( l i~~g  criergy c:orrc:c:tio~~s arc. 

To second order perturbat,ion, tllc encrgy correc:tioli is givcn t)y 

we liavc 

( 2 )  _ m u 2 / t z  and sinlilarly AE2 fi.lhL 

Tllereforc 

An electron a t  a distance x from a liquid helium surface feels a pot,ential 

K 
V(:I:) = - - , z > O ,  K-cons tan t ,  

Z 



(a) Find thc  ground state energy level. Neglect spill. 
(b) Compute the Stark shift in the ground sta.t,e ~ising first ortlcr pcxr- 

t , ~ ~ r b a t i o ~ i  thcory. 

(Berk:eley) 

Solut.ion: 

(a) At z < 0, thri wave fuilctiorl is li/(:c) = O. At :I: > 0, t,hc S(:hrijtlirlgcr 
equat,ion is 

In the casc of 1:lie liytlrogcr~ ntorii, thc  ratlinl wavc: fiiii(.t,ioii IZ(,r) siitisfics 
the cquatior~ 

3- v(,T)] R - Ell 

L(:t R( r )  = x(r)/r..  For I = 0, thc eclu;ltiorl 1)c:c:olllc.s 

This is irlat,hcrnatic:ally ic1c:rltic:;~l with t,l~c! Scl~riitlirigc?r (:(111i~tioli i~1)ovi: ;~ii(l 
t ~ o t h  satisfy thc  sailic 1)oilrltlary c:outlit,io~i, so t,lic solutiorls iii~ist iilso 1)e 
t,hc same (with r H 2, e2 t t  K ) .  

As the wavc function nut1 cnorgy of thc grourlcl st,atc of thc: hytlrogcrl 
atom are rcsl)c:c:t,ivcly 

the required wave function and energy are 
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(1)) Suppose an clcctric field E,: is applied in the z direction. Then t,he 
pertur1)ation potential is V' = e&,x and the energy correction to the ground 
s ta te  to  first order ill pcrturba.tio~l thcory is 

Discllss aiicl c.olrll)~it,c: thc: St,;~rk c:fLc:c:t for t,hc groll~itl stsat,(: of t,hc hytlro- 
d 0111. gen . t 

(I3crX:cley) 

Solut,ion: 

SI~I)I)OS(> th(: (~xt , ( \ r~l i~t  (>l~(:tri(: ficlltl is along tllc, z-axis, i~11(1  (-onsi(lcr it>s 
potential as  pc'rt,ilrt)at,iou. T h c  pcrt,url);~tion Hnnlil.t,o~lial~ of the syst,c~n 

is 
H' = ( 'E - 1. = FEZ. 

As the groliiltl st,nt,c: of t,hc: liyclrogt~l1 ;~t.oiri is iioiitl(:gc:lic:r;~t,(:, wc (:ail ('111ploy 
the st,atioilary p( : r t~~r l ) i~t , io~i  t,lic~)ry. To first ortlvr pcrturl)i~t,ioll, thc: enc:rgy 
corrc:c~t,ioii is 

For t,he hyclrogen atorn thc parit,y is (-I)', so the grouiltl statc (1 = 0) has 
even parit,y. T h r n  as z is an oclcl parity ol)crat,or, E(') = 0. 

To sc.c:oiiil orc1c.r pc:rturl)nt,iorl, the energy correction is give11 by 

c 2  h2 As El, = E l / n 2 ,  where El = -%, a = -, llle we lii~ve El - En < 0, (n # 
1). Thus the  energy correction E(" is negative and ha.s a magnitude 
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pro~)ortioiial to E ~ .  H ~ I I C C  iilcrei~siilg the clcct,ric: ficltl strcrigt,h woultl lower 
t h t  energy level of the ground stnt,e. We car1 easily pcrforni the above 
sulll~iii~tiori, notirig t,liat orily 111;itrix c~lc:rnr:nts with 1 = 5 1 ,  ,rrr. = 0 arc: 
non-vi~nishiiig. 

5036 

Describe ant1 (:i~l(:~lliit,(! th(: Z(:clilii~~ cff(:(:t of th(: liytlrogori 21) statit(:. 

Solut ion:  
i 
8 Th(: (:lliL~Ig(! 111 t l i ~  (%li(!rgy l(:v(:ls of t i l l  i~t,Oi11 (:ii\~s(!(l by i ~ i l  (~xt,(:rii:il 11iii- 

for111 i~ii~gri(:ti(: li(:l(l is ( : t~l l (~l  tliv Z(:(:iiii~~i ( : fh: t .  WP ~ l l i ~ l l  (:oiisi(l(~r s ~ i ( : l ~  
9 
9 

chtir~gc: for ;L 1iytlrogc:ii ntorn to first ortlcr ill  t,lic, fic:ltl st,rc:iigt,l~ £I .  W(: 
slii~ll first ii(:gl(:(.t, iiiiy i~it,(~rii(:t,io~i l)(!t~w(:(:ii t,l~(: iiii~,gn(:t,i(: ri~oiri(:~~t, i~,sso(:ii~t,(~l 
with tlic (:l(:(:t,rori spill iiiicl t 1 1 ~  i~~iigii(:t,i(: fi(:l(l. '!A(: (:ff(~,t, of (:l(:(:t,ror~ spill 

't 
will 1 ) ~ :  (lis(:~~ss(:(l liit(:r. A (:liiir~(, (: ~ I I  ti11 (:xt(:rriiil rr~agi~(:t,i(. fi(!l(l I1  11:~s 

since H = V x A. Tlicri V . A = (r . V x H -- H - V x r) = 0 aiitl so the 
only terrns involvi~~g A that appear in the Hiili~iltoriiail for an c:lcctrori of 
charge -e and reducccl Inass / I .  arc 

where L = r x P and 0 is the angle between r ant1 H. 

To first ordcr in H, we car1 take the perturhat,ion Hamiltonian as  

Taking the clircctioii of t,hc: ninglic:tic field as tlic z tlircction we can choose 
for tlie e1Icrgy cigerlfurlct,ioris of tlic unperturt)cd hydrogen atom t,he eigen- 
states of L, wit11 cige~lval~lc:~ ,rn,h,, wlicre 7 n  is the  rnixgnetic quantum num- 
ber. Tht!rl tlie (:nergy corrcctiori from first ortlcr pf:rtlirt)ation is 

Thus tlic t1cgcnc:r;ic:y of the 21 t 1 states of giver1 IL iind 1 is reniovcd in 
t,he first ortlor. In piirticulnr, for thc: 2 p  stat,(:, whm: 1 - 1, tllc three-fold 
dege11criic:y is rcrnovc:tl. 

Wf: shii11 riow c.orisitlrr tlie cffcct of elect,ron spin. The  elec:t,ron hiis 

an  intririsic: rnaglietic irioriicrit, in thct tlirvction of its spin, giving risr to a. 
magriet,ic rriornc:rit operator (e/rn.c:)S. 

For a w ~ i ~ k  fi(:l(l, wc sl~ii11 c:orisider oilly tlie first order effects of 1%. The  
Harniltor~it~n is 

where the field is taker] to  be along the z-a.xis. 
W(: choosc thr: followilig c:igerlfiinc:tioris of ~"int l  J ,  as the wave fiinc- 

tions: 
3 

m = - (-k)Yl, I , 
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where Yo,o, YlIo, Yl, 1 ancl Yl,- are spherical harmonic fuilc:tioris, (+) aiitl 
(-) are spill wave fllil(:t1i~iis. It can 1)e shown that  tlic 1ilagric:tic: cwcrgy 
& ( I ,  + 2s,) = &(,I, + s,) has non-vanishing matrix c:lcnic~its l)et,wcen stiitcs 
of different j, 1 ~ 1 t  not betwcerl states of tlic sanlc: j ant1 diffcrc:iit 7rt, .  We can 
neglect the former 1)ecalise of th(: relatively large energy ~ ~ p i ~ ~ : i t i o l i  l)t~twco~i 
states of diffcrcrit j. Thus tlic iriag~ic~t,ic oiic:rgy is tliagoiial wit,li rc,s~)c:c.t to 
m for each j ixntl shifts the c:lic:rgy of c;~.c.li st,at,o i~l)ovc? l)y it,s c,x~)c:c:tatiorl 
vallic for the s t i ~ t , ~ .  111 eac:li (:iLs(:, .Jz is diagoii;il, i ~ i i ( 1  so it.s (:xp~(:t:itio~i vi~11i(: 
is 7nh. T h c  cxpcctation value of s ,  for tlic: F'.$/? stiitc with nt. -- 1/2, for 
example, is 

H(~iicc: tlio ~riagnctic: c!iicrgy o f  t,liis stat(: is ~h (i -1- $) - Z E ~ J , .  
.I 

Tliis aiitl siinilar rcs~ilts for tlic: ot1ic:r stat,c:s (::in 1 ~ :  c,xprc:ssc?tl ill t,orins 
of the Li~iidi: 9-factor as ~rnf~,!], with 

4 2 2 
II  = ; for P3/2, !1= 3 for 'Pl12, g = 2 for ' ) s ~ / ~  

<$ 

5037 

Explain why r:xcitcd states of atornic hydrogen can show n lillcwr Sta.rk 
effect in an  electric field, but the excited states of at,omic socli~iril show orlly 
a quadratic one. 

(MIT) 

Solution: 

The  potential energy of t,he electron of the atoni in an cxt,ernal electric 
field E is 

HI= e E . r .  
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If we make the rcplacernerit r -t -r in (1'(H1I1), as the value of the integral 
does not change we have 

( l '~Hf~l)(r)  = (l '~H'~l)(-r) 

= (-l)L'+'+l (111 ~ ' l l ) ( r )  . 

This rricaris t,liat if t,hc I' ant1 1 statcs Iiilv(? thcr s i ~ l l i t ,  pi~i-ity (i.e. I and I' are 
both (?vex1 or 1)otli odtl) we iri~lst liavc. (1'1 H' 11) = 0. 

If t,hc cl(:ct,ric ficltl is not too srnt~11, wc: 11(~,11 ~ i o t  c.oilsicIcr thcx fine struc- 
ture of the criergy spt:ctrurrl calised 1)y c:lcc:troli sl)ill. 111 s11c.11 cases, an  ex- 
ited st,atc of t,hc Ilydrogcrl at,orr~ is a. sli~)erl)osit,ior~ of tliffcrcrrlt i~ar i ty  states, 
i.e. t1ic:re is tl(?geiicrac:y with rc:spc:c.t, t,o 1 alitl t,lirs ~)(,rt.l~rt):~t,io~i th(:ory for 
degcricratc st,at,cs is to  1)c ~iscd.  B(:(.~LIIso o f  the (>xist ,c~~~cc of no~i-viiiiishing 
pert,url)ation Hnirliltoniari rri:~t,rix < r l ( ~ l r ~ c ~ ~ ~ t s ,  (,xitot1 st,at,t:s of the: hytlrogcn 
atoiri (:it11 sliuw a, lilicar Stark ctrcrt. 

For c~xit,c:cl st,atc:s of atoi~iic: so t l i~ ln~ ,  c;tc.h c:ilc,rgy l(,vel c:orrc:sporl(ls tJo a 

defii1it.c. l);~l-it,y, i.ch., t,llc:rc: is 110 (l(,g(:ii(:ri~(:y ill I. M'~I('LI w(: t,~(>iit it 1 ) ~  11011- 

degc,~~c~r;~ttr l ) (~~- t , , i~ - l ) ;~ t . i~~ l  t,hc?ory, t,lic first ortlcr c:ncrgy c:orrc.c:t,iori (l'IUII1) 
vanisllt~s. UTc> t , l~(:~i  l i i tv~ t,o go t,o s(:(:oii(l ort1c.r c:ric:rgy c:orrc:c:t,iori. Tl i~is  thc: 
exitc~tl stab(,s of ntoniic: sociiiiiii show orily clliatlratic S t i ~ r k  t?ff(,c:t,. 

5038 

The  Stark c'ffc(:t. Tlic crlc:rgy 1cvc:ls of the TL = 2 statf:s of iit,oinic hytlro- 

gerl arc ill~istr;tt,(:(l in Fig. 5.14. 

Fig. 5.14 

Thc  S112 and levels are degerierate a t  an c:rlergy EO and the P3/2 

level is dc:gciicratc a t  an energy E O  + A. 
A uriiform static clcctric field E applied to t,he at0111 shifts the states to 

energics E I ,  5 2  and 53. Assuming that  all states other than these three are 
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far erioligh away to bc neglected, determine the ericrgics E ~ ,  EZ and E : ~  to 
second order in t,hc electric field E. 

( P~.,k.cet o,n) 

Solut ion:  

Suppose the matrix eleincllts of t11c ~)erturl)ation Hiliiiiltoi~ii~~i HI = 

-eE . r are 

4 2  p1/2 S1/2 

PiI2 0 0 0 

P1/2 0 0 a ' 

s1p b* a* 0 

since (l'IHII1) = 0 for r ! ' ,  r! states of the salric pi~rity ( P r o b l e m  5037). Thcll 
for cnc:rgy 1cvc.l P../2, we 11;~vc 

For cncrgy 1evf:ls Pllz and S j I 2 ,  w(' (lii~goiiillim: t h ~  Hi~iriilto1lii~11 iii t l i ~  
corrcspoiiding s~ik)spacc, i.t:, solve 

The roots ilrc X = f 1 0 1 ,  which give thc new w'~vc, fiii~ctioris 

with energies 

5039 

Thc  Stark cffcc:t ill ;xtolns (shift of fmcrgy levels l)y a tinifor111 c:lrc:tric 
field) is 11s1i;tlly obscrvc?d to  l)c qlindratic: ill the field strc:ngtli. Explain 

why. But for sorilc: statcs of tht: hydrogc:i~ at0111 thc Start  cffcct is ot~scrvctl 
to t)c 1iiic:ar in tlic fif:l(l strc:rigtl~. Expl;~iii why. Illustratc 1)y inakiiig a 

pertur1)ation c:alc~il;~tion of the St,ark c:ffcct t,o lowest no~i-vanishing order 
for thc gro~ind iind first excitetl st:~tcs of tlic 1iydrogc:ti atom. 

To withill an  ur~iliterestilig ovrr:lll coristai~t, the wave functions are 

7/lZO0 = (2ilO - 1.) (' -r/2ao 
1 

1/'.21f = * 7.e-1./2n~ sin 0 e i i 4 / h  , 

-r/2ao cos 0 . 

( Wzsconszn) 

Solu t ion :  

The electric dipole moment of an atomic system with several electrons 

In g e n ~ r a l ,  thc cncrgy levels do not have drgeneracy other than with respect 
to  1,. The  ericrgy depends on the quantum numbers n and 1. As the 
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perturbation Hamiltonian H' = -d . E is a n  odd parity operator, only 
matrix elements between opposite parity states do not vanish. Thus its 
expectatiorl value for any one given st,:itc is zero, i.c., 

This means tha t  first ordcr cilcrgy c:orrcc:tions arc: always zero i ~ n d  one 
needs to  consider energy corrc:ctions of second orclcr pc:rturl)atioll. H(:ilc:e 
the energy correc:tions arc l)roportional to E 2 .  

As regards the hydrogen atom, dege11cralc:y oc.c:urs for t,hc: s ; l ~ ~ i c  71, but, 
different 1 .  And so not all thc r~iatrix cl(:rrlc:llts ( , r1 ,1 '1fI '17d)  k)ct,w(:e~i s~i(:h 
states arc  zero. So shifts of ctrlcrgy l(:vols llntlcr first ortlcr (tlcgc1ic:mtc:) 
perturbation may by: nonzero, aiid tlic St i~rk cff(:c:t is ;I lirica~r Eunctiol~ of 

the  electric: field E. Writ(, t,llc! l)c:rturl);~tio~~ Hi~~~l i l t ,o l i i i~~ i  iii sl)li(:ri(:i~l (:oar- 

dinates, t,:iki~ig th(: z-axis ill t,ll(: di~-c(:tioll of E. AS [I' -- (:Ez --- (:fi (:OS 8 ,  
thc  grolirld state, whic:li is 11ot clogenc~r:~t,c~, has waivc: f11ilc:tion 

ancl so ( P r o b l e m  5037) 

The sccorid ordcr energy corrc:(:tio~i is 

Not,e that  for HAo # 0 we require A1 = fl. 
The first exited state n = 2 is four-fold degenerate, the wavc: filllctions 

being 

,*2oor 4210,7b2l,f 1 . 
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,4 s 

= - St..Eao 

are the oiily non-vanisl~irig elements of H' For 71. = 2, we have the secular 
eqliiitiorl 

which givcs tali(: c!nc:rgy c:orrclctioiis 

E(" = *3cE,,, 0,0 

Thcrc:forc, t,hc c:riclrgy 1cvt:l for 7r - 2 splits illto 

where, tro is thc I3olir ratlius &. The. splittilig o f  the, first cxcitctl state n = 

2 is show11 ill Fig. 5.15. Notc: that thc: two ot,hc:r s t i lks  arc  still degenerate. 

Fig. 5.15 

Co~lsitlcr a n  ioilized at,orri (Z, A) with only a single e1cc:tron remaining. 
Calclllatc the  Zccrnan splitting in the 72 = 2 state ill a "weak magnetic 
field 

(a) for an  electroll 
(b) for a hypothetical spin= 0 particle with electron mass. 



366 Problems aid  So11~tion.s on Quantt~ln Mechanrcs Perturbation Theol-y 

(c) Calculate the first-order Stark effect (energy 1t:vcls iind wavc func- 
tions) for all elcctron i r ~  the  n = 2 state. 

(Aftrr you define the radial integrals you ca,n express thc trrrrl 11y ;L pa- 
rarnetcr; you riccd not cvaluate thcnl. Tlic sarrlc holds for r1onzi:ro i~rlglllar 
iritcgrals.) 

(Bc1.kclcy) 

Solution: 

(a) Take t,hc dirc!c:t,ion of tho cxterr~al magric.tic: ficltl ;LS t,hcl z (1irt:c:tion. 
For a n  clectrori and a weak c:xt,c:rr~al magnc:tic: fic:l(l, i r ~  co~ril);~risorl with 
its effect t,hc spill-or11it c:o~iplir~g rarlnot bc: r~cglcc:tocl, which giviss risc to  
anomalous Zcctriari c f f~c t .  T h c  IIi~11iilt01lii~11 of thv syst(:111 

- p V f : '  A 

11 = - - - + :, (I, t 2.4,) + <(r.)s . 1 
2711,. ,r 27rtri, 

If wc: ric:gl(:ct t,hc: t,f.rrn $& S,, (L,, ~ ' , i , )  st,ill co~~sc:rvi~tl q ~ ~ i ~ ~ ~ t i t i ( > s .  

T h c l ~  ( j , r r ~ , ( j ,  j , r r r j )  = 7 1 ~ ~ 1 ~  i ~ l ~ d  th(: energy of tllc: systc:m is 

Ell l ,  + m., f u r ,  , 
where 

c B  
WI, - - .  

271b,~ 
When the  weak magnf:t,ic firld is applied, thcx contril)l~tior~ of the tc:rm 

6, is (Problem 5057) 

Hence 

For r h  = 2,  wc have 
1 

E,, 4 ,,,,, = 4 + ~ ~ I I L ~ ~ J L ,  rrrj = *L , 

4 
E,,),,,, =E2,;+:711,hWf,, 7 8 , = * $ . * $ ,  

3 

2 1 

E,,+, ,,, =E, , i  + - . m j h ~ r , ,  3 ~ n j  =* , .  

(b) Whc:n spi~i=O, t,llcrc is no ~pi~l-r(: l i~t ,r i l  i:ffci:t so t,hat 

For 71, -- 2 ,  

-- E 2 0 ,  

EZIO = E21 , 

(c) Svc. the, solut,ion of Problem 5042. 

Stark showc.cl experinlentally that,, by applying a n  external weak uni- 
form elect,ric field, the 4-fold ctegeneracy in the  n = 2 level of at,otnic hy- 
drogen i:ould 1)e removeit. Investigate this effect by applying perturbation 
theory, neglecting spill and relativistic  effect,^. 
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Specifically: 
(a) What  are the expressioiis for the first order corrections to the energy 

level? (Do not atternpt to evaluate the radial integrals). 

(b) Are there any rernairling dege~ieracies'! 

(c) Draw an  energy level diagrarli for 11. = 2 which shows the 1evc:ls l~cfore 
and after applicat.ior1 of thc electric fieltl. Describe t,hc spet:tral liilcs t,l~a.t 
originate from these levels which can 1)r o1)servctl. 

( Cl~it:n!lo) 

So lu t ion :  

Write the Ha111iltolli;~rl of t8hc systc~ri~ as H = Ho + fl', whc1.e 

taking tjhc dircc.tjiori of t,hc c!lcctric: fic:lcl E i1.s tlic: z t1irc:c:tioll. I7or ;I wc:a.k 
fieltl, H '  << Ho ant1 we (:an trcat IT' ;IS pert,lirl~;~tioii. 

Let (O,U), (1 ,0), (1 , l )  :iil(l (1,-1) rc:prc!seiit, t,l~(: four (lcg(,ii(:r:~t(: c~ig(?iif'~il~(~- 
t ior~s (1,7r1,) o f  the stat(, 11 = 2 of t,hc hytlrogc:i1 ;~t,oln. 

The matrix r~~)rc:sc?rlt;itioii of HI ill the S I I ~ ) S ~ ) ~ ( : C  is 

where 

being the Bohr radius. Note that (I 'JH'jl)  = 0 unless the 1 ' )  i sta.tes have 
opposite parties. 

Perturbation Theory 369 

Solvirig t,he secular equatiorl 

I -7u1 (O,OIH'/1,0) 0 0 I 

we get four roots 

(i,) As w(,'L) = w(I:i) = 0, th(:rc! is st,ill a two-foltl tlrgcr~c:r:~c:y. 

((.) Figllrc 5.16 sllows thc: 71. = 2 c:ric:rgy 1cvc:ls. The  sc:l(:c:tiori rul(:s for 
elect,ric: tlipolc t,ri~llsit,ioiis i ~ r c  A1 = 4Z1, = 0, 4Z1, wl~i(:ll giv(: ris(: to two 

spect,ral liiic~s: 

v L 

with apptied E 

Fig. 5.16 
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Consider the n = 2 levcls of a hydrogcri-lik~ atoln. Snpposc the spins of 
the orbiting particlc ant1 rlllcleus to  he xcro. Neglect all rcllativistic c,ffc~-ts. 

(a) Calculate t,o lowcst ort1t.r the ciiergy splitt,ings in thc: prcscncc of a 
uniform magnetic ficl(1. 

(b) Do the samc for thc! case of a uniforrrl c:lect,ric ficltl. 
(c) Do the same for both felcls prcso~lt sirl~~llt,arlco~~sly ;1.11(1 i ~ t  right 

angles to  each othcr. 
(Any integral ovcr ratlial wave func:tior~s iic?rtl not t)c c:vitl1iatcd; it (:it11 

be replaced by a p;~r;~rncltc~ for t>hc rest of the ( : i ~ l ( : l ~ l ; ~ t i ~ ~ i .  Thc: same r i ~ i ~ y  1 ) ~ :  
done for m y  integral over angular wavc: filnction, orlccr you have: asc:crtai~lc:d 
that  it tlocs rlot vanish.) 

( B c ~ r k ~ L : ~ )  

Solution: 

(a) Take thc: dir.c:c:t;iori of t,llc: llli~gll(:t,i(: fi('l(l iLS t,h(: z (lir(:(:t,io~l. TII(:II t,l~(: 
Hairiiltoniari of tllc: syst,orrr is 

whcrc V( r )  = -~ $. Corisi(1cring H' = f2 as ~)(r r t ,~~r t ) i~t , io l i~  tali(! (:ig(:rl- 
filnc:tioris for thc: 1l1ij)c:rturl)c~d st,nt,c:s arc. 

As ( H ,  1" ,1) are still corlsc:rvc:d cll~antitics, ( ~ i . t , t n l i ~  ) , I I , ~ ~ I I , )  = ,rri,Ji, i ~ n d  thc 
energy splitt,ings t,o first ortlcr for 7,. = 2 arc givc.11 t)y 

Per~urbatzon Theory 371 

(b) The  energy lcvel for n = 2 without c'orlsidering spin is four-fold 
degenerate. Thc  corrcsyondirig energy ant1 s t a t ~ s  arc respectively 

Supposc a uniforril electric field is apl)liecl alorig the z-axis. Take as  

perturbation H' = eE7; = EoVr,  w1ic:rc Eo = CEO,", V' = z/a" = rcosB/ao, 
2 .  

a,(, = + . S l l l ~ ~  

H~l,rrL,,r,,lrrL # 0 for o~l ly  A1 - &1, Ant = o. Hcnc:c thc: noll-var~ishir~g 
elemcr~ts of thc: pc:rturl)ation rlli~t,rix arc 

Lrt  (H')200,zlo = (H')210,200 = El, i.e., Ho1 = Hlo = E', and solve the 
a. lor1 secular c'qu t ' 

det I H,,, - E(') b,, ( = 0 . 

The roots arc  E(') = +El, 0,O. Hcncc the energy state n = 2 splits into 
three lcvcls: 

E2 & E' ,  E2 (two-fold dcgcricracy for E 2 ) .  

(c,) Assutning that  the magnctic field is along the z-axis a.nd the  electric 
field is along tile z-axis, the perturbation Harlliltorlian of t,he system is 

where 



372 Problems and Solutions o n  Q u a n t ~ ~ m  Mechanzcs 

The  non-vanishing matrix elements of z are 

1-1,m l , 7 r ~ - l  
(")1,7n-l = ( X ) ~ - ~ , T T L  

- 
3 (71" lZ)  (I + TTl, - l ) ( l  + 'TI?,) 

- 7 q  4 ( 2 I + 1 ) ( 2 !  1) (1. 

Thus, for n = 2, 

and t h r  1)t'rtilrl)i~tioii 111;~trix is 

The secular equatiori 

has roots 

det 

Perturbation Theory 

Heric:~: the: cnergy state 71 = 2 splits into thrcc levels, of energies 

0 - ~ ( 1 )  0 
- Y 

0 - p -  E(I )  Y 

-7 Y -E(l) 

5043 

A iiorirc:l;~t,ivistic: liy(1rogc:ri a torr~,  with n s1)irilcss cl(:c:ti-ori, is 1)l;~c:cd in an  
c.lectric fictltl E iri tlic: z t1ircc:tioir ailtl ;L iii:~gii~ti(: ficltl 'H irrl t,hc 3: dircc:tiori. 
The  t.ff(:ct, of t,hc: t,wo ficlds on the c:irlcrgy l(:vcls arc c:ornp;~r;~l)lc. 

(a)  If tlic ;~t,orii is ill iL s tate wit11 TI,, t l i ~  ~)riii(:i~);~l q~laiit,urn iiiliril)(:r, 
(:qua1 t,o t,wo, stnt,c w1iic:h rliatrix clcirierits ill thc first-order 1)crturl)atiori 
ca1ciil;~tiori of tlic: c:iic:rgy shifts arc, zc:ro. 

(1)) Now ot)t;~iii ;ill ( : (~~i;~tioii  for tlic crlc:rgy sliift,~; oricc yo11 liavc: tali(: 
deteriiiiii;~iit;~l (:(l~ii~t,ioii yo11 11(:(:(1 110t go tliro~rgli thc: ;~lg(:l)ri~ of ~ ~ i ~ l ~ i i ~ t i ~ i g  
the d(~t(:rr:iiiii~lit. Do iiot i r i s~ r t  t l i ~  pr(:(:is(: forills of tali(: r ;~(l i i~l  W ~ V C  f i i11~-  

tions; c:xI)rc:ss your rc:s~ilts iri tc:riiis of rnatrix (:l(:iii(:iits of rrl (whcrc 71. is ail 
appro~)ri;~t,c: 1)owc:r) 1)c:twc:c:ii r ;~(l i i~l  W;LV(: fii~i(:tioiis. 

(c, f ,LC,)IC, 711,) -- J{(c f rrt,) (e * 711 + 1) )  I C ,  ,ITL * I )  . 

- 0 

(Berkeley) 

Solution: 

( i ~ )  Tlic pcrturbnt,ioii IIarniltouian is 

Lr t  tlir stat(, vectors for 71 = 2 be 1200), /210), 1211), 121, -1). As 



As z = r c:os H. we have 

with ( r )  = ST r3Rm R21t/r, ot,ticr rrint,rix dc:~ilciit,s of z 1)ciiig wro. Hmce 
the perturbatiol~ 11li~tl.i~ is 

wli(,r(: (t = vE(r) 
are the c:ncrgy sllift,~. 

5044 

TWO non-itlc11tic:i~l pi~rti(:los, ri~c:li of 111;tss 7r t . ,  arc c~ol~filic:tl in ollcl tli- 
mension to an impcr~ctrill)l(: 1)ox of lciigth L. What, arc the, w;ivc> frllic.tiol~s 
and energies of the thrcc: lowc,st,-rlic:rgy st,iLtc3s of thc: systc~li (kt., ill wt1ic.h 
a t  most one particle is cxcitctl o l ~ t  of it,s gi-ollntl st,;itc,)'! If i111 i~it,c,r;~ction 
potential of the forin V12 = X~(:I:, - .I:,) is i~.tl(l('d, c.z~lc~111atc. t,o tirst ordcr 
in X the energies of these three lowost. stat,c,s il11(1 t,ll(,ir W;LV(> fr~~i(.t,io~ls to 
zeroth order in A.  

( Wisconsin) 

Pert,t~rbatior~ Theory 375 

Solution: 

Both particles can stay in thc ground state because they are not iden- 
tical. The energy and wave function arc rcsl)cct,ively 

If out p;~rt,icle is in the grountl s t i~ tc ,  the other ill t,he first c:xited state, 
t,he e~iergics and c:orresponding wave fu~ic:t,ioiis arc 

5fi2T2 2 . 2.ir:cl . T3:2 
E21 = 7, ,$21 = - Slll  - Slll - . 

t r r ~ L  L L L 

Who11 l)ot,h 1);~rtic:lcs are ill t,lic: singl(:-1)i~rtic:lt: ground st,i~tc:, i.c:., thc 

syst,cln is ill thc: g r o l ~ ~ ~ t l  st,at,o, wc: 11;~vc thc: c:llc:rgy c:orrc:c:tioi~ 

and tho wi~vc, fiiiic.t,ioli t.o xc:~-ot,li ordcr in 

Wli(m on(' l);~rti(:l(>s is iri ttlc ground state and the other in the first 
excitod st;~t,o, t,lic: (Hi(:rgy 1(:v(:1 is two-fold degenerate and we have to use the 
~)erturl);~t,ioii t,licory for dcgcnerate states. We first calculate the elements 
of thc p(:rt~lrl)i~t,ioll Hi~~~lilt,ollian matrix: 

JJ ~J~;2Vl,~J~12d:~;ldr2= ,$2tlV~2$J21d~:~dn:2 J'J 
4 "  , .irZl 2 27m1 X = g ~ l  sin - sin - dxl  = - 

L L L ' 
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and obtain the roots 

which are the energy (~orrcrtions. 7 1 1 ~  rorr~sponcli~ig zerutl~ orclrr wave 
functioris are 

t 
5045 

Consider a. t1irc.c.-lcvcl systern dcscri1)cd 1)y the.: Hcr111iti;l11 Harililtor~ian 

Ii = Ho + ANl ,  

/ 

whcw X is a real nu1111)cr. The eigcnstatc,~ of EIo arc. J l) ,  (2)  ;uitl I:]), a ~ i d  

(;I) Writ,c dowri thc: rnost gc~ieral 3 x 3 1ria.trix rcl>rc:sc:rlt;~tior~ of HI in 
thc {Il) ,  (2), 3 ) )  1)a.sis. 

(1)) When ttic spec:trurli of H is c:orril)l~ted usi~ig l ) ( : r t t ~ r l ) i ~ t i ~ ~ ~  t,li(:ory, 

it is foulicl that the cigcr~statcs of H t,o lowcst order in X arc Il), /&) EE 5 /~ 
(12) f 13)) and that t,he corrcsl~onding cigerlval~ic:~ arc: j 

Determine as many of the rnatrix elernents of H I  frorn part (a )  as you 
can. 

(Buffalo) 

Pelt'urbatzon Theory 

Solut ion:  

(a) S~IICC X is a rcal riurnber, the Herrnition perturbation Harrliltonian 
matrix has thc forrn 

(1 c 

H I =  (i ;* 

where ( 1 ,  b,  (: I I ~ C  rcat riurribcrs. 
(1)) To first orclcr approxim;~tioil, ellorgy cigerlvnlne is t , l~e cxpectation 

valuc: o f  tho IIai~iiltonial~ with rospcct to thc, sc:lccted statc vectors. Thus 
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In the almvc we have used 
1 

( + l H l l + ) = - ( b +  f +  f * + c ) = l ,  
2 
1 

( - ( H I ( - )  = - ( b -  f - f *  + c )  - -1 
2 

arid chosen the solution 

b = ( - = O ,  f = f *  -1 .  

Pertur1)atiori thcory for rioridcgcncratc statcs givc.5 

Thus 

Ideritifyinfi E l ,  E2, EJ wit,li t,lic: givon ciicrgic:~ E l ,  E.+, E- t~1ic1 (:olril):Lr- 
ing the cocffic:ic~its of X aricl X"ivc (L = 0 i ~ ~ l d  

((1 + c("t ( d  - el2 = 2 ,  

or d + e = f ie"  d - P = 0, wlic~c 6 is an arbitrary coristant 
2 d 

Hence a = 0, d = e = and 

is the representation in state vectors jl), 12), 13) 

Perturbut ion Theory 

Two identical spin-; ferrnions are bound in a three-dimensional 
isotropic harmonic oscillator potential with classical frequency w .  There 
is, in addition, a weak short-range spin-intlependent i~iteraction between 
the ferrnions. 

(a) Give the spectroscopic notation for the energy eigenstates up 
through energy 5fiw (measured fro111 the bottorn of the well). 

(b) Write the appropriate approximate (i.e., to lowest order in the inter- 
action) wave functions of the system, expressed in ternis of single-particle 
harrrionic oscillator wave frinctioris, for all states up thro~igh energy 4Fw. 

(c) For a. specific interparticle interaction V12 = -Xb3(rl - rz),  find the 
energies of tlic states of (b) correct to first order in A. You  nay leave your 
result in the form of intc:gra.ls. 

( Wisconsin) 

Solution: 

(a) For a thrcc-tiimensional harrnoiiic: oscillator, 

where 71,. and 1 are integers riot srnallcr thi~11 zero. For the system of two 
identical ferrriions in harmonic oscillator potential, we have, from the Harnil- 
tonia~i,  

Consequently, for 

there is orily one state 'So;  for 

there are two states 'PI and 1 3 f i l o ;  for 

Ez = Sfrw, and 

(1) (ncl, n,2) = (2,0)  or (0,2), 
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(11 , 12) = (0,0),  there are two statcs 'Sol 3s1 ; 

(11,12) = (2,0) or (0,2),  there are two states ' 0 2 ,  3D321 ; 
(2 )  ( n , ~  ,n2) = (1,1)! (11,12) = (1, I ) ,  there are thrce states 'So, ID2, 

3 p210. 
(b )  Let $0 he the grountl stat,e and $11, the first exit,c:tl state of a single- 

particle system, where m = 0, k l ,  and xo arid XI,, he spin sirlglct and 
triplet states. With the statcs labeled as IIVLL,SS,), t,hc wave filnct,ions 
required are 

100000) = xoc/Lo(l)+0(2), statc 'SO ; 

1 
;111n,00) = xo - ( 1  + F I ~ )  .(i)0(1).(1,~,,,,(2), state ; Jz 

1 
I l l r r ~ l M )  = x1,j.I - (1 - R 2 )  4i/o(1)~lm(2), state : ' P ~ ~ ~  ; fi 

whcre M = 0 ,  f 1 (L, = 7ib, S,  = M). 
((:) Fc)r the g r o ~ ~ l ~ d  stat(, 'So, thc c1ic:rgy c:orrcxc:tioll to  first ord(!r in h is 

('.';olVla 1 l ~ o )  - - X tlrlrirzh(rl - 13) [,$,I(rI) ~ , h ~ ) ( r ~ ) ] ~  S 
J 

:j 

= -- dr.(i,a(r) = - h (&) 
with tr = 4 i 7 E .  H(:I~cc t,hc grolind st,atc crlcrgy is 

(;;,,I 3/2 
fC(/ ls0))  = ~ F u L )  - X -- 

The  first exited s t a t , ~  i:or~sists of 12 dcgonc:r;rtc: s t a t ( : ~  (lmt as  t,ticre is 
no spin iri V12, (1P11V1213P1) = 0). 

As thc spatial wave fuiictiorl is antisyrnn~c:tric: wliir~l S = 1, the cxpec- 
tation value of -X6"(rl - 1-2) cql~als to  zcro, i.c., ( l l ~ r r ' l M ' j V 1 2 ~ l l r n l M )  = 

6 , j r t ~  (11n'1V12117n) = 0. As 

P erturbatzon Theory 

\\ ,, have 

IV 11t:re m is the cigc:nvaluc of Lz 

5047 

The  HaIrliltoni;~n for an  isotropic harmonic: oscillator i r ~  two dinlerlsiorls 

I ,  

H = ~ ( 7 1 ~  + n;? + I ) ,  

\v l~ere  sr, = a:ai, with [a, ,  a;] = 6,:, and [ai ,  a,] = 0. 
(a) Work out the cornrnut,;~tion relations of the set of operators 

( / I ,  J1 ,  J2, . I c 3 )  whcrc 

1 + + .II = - (a2 (11 + af a 2 ) ,  J 2  = - (a2 a1 - n;a2), 
2 2 

1 + + .I:( = - (a1 a ,  - a 2  a 2 ) .  
2 

(b) Show that J" ,112 + .I: + .I:: ar~tl  form a. compl(:te comrnutirlg 

.(,I. and writ,(: clown their ort,horlorr~~;~lizcd cigerivectors and cigcrivalurs . 
(c) Disc:~~,ss thc dogcmcr;~cy of t , l~c spc~ctrrlrn ; ~ n d  its splitting due to  a 

.111al1 pertiirbnt,ioll V . J where V is a constant three-component vector. 
(Buffalo) 

Scblution: 

(a) Thc  systcnl can be considered a systern of boso~ls, which has two 
.ir~gle-partic:l(: stat,cs. The operators a t  and ai are respectively creation 
.illd destruction opcrtttors. As among their coinmulat,ors only [a,i, a:] is not 
:lLro, we car1 use the relation 

[ab, cd] = n[b, c]d + a.c[b, d] + [a, c]bd + c[a ,  d]b 

obtain 
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[H, JI] = [ H ,  521 = [I$, J3] = 0 ,  

[Jl, .I,?] = i.J:,, [.I,, J3] = i ,Jl ,  [J:,, J,] = i.1,. 

(b) The above conililulation relatioris show that .Il, J2, J3 have the samcr 
properties as the conlporlorits of thc a.ngular ~ilonleiltulll L. Horlc:e J2 arid 
J3 comrnute and for111 n c:oriiplcte set of tlyn:~mic:al vari:~l)l(?s of the two- 
dilnensional syst,em. 

The coriim~~t;~t, ion rol;rt,ions of t r ,  (A+, 

+ a ]  = [n, ,a j ]  = O ,  

can sat,isfic:tl if wc: tl(:lillc 

( ~ 1  1,161, 71.2) = fil 171,~ - 1, , I I , ~ ) ,  ( I , ~ ~ I ? , ~ ,  ~ r ~ 2 )  = fi21~~,l, TI,? - 1) 

(~:)71,1,71.~) = fitT171.1 + 1,762), ( I , ~ ~ I L ~ , ~ I L ~ )  = ~ ~ ~ ~ , I I , ~ , , I I , ~ + ~ ~ )  

and thus 

(11,1, lb2) = (.11.1!71,2!) ((L:)'"' ( ( ! , ~ ~ ) 7 1 2  10, 0) . 

Thcse ci~11 1)i: t i ~ k ~ l i  as t,h(: (:0111111011 ~lorllliilizt:(l (:ig(~~lvc:(:t,ors o f  tk~(: c:olnplete 
s(?t of (~ylli~llli(:iLl v ~ ~ . ~ : L I ) ~ F s  J' illlil .I:,. AS 

,, 1 
I Ju = -{(~:(I,I + L ~ , F ( L ~ ) ~  - ((,,inl - (1~:n~)~ + (a1 ( I , ,  - (,,i(~,~)~} 

4 
1 

= -{2a;a1(~;n'2 + 2n~n2n;nl + r ~ ~ n ~ c l , T n ~  
4 

+ + + a 2  a2a2 O,.L - ntala:n2 - a:c~~o,Ta~} 

- 1 
- - { a ~ a l n ~ a 2  + aTa2a:al + a;a,[al, a:] 

4 

+ a;al[aa, a:] + a t a l a t a l +  az+a2a,'a2} 

- 1  + + + + + 
- q{al azal a2 + a, a1a2 a1 + a 2  a2 + a:i~~ + o,:nia:nl + o~nm:az) ,  

where use has been made of 

+ a:ala:az = a$alaaal = a:a2nlat, etc., j 

\ \ . I ,  find 

Thus the eigenvalues of J" ,Iz a.rc rrspectively 

1 
J" - (n l  + 1 1 , ~ )  

2 

1 
J - - (n1 - 722). 

I 
z - 2  

Furthermore with 

I I N :  above give 

(c) Energy levels with the same value of J are degenerate. The situation 
I,; exactly a11a.logous to that of the general angular momemtum. Adding the 
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perturbation V .  J will remove the degeneracy because the different energy 
levels have different value of JV  in the direction of the vcctor V. 

5048 

Consider a two-tlirnensiorlal osc:illator 

(a) What arc the wavc fu~ict~ions arid c1ic~rgic.s of t llc 3 lowrst sti~tcs'! 
(b) Nvxt considrr a pcrtllrbation to tllc H a ~ ~ i i l t o ~ l i i ~ ~ l  

Conlputct tjo first order ill pcrtrlrl);~tior~ tllcory tlic: c:ff(:c:t of V o11 t,lie 
c~lc.rgics of tllc st;ltc>s c:alcl~l;~tctl ill part, (;I). 

( W,is co,rrs?;n) 

Solution: 

The Halr l i l to~l i :~~~ is givt:i~ in llr~its for which I L  = ,IT), :-- w -- 1. 

(a) The wave f~niction and cwc:rgy o f  the two-cli l~io~isio~~d I l a r ~ r ~ o ~ ~ i c :  os- 
:, 

c:iHiitor are rrspcctivc:ly 

! 
- ( : E ~ + ! I " ) / ~ ~  

llr7,. I 7L2 = N7,1 , r,: ,  e T L  1 (:c) fr?!.2 (:(I) 1 

where Hi are Hermitc polynomials. For the 1owc:st t11rc:c states, we havc: 

Perturbatton Theory 385 

(h) The  first order energy correction for the ground state is 

as the i~~t,rgr;ll in either n: of is an otld function. 

W l l c ~ ~  N = 1, there is a two-fold tlegcneracy, and 

The, sc~c.lil;Ir c~clri;It,ion for t h ~  pcrt,lirl);itio~l I I a ~ n i l t o ~ ~ i a ~ l  ~na t r ix  is 

I giviiig t,llc: c:orrc:c.t,c:(l c:lic:rgics 2r.s 

5049 

A j):trtic:le of rrlass , r r ~  rrioves (~lonrelativistically) in the three-tlirncnsional 
poterit,ial 

1 
V = - 2 k ( z 2  + y2 + z 2  + X q ) .  

(a) Co~lsicicr X as a srrlall parameter and calculate the ground state 
energy through second order perturbation theory. 

(h) Consider X as a srilall parameter and calculat,e the first excited 
energy levels t o  first order ill perturbation theory. 
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Formulas froni the standard solution of the one-di~ne~lsional harmonic 
oscillator: 

Solution: 

(a) Tho g r o ~ ~ n t l  state, has w;~vc f u r ~ c t i o ~ ~  

and crlcrgy $ hru. Co11siclc:r $ Xxy ;l.s ~ ) ~ ~ t ~ l r l ) i ~ t i o l l ,  tll(: first or(l(!r (:11crgy 
correction is 

as the i~~ t eg ra l  is an ocld fi111c:tion with rcs~)c:ct to z or y. Thc: scc:o~ltl ortl<?r 
energy correction is 

Therefore, the ground state energy corrected to secontl ordcr is E ( 

(b) The first excited energy levcl El = 5 fiw is three-fold tlegc.n~rate, 
the three states being 

Xk The matrix of the perturbation z?j is 

and the secular cquation 

has roots 

Thus t h r  first cxcitcd cwergy lcvrl splits into t l~ rcc  lcvcls 

Coiisid(:r t,hc following model for the Van der Waals force between two 
atoms. Ex:h atoln c:onsists of one electron bound to a very massive ~lucleus 

by a potential V ( r i )  = 7nw2r:. Assume that the two nuclei are d >> 6 
apart aloug the x-axis, as shown in Fig. 5.17, and that  there is an interaction 
vI2 = ~j Z ~ Z  e2 

d,2 , Ignorc the fact that the particles are indistinguishable. 

Fig. 5.17 

(a) Consider the ground state of the entire system when /3 = 0. Give 
its energy and wave function in terms of r l  and 1-2. 
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(b) Calculate the lowest non7ero correction t o  the energy, A E ,  ant1 to  
the wave fullction clue t o  V12. 

(c) Calculate tile r tn.s. separation along thcl .I: diiectiori of the two 
electrons to  lowest o r d r ~  ~ I J  0. 

( , I L ) ~ : ~ ~ I I , )  = 0, for 171 - .rr,,J # 1 , 

( L  - ll:~1,11,) = (rrti./znw) 'I2 , 

(71 4- 1\:,:/71.) = ((71 + 1 ) / ~ / 2 , r , . w ) ~ ~ ~  , 

( Wsr:onsin) 

Solution: 

(a.) T h c  Sclirij(1iiigcr ~clni~tio11 of thc  syst(:iri is 

When 0 - 0 the systc>rn is equal to  two i ~ i t l c ~ l ~ c ~ r ~ d c ~ ~ t  tllrcc-dirt~c.ns~or~al 
harrnonic osc~llators arid tlic energy aiid wave furictio~i of the  grot~ntl state 
are 

where rf = xf + 7~';? + z:, etc. 

(b) Treating 

perturbation Theor-y 

as I~crturbntion we have the first ordrr energy c.orrect,ion 

as ( n ( r ( k )  = 0 for k # n*  1. 
For t,hc: sc~:oi~d ortfer cricrgy corrsctiorl, we have 

and hor~cc: 

as E7!,, - (ril + ;)JW I (n2 1 $ ) h ~  Thus tile energy corrected to  lowest 

and thc: corrcctctl wavr function is 

wt~erc  Qp)  = 4~1 ( Z ~ ) $ ~ ( : J ~ ) ~ ~ I ( ~ ~ ) $ J I  (~2)$0(~2)d~o(z2) .  
(C) Let Sl, = :c2 - 21. Thcn (S12) = (x2) - (xl) = 0 as YO remains tile 

sarnc wheli 1 antf 2 are  interchanged showillg that  (XI) = (az). Consider 
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We have 

(0) ( ~ 1 x 2 )  =(\kt) - X Q 1  1 x ~ 2 : ~ l Q t )  - X Q i O ) )  

(0) (0) = - A{(*" I:r:i x 2 ) Q 1  ) k complex c:orij~igatc:) 

where 

and 

Also ac:cordirlg to tlic: virit~l t11eorc:rri 

Thus the root-mean-squarc distancc 1)c:twccri the two e1ct:troris in 3: direc- 
tion is 
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The first excit,ed state of three-dimensional isotropic harmonic oscillator 
(of natural angular frequency wo and mass m) is three-dold degenerate, 
lJse the 1)c:rturbatiori method to calculate t,he splitting (to the first order) 
of this tlircc-fold degcrierate state due to a small perturbation of the form 
I$' = bzy, wherc b is a constant. Give the first-order wave functions of 

t,he three split levels in terms of the wave functions of the unperturbed 
three-dirrier~sional harmonic ost:illator, given that, for a one-dimensional 
liarmonic osc:illator, 

Solution: 

Write the 1iri1)crturt)ccl cric:rgy cigenstate as 

where In) is the n,th cligenstate of a one-tlirnensiond harmonic oscillator. 
The first cxc:itctl state of the 3-tlimcnsional isotropic harmonic oscillator is 
degencratc iri t,hc states 

Ca1cul:~tirig thc: rriatrix elements 
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Thus 
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The secular equation 

dct I H' - E(') ( = 0 

has roots E(') = 0, E(') = f &. Tlie uripcrt,lirl)c:d oscillator has c:ncrgy 

E?) = (n+ : ) l i ~ .  The first cxcit,cd statc, ,n = 1, iiow splits illto tlircx: lcvcls 
with the wave func:tioiis i11dicntc:tl: 

A quaiitur~l n1cclia1iic:al system is dcscribc:d l)y tlic Ha~riilt,oi~i;~.~i H = 

Ho+ H', wliere H' = iX[A, Ho] is a perturbatio~i 011 tlio u~ipcrt,urt)cd Ha~iiil- 
tonia~i  Ho, A is a Horniitian operator aiid X is a, real riu~iil~cr. Let B be a 
sec:ontl Hern1itia.n opc:rator a ~ i d  let C = i [B ,  A]. 

(a) You are givc:n the expcctatio~i val~ics of tlio opcri~tors A, B and C in 
the unperturbed (a11d rioridegenerate) grourid states; call tlicsc (A)o, (B)o  
and (Co).  With perturbat,ion switched 011, evaluate tlic expectation value 
of B in the perturbed grollnd state to first order in A. 

(b) Test this result on tlie followirig three-dimensional problem. 

by computing the ground state expectation value (xi), (i = 1 , 2 , 3 )  to lowest 
order in A. Compare this result with an exact evaluation of (:ci). 

(Princeton) 
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Solut ion:  

(a) Assume that the eigenstates and the corresponding energies of ail 
unperturbed system are respectively 

then 
~ ~ l k ) ( O )  = E(O)  k jk)(o) . 

The niatrix c~lcrricrits of tlie perturbation Hamiltoniail arc, 

Tlicn, tllc grouritl state wavc function with first order pcrturt)ation cor- 
rection is 

(to first order in A ) .  
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Note that the coinplet,rless of lk)(O), 

has been assumed i r l  the ahovr calculation. 
(1)) The giver1 I-Ia~nilt~oriians 

satisfy H' = iX[A, Ho] = Xz3 if we sct A = &. TJsirig thc: rc:s~ilts of (a) 
wc haw! thc followirig: For B = zl, as 

wr have 

Note that ( X I )  = 0 as thc integral is a11 ocld f~uic:tioii of :c,,. For B -:: :c2, 
a similar calculation gives (x2) = 0. For B - :c:!, ;LS 

For an accurate solution for H = Ho + H', write 

2 2 
where & i ( : t : i )  = -& & + 4 mw2x: is the Hamiltonian of a one- 

dime~lsioilal harmonic oscillator. As the constant term -X2/2mw2 docs 
not affect thc dynamics of the system, the accurate wave function of the 
ground state is just that for ail isotropic harmonic oscillator: 

It follows that 

Thcsc: rc:slilts arc exactly thc same as those obtainetl in a) 

A particle of rrlass m is nlovillg in the three-clirnensional harmonic os- 
cillator ~)otenti;~l V(x, y ,  z )  = 7rt,w2(x2 + y2 + z2). A weak perturbation is 

applird ill the forrri of tho firrictiorl AV = ksyz + z2y2z2, whcre k is a 
small c:orist;xrit. Notc the same constaiit k appears in both terms. 

(a) C;~lculate the shift in thc ground state eriergy to secorid order in k. 
(1)) Using an arguirient that docs not depend on perturbation theory, 

what is t,hc expectation value of x in the ground state of this system'! 
Notr: YCIU may wish to know the first few wave functions of the one- 

dimensional harrnonic oscillator: 
ground state 

mw 114 mw 
0 = ( )  exp (- , x2) 1 

first excited state 

second excited state 

(Princeton) 
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Solution: 

The ground state of a particle in the potential well of three-dimensional 
harmonic oscillator is 

The first order encrgy correction is 

While the perturbation AV' = k q z  clocs not givc risc: to first order 
correction, it is to be considered for scc:orld order pcrturl);~.tiorl in orc1c:r to 
calculate the energy shift accurate to k? Its pcrtur1);~tioii I-I;~irliltoniari 11;~s 
matrix elements 

where n = nl + na + n3, and so the second order cnergy correction is 

Perturbation Tlieory 

Therefore the energy shift of the ground state accurate to k 2  is 

(b) V -1 A V  is not changed by thc invcrsion z + z ,  y  + - y ,  i.e., 

Furtl icrmor~ thc wave fiirictiorl of the ground state is riot degenerate, 

so +(-.r, - y ,  z) = $ ( r ,  y ,  z)  and, conscqucrltly, 

where wc 11;~vc applied the transformation z' = -2:, ?j' = y ,  z1 = z. Hence 
(5) = 0. In the sarnc way we find (y) = 0, (z) = 0. Thus (x) = 0. 

A spin-+ partic:le of mass 711 moves iri spherical liarmoriic oscillator po- 
t,ential V = irn,~%-~ ;tnd is sut~jcct to an interact,iori Xu.r (spin orbit forces 
are to 1)e ignored). The net Hamiltoniarl is therefore 

where 

Compute the shift of the ground state energy through second order in the 
pertur1)atiori H'. 

(Princeton) 

Solution: 

The unperturbed ground state is two-fold degenerate with spin up and 
spin down along the z-axis. 
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Using the pertlirbation method for degeneratc stat,es, if the tlegcl~cr;~cy 
does not disappear after diagorlalizing the pert~irl)atio~l Halniltolliali, orlc 
has to diagonalize the followirig matrix to find the energy positiorls: 

Let In:,7).,,7~, T) al~t l  I T I , : , ~ , ~ ~ ,  J) I)(: tllc ~~rlpt:rt~lrl);~t,iorl c l u n ~ ~ t ~ l ~ l l  st;~t,es, 
where TL,, and 7 1 ,  arc the oscillatiori cluantulrl ~i~llrll)c~rs in thc :c, ;~iltl z 
direction, T (J) reprcserits the spin 111) (dowl~) st,atc:. As 

tlic rri;~trix has elcrnc~nts 

In the above calculation we have used the fact t,hi~t, 

Perturbation Theory 

all other elements bcirig zero. It is seen that a two fold degeneracy still 

exists for the eigciivslrle &. This means that the degeneracy will not 
disappear until at  least the second order approximation is used. The ground 

3 3x2  state, which is still dcgcnerate, has energy , fw - w. I 

1 Consider a. spi11lt:ss pnrtit:lc of inass 7rt. and charge e confined in a spher- 

ical cavity of r;~tlins R: that is, tlie potential cnergy is zero for 1x1 < R and 
iiifiriitc for 1x1 > R. 

(a) W1i;tt is the gror~~id  state cnergy of t,liis system? 

I (1)) S~i~)~)osc: t.liat a weak uiliforrn magnetic field of strc:ngt,h IBI is 
switc:hc:tl on. Cal(.ulat,c: t,lw shift in tlie grountl state c1iergy. 

(c) S11l)posc' t , l ~ ;~ t ,  i~ist(:;ld, ;I weak uriiforin electric ficltl of strc:rlgth IEl 
is switc,hc:tl 011. Will tlic grolintl st,at,e c:rlergy ilicre;isc or dcc:rease? Write 
tlowl~, but (lo ~ i o t  ; ~ t t ( ~ ~ i p t  to (:valuate, a forlnllla, for thc: shift irl t,he grolllld 

I stat,(: ~r i tsgy (11lr: to tlit: c1r:ctric fielrl. 
((1) If, inst,catl, a, vc:ry st,ro~ig niilgnctic ficltl of strc?ngth IBI is tllrncd on, 

ayproximatcly wll;~t, woliltl 1)c t,hc gro~intl state energy'! 
(P?-inxrton,) 

Solution: 

The radial part of  t,lic Sclirijdingcr cqliation for the particlc in thc po- 
tential wcll is 

n U + - n f +  [ k c -  '"lr:l)] R = O ,  ( r < R ) ,  
T 

wherc k  = m, t,lic boulidary condition being R ( r ) I T = ~ ,  = 0. In- 
troducing a dinlcnsio~lless variable p = k ~ ,  we can rewrite the equat,ion 

1 This equation h i~s  solutiol~s jl(p) that arc finite for p -t 0, jl(p) being 
rc:lated to Bcsscl's fullctiori by 
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Tlius the radial wave function is 

Rkl( r)  = Ckl j, (kr) , 

wlierc Ckl is the normalization constant. 
The boundary conditio~i rrquires 

which has solutior~s 

Hence the bound state of the pa~rticle has ciicrgy levels 

For the ground state, p = 0 arlcl :jo(p) = '%, so that tulo  = ?r ant1 tlia 
energy of the ground state is 

(1)) Take thc tlirection of tlic in;~gric~tic~ ficltl as the, z ilii-cxctio~i. T h c ~ l  tht. 
vector potential A has cornpolic.11ts 

and thc Harniltonia~l of the system is 

As t,he magnetic field is weak we can treat - $ 1 ,  + (z' + y2) as a 
perturbation. When the systern is in the ground state 1 = 0,  1, = 0 we only 
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~lced to consider the effect of the term (2' + y2) .  The wave function 
of the grounti state is 

k:" sin(kr) 
j0(kr) = 

-7. ' 

and thc: first ortlcr c:rlergy c:orrcc:tior~ is 

c2B" 
..- . -. 7.2 si1i~(kr)(/7. 27r sill:' QdQ I," 

(c) Slip~)ox! ;I. w c ~ ~ k  1111ifor11l electric field E is applied in the z direction, 
insteati of tlic: ~l~i~g~l( : t , i ( :  field. The corresponding potential energy of the 
~)articlc is V' = -r,Ez, which is to be taken as the perturbation. The shift 
of the grounti st,i~t(: cwcrgy is then 

As E:, is ~~cgat~ivc,  t,lic elicrgy of t11c grouritl st,atc clccrcascs as a result. 
(d) If a, strong magnetic fir:lti, instcad of t,lie wcak one, is applied tlieri 

;),rid t,hc B2 tcrixl (:all xio longer 1)c c:oiisitlcred as a pertur1)atiori. Tlie particle 
is now to 1 ~ :  trc;~tr:d iLS a two-dimensional h;arinoriic: oscillator with 
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Hence the ground s ta tc  energy is approxilnatcly 

A particle of ~nkiss Trr ,  arld e1cc:tric c:hargc I;! 1rlovc:s ill a threc-tlil~io~isiollal 
isotropic harmonic:-oscillator potclltial V = k?. 

(a,) What  arc the energy l(:vels and their tlegelicrac.ics'! 

( 1 ) )  If a ullifor~n cl(:c:tric ficld is applied, what arc tht: now ci1c:rgy lcvels 
and t,llcir tl(:genarac:ics'? 

(c) If, iilsteatl, a uilifor111 maglletic ficld is apl)lictl, what arc: t,lic: c:~ic:rgics 
of the four lowest sta.tes? 

(Colr~,rnbiu) 

Solution: 

(a) T h e  Hamiltonian of the systc:rn is 

h" 1 
H - - V % -  - k r 2  = H z  t fIu f N,, , 

27r1 2 

where 

T h e  energy 1evt:ls arc givcii by 

where wo = m, N = ,n, + n, + n,. 

T h e  degeneracy of s ta te  N is 
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(b) Take the direction of t,he uniform electric field as the  z direction. 
'I'hen the Hamiltonian is 

Comparing t,his wit11 tllc: Hi~l~l i l t~l l ia l l  in (a),  wc gct 

(c) Corlsidcr the ( :ax  whcrc: a maglictic field, instcatl of the cllectric field, 

is applic:d. 111 cylintlrical coordinatrs, the vec:tor pot,c~it,ial has coinporlc~its 

where we have used I-' = p" z2, and V  . A = 0 which means p . A = A .  p. 

Write 

where 
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and the symbols f correspond to positive and negative values of Q.  Of the 
partia.1 Hamiltorlians, Ht corrcsporlds to a two-dimensional harmonic oscil- 
lator normal to the z-axis, H Z  corrc!sponds to n orle-dirncnsioiial harmonic 
oscillator along the z-axis. Tlicrefore, the encrgy levels of t,hc systelri are 
given by 

where 

Thp four lowest ericrgy 1cvc.l~ arc, tli~is 

(a) Describe the splitting of a.tomic energy levels by n weak ~nngiletic 
field. Include in your discussion a calculation of the Lantli. 9-factor (a.sstillic 
LS couplings). 

(b) Describe the splitting in a, strong magnetic fic:l(l (Pasc:hc:ri-Bac:k ef- 
fect). 

( COLTL,J~I, hiu)  

Solution: 

In LS coupling the magnetic moment of an atorllic syster~l is the sum of 
4 orltrihutions of the orbital and spin angular momenta: 

wliere CLO is t,he Bohr magiic:t.oli. Tiikiiig the dircctioll of the magnetic field 
. \ s  the z tlirt:ction, t,he chaiigc of the Hamiltoniall callset1 l)y the magnet,ic 
lic,ld is 

HI = p . B = -!jlpoBjz - (gs - gl)poBs, . 

(a) The Hnrniltolliall of systeili is 

Corisitlcrillg -(!j, -- !Il)poBs, A ;LS A pcrturl)at,ioil ailtl operati~lg (Ho - 

rllpo Bj,) 011 tllo c:olllirlorl state of 12, j2 ; ~ n d  j, wc: have: 

where wc, llavcl tiset1 tllc rclatiolls 

[or j = 1 3 1  i, and 

Hence the energy l ~ v e l  of the system bccolncs 
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As gl = -1, g, = 2 we can writc 

where 

is the: L;l.ntfk !I-l;l.c:t,or. Tlirls a.11 c:riorgy 1cvc:l of' thc: ; ~ t o ~ l i  splits into (2:j - +  1) 
1cvc:ls. 

(1)) If the nla.g~ictic: fic?ltl is vcry strong, wc (:ail lic:gl(:c:t thc: tc:rrll [ ( r ) s  . 1 
and t,hc H:~.illiltoili;~~~ of th(: syst(:~ll is 

as gl = -1, g,  = -2. For an  electron, ms = ii. Thcn, due to  the 
selectiorl rule Ams = 0, transitions can only occur wit,hin eilcrgy lcvels 
of m,s = +$ and within energy levels of ms = -;. The  split levcls for 
a given 1 are shown in Fig. 5.18. For the  two sets of  energy lcvels with 

1 ml + 2 m . ~  = -1 + 1 to 1 - 1 (one set with ms = q ,  the  other wit,h rn,S = -1 2' 
i.e., 21 - 1 levels for each set) ,  t,here is still a two-fold dege~lcracy. So the 
total number of energy levels is 2(21 t 1) - (21 - 1) = 21 t 3 a.s shown. 

Fig. 5.18 

5058 

Consitl(:r ; L I ~  i~t,Olli with i L  single VR~CII(:(: (:I(:(:tro~~. Its fill(:-str11c:ture 

IIarniltonia.rl is givcli 1)y [L . S. 

(a) D(:t(:~-lllill(: t,ll(: ( l i i f ( ~ r ( ~ ~ ~ ( : ~  in th(' (,~~(\l.gi(:s of the Icv(:~s (:harix(:t,eriz~:(1 

I)y J = L 1- 1 /2  ;~11(1 J = L - 112 (fi11~ strr~(:trlr(: i~~t,(:rvaI) ill t c r ~ ~ ~ s  of' (. 
(b) This ator11 is p1;~c:c~l in a w c ~ ~ k  c>xt,c:rrlal ~l~iLg~l(:ti(. f i ~ l d  o f  ~ l ~ ; ~ . g l l i t ~ ~ d e  

I I .  Usc pcrt\irl)a.tion t,hcory t.o tlct,c:rniinc: t,hct cwcxrgy sy)litt,iilg 1)c:twccn 

;rdjacent rll;~gnctic: (Z(:crrlnii) sul)l(:vcls o f  thc: at,ol~l. 
(c) Dcsc:ril)e qualit,at,ively how t,hillgs c1l:rlige ill ;L vc:ry strong m;l.gllctic 

lield. 
(Colr~mbia) 

Solut ion:  

(a) In t h r  rc>prcsrntatlon of (J' , L' , j z ) ,  

As (1 + +)  (1 + +) - (I - i) (I + 1) = 21 + 1,  the energy tliEerence is 
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( 1 ) )  If the atorri is placed in a weak magnetic ficld of ma.gnit,udc H whose 
direction is taker1 to he the z direction, the Harniltoni~n of the syst,cin is 

fiz e H  
H = - + V(.r-) + --- ( i ,  + 2 s 2 )  + [ ( r ) ~  . L  

2n7. 2rnc 

fi2 cH , a A e M  - 
= - + V(r )  + -- j, t E(r)S . 1. . +;- S,  

27n. 2 n ~ c  L7nc 

. e H  - 
E Ho t - S z )  

21nc 

where J ,  = L, + S,. 
Let ,41,~,~.,~,,, br: a c:ornnion cigeiistate of (J', L', j,) for t,llc ~l i ip(~t i l r l~( : ( i  

f I ~ ~ r ~ i l t o ~ ~ i ~ ~ n  H ~ .  Tlien 

eHIi  
E71,~;, + 7rlJ -) 27nc ,d17L~:,.ll, . 

To consider the cffect of tlic pcrtr~rl);~tiori tc:riri & d, us(: spl~c,ric:al 
coordinates and write 47,1i,nj = R,, (7.)pLj7,,, ( 8 ,  (P), wllc:r(: tlic illlglilitr Wil.VC 

f~~nc t ions  are 

a ,  /3 being eigenstates of S, of eigerivallies 2 and -5  resl~ectivcly. Thus for 
j = l + $ ,  

P e r t u ~ b ~ t i o ~  Theory 

where pn  -- 2k is t,hc Bohr inagilc?t,oli. 
(c) If t,ll(: iriiigilct,i(: firld is very st,roilg, ((i.)S L << pliB ~11111(1 t,ll(. Haii~il- 

t,oniall of tllc syst,oill is 

Since ( H ~ ,  L\ L,, s2, S,) form R coml)l(:te srt of dyllilirii~al vilri;~I)les, 
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as  712, = i $. Hence 
A E  = ~ , E H  

Positro~iiurri is a hytlrogcii-like systern corisistirig of a ~)osit,roll iilltl an  
electron. Coiisider posit,roniurrl in its grollritl st,at,c (I = 0 ) .  Tllc Hixmil- 
toriian H ciiri btr writ,t,eri: N = Ho + Hs + H m ,  whc:rc Ifo is t,lic ~lsual 
s~)iri-intlt:~)c:rl(lf:rrt part, duc t,o tho Coillonil) forc:es, = As, . s, is the: pa.rt 
due to  tlic irit,criic:t,ioii of the: s~)iris of tlic positron iiritl t,lio c:lf:c:trori, i~rid 
Hr3 = -(,up + p,) . B is thc part tlric: t,o thc int,t:riict,iori wit,li a.11 r:xtcriially 
applictl riiiigrlt:tic fieltl B. 

( i ~ )  111 tho B.~)s(:IIc(: ~f a.11 cxtcrrl;l.lly i~l)pli(:tl fioltl w1i;l.t c:lioit:c: of spin 
~ 1 1 d  iiligulii~ I I I O I I ~ C : I ~ ~ U I I ~  eig~ilhlli(:tioiis is I I ~ O S ~  (:o~iv(:~ii(:~lt'! C:iiI(:\~liit,t: the 
energy shifts for each of these states diic. t.o Hs. 

(b) A very weak magnetic field is a.pplic:tl ( £ 1 1 3  << I$,?). Whk1.t arc: the 
allowed energies for this system ill this (:;is(:'! 

(c) Now suppose the applied riiagiic:t,ic: fic:l(l is itic:rc:i~sc~tl slic:ll t(1it1.t HFj >> 
Hs.  What  kind of cigeufilrrctions arc riow rnost i~,l)l)rol)rii~.t,c'? Wl1i1.t ;ire: the 
cricrgy si~ifts for ci~.cli of' t,licrse st,;~.tc:s drlt: t,o Hlj'! 

((1) Intlicat,c how yo i~  woultl solvt: this prol)l(~iii for tlitr c,iic:rgic:s il.ricl the 
corrtrsl,ontliiig c:igc:iifiirit.t,ions ill thc: ~ ( ' I I ( I T ~ L L  (:iisf:; liow(:v(~, (10 ilot try to  
(:arry o i ~ t  th(: a lgcl~r t~ uril(:ss yoti 1i;ivc ~lotl i ir~g l)c:tt,c,r to (lo. No lor~g essays, 
plcaso. 

(Bcrk:eley) 

Solut ion:  

(a) In the abscnst, of tlic rxtrrrlal fielcl B take H,  as pt~rtiirl)i~tiori. The 
total s p ~ n  of the system is S = s, + s, and so 

It is most convenient to choose the eigenfunctions in the form ( I T ~ S S , ) .  
The  ground state 1 = 0 consists of four states S = 1, S, = 0,  f 1; S = 

0, S, = 0. For 1 = 0, S = 1, as 

wc: have 
Ah2 

E, = ( l ~ n , l S , ~ H , ( l n ~ l S , )  = ---, (S, = 0,  i l )  , 
4 

which is the energy shift for the triplet state. For 1 = 0, S = 0,  as 

I Ire energy shifts is -- Ah2. 

(b) The extcrrial field B is switched on, but a.s HD << HS we can consider 
llre effect of thc r:xternal field as a perturbation (H = (No + N,) + HE) .  
I';l.king ll7nSSZ) as  tht: state vect,or arld the direction of B ;is the z direction, 

I ~ , . . ,  we havc B = Be,, 

e B  
H N  = ( ~ 1 ,  f pf:) . B = -- 71bC ( s c z  - irIz) , 

,lid (cf. P r o b l e m  5066 (b ) )  

Hencc (I,rnSS, (HrI(lrnSS,j  = 0 a.nd the rriergy levels do rrot cl~aiige 
111rt~her for first order pc:rturl)ation, in addit,ion to  the splitting into singlet 
. ~ ~ l t l  triplet states described in (a,). 

As orlly the following matrix elemrnts are norlxero: 

1 1 1 1 .  energy levels from second order perturbiition are, for 10000) : 

As, . s,llrnlS,) = - l(1 +- 1) - - li"l7nlSZ) , 
2 A [ 2 31 
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for 10011) and 1001, -1): 

for 10010): 

( c )  AS I ~ O W  Ho >> H y ,  wc (:it11 iicgl(:(:t th(\ If,? t c r i~ i  i ~ ~ i d  (:011si(l(\r only 
a pert11rl)ation c:oilsistirlg of HB = (a,, - ;,,). It  is tli(:i~ (:o~iv(,~li(~~lt to Tnc 
c:lioosc Jl,rrrs,,sp,) iLs the cigenfimctions. Tliori for stat,cs ll,rrr, & k i )  , we 2 , -  2 
have 

aiict tlic c:orrcspolltliiig ciiorgy sliifts arc: zcLro. R)r st,;tt,c.s l/,rrr, :ki, t4), we 
havc 

and 11~1i(:c t,lle eliargy shifts * -. 
(d) In the gc11~r;tl (:as(:, titkc: Ilm,SS,) ;ts t,hc st,:tt,c: vcc:tor ant1 N' - E l s  + 

H B  as the perturbation Harniltonian. Tlicn treat tlic pro1)lcrri llsilig the 
perturbation method for degenerate states, i.e., solvc t11c sc:r~ilitr (:(~II .  t .  

CL ion 
det / H A ,  - E6,,1 = 0 to find the energy corrections and thc c:orrcsponcling 
wave functions. 

~qnoreti for this pro1)lern). The z corri~)o~ient of the atomic total angular 
tr~omentum is J,. By how much does the energy of this atomic stmate change 
il. a weak ~llagriet~ic field of strc~igth B is ailplied in t,he z direction? Assume 
(.hat the interact.ion with the fic:l(l is small comparrd with the fine structure 
illteraction. 

The answer should hc given ;LS ; L I ~  explicit expression in terms of t,he 
(lllantiurrl n1i11il)c:rs .I, L, S, .I, i~rid n~tllri t l  corlstants. 

(Princeton) 

Solution: 

The H;~niiltoni;rri ;~ild c i g ~ ~ i f i ~ ~ l ~ t i o ~ i s  before the iritroduct,ion of magnetic 
lield arc as follows: 

where t,llc: s,ll)s(:riI)ts of r., 1,  2 ,  . . . , T I , ,  r(:pr(:scrlt t , h ~  different electrons in 

(,lie atorli, ; ~ ~ i ( t  q!),sC,JI\/[,l is the c:orriiliori cigcristatc of (L', s2, J 2 ,  J,), i.e, 

(LMLS, hlJ -- Mr,l. lM~,) being Cle1)sch-Gorctall c:ocfficicnts. The corre- 

:;[)ondirlg ulipcrtur1)ctl energy is ET1s~ J 

Aftcr switc:llirig oil tali(: wcak niagnotic field, tlic. Hamilt,onian hecornes 

As B is very small, we can still consider (L', s2, J', J,) as conserved 
,l~lant,itics arid takc the wave functiori of the systel~l as approximately 
i/.,,LJM,. Tlic energy change caused by the term & J, is aE1 = M J ~  
;l.s J, has oigcnvaluc M J 6 .  The matrix of & S, is diagonal in the sub- 
:space of the 2.J+ 1 strate vectors for the cncrgy E T L ~  J ,  arld hence the energy 
(.liange causcd by it is 
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where 

The total rnc.rgy change is tlren 

The tlcutcrolr is a, 1)o~ncl stat,(: of a prot,oll i~11(1 i L  11(!11tro11. Tlir Hi~111il- 
toriia.11 irr the center of rnass systc111 has t,llc: for111 

Hrrc x = x,, - x,, r = 1x1, a, i~11(1 a,, iL1.c: th(: Pi1.11li illt~tri(:(~s for the 
spills of ttic proto11 :LII(I 11(~11troli, 11, is tli(: r(!(11~:(:(1 ~ I I ~ I S S ,  : I I I ( ~  is (~o11j11g:~te 
to x. 

( i ~ )  Th(: t,ot;~I il.l~g~ll<ir 1110111(:llt1llil J2 = .J(.J -t 1) il.ll(l ~ ) : ~ ~ i t , y  ill.(: good 
( ~ l l i ~ ~ l t l l ~ l l  11111111)(-rs. S ~ ( I W  t1i;~t if v3 -- 0, t l i ~  tOi,i~l orl~it~al ~ I I I ~ I I ~ ~ I ~  ino11i(:n- 

turn L2 = L(L 3- l),  totill spill S2 -- S ( S  + 1)  a.lic1 S = 4 a,, -t a,, i11-c: good 
qua.lituin nuin1)c~rs. Show t,hitt If v3 # 0, S is still a, gootl cllla,i~tl~n~ nuli~l)c?r. 
(It riiay help to c:olisidcr i~it,c,rc:ha.rigo of ~)roi,oii irlid ric>~ltroll spills.) 

(b) The deutcron 1ia.s .I = 1 arid positivc parity. What arc: t , l ~  possible 
values of L? What is the value of S? 

(c) Assume that V3 can be treat,ed as a small pert~irl)a.tion. Show t,hat in 
zeroth order (i.e. V3 = 0) the wave funct,ion of t,hc statc with .Iz = +1 is of 
t,he form $o(r)la, a)  where la, a )  is the spin state with s,, = s,,, = +1/2. 
What is the differential equation sat,isfied by &(r)'! 

(d) What is the first order shift in energy duc t,o the tcrll~ in v3? Su~)pose 
that to first order the wave furictiori is 

where (0) is a state with S, = -112 and lLo is as defined in part (c). By 
,:c:lecting out the part of the Schrodinger equation that is first order in V3 
.)lid proport,ional to 1 0 ,  cr) find the differential equation st,atisfied by ql(x). 
:;(:parate out t,he angular dependence of gl (x) and write down a differential 
{~ lua t ion  for its radial dependence. 

( M I T I  

Solution: 

(a) Usc units such that h = 1. First consider th(: case where V3 = 0. As 

I\,(, havc 

[L" ,p = 0 ,  

[L2, VI + (a,  , ~ , , ) V J ]  = [L" Vl] + (a,  , a,,) [L" VJ] 

= 0 + (a,  . a,,) . 0 = 0 ,  

I'l~us L2 is a good cluantum nulnbrr. Now corisidcr the total spin s2. AS 

wc: havc 
1 [s2, up . urL] = - [ap . C l L ,  f l y .  ~ 7 x 1  = 0 , 
2 

Hence [S2, Hv,=o] = 0 and S2 is also a good quantum number. 
If V3 # 0, we have t,o consider also 
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As up + un = 2 ( ~ ,  + sTL)  = 2s and 

using the formula 

the above l)ecomes 

Then as 

we have 

and so 

[ s2 ,N]  = 0 ,  [S, HI - 0 .  

I-Icncc S is st,ill a good qu;~rlt~rrn il1111il)(~r if v< # 0. 

(1)) Thc: piirit,y of tthc doutcrorr nuc:l(:us is 

Sirlcc the  parity is positive, L =cvcrl. Then r ~ s  S (:a11 orlly 1)c 0 or 1 and 
J = 1, we must have S equal to 1 and L equal t,o 0 or 2. 

(c) In  zeroth order perturbation V3 = 0, L,  S are good q~~;tritulrl rlum- 
hers. 

For the lowest state,  L = 0 and so L, = 0. The11 for the: stcite .I, = 

L , + S ,  = 1, S, = 1 and hence S = 1, s,, = +$ ,  s . ~ ,  = ++. Because 
L = 0, the spatial wave function is spherically symmetric i.e., ,dlo = &(r) .  
Thus the wave functio~l of state J,  = 1 is $ Q ( T ) ,  and 

x $0 (7.) I (1 ,  ( Y )  + v2 (r),$o ( r )  1 ( Y ,  (Y) 

Herlc,c> the, tliftk~rc~ritial cyuatioll sxtisfictl by is 

For L f 0, t,licr wavc: filnc:tiolls of st,at,c:s with .Jz = 1 (10 iiot liavc the  
.~l)ove forrn. 

(d) 111 first, ortlcr al)l)l-oxil~l;~t,iolll writc t,ht: I-Itiirliltolliarl of the system 

where 

'rlld t h r  wave fun( tlou as 
4 = $0la, c y ) .  

The  crlcrgy c~orrcc.tlo11 is give11 by 

al-3 = (~blH1l*) 

X cos 9 sir1 B e L p  
a. - = n,siriQcoscp +nys inQs incp+r r , cos9  = 

r  sill Belp - cos 9 

x ( cos0 s i ~ i O c - ' ~ )  ( A )  
( a l u .  - I C Y )  = ( 1  0 )  = COSQ, 

r  sin Qelp cos Q 
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we have 

Perturbatton Theory 

1 1 
(a,  a (up - F) (un 3) - 5 up cr,. la, (2) = cosZ 8 - - 

3 ' 
and hence 

Notc that  as S is conscrvc:d aild L is not, tlic: WiLV(: filli(:tioll is i i  super- 
positiori of thc spill-triplet stat,cs (S -- 1): 

$44 = $o(r)l(t, a )  + ,djl ( X ) I ( X ,  (4 + ,d12(x) (l(2, /j) 

+ IP, a ) )  + d ~ a ( ~ ) / / j ,  Ijj) , 

arltl 

Ilc', = (Ho + Fl1)o', = (E -t E(') + . . . )1/1 . 

Thcrvforc, in first ordcr :~1)1)roxi1li:~tio11, ~ ~ i : ~ k i ~ i j :  llsc of 

:111d 

f lO. ( i l~I (~ ,  (2) = E1/10 1 %  0) , 
we obtain 

Ho [$I la, a )  + 42(1a, 0) + la, a ) )  + $3IP,101)1 + fI1.C~ol(t, (Y) 

= E[.IClll% a )  + .IClz(la, P) + 1/37 a ) )  + *31PI f l ) ]  . 

To calculate the perturbation term H'$ola, a) :  

cos e cos e 
* [ (  + ) ,  ( ) , - i cxo)] 

(si:ie:u) = cOs 8 (i) + sin Beiu ( ) 
= (2 cos B + 0 sin eeZp , 

By collsideriilg thc: terms in the above equation that  are proportional 
I,o / a ,  a ) ,  wc call ol)tain the equation for the wave function ,$l(x): 

Writing $1 (x) = Rl (r)@1(8, P), wc: car1 ot)tairl from the  above 

;tnd thus L ~ @ ~  = 2(2 + 1 ) f i ' ~ ~ ~ .  The  t:cluntiori for Rl is 

Here, it should be noted, even though the norlnalization factor of @1 

will affect the normalization factor of R l ,  their product will remain the 
:iiLme. I t  is noted also that  ql(x) correspoilds to  L = 2, L, = 0. By 
(.onsidering the  term in H'$olaa) that  is proportional to  10, P), we see that  
r/13(x) corresponds to  L = 2, L, = 2. Then from the give11 J,  = 1, we can 
:;c:e that  $Z(x) corresponds to  L  = 2, L,  = 1 (note that  J ,  is also conserved 
il' V3 # 0). In other words, the existence of V3 requires the ground state of 
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deuteron to  be a cornl)i~~ation of the L = 0 txnd L = 2 statcs, so t,hat J = 1, 
S - 1, .Iz = 1 and parity = positive. 

Considcr the bourid sta.tes of a systcr~l of two riorl-itlcrltic:al, ~ l o ~ ~ r c l a -  
tivistic, spiri orrt,-half p:irticl(:s i~iteracting via a s ~ ) i i ~ - i i l d ( ~ ~ ) c ~ ~ ( I ( ~ ~ l t  c:c,~~tral 
potentia.1. Foc~is  ill pal.t,icr~la.r on  tlir "2 iilid ' P I  l(:v(:ls ("P2: s ~ ) i i ~ - t r i ~ ) l c t ,  

L = 1, J = 2; '1'1 : spiri-siiiglct, L = 1, J = 1). A t,c:nsor for(:(: tc.rm 
H' = X[3u(l)  . r a ( 2 )  . i. - u ( 1 )  . a ( 2 ) ]  is acl(ltv1 to thc H;irr i i l t ,o~~ia~~ as  a 
~ ) r r t u r l ~ a t i o i ~ ,  whcre X is a cor~starit,, i- is :L 1111it ve(:t,or ii1011g thc: 1i11c: joi~iing 
t > h ~  two ~)iwti(:lcs, ~ ( 1 )  i l l~d ~ ( 2 )  :ire t h ~  rii111i spill ~ p ( \ ~ i i t , o r ~  for ~)iirti(.les 
1 i i~ ld  2. 

(a) Using t h r  fact that  H' co~nrnutcs wit,h all c:orrll)o~~or~t,s of tl~c, total 
angular mornentum, show that the  pcrtur1)c~l cricirgic:~ iiro i11(1(:11(:11(1(:11t of 
m, t he  eigenvalues of J,. 

(b) Thc  energy is most easily cva1uatc:d for t,hc triplet st,;~tc: wlic:~~ the 
eigenvalue of J ,  takes on  its nl:lxirn~lnl valnr ,rrr. = .j = 2. Fi11t1 tho 1)ort11r- 
bation energy AE("P2). 

(c) Fincl AE( '  P L ) .  

(1'1-ir1c.cton) 

Solution: 

(a) Use 1111its for whicll It = 1. As S = ? [ u ( l )  t a ( 2 ) ] ,  t,lrc, ~)c:rt,~~rl);lt,ion 
2 

Ha,miltoriiar~ HI can 1)e writtc.11 a s  

where we have also used the relation 

To prove t,hilt H' c:orlilnutcs with all components of the total allgular 
~norner~t,um J, wc show ti)r exaniplc [J,, HI] = 0. As [S,, s2] = 0, [L,, s2] = 

0 ,  we 1ia.v~: [.I,, S" = 0. Also, as [S,, S,] = ihS,, ctc, L, = - i f i d ,  we have a'p 

= [S,  , sin 0 c:os pS,, + sin 0 sir1 pS, + cos HS,] 

t [L, , sill 0 cos cpS, + sir1 19 sin pS!, + cos OS,] 

= ill, sill O cos pS!, - ill, sir1 0 sir1 pS, 

0 .  
- ill, 0~ (SIII C) c:os pS,, + sin 0 sin pS, + cos OS,) 

C o r r ~ l ) i ~ ~ i ~ ~ g  tali(: ;~l)ovc: rcslllt,~, wr havc [,I,, HI] = 0 
Similarly wc: c:a.il show 

I(, follows t,lr;it .J+ = .I, + i.J, also (.orlillir~t~s with HI. J+ ha.s thc property 

where n is a constant. Suppose thero :ire two un1)crturbcd stntrs 

19, m ~ )  and  Ij;rnl2), whcre = 7rtl + 1 , 

which arc  dcg~ l l c r ;~ t t  ant1 whose encrgirs to  first orcicr perturbation are El 
~ n d  E2 rcs~)t:~t,ively. Then 

(9, ,rn,2 ([.J-k, Ho + HI] lj, m l )  

= (j, ,m2ItJ+(Ho + H1)Ij, 1n1) - ( j ,  m2I(Ho + HI) J+ I j ,  m l )  

= ( E l  -E2)( j ,m2IJ+IJ ,ml)  

= a ( E l  - E2)  = 0 



Prob1e.m~ and Solutions on &vant?m Mechanics Pertwrbation Theory 423 

(Ho + H1)l j, 'rnl) = El 13, m.1) , 

(Ho + H1) . l+l j ,  7n)l) = (Ho + H1)alj ,  7n2) 

= j ,  1 1 ~ 2 )  = E2.J+l j, 711.~) 

Since the rnatrix cl(:rnerlt (L # 0, El = E2, i.c:., the ~)crtlirl)atiori c:rlc?rgies 
are indeperitlerit of m.  

(1)) The ~)erturbatioli cncrgy is 

(c) For the statte 'PI, as S = 0, r r l ,  = 0 ant1 so N' = 0, wc have 
AE('P1) = 0. 

A hydrogen atom is initially in its absolute grourid state, thc, F = 0 
state of the hyperfine structure. ( F  is the sum of the proton spin I, the 
electron spin s and the orbital angular momentuiri L.) Thc F = 0 state is 
split from the F = 1 state by a srnall energy difference A E .  

A weak, tinie-dependent magnetic field is applied. It  is oriented in the 
z direction and 1la.s the form B, = 0, t < 0, B, = Bo cxp(-yt), t > 0. Here 

Bo and y are constants. 

(a) Calclilatc th(: proba~bility that in the far future when the field dies 
away, the atom will be left in tlie F = 1 state of the hyperfine structure. 

(b) Explain why, in solving this problem, you may neglect the interaction 
of the proton with the magnetic field. 

(Pr ime t on) 

Solution: 

(a) When coiisitlcring the hyperfirie structnn: of the hydrogen atom, we 
write the Hainiltonian of the systcm as 

H = HO + f (r )u ,  . a,, 

where No is tlie Harrliltonian usntl for corlsitlcrirlg tlic firic strlicture of the 
Iiydrogen ;%torn, f ( r )up  . a, is the cricrgy correctiorl clue to the hyperfine 
structure, a,, arid a, 1)cirig tlic Pauli spin matriccs for t h ~  prot,on and 
cdectron resl)f!ctivcly. 

1 Whcii t,hc atom is in its al~solute groliritl statc wit11 L = 0, j = s = 5 ,  the 
l~yperfiric structure statcs with F = 0 arltl F = 1 respc:c:tivcly correspond 
1.0 spin parallel a.nd spin anti~)arallcl statcs of tlit: proton and electron. 

The initial wave function of the syst,crn is 

1 0  I,etting tr, /3 rcpreserit the sl)irlors ( o ) ,  wc have the spin wave function 

which nlakes ,IC, a.ntisymmetric. When t > 0, a weak magnetic field B, = 

I l oe -Y t  acts on the system and the Ha~rliltonian becomcs 

~~t!glecting any interaction between the magnetic field and the proton. 
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Sllpl~osc the wave furiction of the system a t  t > 0 is 

li/(r, F, t ,  = R~o(r)Yoo[Cl(t)@~o + C2(t)@ll + C1(t)@10 + Cl(t)6))1, 

where 

Then the pro1)ability that tlie systern is a t  hiypcrfinc! structlirc 
F = 1 a t  tirrie t is 

A(2) = 1 - (el (t)I2 , 
and the initial co~iditions are 

we have 

= - 3(300, 

and similarly 

up . or.017,, = @lrn . 

Finally, frorn the SchrGdinger equation ih ,g  = H G  wc, obtain 

-11 , 

state 
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Comparing the coeffic:ie~it of Ooo arid of Olo on the two sides of the  
8 . 1  illation, wc gt:t 

c l ( t )  = [Elo - 3 f ((,,o)] Cl( t )  + ~ 3 ( t ) p o ~ o c - ' ~  I 

C:{(t) = [Elo + f (no)] C3(t) + cl ( t )~ ,oBoe- '~  . 

As tlic encrgy of t,hc hypcrfinc st,ructure, f ( a o ) ,  is much srnallcr than 
/*: lo,  energy of the fine strllc:turc, it car1 be neglected when calculati~lg Cl  ( t ) .  
I'11c:ri the a l~ovc cquatioris givc 

\ \ l~ ich  is tho l)rol);ll,ilit,y that t,lic liydrogrn a,t,orri st,;rys iri state F -- 1. 
(b) Tlic: ilit,(:1.:~c:tio11 t)(>tw~c:~i tht: iiiagrit:ti(: nloni~lit  of the  roton on and 

I IN! rnsgrict,ic ficld call bc ~ic:glcc:t,ctl bccalist: the  iliagr~ctic rliomerlt~ of tlic 
~,t-oton is olily & of tlw 1nag11c:tic riioiiieiit of the electron. 

A s1)iiiloss noiirelativist,ic particle iri a cent,ral field is prepared in a n  
:; state, whicli is degenerate in energy with a p-level (me = 0, &I) .  At t,ime 
I : 0 an  c:lec:tric field E = Eo sin wtz is t,urned on. Ignoring t,he possibility of 

I I-i~nsitions t,o ot,h<:r t,han tlie above-mentioned states but making no further 
.~l)proxiniatioris, cal(:ulate tlit: occupation probability for each of the four 
:,tii,tes a t  tirne t ,  in t,erms of the nonzero mat,rix elements of z. 

( L/.iscon,sin) 

Solution: 

Choose the four given states as  the state vectors and the level of energy 
~ i c h  that the  degenerate cncrgy E - 0. T h e  Hanliltonia~i of the  system is 

A A 

H = & + H' ,  H ' =  - g E . r  = -gEossinwt .  
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To find the perturbation energy matrix onr notes that only elements 
(1 + 1, r n ~  ( z  ( I ,  ~ n , )  are non-vanishing. Thus we have 

H' = 0 (-gEo(00/z)10) sinwt) 

( 1  - 1  0 0 I 0 0 I 
Suppose the wave fi~nt:tioll is 4) = (:xI, :ca, 1x3 ,  : I :~) ,  ant1 iriit;ii~lly $(t = 

0) = (1, 0, 0, 0),  wherc :/XI, :I:.L, z:r, :1:4 arc thc: four stat,(: vc:c:tors. Thc 
Schriidirlger eqwttion .if], * ,Ji = H$ ~ 1 . n  thcrl 1~ writtoll ;r.s 

d t 

where X - gEo(001z(10) is a real 11rim1)t.r. 
Equation (2) and the initial colitlitiorl give, 

which means that the prol)al)ility t h i~ t  the systr:ril oc:c:~il)ic:s the s t i~tcs  mr = 

f 1 of the p-level is zc:ro. To solve E(l. ( I ) ,  wc first diagor1;~lize the matrix 
by solving the sec,~ilar crlrl ;L t '  1011 

which gives X = f l .  Hence the first two components of ,I) are to bc trans- 
formed to 

Then Eq. (1) becomes 

111)ject to the initial condition 

Solving the equation ure find 

i X 

(1 - coswt) 

To get back t,o the original state vectors, 

Therf,forc, tlic occ:upation probability for cac:h of the four states a t  tirne 
I IS 

P,(t) =  XI(^ = cos (1 - cos wt) I 
P,(,, ,o) ( t)  = 1x2 - sin (1 - cos wt) I 

tvl~cre (OO(z(10) is to be calculated using wave functions ~,lf i ,(6, V) for a 
I,.\rticle in a central field and is a real number. 

5065 

An ion of a certain atom has L = 1 and S = 0 when it is in free space. 
' I ' l~e  ion is implanted in a crystalline solid (at x = y = z = 0) and sees 
. I  local environment of 4 point charges as shown in the Fig. 5.19. One 
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can show by applying the Wigner-Eck~rt t,heorem (DON'T TRY) that thc 
effective perturbat,ion to tlic Hamiltoninn caused by this environment car1 
he written as 

(1 2 
HI = , ( L ,  - L ; ) ,  li, - 

where L, and L ,  are the :L a ~ i d  ?J c:orrlporlcrits of thc orbital ;inglilar rno- 

mentl~rn operator, and a is n constailt,. Irl adtlitioii, ;L rli;igrlc:t,ic field is 

applied in the z direction and causes a. fiirt,lic~r ~)crt,urk)atioll Hz = L,, 
where L,  is the z componcnt of the angular rnorric:rlt~irr~ opcrat,or arid P is 
a const,ar~t. 

(a) Express t,he perturl~ation H;~rniltioriiaii H' = Ifl -t F12 iri terms 
of L+ arid L-, t,hc "raisirrg" and "lowc?rirlg" operators for orbital ;irigular 
rriorncritl~rn. 

(t)) Firrd the matrix of the pcrturk);\.tiorr I-Ianiiltoriixil in t,hc basis set 
using the three states ( 1 ,  O ) ,  ( 1 , l )  arltl ( 1 ,  -1). 

(c) Find the cnergy levels of t,hc ion as a fiirictio~l o f  B. Make :i careful 
sketch of your result,. 

(d) When B = 0, what are the eigenfunctions descrit)irig the ior~'! 

( M I T )  

Solution: 

(a) From the definitions L* = L, f iL,, we get 

[L+, L-] = -2i[L,, L,] = 2hLz , 
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'Thus the pertrir1)ation Harniltonian is 

(11) Usirig t,he formula 

ii I, lind the followirig iioii-variishing elements 

L ~ I I , ~ )  = JZ12~- (1 ,0 )  

= 2h2\1, - I ) ,  

(c) Thc: ~)c:rtlirt)at,iori energy E is determined by the matrix equation 

a ion wliose secular cqu t,' 

P B - E  0 a 

0  -E 0  

Q 0  - P B - E  
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gives the corrections 

El = - d m ,  
E2 =O , 

E3 = J ' .  
The perturbation encrgy levels arc shown i r ~  Fig. 5.20 as fiinctions of B ,  
where the dashed liries are the asymptotes. 

(d) If B = 0 ,  the energy levels arc 

El = - a ,  E L , = ( ) ,  E : % = ( y ,  

and the eigcnstatcs are given, respectively, by 

Thus the corresponding energy eigenstates are 

In terins of the state vcctors 11, l ) ,  11, O), / 1, - 1) the wave fi~nctions are 

5066 

The spill-t1ol)c:ritlcrlt part of the effective Hixiililt,oniarl for a positro~liu~n 
i I,oilnd stilt(' o f  (:l(:ct,ro~~ a11t1 positron) ill a illixgiieti(: field B Inny t)e written 

1 ,  

Hspin = An, . + j ~ ~ j B ( o , , z  - opz)  

1: I~cnre u, iii~d up arc> t,li(: Palili spir1 ~n;ttri(:es for the electron and the. 
I 11  ~sitron, ni~tl ~ L L I  is tlie Bohr illiig11~t011. 

(a) At zcro inngnctic: fipltl thc singlet state lies 8 x 1 0 ~ "  eV below the 
r I iplet statre. What  is the value of A? 

(b) Illust,rat,e by a sketch the dependence of the energy of each of the 
I( )lLr spin st,at,es 011 the magnetic,field B, including both the weak and strong 
I1(.1(1 cases. 

(c) If thc positronii~rri atom is in its lowest energy state in a st,roilg 
t l~;~gnetic field and the field is instantarleously switched off, what is t,he 
I blobability of finding the atom in the singlet state? 

(d) How woulcl t,he result of (c) be changed if the field is switchetl off 
\,!,l-y slowly'!' 

( Wisconsin) 

Sc blution: 

(a) When B = 0,  the effective Hamiltonian has the expectation value 

(Hspin) = A(F1mkIu, . f f p l F 7 n ~ )  , 

\ \  I~cbre F = s, + s,. 
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As 
2 

CT, . up = - ( F ~  - S 2  - 
h2 s;) 1 

E  - (Hspin) = 2A[F(F + 1 )  - S , ( S ,  + 1 )  - sp(sp + 1 ) ]  6F,F - 6.,, ,,, . 
For the triplet statc, F  =- 1 ,  so EF=l = 2,4 (1 . 2 - & . 

- I . 1) = A, 
2 2  2 3  For the singlct state, F  = 0, so EF=O = -311. 

Hence, EE.=I - EE=O = 4A = 8 x 1OP4eV, givi~lg A  = 2 x 10-"V. 

(b) We first transform frorn re~~rescntation ir i  c:oupling st,at(; vectors t ,  
that in non-coupling stat,c vectors: 

Then as pB B - upz  = ~j & (.%Z - S p z )  illlCl 

. I  I ( (1 using the results of (a), we have in the order of 11, I ) ,  11, - I ) ,  11, O), 

lPI,O), 
A 0  0  0 

O A  0 

I I I I ~ I ~  gives t lit, sI)lri-cwc.rgy cigcnvali~cs 

El - E 2 - A ,  

0 A E  0  0 

0  O A - E  2pBB 

0 0  2pnB 3 A  - E  

El = - A - 2 J A ~  + i,,i B' . 

The vi~rii~t.io11 of E with B is show11 in Fig. 5.21. If the inagnctic field 
1 ;  is weak wc c:;r.n c:o~isider t l ~ e  tern1 p ~ B ( u , z  - up,) as perturbation. The 
l.llc3rgy corrc?ction is xcro in first order perturbat,ion and is proportional t o  
I : , !  in secorid ortl(:r 1,crturb,ztio1i. When the rnagnet,ic field B is very strong, 
I I I ~ ,  energy t:orrcc:tion is linear in B. 

- 0  

Fig. 5.21 
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(c) When the positroniurrl is placed in a strong magnctic field (pBB ,.# 
A), the lowest energy state, i.e., the eigenstate whose energy is approxi 
mately -A - 2 p u B ,  is 

where we havc c:onsitlered Aa, . a, as perturbation. If the rllagr~etic fiel(l 
is switched o f  suddenly, t t ~ c  probability that thc: atom is in state ( F  - 
0, mt: = 0) is 

(d) If tlie magnetic fit.1~1 is switched oft' vory slowly, IIO t r i l ~ ~ s i t i o ~ l  occurs 

and the  atom will remain in the statc / 4, - i, i), n ~ ~ d  tho c:nc:rgy of tt10 
system is E = -A. 

Posith-onium colisists of iin r:l(:ctron i~lld i L  ~)ositron 1)oinid 1)y their 
Coulomb att,raction. 

(a) What is thc: radius of thc ground statc'! The  l)il~ding c1lc:rgy of then 
grolind stsat(:'! 

(11) Tllc singlot ant1 t,riplct g r o u ~ ~ d  states arc split hy their spin-spill 
interactior~ suc l~  that the siliglct statc lies about lop" volts bclow the triplet. 
statc. Explain the behavior of positronium in a rnagnotic fic:ld. Draw all 
energy level tliagrain to illustratc any cleperitlencc o ~ i  tho nlaglictic field. 

(Berkeley) 

Solution: 

(a) The hydrogen atorn has ground state radius ant1 1)intling cnergy 

where P = ~n,m,/(m, + m,), the Coulomb p o t c ~ ~ t i a l  V(r) = p c 2 / / r l  - r2/ 
having been used. 

I'le results rnay bc i~pplied to any hydrogen-like aton1 of nuclear charge 
g \r r t  h the replacements 

r , ,  , 1 , r 2  being thc niass of the ~inclcus and that of t,he orbiting; electron. For 
1,' 8 I I l-oniurn, p' = 7, Z = 1, and so 

1 
Ei =p'c4//21~," plE1/p = -El 2 z 6.8 e v .  

( 1 1 )  Choose: 10, 0 ,  S ,  S,) ;LS t,hc: c:igc:ilstatc: and takc as  the ~cr turbat , ion 

"' 'icV. Using t,hc: rc:sult,s o f  P r o b l e m  5066 wcr havc: the , I A = 
,L 

I 8 r  I I ~~rbat ior i  energy rilatrix 

1 1  , ) I I I  which we fiiid tflc perturbation energies 

'I'he dependence of the energy levels on I3 is shown in Fig. 5.22. 
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The result shows that t,he energy levels of the hyperfine structure i~ 
further split in thc presence of a weak nlagnet,ic field, wliclreas the hyperfill11 

structure is destroyed in the prcsence of a strong maglletic ficld. Thescl 
limit,ing sitliatio~ls have been tliscusscd in Problern 5059. 

Fig. 5.22 

Estimate the magnetic susc:cptil)ility of a Ho ;~ t ,o~ l l  iil it,s gl-o111ld stat,(\. 
Is it par:ima.glletic: or diamagrlc\tic:'! 

( Chicago) 

Solution: 

S111q)ose the: He at0111 is in cxtcrrlal 1lliifo1.111 irl;~grl(:t,i(: fi(:l(l H = Hi.: 
( H  1)c:irig a c:oiistaiit,). Tlic vector po t~ l i t i i~ l  A,  (i(:fill(:(l \)y H = V x A, C ~ L I I  

be takrii to  be A = $ H(--!,Ex + ~ 6 , ) .  Tlic H:trnilt~orli;iil of tllc: syst,em is 
t lien 

As t,he helium at,orn is in the ground state, p.1 = 0. Thnrs 

where rn and e are respectively the mass and chargc of an  electron. 
\ 
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a2 E 
I'lle magnetic susceptibility is given by x = - 4 ~  ) H = o .  For helium 

~ I I I  in its ground state, 

i)" 
= - 4 n  (NP groriritl stat(, ~ ~ I I H E  grouncl state) 

ONL 

.s 1 I , . I . ~  ,rkeg,,s, is t,lle Iileilli-Sijuare distance of each electron from the He 
1 1 1 1 1  I ( ' U S  irl the ground state, whic:h gives 

I I I  ( :;lussian urlits. Note tht~t,  as x < 0, helirlrn atom in its gro~lnd st,ate is 
8I1.111iagnetic. 

5069 

An at0111 wit,li no permanent magnet,ic moment is said to  be diamagnetic. 
1 1 1  Illis problenl the  object is to  calculate t,he induced diamagrletic moment 
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for a hydrogen at,om in a weak rriagnctic ficld B ignoring the: spins of t,lvk 
electron and proton. 

(a) Write down thc no~lrelativist~ic Hn~niltonian for a ~):trticlc of mass 711, 

and charge q in a conit)ii~cd vcctor and sc:;tlar elec:t,ronl;~gnctic ficld. 

(b) Using the fact t,hat a satisfactory vc:ct,or pot,c:litial A for a unifor111 
magnetic: field is A = - +  r x B, write down t,lic: stc:ady-stat.e S(:hriidingor 
cquatiorl for thc: hydrogen atom. A s s ~ ~ ~ n c  thc pl.oton t,o l)c infinit(:ly massivo 
so ceiit,er of mass nlotiorl can be igrlorcd. 

(c) T ~ c H ~  the tcrlris :\rising fro111 the, ~n;~gr~et,ic: fic:ld as a l)c:rturbatio~~ 
arld c;ll(:ulilt8c! thc shift ill tlir: grountl sti~t~c: ctiic,rgy tluc: t,o thc: existence ol' 

t,he maglietic field. 
((1) C;tl(:nlate tlit! i11cluc:c:d di:~l~ii~gn(:ti(: ~ n o r l i ( ~ i ~ t  1)cr at ,on~. 

(MI7 ' )  

Solu t ion :  

(a) A part,icle of rnass ,In a11d chi~rg(' q ill iLll ('l(:(.t,roli~i~gll(:ti~ field of 
poterltials (4, A )  has Hamiltoniall 

(1)) If t,hc r i~ot io~l  of t,hc: proton is ~~c'gloc:t,c:tl, t,llc: S(,llriitli~~gc:r cquatioi~ 
for a 11ydroge11 atoll1 in :L u~~iforlrl  ~lli~gl~(:t.i(. fi(:l(l B is 

where (1 = -c  for all c.1cctro11, or 

I l#,,.;luse B is uniform and V x r = 0, we havc 

I .,Icing the direct,ion of thc uniform rnagnetic field B as t , l ~  z direction, we 
I I . , w :  B = Be,,  B . L = BL, = i h B  & dip and 

(B x r)' = (-By&, + B r & y ) 2  = B' (r2 + y2) :. ~ 2 ~ 2  sin' 6 

I I I :;l)l~erical coordinates. 

The  Schriitlir~gc'r ocluation can then be  writtell as 

h," ( . "  3 e B 2  +- r2 sin2 8 )  $ ( r  8 ,  p) 
2 ~ 1 1 , ~  T 2n1,c 3cp 8rrr,c2 

I . : I  perturl);~tio~l.  Thn c:llargy shift of t,hc: groulitl s ta tc  is 

Note that  for the ground state,  1 = 0,  7n,l = 0, and tlie first term of H' 
111,lltes no contribution to  DE.  
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(d) The above energy shift is equal to  the encrgy of a magiletic dipol(3 
iri a magnetic field B, 

A E = - p . B ,  

if the clipole moment is 

This can bc considcrcd as the dipole rnomcilt iilcIucc~d by the field. TIIII 
aton1 is diarrignctic as p  is ailtiparallel to B .  

The magnetic: polnrizabilit,y of an nt,oin is cic:fillc:d ( y H  = 
B2E(H) 

i)H2 /II=O, wlicrr E ( H )  is t,lic cxiergy of tlic ;1t,oi11 i r i  n c:orist,n.i~t exteril;~,t 
nlagnet,ic field. 

(a) Estirilate the magnetic polarizal~ility of tlir F - 0, 1s hyperfill,, 
ground state of a hydrogen atom. 

(b) Estimate the magnetic politrizrtl)ilit,y of t.he grolliitl st;~t,c: Is2 of ;I, 

helium. 

( CUSPEA ) 

Solut ion:  

(a) If the nlagnctic field H is vory wca.k, th(, ~ ) e ~ t ~ ~ r l ) i ~ t , i o i i  1Ia.rniltoniil11 
is H' = p .  H .  

Ti~kirig the c1irec:tion of H a.s t1ia.t of the z-axis i~ricl lcttiilg tlir spins 01' 
the electron a i d  prot,orl be S and I respectively wc: have 

The first order perturbation makes no contributioli to  as  (cf. P rob-  ? 
l e m  5066) .  (F - 0 , m ~  = O ( S z  + IZ(F = 0.7nfr = 0) = 0. We thc11 
consider the energy correction of second order pcrturbatiorl for the groui~(l 
state F = 0. 1s: 

,% I I ( , I - ~  m is t,lie quant,linl nurnbcr of t,he projectiorl or1 z axis of F 

I . (,S, + Iz)lOO) - 0. Then t ~ s  ( S ,  - 1,)10,0) = h/13 O), the matrix elernents 
II I .  ill1 zero c:xc:c,pt for 7r1, = 0. Thus 

1 
E ( ~ ) ( H )  = I(F = 1: 71). -- 01 - ( g c p ~  - gp[lp) (S, - I,) 

2 

(b) Coilsider a hc:lilirri ;).toin in a uniform magnetic field II. The vector 
I,ol(:ntial is A - $ H x r and it contributes e2A"2~nc"er electron to  
I 1 1 , .  pert,url):r.t,ioii I-I;~l~iilt,o~~ian that, gives rise to the magnetic polarizability 

If) ( P r o b l e m  5068).  If the helium atom is in the ground state l s 2 ,  
I I1t.11 L = S = J = 0. Taking the direction of H as the z direction, we have 

I 1 1 , .  factor of 2 I~cing a.cidctl to account for the two electrons of hcliulrl a t 'o~n.  
I ' I I L ,  energy corrcct,ion is thus 

Ramon
Line

Ramon
Line

Ramon
Line

Ramon
Line

Ramon
Oval
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where 7.0 is the root-rnearl-squ:trc radius of hclium atom in the ground stat(,, - - -. - - 
as $ = x2  + y2 + .z2 and 2 = y2 = .z2. Siil(:e 7.0 = '1 - y ,  no beilll; 

Z m e 2  
t,llc Bohr radius of hydrogen a.torn, 

whcrc plj = & is t l i ~  Bohr roi~gn(:torl, El = & is th(: io~liai~tion poter~tiiLl 

of hydrogcr~. Thus 

A particle of mass 71% rnoves in a t1irc.c.-tliiric~rlsiollal liarino~iic oscillator 
well. The Hanliltonian is 

(a) Fintl t,hc energy ilii(l orhitill 1lnpt1lil.r ~i~o~ri(:rit,lini of the ground stai,cb 
illl(l the first three cxcitctl statc:~. 

(1)) If eight icient,ical rloii-intcra.cting (sljill-i) ~);l.rtic:lcs arc? &iced in suc*ll 
a harmonic potenti:il, find t,hc grountl stat(: c:ilcrgy for t,hc: cight-partic:l(b 
syst,(?lll. 

(c) Assume that these part,icles have nlagilctic rr~orric:rlt of magnitude Ir. 
If a rnagrietic field B is applietl, what is the approxirnt~t,~ grolincj state energy 

of the eight-particle system as a function of B. Plot t,hc rnagnet,izatio~~ 
(-g) for the ground st,ate as a funct,ion of B. 

( Columbic~) 

Solution: 

(a) A three-dimensional harmonic oscillator has erlcrgy lrvels 

I  ) I  (.he ground statc, N = 0 and the energy is Eo = ifiw, the orbit angular 
~ ~ ~ ~ ~ ~ ~ ~ c : n t u r n  is L - 0. 

\''or the first exited state, N = 1, El = f iw, L = f i. As I = 1 the level 

( t , I  I 1 ;).ins threc degencrat,e states. 
( I ) )  For spin-; particles, two can fill up a st,ate. Thus when fully fillcd. 

1 1 1 1 .  ground statc colitains two particles and t,he first three excited states 
8 m t ~ ~ ~ ; ~ i n  six particles. Thus the ground state energy of the eight-part,icle 

,, .11.1n is E0 = 2 x iw + 6 x $tL = 18hw. 

((.) The Hamiltollian of the systcrn is 

.. II<.I.(: V(r,) = kr;, A is the vector potential $B x r giving rise t,o B. 
As the eight part,ic:lcs occ:lipy two shells, all the shells are full and we 

I I . I V ~ \  S = 0, L = 0, j = 0. 

'['he wave fiinctions of the system are the products of t,he following 
I I I ~~c.t.ions (excludirrg tlle radial parts): 

I, Irlkre ei = r i / r i .  Note that, t,he two space sub-wave functions in each are 
.IIII(: .  Then as the total space wave function is symmetric, the tot,al spin 

1% . I  vc, function rnust be antisy~nmetric. As 
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we have 

1 1 
0l.c ~- { ~ ( l ) P ( 2 )  - ~ ( 2 ) 0 ( 1 ) }  = - {0(1)P(2) - 0(2)0(1)}, Jz Jz 

1 1 
2 :  - 8 - Q(2)P(1)} = -7 {P(1)0(2) - a(2)tu(l)},  JZ JZ 

1 
Ul!, - {41)lV) - 4 2 ) 8 ( 1 ) }  = + {0(1)8(2) + (?(2)(?(1)} , Jz JZ 

1 
c 2 ,  - {Q(1)8(2) - } = pL {8(1)8(2) + (*(2)n(l)},  fi Jz 

1 1 
0 1 2  - {(y(l)P(2) - (?(2)/)(1)} = - {(r(l)P(2) + a(2)Y(1)}, JZ Jz 

1 1 
a.1~ - {rr(l)P(2) - t*(2)P(l)) = -- {(u(l)[j(2) + (~ (2 )y ( l ) } .  Jz JZ 

Their inner products with the bra 1 {(u(l)8(2) - rr(2)P(l)}' will result ill 
JZ 

(ulx) ,  ( 0 2 % ) ,  (01,)~ (cz , ) ,  as well as (01, -I- ~ 2 , )  I)c?iilg zero. H(:iic:c 

(0lrLlz + 03zL2z) = - ~ f i  . 'TIz t - . PL, 
d ( ~ 2  " 

i) 
= - il' [( &) (mz) + (-) (niz)] 

dcp' 

= - i h ( & )  (nl, + nz,) = 0 .  

Thus tlic grouiitl state cricrgy is 

H 
c2 

E - i ~ l i ~ ?  + , C((B x 
87r1,cL 

L= 1 

8 

= 1 8 h  + e2L3'/8mc2 (rf sin' 01) , 
i= 1 

and the magnetization is 

. . 
giving ,y = -- dm:, c:=~ (r: sin2 R i )  as the dianragnctic susceptibility. @ i ~ , s  

a function of R is shown in Fig. 5.23. 

\ 
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$=-arc tan X k 
Fig. 5.23 

Srlppose one has a.11 olec:tl.on in an S sta.te of a hydrogen at,om which 
1 111 a rnagnct,ic field alorig the z direction of strength Hz .  At time t = 0 

t ~~l;lgnetic field  l lo rig the z dircc:tion is turned on; its strength increases 
I, I I il,,rmly from zero to H,, a t  tirnc t = T (H:,  << Hz)  and then remains 

a q  stant ant after t = T. Assume thc riuc:leus 1ia.s no spir~ and that 

Consider orily tho intcractiori between the electron spin and t,he mag- 
11(.1.i(: field. Neglect a.11 tcrrns of order (%)2  or higher. If the electron has 
II : spin in the z direction a t  t = 0, find the state of the electron when 
I T. Show t,hat the state is an  eigenstate of the Hamiltonian due to  t,he 

t a l~~ib ined  nliigrictic: fields H = (Hz,  0, Hz) provided that T is sufficiently 
Ia~l~g. Explain what sufficiently long means in this case. 

(Berkeley) 

'4, blution: 

Treat the potcntial energy HI = -+ p . H,B, = -= s . &,Hz = 

s ,  as a perturbation. Before H ,  is turned on, the electrorl in the S 

. . l ;~t,e of a hydrogen has two spin states, 1;) with energy E+ = - a. m c  

I, /,.Hz = & Hz, and I - $) with energy E- = -& Hz.  

Use time-dependent perturbation theory, taking the wave function as 
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where a- is given by 

= 1 iT ( 1 l f i I i ; )  e - z ( ~ + - - ~ - ) t / f i .  

,i FL tit 

1 T eH,  t 
G T ( - i I h ' J ; ) C x I l ( - , i s t )  dt  

1 

- 
i?rr.cH, c H z  
- 2eTH2 [ ( T) - 11 , 

where we have used s,l$) = 5 1 - 4). 
Thus the spin state of the ~ l e c t r o n  at t,ilrle T is 

If tlie tiiiic T is silffii:iclltly long so t l i t~t  $ < H., w(: ,:;LI, ilrglected tl10 
second t,erln of a autl obtaiil 

The Hamiltonian due to the combined nragnctic field H = (Hz ,  0, H z )  
is 

I 
i 

Let a = and consider H$(T).  As s,J f $)  = $ ( 4)) sz  i f I)  - 7n C ftl f i) we have for T + oo, 
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The result shows that when T is sufficiently large ,CI/(T) is an  eigenstate 
1 3 1  the Harniltoniari ducx to tlic combined rriagrictic field with cigenvaluc~ 

1 1 1 1 .  
' , I , <  ' 

An electron is in the = 1 eigcnstate of a one-dimensional infinite 
1111i~re-well poteritial which extends from x = -a/2 to x = a/2.  At t = 0 a 
111lilorm elcctric field E is a,pplied in the x direction. I t  is left on for a time 
I :\.lid then removed. Use time-dependent perturbation theory to calculate 

I 1 1 1 ,  probabilities f i  and P3 that  the electron will be, respectively, in the 
I ,  - 2 and n = 3 eigenstates a t  t > r. Assume that r is short in the sense 

I Il;,t r << &, where En is the energy of the eigenstate n. Specify any 
I 1 . 1  ~tlirements on the parameters of the problem necessary for the validity of 
I 111. approximations rnade in the application of time-dependent perturbation 
I l~tsory. 

(Columbia) 

The electrori in the ,ri, = 1 eigenstate of the potential well 

0 1x1 < a / 2 ,  

co otherwise 
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has wave firrictions aiid corresponding energies 

(3:)  = Ji sin [t ( f + .) , 

Ell = fi2.ir2,tL2/~na2, 71, = 1 ~ 2 , .  . . . 
The uniform elcctric fieltl Ee,  has potclitial 4 = - J Edz = P E , ~ ,  

The pot,cntial energy of the clc:c:tror~ (charge c )  tlut: to El H' = cEz, is 

consid(-red as a pcrturb;~t,iorl. We have 

H:L21L, = (7221H11n1) 

2 - 
= - /: sin [ y  (x + ;)I sin [ y  (I + !!)I (:E7dZ 

a, .  - -  

= " J :  { (  .os [ ( 4 1 1  - 7 1 2 )  

n - _  a . (2: + i)] 
- t 7 2 2 )  

1 hn2 
W ~ L ~ ~ I . ~  = fi. (ETI,2 - = - 27,mz ('17,2 2  - 4) > 

1 
HL,k cLwbrktdt = - 11' 1 

/i 
k'k (1 - eLWb'bT) - , 

Wk'k  

For the transition 1 + 2, 

16eEa H;l = (2lH11l) = -- 
9n2 I 

~ 2 1  = 3/i7;"l'~,ma~, 

and so the probability of finding the electron in thc 72 = 2 state a t  t > 7 is 

1 
Pz = /&1(t)(2 = - H;; (1 - e " w 2 1 7 )  (1 - e - ' iw217 )  

sin 

L'he validity of tllc time-cic'pcudcnt perturbation theory rccluir~s thr  
1 1 1 1 1 0  r during wliic.11 thc ~)c r tu r l )~~t ion  acts should be small. The p ~ r t w b a -  
1 1 1  1 1 1  potelltial itsclf hhoul(1 also bc small. 

Supposc t,ho 1);lrt.ic:le is originally in a state (72 )  and the box length is 
~ ~ ~ l . ~ . e a s e d  t,o i~ lrr~gth of 21 (0 5 x < 21) in a time t << h/E,,. After- 

ic.rrtls what is tlit: l>rol,ability t,hat the particle will be found in an energy 
(.~!:c~nstate with ciicrgy ETL'! 

( MIT 

: i t  blution: 

First consider t,he procrss in which t,he box length is increased from 1 
I, 1 21. As t << &, it, is rcasonablc to assume that t,he stat,e of the particle 
III I.he box is u11a1)le t.o resI>onc1 to the change during such a short tiine. 
I'l~c:reforc: the wave ful~ction of the particle after the change is c:onlplcted is 
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On the other hand, the eigenstnt,es and eigeilvali~es of t,hc sarnc particle it1 
the one-diincnsional box of length 21 wollld be, rcspectivt:ly, 

The energy El, of the  part,ic:le c:orrcs~)olicls t,o tlic cl1c:rgy 1cvt.l E,,, in tllcb 
21 I)ox, where f = %, i.c., 71' = 2 7 ~ .  Tlie ~r)rr~'s~)oiidii lg (:igciist;~.te is th(:l~ 
&a7,. T h ~ i s  tlie probability alnplit~ldc is 

and the  robab ability of finding the particle in ail (:ig(:list.;~t(: wit,h criergy Ell 
is 

1 p = /A("- - , 

2 

A pa.rt,ic:lc is init,iiilly iri it,s grouiltl stat(: ill a box wit11 ilifiiiitc: walls ;~, t ,  

0 i~11tl L. Tlic wall of t,lic: 1)ox a t  n: = L is sncltlc:nly 111ovc:tl t,o 3: - 2L. 

(>I.) Ca.lculat,e tllc 1)robal)ility tlirtt tlic: ~)art,ic:lc will 1)c fonrid in tllc* 
groliri(1 ~t,i>.tc of thc cxpantled t~ox. 

(t)) E'ind tlie sta.te of the f;x~)i>.rldcd box rnost likely to b c .  occupied 1,y 
the pa.rtic:lt.. 

(c) Suppose- the walls of the origiiial box [0, L] arc: siicl(lc.nly disso1vc:rl 
and that the particle was in the ground statc. Construc:t tlic probabi1il.y 
distriblltion for the  momentum of the freed particlc. 

(Berke1e:y) 

Solution: 

(a) The  wave function of the  particle before tllc 1)ox cxpands is 
-- 

( 0  otherwise. 
\ 
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'l'he wave ftlilction for the ground state of the system after the  box has 
q I 8;inded is - 

\ 0 otherwise 

' rhe prol~ability required is then 

(b) The prot);il)ility that the  article is found in the  first exited state of 
I I I I .  expanclctl box is 

For the particlc t o  bc found in a state n > 3, the probability is 

\/Z " n7rz ax e, = I 1 sin 3 sin dz I 
2 sin (I - I) a sin 

(n  t- 2) 

Hence the particle is most likely to occupy the first excited state of the 
(Sxpanded box. 
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((:) The wave function of the freed particle with a 11lomentum p is 
& ei"" /" .  Thc probability anlplitudc is then 

L 
1 e- ipz / f i  

~ ( p ) =  1 m; 6 sin 7 dz 

Tllc, prol)al~ility distribiition lor thc rriornel~turn is thc\rcforc 

5076 

A particle of mass iZ.1 is in a one-diinor~siol~al l i i ir~r~o~~ic: osc:ill:rtor potell- 
tial Vl = kx2 .  

(a) It is initially in its ground state. Tllt: spring i .o l~s t . a~~t  is suddenly 
doubled ( k  + 2k) so that  the new potcr~tial is V2 = k x 2 .  The particlo's 
energy is then mmsr~rcd. What  is the prol~til~ility for f i i ~ d i ~ ~ g  that partic:l(b 
in the groli~ld st,at,c of the r~cw potenti:~l V2'! 

(1)) T l ~ c  spririg C : O I ~ S ~ ~ L I ~ ~  is s~ iddc?~~ly  doul)I(:cl 21s in piirt. (a),  so that VI 
suddenly 1)cc:orries V2, but thc cnrirgy of t l ~ o  p;l,rt,ic:lc: in the 11cw poter1ti;il 
6 is not ineasurc:d. Instead, aftcr ;L t.i~n(: T has c:1;ipsed sirlcc the  t loub l i~ l~  
of  the s p r i ~ ~ g  c o r ~ s t n ~ ~ t , ,  the s p r i ~ ~ g  c:or~st,al~t is s~itl(lc~lly rcstorcd back to  tl~cb 
original value. For what vc211ics of T w0111(1 t l ~  initiiil gro1111c1 s t ; ~ t c  in Vl I)(, 
restored with 100% certainty? 

( CUSPEA) 

Solution: 

(a) The wave function of the system before k change is 

Suppose that  the part,icle is also in the ground state of the new potentiill 
well after k change. Then the new wave function is 

'L'he transition matrix elcrnri~t is 

When k (.II;XII~(>S iiito 2 k ,  wo c.ha11ges into wl = &wo, thus 

Hence t11c: I)rol);~l)ilit,y t,h;~t t,llc: part,ic:ltr is ill t,llc, st:it,ir ,$'(>:) is 

(b) Thc ( ~ I I ; ~ . I I ~ ~ I I I I  st,il,t(: is 11ot clcstroyed as t,he eilcrgy is not measured. 
\I, t = 0, +(>:, 0 )  = $o(:c),,4,, (3:) being the eigenstates of Vl. We expand 

~ , " ( . r : ,  0)  in thc sct of c:igcr~statcs of V2: 

Here a ~ i d  below wc shall use the convention that  a repeated index implies 
~ ~ ~ n n l a t i o n  over that  ir~dex. Then 

wl~cre H2 is t l ~ :  Hainil to~lia~l corresponding to V2. Since &(x) has even 

~, ;~ . r i ty ,  parity cor~scrvation gives 
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and so 

l$(:x, 7)) = ~$2rn(s))($2m~$0)c-LLc~m~/fi~. 

Hence I,$(:[:, 7)) = I$)o(z)) call be cxpect,ed only if E2.,,,.~/f,. = 2N7r + (., 
where N is a rii~tlir;~l nurnher and c is a constarlt, for ally In. As 

we require 

2 m w i ~  = ~ N T ,  

wilere N 1  = 0 , 1 , 2 , .  . . . 

Tlnis oiily if T = N17r &, will thc s t i ~ t c  i:liarlge iiit,o A)(") wit,h 100% 
certilillty. 

-4 particle which moves only in the z direction is confined between ver- 
tical walls a t  x = 0 and s = a. If the particle is in thc ground state,  whal. 
is the energy? Suppose the walls are suddenly separated t,o infinity; whal, 
is the probability that  t,he particle has monlenturn of magnitude between 11 

and p + dp? What  is the energy of such a particle? If tallis docs rlot agrc:cs 
with the ground state energy, how do you accoiint for energy conservatiorl? 

( Chicago) 

'3olution: 

When the particle is confined between x = 0 and z = a in the ground 
I . ~ l e ,  its wave function is 

\ 0 otherwise, 

\11(1 its energy is 

Wheii the walls arc suddenly rt:moved to  infinity, the wave function of 
I 111,  particle c:arinot follow the c:hai~gc in sllch a short time but will renlairl in 
I 1 1 1 3  original form. Howc?vc:r, t . 1 ~  Hanlilt,orliarl of the system is now changed 
. I I I I I  t,he original wave f i i~~c t ion  is riot ;111 c:igcnstate of t,he new Hamiltoniarl. 
I'll(: original wave function is t,o t)c take11 as  the  initial conditiori ill solvirig 

I 1 1 1 ,  Schriidingcr ecll~atiori for the frccd particle. The  wave packet of tlic 

,-.I  olind state iri tlir: origirial potc~it ial  well will expand and t)ec:orr~e ~iniforrrily 
ll~:;t,ributed ill th(: whole space when t t cm. 

Transforming the original wave p;ic:ket to one iri nlomeritum (p = h k ) ,  
I 1 . 1  )resentation, wc have 

,dl(,) = 1 / a  8 sin (s) . eikz dz 
Gfi 0 

During the short time period of separating the walls the probability that  
I \ I ( :  moment,lim is in the range p + p + dp is given by 
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Because the new Harniltonian is rlot tirnc-dept:~iderit, wt: (:an calculabr~ 
the average value of the energy using the original wave function: 

where y = $. This rncans t,llat thc cllcrgy of the syst,orn is rlot changotl 
duriiig the short tiine pcriotl of scparatirig walls, wllic:h is to  IN: cxpected ;I.S 

If  the walls arc: ~cparat~irig t o  ari infirlit,(: t1istailc:e slowly or if the  walls 
arc not irlfirlitc high, tllerc wotlld be crlcrgy cxc:linngc I)ct,wccn the partic:lr 
nild the  walls. Coriscquciltly, tht: tmt:rgy of the partic:lc woulcl chailge duriiip, 
the tirne of wall separation. 

A nucleus of charge Z has its atornic number sudclcnly changed to  Z+ 1 2 
by /3-decay as  shown in Fig. 5.24. What is the probabil~ty that  a K-e lec t ro~~  
before the decay remaills a I(-electron around the ncw rlucleus after the [I 
decay? Ignore all electron-electron interactions 

( CUSPEA) 

Solution: 

The  wave function of a K-electron in an atom of nuclcar charge Z is 
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\ .  [J /Omr2d?-~2c-2T/a  = 1 ,  the prot)at)ility that  t,he K-electron remains in 
I 1 ~ .  original orbit is 

Fig. 5.24 

A trititllrl aton1 ( " H )  (:ail iintlcrgo sporltnilcous ri~dioil.(:t,iv(: dc(:ay irito 

. I  Irc,liun~-3 ion (:'fir:+) by crnission of a 1,c:ta partid(:. The  dcparttirc of 
I 1 1 , .  electroil is so fast that  t,o thc ort)it,al c:lcc:tsroii thc: proc:c:ss app(:ars as 
111lp1y an  irlst,arita~lcotis c:llailgc: ill tht? 1ltic:lci~r c:liargc frorri Z = 1 to  Z -- 2. 

1 ';llculate t,he pro\)at)ilit,y that  the H c  ion will be left i11 its grotiiid state. 
(Berkeley) 

Solution: 

T h e  wave fur~ction of the ground state of He+ is 

~vliere u is the Bohr radius. Let the wave function of 3H be rp(r). 
As the process of /3 decay takes  lace very fast, during the time pcriocl 

III which the  3H l ) c~o~i le s  3He+ the  wave function does not have tirrie t,o 
,.ll;~nge. Hence thc probability that  the 3He+ is in the  ground state is 

Initially, the  % is in thc grotirld state so that  
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Therefore, 

5080 

Tritium (hydrogen of nia.ss 3 i.c. " H )  is bct,a.-r;~dioac:t,iv(, and decays 
into a hclinm iiuclcl~s of inass 3 ("c) wit,h thc crriissio~~ of ill1 electroll 
and a r~cl~tr ino.  Assurrle that thc: olcc:tror~, origin;~lly l~our~ t l  t,o thc  tritillrl~ 
atom, was in its ground state and rc~nn.ir~s i~s~o(:i i~t(>(I wit11 the 3 E i ~  I IUC~CIIN 

resulting from the decay, forming a. 3He+ ion. 

(a) Calclilate the probabili t ,~ that the % ~ c +  ior~ is fouiitl ill its Is stat.,,. 
(b) What is the  probability that it is f o u ~ ~ t l  in ;L 2p  st:r.t,c? 

(MI7') 

Solution: 

Nng1cc:t the small tliffcrci~rc: iri rctlr~c:c,tl rrlass l)ctwcc!~~ thc: hydrogen at0111 
arltl thc: lreliurn atom systcnls. Tlic! r;~tlius of t,ho ion :' is ao /2 ,  w h c r ~  
a" is t , l~c Bohr ri~dills, so the wave f i i~~c : t io~~s  arc: 

(a) The amplitude of the probability that the ion He+ is in the state 1s 
is 

Hence thc prot)al)ility is lAI2 = 2 (g)' = 0.702. 

(b) 011 ac.c.ol11it of thc orthonormality of spherical harmonics, the  prob- 
I l ~tlity that thc ion %Ic+ is in a stat(, 2p  is zero ((YI ,, ( Yoo) = 0). 

5081 

A beill11 of c:xcitcti hyclrogcn at,oms in the 2 s  stat,e passes brrtween the 
I tl,~,t.es of a, c:ixpa.c:itor in w11ic:h a tiniforin electric field E exist,s over a distance 
i The hytlrogcm a t o ~ n s  11avc velocity v along the x-axis and the E field is 

(111-octed aloi~g tl~c: z-axis, as s l ~ o w ~ i  in Fig. 5.25. 

Fig. 5.25 

All t h ~  11 = 2 statc,s of hydrogen are degenerate in the absence of the E 
Itt,ld, but cc,rtain of t l~cn i  mix when the field is present. 

(a) Wl~ich of the n = 2  states are connect,ed in first order via the 
I ~~,~.turbatioii'! 

(b) Fincl the linear combination of n = 2 states which removes the 
1 ll.generacy as rnlich ns possible. 

(c) For a systeril which starts out in the 2 s  state a t  t = 0, express the 
u .we function a t  time t 5 $. 

(d) Find thc probability that the emergent beam contains hydrogen in 
1 1 1 1 ;  various ,n = 2  states. 

(MITI 

Solution: 

Consider the potential energy e E z  of the electron (charge -e) of a 
llytlrogen at,om in the external electric field Ee, as a perturbation. As the 
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71 = 2 stat,cs ikrC degcncratc, we cal(:ul;tte (2e17~i1jH'12Pt~~,), whcrr: H' = e E z ,  
arid i? = 0, 711. = 0. I t  is ~ I I O W I I  t h i ~ t  only thc l'ollowii~g nlatrix rleinents arcb 

Thus  all the nlatrix cleiticnts arc: zc:ro (:xccI)~, 

(a)  The  2s and 2p states are conncct,otl via tjhc: ~)('l.t,lirI);~tioli in first. 
order since for the HI matrix only elements with AP f 1 ;ire iloiizero. 

(b) The  perturbation Hanliltorliaii is 

whose scc:ular c3qli;ttion 

gives eigenvallics f ScEn, thc  corrcspoildirig c~igciistatr vcctors being 1 
L( ' ). T h c  ckgencrac.y of thc s ta te  71 = 2 is rlow rcrnovc,d. 

rl @ I  T 
(c) As t = 0, just before the atorns enter the electric fic:ltl, 

where 

At t imr 0 < t 5 when t h r  iitonis are subject t o  the electric field, 

p,3eb;at /h  I + )  + C - ~ S ~ ~ E n f / l ~  I l/i(t)) = - ( I-)) 
fi 

cos ( f~ :En t / h )  ) ( & f a t )  
= ('0s - 

= ( i siii(:<(:Eat/Tj,) 

i\, I wre 

0 

(d) For t > t ,  wc: f i i~d froiri ((:) the probabilities 
3eEa t  1 (200)1/J(t)) l 2  = cos2 - f i '  
ScEnt 1 (2101,1/1(t)) l 2  := siii2 - . 

li. 

(a)  Col~sid(:r ;I p;~rtic:lc of m;wi nr. inoviilg in a, t,iinc-dependent potential 
I ( 2 ,  t )  in oiic: cliill(~iisioii. Writ,(: (iow11 t,he Schriiclinger equations a p p r o ~ ~ r i -  
. I I V  for two rcS(;rc:iic:c, systei l~s ( x ,  t )  and (XI, t )  moving with respect t o  each 
s t l  lier wit,h ve1oc:ity v (i.c:. .z = :c' + t ~ t ) .  

are the state vectors obtained in (b).  Fig. 5.26 

\ 
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(b) Iintlging t,hat n particle sits i r i  ;t oric:-tliiilcnsiorial wcll (Fig. 5.2(;) 
such that the well generates a ~)oteiit,ial of the forrn ,rn,w?1;"/2. At t = 0 tllc, 
well is instantly given a kick and IIIOVOS to t h ~  riglit wit,h v~locity ,U ( s ( v ~  

Fig. 5.27). In other words, assnine t,hat V(z ,  t )  has thc! forin 

1 
- rr1,w':c2 for t < o , 

V ( x ,  t )  = 

for t > 0 .  

If for t < 0 tlie 1)artic:lc is in t,lic: groulitl stato ;is vicwc:tl fro111 the (x, I )  
coordinate syst,c:iri, what is thc pro1);~l)ility t,llt~t for t > 0 it will 1)e in tllc- 
ground st,a.t,c ;LS viewctl from thc (x:', t )  systc!rii'! 

(Golumbitr) 

Solut ion:  

(a) Both ( 2 ,  t )  ar~t l  (.I-', t )  arc iric~rtia,l ~ y s t ( ~ m s ,  1~1id so the Schrodingol~ 
equations are: for the ( x ,  t )  system, 

1 

for t,he (z', t )  system, 

where V'(xl, t )  = V 1 ( x v t ,  t )  = V(x, t ) .  
', 
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(11) This prohlern is the same as P r o b l e m  6052 for the  following reason. 
Consider an observer a t  rest in the (x', t )  system. At t < 0 he sees the 

I t .~~- t , i c l e  as sitting in the groul~d s ta te  of the pot,ential well V. At t = 0, 

I 11,. ~)otenti;iI well V instantly requires a velocity v t o  thc right along the x 
< 111c:ction. Tlle sit,uation is the same as if V remailis stationary while the 

I ,.~t-t,icle acquires a velocity - I )  along the -z direction. I t  is required to find 
I 1 1 , -  proba1,ility that  the particle remains in the ground state.  P r o b l e m  

(;(I52 dcals with an A1 nuc:lcus which by emitting a y to  the right acquires 
I ~lniform velocity to  the left. The  physics involved is exactly the same as 

I 1 1 , -  present 11ro1)lcm and we can just make use of the results there. 

If the 1)aryoii riuin1)c~r is conscrvetl, the transition ,n tt n known as  
~~t :nt ron osc:illatioiln is forbitltlcrl. The exy)eriinental lirnit on the tinie scalc 

# t I  such oscillixtions in froc sl)ac:c ant1 zero rn:~gnc:tic: fic,ld is T,, -,, > 3 x lo6 
.(.I.. Sincc: iic:~it,roiis oc:c:nr ;xl)und;~ritly in s ta l~lc  ii~ic:lci, oiic wollltl 11;~ivcly 
I l~irik it. ~)ossil)lc to ol)t,aili ;L riluc:h 1)cttc:r lirriit 011 T,,,.,,. Thc ol)j(:c:t of 
I l~ is  prol)lcrii is t,o ~ili(l(:rst,i~lid why t,li(: lirriit is so poor. L(:t 17(0 1)c the 

I I;~.miltoiiixri of thc: worltl in thc? ;~k)sc:ric.c: of ariy irltcr;tction which mixes n 
, 1 1 1 1 1  3.. Thciri 

1 1 0 ) 4 ~ , )  = r~r~ . r ,~21n)  and H ~ / f i )  = m,Lc2fi)  

I O I .  states a t  rest. Let H' bc the'interaction which turns n into fi and vice 
vtbrsa: 

H1)71) = &In) and H'ln) = &In) , 

tvliere s is rcal ant1 H' does riot flip spin. 

(a) Start  with a ncutron a t  t = 0 and calculate the  probability that it, 
\trill be o1)scrved t,o be an  ant,i~ieutron at time t .  When the probability is 

Iirst equal to 5006, call that  tirne T,,_,. In this way convert the expcrinier~tal 
ll~rlit on T,,.-, irlt,o a, limit on s. Note m,c" 940 MeV. 

(b) Now rccorlsidcr the problem in the presence of t,he earth's inagr~etic 
fic~ld (Bo 2 $ gauss). The magnet,ic inoment of the neutron is pn -6 x 

MeV/gauss. The  magnetic moment of the antincutron is opposite. 
II(:gin with a neutron a t  t = 0 and calculate the probability it will be 
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observed t,o be an a i i t ine~~tron a t  time t .  (Hint,: work to lowest order in 
small quantities.) Igiiore possible radiative transitions. 

(c) Nuclei with spin have non-vanishing rnagnetic ficlcls. Explaili briefly 
and qllalitatively, ill sight of part (b),  how neutroris in such illlclei can be 
so stable while T , , , - ,  is orily 1)ollnclcd by T,,-,, 2 3 x 10' scc. 

((1) Nuclei with zero spin havc vanishing aver;lgc magllc:tic fic:lcl. Explain 
briefly why ric>ut,roll oscillation ill such riuclei is also supprcssctl. 

(MIT)  

Solution: 

(a) To fincl t,he eigenstatcs of tlie Hi~rriilt,oriinll H = Ho-t H' wc irlt,roduce 
in the ncutron-antineutron rc:preseiit;~tioii tlir? st , i~te vectors 

we liilve energy eigcnvallic c(11i;~ti0il 

At t = 0, the system is in the neutron state and so 

where 

At t,iine t ,  the, st,atc of the system becomes 

In the neutroli-aiitinc~itron representation, we thus havc 

cos - 

i sin - 

The: ~)rol);~l)ility that ; ~ t  tinio t tlic: particle is observed as  a n  antineutron 
is therc:forc 

T11c:li 21s T,, _,, 2 :I x 10" s,  thc experimciital lilliit on E is E 5 X x 3 k  -- 
L .7 x lo-" Ivrvl(:v. 

(h)  Not,ii~g t,lii~t. H' tloc:s not change the spin, after introducing the 
~iiagnctic: fic.1~1 oil(: (.;L~I t ;~kc the neutron-antineutron representation 

;111d ca1c:lil:rte t,kio rnntrix clcinents of H' + pBo. Thus one obtains the 
~)erturl)atioli Hi~lliiltoniaii 

with p,, = -6 x 10-Is WlcV/Gs, p, E 6 x 10-lR MeV/Gs. 
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This gives rise to two eigeneqliations: 

where we ha.ve used thc rclatior~ p,, = -b.,, . 
Solving the two ecllia.tioris, wc ot)tain 

EY)  = f A = f fi ( p , , B 0 ) 2 ,  

and tiericc 

As t = 0, the systerri is in thc ric:l~t,ro~~ stat<! 

At tirrie t ,  thc st,ates of the systt!~rl are 

( ( A  - ,r7, B0)e-"*Lh + ( A  + p,, ~ ~ ) e " ' " l "  

J ( A Z  - ( p n ~ 0 ) 2  ( , - iX t /A  - , ~ ' t / f l )  

1 ( 4 )  - e-im,Lc2t/h 

2A 

( ( A  + pn ~ ) e - % * ~ / '  + ( A  - pn B O ) ~ ~ ' ~ / ~ '  
J ( A Z  - ( p n B 0 ) 2  (e-iXt/h - e ~ X t / f i )  

Therefore the proba.l)ilit,y of n T+ f i  is 

- - 
& sin2 JtZ + ( 1 ~ 7 1  

E L  + (P , ,BO)~  i-i 
I 

. I I ~  that of r l  I+ f i  is 

- 
E Jt2 + ( pnBo) ' t  

t2 + ( ~ n B 0 ) '  i-i 

Finally, if tlic nc>utron is not polarized the probability of n + f i  is 

\i l~ich rnc>alls that tllc polar~zation of thc r~cutror~ lias rio cff~ct  or1 the 
I I .~nsrtion probability. 

As p,,& >> E ,  

which shows that the t,ra.nsit,ion probability is extremely small. 
(c) If riliclcar spin is not zero, the magnetic field inside a nucleus is 

.,lrong, much larger than 0.5 Gs. Then the result of (b )  shows that 

which explains why the neutron is stable inside a nucleus. 
(d) If nuclcar spiri is zero, then the average magnet,ic field in the nucleus 

I:; zero. Generally this nlcans that the magnetic field outside the nucleus 
I:; zero whilc that irlsidc the nucleus may not be zero, but may evcn be 
t1c:ry large, with the rcsult that Pn,, is very small. Besides, even if the 
111;tgnetic field inside the nucleus averaged over a long period of t,iine is 
/.c,ro, it may not b e  zero a t  cvery instant. So long as magnetic ficld exists 
111side the nuclcus, I'n,fi becomes very small. Neutrori oscillation is again 
: inppressed. 
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Solution: 

Derive the cluantilrn meclianici~l expressioii for thc o-wavc cross section 
for scattering from a. hard spllcre of radius R .  

( M I T I  

Solution: 

The cffect of the rigid sphcrc: is cqunl to t,h;r.t of the potc.rit,i:~l 

oo ( ~ < n ) ,  
v (,I.) = 

o (7. > R). 

Let the rac1ia.l wa.ve funct,ion of tlic s-w;~vc~ bc Ro(r.) = y o ( , ~ . ) / r .  Tho11 
the Schrodingel. equation can be written ;r.s 

with 
1 

x o ( r ) = o  ( r < n ) ,  k = - J 2 l r , E .  
h 

The solution for r  > R is x V ( r )  = siii(X.~. + h O ) .  Tlir: (:oiit,in~iity of the: 
wa.vc func:t,ion a t  r  = R gives 

which requires 60 = n,7r - k R ,  or sir1 60 = (- 1)'"'' sin k R  ( 7 1  - 0 ,  1, 2, . . . ) .  
Thcrcfore t,lic: t,otal cross-scction of tlir: s-wavc is 

47r . 2 47r 
at = : sin do = - sii1"k-n 

k L  k L  

For low energies, k  + 0 ,  sin k R  M k n ,  illid so ( ~ t  = 47rR2. For high energies, 
k  + oo and at M 0.  

The range of the potential between two hyclrogcri at,orns is approxi 
mately 4 A. For a gas in thermal equilibrium, ol~ta in  a n11rnc:ric;il estimat.o 
of the temperature below which the atom-atom scat,t,ering is essentially 
s-wave. 

(MI? ' )  

The problern coricerris at,on~-atom scatterings inside a gas. If mainly 
. partial waves arc. involved, the uncertainty principle requirc:~ p;o,n 5 ti, 
,\.liere p = ,rn, is tlir: reducecl mass of the two atorr~s, v,. = vl - v2 is 
I11c relative velocity l)et,wecri the two atoms, of velocities vl ,  vz, o. = 4 A. 
When t1icrrri;~l c:cluilil)riurrl is rcached, 

1, being T3oltz1na1i1i's c.oristant ant1 T the absolute temperature. The mean- 
ciuare V;L~U(> of t l i ~  rc>li\tiv~, S I ) ( Y ~  11,. is 

2 ,.lrice or1 avclragc: vl . v2 = 0 ,  ( 1 1 ~ )  = (,(I.;) = (,02). Thus 

I 

Hence uridcr riorrrial tei~iperatures the scattering of other partial waves 
~~r l i s t  also 1)e taken into account. 

A noiirclat,ivistic: particlc of mass m and energy E scatt,crs cluaritu~n- 
~~~c:chanic:ally in a ccritral pot,cnt,ial V ( r )  given by 
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where X is a parameter. This particle potent,ial has the property that t,l~c~ 
cross sect,ion n ( E )  grows largcr and larger as E + 0, divcrging for E = 0. 

Clearly, for E very slrlall th(t cross section is dominated t)y the s-wi~v,~ 
( I  = 0 )  c:oritributiori. Thus for s ~ ~ ~ a l l  E one nccds to coinputc only the 1 = 0 

partial wave alripli t~~dr.  In collrlectiorl with this, to save yoti iii;tthematic:;~,l 
cfforts, you are tolrl 1na.thcn1atic:2tlly t11a.t the cquatior~ 

whcrc A is a posit,ivr: c:ol~stal~t, has a gcllr:ntI solut,ioil 

where k  = and a and @ are int,egrat,ioi~ c:onst,a~it,s. R.c:c:;r,ll t a n h z  
e = - e - m  

and compute g ( E )  for E + 0.  

(GUS') 

Solution: 

The s partial wave filrlct,ion is sphcric:ally syll~~r~ct,ric:, its c:cl~ii~tion beiiil!, 

With rL(,r) -- (/)(r) r., th r  al)ovc 1)c:colllc:s 

i.e., 
27nE 

R1' (r)  + - 
Ij.2 

R ( r )  = U ( r )  R ( r )  

The solution is 

R ( r )  = cr(X t,anh Xr - i k )  eZk" + p(X tan11 Xr + i k )  eCLk" , 

where 
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Consider r  4 0. As + ( O )  is finite, R + 0. Then as tanh Xr + Xr, 
,.'L" + 1, we have for r  + 0 

R t r )  M c x ( X 2 r .  - i k )  + /!(,A2r + i k )  + a ( - i k )  + /3(ik) -- 0 ,  

~ : ~ v i n g  cr = ,fir. Consider r  + cm. As tanh Xr + 1, we have for r  4 cc 

R ( r )  rw(X - il;) elk" + +(A + ik) eCikT 

= o [ ( X  - i k )  eLk' + ( A  + i k )  e-'lcT] 

= fl Jm ( e r k ~ - i r u ~  + e-ikr+ia~ 1 

Thus tlie tot,al cross st,c:t,ion for scat,terirlg is 

For low cncrgic:~, E + 0 ,  k + 0 ,  crl 4 0 ,  and so 

6004 

A particle of Inass nt is inkracting in three dimensions with a spherically 
,.y~nmetric p o t e ~ ~ t i a l  of the form V ( r )  = -C6(lrl - a ) .  

1 In  other words, the potential is a delta fi~nction that  vanishes unless the 

I,;~.rticle is precisely a distance "a" from the center of the potential. Here 
( ' is a positive constarit. 

(a) Find the miriimiln~ value of C for which there is bound stat,e. 
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(h) Consider a scattering expc.rirnent in which the particle is incident orr 

t,he potential with a low ve1oc:if.y. In the limit of small incident velocities, 
what is the scattering cross scction? What is the angular tlistribution? 

(PrCncetolr) 

Solution: 

(a) Suppose the c:igenfunction of a bound state of tho single-partic.lv 
s y s t f : ~ ~  has the form 

.(i/(r) - R ( r )  X,,,(O, cp)  . 

Then the radial furlc:tior~ R ( r )  satisfies 

b ( J r J  - a )  - -__ "("+')I  R = O ,  ( I )  7J  

where k = Jw. Note E < 0 for :L t)ound st,;~t,c.. If 1- # a ,  t,llcl 

equation is an  imaginary-variable spheric:a.l B(:ssc:l c:cllla.tiori. For r < a il, 
has the solution that is finite a t  r = 0 

where je is spheric.al Bcsscl func:tiori of the first kind of order 1. For r > 11. 

it has the sol~it,ion tl1;l.t is fiiiitc for r. -) cc 

where hi') is sphnrica.1 Bnssel function of thc third kind. (spherical Harlk(9l 
function) of ordcr 1. Thc wavc function is c o ~ l t ~ r ~ u o u s  , ~ t  r. = a. Thus I 

Integrating Eq. (1) from a - E to  n + E ,  where E is a sinall posit,ivc! 
number, and then letting E i 0, we have 

Suppose t h e  is a t  least a. hound state. Consider the ground st,ate 1 = 0, 
~ ( J I  which 

sin(i,kr) 
-4j0(zkr) = A 7 I .  < a ,  

zkl- ' 
R ( r )  = 

(-1) ckr 
~ h , t ) ( i k r )  = B , r > a .  

kr 

Diffcrenti;~t ilig R ( r )  and letting 1- -t a ,  we have 

As for :I :  > 0, :I: > 1 - c-", wc: havc: aC' > 1 a.11d 

fr." 
G 1  = 1 or G 111111 - = -- . 

2 1 7 1 . ~ ,  

This is t,llc rrli~ii~~llllrl value of C for which there is a bou~ld state. 
(b) Wc ilse the rncthocl of ~ a r t , i a l  waves. When the particle is incident on 

I 11,. pot,cllt,ial wit11 ;I, low velocity, only the .k = 0 partial wave is important, 
1 ( , 1 .  which t,lic radial wave eqila.tion 

On setting R(.r.) = x O ( r ) / r  it b(:co~nes 

~i Itich has sohlt,ions finite a t  r i 0 and r i cc 

where 



474 Problems and Svl~utions on Quantum Mechanics 

As xo(r) is continuous a t  T = a ,  we require 

A sin ka = sin(ka + 60) . 

Integratilig Eq. (3)  frolri a - E to  a + E gives 

2rnC xh ( ( I ,  + E )  - xb ((L - E) = - - ~o (a)  . 
h2 

Su1,stituting ill the. expressions for XO(T) ,  it 1)c.corrlcs 

ku ka 27rrCa 
- -- -- 

tan(ka + 60) tan ka - h2 . 

For k t 0, the abovc bccornes 

ka 
-- 

29rr1,Ca 1 = -- 
tan 60 ' 

ku 
tan 60 = 

2711,f~C ' 
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(a) Find the s-wave phase shift, as a function of wave number k,  for 
.I :;~)herically symmetric potential which is infinitely repulsive inside of a 
I .I I lius T O ,  and vanishes outside of TO. 

(b) For k + 0 discuss the behavior of the phase shifts in the higher 
I ~ ~ r t i a l  waves. 

( Wiscon.sin.) 

Sa blution: 

(a) This is a typical scatterii~g problem that can be readily solved by 
I IN. rnethotl of partial waves. The potential can be expressed as  

The  radial wavc fu11c:tiorl for the l partial wave is 

Herice thc  total sca.tt,ering cross st:ction is 

Note that  for low velocities only s-waves (1 = 0) necd bc c:onsiderec! ant1 
the differential cross section is simply 

! I  Re(x) = je(x) cos be - ne(x) sin 6e = 0 

I, ives 

Here je and T L ~  ;lrv spherical Bessel function and spherical Neumarlrl 
1111lction of order e. T11r.s~ functions have the asymptotic forms 

Hence for T > TO we have 

k1-+m 
R e ( k ~ )  + sin 

The phase shift de call be determined by the continuity of the wave 
l1111ction a t  T = TO. Writing krO = x, the continuity condition 

which is independent of the angles. Thus the angular distribution is 
isotropic. 
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In  the  low-energy limit x + 0,  t,he functions have t,lie asynlpt,otic fornis 

so that  

Thus  the  s-wave (! = 0) phz~sc, shift is 

tan bo = -x = -kr o .  

I t  gives a finite contribution to  the scattcrilig ;~ i id  th(: (:orr(:sj)onding 
total  cross section is 

The  scat,t'eriilg is spherically sylninc?tric, arid thc: tot,nl cmss scction is 
four tirnes tlic classical valuc: 7r7.z .  

(1)) Corlsidcr the low-cncrgy tiiiiit k --> 0. 

be fa.lls off very rapidly LLS t ir1crc:ascs. All t,hc phase: shifts vanish as k i 0, 
except for the 1 = 0 partia.1 wave. Hciiccr s-wnvcs ~)redorni r la t~  in low-energy 
scattering. Pliysically, particles with liiglier part i i~l  wavc?~ :ire f i~rt~her away 
froin the  force center so thc effect of the force 011 slic:h j)a,rticles is smaller, 
causing (be1 t o  be smaller. 

6006 

A particle of mass m is scattered by t,he central ~)oteriti:~l 

I~vre a is a consta,nt,. Given that  the  erluatiorl 

I 1 . t ~  the sol,it,ioris = t:'ikX (tan11 x F i k ) ,  calculate the s-wave coritri1)ution 

I ,  1 !,he tota.1 scattering cross section a t  energy E. 
( M I T )  

S (  ) lu t ion:  

Letting xO(,r) = r R ( r )  we have for the radial part  of t,he Schrodingcr 
1 . 1  l~iatiori for s-waves (t = 0)  

wit,ll 3: 7 . / a ,  = Xo(r.) i~ i id  k = T, t,he above 1)ecorncs JZrnE 
d2 :I/ (x:) 2 

4- k%,2y(z) + y(z)  = 0 
d:c" cosh2 (a) 

This erluntion has solutions y = eiiakX(tarihs F ink).  For R finite at, 
1 -  = 0 we rcquirc y(0) = 0. The  solution that  satisfies this condition has 
I lle forrri 

y(z)  = eiakz(tanh z - i ak )  + epmkX(tanh x + i ak )  

I , r  

x o ( r )  = 2 cos(kr) tanh 

Thus  

1 

dXo 
ak2  cos(kr) - k siri(kr) tanh 

-- - - 

Xo nk sin(kr) + cos(kr) tanh 

,+, ak%os(kr) - k sin(kr) akcot  (kr)  - 1 - = k  
ak sin(kr)  + cos(kr) cot (k r )  + ak 
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On the othcr hand if we writ,e xo in the form 

then as 

-- cot (kr.) cot 60 - 1 "x" = k cot (k7- + ho) = k 
xo d7. cot(lC7.) 4- cot ' 

wr have to  put, 

cot bo = ak , 

Hcncc thn s-wave c:ont,ributioll t,o the t,ot;r.l s(:iitt,(:ri~ig i.ross s(:~t,ion is 

47T 47r 1 - 2x12- 
ut = - sin 60 = - -- 

1 
k k L  1 + aQ2 ,rr~,F . 2 a 2 7 n ~  

A spilllcss particle of lnass 711, c1ic:rgy E sc:;itt,c!rs througli iinglc 8 in all 
attr;ictivc scluarc!-wcll potential V(r): 

(a) Est.;~l)lish relation among thc p;ir;i~rlc:ti:rs K), ( I , ,  711, iill(1 11nivers;r.l 
constants whic:li guarailt,ees that the cross sc:c:t,ioil vanishcs ;it zcro energy 
E = 0. This will iiivolvo a definite but trallsccnde~~t;d cqu;~tion, which yo11 
must derive hut need riot solvc ~lumerically. For ~)a.ramc,tcrs 111eeting tho 
above condition, the differential cross section, ;is E + 0, will t~chave like 

(h)  What is the numerical value of the expone~lt A? 
(c) The  angular distribut,ion function F(cos 8) is a poly~lornial in cos0. 

What is the highest power of cos8 in this potyno~nia.l'! 

(Princeton,) 
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Solut ion:  

(a) When the energy is near zero, only the partial wave with 1 = 0 is 
~~~lpor tar l t , .  Writing the radial wave function as R(T) = ,Y(T)/T, then X(T) 
l1111st satisfy the equations 

K - Jv. T h e  above has solutions with k = 7, 

As both ~ ( r )  arid ,y1(7-) are C O I ~ ~ ~ I ~ I ~ O U S  a t  7- = a ,  we r c q u i r ~  

i 
For the total cross section t o  be zero a t  E = 0, we require 
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which is the transcenclental cquat,ion that the pararnct,ers Vo, (L, m ant1 
universal constant must satisfy. 

(b) & (c) When k + 0, the pilrtial wave with I! = O is still very important, 
for the  differential cross-section, altlio~igli its contri1)ution ;~lso goes to zero. 
Expanding t an(Ka)  a,s a Taylor series in k, we h;lvc: 

Neglecting tcrriis of ordcrs lligller than kL,  wc. 11;~vc. 

k 
6o = tan- '  IF tan(Ka)]  - ka 

t i -  n: - (1, 
1-I i t t:in(koa) - - t:ln(b,o) + 

2k; 2ki cos2 (ken) 

- 1  (. k"1, kC3a I 

Thus the  differential cross section per unit solid angle is :~pproximately 
isotropic and proportional to E v o r  E -+ 0. To find the contribution of 
partial wave with t = 1, consider its radial wave equations 
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The solutions have the forrn of the first-order spherical Bcssel funct,ion ,, i P )  = 3 7  - y, or 

The contiriuit,y of R l  and thc? first derivative of r 2 ~  at  r  = a gives 

sir1 K n  c:os K a  

- A  r sirl(ka+61) - -  cos(ka+61)  

( K a ) "  K n  (ka)2 ka 

sin K n  = A siii(k(~ + 6i) . 

1 .  
Taking thc: r;~t,ios wc: llavc: k 7 1  -I~'cL cot,(Ii'a)] = K 2  [l- k r ~  cot(kn+hl)] , 

< 11- 

[ id k 2 ( ~ i ~ c ~ t ( K ( ~ )  
tar1 (ka + J1)  = kn 1 + y - + 0 ( k 4 )  ] 

ko 

Thus its contribution to g, 

I:, also pr0port~iona.1 to  k4. Sinlilarly, for 1 = 2, 
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The cont,inuity of R and (r3R2)' a t  r = ct  thcri gives 

k2 [tan(ka + 62) - ka] [3 - tan(ka + 62) - 3ka 
- -- 

I(" [ t a n o - I ( a l P  [3 - (Ica)" tt;~n(I<a) - 3 K a  
' 

Let ?j = tan(ka. + (r2) - ka. The above bccorlics 

where 

Therefore 

and 

Thus t,he contribution of partial waves with I = 2 to is also propor- 
tional to k4. This is true for all e for E 4 0. Hence 
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I I I ( ~  the cxponcnt of E is X = 2. The highest powrr of cosB in the angular 
al,7tribut~on function is also 2 since the waves consist mainly of t = 0 and 

1 partial waves. 

1. The shrll potc.iitia1 for the three-dimensional Schrodinger cquation is 

(a) Firid the s-st;tte ( I  = 0) wave function for E > 0. Include an 

t.spression that det,crl~lines the phase shift, 6. With hk = show that 

I I I  the lirnit k + 0, b 4 Ak, wherc A is a constarit (called t,he scatt,ering 
If,rigth). Solve for A in terms of (x and ro. 

(b) How rnsny hound st,atcs call exist for 1 = 0 and how does their 
(.sistencc depciltl or1 a'? (Graphical proof is acceptable) 

(c) What is the scatt,t:riilg length A when a hourld st,atc appears a t  
1: = O? Dcscrit~e t,he behavior of A as a changes f ron~  rc~)~llsivc (a  > 0) to  

. 1 1  tractive, air(] then when a becomes sufficicnt,ly ncgntive to bind. IS the 
I ;luge of A distinctive for each range of a'? Sketch A as a function of a. 

( MIT 

Solution: 

(a) The radial part of the Schrodinger equation for 1 = 0 is 

I 

- i \Vith + = p / r ,  V(r)  = cub(r - ro) it becomes 
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The equation has solution for which ~i = 0 at  r = 0 and p = finite for 
r--tCX) 

sin kr, 7. < 7.0, 

(1. s i n ( k r + 6 ) ,  r > T O .  

I~i tegrat i~ig  Eq. (1) fro111 7.0 - E t,o 7-0 + E airtl letting z --t 0 givc 

The  contiiiliity of p at  r = 7-0 ant1 this coiitlit,ion givc 

sin krO = IL sin(krO + 6) , 

kro = a cos(kro + 6) - c:os kro 

Hence 

wliich dcterniir~n a ailtl t,he phase shift 6. 111 tlin limiting c:asc of k --t 0, tlio 
al~ove cquatio~i k)cc:oincs 

kro -t t,an 6 - k -- 
1 - krO tan 6 1 + /jro I 

neglecting O(k3). Tlien, as I; + 0,  we have tail 6 --t 0 ant1 so 2 * 

2 

where 

is the scat,tering length. 

(b) For hourid states, E < 0 and Eq.  (1) can hc writtcn as 

p" - P6(r - ro)  /-i = k2p  

The sollition in which p = 0 a t  r = 0 and p = finite for r --t oo is 

i siilh kr,  T < r g  , 
p yz o e - k ~  

, , r > 7'0 .  

The c:oiitiiitiit,y (:oiiclitiolls, its in (a),  give 

sinh k,rO -- , 
11, = 

[ j O , C - - k ~ l ,  - - -fl,k(,ph:~-~ - k cosh kro . 

Fig. 6.1 

For 1,ound st,ates E < 0. Between E = -cc and E = 0, or between 
::l;,ro = cm 2kro = 0, there is one intersection between the c:urvc~ (I) 
1, -- e-2kl.o (11) y = 1 + 0.0 if -1 < < 0,  as show11 in Fig. 6.1. 

I'llus if this condition is satisfied there will be one bound state with k! = 0. 
I'liis condition requires 
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-h2 - Fi2 
-1 < - , or a <  -- = a() 

2 m l ~ l r 0  2711~0 
(c:) In (a) it is fouild that 

The twhavior of A is shown in Fig. 6.2, whcrt, it is secii that for a = 0, 
A = 0; for a = n,, = &, A = & m ;  n = & m ,  A = -1.0. Wltll E i +O, 
a bound statc appc>ars a t  E = 0. At this c,iic.rgy ru = ( Y O ,  6 = f 7r/2 ant1 
A = m  

I '  bound , unbound 6 

12ig. f .2 

The nucleus ' ~ e  is unstable with respect to dissociiltion into two tv I 
particles, but experiments on nuclear reactions charactcrizc thc  two lowest. 

unstable levels as J = 0, even parity, -- 95 keV abovc the tlissociation levcl, : 

and J = 2, even parity, -- 3 MeV above the dissociatiorl 1cvc:l. 
Consider how the existence of these levels influellccs the scattering of tv 

particles from helium gas, specifically: 

(a) Writ,e the wave function for elastic scattering, in it,s partial wavcb 
expansion, for r i m .  
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(b) Describe qualitatively how the relevant phase shifts vary as functions 
1 1 1  cXnergy in the proximity of rach level. 

(c) Dcscri1)e how this variation affects the angular distri1)ution of a 

I j.11.ticles. 
( Ch~cago) 

Solut ion:  

(a) Thc spin of N particle is zero, so t,he two-a-particle (identical par- 
I 1c:les) systein o1)c:ys Dose-Einstein statistics and the quantum number ! of 
I.II ( :  relative angular niomerit~ir~~ must be an even number. There are two 

. I , ,  lditive phasc shifts: 6F ca~ised by Coulomb interaction and 6; caused by 
I 111clear force. Thus as r i oa, the wave function is 

wliere k is tlle wave 11umt)er iri the c.m. frarnc, y = (2e)2/hv,. 

(b) As the c:ncrgy increases to a certain value, 6; also increases from 
;:t,ro becausr of the action of the nuclear force. Particularly, when the 

1.tlergy is iiear ail uristable energy level of the compound nucleus with a 
1h:finite I ,  cvcry 6? near 7r changes very rapidly. For 'Be, this happens 

when I = 0 aiid the energy is near 95 keV, and when I = 2 and the energy 
I:; near 3 MeV. 

Generally, if the energy is lower than the Coulomb potential, nuclear 
Iorce can 1)e neglected. In such a situation 6y is near 0 or n7r. 

(c) To see the effect of nuclear force on the angular distribution, we 
~~swr i te  the partial wave expansion as 

7 in 2kr + 6f)] ) P1 (cos 0) , 
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where the first term inside the large brackets is the Coulomb scattering 
wavc furlc:tion, which is not aEected by nuclear force. We sum it over I t,o 
get 

cxl,[-iy In (1 - cos 6)] exp[-iy 111(1 + c.os Q)] 
1 - cos 6 

+ 
1 + cos6 

The two tcrrns in t,hc last large brackets abovc arisc: fro111 t,he identity 
of the two Hef +. Thcsc ill general do not occur in R.~lthcrford scattering. 

The secorld term iri thc large brackets in the expansion of ,I/) is caused 
by the nuclear force w1iic:h interferes with the Coulornb sc:;~ttc'rirlg. But this 
effect is quite trivial when 6T is near n7r. 

Consider the quantum-mechanical scattcrir~g prot)lclii iri the prcsence of 
inelastic scattering. Suppose one call writ,c tlic l ) i ~ ~ t , i i ~ l  wave cxpnnsion of 
the scattering amplitucie for the elastic cha~lrlcl in tlic: for111 

where &(k)  nncl ,r)l(k) arc real quantities with 0 < 71 5 1, the wavc number 
is denoted by k ,  and 6 is the scattering :tnglc. For a givc:n partial wavc, 
obtain the lower and upper t)o~inds for tlic: elastic: cross scction a:fLstic ill 

( 1 )  terms of ginelastic. 

( Chicago) 

Solution: 

where 

we have 
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( 1 )  /1-rlle"b12 (1) 
t i c  = 1 ; 7,Le 2,s t  12 ' girlelastic 

As 711, (T1 arc real nunlk)crs and 0 < 771 < 1, we have 

(1) 
Thcrc,forc th r  upper irlid 1owc.r bounds of aelastlc are respectively 

(1 - 1 ( I )  
-- 

(1 - 77112 ( 1 )  
l , , ;  i t i  srlrl -p 

1 - 7712 
ginelastic 

6011 

A slow cl(:ctroll of wavc number k is scattered by a neutral atom of 
(4fectivc (~naxirn~lm) r;~tiitis R, such that k R  << 1. 

(a) Assllrl~ing that the electron-atom poterltial is known, explain how the 
I-(!levant phase shift 6 is related to the solution of a Schrodinger equation. 

(b) Give a formula for the differential scattering cross section in terms 
of 6 and k .  (If you do not remember the formula, try to guess it using 

I limensional reasoning.) 

(c) Explain, with a diagram of the Schrodinger-equation solut,ion, how 
; \  non-vanishing purely attractive potential might, a t  a particular k ,  give 
I I O  scat,teririg. 

(d) Explain, again with a diagram, how a potential that is attractive 
; i t  short disti~nc:cs but repulsive a t  large distances might give resonance 
:.c:atterir~g near a particular k .  

(e) What is the ~naximum value of the total cross sectio~l at the center 
I )f the resona~lcc? 

(Berkeley) 
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Solut ion:  

(a) We need only considcr the s partial wave as kR << I. The solutio~l 
of the Schrotlingcr equation has for r + oo the ;~syrnptot,ic form 

sin (kr + 6) 
7,b ( S T )  + 

kr  

The phase shift 6 is thus rclatcd to the solution of the S(:hrodingt?r 
eclu <I t '  ion. 

(1)) The differc~itinl scattering c:ross section is give11 by 

sin" a(e)  = -- 
k 2 

(c) The phase shift 6 in general is a func:tion of the wirvc: rilimber k. 
When 6 = n ~ ,  n(B) = 0, bt = 0 a.ntl no sc:a.ttcrilig takes place. Thc 
asymptotic solution of the Schriidinger ecluation wit11 ! - 0 is shown ill 
Fig. 6.3(a) 

f sinkr s in (k r+n)  

Fig. 6.3(b) 

(d) Consider a potential well as that given in Fig. G.3(b). If the energy 
of the incident particle is near an eigenvalur of the well (a  bound state), its 
wave function inside the well will be strongly coupled with its wave functioil 

outside and the wave function in the well will have a large amplitude, 
~.cxsulting in resonance scattering. 

(e) The ~naximunl value of the total cross section a t  the center of the 
wsonance pcak is 4.rrR2, wliere R is the range of the force of interaction. 

For an attractive squ;~re-well potential (V = -Vo, r < a ;  V = 0, r > a )  
liud the "nlatclling equation" at  a positive energy, which determines the 
Isnergy dependence of the t = 0 phase shift 60. From this show that a t  high 
~.nergies, 6(k) + w, a.nd ot)t;rin this result from the Born approximation. 

( Wisconsin) 

Solution: 

Let x = rR .  For the t = 0 partial wa.ve, the Schrtidinger equation 

The solutions are 

sin(klr) r < a ,  
X" 

A sin (kr + 60) , r > a .  

The continuity condition 

,5 
f 1:lves an equation for determilling 60: 

k' tan (ka + 60) = k tan (k'a) . 

As 
2mE 

kt2 = k2 (1 + z) and k = - 
h2 

ivhen k -+ m, k' -+ k. Hence 

- ka + (k' - k) a as k + m. 
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Thus, letting k + co wc obtain 

The Born approximation expression for the phase shift, for 1 = 0 is 

V(r) j;: (kr) r2 dr  = dr 
h 

whcrlce 
mVoa 

6" + - 
h,2 k 

as k -+ co, in agreement with the partial-wave c.al(:ul:~tio~~. 

Calculate the scattering cross scc:tioil for a low c:ilc:rgy partic:lc from ;I, 

pot,ential given by V  = V o  for r < (1, V = 0 for I .  > (1,. Cori~parr. t,his with 
thc Born apy)roximation rcslilt. 

(Columbia) 

Solution: 

The ratlial Scliriidii~gcr cqlration can 1)e writtt.11 in the, forin 

where x = rR( r ) ,  

Scattering at low energies is dominated by the s partial wave, for which 
e = 0, and the above become 

ti.11ose solut,ions are 

Thc coiltirluit,y contlition (In X L ) ' ~ = ~ -  = (In xl)'l,=,+ gives 

k ta.n(kta) = kt tan(ka + 6o) , 

For low enc,rgics 

ha = arctan [$ tan (k'n)] - ka 

.,lid the at~ove 1)ec:oliit~s 

tan (ko n )  
b" = k ( ~  

where k t ,  k are respectively the wave vectors of the incident and scattered 
waves. Lct q = k - k t ,  with \ k t /  = Ik( = k for elastic scattering. Then 
I ,  = 2k sin $, whcrc 6 is the scattering angle. Thus 

2,mVo 
- [sin(qa) - qa cos (qa)] . 

EJq" 
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Hence 

For low energies k -t 0, q --t 0, 

1 1 
sin (qn) = qri - : cos(qa) = 1 - , 

3! 

and hcncc: 

Thc total cross scctlon for sc.;rtt~ring at low c3ncrglcs is tl1c.n 

Therefore at  low energies for which k  -t 0, k r ~  << 1 ,  t11c: two 111cthods 
give the same result. 

6014 

Iri scattc!ririg frorn a pottontial V ( , r ) ,  tliv wavc fullct,iorl iilay 1 ) ~  written 
as an incidcr~t plane wavc plus outgoing sc.at,t,crc:d wnvct: $ = (:"" + +v). 
Derive a difi(!rcr~tial equation for ~ ( r )  i r ~  tho first Born ;t~)~~roxirriation. 

( Ll",:.sconsin) 

Solution: 

Two methods may be used for this problem. 

Method 1:  a For a particle of mass 7 n  In a central field V ( r ) ,  the Schrodingcr cquation 
can be wr~t ten  as 

( V 2  + k 2 ) $  = u$,  
where - 

Define Green's function G ( r  - r')  by 
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This is satisfied by the function 

.111(1 the Schrodinger equation is satisfied by I 

As the incident. wave is a plane wave eikZ', we replace U ( r l )  $ (r') by 
1 / ( r l )  eikz' in thc first Born approximation: 

Hence t,l~c sc:at,tctrc:ti wave is 

Applying thc operator (v' + k 2 )  to thc two sides of the equation, we 
!:(.t 

= 6(r - r ' )  U  (r ' )  eik" d3 r' = U ( r )  eik" . 

Hence thc differential equation for v ( r )  is 

(V2 + k 2 )  ~ ( r )  = U ( r )  eik" . 

A-lethod 2: 

Writing the radial Schrodinger equation as 

where 
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and substitutir~g in $ = eikZ t u( r ) ,  we get 

('J" f 2 )  -t  ('J2 + k2) U (r) = u[e ikz  + 11(r)] , 

as (V" k2) e"' = 0. In the first Born approxi~natiori, c""i fo(r) = eikZ, 
and so the differential rquation for v(r)  is 

27ra Ve'kz ('J2 i- k2) 71 (r) = - 
ti2 

In the quantum theory of scattering fro111 a fixctl potc,nti;~l, wc, get thc 
following expression for the asymptotic form of tlic wave fiinctioi~ 

(a) If the entire Harniltonian is rotatior~ally i~ivi~rii~rit, give t.hc argument 
that the scattering amplitlitle f should be iritleper~d(:~~t, of tt~c: arigle p .  

(1)) Why cannot this argurne~lt be extt:ridcd (t:orisitl(:riiig rotat,ion about, 
any axis) to conclude tha.t f should be iritlcpc:ntl(:rit of 0 ;IS wc:ll? 

(c) Reconsider part(b) in the case wherc tlie irrciderit cnwcrgy approachr:~ $ 
zero. $ 

(d) Wha.t is the formula for the scattcririg cross sectior~ ill tcrriis of f ?  ; 
(e) What is the formula for the first Born approxi~na.tiori for f ?  (Bc 

sure to define all quantities introduced. Yoti need not worry a l~out  simplc 
dir~lensio~lless factors like 2 or T ) .  

(f)  Under what conditions is the Born approximation valid? 

(Berkeley) 

Solution: 

(a) The incident wave eikz = eikTcose 1s ' the eigenstatc of I,, third 
conlponent of the angular momentum L, with eigenvalue m = 0.  If the: 
Hamiltonian is rotationally invariant, the angular nioinent,unl is conservetl 
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. I I I ~  the outgoing wave is still the eigenstate of I, with eigenvalue nz = 0, 
I11i1,t is, 

izf(8, p )  - ~ n f  (Q, p) = 0 .  

Since = 6, this mc:ans that af (Q, p)/iJp = 0. 

(b) As the asyinptotic form of the wave function $(r) is not an eigen- 
l l~l~ction of L" wwc cannot extend the above argument to conclude that f is 
I I ~tlepentlcnt of 0. 

(c) When the energy E -+ 0, i.e., k + 0, the incident wave consists 
111;~inly orlly of tlie 1 = 0 partial wave; other partial waves have very srrlall 
.~~nplitutlt:s ;~ntl ran bc: nc>glec:tcd. Under such - ,  conditions, the rotational 
~ ~ ~ v a r i a l ~ t : ~  of H rcslilts ill tlic: coilservation of LL.  Then the outgoing wave 
~~i l i s t  also bc t,hc oigc:ristatc of i" with eigenvalue 1 = 0 (approximately). 

As f (8) rri~ist 1~ a W;LVC function wit11 all thc appropriate properties, 
I his mr.aris 

df (8)ldQ = 0 .  

(d) The, tliHi~rc.ntia1 scattering cross section is given by 

(e) 111 thc first Born approximation, for scattering from a rent,ral ficld 
V (r') , f is given by 

where q = k - ko, k arid kg being respectively tlie momenta of the particle 
I~efore and after scattering. 
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(f) The validity of Born approximation requires that the iiiteractiol~ 
potcntial is sillall compared with the energy of the irlcidellt particle. 

Consider :L particle of mass rn which scatters off a poterltial V(n:) ln ' on($ 
diinension. 

(a) Show that 

27n. 
with E positive iiifinitesimal, is the free-particlc Grc,c>rl1s filil(.tioil for tho 
time-independent Schrodinger equation with ciicrgy E aild oilt,going-wavo 
boundary conditions 

(b) Write down an integral equatiori for thc oilcrgy cigcllfuliction tor.. 

responding to an incident wave traveling ill the positive z dircc:tion. Using 
this equation find the reflection probat~ility in the first 13orii ;~pproximat io~~ 
for the potential 

For what valucs of E do you expcct this to t)e n good approximation'! 

(Buffalo) 

Solution: 

(a) To solve the onc-tlimerisioilal tinlc-iiitlepeildent Schrotlingcr equa t io~~  

we define a Green's function GE(z)  by 

Expressing GE(5)  and 6(x) as Fourier integrals 
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I I I , ~  substituting these into the equation for GE(:c), we obtain 

L 

f ( k : )  = 
hQ2 

E - -  
27n 

As the singularity of f (k) is 011 the path of integration and the Fourier 
111t<:gral can be understood as an integral in the complex k-plane, we can 
t c l , l  , i ~ ,  wherc E is i~ small positive number, to the denominator of f (k). We 

, . \ I ,  then let E t 0 after the integration. Consider 

The intvrgral is singular wherc 

When x > 0, the integral becomes a contour integral on the upper 
11.1lf-plane with a sirigularity a t  k l  with residue 

Cauchy's integral fornlula then gives 



This is the value of kl to  be used in the cxprcssion for GE(3;). Similarly, 
when 2: < 0, we car1 carry out the integration along a contour on the lowchl, 
lialf-plane and get 

Here k1 = 9 also. Thus tlic frt:c:-part,ic:le Gret.rlls fiii~ction GE(:r:) 
rcprc:scnts thc outgoing wave wllct,her : I :  > 0 or :I:  < 0. 

(t)) The solution of t,he stationary S(:liriitlingt:r t:cliiatiori satisfies thcb 
integral cquatio~i 

where GO(z) is a. solution of the equation 

In the first-order Born approxi~natio~i wc' r~1)l;tc.c~ I / /o  ;~i1(1 or1 the  righl 
sitlr of the  intcgr;~l rquatioil by t h ~  i ~ ~ ( . i ( l r ~ ~ t  WILVP fiiii(.tio~~ i~11(1 g ~ t  

For reflection we require T $ ~ ( x )  for z + m .  R)r x t -m, 
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Hence the reflt:ct,ioi~ probability is 

Whcri tlic t:nt:rgy is high, 

.\rid rep1ac:iilg ,c/~(:c) l)y ckX is a. good approximation. 

Calcu1;ttc: thc Born ;~l)l)roxirnation to  the differe~~tial and t,otal cross 
:,c,ctions for sc:attcring ;L part,icle of rnwss rn off the 6-fiinctiori potentia.1 

Solution: 

In I3orn approxiir~ntio~i, 

where k ar~tl  k' arc respectively the wave vectors of the  incident and scat- 
Icred w;~vcs. Lct q = k1 - k. Then 

;~ .nd the tlifferential cross sect.ion is 

As the  tlistribution is isotropic, the total cross section is 
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Consider a particle of Inass rn,  energy E scat,i,ering from t,he spherically 
synlmetric potential Bd(r - a ) ,  where B a.nc1 o. arc corista~lts. 

(a) In  the  case of very high cncrgy (but nonrclativistic) scattering, list* 
the Born approxirn;~tion to calculate t,hc: differential sc:attc:ririg cross sectiolr. 

(h) In the  ciLs(: of very low energy scattering (A  > a ) ,  what is ttlc, 
tliKerercntia1 scattering cross sec:tiori? 

Notc: 111 part (b)  you nlay fincl the algc,l)ra so~~ic~wlia t  1c:ligthy. In this 
C;LSI', work the  pro1)lein far c:iiough t,hat the rcinainder of thc solut,ion ill- 
volvcs orily st,raightforward a1gc:t)ra. 

(P7incetorr) 

Solution: 

(a) As shown in Problem 6013, 

- 
2 ~ n  sin qn 

- - - B<I, 
li,2 (1 

Hcricc? t,lic diE(:'c.rc:llt,ial cross sect,ion for sc:attc:rilig is 

(1)) At low crierglcs only the partial wave with 1 = 0 is i ~ n ~ ) o r t a n t .  If wc3 
sct tllr radial wavcl fu~~ctiorl  R(.I.) = ,y(r)/r ,  ttlc.11 ~ ( 1 . )  will satisfy 

The solutions are 

x = A sin(kr) , T < ( I , ,  

x = sin (kr  + 60), T > a ,  

where 
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The continuity of x ( r )  a t  r = a requires 

Integrating t,hc wave equation for x from a - E t o  o + E ,  where E is a 
~iall  positive number, and then letting 6 -+ 0, we get 

These two coiitlitions give 

As E -+ 0, k -z 0 and 

t , a n ( k a ) ~ t a n 6 0  k a + &  
tan(kn) -) k a ,  t a r~(kn  + 60) = - 3 

1 - tan(ka) t,arl do 1 - kndo 

As therc is no aiiglilar dependence the scattering is isotropic. 

6019 

A nuclcon is scat,tvrcd elast,ically from a heavy nucleus. The effcct of 
1 1  lie heavy nucleus call he represented by a fixed potential 

-Vo T < R ,  
V(T) = 

0 ,  T >  R ,  . 
where Vo is a positive constant. Calculate the deferential cross section t o  
I tie lowest order in h. 

(Rerkele y) 
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Solu t ion :  

Let LL be the reduced inoves of the nucleon and the nucleus, q = k - kt  
where k' ,  k are respectively the wave vectors of the nuclcon before and aftcar 
the scattering. In the Born approximation, as  in P r o b l e m  6013, we havcb 

4p2 
u(6) =  if(^)('= - ,,q2 I im T'V(T') sin q ~ l  (krl l 2  

- 4p"; 
h4 q6 

(sin qR - qR cos q ~ ) 2 ,  

where q = 2k sin(0/2), k = Ikl = Ik'l 

A particle of mass m, charge e, moliiciit~lr~i p scxt,ters ill t,hc electrostatic. 
potential produced by a spherically syml~~ct.ric distrih~ition of charge. Yo11 
are given the quantity J r"d3n: = A, p(r)  d":c being t,lle charge in a vol- 
ume element r132. Supposing that p vanishes r;~pitlly as r + oo and that. 
J pd3x = 0; working in the first Born approxirr1at,ior1, c:omput,c t,he differ- 
ential cross section for forward s~a t~ te r ing .  (That is % l o = " ,  whcre 0 is thcb 
scattering angle.) 

(Princeton) 

Solut ion:  

In t,hc first Born approximation, wc have 

where 
0 2 p .  0 

q = k -  k', q z  2k sin - = - sin -, k t  ancl k 
2 h  2 

being the  wave vectors of the particle before and after the scattering, U(r) 
is the electrostatic Coulomb potential and satisfies the Poission equation f 

Let 

F ( q ) =  p ( r ) e x p ( i q . r ) d " : c ,  ! 

Scatterzng Theory and Quantum Transitions 505 

V. l~e re  F ( q )  is the Fouricr transform of ~ ( 7 . ) .  Using the Poisson equation we 
11;ave 

I 2?r 
U(r)  exp(iq . r )  d3x = - F(q)  . 

q2 
Hencc 

For forward scattering, B is srnall and so q is small also. Then 

:;illce as J' p(t3:,: - 0, l' ( ' : o s ~ ~ L + ~  0 . sin H rl'H = 0 ,  t,ll(: low(:st ortlcr t,c:riil for 

0 -+ 0 is 

p ( ~ )  (iq . r ) 2  d35 M 
6 

6021 

Use Born ;~pproxiillation to  find, up to a multiplicative constant, the 
rlifferential sc;tttering cross section for a particle of mass m moving in a 

(Berkeley) 
* 

Solut ion:  

In Born approximation we havc ( P r o b l e m  6013) 
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Solut ion:  

Let p be the reduced moves of the nucleon and the nuclcusl q = k - k' 
whcre k t l  k are respcctivcly the wave vectors of the nucleon before and after 
the scattering. In the Born approximation, as in P r o b l e m  6013, wc have 

- - 
4p2v; 

(sin qR - qR cos q ~ ) ~  , 
f i i  q6 

where (1 = 2k sin(H/2), k = Ikl = Iktl. 

6020 

A particle of mass *m, charge e ,  nlo lnc~~tu i r~  p sc:at,tcrs ill the c>l(:c:trostatic 
potential produced by a spherically syilllnct,ric tlistri1)ution of charge. You 
are given the quantity rZpd3x = A, p(r) d?:c bcing t#lic: c11;rrge iri a vol- 
ume element d3:c.  Supposing that p v;inishr:s rapidly as r - >  KI arid that 
J pd% = 0; working in the first Born approxirnatiol~, c:ori~pllt~c: the differ- 
ential cross section for forwartl scat,tcring. (That is % /0,ol whcre 0 is the 
scat,tnring a.ngle.) 

Solut ion:  

In the first Born approxima.tion, we 11;lve 

where 
0 2 p .  0 

q = k - k t l  q = 2k sir1 - = - sin - ,  kt  alid k 
2 h  2 

being the wave vectors of the particle before and aft,er the scattering, U(r) 
is the electrostatic Coulomb potential and satisfies the Poissioil equation 

V ~ J  = -47rp(r). 

Let 

b 
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where F(q)  is the Fourier transform of p ( r ) .  Using the Poisson equation we 

For forward scattcririg, d is small and so q is sinall also. Then 

as J' p t f i ' ; r :  - (), 1;; ( : ~ s ~ " ~ , + '  0 . sin 19 d0 - 0 ,  tllc 1owc:st ordcr tcrrri for 

6021 

Use Born nl)proxinlation to find, up  to a lllultiplicat,ivc corlstant, the 
#l~ll,:rential scattering cross section for a, particle of Inass ,In inoving in a 

. (Berkeley) 

: ;c,li~tion: 

111 Born approximation we have ( P r o b l e m  6013) 

2rn 
f (d) = - 0 J V ( ~ )  s i ~ ~ ( q r )  (IT , 



(a) Assuil~ing the bombarding energy is suficieritly high, c:alculate the 
scattering cross section in the first Born approximation (normalization is 
not essential), and sketch the shape of the arigular dist,ributioli, indicating 
angular units. 

(b) flow can this result be used to measure R ?  
(c) Assuming the validity of the Born approxin~atioll, if thc particle is 

a proton and R  = 5 x 10-13cm, roughly how high rnust the energy be in 
order for the scattering to  be sensitive to  R? 

( Wisconsin) 

Scattenng Theory and Quan,turn Tran,sitzons 

Solut ion:  

(a) Using Born approximation we have ( P r o b l e m  6013)  

vo 
r sirl(qr) dr  = - (sin qR - qR cos q R ) .  

q3 

where .I: = q R  = 2 k R  sin $ . 
Thc angular distributioil is show11 ill Fig. 6.4 

Fig. 6.4 

(b) The  first zero of occurs a t  :I: for which x  = t an  x ,  whose solution 
is x  E 1 . 4 3 ~ .  This gives 

1 . 4 3 ~  
R  = 

6'1 ' 2k sin - 
2 

By measuring the minirnurn angle S1 for which = 0, R  can be deter- 
n~ined. 

(c) In order that  R may be determined from the zero points of g, we 
require that  the maximum value of x, 2 k R ,  is larger than 1 . 4 3 ~ ,  or 
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Elastic ~cat~tcr ing from some c.ent,ral potentia.1 V may I)(: ad(:cll~ately cal- 
culated using the first Born approxiinatiol~. Exprrin~c!~it,al rc?sl~lt,s give the 
following general behavior of the cross src:t,io~i ;w a hlli(:tioli of iriornentum 
transfer q = Ik - k'l. 

Fig. (i.6 

111 t,errns of the pararnctcrs sliowri ill Fig. 6.6: 
(a) What is the approxirnatc size (c:xtc~~isio~i ill spa.cc) of t , l~e  pot,ential 

V? (Hint: Expancl the Borri approxinlatiori for tlic sc:;~t.tcring a~nplit,ude 
for snlall q.) 

(b) What is the behavior of t,he potential V at  very small clist,ances? 

(Berkeley) 

Solut ion:  

(a) The  Born approximation gives ( P r o b l e m  6013) 

where qfi is the magnitude of t,he mornentum transfer and q = 2k sin i. For 

9 + 0, 
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replacirig V by V, sorne average value of the potential iri  the effect,ive force 
range R. For a small momeritu~n transfer qo, we havc 

Thus ; ~ r i  approxirriatc, value of R is given by 

Not,c that I f  (rlo)l"s the nlcas~ircd value of %I,, for sorne small go, 
1 f (0)12 is tlir v;iluc: of $ for ;L S C ~  of siria.11 q0 extrapolated to q = 0. From 
thesc va11ic.s t,lie rffi:c,t,ivr rktrlgr of t,he potential can be cstimatctl. 

(1)) 111 viow of  t,li(: l)(,li;~vior of thr? sc:;~ttering cross sc:ctio~i for large q, 
we call SiLY t,lli~t t,lio Borr~ integral consists 111ainly of coritri1)utioris fro111 the 
region qr < T,  ont,sid(: whic:h, oil acco~irit of tlic os(:ill:~tio~i l)c:tw(:(:~l t l ~ :  
limits * 1 of thc s i~ ie  f~iiic:tion, tllc corltributioris of tlir: iritegrarid arc: iicarly 

! zero. Tlius wc! iir~ctl o~ l ly  c:o~isider the iritegral from qr = 0 to  T. Assuming 
V (r )  N 7.", ti)r sr11;~11 T, where n is to  be determined, we have 

t 

sin (qr) 
f ( s )  = -% J r 2 v ( r )  - d r  

qr 

- 
1 sin x 

- x 2 v ( x )  -- dx) . 
x 

A cor~lparison with the given dat,a gives % = 3 + n. Hence V bchavcs 
like T ( % - ~ ) .  

A convenierlt model for the potential energy V of a particle of charge 
q scatteririg on an aton1 of riuclear charge Q is V = $ e P a r ,  where aP1 
represents t,he screening length of the atomic electrons. 
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(a) Use the Born approximation 

to cnlculatc tlic scattering cross scction a. 
(b) How should n depcnd on tlir mllclear clinrgc Z? 

(Colvmbza) - 
Solution: 

For the olastic scatt,c:ri~ig, Ik( = Ikol = k ,  alitl lAk( = Ik-ko( - 2k sin !! 
2' 

H being t,lic: scatteri~lg ariglo. Thus 

Therefore 

(b) In tlic Thonlas-Fermi approxiinntion, wlic:n Z is large, thc atomic 
electrorls can I)(: rc:gardctl as a Ferrni gas. As snch i ~ l l  (:l~(:t,rori is iri a bound 
state in the atorn; its encrgy is lowcr than E ( w )  = 0. Tlien it,s rnaximum 
possible momentum p,,,,, at r must satisfy 

where d(r) is t,lie potent,ial at distance r from the nlicleus, sinc:c its energy 
is negative. Thus the Fermi momentum at r is 

pf ( r )  - p,,, (r) = [2m.ed(r)] 

'"I 
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For a Fcrrni gas, 
p f  = h(37r2n)1/3, 

where n is the number density. Comparing the above expressions we have I 

where Z c  is the nuclear c11;lrgc. As the atom is neutral, 

where a0 = h2/nt,e2 is the Bohr radius. 

6025 

A particle of mass m is scat,t,ered by a potential V(r) = Vo exp(-ria). 

(a) Find the differential scattering cross section in t,he first Born ap- 
proximation. Sketch t,he angular dependence for small and large k ,  where 
k is the wave nurnbcr of the particle being scattered. At what k value does 
the scatteri~ig begin to be significantly non-isotropic? Coinpare t,his value 
with the one given by elementary arguments based on arigular momentum. 

(b) The criterion for the validity of the Born approximation is 
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where A$(') is the first order rorrcction to the irlcidcnt plarlc wave $(O). 
Evaluate t,his criterion explicitly for the present potent,ia.l. What is the low- 
k limit of your result? Relate it to the strength of the attractive potential 
reql~ired for the existence of bourld states (see the st,atcment of I)roblern). 
Is the high-k limit of thc criteriorl less or Inor? rcstrictivr or1 the st,rength 
of the potential? 

(Berkeley)  

Solution: 

(a) Thc first Born approxilnatior~ gives 

where q = 2 k  sin (HI'L), qh bcirig the rnr~grliti~tl(~ of the, ~llonlc,r~t~lrrl transfer 
in the scattering. Hence I 

Thcl angular tlist,rit)ution n(B)/a(O) is plottcxl i r l  Fig. 6.5 for k:u = 0 and 
ka = 1.  

It car1 be seen that for k a  2 1,  the scatteri~lg is sig~lific:a~~tly non- 
isotropic. The angular monlentlirn at which only s-wave scatt,ori~lg, which 
is isotropic, is important must satisfy 

When ka N 1, the scattering begins to be sig~lificantly rion-isotropic. 
This is in agreement with the result given by the first Born approximation. 

(b) The wave function to the first order is 

Scattering T h ~ . o y  and Q u a n t u m  Transitrons 

The critcriori for the validit,y of the first Born approximation is then 

In the low-k limit, k:n << 1, t,he above becomes 

In the high-k lirnit,, ko, >> 1, the criterion becomes 



51,l Problems and Solutzons on Q ~ L U T L ~ I L T I I  Mechanics 

Since in this case k >> the restriction on (Vo/ is less t,lian for the low-k: 
limit. 

6026 

For an intc?rac:tion V(r) = or-' cxp(-cvr) find the cliffercrltial scattering 
cross scction in Born approximation. Wliat are tlie c:onditions for validity? 
Suggest one or more physic;il applications of this niodcl. 

(Berkeley) 

Solut ion:  
d 

111 Born :~pproxirnation, we first calculatc: ( P r o b l e m  6013) 

2 m  03 

f ( ~ )  = -7 / T'V (i) sin qr1 (irl 
h-q 0 

where q -- 2k sin ancl nl is the Inass of t,llc: partic:le, ail(] t,lic:rl the differ- I 

ential cross scc:tion 

The dclrivation is b;~std on thc assurnption that the intcract~on potential 
can be trcatcti as a perturbation, so that the wave function of tlic scattered 
particle call be written as 

V (r') Go (r') d3r' 

Specifically, we shall consider two cases, taking a as the extent of space 
where the potential is appreciable. 
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(i) The pote~ltial is sufficiently weak or the potential is sufficiently lo- 
c:alized. As 

for 1 << 1 wc rcquirc 

This 1lir:ans that whorc: thc poterltial is wcak enough or whcrc thc: field 
is suffit:ic:ntly loc::~lized, thc Bor11 approximation is valid. Note that tlic: corl- 
dition docs not involve the velocity of the incident particle, so that as lorlg 
as the i1itc:rac:tiorl potential satisfies this conditiorl the Born approximation 
is valitl for an incident particle of any energy. 

(ii) High c~lel-gy scattering with ka > 1. The Born approximation 
assumcs ,$o = cikz  and a that satisfies 

Let 4jl = ei" f (0, cp). The above becomes 

and so 

Then as 
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whcre ,v is the spcetl of the incident part,iclc, 1, = ~ n .  = B. 111. Tlrus as long as 
t,lie energy of thc inciclent part,iclc is large c?nough, t,h(: Born approxinlat,ion 
is valid. 

Froin the above results we sce that if i L  potential ficltl (:an 1x3 treated 
as a small pertur1)ation for incitlerlt particles of low cnt:rgy, it can always 
1)e so treated for iricitleilt ~)artic:lcs of high eiiergy. Tlic rc:vc:rsc, however, is 
not true. 111 thc prcsciit prol)lcrn, thc range o f  iritcractiori (:nil 1)~:  taken to 
be (L E $ SO that V(a) -- t .  Thc  conditioris thcii l)cc:o~~ic: 

(i) << $, 
(ii) I P  << fiu = $, where I. = @. 
The given pot,ential was used 1)y Y I I ~ L W ~ L  to  r-t:l)r(:s(:iit t h :  iiit,t:raction 

bet,ween two nuclei and explain the short rilnge of t,hc st,roug illi(:l~:i~~ force. 

Consider t,he sc:nttcririg of a 1 keV 1)roton t)y a liytlrogcri at,olil. 

(a) What do you cxpcc:t the aiigular tlistributiori t,o look like? (Sketch 
a graph ant1 commcrrt or1 its shape). 

(b) Est,imat,e the total cross sec:tion. Givc: i L  ri~iiri(:ri(:al ;~iiswer in cm2, 
m%r barns = lop2" cm" aild a reason for you answer. 

( Wisconsin) 

Solut ion:  

The problem is equivalent to the scat,tcring of a particle of reduced mass 
p = i r n ,  = 470MeV, energy E, = 0.5 keV by a potential w11ic:h, on account 

of electron shielding, can be roughly represented by $ e-'.Iu, where a is the 
range of interaction giver, by the Bohr radius 0.53 A. As 

tor Born approxirilation t,o be valid we require ( P r o b l e m  6026)  

Sincc 
1 3 

LHS = -- - 7.3 x 10- , 
137 

the coi~tlitioii is riot stric:t,ly sat,isficcl. But in view of the roughness of tlie 
estinl;ltcs, wc still rrlake ~ i s c  of t,llc Born approximation. 

I 

(a) Wlic~ii tlic: protoil c:ollidcs with the  hydrogel1 a.tom, it experiences 
a reIxilsivc Co~rloiiil) iritc:rac:t,iorl with the  nucleus, as well as an attractive 
one with tlie or\)it,i~l c:lcc:trori lii~virig t,hc appearance of a cloud of charge , 
density cp(r) .  Tlic potent,ial rncrgy is tlic:11 

Usiiig Borii ;~ l )~) rox i~~l ;~ t io r l  and t,he fkrmula 

dr' d r  
47r 
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For the ground state of the hydrogen atorn, we have 

Hcncc 

Taking into account the identical nature of tlic two c:ollitliiig particles 
(two protons), we have for t,he singlet stat,c: r r ,  = 1 f (0) -t f (T - 8)12, the 
triplet state: 0.4 = 1 f (8) - f (T - f))I2. 

Hence tlle sc:atteririg cross scctiori (not c:orisitl(:rirlg polarixt~tioii) is 

Sorrlc spec.i;~l cases arc c:orisidc~rc~tl t)clow. 
(i) 8 z 0: 

use having been made of the approxirnatiorl for a: = 0 

Scattering Theory and Q u a n t u m  Tmnsitzons 

as well as the expression 

(ii) 8 z T: A sinlilar ralclilation gives 

(iii) a2k2 sill" = 10 or 19 - 0 . 0 7 ~ :  For 0 . 0 7 ~  5 8 < 0 . 9 3 ~ ~  we have 

2 4 

wherc a 0  = $&. The angular distribution is shown in Fig. 6.7. 

Fig. 6.7 

(b) As f (8) + 03 for 8 + 0, 8 + T, to  estimate the total scattering 
cross section, consider the total cross section for large scattering angles 
( 0 . 0 7 ~  < 8 5 0 . 9 3 ~ )  and for srnall scattering angles: 
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cot 8 0 . 0 3 ~  

= 2nu0 [-In (tan :) - 2-1 1 
sin 8 0,07T 

6028 

The study of the scat,teririg of higli-t:ric:rgy clcct,rons fro111 iiliclci has 
yielded nlucli intt:rc:stirig inforinat,ion a1)out thc: charge tlistril)l~t,ioris in nu- 
clei ant1 iniclcoris. W(: shall hcrc considcr a. siin~)lc version of the t,heory, 

i r ~  which the "clcc:trori" is assurncd to 11;~vc zero spin. We ;~lso assume 
that the riuc:lcus, of chargc Ze ,  rernaii~s fixctl iri s~;L(:c (i.e., it,s rnass is as- 
sulncd illfinite). Lct p ( ~ )  dcllotc the cliargc clcrisit,y in the rnlclelis. The 
charge distribution is assuriicd to be sphcric:ally syrlinictric, t)nt otherwise 
arbitrary. 

Let f,(pi, p f ) ,  where p, is the initial, and pf  is the firlnl rno~i ic i~t~im,  be 
the scattering amplitude in the first Born approxiination for thc: scattering 

of an electron from a point nucleus of charge Ze.  Let f (pi ,  p f )  be the 
scattering amplitude, also in the first Born approximation, for the scattering 
of an electron from a real nucleus of the same charge. Let q = p ,  - pf  
denote the momentum transfer. The quantity F defined by f ( ~ . ~ ,  p f )  = 
F(q2) f,(pi, p f )  is called the form factor: it is easily secn that F in fact 
depends on pi and pf  only through the quantity q2.  

(a) The form factor F(q2) and the Fourier trarlsform of the charge 
density p(x) are related in a very simple manner: state and derive this 
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I-(.lationship within the frarneworkof the nonrelativist,ic Schrodinger theory. 
'I'he assuinption that the electroils are "nonrelativistic" is here made so that 
[he  prol)l(:i~i will appear as sirnple as possible, but if you think about the 
~na t te r  it will prot~ably be clear that the assumption is irrelevant: thc same 
result ;~pplics in the "relativistic" ca.se of the actual expcrirnents. It is also 
[.he casc that the nc!glect of t,hc c:lec:tron spin does not aE(:ct the essence of 
what wc: arc: hcrc co~lcernetl with. 

(b) Tlitr gr;~ph ill Fig. 6.8 shows some experimental results pertaining to 
(;he forin f;~c:t,or for t,hc proton, ant1 we shall regard our theory as applicable 
t.o thcst: d i ~ t i ~ .  On the basis of the data shown, compute the root-rnean- 
squaw (c:h;~rge) ratlius of the proton. Hint: Note that there is a simple 

relationshil) t)et,wcc:ii the root-mean-square radius and derivative of F(c12) 
with rc:spcc:t to $ ; ~ t  q" = 0. Fiiitl this relationship, and then compute. 

(Berkeley) 

Fig. 6.8 

Solution: 

(a) In the nonrelativistic S(:hrodirlger theory the first Born a.pproxirna- 
tion gives tlit: sc:;~tt,erir~g amplitucle of an electron (charge e )  due to a 
cent,ral force field as 

where q is the magnitude of the momentum transfer in the scattering. 
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For a point nucleus, the scattering potential crlergy is 

For a real 11uc:lcus of c,harge dcnsit,y p(r ) ,  thc scattering potential cnergy 

which satisfic.~ Poisson's equ a t '  1011 

Consid(:r th r  integral in the cxpressior~ for f :  

By a method duc to Wcnt.zc1, t,bi: lirst tcrni (::LI~ 1x1 rn;),ck: t,o vanish and 
SO 

- -- -- (- $1 [(U ( r v l f l  sir1 q ~ ,  (fir 

use having been niadr of Eq. ( 1 ) .  
In  the case of a point-charge nucleus, only the rcgion nrar r = 0 rnakes 

appreciable contribution to  the integral and so 

M 

4n Lrn r p ( r )  sin (qr )  dr = 479 1 r 2 p ( r )  dr = qZe 

Hence for a point nucleus, 

For an extended nucleus we can then write 

sin ( q r )  
f ( p i ,  P ~ )  = f e ( ~ i ,  P I )  . r 2 p ( r )  - -  4'7. dr 

By definition the form factor is 

This is thc rc$quired relat,ion with the Fourier transfornl of the charge 
density. 

(b) Diff(:rcnt,i;ttillg Eq. ( 3 )  with respect to q  we have 

1- cos (qr )  sin (qr )  

dq Z e  rlT 

and 1icnc:c 

To firltl & q 2 = 0  we first calculate 
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From Fig. 6.8 can be found the slope of the  curve F ( q 7  a t  q2 = 0, 
whence the  root-mean-square charge radius of the nucleus: 

In the early 1920's, Rnmsauc.r (and i~lcleperidciitly Tow~isc:ricl) t1isc:overed 
that  the scattering cross-section for elect,rons wit,li ;ill oiictrgy o f  - 0.4eV 
was very much snialler than gc:olnetrical (.ira2, with a tlic radius of t,lic: atom) 
for scattei-i~ig by argon atoms in gaseous form. It was also fouiicl tliat the 
cross section for 6-volt electrons was 3.5 times as grc?i~t ;is tlict gcoiiictrical 
cross section and that  the scattering was approxi~il;it,c:ly isotropic:. What is 
the  origin of the "anomalous" cross sectioris? (W1ia.t is t,licx nliixiilnil~i pos- 
sible cross section for scattering of low-cncrgy cl(:c:tro~is (wit.11 w;ivc:length 
X >> a)?  

(Princeton) 

Solution: 

If the attractive potential is strong c:iiough, a t  ;i ( ' ~ ~ t i ~ i l l  c:llorgy the 
part,ia.l wave with e = 0 llas exactly a half-c:yc:le rnorc of oscillatioli inside 
the a.tornic potential. T1ic:li it 1i;l.s n pliasc, shift of b = .ir arid so c:oiit,ributes 
riothiiig to  f (0) and hence tlic cross sec:tiorl. At low cncrgics, tlic: wavc:lengt,h 
of the electron is large (:ompared with (L so the 1iiglic:r-l! ~);irti;il waves' 
coritribution is also riegligi1)le. This acc:olints for tlic Rarns;~~icr-Townsend 
effect that  the  scatteri i~g cross section is very snlall a t  a certain low energy. 
For low-energy electrons, the ma.ximurn possible cross section for scattering 
is four times the geometrical cross sectiori. It should l)e noted that  a rare- 
gas at,oin, which consists entirely of closed shells, is relatively srriall, and 
the combined force of nucleus and orbital electrons exerted or1 nri illcident 
electron is strong and sharply defined as to  range. 
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Let f (w) be the  scattering amplitude for forward scattering of light a t  
a n  individual scattering center in an  optical medium. If the amplitude 

for incoming and out,going light waves are denoted by Ai,,(w) and Aout(w) 
respectively, one has A,,,,t(w) = f (w) Ain(w). Suppose the Fourier transfor~n 

Ai,,(:c - t )  = - eZ"(Zpt) Ain (w) dw 
JZ-rr . -m 

vanisllcs for :r: - t > 0. 

(a) Use the c:;iusality coriditiorl (no propagation faster than the specd 
of light c = 1) t,o show that f (w) is an  analytic function in the  half-planc 
Imw > 0. 

(1)) Us(: tlia ;iii;xlyti(:ity of f (w) and t,he realit,y of &(w) and A,,~(w), 
and assiirnc tliat f (w) is bo~irld(:d a t  infinity t,o derive the  dispersion relation 

Im f (w' + i ~ )  nc[ !(w -t- - f (o)]  = Wl(W12 w2) ' 

* 

with E ;irl)it,r;irily ~ ~ i i i i l l  arid positive. 
( Cl1,,1ca!/o) 

I 

Solution: 

( a )  A (  t )  = 0 for t < z means A,,,~(.L - t )  - 0 for t < 2. Then 

is a regular friiic:tioil when Im w > 0, since when r < 0 the  factor exp (Im w r )  
of the iritcgraritl converges. As AOut (w) = f (w) Ain(w), f (w) is also analytic 
when Im w > 0. 

(1,) For w + a, 0 5  argw < K ,  we have ( f (w)(  < M, soine positive 
numk)c:r. 

Assuriie that  f (0) is finite (if not we can choose another point a t  which 
f is finite). Thcn ~ ( w )  = is sufficiently small a t  infinity, and so 

x(wl + i0) 
dw', I m w > O .  

When w is a real nrlrnt)cr, using 
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we get 

A ,,, (w) being a real riuirlbcr means that A:,, (-w') = A ,,, (w). Hence 
o u t  ollt <,l,t 

f *(w*) = f (-w), arid so Im f (w t 10) = -1iri f (-w + 70), ant1 

wherc P denotes the ~)rincipal valut of the iiitegri~l. 

6031 
I 

A spin-one-half projectile of mass nl ;\rid ciicrgy E = $$ scatters off ' 
X 

an infinitely heavy spin-one-half target. Tliv iritt~rac,tioi~ Harriiltoriian is 

where u1 arid a 2  are the Ptiuli spiri operators of tho proj(:c:til(: and target ! 
respectively. Compute tlie diff(:rent,ial scattcriilg cross scc:tiori in lowest 
order Born approxirn;~tion, ;~vcragirlg over initial ant1 s~lriiriiirig over final 

! 
states of spin polarization. Exl)ress its a function of k ;sal tlit: scattering I i 
angle 8. 1, 

(Princeton) 1 ! 

Solution: 

Suppose that the projectile is ir1c:itlcrit ori the tzirget alorig tllc z-axis, i.e., 
ko  = ke,. In lowest order Borri a.ppi-oxirnation, tlie scattering ;~rnplitutle is 

-m 
== - A a l  . ~2 

ciqr' cos 0 

h2 
sin 0 d0 
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where cl = ko - k ,  q = 2k sin $ . Denote the total spin of the system by S. 
' rhen S = (u1 + u2) and 

For S = 0, u1 . u2 = -3h2 and 

For S = 1, u1 . u2 = 112 and . 
2Aln d a l  (2Am)2 

f l ( e ) = -  - 
p2 + (1" df2 (p2 + q2)2 ' 

1 
If tlic iriitit~l st ;~tcs of spin of the projectile arld target are ( 0 ) p  = , 

= CXT rcspcct,ivt:ly, then the iiiitial state of spin of the systcl~l is 8 1 1  = 
xbr. 

C Y ~ C Y T ,  tlir: s(:lttt(:rt(l wiivt: furlction is f l (Q)  + O i l ,  and the (:orresponding 
differerltial sc:;it,tering cross section is given by 

Notirig that the triplet stat,e vectors are 

the singlet state vector is 

arid that 
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we can obtain the remaining differential cross sections: I 

Averaging over the initial states (i) and surilrliirlg over th(: final states 
(f) of spin polarization, we obtain 
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Calculate iri the Born approximation the differential scattering cross sec- 
tioii for neut,ron-neutron srattcrii~g, assuming that the interactiorl potential 
responsi1)le for scattering vaiiishes for the triplet spin stat,e ant1 is equal to 

V(r)  = Vo for the siilglct spin state. [Evaluate the c:ross section for an 
uripolilrixed (randon1 spin or ie~~tat ion)  initial state.] 

(Bcl-keley) 

Solut ion:  

Tlic: Born approxiiiiat,io~i gives ( P r o b l e m  6013) 

Vo c p p "  sin qr dr 

- 
2,1rt,\<~ q 

- q = 2k sir] (Q/2) ,  
I1,'Lq q2 + p2 ' 

w1ic:rc: k is t,llc: \V;LVC v(:(:tol. of tlic relative: ir~otiori of t,lii: i~ t r l~ t ro l~s ,  ~ r r .  = m,,/2 
is t,hc: rocluc:c:il rili\.ss. 

As t,lii: spill W~LV(: fl~~lctiori of the spill sir~glet state is antisyrrimi:t.ric, its 
spi~t,ial W;LVP fi~l~(:t,ion ri~ust be symmetric. Thus 

Bci:ausn t,hc ~leutrons are initially unpolarized, the scattering cross sec- 
tion is 



P.r.obleit~s and So l~ l t ions  on  Quan,tunr. Mechan,ics Scatterin,g '1't~eory an,d Q u a n t u m  Trans i t io i~s  

6033 T i  $ we have 

The  scattering of low-energy neutrolls on protons is spin dependent. 
When the neutron-prot,on syst,ern is in the singlet spin state the cross section 
is crl = 78 x 1 0 - ~ % m <  whereas in the  triplet spill st,;~t.c: thc  cross section 
is 03 = 2 x 1 0 ~ ' ~  cm2. Let j1 a,ntl f3 lje tllc c~orrc?s1)oriding scntt,ering 
aniplitudes. Express your answers bctow ill tcrins of J1 a.rlc1 f3, 

(a) What  is thc total scat.tc:ring cross section for 11npol;irizc~cI 11c:lrtrons 
on unpolarizod protons'! 

(1)) Suppose a nc:utron which initially llns its spill 111) scattc?rs from a 
protoil which ii~itinlly has its spill dowil. W11;lt is t,l~c: prol);~l)ility t l l ;~t  the 
ncutrorl and prot,on flip tlieir spins? (Ass~iinc: s-w;~vc: s(:i~tt,(:ri~~g only.) 

(c) The H2 rno1ec:lilc c:xist,s ill two forllls: ort l~o-l~ytlrogc:~~ for wl~ic:l~ the 
total spin of the protolls is 1 ;~n t l  par;~-l~ytlrogoll for wllic:ll tl~c! to t ;~l  s ~ ) i r ~  of 
the  protons is 0. Suppose now a very low trilcrgy iic~~rt,roll (A,, >> (d), the 
average separation between the protons in tllc: iiiol(~c:ul(:) sc:;~ttc:rs fro111 sllch 
molecules. What is the ratio of the  cross scc:t,iol~ for scatt,c:rillg nnpolnrizcd 
neutrons fro111 unpolarizcd ortllo-llydrogc:l1 t,o tJhnt for sc:;~ttc:rirlg tlic:rl~ from 
para- hydrogen? 

(Bcr.kcley) 

3  - 3 3  f ~ ;  = J ~ X : : ,  f*X; = f 3 ~ 0  f X-1 = $ 3 ~ - I  I 

I 
fx-1 - flx'll 

i.e., thc cigttnv;~l~ic:s of f for the triplet and singlet spin st,ates are f3 and 
f rcsp(:ctivdy. 

Similarly, if wc tlefirle 

3 1 1 
f" - f;-t - f," +-(f," - fl")(un - u p )  

4 4 4 
f 

then Ĵ " has cigcnvi~ll~cs f: iln(1 f; for the  t,riplet ant1 singlet states, and we 

j can cxprcss the  t,ot,al cross sectmion for the scat,tering as rrt = 4n f 2 .  
Assr~nlc: tlic spin s t ;~ tc  of thc! i ~ ~ c i d e n t  neutron is 

cos p 
(1''' sin /j 

Not,(: 1ic:rc (2@, 2tr) arc thc pol;~r ;~~ lg tes  o f  the spin direction of the neutron 
1 

If t l ~ c  stat(? of tllc ~)ol;~rizod prot,oll is ( , ) ,  then the cross scction is 

c"" sir1 D f:'" sin /3 
. 

Solution: As 
(a) Tlic t,ripl(:t t~11(1 s i l lg l~t  spill ~ t i ~ t i : ~  of' it I I C I I ~ ~ ~ ~ I - I ) ~ - U ~ O I I  syst,t:111 ,:all 

respectivcdy t)c exprc:ssc:d ;is 

0 wit,h a = (h) ,  /3 = ((,. If we define an operator f by 

then as 

( o ) , (e-'" cos p) 
c"" sin ,O e'lQ sin ,O ,, 

= (pZCY cos /j e-'" sin p), 

cos p 
(ei" cos 0 8" sin @), 

gs0 = a, 0 Y /j = -in , a , P = - f l ,  = cos" - sin" = cos 2 p ,  
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(c) Let 
A - - 3f3 + f l  1 

F = f l + f 2 = -  
2 

+ 1(f3 f l ) u n S  
at - .ir ( 3 f i  + f12 - (f; - f;) cos 2 P )  

1 with 
cos 2Lj 

= {au3+-.l - ( a 3 - u l )  - 1 .  1 
4 4 s = , (up, + up, 

= (s,, + sP, . 

As 
Sirice t,he inciderlt neut,rons are unpolarizctl, c:os 2y = O arltl so 

1 
u,ay = %az ) :< 

a t = - u s + - a l .  
4 4 0. Y 0 = 7 , f l Z ,  

Bcc2~usc thc dirc:c:t,ioil of thc z-axis is arbitrary, t,hc: tot,i~l s(.i~tt(:riiig (:ross 1 
section o f  ~inpolt~rizcd protons is a.s thc same as that of ~)ol;~rizotl protoils. 

(1)) Th(: s t ;~te  vec:t,or bcforc: iriteri~ction is I 

The sc;~ttcrc.tl wavr is the11 

Hence the probability t,hat the neutron and proton 1)otll flip tkic:ir spiris 

aP = .ir (3f3 + f d 2 .  

111 this (.~LSC\, its t,li(,r~ is no preferred direction the cross section is inde- 
pci~tlcrit of the 1)olilriz;~tion of the incident neutrons. 

For ortho-liyclrogc~i1, S2 = l ( 1  + 1) = 2. Taking the proton states as 

(;)7,, (,37,A, llhirlg 

arid following the calculation in (a) we have 

u . s = c o s 2 p .  

Hence 

a 0  =.ir ((Sf3 + f1)' + (5f: - 2fl  f3 - 3 f12) COS 2P 

+ 2(f3 - f l)2}r 
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where 2P is the angle 1)ctween S and a,,. If the rieutrorls arc ~iril)ola.rixed, 
-- 

cos 2 p  = 0 and so 

where al and a2 are t,he Pilllli s1)iii ilii~t.ri(:(:s of t,li(: t,wo ~i(:~it;roiis. C o i i ~ p ~ i t e  
tlir tota.1 scat,tcring cross scc:tioii. Uotli tlic: iii(:i(l(:iit ;1ii<1 t,argt:t iic:~itroiis 
arc: u111)olarizcd. 

( C U S )  

Solution: 

Corisic1c:r t,hc prol)ltri~i iri t,ho c,oril)liiig ~.c:~)rc:sc:iit~;~t,ioii. Let, 

Then 

where S  - 1  or 0. It is noted that  a n  eigenstate of S is alsh ari cigc:iistate 
of V ( r ) .  For zero-energy scattering we nccd t,o c~orisidcr oiily thc  s pa.rtia1 
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wavc, which is symmetrical. The  Pauli principle thcn requires the  spin wave 
function t o  be antisymmetric. Thus  we have S = 0 and 

This rcslilt is indepcrid(:nt of t,hc polarizi~tiori of thc: liydrogc~i. T h c  mtio I 
wt, recluire is: 

"0 

PI' 
- = 1 + 2(f:3 - f l ) " ( f ,  + 3 f : 0 2  

Corisider a Iiyy)ot,lictical ~ie~it,roii-rlc:~itroii sc:;rt,tc:riiig a t  zc:ro t:ric:rgy. The  
in terxt ion potential is 

For s-waves, the wave cquation for r  < a  is 

whcrc ~ ( r )  = 7-4, 6 l)(:i~ig tlie radial wave function, k i  = 6 , r n ~ ~ l h "  and the  
solrit,ioii is ~ ( r )  = A sill ( kOr) .  For T > a ,  t,he wave equation is 

whcrc: ky - 9 E ,  ant1 tlic solritioii is ~ ( r )  = siri(klr + do). 
Tho c:oritiri~rity of T L  i ~ i ~ l  ,IL' a t  T = (L gives 

For E --t 0, k l  + 0 ail(] 

k. 1 t an  ( k l a )  + t an  60 
- tan ( koa)  = - 
ko 1 - t a n  ( k l a )  t,an 60 

+ k l a + t a n  6 0 ,  

t an  (koa)  = k l a  

For c:ollisioris of ideritical particles, 

= $ I 2(21 + 1 )  el6[ sin 61Fj (cos 8 )  I 
1=0,2,4 

C'orisideriiig only the s partial wave, we have the differerit,ial cross section 

4 . , . .  4 
a ( 0 )  = - sin d o  = 7 6; 

k? k  1 
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and the total cross section 

As tlie iric:idciit arid t,;~rget neutrons are u1ipol;lrized tlic: prot);~l)i l i t~ t,liat 
S = 0 (i.e., opposite spins) is a.  Hence 

A beam of spin-; particles of mass ~ I L  is s(.i~tt(:r(:d fro111 i i  ti~rgc:t (:oil- 
sisting of heavy nuclei, also of spin 112. Tlic iiit(:ri~(:tioii of i~ t,(\st pi~rti(:le 
with a nucleus is csl . s 2  h3(x1 - x2) ,  wli(:rc c is i~ siiii~ll (:oiisti~iit, SI alicl s2  
are the test particle and nuclear spills rc:s~)c:c:tivc:ly, ii.ii(l x i  i~ii(1 X% i~rc: t1it:ir 
respective positions. 1 , 

(a) Calculate the diff(:rential scatt,c:rilig cross sc:c:tioli, i~v('ri~gi1ig o v c ~  tlie 
initial spin sta.tes. What is the: t0t)a.l (TOSS scc:tioii? 

(1)) If the incidclit tc:st pi~rti(:l(:s i~l l  lii~vc: spill 111) i~loiig 1,11(: z-axis 1)ut 
the nuc:lei~r spiiis are oric.lited a t  ~i~lldolil ,  whilt is t,li(: 1)rol)i~l)ility t,lii~t i~fter 
scatt,c:rilig thct tc:st p:irt,ic:l(:s st,ill 1i;~vc spill 111) ;~.loiig t,lic: z-i~xis'! 

( P r l ; r r  cc t o,n) 

Solution: 

(a) As the nuclear target, ljeilig h c ~ ~ v y ,  i~c t s  its a fixetl s~:ittt(>rilig t:t~iltcr, 

the center-of-mass and 1al)oratory franlcs coinc:idc. Tli(?ii tlic: ccluiit,ioll of 
relative motion is 

As c is a small constant, we can employ the Born approxiin i~ t '  1011 
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usiiig tlic 1)ropt:rty of h(3) (r'). The tfiffc,rent,ial sc:attcriiig cross section is 

Av(>ri~gilig o v c ~  tlie initial spill states, the differential scattering cross 

Altcr.rrat,ir~c sol~rtio~l:  
Lc:t loI,) dc,liotc: the initial spin state of the incident particle. Thc: spill 

of t,lir: target is ~iii~)olarized, so its state is a "mixture" of (a) aiid (jj) st,at,es 
(iiot L's~iI)~:rpositioii"), el@) laN) + c2(t) lPN) .  Here C l  ( t)  xlld (:a(t) havc: 110 

fixc~l pliasc clifFcrc:iic:c:, ailti so the mean-square values arc c:ac:h 112. 111 the 
coliI)liiig rc+1)rc:x:iit,i~tiol1, the initial spin state is a niixturc of thc: st,;~tcs 
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After scattcring, the spill state of the syst,cm, with part of the nsyrnp- 
totic spatial states, 1)ccomcs 

%king the dot product of the differcnt Ix) statt:s with ) , I / J ) ~ ,  wc ol)t,;~i~i 
the correspondirig probability amplitudes, which are tallen addcd togt:tllcr 
to give the total cross section 

As cl ( t) ,  c2 (t)  t,arli has tlic ~llc~arl-scl~iart~ vallic i ,  wt. have. 

same as t,hat obtained before. 
(b) After scattering the two irrelevant spin states of thc systcrn are 

' I Scatterzng Theory and Quantum Transztzons 

I Averaging over the ensemble, we have 

I The pro1)ability that the test particles still have spin up is 

(a) Two identical particles of spin I 2 and mass m interact through 
a scrccncd Coulonlb potential V(T) = eL exp(-XT)/T, where 1 / X  is the 
screening lcngth. Consider a sc:attcririg experiment in which each particle 
has kinctic energy E in the cer~tcr-of-rr~ass frame. Assume that E is large. 
Thc i l~orn ing  spins are orierited a t  rando~n.  Calculate (ill the center-of- 
mass frame) the scattcring cross section for observation of a particle 

emerging a t  an anglc: Q relative to  thc axis of the incorning particles as 
shown in Fig. 6.9. 

outgoing 

2f' 
incoming inn 

Fig. 6.9 

(b)  Assuming that the outgoing particles are observed a t  an angle 0 
Taking the dot product of the two states with I$/), we obtHirl the tor- relative to the beam axis, what is the probability that after the scattering 

responding scattering amplitudes. Hence the scattering cross sec:tion is event the two particles are in a state of total spin one? What is the prob- 
N. 

ability that,  if one particle has spin up along the z-axis, the other particle 
1 

a"' = lci(t)I2 a i (Q) + 2 lcz(t)l2 1 [fl(Q) + fo(Q)] 1 ' .  also has spin up along the z-axis? 
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(c) How large must the energy be for your :~pproxi~natioils to be valid? 
Suppose that ,  instead, the energy is milch less than this. In thc liiliit of low 
energies, what is the probability t,hat after being sc::l.ttered the t,wo particles 
are left in a state of S = l?  

(Pr.in,ceton) 

Solution: 

I11 the CM fra.inc, tllc? rnot,ions of the two part,ic:lcs a.ro sy1111ric:tric:. The 
interaction is ccllliva,lcnt to  ;I pot,entiai centc:retl a t  t,lic, ii~idpoillt of tali(: line 
joining thc: part,ic:lcs. 

where p = 5 ,  7. 1)eilig tllc scparatioll of the two p;~rt,ic:l(.s. As t;ho c:ric:rgy E 
is large, we can use thc first Born approxiill 1~ t '  1011 

Thus 

Hcrlce the total cross section is 

2 (k"22X"2 + 3 ( k 2  cos 0)2 

[(PZ sill2 + A') (k2 cos2 - 2 + 

(1)) If t,hc: iilcidcnt particle is unpolarized, then the probabilit,y that after 
the: sc.a,t,t,cri~~g the two part;ic:l(:s ;Lrc in a state of total spin one is 

3 
a, 

.- - - - 3(k%os 8)' 
 IT^ (k" +A")" + 3(k2 cos 19)~ ' 

Tllc pro1);rl)ility that aft,ctr t,hc: sc:;~.ttoring 1)oth particles have spin up 
a l o ~ ~ g  t,lrcr z-axis is 

((:) Thc? E = 0 partii~l wave has the symn~etry  f (0) = f ( 7 ~  - 0). It lnakes 
110 c:o~it,ril)ut,ioi~ t,o t,hc S = 1 state,  while it is the main contributor to  the 
S := 0 st.;ltc. Thcreforc? t,he ratio of the scattering cross section of the S = 1 
st,;lt,c: to  that of thc S = O state is equal to  the ratio of the scat,tering cross 
soc%ioll of the P = 1 partial wave to that of the l = O partial wave. It tends 
to zero ill the low o1ic:rgy limit. 

All electron (rllass ,171) of nloment,um p scatters through angle 0 in a 
sl'ill-tl(:l>e11(1cnt ( a~ l ( l  parity-violating) potential V = e - p r 2  (A + Bu  . r),  
where p(> 0) ,  A, B are constants and a,, ay, cr, are the usual Pa.uli spiu 
nmtrices. Let be t,he differential scattering cross sect,ion, suillmed over 
fi11a.l spill st,at,es but for definite initial spin state, labelccl by the index i ,  of 
the i~icident elcct,ron. In particular, quantizing spin aloiig the line of flight 
of the incident electron, we may consider alt,ernatively: incident spin "up" 
(i =?) or "down" (i =J). 
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Compute and as  functions of p and 8 in lowest order Born 

approximation. 

(Prinxeton,) 

Solution: 

Let the incident tlirection of the clcctron hc alorlg the x-axis. In a 
diagonal representation of n,, the spin wavc fi1nc:tiori of t.he incitlcnt clectron 
lnay he expressed as 

Scatterrng Theory and Quantum Transitions 

where 

x [ A  + r'B (cos 8' + sin 8' e-ip')] rl' sin 0' dr' do' dcp' , 

e - i q ~ '  cos B' ,2  

12(6) = - - - c-"' (sin 8' eip' - cos 8') r13 
27rh2 fi 

x sin 0' dr' dB' dV1 

Let 11 be the lii~it v(:ct,or along thc r dirc:c:tiorl, i t . ,  n = (sill tl c:os cp, sir1 0 
sin cp, cos 8).  Then 

First consider $+: 

1 1 
= - (c:os 6' + sill 0 e-") (Y + - (sin 6, - cos 0) p , Jz JZ 

where ct: = ( h ) ,  ,D = ( y )  arc tklc cigerlstat,cs o f  n, irl Pauli's reprcsc:rlt;~.t~iorl. 
In first Born approxi~nation t,he sc:attering airlplit~id~: (inclutling spill) is 
given by 

j(e) 72 --- rn .-.qr1 ~ ( i )  $+ a:,' , 
27rh2 

where q = (pf - P), lq/ = q = 2 sin(0/2). This call be writt,cl~ as 

e-iqr' cos 6' e-pT'2 

'" I" l," e- iqr' cos 0' 12 1 
e-"T - I l ( B )  = - 7 

27rh a 
x ( A  + r' B cos 8') r I 2  si11 8' dB' dr' , 

or, int,cgratilig over 0', 

,,,I' e - p ~ ' 2  cos(qrl) dr' 

+ ---. - .  ,,,I e-pT'2 sin (qr') dr' 

we have 

m 
r1 eplLTf2 sin (qrl) drl = L 2 fi exp (-6) (2) , 

L* r1 <prf2 sin (qrl) drl  = 6 . exp (-2) , 
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6" r12 F - / L r ' 2  1 - 

Thus 

2m A 

and hence 

80, pm2 - = 112(6')1" - (12B2 
d fl 8,,,3jj,4 exp ( $ )  (A2+ -) ' 

The same results are found for $I-. 

A spirllcss cha.rgrd particle PI is bourld in a spherically synlmet,ric 
statc: whose wave ful~ctiorl is Gl(r)  = (7rn)-3/%-'.2/202. If a spi~lless~ 
nollrc:li~tivistic projectile 13 interacts with Pl via thc: (:outact potential 
V ( r  - r') = vob36"r - r'), c;~lcllla.te, it1 first Born :~.pproxi~nation, the 
arriplitude for thc: elastic scattering of P2 from the above bound stttt,e of PI 
(without worrying allout the ovc:rall normalization). Assulning PI is s~lffi- 
ciclitly m:tssive that its rocoil cxllc:rgy is negligible, sketch the s h a . p ~  of the 
arlglil;~r distril)~ltion o f  the  scattered projectiles. How does this shape 
ch i~ l l f i~  with l)ollll)i~.r(lil~g (:ncrgy, i~1111 how can it be used to determine the 
sizc of t,lir, PI bollntl st,at,c? What dct,ermines t,he minimum energy of P2 
n(,c:cssilry t,o IriciLsur(: t,his size? 

( Wisconsin) 

Solution: 

B(:(:~LI~sc Pl is v(:ry 11c:avy i~11(1 SO (:it11 \)(: (:011si(l(:r(:(l ~ L S  fix(x1, t , h ~  Schriid- 
ingor c:cll~:i.tioli of 1t2 is 

[ 5 V 2  + 1 dr'pl (r ') Vo b3h(r - r') ,$(I-) = E$(r) , I 
or 

- V 2  + vob"pl ( r )  
27n 

w1lc.r~ /)l(r) = l $ ~ l ( r ) ( ~  is the probability density of the particle PI a t  r and 
rn is t,he Illass of P2. Then Born approximation gives 

f (0)  cx : (9 )' 1' r1 exp ($ )  sin(qrl) dr' 

1 
cx Q exp [-i (yo)'] , 

and her~c:r 
(la - = 1 f (@)I2 = oo exp - - (qo)'] 
(if2 [ : 
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E increasing 

where k = E, a o  = a(H = 0). $$ vs. H for diff(:rcnt c:ilc:rgics ;Ire sliowrl in 
the Fig. 6.10. 

! 
When the incident energy is increased, will irlore ri~l)iclly cic:c:rc:ase 

with increasing 0. As 1 
3 

where c is a constant, a plot of 111 i ~g r~ i l i~ t  sin2(0/2) will givc ;L st,raigllt 
line with slope -2k2a2 = -2 ( f ) 2  a2, whic:h (:ail 1 ~ :  us(?({ to d(:tcriiiiric tlle 
size CL of t,he P1 k)o1111tl state. Tlio cxj~rcssiol~ for $$ doc,s rlot apI)(';Lr to 
iinjjosc ariy rcstric:tioii oil thc il~citlcllt cmcrgy, rxccpt where thc: valitlity of 
Born approximation, oil the hasis of w11ic:h tllc: c:xj)ressioll w;w tlc:rivc:ci, is 
coiicerilcd. 111 fwt  (P rob l em 6026), tlio valiclity of Born approxiiliation 
rcquires 

(a) State the electric-dipole selection rules for atoinic stat,es coilriectcd 
by emission or absorption of a photon. 

(b) Interpret the selection rule in terms of photon orbital angular mo- 
mentum, spin, helicity and parity. 
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(c) Make a semi-classical estimate of the lifetime of the 2p state of 
hydrogen, using the Bohr model and the classical formula 

for the power radiated by a particle of charge q and acceleration it. Express 
your result in terms of e, h, c ,  a  and w ,  where a  is the Bohr radius and w 

is the angular velocity in the circular orbit,. 
((1) Using the answer from (c), what is the width of the 2p state in 

elcctron volts? 
(Berkeley) 

Solution: 

(a )  The sclcction rulcs arc 

( 1 ) )  A photon llas orbital a,nglila.r momentum 0, spin 1, 1lrlic:ity f 1, anti 
ncgativc parity. Thc c:onscrvatioll of ;~rigul;~r ~liolnelltllln requirrs 

wliile tlir: c:oriservatioll of parity requires 

Therefore, 
A1 = $1, Am = *l, 0 .  

( c )  Classically, the power radiated by an electron of acceleration v is 

An electron in a circular orbit of radius a  has acceleration 

where w2a is given by 
e _ = mw2a .  
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whcrc R21 CY 7. C X ~ ( -  &). Thus the power ri~(lii~t(?d is 

For the 2~ state, 7~ = 2, 1 = 1, SO the averagc ratfius of the elcctroIl 
is 

1 
a = - 137~~ - 1 ( 1 +  I ) ]  = 5no,  

2 
where GO is tllc Bohr radius. This (:a11 also 1,c obtairlc:d i,y ;L (lircrc:t, iIltcgr;l- 
t,io~i 

J n;, . 7.2 (t7. 
a = = h0 , 

Rz, . T" dr 

111 a transit,ion to tlic groulltl state, thc ciir!rgy diff(:rc:llc:c? is 

1 1 JKI , )  and J K s )  are states with tlefiilite lif(:t,imes TI ,  = and 7s = - Y s 

al10 tlist,ilict rest energies 7nLc2 # ,rnsc2. At time t = 0 ,  a rneson is produced 
in t,llc (+(t = 0)) = (KO). Lct the probability o f  firlding the system 
itl state JKO) a t  tinle 1. be P,(t) and that of finding t,he systenl in st,ate 
( K O )  at t,imc t 11e p0(t) .  Fin.1 all cxpressioil for Po(t) - Po ( t )  in terms of 

ys, 7nI,c"ancl 7nsc2. N,:gl(:ct C P  violation. 
(Coh~7n,h,i.a) 

Hence the lifetime of the 2p state is 

The neutral K-meson states (KO) and IKO) can be exprcssed in terrns 
of states IKL),  iKs ) :  

Solution: 

SIII)~)OS(' t,hc K irlrsorl is ;t illetastable state of width I? a t  erlergy E O .  111 
thc rc:gioll of ellc:rgy 

i 
E = E o - - I ? ,  2 

itas W;LV(: fui~c:tio~l llli~y k)(: (:xI)I.(:ss(:(~ ;LS 

lKl,) exp (-irrrL(i2t/h) cxp 

Tllr [)rot);~bility of its being in the /KO) state at time t is 

Po(t) = l(h'Ol$(t))12 

,mLc2t /h  e - y L t / 3  + e-zmsc2t/h = - (c-  e - Y s t / 2 , 2  
4 

and tlic I)robability of its being in the K O  state is 

PO@) =\(KO \.ll,(t))12 

- - 
1 
- {c -~ ' . t  + e - ~ ~ t  - ~ ~ - ( T L + T S )  t / 2  COS [ ( m L  - ~ ~ 1 ~ )  ~ ~ t / f i ] }  . 
4 

Thus 

Po(t)  - Po(t) = ,-(r~+rs)l' COS[mL - 7ns) c2t/fi] 
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The energy levels of the four lowest states of an aton1 are 

Fig. 6.11 

and the transitioii rates Aij (Einstein's A c:oc:fic:icnt,s) for t,hc: i. --+ j tril.r~si- 
tions are 

Imagine a vcssol c:ontaillir~g a snhstalltial 11um1)cr of at,orns in tht: l(:vel 

E2. 

(a) Fintl thc ratio o f  t,he cllorgy t!rr~itt,c?d pt:r unit, tiinc for the E2 -> Eo 
transition to that for the E2 3 El tra.rlsitioi1. 

(b) Calculate the radiative lifetime of the E2 Icvel. 

( Wiscon.sir~) 

Solution: 

(a) The energy emitted per unit time is given by ( E L  - E,) AZI, and so 
the ratio is 

E 2 - E o  A20 7 12 
- - .  -- 

- 5.25. 
Ea -El A21 2 8 

(b) An atom a t  level E2 can transit to Eo or  El through spontaneous 
transition. So the decrease in the number of such atoms in the time period 
d t  is 

i.e., 

or, by integration, 

Scattering Theory and Quantum Transitions 

dN2 = -(A20 + A21) N2 d t  . 

N2 = N2o exp [ -  (A20 + A21) t]  , 

whcre Nzo is the number of iltoms at  energy level E2 at  time t = 0. The 
mean lifetime is then 

A hydrogen atorn in its first excited ( 2 p )  state is placed in a cavity. At 
what telnptrat~lrc of the cavity are the transition probabilities for sponta- 
neous and induced emissions equal? 

(Berkeley) 

Solution: 

The probability of induced transition per unit time in a cavity is 

and that of spontaneous transition is 

If they are equal, then we have 
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As for black body radiation Solution: 

T;rkc the direct,ion of the elect,ric field as  t,hc z clirectio~~. Then the 

pertrlrt)i~tior~ FIamiltorlian is 

ancl 

With 

A hydrogcrl itt'oni (with spiillc:ss cloc:t,ror~ i ~ ~ l t l  1)rot;orl) ill it;s grolllrtl st,irte 
is placed 1)c:twc:c:n thc: plat,os of ;L coild(:nsc:r i~11(1 s~ll)j(:rt,(:(l t,o i1 11r1iForr11 w(:;L~ 

clcct,ric ficltl 

E -= Eo c - " ~  O ( t )  , 

whcrc B ( t )  is the step fur~ctioll: 9 ( t )  = 0 fc)r t < 0 ;~11(1 @ ( t )  -- 1 for t > 0. 
Find thc: first order probability for the i ~ t ~ r i l  to 1 ) ~  in iLlly of t,h(: T), = 2  st,;~tes 
after a long timc. Some hydrogc?rlic: wave fullctiolls iu s1)llcric:;rl coortlinntcs 
are 

e-r./2ao 
421&1 I F- - sin B  eki4 Jizz$ a0 

A useful int,egral is Som xn caz dx - 
a"+ 1 ' 

( Wisconsin) 

Tl~c, r1o11-va.nishing matrix c:lc:mcnts of H' are those betweell stat,c:s of 
op1,ositc: pn.rities. Thus P ( l s  + 2 s )  = 0. Consider P ( l s  + 2p) .  

Thc: 2p stat,e is three-fold degcrlerate, i.e., 

(Zp, 7 r ~ ) ,  with 7 n  = 1 ,  0 ,  - 1 . 

For (rr~'lz\7rr") not t,o vi~~l ish ,  t l ~ :  rulc is Anr = 0. Thus 

-. - a- 4 fi nai J," J," J,'" exp (- T / n o )  

x r4 cos2 (3 sin 9  dr d(3 dy 



where wzl = (Ez - E l ) .  Hrncc the probability of the transition Jls, 0 )  4 

J ~ P ,  0) is 

2 1 5 n g e ~ ;  
P ( l s  + 21) = JC2po,15012 = 

31°h2 (r2 + w ; ~ )  ' 

Not(% that 

A diatomic molecule with equally ~llassivc: itt,olrls, c:ac,11 witli 111;~s~ M, 
separated by D is electrically polarizeti, rotating :il)o~it 2111 axis ~)c~r~)cntlic- 
ular to D and running through the cent,cr of Inass of tllc: ~nol(ic:ule. 

(a) Express t,he energy of the rotatio~l:il st,;it,o of thc ~ilolrc.~ll(? with irn- 
gular momentum quantum n~~rrlbc:r ,J in tcrlns of its nl(?(:hiil~i(:iil ~)ro~)(:l.t,i(:s. 

(h) What is the sc1cc:tion rnlc for c:lcctric: dil)ol(: r;idiirt,ion c:rnission from 
the molccule in orlc: of its rot,;it,ioil;tl stat,c:s'! (DER.IVE ANSWER.) 

(c) Deterrr~inc the frcqucric:y of thci c.lcc:tric: dipole radi;rtioll (:lllif;t(:d frorn 
the rotating rno1cc:ule as a f~l~l(:tioll of . J .  (EXI)~CSS itllSWcr as a filn(:t,iou of 
J, &I, D and arly universal cons tar it,^ t11;it rniry cwtcr). 

( B I L ~ ~ ( L ~ o )  

Solution: 

(a) As H = & J" wherc J is tlic total angular momcntlnl~ opcr:rt,or, 
I = M D q s  the monler~t of inertia of the nlolecule about the rotating 
axis, the energy of the rotating state of quantum number J is 

(b) The eigenfunctions of the rotational states are the spherical har- 
monic functions 7,. Take the z-axis along the electric field and consider 
the requirements for (j"ml'J cos B Ij'm') # 0. As 
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(Jffmf'( cos 0 J J'm') 

= u' ( J' + 1 - 7n') ( J' + 1 + m') 

(2 J1 + 1) (2 J1 + 3) 
6.10, J'+I 6mllml 

we require 

a J =  j" - j l=*l ,  

A ~ L  = m" - m' .; 0 .  

(c )  For tlic transition from cnergy level J to J - 1, we have 

giving 

(a) Find the energies above the bottom of the potential well of the 
ground state and first two excited states of a particle of mass m bound in a 
deep one-dimensional square-well potential of width e as shown in Fig. 6.12. 
Sketch the corresponding wave functions. 

Fig. 6.12 

(b) Calculate the matrix elements for electric dipole transit,ions from 
the first two excited states to the ground state, and explain any qualitative 
differences. [You need not carry out all the int,egration] 
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(c) Give the gcrreral selection rulc for electric tlipolc transit,ion l,ct,wc:cn 
ally two states in the system. 

( Wiscoi~~sin,) 

Solution: 

( i ~ )  Thc envrgy lcvcls of ttlc syst,crn arc 

Tlir. wave frlnrtioiis of cveii parity arc giw-11 1)y 

,$A(II:) = - cos - , whc:rc r), =. iL11 otltl i11tc:gc:r \i? 7LY2z 
The wave functions of odd parity arc 

n7lx 
$,(s) = fi sin , where n = ;oi (:v~:ll int(:g(:r. 

The ground state and the first two rxcitcd s t t~tc~s <LrcY rt~s~)c~ctivc~ly 

Thcsc wave fullctions are sketched ill Fig. 6.13. 

Fig. 6.13 

(h) The Einstein coefficient for electric dipole transition is 

Thc niatrix clement for t,he transition of an clect,ric dipole from the first 
excitcd state to the ground state is 

112 

='/ z cos - 7lx 1 sin - 2 ~ x  1 dz 
1 -112 

Thc 111;~trix clerrlcnt for thc transition of an electric dipole from the 
sec:ol~tl c:xc:it,c:d s t i~ tc  t,o the ground state is 

1 / 2  

(:1:):,1 = LLI2 ,I/); ( x )  :z?/)~ (x) (i.Z 

7l l. :37l:c 
z cos - ros --- d:c 

1 1 

Tht: st:c:o~itl ~ l i i~ t r ix  ~l(!ii i<!~~t ( x ) : ~ ~  is m:ro ~c(:~LIIs(:  t,he iilt,egri~li(l is a11 
otltl fiint:t,ioll. Thus the scc:or~ti c:xcitetl s t i ~ t c  cannot transit to thc: gro~lild 
stitto by c:l(:c.tric: tlipol(: t,ransit,ion. There is however no such restrict,ioli 011 

c1t:t:tric: tlipolo tral~sitior~ from the first excited state. 

((.) The 111i~t,rix c l~ l l l e~ i t  for electric dipole transition from a state k to a 
st.i~tc: k' of thc: systt-.m is 

If thc i~iit i i~l and final states have the same parity, the int,cgraritl is 
all otld hinct,ion and ( x ) ~ ~ ,  vanishes. Thus thc general selection rule for 
electric dipole: transition is that any such transition between states of the 
saiiic parity is fort)idtlcrl. 

Consitler x particlc in a one-dimensional infillitc potential well. Let the 
origin be a t  the center as shown in Fig. 6.14. 
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(a) What are the allowed cncrgies? 
(b) What arc the allowcitl wave fiinctions? 
(c) For what c1:i.s~ of solutions will a perturt~ing potr:ritial AV(:c) = kx 

have no first order cffect on the energy? 
(d) If transitiorls between states can occur 1)y tlipolc: radiatio~l, what are 

the selection rules'? 

( Wisconsin) 

Solution: 

(a) The allowed energies are 

(b) Thcre are two c,l:~sscs of allowc~d wave fiillctiolls, ant‘ of cvcll p~r i ty ,  

wherc n is an odd integer, arid one of od(l parity, 

where n is an even integer. 
(c) First order perturbation gives the energy as 

As AV = kx is an odd function, the diagonal matrix elements are all 
zero. This means that, as long as the wave function has a definite parity 
(whatever it is), there is no energy correction of the first order. Only for 
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states of mixed parities will there be energy correction arising from first 
order perturbation. 

(d) Electric dipole transitions are determined by (z) kk,. Since 

the selection rule is Ak = i l  

A particle of charge (1 moving in one dimension is initially bound to a 
delta fulict,ion potcnti;tl ; ~ t  thc origin. From time t = 0 to t = r it is exposed 
to a collstant electric: fietd EO ill the :c direction as shown in Fig. 6.15. The 
object of this pro1)lcm is to find the pro1)al)ility that for t > r the particle 
will 1)e fo~ind in ;in ~i~il)ouiid state with cilcrgy betwcm Ek and Ek + dBk. 

Fig. 6.15 

(a) Find t,he normalized bound-state energy eigenfunction corresponding 
to the delta fiinctiorl potential V(z) = -Ab(x). 

(b) Assume that the unbound states may be approximated by free parti- 
cle states with periodic boundary conditions in a box of length L. Find the 
normalized wave function of wave vector k ,  +k(x), the density of states as a 
function of k, D(k), and the density of states as a function of free-particle 
energy, D(Ek) .  

(c) Assume that the electric field may be treated as a perturbation. 
Writc down the perturbation term in the Hamiltonian, HI, and find the rna- 
trix element of Hl between the initial state and the final state, (0 I Hl I k). 

(d) The probability of a transition between an initially occupied state 
11) and a final state IF) due to a weak perturbation Harniltonian Hl ( t )  is 
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given by 

where ~ F J  = (EF  - El)/h.. Find a.11 expression for thc prol,;il)ility P ( E k )  
dEk that  thc particlc will be in a n  ulibou~itl state wit,l~ clic:rgy t~et,wec~i Ek 
and Ek + dEk for t > T .  

( M T T )  

Solution: 

(a) The energy eigenfunctiorl satisfies the S(:hrticliilgc,r t:clui~tiorl 

where E < 0,  or 

with 

Integrating this ecluatio~l fro111 E to  -+E, E 1)c'irlg ;in it.rt~itr;t.ry sillall 
positivc 11u1nhc:r and thcii Ictt.it~g F t 0, wc gc:t, 

Wt> also l~avc  fro111 the roilti~iuity of tlic wi~vc, fiiiiction at  .r = 0 

Thus 
4'(+0) GI(-0) 
-- - 

4(+0) I P ( - O )  
- -A,, . 

Solving t,he Schriidinger equation for x # 0 we get $(:L.) = Ccpkl"I .  
Then as $(x) = Ce-kx for x > 0 a.nd $(s) = Cekx for s < 0 wc liavc: 
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Tliv rilrrgy level for thc bound s ta te  is 

and t,hc: corresponding normalized eigenfunct,ion is 

( I ) )  If the, l u~hon~l t l  stixtcs (*an be approximately represented by a plant: 
W;LV(> ( , l k r  ill a o i~(~-( l imcr ls~ol~i~l  l ~ o x  of length L with periodic boundary 
colltlitloils, wc, llavc, 

II(!llc.(: 
271,7r 

k = - = k , ,  say. 
L 

Tlllis th(: ilorlllnlized plane wave function for wave vect,or k is 

Notc  tha t  tllc strate of energy Ek is t,wo-fold degenerate when k # 0, so  
t l c  1luiil1)cr of st,at,es with moment,a bet,ween p and p + dp is 

As k ,  1) i~11(1 Ek are  related by 

Hence 
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we have 

( c )  Treating i o  as a pcrturbationl the per turbat io~~ Haariltosian is HI = 

-qiox. Its matrix elenlent between the initial and firlal states is 

$1; (-qi0.z) $ dx 

(d) The perturbation Hamiltolliarl is 

0 ,  ( - o o < t  < 0 )  

0 .  ( r < t < + m )  

The transition probability at  t > T is 

we have 

Hence the probability rcquircd is 

P(Ek)  dEk = PI+F(~) D(Ek) dEk 

.- - 
( 1 ~ ~ ~ ~ ) ~ m ~ k i  J- ." (k; + 9)" 

6048 

Consider a two-level atom with internal states 11) and 12) of energy 
separation E2 - El = bzl. It is initially in its ground state 11) and is 
exposed to electromagnetic radiation described by E = Em (elwt + e-lWt ). 

(a) If w = w12> calculate the probability that the atom will be in the 
state 12) at a latcr tirnc t. 

(b) If w is only approximately equal to wl2, what qualitative difference 
will this inakc? Calclilate the same probability for this case as you did in 
part (a). 

( Buflal o) 
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Solution: 

Let 

The I-I~~~nilt,oriian call 1 ~ .  writtril as 

whcrc 
N' = -ex . E ,,,, ( c " J t +  (?---iwt) 

is the perturbation arising from the prc?sc:llc:c, O K  the: c:l(~c:troili;~gl~c:ti(: ri~dia- 
t,iori. The time-dependent Schrodingc:r f?(llli~t,ioll 

is to  be solved with the il~itial c:oii(litiol~ ( t  = 0) -1 ( 1). S~ipposc: 1.11(: sollition 
is 

It) = f!,(t) f!-l,w't 11) 4- C2(t) f 2 - - i w 2 t  12) 

with ~ ~ ( 0 )  = 1; c:a(O) -- 0. Siil)st,it\ltioll ill tht! S(:hriitliiigtrr c!(111;~t;ioll givcs 

the above simplifies to  

Multiplying the above equat,ion by (11 and by (21, we o1)tain 

(i lH1(j)  = (ciwt + ePZwt) hij , 

thc ;~I)ov(: (?q~ii~tioris bec0111(: 

wll(:rt: u2, -- - W ,  . If ErrL is sll~i~11, t l l ~  fast,-os(:ill;~t~ioii t,ernls can be 

rlcgl(,c:t,c:tl i~ i l (1  t,h(: (tcllli~tiolls writ,t,(:~~ as  

Eliliii~l:~t,illg (:I froin the above we find 

As It - 0) - / I ) ,  we have the initial conditions 

(a) For w = W Z ~  t,he above becomes 

whc~rc 61" ( ~ ~ 2 a 2 ~  = )nl~I ' .  
Thc solution is 

C 2  = A eZRt + l?e-'Ot 



566 Problems and Solu t~onc  on Quantum Mect~anzcs Scatterzng The013 and Quantum Transztzons 56 7 

The boundary conditions for c 2  give 
Solut ion:  

Diatomic molecular energy levels are given to  a first approxilnation by 

c . L ( ~ )  = -i -2 sir1 6 2 t  , whcrc . r ~  is an integer, M and R are the reduced mass and scparation of 
62 the two atoms. O n  the right,-hand side, the terirls are energies associated 

and tll(: pr0t)al)ility t,ha.t the ;itorn will t)e in th(; stat(, 12) tiIrlc t is with, rcspcctively, the electronic st,ructure, nuclear vibrational motion, and 

(b) For ul - W ~ I ,  t,ry a solutioll r.2 p L X t .  S~it)stitllt,io~l p,ivc,s 

rotation of the molecule. As 

wn+l , J  - wn,~ = fiw , 

thc vi1)r;itional lines ht~vc only one frequency, and so the 
to  vibr;~tion;~l tr;insit,iolls. The  rotational energy levels 

whcrc: 1 = hilIii2, ant1 thc sclcc:t,iorl rule ( A J (  = 1 givc: the 
tlic line arisirlg froin J + 1 + .J :IS 

where 
1 

X5 = - [ ( ~ 2 ~  -- W) k A] 
2 

with A = [ ( w z ~  - w ) ~  + 40',] '/~. The, t)olllltl;r.ry c.olldit,iolls for c2 tl111s give 

Ht111c.c: tllc prot)ability is For .I + .J - 1, tlic energy of the spectral line is 

In HC1 a number of absorption lines with wave nu1nt)crs (in c:irl-') 83.03, 
103.73, 124.30, 145.03, 165.51 and 185.86 have becii o1)scrvc:d. Arc t,lic:se 
vibrational or rotat,ional transition? If the former, what is t,lic c:har;~c,t,c:ristic 
frequency? If the latter, what ,I values do they corres1)ond to, ;i.ntl what is 
the moment of inertia of HCl? 

In that case, estimate the separation betwecn tlic r1uc:lei. 

( Chicuyo) 

lines are not due 

wave nuniber for 

which is proI)ort,ion;il to  J. The spacing of the neighborirlg lines A 6  = 
ti2 !$ A J  = is a constant. For the given lines we have 

6 = x ( c n )  Transition J + J - 1 A (i) (cm-') 
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The moment of inertia o f  the HC1 rnoleculc is ttierc.forc I 

Arr arl~it~rary (~li:i~itiilil ~ll(:~:llii~li(:iil s , y s t ( ~ ~ i ~  is il~it,iillly ill t,l~(: gro~iii(I s t ;~te  
10). At t = 0, a pcrt1irl)ation of tlic: for111 H 1 ( t )  = Hot: '/?' is iipplic:d. Sliow 
that a t  largo ti~rics tlic ~)rol)a.l~ility t , l~at  tllc: syst ,c~1 is i r i  st,;~t,c: I I )  is given 

1 ) ~  
I(~IHoll)l2 

where A,r is thc cliffcr~nce in energy of st:~tt,s 10) and 11). Bc s1)c~cific about 
what assulnption, if ~itlv, were ttlade arriving a t  your ronclusio~l. 

(Colu7nbzn) 

Solution: 

I11 the f i ~ s t  order prrturb,rtion method the transition prot)at)ility ;~lnpli- 
tude is giver1 by 

whcrc HLtk = (k'l H ' l k ) .  Tllcn 

wlic~ro AE - wlolt is tllc? cllc:rgy difference between the 10) and 11) states. 
Hcllc:c: the: ~)rot);~l)ilit,y t,h;~.t, t , l ~  syst,em is in state (1) a t  large times is 

It, 1121,s l)(~!ii : ~ s s l ~ i ~ ~ ~ : c l  ill t,lic ;~l)ov(! t,liat, 110 is very sn1;111 so t,l~at, first 
or(i(xr ~)(!rt ,~irl)i~t, ioi~ i11c>t,l1011 is a1)pli(:al)l(!. 

A ~);~rt,ic:l(: of c:li;~rgc: c is confinccl t,o a t,llrcc-tli~nensiollal cubical box of 
sitlc 211. Ail c:l(:c:tric: fic:l(l E given by 

is ; ~ ~ ) ~ ) l i c t l  t,o t,llc system. The vector Eo is perpendicular t,o one of the 

stirf;~.c:c!s of t h t  box. Ca.lculate to lowest order in Eo the probability tt1a.t 
ttic: c:h;lrgc?cl ~):rrtic.l(:, in the ground state a t  t = 0 ,  is excited t,o t,hr first 
t:xc:it,c:tl st.i~t,(: t),y t11~  time t = cm. (If you wish, you can leave your rrsult in 
tc,rn~s of ~)rol)rrly d(:fillcct dimensionless definite integrals.) 

(Bcrl;clcy) 

Solution: 

Rcl)lilcc the cu1)ical box by the potential 

dt' , 
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The zero order wave function of t,he partic:le in the box is 

Thc~ l  the grorlrld stat,e is 11 1 l),  t,he first cxcitetl states arc: 12 1 I ) ,  11 2 I ) ,  
11 12) .  Let E be in the rc direction, i.e., Eo = Eoe,. Thcn If' = e E o z c ~ " t .  
Calculate the 111;~trix e1rrnr:nts for t,hc t,ransitiorls bc:lwc>c:rr t,he gronrrtl and 
t,he first cxcitec-1 stat,es: 

emitting a photon in the -x direction. Assume that the nuclear excita- 
tion energy is much greater than the harmonic oscillator excitation energy: 
E* = (EOY1  - E,=o) >> fw. 

(a) What is the wave function for the nucleus after the photon has been 
emitted? 

(b) Writc an expression for the relat,ive probability Pl/Po, whcre P,, is 
the probability for t,he nucleus to be left in the state $no = $,(x) (bo. 

(c) Estirnatc numerically Pl/Po with E* = 840 keV and fiw = 1 keV. 

( M I T )  

Solution: 

(a) The Galilean transforrnatiorl (1 1 l(211 2 1)  = (1 1 11:r:Jl 1 2 )  = 0 .  

x' = :C - vt , t l = t  
Hence the transition probabilit,~ is 

p = 1 im (211~H'1111) ex11 (y) (it 1 2 ,  
where 

n2h2 4 j n 2 ~ i 2  
LIE=-  (2" 12 .+. 1" 12 - 12 - 12) = . 

8m0" 8,rri.02 ' 

Thus 

h." 

An "Al nucleus is bound in a one-dimensional harmo~iic oscilli~tor po- 
tential with natural frequency w. Label the states as $,,,,, = li,,(:c) $,, 
where yi,(x), 7n = 0, 1, 2, . . . , an eigenstate of the harmonic oscillator po- 
tential, describes center-of-mass motion and 4,(x), a = 0, l ,  2, . . . , is the 
wave function specifying the intrinsic nuclear state. Sr~ppose the ri~icleus 
is initially in the state $o(x) 41 and then decays to the ground state 4o by 

tr;irlsforrns a. wilvc function ,,!J(:I:, t )  by 

$(LC, t )  = <:XI) ( % - :; t' + 1: --- f L  x $(:I:', t') , 
"") '1 

w1ic:re v is the vc:locit,y of frame L' with respect to frame L arid is taken t,o 
bc! in t,lie z direc:tion, and M is the mass of the part,icle. 

By emitt,irig a photon of energy E* in the -x direction the nucleus 
acqnires a velocity v = in the x direction. At the same time it decays 
to t,he ground state $0. Thus initially (t' = t = 0) the nucleus has a velocity 
v arid is, iri its own frame of reference L', in the ground state $0. Hence 
after emitting the photon the nucleus is initially in the state yi given by 

in the observer's fraine L. 
(b) The probability t,hat the nucleus is in the state $,, = ,$,(x) 4, is 

= I ( n 1  exp ( i T x )  10) /', 
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where In) = I&(.r)). Using the crrat~on and destructron o1)erators a+,  a. I 
we ca.n express 

' I 
insidc thc "clectron cloud" lt forms a hydrogen-llke muoriic aton1 wltll the 
alurnlrlurll rlucleus The mass uf tlic niuon is 105 7 MeV. 

( i ~ )  C O I I I ~ I I ~ ~  the wavelcngt,h (in A) of the photoll ernitt,cd when this 
muorlic: atom dec;ays from the Sd state. (Slide rule accura.cy; r~eglcct nuclear 
motion) 

(1)) Coil~put~e t,he mean life of t,he above muonic atom in thc 3d  stat,e, 
taking illto ac:c:ollnt the fact t,hat the mean life of a hydrogen at,orrl in the 
3 d  stat,(: is 1.6 x sec. 

(Berkclcy) 

k Sollltion: 

(;I) For s l~o~~tan( :oi~~trnl ls i t ior ls  from thc 3d state, the largest probabilit,~ 
is for :3d -i 2y). 111 11onrclativist.ic: approximation, the photon energy is given 

by 

(11) Tlic: tral~sition p~obabilit~y per unit tirne is 
2 A cx u3 I I - ~ ~ J  I . 

For hytlrogcll-like atoms, as 

1 I cx - , w cx ,mz2, and so A cc m 3 ~ \  z 
thc? n1ca11 life of the mllonic atom in the 3d state is 

Consider the sit~at~iorl  which ariscs wherl a rlegat,ivc rnllon is c:apt,ured 
by an a.luminum atlorn (atomic rlurnbcr Z = 13). Aft,cr the muon gets 



A particle of mass M, charge e, and spin zero movrs ill an attractive 
potential k ( r2  + U2 + z2).  Neglect relativistic effects. 

(a) Find the three lowest criergy levels Eo, El, E2; in ~ i ~ ( . h  cnsc state i 

thc degeneracy. f 
j 

(1)) Suppose the particle is pcrturbetl by a small c:oilst;tlit ~l~agl~ct,ic: field 

of magnitude B in t,hc z dircc:tioil. Coilsidcrirlg only statrs with 1llly)er- 
turhed cncrgy E2, firld the pcrt~lrbatioi~s t,o the ciicrgy. 

(c) Suppose a snlall pcrttirbiiig pot<:ritial Az c:os w t  (:ILIIS(:S t,rarisit,ions 
alllorig the v:xrious stntcs ill (11). Using a convc:liicllt 1);~sis for tlcgrilcrate 
states, specify in detail thc: allowcct transitions, nr:glcc:tiiig ctfF(:c:t,s propor- 
tiolial to A' or higher powers of A. 

(d) In (c), suppose the particle is in thc groull(1 s t ~ t c  a t  tii~lc t = 0. 
Find the probability the energy is El a t  tilnc: t .  

(e) For the unperturbed Harniltoniarl, what arc: t,hc: (~oiist,;~lits o f  the 
motion? 

(Ilcr.kcley) 

Solution: 

(a) ThC Schriidil1gc:r ~ (~ l l i~ t i o l l  for tall(: l)ilrt,i(:l(? ill i L  ~ . ~ ( : t , i ~ i i g ~ l l i ~ ~  (:oor(lillate 
systcrn, 

can be reduced to thrcc cqtlatio~ls of the harrnonic osc:illator ty~)ct :~n(l the 
energy of the particle can bc written as a sum 

where 

w =  Jw, N = I + ~ ~ + ~ = o , I , z , .  

Therefore, 
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no degeneracy; 

three-fold degeneracy (d~ioo, ,d~oio, $001); 

six-fold degeneracy ($200, $020, $002, $110, $101, $011). 

In spherical coordinates the wave function is 

N bciiig related to the energy by 

and the degeneracy is fN = ( N  + 1 )  ( N  + 2) . 

(1)) For a weak magnetic field B in the z direction, the perturbation 
Hamiltonian is 

Then in spherical coordinates we have 
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where n ~ h  is the eigenvalur of L,. Thus th r  cliflcrcnt dc,gcnc>ratc states of 
E2 have perturbed cnergies: 

I t  is seen that  the degeneracy is partially dest,royccl. 
( c )  At time t = 0, H' = A:c cos(wt). Col~siclc:r t,ho tl~rc!c~-tli~~lc:~~sio~lal 

harmonic oscillator in the  rectangdar  coor(li11;~t(> syst0111. T11~1 first oreicr 
pert,urbat,ion gives, wit,h 1 being the ( ~ ~ ~ ~ L I I ~ I ~ I I I  11111111)er for  tall(: (:01111)011(:11t 
oscillat,or along the  x-axis, 

those bctwecn statcs for which 

(1~1) Botwncn tllc st,ates EO :i;\n(l El,  the  sele~t~ion r11hn allow o ~ l l y  tllc 
tralisition ,*"oo -r . d ~ ~ o ~ .  The probability is 

111 the) r~lic.roscopc. world, w ;inti w' are  usually very large. Only when w - 
w' will t11r :~l)ovc int,rgral 11 i ;~k~  i L  significant contribution t o  the integral. 
Ilc:llc:c~ 

'4"ill" \(wl - i.~) t /2]  
Plo = - 8 ~ ~ ~ f 1 ~  [(w' - w)/2I2 

or,  wlic:~~ t is lnrgc? c!~~ough, 

(o )  Tllc: ruc:rgy, angular moment,um, third component of t,he angular 
~ ~ i o l ~ ~ ( ~ l i t i ~ l l ~ ,  ;i11(1 parity are constants of the  motion. 

( a )  Supj)osc the state of a certain harmonic oscillator with angular frcx- 
q ~ l ( ~ ~ l ( . y  w is givrn by the  wave function 

Calc,ul;itc the average position of the oscilla.tor, (:c) ,  in this state and 
show that  the  time dependence of (z) is that  of a. classical oscillator wit11 
; ~ ~ ~ i p l i t u t l e  :co and phase 4. 
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(b) The I-Iarniltonian for a one-dimensional harmonic oscillator in a laser 
electromagnetic field is giver) by I 

p2 e p  H - - + - -  Eo  sill wt  - - 1 eEo.t: cos wt + - 1 7rswi:c2 , 
3,711 27n,w 2 2 

wlicrc wo, rn ancl e are thc a~~gr l l a r  frequcllcy, mass i ~ l ~ d  chargc of the 1 
oscillator, and w is the angular frcqucr~cy of thc racli;~t,iol~. I 

Assu~ne thc laser is turned on a t  t = 0 wit11 the  osr:illator in its gro~ind 
state ~ I O .  Treat thc elcct,romagrlc:tic interaction as i~ pctrt,r~rhatio~i in first 
order, arid find thct probability for any tirne t > 0  that tlic? oscil1;rtor will be 
found in orie of its excited s t i~tcs  +,,. 

Useft11 ir~forrnatiori: The norrrialized oscillator wave fiinc:tior~s ,41/7L(z) 
have the property that  

( Wisc0,nsi.n) 

Solution: 

(a) Addilig lip tlio two c~quatioris for (/,,, givcii ill tllc. clllcst,iori, wc, 1i;tve 

%In)= J/-(hln-l)+Jn+ll~~+l)). 

Hence 
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-- :co cos (4 -- w t )  

Tlllls ( : c )  is the sn11lc as that  for a c1assic:;il osc:illator of an~l>litutic: xo 

arid initial pliasc 4. 
(1)) Iriitially the oscillator is in tlie state ,$o = (0) .  Writing wo for W ,  the . . 

given aclllations for $,, give 

where jj = -iii 2. It follows that 

Thc  perturbation Harniltonian is 

f ir  =z - 
1  

e@ Eo sin wt - - e E o z  cos w t .  
27nw 2 

As (n I I )  = SnI1, HLO = 0 for n # 1. Hence Pno = 0 for n > 1. Consider 
Hio We have 



1 
Eo sin wt - - eEo :c cos wt 0 

2 I > 
2 cos w t  

-- 
-- 

w 

all(1 h(:~l(:t? tl1(: 1)rOl)iik)ility t,Iii~t t,h(: os~i l l i~tor  tl.iilisits t , ~  st,i~t,(: ,$1 tilllll t 

sin wt.' - o t  

What first-order radiative decay will de-excite this xtatc? Wh;lt is tlle 
forin of the decay matrix elemelit? What does it becoirrr if a + 0 ,  iilld 
why? 

( Wsconsin)  

Solution: 

The first-order radiative decay is related to electric dipolc tra~isitioll. It 
causes the state to decay to $(n  = 1, / = 1))  which is two-fokl drgmi~rilte, 

corresponding to rrl, = i;, 1 = 0. Tlic matrix c.lrlnciit for such an electric 
dipolc tralisitioli is given by 

I)c:c:;~.~lsc: of thc: sc:lcction rule Al -- 5 1  for the transition. Using noli-couplirig 
~.c~~)r(:sc:lit,iit.ioii 1)a.sic vc:ct,ors to d(:ilote the relevant coupling representa.tioi1 
l)i~si(' vc,c.tors wc have the, followilig final and initial states: 

H(:ilc:cl t,llc rloii-vanishing matrix elements of H i ,  are 
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where A = (1001 r 1200), e, is a unit vector along the z direction, 

~ E A  
e~ (1001 re, + ye, (211) = -- (c:z + ie 

3 u 1 

In the above we have used the relations 

r = xe, +:yey +ze ,  

= r sin 6 cos cp e, + r sin 6 sin cp el, j 7. (:oS o e ,  , 
~1001~1210) = (1001rI200) (e = 0, nl. = o 1 cos B / I = 1, ,,I, = 0) , etc., 

anrl the selection rules 

Am = 0 for the z-component of er , 

AWL = f 1 for the x-, y-components of c.r 

Thus if the parity of the 2 2SL/2 statc is dcstroycd by the inclllsion of 
t,he E term t,he electric dipole radiation would cause transitior~ frorn the 2 
2 S ~ / ,  st,ate t,o the ground state 1 2S1/2, the probability of such dc-excitation 
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being n: E ~ .  If E = 0 electric dipole radiation does not allow de-excitation 
from the state 

t,o thestate  Ij, n =  1, j = - 2 = 0 
2 '  

because the perturbation H' is a polar vector whose the matrix elements 
are nonzero only when A1 = k1. 

6057 

(a) The part of the Hanliltonian describing the hyperfine interaction 
t~ctwcrrl the, clcc:tro~l and proton in atomic hydrogcn is given by 

87r 
H r  = - ~ p ~  . p p b 3  (r) ,  

J 
1 

whc:rc: pi = zC Si is the magnctic rnorner~t and Si = ;Z ui is the spin of 
part,iclc: i (thc: u's arc. Pauli ~natriccs). Calculate the hyperfine splitting 
l)otwc:c~l the 1s 3 ~ 1  and I s  'So states of atomic llytlrogcn. Which state llas 
the lower c:ncrgy? Expl;iill why p1iysic:ally. 

(I)) Tl~c: vcctor potctritial of the radiation field emitted in a t,rarisition 
k,ct,wecn t,hc states in part (a) has the general form that,  as r -+ m, 

,i r - i ~ t  

X , 
7- 

whcre n is a unit vector along t,he direction of propagation of the radiation 
and {.) dcnotcs the matrix element for this transition. Show explicitly for 
each of the three terms whelhel- or not (.) is nonzcro. What is the character 
of the radiation emitted in the transition? 

( Wiscon,sin) 

Solution: 

Let the spat,ial wave function of Is stsate be ?,lo(r), the spin singlet state 
be xoo,  and the spin triplet state be X ~ M  (M = 0, f 1). 

(a) The perturbation method for degenerate states is to  be used, the 
pert,urbation Hamiltonian being 



czg,<,  
wherc B = % , ,LeT,Lr, r2 ailtl S = S, + S,, with S: = S2 = - It,. If 

I' I I 

'@o (T) illld $0 ( r )  ,yli~r ilr(: (:hO~011 t0  1 ) ~  t h ~  l ) i i .~ i~  v ( : ( ~ o ~ s ,  the11 HI is a 
tliagorial rilatrix. FCJ~ tllc: I s  'So cnc:rgy level, s = o 11.11(1 w(: hilvf: 

For thc Is 3Sl energy level, S" 1(1 + 1) ft? alitl wo Iiiivc, 

Hence the hyperfine splittillg is 

Thc  a l~ove  ca lc :~~I ;~ t , io~~  sliows t,llat tllc: siilg1c.t st&. ( ' S o )  tl;w h)wc!r c!n- 
crgy. 'l'hr rca.soli is 21s follows. Thc: iiit,c:l~sity of tJlic, fic:lrl ~)rotluc:c,(l l)y 
iL ~ni~.gnct,ic: d i ~ ~ o l c  d(!c:rc:i~scs ri~pidly witli ii~c:r(>i~siilg clist.i~~1(:(:. So fo r  t,Ile 
ma.gnetic dipole intcrac:t,ioli l)c?twc:cn tho o1oc:troll i~iid 1)rotoii w(: Iii~v(: t,o 
coiwider tlie case wheli thcy arc: very closc:. Whc:11 / I ,  is ~ ) i~ml lc l  to p,, t,he 
energy of the magnetic i11tcrac:tioll is lower (as E = -p  . B) thall when 
they are antiparallel. Sirice whell p, and p, arc pi~rallcl, S,: iillcl S,) are 
antiparallcl. Thc gap in singlet state has the lower erlctrgy. 

(b) For the  transition from the triplet state to  t l ~ c  sillglct s t ;~te ,  clue 
to  the vector potential A, as the terms for 2 and L do riot (:ol~t;~iil spin 
operat,ars, we have 
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xoo = \/a [(:)c ( ; ) p  - (i)?, (I] 
(i), ( b )  p 

= & [ ( : ) e  ( ; ) p +  ( : ) p  (91 
XL,-l = ( ; I e  (;I P 1 

2111(1 if w(? tmiLk(: til(: z-i~xis I)i~ri~lli'l t o  n t,hc z c:o~nponcnt of (a,) will con- 
Irilll~t.c: ilot,llillg t,o n x (u,:), t,li~is wc: have ctffrc:t,ively 

w1ic:rc: e,: ,  el,, e ,  arc unit vectors along the  x-, y-, z-axiwespectively. Hence 
( )  - 0 Notc: t,liat the direction of A is parallel t o  n x ( u , )  I t  is similar to  
tlic: vc:c;t,or l)ot,el~tial of magnetic dipole radiation, so the radiation emitted 
iri  t,li(: transit,ion 1ia.s the character of magnetic dipole radiation. 

6058 

Protoris ( ~ n i ~ g r ~ c t i c  moment p )  are in a magnetic field of thc forin 

B:, = Bo cos wt , B, = Bo sin ut ,  

B, = constant, Bo << B, . 

At t = 0 all the protons are polarized in the +z dirrction 

(a) Wtlat value of w gives resonant transit ions'? 
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(b) What is the probability for a protolr at  time t to  have, spin in the t 
, , 

where 
z direction? (Assumc Bo << B,) 

R2 = Ip2B2 + ( y  ) 2 ]  
h2 

- +PB,  , 
(Pr~r tce  t on) 

Solutioli: 

(a) As Bo << B,, B' = B,x+ B,y may be considcrcd as a. pc:rt~~rbation. 
Therl the ~lnpertur t~ed Hamiltoiiian (spin part) Ho = -/rB,rr, gives the 
energy differcrlce of the two states (A) and (7) with spiris along +z ;~rld --z 
directions as 2/1U,. Hence rcsonant transition occurs a t  ill~gtllt~~. frccllle~~(:y 
w - 2/"BZ/h. 

(t)) As 

B, B:, - iB?, 
= --P 

B, + iB, -- B, 

the Schrodir~ger equation can be writt,cxrl as 

wllcre a and b arc the pro11al)ility a~nplitlid(:s of the clcctrol~ with its spin 
oric:ntcd along +z and -z directions respcc:tivc:ly. 1,ctting 

one obtainsthe equations for f and g:  

Taking the time derivative of Eq. (2) and substitutir~g in the exy,ressions 

of g,  from (1) and (2), we obtain 

- 
Initially the protons are polarized in the +z direction. Hencr: If 1 = 1, 

g = 0 a t  t = 0. Then the solution of (3) is g =. A sin Rt,  where A is a 
constant. Assume f = B sin Rt + C cos Rt and substitute these in ( I ) .  

Supposing f = ,i at t = 0 ,  we have 

Hence 

Thus tall(: probal)ilit,y for thc protoils to Ii;tvc spill in the -z direction a t  

A piece of paraffin is placed in a uniform magnetic field Ho .  The sample 
contains many hydrogen nuclei. The spins of these nuclei are relatively 

free from interaction with their environment and, to first approximation, 
interact only with the applied magnetic field. 

(a) Give an exprcssioll for the numbers of protoils in the various mag- 
netic substates a t  a temperature T. 

(b) A radio-frequency coil is to  be introduced in order to observe reso- 
nance absorption produced by an oscillating magnetic field. What should 
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be the direction of the oscillating field relative to thc: st,eatly rnagricttic field 
Ho and why? 

(c) At what f reque~~cy will resonance absorptio~l 1 ) ~  ol)sc:rvc:d'! Give the 
units of all quantities a.ppearit~g in your expressior~ so t,liat t,hc frf,c111(:11cy 
will be given in mc:g;rc:yc:les per second. 

(d) 111 terms of tlic t,ransit,iori inrchariism of t,hc protoll spins, explain 
why the absorption of c~lcrfiy from t,he radio-frc:cluci~c-y tic:ltl tloc:s not tlis- 
appcar after a.n initial ~)lilsc, b11t i r ~  fact c:ont,irilics a t  ;I stc:atly rnt,c. Wh;rt 
happens t,o the absorl)tion r;rt,c? as the strength of' thc: osc:illi~t,ir~g fic:ltl is 
increaser1 to very l x g c  val~lc:~'! Explaii~. 

( CUS 
Solution: 

(a) As tlie spins of the hydrogen nuclei arc assl~rilc~tl to i11tc1r;tc.t o~i ly  
with the external field, the interaction H:rrriiltor~iar~ is 

taking the z-axis in the direction of Ho. T h c ~ ~ l  tllctrc. ilrr. two st;~tc,s J,s, -- i) 
and Is, = -+) with respcctivc c,rlcrgics 

whc:re g = 5.0: is ;I ( :OI IS~ ,~LII~  i~i i ( l  /LN tlic: 1111(:1(:ar 111trg?;lir:to11 - -  (:/I,/~,~II,~,C. 

Thc contlition for ~tat,istic:i~l ocll~iliI)rir~rri a t  t,c:iiipc:r;~turc: T givcls t,he 
~)robal)ilitic:s for ;I rlrlclcus to 1 ~ :  i r ~  thc two statcss 21s 

for Is, = i): 

for IsL. = -;): 

which are also tlie proportioris of prot,ons in t,he two stat,c:s. 
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(I)) Tlie oscillating magnet,ic field H1 must l)e perpendicular to  Ho, 
say along t,he z direction. This is becalise only if the: spin part of the 

FI;rrriiltoriia~i lias the form 

1 1 will t,l~c: 1ri;ltrix e1ement.s (s, = , I A 1 s, = - 2) and (s, = - I H 1 s, = 3) 
I)(: 11011-v;~iiishing and transit,ioris 11c:tween the spin states occur, siilc:e 

((:) Rc:so~~;rrice itl)sorl)tiol~ oc:curs only when the oscillating frequency 
sirt,isfic:s t,hc: c:o~itlitiori 

/ILL - E_ L/2 - , 

whc:rc> Ho is ill gauss. 
((1) Spill irit,c:ract,ions between the protoris tend to maintain a thermal 

ccluilil)ri~~ri~, so t,hat even if t,he external field variishes the magnetic int,erac- 
tioii bc:t,wc:oii a ~,rotori arid the magnetic field caused by other protons st,ill 
exist,s ar~tl  t,hc: trarisitions take place. When the external magrietic field is 
vcry st,rorig, t h t  absorption rate saturat,es. 

An clc:ctro~i is bouritl in the ground state by a ~mtential 
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which is independent of y and z. Find the cross section for absorption of 
plane-wave light of energy wtl, direct,ion k, polarizat,ion E .  Specify t,hc final 
state of the electron. Take 

( Wisconsin) 

Solution: 

As initially thc elcctrori ~novcs frecly in the 11, z tlirectiorls, its illitial 
state is giver1 by 

with 

The equation tbr p is tht. s:~irie as the ratlii~l ('qlli~t~i011 of a, hytlrogen 
atorn with l! = 0. Henc:~ the t:ncrRy st,atcs arc 

Thus the grountl (initial) st)a.te for z mot,iorl has erlcrgy alld wi~vc filrlc- 
t,ion 

rap2 El = -- 
2 h," 

where 

The condition h u  >> $ / E l /  means that the photon cncrgy is much 
higher than the mean binding energy of the electron and can therefore 
liberate it from the potential well. However, as tiw << mc2, this energy is 
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much lower than the electron rest mass and cannot produce electron pairs. 
So the electron initial state is 

$i ( r )  E (rl i) = Cpl (2 )  exp [i(k.F) + k.2) z)) , 

whcre k p )  = p , / / i ,  k te )  = p Z / h  are the wave nunhers of the electron in 
the y, z directions respectively, C = (L)' = if the initial-state wave a 
function is normalized to  one electron in a 2-dimensional box of sides L in 

the - z plane. The final state of the electron is that of a free electron 
niovisg in directio~r ky )  (direct,ion of observation): 

wlit.rc L q s  tht, 3-tlinic~nsioiial box ~lscd for riorinalizatio~i. The perturbation 
EI:~~~lilto~ii:~~l is 

where A is t,llc vcctor potential of the photon field and the charge of the 
olcctrori is c .  111 the above we have chosen the gauge V . A  = O and omitted 
tcrrris of ortlcrs higher than A2. Let the corresponding init,ial electric field 
be 

E = EE sin (wt - ki . r + 60) , 

where ki is tlie wave vector of the incident photon and E = {E,, E ~ ,  E,, ) is 
a unit vector in the direction of E. The vector potential can be taken to be 

as E = - $  g, and the pert,urbat,ion Hamiltonian is then 

e -ihe H ' - - A .  i,=- {exp [i(wt - k ,  - r + 60)]  
rr~c 2mw 

+ exp [-i(wt - k, - r + 60)]} EEV 
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In plroton absorption, E f  > E., a i d  we need t,o corisidcr only the sccond 
terrri ( the first term is for photo-emission); so the pe r t l~ rha t io~ l  I-Ia~niltor~ian 
is 

- i fte 
H' = -- exy j--i(wt - k, . r + So)] E E ~  

2711~  

For a plane electro~rlagiict~ic wave, 

Averaging over time we have 

Hence the number of incitlent ~)liot,olis c:l.ossi~~g 1111it iir(:a p(:r \illit ti111e 

Thc: d i f f e r~~ i t i i~ l  at)sorptioll (:TOSS s(:(:t,io~l for ~)l~ot,of>lo(:tri(: ('lf~(:t is giv(:n 

by 

where wi,f is the n111nt)er of clcctro~is in solid a.11gle rill which transit fro111 
the initial state to  final strates f ncar crltrgy E f  i r l  unit tirlic. First order 
perturbation theory gives t,he transit,ion probability per uriit ti111c as 

where p ( E f )  is the density of the final states per unit encrgy range. 

For nonrelativistic electrons, 

Scattering Theory c~nd Q I L ~ T L ~ ~ L T I L  ?i-ansi tro~~s 593 

v l i r r r  k y '  IS tlic wave number of the rlrctrons in tllr final states of energies 
Ilcar Ef, 

x rxp [i(kj;") 1, + k?) z)] 

-1 E 1) A )  ,?I + i I qI  (x) (1x1) [-,ik:) r i -  iki  1-1 

x <:XI) [i(k:,(,r)y + kit') z ) ]  

FI(~ric~c> t,llc, differential absorption cross section is 

111 above c:al(:ul;~tion, we have made the change of sy1111)ols 
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and used 

x exp [i?y (k,SQ + fX:,!') - kL f ) ) ]  d!/ 

Note that the two 6-functions express rnorncnttrrn c~orlsc~rvatior~ i r ~  the 
clircctions of y and z .  Also, energy conservation rc,cluirc,s 

The  b f i~nct io~ls  mca.n t11a.t thc: y :trld z c:ol~ij)or~c:rlt,s of k f  ;~rc: fixc:d, 
and so is t,llc: z cornponcnt of k  / .  Tllc p11ysic:i~l reasor1 why tl~c: h-fi~r~c:t,ions 
:q)pc?ar in thc: cxr)rcssio~~ for t l ~ e  tlif£c:rcr~tial ;~l)sor-)tion c:ross sc:ctioll is that, 

when a n  cl(:c:troll w1iic:ll has tlcfinitc: 1nolrlc:llta ill t,hc ;tntl z tliroc:tio~ls 
collitle with an irlc:idcnt ~>lloton which also has a dcfinit,o ~norncrit~uir~, c:rlc:rgy 
and n ~ o m e n t u ~ n  c:orlscrv:ltiorl la.ws rcquire t l ~ c  s(:i~ttcril~p dircCtioll of the 
electron in t,hc final state to be fixed. 

To find the total absorption cross section, we note that 

I Scattering Theorg and Quantum Transitions 

Then the total absorption cross sect,ion is 

( 2 )  

- - 87rae2kf $ [ & = ( k f  sin O f  cos cpj - k z  ) -  kc) - &=k2 
7 1 1 ~ ~  I + a2 ( k  sin 0  cos c p f  - k ,  ( 2 )  ) 2 I 

x sin O f  dBf dcpf 

( 2 )  ( " I  - & k ( e )  
- - 87r(1,e2 12T [ E z ( k f  sill O f  cos c p f  - kz  ) - ~ ~ k ~  

rnwck . I + t s v k f  sin o f  cos c p f  - k g ) ] 2  2 2  l 2  

( 1 )  

-. .- 
E , ~ ( - ( E ;  sin cos c p f  - kz  ) - &?/kg)  - E k ( e )  

1 + a2 ( k f  sir1 O cos c p f  - k t ) ) "  

2 2  1 2  

Jki sinZ o f  - (kg' + kF')z 
cos cp f = 

k f  sin O f  
7 

+ 

sir1 c p f  = 
k f  sin O f  ' 

Finally we get 

87rae2 
.a = - 

1 

' I ~ W C  Jkf - (k!) + k p ) ) 2  - ( k p )  + k 9 ) ) 2  



A syst,erri of two tlistirlg~lisl~ill~l~: spin-; 1);~rtic:lcs is tlosc:ril,cttl by tllr: 
Hainiltoriia~i 

(a) What are thc cncrgy levcls of' t he  systcill? Givc tlic: c.xplic:it for111 o f  

thc wave functions for the two lowest enc:rgy ltrvc>ls (yo11 11trc:tl 11ot sl)c:c:ify 
the norrnalizatio~i) . 

(b) The systern is in its ground st,at,c: ;~.t t,iino t -> M I .  AII O X ~ , ( T I I ; L ~  

time-dependent potential is applied w1lic:h I1;i.s tali(: for111 

wit,h J(t)  = 0 as It1 -t m. Dcrivt: ;L set of c:ouplo(l c:c~~i;it,ions for t,lie 
prok)ti,l)ilit,y ~ ~ i ~ ~ p l i t ~ ~ ( l ( r s  c, ,( t , )  = (,ti,I$(t)), wli(;r(: I,,),) ( l ( ,~iot (~s  ill1 (;ig(:i~st,:~tc 
of No iili(1 ,4(t) is t h ~  t,ii1l0-(1~1)(:ii(l(:lit, W;LV(\ fiili(:t,ioli. 

((:) Cal(:ul;i.tt! CT,(m) for tall(: casc: 

with << 1 arid V2 very siili~11. Work t,hroligll first, ortlr!r ill L5 i i ~ i ( 1  sp~(:ify 
clearly the  quar~t,urn nunit)crs for t,ho st;r.tcs. 

( M I T )  

Solution: 

(a) Let. 

T h ~ r i  thc H;liuiltoriian of thc syst,ern can be reducctl to  

m m' whc:rc: M - *rrL1 + m2, 1 = m,:T,$, S is t,he total spin. 
Not,(: th;at i r i  the expression for H, the first term is due to thc i~lotion 

o f  t,tl(: syst,clll as a whole, ttlc secorld and third terrns t,ogcthcr arc- thc  
Ii~riiiltoiiiiiri of i l  spinless isot,ropic harrnorlic oscillator, arid thc  last tc:r~li 
is clric: to tllc, spills of the particles. Hcnce the energy of the system is 

(%il(q-gy l(:vc:ls of t,hc: illtcrli;ll ~iiotioii, wc: sh;dl oillit thc? first term 

011 the, riglit-1i;~.~itl sitl(. of t , h ~  a1)ovt:. For t,lic grolliltl st;lt,o of t,hc: int,rrllal 
i ~ ~ o t , i o l ~ ,  ,t,, 0, S z::: 0 ;li1(1 

Writ,(: tllc, ~ ; i v ( >  fliil(:t,ioll ;is .y'jO = 10) ( Y O ( , .  For thc first c:xcitt:tl stnt,c, w(: 

si~liiliirly II;LVC 

Not(, t l i<~t  (0) is the wave f~lnctiori of the harrnon~c oscillator ground 
stat(. <111<1 (Y.~&I i\ the c o u p l ~ d  spin wave f\tnction. 

(1)) Lvt 
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and substituting it in the last equation we obtain 

- L E d  E,, t 
[Ha + V(t)] x C,e In) =i/ i  x C , , ~ - ~ T  In) 

71 TL 

E,,,l Multiplying t ~ o t h  siclcs by (rrcl c : l P ~  ;11lc1 surinnirlg ovcr 7n wc: get, 

which is the required set of couplecl cxlu, <I. t,' 1011s. 

(c) Denote the initial st,at,c by j000(~00), the final st,;it,c by l~r / r r t , c r .~~) .  
As 

a1 . x = sin H cos vrrl,. +sir1 8 sin pol!, + (.os O m l Z  ; 

UI,PI = - i a ~ ,  al,fl~ = -PI ; 

we have 

1 
a1 . ?ao0 = - (sin 8eaPal , -1  - sin 8e-"a11 + h cos 0010). 

fi 

Scattering Theory and Quantum Transitions 599 

Therefore, as Yll = sin 8 eiq, Yl,-I = sin 8 ePiq, Ylo = 

& cos 8, we have 

si11c:e e = 0 for TL = 0. T~I I IS  to first order perturbation the first term 

Vl f (t) a1 .Si irl V(t)  makes no c:or~tribntion to  the transition. Consider next 

where 
M 

hl = 1 R.,~ . Roo . r3 dr  = I" Rn2 Roo r3 dr  . 

For the three-dimensional harmonic oscillator, 11 = I + 272, = 2(1 + R,) 

= evcn. We havc 

( n l r n a s ~  (V(t)  (000aoo) dt 
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and 
! 7. MANY-PARTICLE SYSTEMS 

111 one di~nension, a particle of mass m is attracted to  the origin by a 
lil~(:i~r ti)rc:(: - k z .  Its Schrodinger equation has eigenfunctio~is 

i ~ ~ l ( l  £I,, is t11~ H(~r~iiit.(l polyliolr~i~~l of ordrr 1 1 .  The eigenvalues are 

C,!o~~si(i(!r two ~ ~ o ~ ~ - i ~ ~ t ( : r i i ( ; t , i ~ ~ g  ~ ~ i s t i ~ ~ ~ ~ ~ i s ~ ~ i ~ ~ l ~ l ~ ~  pi~rti(:l(!s (,i - 1, 21, (>;t(.ll of 
111;LSS l r l , ,  <!;L(:ll iii,tl;l(:t(?(l t0 tll(: Ol'igill i l  for(:(: -k:l;,,. writ,(, ( ~ 0 ~ 1 1  (!X- 

lx(:ssiol~s for thc: c i g c ~ ~ f i ~ ~ ~ c : t , i o ~ ~ s ,  c:igc:iiv;r.l~~c>s, 1~11(1 ( l( :gell( :r i i~i~~ for t h ~  two- 
pi~rt;ic:lc: sys t , c :~~~  ~ ~ s i l i g  (:ii(:h of' the f'ollowi~~g c:oortlinat,e systelns: 

(a) si~~gl(:-[)i~rti(:lc: c:oortliiia.t,es and :c2, 
(1)) rc:l;~.t,ivc. (:I: = :1:2 - :cl) a i d  cent,er-of-mass (X = v) coordinat,es. 

(A4IT) 

Sollition: 

(a) For t,llc: single-part,icle syst,em, t,he Hamiltonian is 
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The eigenfunctions arc 

with eigenvalucs 

where 

Using the singlc-particlc coordi~lates zl and z2, we wi-i(.c the I-Iarnilto- 
nian for the two-particle system as 

The energy eigenfunctions can be obtained as  th r  coiIiirior1 c:igeiifrinctions 
of {HI, Hz}, i.e., $(XI,  x2)  = +(XI)  $(z2), the corrcs~)orldi~ig rrriorgy 1)c:ing: 
E = El + E2. Thus 

1/1,,,,(~1, 2 2 )  = H,, ((Y~:~)H,, ,((Y:C~) (:XI) - -m2(3:: + :I;:) [ : 

The degeneracy of the energy levcl E!,~J,) is cqual to the numbcr of non- 
negative integer pairs ( n , n ~ )  which satisfy thc condition r~ + rn = N, i.e., 

(b) Using thc relative and center-of-mass coordinates z = 5 2  - and x - ~ I + z z  , we can write the Hanliltoniail for the systa~n as  

I Many-Particle Systems 

1 where M = 2m, p = 5m,  w = ($)'/'. As in (a) we have 1 

+,,,,(x, x) = H,(aX)H,, (OX) exp [ -- 1 ( a 2 X 2  + p2x2) , 

E::) = ( (7+++ 1)~iw = ( N +  ~ ) t i w ,  

I 
f ( N )  N +  1 ,  

whcrc 
Mw 

Considcr two ideritical liricinr oscillators with spring constant k .  The 

irltcraction potcnt,i,zl is yivcn b y  H = ~ 1 ~ x 2 ,  where :cl and x2 arc oscillator 
varialdes. 

(a) Find the exact cncrgy levels. 
(I)) Assnnie z << k Give the energy levels t o  first order in i l k .  

( Buffalo) 

Solution: 

(a) Tlie Hamiltonian of the system is 

where u2 = k. Setting 

we can write H as 
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Hence the  system can be regarded as consisting two indepelldcnt hZlrmonic I (b) Sllbstitution of II, - ze-""' ill the Schrodinger eqllation gives 

oscillations of coordiriatrs yl ,  yi. Thus, thc exact total energy lcvcls are I 

whcrc n', n = 0, 1, 2, 3, . . . . 
(I)) For E << k ,  the. cncrgy I(~vc~ls to first orc1c.r in e l k  arc 

(a) Write down the Hamiltonian ant1 S(:hriidii~gc:r (:(l11i~t,i011 for iL OIIF- 
dimensional harmonic oscillator. 

(b) If xepvxZ is a solution firld u ;~11(1 t h011 give thc (:IICI.~Y El ~ L I I ( ~  the 
expectation values for (s-), (2" ), ( p 2 ) ,  ( 1 ) : ~ ) .  

(c) Show that  for two ctqlinl pa.rt,ic:l(!s ill a siligl(: o1io-tlii11c:i1sio11i~l II:L~- 
rnonic oscillator wc:ll t,llc: g ro~ i~ i t l  stat,(: lliiLY I)(: writ,t,(\i~ ('it,h(:r ;LS d)()(,rr~, x l )  
x &(,rn, z2) or 

Solution: 

(a) The  Hamiltonian for a onc-tlirner~siollal harrrlor~ic. osc.ill;~tor is 

The sta.tionary Sclirodinger equatioli is 

~ h o s c :  solution is 

Fro111 thc syrrirnct,ry we know ( x )  = 0. The  Virial t,heorem gives 

To firitl ( p x )  wc first normalize the wave funct,ion: 
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Then consider 

Problems and S o l ~ ~ t i o ~ ~ s  on Q u a n t ? ~ ~ f r  Mechanics 

((:) The Schrijtlir~gcr cqliation for thc two-1);~rtic:lc systc:rii is 

Suppose $(xi ,  2 2 )  = 4 ( ~ 1 ) 4 ( ~ 2 ) .  The variables (.a11 I)() ~( '~) i~r i~t( ' ( l :  

with E = El + E 2 .  
Hence the system call I)(: c:orisidorc:tl ;is c:orlsist,i~lg of t,wo i(l(:~it~i(:i~l liar- 

inonic oscillators without coupliilg. Tllo grourltl st,;l.to is t,lic:i~ 

Oil tho oi.l~cr h:iild, introd~rcirig t.lic .Inc:ol)i c:oortlii~;l.tc:s 

the Schrijdinger equation br:coi~~cs 

Writing +(R, 7.) - d(R)p( r ) ,  it call also 1)c S C I ) ~ L I . ~ L ~ C ' ( ~  in tllc v;lriahlcs to 

I 
I Many-Partrcle Syste,ms 607 

where En + E, = E ,  with En, ET respectively describing the motion of the 
center of mass and the relative motion. 

Therefore the wave furlctio~l of the ground state can 1)c written as 

7004 

Corlsidcr two particles of masses m l  f mz interacting via the Hamilto- 

riian 

(a) Firid tlic cxact solutions. 
(1)) Skct i l~  tllr spc~rtrnrn iri tiic weak roeplirig limit K << L L W ~ ,  when, p 

is tlie rctlucetl Inass. 
(Berkelev) 

Solution: 

(a) Lct 

R =  ( m l x l  +m2x2)/(ml  + m z ) ,  = "1 - X 2  

We have 

and so 

and similarly 
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i 

We also have 

H z -  ti2 d"i,2 711,1 + 7 R 2  (12 
2(nrl  -I in>) (in" 2t?,171A2 (i7.2 

7111 + 7Ib2 
The equation of rnotivn beco~nes 

It  can be rechlcx!(l to two i~i(l(.p(:ild(~llt ( ~ ( i l l i ~ t o r  (?~l, lai~iul~s wit11 (Ili(!rgy s t i ~ ~ : s  
and wave filri(:tiorls 

. , 

and H ,  are Herinite polynomials. 

(b) For K << pw2 ,  if we can take 

This iii(~;~iis thixt t,he degeneracy of the N t h  energy level is N + 1 :  

t,lioli t,hc: c:ric:rgy levcls wit,h t,he same m. will move upward by 

an(l so t,hc degeneracy is dest,royed. 

A potc~itial has the for111 shown in Fig. 7.1, wliere V is very large but 
I i r ~ i l , ~ .  

(i) If a particle is vriginally in one of tlic: wells, give a forrnula for the 
ortlcr of rnxgnit~ide of the rate at  which it tunnels into the other. Do not 
attempt to calc~ilatc ilumerical factors of ord(:r unity. 

(ii) Sketch the wave functions for the lowest two states. 
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(iii) If two identical bosons with a small rep~ilsive force between the111 are 
placed in the  wells, write down approximate wave functions for the lowest 
two states for each of the  two cases where the effect of the inter-particle 
force is rnuch less and much greater tharl the effect of the fact thttt V is not 
infinite. 

( B c ~ k e l e y )  

Fig. 7.1 

Solution: 

(i) Denote the ground state hy i~lld tlic: first ctxc:it,cd st;lt,r. I)y 'Ci,,. $I 

is synlmetric about the axis of  syininotry of tlic pot(:ilt,ii~l wc:ll, is ailti- 
symmet,ric. Ass~llne tlie partic:lc is initii~lly irl  t,hc 1c:ft sc:ini-wcll ttnd writ,c. 
the initial wave function as 

(We can see that this is a gootf approxirrii~tion froiii tlie t1iagr;uil give11 in 
(ii)) Then 

i$(3-, t )  = [*le-l"lt/'' + tp j '~ t /h ] / JZ  

At time to for which e-"lto/h/e-t"2to/ '~ -- we have 

At this moment the particle is in the other semi-well (i.e., with a large 
probability). As -1 = el", this happens a t  time 

t i Many-Partzcle Systems 
611 

For V very large, it can be taken as infinite and 

Thus 

Hen(:(: thc rate of tunneliilg per unit time is of the  order 

(ii) The  wave functions of the two lowest states are sketched in Fig. 7.2. 

Fig. 7.2 

(iii) If the repulsive potential between the  bosons is much smaller than 
V, the wave functions of the two lowest states are approximately 

If the repulsive potential is much larger than V, transmission through the 
central potential barrier is very small, and the wave functions are approxi- 
mately 

7rh 
- 7r trtr 

to = - -  
Ez-El A E '  
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(;I) List all ~yininct~ries of this Sc11rijtli11gc:r crltt;it.ioll. 
(1)) Indicatr: all c o ~ ~ s t , ; u ~ t s  of 1ilotio11. 
(c) Inclic:at,c t,hi: for111 of t l ~ c  grou~ltl-state wiivc fi11lct.io11. 
You inny assnlnc tllilt t,l~c: grot~niI-stiit~(: wavc hlni:t,io~l of o ~ l ( : - ~ l i m i ~ ~ l s i o ~ ~ ~ l  

klar~rloriic: osc:ill;~tor is ii Gii~lssia~i. 

(Bcr.k(:l(:y) 

Sol~~tion: 

(a) The Schrodirlgcr equatio11 has synin1ctric.s wit11 r.c,spc~c:t to tJiruo t;r;il~s- 
lation, space inversion, translation of the wholo syst,c,rr~, a i ~ ( l  t,hct OX(:IL~LIL~(: of 

rl and r 2 ,  as well as symmetry with respect to t,l~c: Cri~lil(*;i11 t,r;~i1sfor111i~t,io11. 
(b) Let r = rl - rz, R = 4 (rl + r z ) .  TIK: S(:llr.ij(1iiigcr (:(~u;~t,ioi~ C ~ L I ~  

the11 be written as  

This equatiorl (:all I)(: sc~)ar;itetl into t,wo, o ~ ~ c :  for t,llc: 111ot,io11 of ii ~)i~rt,ic:l(, 
of rnnss 27n a t  tllc: c:c:r~tt,r of inass ~ L I I < ~  0110 for t h ~  ~ilot , iol~ o f  :L har~llo~li( .  
oscillat,or of niilss 7r1,/2 r('Iiit,i~c t,o tlle s(>(:orl(l  article. T11(: ~xlot,io~l of th(: 
ccutcr of Inass is a frcc: ~llotion, so that  P i ,  PC,  PI,, P,, Eli, Lft, L,,, L!,, L ,  
are all co~lst~ants of tllc ~ n o t i o i ~ .  Of thc rcl;ltivc ~not , io~l ,  E.,. , L:, L, , ;is w(:ll 
as the parity o f  the  wavc: filnctiou, arc const,a~lt,s of the nlotiori. 

(c) T h c  grountl-state wave f1111Ctic)ll 11;s t l ~ :  form ,(/)(R, r) = d(R)(D(r). 
@(I-) is the wave fun(:t,iot~ of a, t~a , r~nonic  i)scilliitor o f  ~ntiss y :  

wit,h 

a 2 =  g. 
@(R) is the  wave functiorl of a free particle of mass 27n: 

with 

Many-Part ic le  S y s t e m s  

Two iclcilticsl bosons, each of tna.ss m, move in the one-di~~~cr l~sioi ld  
h;~.rl~!o~lic: oscillator poterltial V = ;rnu2x2. They also interact with tach 
ot, l~cr viii t,hc potential 

q l l C ( ~ : l ,  52) = cre - p ( q  -12)2 7 

wllri-c, /.I is ;L positivr paran~ctcr.  Complltr the ground state energy of the  
syst ,( ,~~t to first (~rtlcr  ill thc: illtc:ritc:t,iorl strc:ngtll parameter (x. 

(Berkeley) 

The, pr:rturl);ition energy t o  first order in 0 is t>hen 

the illtcgration has been facilitated by the t,rarlsforlnation 

Ttle ground st,at.c energy of the  syst,em is t,hcreforc 
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I 

Many-Particle S y s t e m s  

A one-dimensional square well of infinite depth arid 1 a width contains 

3 electrons. The potential well is described by V =: 0 for 0 5 z < I A 
and V = +oo for z < 0 and 3: > 1 A. For a tcnipcrat~lre of T = 0 K ,  
t)he average energy of thc 3 electrolls is E = 12.4 cV ill tllc. ay)proxilnation 
that one neglects the Coulomh irlteractioll between c1cc:trons. In the same 
approximation and for T - 0 K,  what is tlic: average ciiclrgy for 4 el(:ctrorls 
in this potential well'! 

( Wisconsi,r~) 

Solut ion:  

For a one-dimensional potcritial well t l ~ c  crici-gy 1i:vc:ls arc: givc:~~ by 

El,. = E~ nL) , 

where El is the ground state energy and n = 1 , 2 , .  . . . P;iulils rxc:l~ision 
principle and the lowest energy principle req~iirc that two of the tlirc?c: (:lo(:- 
trons are in the energy level El and t.he third o l ~ c  is ill t.ho t:nrrgy l(:v(:l E2. 
Thus 12 . 4 x 3 = 2E1 + 4E1, giving El = fi . 2 c:V. For tllc: (:as(: o f  follr 
electrons, two are in El and the other two ill E2, ai~t l  so tllc avcrngc: c:iic,rgy 
is 

1 5 
E - - (2E1 + 2E2) = - El = 15.5 cV.  

4 2 
(Note: t,he corrcct value of El is 

Consitler two electrons rnoving in a central potential woll in whicl~ there 
are only three single-particle states $z and $:$. 

(a) Write d o w ~  all of the wave f~iilctions $(r l ,  ra)  for thc two-electron 
system. 

(b) If now the clcctrons interact with a Harniltonian SH = V1(rl, r2) = 

V1(r2, rl),  show that the followirig expression for the rriatrix clement is 
correct: 

($~~ISHI$IZ) =($~(~~)$I(~Z)IV~(~~,~~)I~~(~I)~I(~Z)) 

- ($1 (rl)$3(r2)IV'(ri7 r2)1,42(r1)$i(rz)) . 

(Buffalo) 

Solution: 

(a) The wave functions for a fermion system are antisy~umetric for in- 

t,erchauge of particles, so the possible wave functions for the system are 

(t)) We can writ,(? 

Siiicc the particles are identical, r l  and 1-2 may be interchanged in each 
term. Do this and as V1(rl ,  r2) = V1(r2, r l ) ,  we again obtain the same 
expression, showing its correctness. 

Two identical nonrelativistic fermions of mass m,, spiri 112 are in a one- 
dimensional square well of 1engt.h L, with V infinitely large and repulsive 
outside the well. The fermions are subject to  a repulsive inter-particle 
potential V(xl - x2),  which slay be treated as a perturbation. Classify the 
three lowest-energy states in t e r~ns  of the states of the individual particles 
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and statc t11c spill of each. Calculat,e (in first-order pnrturt)ation t,bcory) 
the eriergies of'second- and tl~ird-lowest states; leave yonr rc!s~rlt in tlie forin 
of an ir~tegral. Neglect spin-tlepe~~dcnt forces througllout. 

( Berkclcy) 

Solut ion:  

For the uripcrturl,eti potential 

0, X E [ O ,  L ] ,  
V(:c) = 

m, otlicrwise , 

the singlc-particle spatial wave func:tiorls ;Ire 

I 0, othctrwisc . 

where is an  integer. 
The spin wave function of a singk: p;~rt,ic:lo 11;~s thc Ir)rlll ( i ) .  
As we do not consider spin-dept.lld(~~t forc:c:s, thc wi~vc* f i l ~ ~ ( : t , i o ~ ~  o f  t , l~ r  

two particles can be writtcn as thc produc:t, of a sI)il(:c p ~ r t  i~li(1 iL sl)iil pitrt. 
The spin part y , j (M)  = y , , ~  is c:lloscn ;is the: ~ i g ~ l i s t i ~ t ~  o f  S ---- SL I -  S,J ; ~ 1 i c 1  
Sr = sir + 5z1, i.e., 

J = 0 gives tlie spin sirlglct st#:~t,e, which is n~~tisyinmetric for i~it,crc:l~irrlge 
of the two part,ides. J = 1 givcs tlie spill triplet stxtc, which is symmetric 
for ir1trrc:llange of t,hc two particles. Sy~nnlctrizirlg n~ltl  antisylr11nt;trizing 
the  space wave fur~ctior~s of tile two-particle systcrn wc have 

I Man?/ Po~trc le  S y s t ~ m ~  

Tht: corrc:spolltlil~g energies are 

The> t,otal w;~vc, fiinctions, which are antisym~netric, can 1)c writt,eli as 

T l ~ o  tlircc: 1owc:st energy states are the following. 
(i) Groulltl st,ate, 71, = 7 ) ~  = 1. The space wave fu~lction is symmetric, SO 

thc: spin stat,(: must 1)e singlet,. Thus 

(ii) First, c?xc:it,c:tl st,at,c:s, , I L  = 1, , I T ) ,  = 2. 

Tlic? (lrg~:l~(~r;~(:y is 4. 
(iii) S (~ :o i~ t l  c:xc:it,ctl state,  T L  = 2, 172 = 2. The space wave function is 

syll~l~lc:t,ric:, tlic: spill state is singlet: 

wt1ic:ll is no~idegenerate. Rec:ause the perturbation Hamiltonian is indepen- 
tlailt of spin, tire calculation of perturbatioll of the first excited state call 
1)c trcatctl as a nondegenerate case. The perturbation energies of second 
aild third lowest energy states are given by 
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A one-dimensional box of width L contains two spi~iless particles each of 
mass 7n. The interaction between the particles is describctl by a potential 
energy V(x1, z2) = a6(zl - 3 ~ 2 ) .  Calculate the grouiid state cxlcrgy to first 
order in a. 

(Cok~nrbia) 

Solution: 

Neglecting tlic 6-potential, we have 

Using the results for an infinitely deep potential well, wcl hitvc. 

- 
2 

- - L sin (?:I:') sill (;:c2) , 

For the ground stat,c, ,n = 1 = 1, 

Ell = tL%' / rn~ ' .  

Now consider the 6-potential as a perturbatioii 

H' = a6(x1 - z 2 ) .  

The correction to the ground state energy due to the pert,urbation is 

H' = ( 1 1 1 ~ ~ 1 1 )  

L 2 

= 1" 1 a6(zl - r2) s i 2  (Zx l )  sin" (Zx2)  (g ) dxl dx2 

Many-Particle Systems 619 

and the ground state energy is 

Two electrons at fixed positions on the z-axis have a magrletic 1 dipole- 
clipole interaction (energy) E = A(s1 . s2 - 3slZs2,), where si = ~ a i ,  ai 

l)t?iiig Pauli's spin matrix, A = constant. 

(a) Express E/A in terms of the total spin operator S = s l  + s2. 
(I)) State the eigenvalues of E/A and their degeneracy (statistical 

wc:iglits) . 
(Berkeley) 

Solution: 

we have 
3 s2 = (sl + s ' ) ~  = - 2 + 2s1 . S 2 ,  

1 
S: = (s12 + ~ 2 ~ ) ~  = - + 251 2 2 2 1  s 

and hence 
E/A = (sl . s 2  - 3 ~ ~ ~ ~ 2 ~ )  = (s2 - 3 ~ : ) / 2 .  

(b) For the common eigenstate IS, M )  of S and S,, we have 

Thus 
ISlM) EIA D(E/A) 

1170) 1 1 

Note that for states with M # 0, the energy levels are two-fold degenerate, 
i.e., D = 2. 



I 

I 

620 Problen~s und Solutzons o n  Q l~un t l~ rn  Mechanzcs Many-Partzcle Systrms 621 
I I 

7013 

(a) A 2-fermion system has a wave functiorl + ( I ,  2). What (:oritlition 
must it satisfy if the particles are identical'? 

(1)) How does this irnply the elcrnentary st;~tcnic:rit of tlic Pi~lili ~x(:l~ision 
principle that no two c1cc:troils i r i  ;in ;~torrl c:;~ri havc: idc:ritic:;~l cl11;~iiturn 
numbers? 

(c) The first excited statc of Mg 11;~s t,he corifig~iri~tiori (3s, 3 p )  for thc: 
vakence e1cc:trons. In the LS-c:o~ipling lirriit, which V;L~II(:S of L i ~ i l ( 1  S arc 
possik)ler! What is the for111 of t,hc s~)i~t,ial  part of t,hc:ir wave: fiiiic:tiolis lisirig 
the sirigle-particle functioiis ,$,(I-) arid Op(r)'! W1iic:li will 1i;~vc t,lic: lowc.st 
energy, arid Why'! 

(Dc:r.kclcy) 

Solution: 

(a) + ( I ,  2) must satisfy the condition of arlt,isyiririlc~try for i~itc~r(.li:~iig~ 
of the two particles: 

(b) In an atom, if  therc arc t,wo c.lc:c:troiis lli~vi~rg icl(!~it,ic:;~l (111;~1itliin 
numbers then +( I ,  2) = $(2, 1). Tlic: arit~isyirirr~ctry c:oiiclit,iori i~k~ovc: t,lic:n 
gives ,$(I, 2) = 0, irrl1)lying t,lli~t slrc31i a stat(: docs iiot (:xist. 

(c) Tlic clectron configliration (:Is, 3p) c:orrespond to 

Hence 

where 

Thc lowest energy state is 9:(1,2),  i.e. t,hc state of S = 1. Because the ~l ~ 
spatial part of the state S = 1 is antisymrnctric for the interchange 1 tt 2, iSl  1 ,  

the probability that the two electrons get close togcthcr is small, and so ' 1  
1 1  

the Coulornk) repulsive energy is small, resulting in a lower total mergy. ~ 
I I 

Two ~)articles, each of mass M, are bound in a one-dimensional har- 
rrioriic oscillator potential V = i k x 2  and interact with each other through 
a11 i~tt,ri~ctivc harmonic force FIZ = -K(xl  - 52). YOU may take K to be 
s11l;Lll. 

( i r )  W11;~t arf: tlic cr~.crgi(~s of th(: three lowest states of this system? 

(1)) If t,lic: ~);~rti(:lvs i~r(: i(l(:riti(:i~l i~ncl S I ) ~ I ~ ~ C S S ,  which of thc states of (a) 
;ire: :Lllow(Yl~! 

((:) If t,lic I)i~rt,i(.l(:~ ; L ~ C  i(l(:rit,i(:i~l i111(1 11;~vc: S I ) ~ I I  112, ~ h i ~ t  is t h ~  tOt( i~1 spin 
of c:nc:li of t,lic: st,nt,cs of (a)'! 

( W,isconsin) 

Solution: 

T l i ~  II :~rr i i l to~l i~~i  of the system is 

Lc,t [ = $(:rl + x2),  7 = I ( x I  Jz - 12) and write H as 

Tlic systern car1 k)c corlsldered as consisting of two inde~)erldcnt harmonic 
oscillators of angular frcqlicrlcies wl and Q given by 
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The total energy is therefore 

and thc corresponding tigeristatc is 

where rL ,  m = 0,  1 ,2,  - . . , and Y$))  is the nth cig~nbtat(l of ;L hiir~nonic 
oscillator of spring constant k.. 

(a) The cncrgics of the three lowc,st state's of thc systcm arc, 

(b) If the particles are ident,ical anti spinl(tss, t,hc wttvc: frlrlc:t,iorl r~lrlst, k~e 
symmetric with respect to t,hc interchange, of the t,wo partic.l(:s. Thrls the 
states (OO), (10) arc allowed, while t,he statc 101) is riot nHowctI. 

(c) If the particles arc: itlcrit,ical with spill I /?,  the tot,al waw: furlc:tion, 
including l)otah spi~t,i;\.l and spin, must hr  ;rr~tisynlrnctric with rc,s~)oc:t to rLn 
intercharlge of the two partic:lcs. As tlio spin hiic:tion for tot,al spill S = O 
is antisyrr~met~ric arid that for S = 1 is synlrl~ct,ric:, wc, h;~vf? 

S - 0 for (00) , 

A particular onc-dirncnsional potential well has thc following l~ound- 
state single-particle energy eigenfunctiorls: 

$,(x), $b(x), $ , ( x ) . . . ,  where E , < E i , < E c . .  . .  

Two non-interacting particles are placed in the well. For each of the cases 
(a), (b), (c) listed below writ,e down: 

the two lowest t,otal energies available to thc two-particle system, the 
degeneracy of each of t,he two energy levels, the possible two-particle wave 
functions associated with each of t,he levels. 

(Use $ to express t,he spatial part and a ket IS, m,) to cxprcss the spin 
part. S is t,lie total spin.) 

(a) Two distinguishable spin-$ part,icles. 
(b) Two ident,ical spin- a particles. 
(c) Two ident,ical spin-0 part,icles. 

Solution: 

As tllc two part,ic:les, eac:h of Inass M,  have no mutual interaction, their 
spat,i;~l wave frirl(:t,iolls separately satisfy the Schrijdinger equation: 

Thc equations nlay also be combined to give 

Corisidcr the t,wu lowest energy levcls (i) and (ii). 

(a) Two distinguishable spin-; particles. 
(i) Total cncrgy = E, + E,, degeneracy = 4. The wave functions are 

$,(XI) $ a ( x 2 )  10, 0) 7 

$,(XI) da(x2) J 1 . m ) .  (m = 01 5 1 )  

(ii) Total encrgy = E, + Ebl degeneracy = 8. The wave functions are 
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(b) Two identical spin-112 part,icles. 

(i) total energy = E, + Ea, degeneracy = 1. T h e  wavc fuiiction is 
,d),(x1)$,(x2) i0,O). 

(ii) total  energy - E, + Eb, degeneracy = 4. The  wavc fiulc:tioirs arc. 

(c) Two identical spin-O 1);~rticlcs. 

(i) Total energy = E,, + E,, degeneracy = 1. T h e  wiLv(' fiill(:tioll is 
$n(x1) $a(x2)lO,O). 

(ii) Total energy -I Eu + Ea ,  degeneracy = 1. T h r  wavc: fili~(:t,ioii is 

Two electrons move in a c:ciitral field. Corisicicr tlie electrostatic: iiit.or- 

action e2/ l r l  - r21 between tlic c1cc:trorls a 1)crtllr1):~tii)li. 

(a)  Fiild the first order energy shifts for tlu: states (t,c:rins) of tlic ( ls)(2s) 
configuration. (Express yolir answers ill tertns of ~iiipcrt,lirl)t:tl cluarltit,ics 
and matrix elements of the  interaction e"//rl - 1-20 

(b) Discuss the  symmetry of the two-particle wavc fi1nc:tioll for t,llt~states 
in part  (a). 

Fig. 7 .3  

((:) Sul)l)ose tha t ,  a t  time t = 0,  one clectroii is found t o  be in the  I s  
111l~)crturl)c:d state with spin up aiid thc? other elcctro~i in the  2s  unper- 
tiirt)c:tl s tate with spin down as shown in Fig. 7.3. At what t ime t will the  
occ:11patioii of the  states be reversed'? 

(Berkeley) 

So lu t ion :  

(&) ?']I(: zero order wave function of the  two electrons has thc  forrns 

l)c.illg tllo llorllliLlizC(i ~y~lllll(xt,ri(. (+) iiii(1 ;~~~t,isyiliiil(:t,ri(: (-) wavc fllllct,ions, 
,yo ~ L ~ L ( l  y ,  (i(!llot,c tall(; sillgl(;t, ;ui(i triplet, sl)in st,;ltos rcsl)oc:t,ivc:ly. Doiiot,irlg 

,~,,l,s(l)~t,2,s(2) 11, 2) ;LU(I 7,. ~,? (2 )  , o ~ , ~ ( l )  t)y 12, I ) ,  wc (:>~il writ,(: t 1 1 ~  al)i)v(: as 

U(:c.il.~lsc thci I)c:rtlirl):ltion Ha.rniltoniai1 is indepetldent of spin, we need 
~ i o t  c.oiisitl(:r ,y. Tlirls 

wllcrc A = (:";lrl - r21, K = (1,21 Al l ,  2) = (2, 1IA/2, 1) is tlic direct inte- 

gr;ll, J = (1 ,2 (A(2 ,  I )  = (2,1!A11,2) is t hc  cxc:hange iiitcgral. 
(I)) Tlic sing1c.t s ta te  xo is antisymmct,ric: for interc:lia,llgc of spins. The  

t,riplttt s tate is synlinetric for interchange? of spirls. Sinrilarly, 4+ is 

sylnmet,ric for the  interchatlge of rl and r 2 ,  ancl 4- is antisyn~metric for 
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the interchange. Hence the total wave function is always antisyrnmetric for 
interchange of the electrons. 

(c) The initial stat,e of the system is 

and so the wave function at t is 

when e-iE. . t /A/e-iE+t/h 
- -1, the wave filnctiot~ 11ccornc.s 

which shows that at this timt: the I s  clectron has spill (low11 and thc 2s 
electron has spill up i.e., the spins are rcvcrsed. As -1 - e"("'"+')" , , I L  = 

0,1 ,2  . . . , this happens at times 

(a) Show that the parity operator commutes with the orbital angular 
momentu~n operator. What is the parity quantum number of the spherical 
harmonic Km(O, cp)? 

(b) Show for a one-dimensional harmolric oscillator in state E,. = (n + 
i) hw that (As2),,(Ap2), = (n + i ) 2h2 .  

Many-Particle Sys tems  627 

(c) Consider the rotation of a hydrogen molecule Hz. What are its 
rotational energy levels? How does the identity of the two nuclei affect this 
spectrum'? What type of radiative transition occurs hetwecn these levels? 
Rcmember that the proton is a fermion. 

(d) Show that ( n  - m)2 = 1, where n is a unit vector in an arbitrary 
direction arid a are the Pauli spin matrices. 

(Berkeley) 

Solution: 

(a) Applying the parity operator P and the orbital angular momentum 
operator 

L = r x p  

to all arbitrary wave function f (r) ,  we have 

FIencc P arid L conlrnute, i.c., 

[ P ,  L] = 0 

the parity quantulrr number of Km(O, cp) is (-1)'. 
(1)) For s one-dimensional harmonic oscillator, we can use the Fock 

where a ,  a+ are annihilation and creation operators having the properties 

aln) = &In - 1) , 

a+ln) = m l n  + 1) . 

Using these operators we have 
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arid similarly 

(rtlpln) = 0 , 

Many-Pnrtacle Scysterns 629 

If K is cven, ( -  1) yKM, (0, cp) = YKMK (0,cp) and the  spin wave function 
~0 rnlist bc. antisymmetric,, i.e., xo is a spin singlet statc; If K is odd, 
( - 1 ) " ~ ~ < ~ ~ ~  (0, P) : -YKM,< (0, cp) and the spin wave hiriction ,yl must be 
syu~mctric,  i.c., is a spin triplet state.  The hydrogc:11 inolecule in the 

fornler (:as(: is c:alled a para-hydrogen, and in the lat,tcr casc is called an 
ort,ho-llydrogcn. There is no inter-conversion between para-hycirogen and 
ortllo-hytlrogcn. Transitions can t,ake place bet,ween rotational crlergy lcvc<ls 
wit,l~ AK .= 2 ,4 ,6 ,  . . . within each type. Electric quadruple transit,ions l i ~ i ~ y  
;~.lso occ:lir between these levels. 

((1) 

wc: find 

(c) Thc: r~t,i~.tioiiiil (:ric'rgy I(:w:ls of  a hytlrogc?~~ ~r~ol(tc,~ilo ;Lrc: givc:rl l)y 

where Io = AIR; is the rnoir~c~it of incr tk  of  t,hc nrol(:c~il(: a l )o~i t  t,licr rot,at,ing 
axis, which is perpendicular to the line corinectirig thc two il~ic:loi, K is the 
angular momentum quantum number, K -= 0, 1, 2, . . . . Sirlc:o thcl s1)iii of a 
prot,on is h/2, the total wave function of the rnolecule is ;~i~tisyii~r~iot,ric: for 
interchange of the two protons. When the two protoils arc iiit,cr(:l~i~iigc~l, t,he 
wave function for the motion of the center of inass and the wave, h~rrc:t,io~l for 
the atomic vibration are not changed; only t,he wave hlrrc:tion for rot,at,ion 
is altercd: 

Two part,icl(:s of irlass 7n are placed in a rectangular box of sides a > O 
> (: ill tllc 1owc:st ciicrgy state of t,he systern coinpatible with the conditions 
1)c:low. Tlic: 1);~rtic:lcs interact with each other according to the potential 
V - Ah(rl - 1-2). Using first order perturbation theory to  calculate the 
c:llc:rgy of tlic systcm under the following conditions: 

(a) Pi~rticlcs not identical. 
(1)) I(l(:litic;~l particles of spin zero. 
(c) I(icritica1 particles of spin one-half with spins parallel. 

(Berkeley) 

Solution: 

(a) Thc u~lpcrt,~lrl)etl system can be treated as coiisistirlg of two sc:parate 
single-particle systerr~s and the wave fundion as a prodlict of two sirigle- 
part,iclc wave functions: 

$(rl ,  r2) = $(rl)dl(r2) . 

The lowest energy state wave function is thus 
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I 
8 nx l  . m z  . TYI . nyz . xzl . xz.2 - sin - s ~ r i  ---- s m  --- sln sin - sin -, abc a n b 0 c c 

+o(rl ,  1-2) = 
f o t - O < x , < n ,  O < y ; < b ,  O < z i < c ,  ( i = 1 , 2 )  

I 0, otlierwise, 

corresponding to an crlergy 

First ortlcr prrt11rl)atiorl tlrcory givcs all c:llc:rgy c:ol-roc:t,io~~ 

and hence 
h2"' (l + 5 -+ 4) ?A E' = --- 

r r r  a"2 C J  &,,/)(*. 

(I)) For il sys tcn~ of spill-O partic:l(:s, the: total w;tvtr f r ~ ~ l c t i o ~ ~  r~illst be 
syrllrilc:tric for i11terc:hange of a pair of pi~rtic:lc:s. II(?~lc:c thc: 1owc:st c:llorgy 
stat,e is 

which is the siimr as that  in (a). Tllr: c:llc:rgy to  first orclcr pcrturl)at,iorl is 
also 

( c )  For a system of spin-; pa.rticles the total wave fur1c:tioll rrlust be an- 
t,isymnietric. As the spins are pa.rallc1, the spin wavr firr~ctioli is sylnmctric 

I and so the spatial wave function must be antisyrnrnotri(: As 5 < 
< 5 ,  thc lowest enel-gy state is 

Many-Particle Systelns 631 

where $ll l(r)  and $pzll(r) arc the ground and first excited single-particle 
sta,t,es respectively. The unperturbed energy is 

First order perturbat,ion theory gives 

A p o r p h y r i ~ ~  ring is a m o l c c ~ ~ l r  which is ~ x c s r n t  in chlorophyll, hemo- 
g1011, 1 o t l  i r o r t t  o o u n s  Sonic aspcc:ts of the physics 

of its ~r~ol(!c:uliir I)ro~)(:rtic:s (:all bc desc:ril)c:tl by rc:~)r(?seriting it as a onc- 
tli~nc~rsiorl;il cir(:tlliir pi~tl i  of radius r = 4 A,  along which 18 c!lcct,rons arc: 
c:oilstrairlc:tl 6 0  rnovo. 

(a) Write: (low11 t l ~ c  ~lorrrlalized olit:-particlc enc:rgy cigenfur~ctio~ls of the 
systclr~, assu~nirlg tliat t h ~  clectrons do not interact with each other. 

( 1 ) )  How rnariy electrons are thcre in each level in the ground state of 
th r  irlolt~c~llc? 

((:) What is the  lowest electronic excitation energy of the molecllle? 
Wliat is the  (:orresponding wavelength (give a numerical value) a t  which 
t,he 1no1ec:ule (:all absorb radiation? 

(Bedxley) 

Solution: 

(a) Denote the angular coordinate of an  electron by 0. The S(:llri5dinger 

The  single-valuetlnrss of +(8), $(0) = $(@ + 2x),  requires k = 0, + I ,  1 2  . . . . 
The  rliergy levels are given by 
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(h) Let 0,1,2,. . . tleriote the  energy lcvrls Eo, E l ,  E z ,  . . . rcspc:c:tively. 
In accordanc:e with Pauli's c?xc:lusion princil)l(:, Eo can ;~ccorrlrriotlatc t,wo 
olcc:tror~s of opposite spills, whilc Ek,  k: f 0, wllicli is 2-fi)lcl tl(:gcllc:rate 
wit11 respect to i l k ( ,  can ac:c:otrl~riotlatr four c:lcctrol~s. Thns t,llc\ c1lac:tron 
c:orifiguratioll of the ground st,t~tc of the systcrn is 

(c) The el(:c:t,roii c:oiifigurntioli of t,lic first c:xc:itctl st,at,c is 

The energy diffcrencc 1)etwccn E4 and E5 is 

arid the corresponding absorption wavelength is 

where = 0.0242 A is tlic Coiil~)t,oll w;~.vc~l(:rigtli of ol(rc:tro~l 

A 1;irgc i1urn1)er N of spiiil(:ss f(:rrlliorls of lilass 7n arc! ~)l;ic:ctl ill  a one- 
d i n ~ e ~ i s i o ~ ~ ; ~ l  osc:ill;~t,or well, with a rc:j)ulsivo h-fiinc:tiol~ ~)ot(?iitiiil l)ot,wcen 
cach pair: 

(a) In terms of norrnalized single-particle harmonic osc:illat,or fili~c:t,ions 
l/l,,(z), obt,airi the normalized wave functiolis and encrgic:~ for t,lic: t h e e  
lowest erlergies. What are t,he degeneracies of tlicsc levels'! 

(I)) C o r n p ~ ~ t c  the expectation value of zE1 3:: for cac:h of tlicsc:  stilt,^^. 

For partial crcdit, you may do parts (a) ant1 (k)) wit,h X = 0. 

(Berkeley) 

wl1c:rc. w - &/EL. 
(i) For tla: gn)uial st,ate: 7 t 1  . n N  are respectively 0 ,1 ,  . . . , N - 1, the 

Solution: 

(;,) Trrat tlle 6-function potenti;il as l)crt ,orl~~~tion. As for a syst,en~ of 
fcriLlioiis, t,llc: tot,al wave function is .z~~tisyln~not,ri(:, tla. 7,rro-order wave 
fllIic~t,ioii for tllc systern can be writtell as t,he cleterrllillallt 

$nl (XI )  n 2 . . . VITI. , (CJ; N ) 

(ii) k ) r  t,lic first cxcit,ed stat,e: nl - . 7 1 , ~  are respe~t~ivcly 0 ,  1, . . . , N 
2, N ,  t,lic, c.licrgy is 

1 
, ...7L, (:c] ' ' . X N )  = - Jhr! 

, q ~ ~ ~  (21) ( 2 )  . . . ' $ 7 ~ ~  (ZEN)  

1 
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(iii) For the second excited state: nl 7 1 ~  are respcctiv~ly either 0,1, 
N - 2 , N + l , o r O , l , . . .  N - 3 , N - 1 , N .  Theenergyis 

Fiw 
E ( ~  ,... N - 2 , N ~ t l )  = E(o,I ,... N-3,N-I,N) -- -(N f 4 ) ,  

2 
arid the corresponding wavc filrlctions are 

It can be seen that the ground and first excited states are no~~(l(:g(?~icrate, 
where the second excited state is two-fold degenerat,~. 

(b) For stationary states, 

we have 

The virial theorem 

(T) = (V(z1 - . . xN)) , 

then gives 

Many-Particle Systerns 

Hencc 

whcre lo), 11), 12), alld 12') are the ground state, the first excited state and 
thc two stcoud excited states respectively. 

What is the tnergy difference in eV between the two lowest rotational 
lcvcls of the HD molecule? The HD (D is a deuteron) distance is 0.75 A. 

(Berkeley) 

Solution: 

The rotational energy levels are given by 

Thus for the two lowest levels, 

As the mass mn of the deuteron is approximately twice that of the hydrogen 
nucleus mp, we have 

and hence 
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Consit1t:r tho (hornonl~c:l(~ar) 1nol(:c:111(: Ni" .  USO th(: fii(:t t , l~ i~t ,  a. ~iit,ro- 
gc:11 11uc:lc11s has spill 1 -- 1  i l l  or(lcr to (IcI.Iv(: th(: r(:slilt thiit th(: ri~t,io of 
illtcr~sitics of ac!ji~t:tint rot,atioili~.l lir1c:s ill tlic: rr~olcc:~rl(:'s ~1)(l(:trll111 is 2: 1. 

( Cllicclgo) 

Solut ion:  

In the adiabatic approxirnation, the wavc ft~nc:tior~ of N2 11101(:(~11(: whose 
center of mass is a t  rest can be expressed as the pro(111c:t of tho c~lo(:tr-ol~ wave 
function +,, the total nuclear spin wave func:tioi~ ,(/I,, t,l~c: ~il)ri~t, iol~;l , l  wilve 

function ,Go, and the rotat,iotlal wave fii~rct,ior~ t ; l~ i~ t  is, = ,f/i,,~/i,~,lj '~),d~. 
For the molecular rotat,ional spectr~rlr~,  t;lio WiLVt! f i ~ ~ ~ c : t i o ~ ~ s  of tall(: ~ : I I o I - ~ ~  

stat,es involved in the transition hi~vc tho S ~ L I I I ~ :  (ji,:, , ( l ~ ~ ) $  l)llt (lifK(!r(:~~t I / ] , . . ,  .diI. 
For intercllarlgo of t,llc: nit,rogc:r~ 1111c1ci, wc h i w ~  ,~/',:(/1~) -) $,:,(/illiO or --$<.,f/i,). 

The N ~luc:l(:l~s is iL l)oso~l its its spi~r  is 1 ,  so the t,ot,irl I I~I( :~( : ;L~ spill of 
tjhc: N2 nlol(:cul(: (::in o ~ l y  1 ) ~  0, 1 or 2 ,  111i~ki11g it a 1)oso11 illso. For t,he 
exc,ll;lrlge opcri~tor 1' l)c:twc:c:r~ thc: N iruc:l(:i, wc: ~ I ~ L V C  

As NZ obeys tllc Bosc-Einsteir~ statistics, tl~c: total wave hrr~c:tioli tloos 11ot 
ch;lnge on ilrtrr(:hangc of t , h ~  two nitrogc~l 111i(:lci. So for i ~ ( l j i ~ ~ ( : l ~ t  rot,iitio~lal 
tlnergy 1~vc:ls wit,li A1 -- 1, one r r l~~s t  havc S = 0 or 2 ,  the othcr S = 1, arrd 
the ratio of their degerleracies is [2 x 2 + 1 + 2 x 0 + I] : (2 x 1 + 1 )  = 2 : 1. 

For the n101cc:ular rotational spectrum, the t,ritnsit,ioli 1.111~: is A.J = 2. 
As S lrsllally rcn1;tins tinchariged in optical t,rar~sitioris, two at1j;~c:c:llt lines 
arc ti)rn~cd by t,ransitiol~s from 1 = even to cvcn nrltl 1 = otltl t,o otltl. Since 
the energy tliffcreilcc l~etwccn two ai!jaccnt rotatiorli~l olrcrgy 1cvc:ls is vcry 
small compareti with k'r at  roorn ten~perature,  we <:an r~cglect t,lic c f i c t  of 

any beat distri1)lrtion Therefore, tire ratio of intensities of adjacent spectral 
lines is equal to  the ratio of the degeneracy of I = cverr rotational energy 
lcvcl to tlrilt of the adjacent 1 = odd rotatiorla1 cilcrgy l(~vc1, which has 
1)ccrl glv(,n above as  2:l. 

(ti) Assuming that two protons of H: molecule are fixer1 a t  their normill 
sol,aratioil of 1.06 A, sketch the potential energy of the electron alo~rg an 
axis pi~ssing through the  protons. 

(I,) Sketch the electron wave fu~rctions for the two lowest states in 
I$$, ilelicating roughly how thcy are related to  hydrogenic wave functions. 
Which wavc: f~liictioll corrt:sl)outls t,o t,ht: groulld stat,e, and why? 

(,:) Wll;~t  l s~ l ) l ) c i~s  t,o tlic t,wo lowest onrrpy k?vcls of HZ irl the limit 
t,ll;Lt, t,h(: ~)rot,olls iLr(: lllOv(:(l fiir iLl)iL~t,'! 

( Wisc:o~rf,sin) 

Sollit,ion: 

(;L) As the prot,ons arc: fix(:(l, the poti!~ltial aacrgy of thi: systcm is t , l~i~t,  
of t,lic: c:l(:ctron, ;~l)i~rt ,  fro111 the ~)i)t,(:llt,ial energy clue to the  Coulolnb intcr- 
;~c:t.iorl I)i:twc:cr~ tllc: ii~ic:l(:i $. Thus 

eZ e2 V = - - - -  
(rll Ir21 

wllc:rc: r l ,  r 2  :%re iiS shown in Fig. 7.4. When the electron is on the line 
corlnc:c:t1ing thc: t,wo protons, the potential energy is 

e2 eZ 
V = - - - -  

1x1 ( R  - zj ' 

whc:rc: z is t,lic: dist;u~c.c from the proton on the left. V is shown in Fig. 7.5 as 
;L fllllctiol1 of z. The wave function must be symnletrical or antisytllmet,ric:al 
wit,h rc:spcc:t to the ilitcrchange of the protoirs. Thus t,l1e wave fullctiorls of 
thc: two lowest st,atcs arc 

where 4(r) has the h r i n  of the wave function of the ground state hydrogen 
atom: 
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Fig. 7.4 

Fig. 7.5 

Fig. 7.6 

3 / 2  
C -  X l . / ( l  

where a is the Bohr radius and X is a constant. The shape of thc two wave 
functions along the z-axis are sketched ill Fig. 7.6. It car1 1)c seen that 
the probability that the electron is near the two nuclei is larger b)r ++. 
Hence 1/,+ corresponds to a lower V and is therefore the gronnti st,ate wave 
function. The fact that E+ < E- can also be seen from 

Many-Particle Systems 

since 

and all the integrals are negative. 
( c )  As the protons are being moved apart, the overlap of the two bound 

states d ( r l )  and $(r2) becomes less and less, and so (4(rl)lHI4(rz)) and 
(4(r2)1H(q5(rl)) -+ 0. In other words, the two lowest energy levels will 
k)econir the same, same as the ground state erlergy of a hydrogen atom. 

Write the Schriitlingvr cquation for atomic helium, treating the nucleus 
as a11 irifir~itcly heavy point clinrge. 

(Berkeley) 

Solution: 

Trt:at,irlg the rluc:l(:us as ari infinitely 1ic;~vy point c:h;~rgc, we ca.n nc;glcct 
its r~lotiorl, as well ;w thc intcr:~ction between the nucleons inside the nuc:l(:~is 
and tlic distributio~i of the nuclear charge. 

The Sc:liriidinger cquation is then 

whcre R1,  R2 are as shown in  Fig. 7.7. 

Fig. 7.7 

On the left side of the equation, the first and second terms are the 
kinetic energies of the electrons, the third and fourth terms correspond to 
t,he attractive pot,entials between the nucleus and the electrons, and the 
last term is the repulsive pot,ential between the two electrons. 
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The mcitetl elrctronic coilfiguration (ls)'(2s)' of t,he heliuin ntoin can 
exist as either a singlct or a triplet st,at,c:. Tell w11ic:li st,ato has t,ho lower 

cricrgy and exl)lain why. Givc: c:xl)rc:ssiorl which rc~)resoilts thc cnorgy 
separation 1)etwecn tlic singlet 1 ~ 1 1 ~ 1  triplet sti~tcs in tarins of the one-c:l(:c:t,ron 
orhitals 41, (r)  aiirl Ij12,s (r). 

(lWT 
Solutior~: 

Elcctroiis bcing forittioils, tllc t,ot,al wave fiili(:tioii of ;L syst,(:ii~ of CICC- 
trons itlust l)c aiitisyniinc:tric: for tlic: i~ltercliaiigo of ;illy two (:l(:(:t,roiis. AS 
tlie spill triplet stat(: of li(:li~ii~i iitoiil is syirilnct,ric:, its s~) ;~ t , i ;~ l  wave fiinc- 
tion nlust 1)c alltisyi111ric:tric:. Iii t,llis state tht. c:l(:c:t,l.oiis IIILV(: ~) i~~i~. l l ( : l  spins 
so the probability for them to get close is sillall (I'a~ili's priiic:il)le), ;~rld 
consequently the repulsive energy, which is posit,ivc,, is sliiiill. Whc:rc!;r.s for 
the spin singlet state thc reverse is true, i.c:., tlic: prol);~l)ilit,y for the, t,wo 
electrons to get close is larger, so is thr: rc~)lilsivo (:ii(:rgy. H(:il(.(: tali(: triplet 
state has t,he lower energy. 

Consider t,he interaction brtwc:orl t,llc: c:lcc:t,rons ;LS 1)~rt,l1~-l)iit,i011. Tlle 
perttlrbat,ion ESamiltonian is 

w11c:rc: r.12 = Irl - - 1 .  For tali(: siligl(:t stat,(:, usitig t,ho oil(:-c~l(:c.troii w;Lve 
functions we II;LV(: 

and for the triplet stat,e 

with 7n = 1,0, -1. The energy separation between the statcs is 

With $I:, = gns, we have 

(a) S l i p ~ o w y o u  have solved the Schrijdinger pquatio~l for the singly- 
ioiiizc:cl l~e l i~ l~r i  atom and found a set of eigenfilllctions . $ , ~ ( r ) .  

(1) How (lo t,he 4N(r )  compare with the hydrogen ;lt,oin wavr functions? 
(2) If wc, inc:lutle a spin part of (or (T-) for spin 111) (or spill dow11), how 

do you c:orilk)ine the 4's and n's to  form an eigenfunctioll of defi~litc: spin? 
(1)) Now consider the helium atom to have two elect,rons, bnt igilorc? the 

c:loc:t,roiil;r.gilctic interactions between them. 
(1) Write down a typical two-electron wave function, in terms of tlie (/j's 

;~i1(1 (7'5, of definite spin. Do riot choose the groi~nd state. 
(2)  What is the total spin in your example? 
(3) Demonstrate that your example is consistent with the Pauli exclu- 

sioii priiiciple. 
(4) Dciiloilstrat,c, t l i i~t your ( \X; I IDI)~C is xiitisyinnletric wit,h respect to 

Solutior~: 

(;I) (1) Tilt. S~klrii(litlg(:~ cqlti~tiorl fur siiq!,ly-(.hil.rpt:d £I(: ilt,olrl is tltc,. saillo. 
;LS thirt for 11 i ~ t , ~ i l i  wit11 e'l) + Zc2, wii(:re Z is the charge of thc. £I(: ~~ric:le~is. 

11oiic:o the: W:LV(: t;lil(:tiolis for hyclrogen-like ioii are the same as those for H 
i~t,o111 wit,li (,Ii(: Bohr ratli~is replaced: 

h2 ri2 ~ ~ = - + a z -  
pe2 pZe' ' 

1)c.iiig t,lic: rc:tl~iced mass of t,he system. For helium Z = 2. 
(2) As ON and n* belong to  different spaces we can simply multiply 

thc:ln to forill ;lii eigenfunction of a definite spin. 
(I))  ( I ) ,  (2) A EIc atom, which has two electrons, may be represented by 

if tlie total spin is 1. (3) If uf = u p ,  &N1 = 4 ~ 2 ,  the wave functions vanish, 
in agreeilieilt with the Pauli exclusion principle. 
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(4) Denote the wave functio~is by ,$(I, 2). Interchanging particles 1 and 
2 we have 

,q1(2,1) = -,$(I, 2) . 

Ignoring elcctroii spin, t,he Hnlniltonian for tbc two c:l(:c:troris of helium 
atom, whose posi t io~~s rc:lilt,ivc to t,hc nucle~rs arc ri (i -- 1, 2))  (:;m 1)o written 
as 

(a) Show that there a.re 8 orbital wave filnc:tioris t , l ~ ; ~ t  im: c:igoiifi~r~c:t,io~~s 
of H - V with one electron in the hydrogeriic gro1111d st,iitct ;liid the otli(:rs 
in the first excited state. 

(b) Using symmetry arguments show that ill1 thc i l l i i t , ~ i ~  (:l(:ii~(:~lt,s of V 

among these 8 states can be expressed in t , c r ~ ~ i s  of four of t,ht:ril. [Hilit: 
I t  may be helpful to use linear cornl)in:itio~~s of I - 1 sl)l~trric:;~l l~arrrlo~iics 
proportional to  

X ?J Z m. jq "11" - .I 
Irl 

(c) Show that thc: v:iriat,ioriid princ:iplc lc!ads to ;I clc:t,or~~~irrii~rt;~l (:(patio11 
for the cricrgics of t,hc: 8 cxc:itc>d statc:s if a 1irlc:irr c:orr~l)i~iiitio~~ of t,h(: 8 

eigc:r~fu~ic:t,io~ls of H - V is ilsc:d as ;L trial fiilic:t,ior~. Expross thc c:ricrgy 
splittirig in terrns of the four i~itlcpci~d(:r~t i~li~t,rix c l c ~ i i c ~ ~ ~ t s  of V. 

(d) Discuss thc dcgcncracies o f  thc: lcvols clue to t,hc Palrli priric:i~)I(:. 

(Bri, ffalo) 

Solution: 

Treating V as perturbation, the zero-order wave fu~~ct iol i  is a product 
of two eigenfunctions ( T L , ~ ,  m)  of a hydrogen-like atom. Thus tlic 8 eigcn- 
functions for Ho = H - V with one electron in the hydrogen grou~id state 
can be written as 

with 1 = 0 , 1 , m  = - I , .  . . I ,  where the subscripts 1 ant1 2 rcfer to the two 
electroiis. The corresponding energies are 

Many-Particle Systems 643 

To take account of the perturbatio~l we have to  calculate the matrix ele- 
ments 

(I'm' f IVll rnf) .  

As V is rotation-invariant and symmetric in the two electroils arid lL~n+) 
are spatial rotation eigenstates, we have 

(I'm' + (Vllnz+) = 61116,,~(A1 + BL)  , 

(I'm' + IVIlm-) = 0 ,  

(I'm' - IV(lrn+) = 0 ,  

(I'm' - IVJlm-) = 611f6mml(A1 - B1) 

Becausc the wave functio~ls were formed taking into account the symmctry 
with respect, to the interchange of the two electrons, the perturbation matrix 
is diagona.1, whence the four discrete energy levels follow: 

The first levels Jim+) have energy Eb + A1 + B1, second levels llnr-) 
have cnergy Eb + A1 - B1, the t,hird level loo+) has energy Eb + A. + Bo, 
the fourth level loo-) has energy Eb + A. - BO. Note that t,he levels ( l rn+)  
and (1rn-) are each three-fold degenerate (m = +1,0).  

According to Pa.ulils principle, we must also consider the spin wave 
functio~is. Neglecti~ig spin-orbit coupling, the total spin wave functions are 
, Y O ,  antisymmetric, a singlet state; xi,,, symmetric, a triplet state. 
Since the total electron wave function must be antisymmetric for inter- 
change of the electrons, we must take combinatio~ls as follows, 
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Describe approxinlate wave functiorls ant1 cllcrrgy l(:vcls of tall(! lowc,st sc!t 
of P-states (L  = 1) of the neutral helium a t o ~ r ~ ,  l l s i ~ ~ g  ;w ;L s t ; ~ r t i ~ ~ g  1)iwis 
the known wave fiinctions for the hydrogcn at,o111 o f  ~luc:l(:;tr c:l~;trgt' %: 

4 - -1/2a-3/2e-~/n 
1s - 7r , (L -- fL(j/Z , 

$2p,ml =O = (~.LT)- ' / '  (1 -6/'~~.(~-1.~2'L (:oS fJ , (:t,(.. 

(a) There are a total of 12  statcs (2 spill c:o~rll)o~lollt,s x 2 spill c:o111- 
ponents x 3 orbital c:o~ll~)ol~c:nt,s) whic.11 yo11 sl~oultl c:l:issify ;ic:c:ortli~~g t;o 

t,hc Rl~sscll-S;l~~~ltlcrs c:ou~)lir~g sc:hc:lllc:, giviug ;ill t,t~c: ;~l)l)ro~)ri;ttc: iluti11t111n 
nlun1)ers. I3c sure that the:  tii it,(:^ arc ~)ro~)(:rly i i~~t isy~~l~i~( : t , r iz ( : ( l .  

(I)) Give all cst,ima.tc: (to tl~c: ~lc,nrcst ir1tc:gc:r) for t,hc: v;tl~~c:s of "Z" to llsc 
for each of t l ~ c  t,wo orbit,iil wtivc filnc:t,io~~s. Wh;r.t cmcrgy ;~l)ovc: t,hc! g ro~l~ l ( l  
state results? W11a.t ~natlic~natic:;~l 1)roct:ss c:oultl 1)c lrscd to c:;tl(,ul;~tc tlre 
op t i~n l i~n  Z va1ut:sY 

(c) Write down an integral which gives t,he sc1)aratiorl 1)c:twcc:rl two ~111)- 
sets of these 12 states due to the C'orlloml) rcpulsior~ 1)c:tweell thc two clcc- 
trons. Which states are lower in energy? 

(d) Which of these P-states, if any, can decay to the atorrlic ground 
state by the emission of a single photon. (Electric dipole orily) 

(e) Do t,here exist any ot,her excited states with L = 1 which ct~11 clcx:;~y 
to any one of the P-states discussed above by emissiorl of ;I singlc 1)11oto11 
l)y electric dipole interaction? If so, give an example of suc:h a stat(: in the 
usual schenle of spectroscopic notation. 

(Bcrkclcy)  

Solution: 

(;I) Sill(:c L : I1 + 12, L, = lI;: l L z ,  L = 1 means that 11, 12 = 0, 1 or 

1,  0, i.c:. on(: c~lcctron is in 1s st,ate, the other iri 21) st;rt,e. For ~onvenie~ice, 
Dir;icls bra-kct notation is used to represel~t the statcs. TIP syll~rnetrized 
n11t1 ;~lit,isyllln~etrized spatial wave functions are 

1 
= ,(I fi Ls) / 2p ,  r r s l  -- -- 1) - 2 ,  I = 1 ) J  1s)) . 

For t,lic: t,ot;ll w;~vc: f~lnc:t,ions t,o 1)c ii~lt,isymrllct,ric:, we must choosc the protl- 
~~c:t ,s of tllc: spill sillgl(,t state xoo and t,he sym~netric space wave functior~s 

\ , I / I ~ ) ,  h)r~oing three singlet states i$i)xoa ( i  = 1,3 ,5) ;  and the 
I)rocl~ic:t;s of t,he spin triplet states xll and the antisyn~nletric space wave 
f11uc:tiorls I $ 4 ) ,  forming nine triplet states I$i)x11 (i = 2,4 ,6 ,  
7 1 ) .  = 0, +I ) .  To denote t~he twelve states in the coupling representation, 
wc:  rust c:o~nt)illc the above antisymmetrized wave functions: The wave 
f11llc:tions of t,hc three singlet states are 

Thc: w;~vc: f~inc:tiorls of the nine triplet states arc 
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(b) As the electron cloud of the 2p orbits is rnairlly orlt,sitlo tllc: c:l(:ct,ron 
cloud of the 1 s orbit,, the value of Z of thc 11s) wavc: frlllc:t,ior~ is 2 ;1.11(1 t , l~ i~ t  
of the 12p) wave function is 1. The encrgy l(:vc:ls of a 11ytlrogc~11-liko i~to111 is 
given by 

7r1,z2c4 E = - -  
')fb2712 ' 

Hence the c:ncrgy of thc 2p st:tt,cs i~l)ovc: tlic grollllcl st,;~t.c: is 

The or)tiirinm Z ran l)e obtaiiicd fronr shielding cff(~:t rrlniI.\tinas using 
the givm wave fuilrtions. 

(c) Dcr~otr: the two s11l)sets of symmetric and antisy~nrrlc:t,ric spatial wave 
functions wit,h a. parameter E = k 1  and write 

Many-Particle Systems 

The repiilsive interaction between the electrons, 

results irl a splitting of t.he energy levels of the two sets of wave functions. 
As 

tlie splitting is equal to twice the exchange integral in the second term of 
thc right-hand side, i.e., 

As K > 0, the cricrgy of the triplet st,atc (e = -1) is lowcr than that of the 
sirlglct stat(:. (This is to t)c c:xpcctcd sincc whrn the space wave function is 
ar~t,isy~r~rr~ct,ric, thc two electrons having parallel spins tend to avoid c:ach 
othvr.) 

((1) The se1cc:tiorl rules for elect,ric dipole radiation transition are AL = 

0, i l ;  A S  = 0; A J = 0, kl and a change of parity. Hence the state that 
car, trarisit to t,he ground state 'So is the 'P1 state. 

((:) Such excited states do exist. For example, the 3Pl state of the 
t~lec:tro~~ic: configuration 2p3p can transit to any of the above 3 f i , l , ~  states 
through electric dipole interaction. 

Justify, as well as you can, the following statement: "In the system of 
two ground state I-I atoms, there are three repulsive states and one attrac- 
tive (hound) state." 

( Wisconsin) 

Solution: 

Tn t.hc adiabatic approximation, when discussing the motion of t'he two 
electrons in t,he two H atonis we can treat the dist,arlce between the nuclei 
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as fixed and consider only the wave fiiilctions of the inotioli of the two 
electrons. For total spin S = 1, the total spill wave functiorl is sylrlnictric 
for interchange of the two c:lcctrons and so the total sj)acc wave fil1lc:tion is 
antisymnletric. Pauli's priric:iple requires the clcc:t,rons, w1iic:li ill tliis case 
have parallel spills, to  gc:t away froill eac:li otlicr as  far ;ls ~)ossil)l(:. This 
rnearis that tlie prol);~l~ility for tile t,wo dcc:tro~ls to (:o~ii(: ii(!iLr (:i~(.tl other 
is small and the  st,atc:s ;lrc: rc:pulsive states. As S = 1 t,liorc: i L 1 6 1  tlir(l(: slich 
states. For tota.1 spill S = 0, t,hc sI)ac:c wavv hrric:t,ioii is syiiliiic:t,ric:. Tlie 
probability of the  cl(:ct,roiis 1)c:illg c:losc t,ogc:tlic:r is ratlior li~rgo ~ L I I ( ~  SO tlie 
state is an attractive olic:. As S = 0, tlicrc is o~ l ly  o ~ i c  suc:ll st;~tc:. 

In a simplified model for a deuteron tlie ~)ot,c~lti :~l  (:il(:rgy 1);~rt of t,he 
Hanliltonian is V - Va(7.) + I/b(r)s, . s,. The spiri ol)or;~t,ors for t,llc: t,wo 
spin-l/2 particles are  s, and s,; the masses arc: ,TI,,, ;lilt1 ,IT,,,,; v/;, i ~ i i ( 1  F, ;ire 
functions of the  particle separation r .  

(a) The energy eigenvalue pro1)lclll rail I)(: rc:tll~c:c:tl to ;L oil(:-tli~iic:i~sioii;~l 

problem in the one variable ,r. Writ.(! olit t,liis oil(:-(li~iict~isioiii~l (:(lli:~t,io~l. 
(b) Given that  V;, and Vb I)ot'h arc: ~rc,giitivc: or ar:ro, st,ntc: (iuitl c:x~)l;r,i~i) 

whether the  ground st,ntc: is siiiglct or triplct. 

( P ~ . ~ ~ I , c ( : ~ o T L )  

Solution: 

(a) 111 lillits whcre IL = 1, wc: 1i;lvo for tlic siiigl(:t st , i~tc (S = [I) of t,lic 
deutcroli, 

and the ~ ~ o t e n t i a l  energy 

4 
Vsing1et, = K ( r )  - z&(r )  

The Harniltoi1i;~n is then 

whence the Harniltonian describing the relative inotion 

wllc:rc, V: is the Liqjlacia~i with ~ s p c c t  to the relative position coordinat,e 
Tn ,, T r t p  

7 = 1 - r T , \ ,  71, = - m,,+~n, is the reduced r~less of tllr t,wo particles. 
Aft;cr. ~c:~xirating out tlie arlgular variables frorn tllc Schrijtlinger equa- 

tioti, tlit: c,ra:rgy eigenvalues are obt,ained from the one-dinicilsionrl vqliation 
sntislictl by the radial wave function R(r): 

Sitilili~rly, for the triplet state ( S  = 1) we have 

(1)) W(: sll;lll r l l ; l h  ,is(: of t,lic k~111111;~: For i~ o i i t~-(~i in( : i i s io~i~~~ prO~)l(:ill 

o f  c:ric!rgq' t:igt:riv;llilc:s, if t,lic: coiltlit,iolls arc all t . 1 ~  sanie except tllat two 
~)ot,('~it,ii~l ('ii(:rgi(:s satisfy the ill(:(l~lality 

t,li(:ii t,li(: (:orres~)otldillg erlergy levels satisfy the inequality Ek > En For 
th(: gro~iial stntc, 1 = 0. As Vb 5 0 for a stable deuteron, Kinglet > &xipit 
i~ild so t h ~  triplet state is the ground state. 

(a) Tlic ground s ta t r  of the hydrogen atom is s1)lit by t,llc hypri-Bra 
intcrac:tiori. I11dic:atc tht: level diagrarrl and show fro111 first pri1lc:il)les which 
state 1ic:s higher iri cnorgy. 

(I)) Tlie gn),ilrl st,at,c of t,he hydrogen inoleculn is split into total nuclevr 
spit1 triplet ;iiiil singlet stirtrs. Show from first prirlci1)lcs whiclr state lies 
higher in energy. 

(Chicago) 
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Solution: 

(a) The hyperfine interaction is one between the intrinsic magnetic mo- 
ment pp of the proton nucleus and the magnetic field B, arising from 
the external electron structure, and is rcprcse~lted 1)y the Hamiltonian 
Hhf = -p, . Be .  For the ground state, the prolxlbility density for the 
electrorl is spherically symmetric and so B, can t)c considcred to be in the 
same direction as p,, the intrinsic magnetic moincrlt of the electron. Then 
as 

r: 
pe = - -- C S p  

7nec "" pp = ..,. SP r (LIP > 0) 

Be is a~itiparallcl to s, and - (p l ,  - B,.) has the. sarrlc, sign :is (s,, . s,,). 
Let S = S, i- sp and consider tllc ( ' igc l l~ t i~ t ( '~  of S L  and S,. Wc 1l;ivc. 

As the spins of electron and proton arc t)otll lr., wc: (:an 11;~vc. 

The hyperfirlc interaction causes t,he ground state to split into two states, 
S = 0 a.nd S = 1 (respectively the singlet and triplet total spill statcs). As 
Hnf 1ia.s the same sign as (se  .s,), the energy of the triplet states is higher. 
The diagram of the energy levels of the ground state is show11 in Fig. 7.8. 

Physica.lly, hyperfine splitting is caused by t,he interaction of the intrinsic 

magnetic rrlorrlents of the electron and the proton. For the electrorl the 
intrinsic magnetic morrlent is antiparallel to  its spin; while for the proton 
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\ . . 
S = 0 (singlet  1 

without Hhf with Hhf 

Fig. 7.8 

tllc irlagnetic mo~nent is parallel to  its spin. For the spin t,riplet, the spins 
of tlie electron and the proton are parallel, and so their magnetic ~noments 
arc antiparallel. For the spin singlet, the reverse is true. If the spatial wave 
functions are same, the Coulomb energy between the electio~l and proton 
is higher for the triplet state. 

(1)) For the hydrogen inolcc~ile Hz, as protons are fermions, the total 
wavc? fiiiiction inlist be ailtisymmetric for interchange of the two protons. 
Then for t,he nuc:lcar spin singlet, the rotation qnantum ilurnbcr can only 
\I(.  L = 0 , 2 , 4 . .  . , wtic:re L = 0 has the lowest energy; for the spin triplet, 
the rotat,ion cltiallt~lnl nil1nt)er call ollty be L = 1, 3, 5, . . . , where L = 1 
has the 1owc:st eiicrgy. As the energy difference caused by difference of L 
is largcr than that caused by difference of nuclear spins, the energy of the 
st,atr 1, = 1 (t,otal nuclear spin S = 1) is higher than that of the state 
L = 0 (total iiuclear spin S = 0). So for the ground state splitti~lg of Hz, 
the nuc1c:ar spin triplet ( S  = 1) has the higher energy. 

Because the spatial wave functions of L = 1 and L = 0 states are an- 
tisymmctric and symmetric respectively, the probability for the protons to  
c:omc close is larger in the latter case than in the former, and so the Coulomb 
interaction energy is higher (for the same principal quantuln number n). 
However, the difference between the energies of L = 1 and L = 0 is larger 
for the rotational energy levels than for the Coulomb energy levels. So for 
tlre ground state splitting of hydrogen atom, the nuclear spin tri~jlet ( S  = 1) 
has the higher energy. 

The wave function for a system of two hydrogen atoms can be described 
approxin~ately in terms of hydrogenic wave functions. 
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(a) Give the complete wave funct,iorls for the lowest states of t,hct syst.em 
for singlet and triplet spin c:onfiguratio~ls. Skctch the s~),ztial part, of each 
wave function along a line through the two i ~ t , ~ l l i ~ .  

(b) Skctch the effective pote~it,ial energy for tlic atorns i r ~  the two cases as 
functions of the internuclear separation. (Ncglcct rotatio~i of t,llo systcln.) 
Explain the physical origin of the ma.ili fcixturc:~ of thc: c:urvc,s, i1.11d of ~ L I ~ Y  

differences bet,weerl thi:ln. 

( W,isc:orls,in) 

Solution: 

Thc: Harriiltonian of the systerii of two I~ytlrogc)~~ ;~torlls (:i111 t)(, writ.t,c!ll 
as H = H,, + H,, ant1 corrcsj)orldiligly t l ~ c  tottill wave: f i ~ ~ ~ c : t , i o ~ ~  is ,I/, = ' J I , , ~ ,  

cor~sistil~g of i L  ~ ~ u c l c a r  part ,4,,, and iLll cl(:(:t,ro~~ p i~r t  (1): wit11 

R,(T)YI,(Q, (F)XO, for I = evcrr, ( ~ ) a r i ~ - l ~ ~ t I r o ~ o ~ ~ )  , 
$"l. = 

Rw(r)Y~m (0, (P)XI, for I = odd, (01.tl1o-liytlro~c'11) , 

where v denotes vibration, I denotes rotation qi~anturrl nrr~l~l)c:rs, il.rltl XI,, XI 

are nuclear spin singlet and triplet wave filnrt,ions. 
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(a) Thc con fig urn ti or^ of t,ht, system is sl~owrl i r ~  Fig. 7.1). Tlie wi~vc 
function of a sir~glr c1f:c:tron is t,;~k(!rr to 1)e approxin~at,cly 

anti the 1owc:st triplet state wave function is 

wlicrr xoP and xle are electron spin singlet and triplet wave. filnctions. 
TitkillR tlle .c-axis along ah with the origin a t  a ,  we can express tht, spatial 
pixrt,s of &, and 4t by 

X I /  -k\R-x2l + e-k/x21e-k(R-x1/) 
@s = b(epk' e > 

4t = b(e-k/x~le-k/ii-x~ - e - k l x z l e - ~ l R - x ~ I  ) .  

Kc:c:pirig one variable (say z 2 )  fixed, we sketch the variation of the spat,ial 
wa.vc: filnctions with t,lic ot1ic:r v;~ri;~t,lc in Fig. 7.10. It is seen that if one 
ol(~c:t,ror~ gct,s c,losc: to a IIII(.~(:IIS, t;11(: 1)rol)i~t)ility is l i~rgr for the ot,her electron 
to I)(: c:losc: t,o t,hc ot,h(:r ~li~cl(,us.  

Note that whcr~ X = 1, p( r )  1s the wave function of iLI1 ~ l r c t r o ~ i  in t l ~ c  
grouncl statc of a Iiydrogen atom. For two clrctrons, tl~cl lowc3st singlet state 
wave function 1s 

Fig. 7.10 

The effci:tivc potelitin1 energy, v e (4 /V/&) ,  for thc grour~d state as a 
funct,ion of R / a  is sllown in Fig. 7.11. It is seen that the potential energy - 

vanislies when thc rlel~tral atoms are infillitcly fa.r apa.rt: R --t m, V -+ 
O. Whcri R -t O ,  the potent,ial energy 1,ctween thc two hydrogen nuclei 
bccomi:~ infinitely large while that betwcerl the electrons and the nuclei is 
finite, similar to t,hc elec:t,roll potential energy of a He atom. Hence R -t 0, 
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v -t +m. As R clc:c.rc:;~sos Fro~n :L large vi~hlc:, tha rcplilsivc: pot,clltial 
between the nllclc?i inc:rt~;lses, a t  tht: same tirnc thc: att,rtu:tivc I)otc~it,ial 1)e- 
tween the elect,rons and the nuclei increases also, c:oil~~)ot,ir~g i~giii~lst  (::1(;h 
other. For the singlet state, the probability that t.hc c:l(:c:trol~s ;wc: c:losc: to  
the adjacent nuclei is large, and so the potential has a liiiriilr~lilri v:L~u(:. For 
Ll~e triplet state, the probability that the electrons arc: c:losc? to  t,llc: llli(:l(:i is 
small, and so the decrease of the pot,ential energy cllle to t,llc: i~ttri~(:tiv(: force 
between the electrons and nuclei, which is 11c:gi~tivo. has ;L sl~l;lll v ~ L I I I ~ ' ,  iuld 
the repulsive potential between the nuc:loi, w11ic:h is positive, is t l ~ o  1r1;iin 
part of the tot,al potential. Thcreforc: v > 0 t ~ n d  I I ~  l ~ ~ i ~ i i ~ r i l i i r ~  o(:(:lil.s. 

(a) Using hydrogcn ut,orr~ grolnrd st,at,c. wave: fil~lc:tiol~s (illc:luciiug ttle 
e1ec:tron spirl), write wavc fiirlc:t,ions for tlic hyclrogcbrl rr~oloc:~ilo whic:h sat,isfy 
thc Pauli exclusion principle. Olr~it  tc>rlns w11ic:h 1)li~c:e both c:lcc:trol~s on 
the  same nuc:lcus. Classify the wave fi~~lc:tior~s in tcrilis o f  their t,otal spin. 

(b) Assurrling t,hat the only potential cwcrgy terms in t,hc Hamiltoriian 
arise from Coulomb forccs, clisclrss qlialitat,ivcly tho cllc:rgics of thc above 
statcs a t  the normal irrtcrlluclear separation in the lnolcc:lil(: i ~ i ~ d  in the limit 
of very large int,ernuclcar separation. 

(c) What is meant by an "exchange brcc"? 

( Wiscon,sin,) 

Solution: 

(a) The configuration of a h y d r o g c ~ ~  1nolec:lile is as shown in Fig. 7.9. 
Denote th6 ground state wave function of hydrogen at,om by 1100) and let 
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I 

p(r)  = ((100))*, wherr A is a parameter to  be dcterrn~ned. Then the singlet 
state (S = 0) wave function of hydrogen molecule is 

,I /I 
l 

and the triplet state (S = 1) wave functions are 

with M = -1,0,  1. 

(I)) The energy of a hydrogen atom is 

T ~ I I S  the, slirll of the  energies of two separate ground-state hydrogen a t o ~ n s  
is 2 x 13.6; = -27.2 eV. On the other hand, for the He atom which also 

c-ontaills two protons and two electrons, the ground state energy is 

where t,hc fac:t,or 2 is for t,he two electrons of He aton1 and Z' = 2 - I is 16 

the effective charge rlurrlber of the He nucleus. 
(i) For the singlet state, the probability for the two clect,rons to  be 

close to each other is rather large (on account of the  Pallli pri~lciple), which 
enhances the repulsive exchange potential energy between them. The prob- 
abilit,y that t,he t,wo dect,rons are near t,o t,he t,uro nuclei is also large which 
tends to  increase the attractive exchange pot,el~tial. Taking bot,h into ac- 
count the exchange interaction pot,ential lowers the energy. It is easily seen 
that for the singlet st,ate, -77.5 eV < El < -27.2 eV. For the triplet state, 
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the spins are parallel and so the spatial wave fulictior~ is antisymnlctric. In 
this case t,he potential energy is increased by the exrhange i~lt,eractio~l and 
so E3 > -27.2 eV, which makcs it tlificult to for111 a l ~ o r ~ n d  stat(:. 

(ii) When the  distance between the nuclei + oo, Hz retluces t,o t,wo 
separate hydrogen atoms. Hence tht! c:ricrgy -t -27.2 cV. 

(c) T h e  synlmetri~at~iorl or a1itisymmetrixat~io11 of the witvc f~i~ic t ion 
causes a mean shift of the pot,ential cnergy by 

This is saitl t o  k~c causftl 11y ;ill "c,xc~h;~rige force" 

Describe the  low-lying states of the Hz molecule. Givc ;L roug11 value 
for their excitation energies. Characterize the radiative t r i~~ i s i t io i~s  of the 
first two excited states to  the ground stat,e. 

( W,is c:o~~,.sin,) 

Solution: 

In  an  approximat,e trcnt,rnent of hytlrogc~l ~ L ~ O I I I ,  tlw %(:TO ordcr wave 
filnction is take11 to be t,hc ~)rotlrlc:t of two gi-o~l~ltl stat(: l~yclrogorl-like wave 
furictio~rs, which havc t l ~ c  for111 

where no is the Bohr radius, X is a parameter to  be dct,cr~ninctl. The: spin 
part of the electron uravc: functiori of the HZ ~nolec~l lc  grourld s ta te  ( S  = 0) 
is antisyrnrnetric which rc:quires the spat,ial part to  I)(: sy~ri~~ic!tric:. As t,he 
spins of the two electro~ls are antiparallel, they call get quit.(: (:lose to  each 
other (Pauli's principle). This means that  the densky of "olcctro~l (:loudn 
is rather large in the region of space between the two nliclc?i. 111 this rogion, 
the attractive pot,ential between the two electrons ant1 the two r~uc:lci is 
quite large and thus can form a bound state,  with wave funct,ioli 

where the variables are a s  show11 in Fig. 7.9. 
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If t,hc: sl,ilis of t,hc electrons are parallel (S = I ) ,  t,hen the spatial wave 
f i l ~ ~ ( : t i o ~ ~   nus st be antisymmetric, the probability that  the two electrons 
gc:tting close is ~11liL11, illld 110 l)Oull(\ st,;~t(: OC(:IlrS. 

Of the cllr:rgy levels related to  thc electronic, vil~rational ant1 rot,ational 
Irlotiolls of H 2 ,  the rotational levels have t,li(: s~nnllest sl) i~cir~g between two 

atlji~c.c'~~t l(vc:ls. For simplicity, we sllall only co~lsider rotJat,io11:ll c:nergy 
1cvc:ls wit,h t,hr: c:lcctrons in the ground state initially and in the al,ser~ce 
of vil)rittio~i 1)ctwcen the nuclei. With no loss of generality, we can t,nkc 
tlic, ~~~olcc:lll(:'s c:lic.rgy t o  be zero when there is no rotation. T h e  rotatio~lal  

wll(:r(: I is t,ll(. lll~lll(lllt, O E  iir(:ri;ii~ ;~11(1 .J is t,hc i.ot,;~l :~ngular momentum of 
tll(t t,wo-llll(:l(,i syst,c:lll. Wl1(:11 .J -- (!v('11, t,h(: t,Ot,iLl S I ) ~ I ~  of tjh(! ~ W O  protons 

ill 112 is S .- 0 i~11(1 ~~:~ri~-hy(lrog(!ll r(:slllt,s; w\l(:ll .J = 0(1(1, t,h(! totit1 spill of 
t,ll(: \,wc) ~ ) r ~ t , o ~ l s  is = 1 ;LIIC] ortl~o-hytlrogo~l rc:s~~lts. Suj)~,osc: t11c tlistja~~c:c: 

1)c:twc~:ii t,hc: t,wo protolls is R = 1.5 x 0.53 = 0.80 A (Fig. 7.11). As 

t,hc> c:rlc:rgic:s of t , l~c  low-lying st;~.t,c:s are as follows. 

As t,hc, i ~ l t e r ~ t ~ t , i o n s  between two atonis arc: spin-illdependent, para- 
h y d r o g e ~ ~  it11~1 ort,llo-hydrogcn cannot transfor111 t,o cach other, hence the 
sclect,ion rule O.1 = even. In  nature the ratio of the number of molectlles 
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of ortho-hydrogen to  that  of para-hydrogen is 3:l .  This means that  the 
spectral line for J = 2 + J = 0 is weaker than for J = 3 + J = 1. 

7035 

The  density matrix for a collection of atoms of spin J is p. If these spins 
are subject to a randomly fluctuating magnetic field, it is folirld that  the 
density matrix relaxes according to tllc following equation: 

Prove that  the relaxation equation implies the following: 

(a) a a 1 
-(Jz) = -Tr(J,,p) = --(J,), at at T 

(b) 
d d 3 J ( J  + 1) 
-(J:) = - T ~ ( J , ~ P )  = --(J,) + at at T T 

[Hint: Raising and lowering operators are ~~sef i i l  hcrc] 

(Columbia) 

Solution: 

From definition,(J,) = Tr(pJ,). Thus the following: 

i 
I  
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a ,  1 
- (J;) = -Tr ($ J:) 
at T 

(using units in which h = 1) we have I I 

I I 
11 

d 1 
( J , )  = -Tr[pJ,J,J, + pJyJzJy + pJ2 - pJ(J + 1)JzI 

I I1 

at T I 

1 
= -D{~\(J: + J; + J:)J, +iJ,Jy - zJyJz - J(.J + l)Jz]} 

111 
T llll 

1 1 
= --Tr(pJz) = --(J,) .  

1 1  I Ill1 
T T 1 1 1 1 1  

since 1 

-Tr [pJ ( J  T + I ) ]  = ( J ( J  + 1))  = J ( J  + 1) 

I 

1 1  
1 

l1 11 
(1)) 1 1 1 ~ 1 ~ 1 ~  



A niolec~lle is n ~ a d e  up of t'hrcc: iclcntical atoms a t  t,lic: col-11crs of an 
equilateri1.1 triangle as sliowl~ in Fig. 7.12. We c:onsitler its ioli t,o I)c irii~tle 

by adtling one clcctro~i with so~lic: :~1111)litl1clc 011 C I L ( : ~  sit(:. SIII) I )~S( '  t,he 
matrix elemellt of thc N:~lriiltolliali for tlir c:lcc:t,roil 011 two ac!j;~c:c!rlt, sit,c:s i, 
j is ( i ( H ( j )  = a for i f j .  

(a) Calculate the energy splittings. 
(b) Suppose an electric field in the z direction is ;q)plic!tl, so 1.11iit tlie 

potential energy for the electron on top is lowered by b wit,ll 101 << I t r l .  Now 
calculate the levels. 

(c) Suppose the electron is in tllc groiilitl ~t,i~t,(:. S I I<I ( I ( : I I~~  I , I N \  Li(:lcl is 
rotated by 120" and points t,owartl sit,(: 2. Cii.l(:~ili~t,(: t;111: l)rol);~l)ilit,y Lor tllc 
electron to  remain in the grountl st,iitc:. 

(1'1.irrc:c tosn) 

Solution: 

The solution gives energy levels -- EO + (1 (two-fold ( l r g ( ~ l ~ c r i i t ~ )  i1.11d 
E3 = Eo - 2a. 

Mnn?l-Particle Sys tems  

(b) The H matrix is now 

Eo - b a -a 

Its tlii~goiiir.li'~:~tion gives energy levels 

E2 11ils the lowest encrgy and tlills corrc:s~)olids t,o t,he ground state,  with 

1L 1011 ((:) Afl;(:r t,lic: rot,a.t,ioii of tlie field t,hc systelrl has the same confgllr t .  
~ L S  t)(-for0 I)ut tall(' sit,(:s il.rO renamed: 

.dl' -- 

1 
0 - [all)  + (Eo - E2 - a)12) + a(3) l .  

J ( E ~  - E2 - a ) 2  + 2a2 

H(:ric:c t,hc ~)rol):~l)ilit,y for thc electron to remain in the ground st,ate is 
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Consit1c.r t hrcc partic,lcs, each of mass Irr, moving iri onr dimension and 
1)outid to (-.a( 11 othcr 1)y har~rlonic forces, i.c., 
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(a) Write the  Schrodi~lger equation for the system. 
(b) Transform t o  a center-of-mass coordinate systern in which it is ap- 

parelit that  the wave functions arid cigencncrgics rnay be solved for exactly. 

(c) Using (b) find the ground s ta te  energy if the particles are idrntira1 
bosons. 

(d) What  is the ground s ta te  erlcrgy if tllc partic1t:s art: idelltical spin 
- 1 / 2  fermions? 

( Wisconsin) 

Solution: 

(a) As 

The Schrodinger equation is 

(b) Using the .lacobi c:oortlinatt:s 

we have 
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and hence the stationary eigenequation 

The equation is separated into two equations: 

wllt:ra E, = E - ET is the erlergy d ~ i e  t,o t11e rnotiori of the  c:erlter of rniiss. 

The first t:qu;ltiorl givcs 

With 

4 = 4 1 ( ~ 1 ) 4 2 ( ~ 2 )  

the secorid equation is separated into two equatiorls 

whcre F = El + E2. 

These are cqtiatioris for harmonic oscillators of masses F, 2y and force 
constants 2k and 3k  respectively, both having the same angula,r frequency 

w = Jz. Hence tlir total energy is 

with 7 t , l  = 0 , l ,  2 , 3 , .  . . . 
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(c) Let a2 = y. The ground state wave functions of 41, 42 tire 

and so 

where 

1 As y3 = 3(x1 + x2 + x3) it is obvious that the spatial wave f~ii~(.tioli ( j ~  is 
symmet,i-ic for the interchange of any two of the partic:lc:s, wliicll is rc:cll~irc:d 
as the bosons are identical. The ground st,at,c clicrgy of t,hc: thi-c~: t)osor~s, 
excluding the translatio~ial energy of the center of mass, is 

(d) If the particles are identical spill-112 f(:riilions, i ~ s  spin is ~ i o t  iiivolvcd 
in the expression for the Harniltoriiari, the eigcr~fur~c:tiori is a product of t,hc 
spatial wave function ant1 thc spin wave fuiictiori, aritl irit~st I)(: iuitisyi11- 
metric for interchange of particles. 

For the coordinate t,ransformation in (b), we could have usctl 

and st,ill obtain the same result. In this case the spatial eigenfurlction is 
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and the erlcrgy is - 

Sin(:(, qb10(1/1)$20 (:1/2) = 410 (yi)420 (y;), t,lle spatial wave flinct,ion is sym- 
rric!t,ric: for the iritci-c:l~ange of two particles. However, for three spin-1/2 

frr~iiioris it is not possi1,le to construct a spin wave function whic:h is anti- 
syinlnct,ric:. Heiic:c this state cannot he formed for three spin-112 ferinions 
and higller s t i~t~es  are to he considered. 

Looki~ig a t  t,he wave functions of a harmonic oscillator, we see that thc 

c:xpo~~f:iitial part of 41, (y1)421 (y2) is the same as that of 4lo(yl)420 (yz) a i d  
is syrinr~ctric. Let 

AS (Dl = C ( z l  - z2) ,  a2 = C ( z 2  - : I : ~ ) .  + a)2 = C ( x l  - 53), where C is 

sy~n~r~ctr ic :  for interchange of the pilrt,ic:l(:s, 'P is antisymmetric as required 
for a system of identical fer~iiio~ls. I-lci~ce the ground state energy of t,he 
syst,c:ii~, ftxcluding the translat.iorla1 r,ilcrgy of the cent,er of mass, is 
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8. MISCELLANEOUS TOPICS 
Therefore 

8001 

Express e (-Oa :) as a 2 x 2 matrix; a is a positive constal~t. 

Let 

with 

I being the unit matrix, we have 

d2 
- S(a)  = A V ( a )  = -S(n) ,  
da2 

and thus 

S1'(a) + S(a)  = 0 .  

The general solution is 

subject to boundary conditiolls S(0) = I, S1(0) = A. 
Hence 

C l  +c2 = I ,  

giving 

cosa s ina 

- sina cosa > - 

Solution 2: 

cos a s ina 
= cns a1 + sin aA = 

- sina cosa 

(a) Sum the series y = 1 + 22 + 3x2 + 4x3 + . . . , \ X I  < 1. 
(b) If f (x) = xe-"/' over the interval 0 < x < m, find the mean and 

most probable values of x. f (x) is the probability density of x. 
(c )  Evaluate I = S r  &. 
(d) Find the eigenvalues and normalized eigenvectors of the matrix 

Are t,he eigenvectors orthogo~lal? Comment on this. 

Solution: 

(a) As 1x1 < 1, 
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1 
y = -  

(1 - x ) ~  ' 

(b) The mean value of n: is 

The ~)rol)abitity derisity is ari cxt,rc~~~luiri wlicn 

i.e. a t  x = X or x + oo. Note that X > 0 i f f  (x) is to lje finitc ill 0 < 3: < oo. 
As 

1 
f"(X) = - - e-' < 0, f (A) = Xepl > lim f (z) - 0 ,  

X z+m 

the probability density is maximum at :1: = A. Ro11c:c t,lic tilost 1)rol);~l)le 
value of x is A. 

(c) Consider the c:ornplax i11togr;~l 

along the contour c = cl -t (:a as showri iri Fig. 8.1. 

Fig. 8.1 

The integralid has singular points - 1 + i ,  1 + i inside t,hr closet1 contour 
'IVCS c. Hence the residue t,heorerri b' 
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dz 
= 27ri [Res(l + i) + Res(-1 + i)] 

Now let R + oo, we have 

wc have 

((1) Lrt tiir eigenvnlur bc, E eacl the eigcriv(~ctor be 

The solution is 
El = 3, Ez = -3, Eg = 7 

For non-vanishing X ,  we require 

Substitut,io~r in the matrix cquation gives the eigeovectors, which, after 

E - l  2 -4 

-2 E - 3  0 

- 5 0 E - 3  

= O .  
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for E = El and 

for E = E2, E:3. Note that these eigeiivcctors are not ol.thogol~al. G~r~rr:tIly, 
only for a IIcrniition matrix are the eigenvectors c:orrcsl)or~tlirrg to tliff(:rc:l~t 
cigerivalucs orthogonal. 

Please iriclicate briefly (in one sentence) w1i;tt c:orit,rit)~lt,iolis t,o l)llysi(:s 
are associated with the following pairs of i1;tlnc:s. (Wlloro i~~)l)li(:;tI)l(: writ(: 
an appropriate equation.) 

(a) Franck-Hertz 
(b) Davisson-Gerlner 
(c) Breit,-Wigner 
(d) Ha.rtreci--Fock 
(c) LceeYang 
(f) tluloiig-- Pc:t,it, 
(g) Cockroft Waltori 
(11) Hahll- Str;issmarlll 
(i) Ramsauer-Tow~~sc?r~ci 
(j) Thomas-Fermi 

(Berkeley) 
Solution: 

(a) Franck and Hertz verified experimentally the existrmcr: of discrctc 
energy levels of an atom. 

(h) Davisson and Germer verified the wave propertics of clcctrolls by 
demonstrating their diffraction in a crystal. 

(c) Breit and Wigner discovered the Breit-Wigner rcsorlancs formula in 
nuclear physics. 

(d) Hartree and Fock developed a self-consistent field method for oL- 
taining approxirrlate many-electron wavc functions. 

(e) Lee a i d  Yang proposed the non-conservation of parity in weak in- 
teractions. 

(f) dulorig alld Petit discovered that atomic heat is the same for a11 solids 

at high temperatures, being equal to 3R, R being the ideal gas constant. 

(g) Cockroft and Walton effected the first artificial disintegration of an 
atomic nucleus. 

(11) Hahrl and Strassmann first demonstrated the fission of uranium by 
neutrons. 

(i) Ramsaucr and Townsend first observed the resonant transmission of 

low energy electrorls through rare-gas atoms. 

(j) Thornas and Fermi proposed an approximate statistical model for 
thc strlicturr of mctals. 

Givc: c?stiln;~tcs of magnitude order for the following quantities. 

(;I) Tlic kinetic energy of a rlucleon in a typical nucleus. 

(b) The magnetic field in gauss required to give a Zeeman splitting in 
atomic: hydrogeri comparable to the Coulomb binding energy of the ground 
sta.tc. 

(c) The occupation number n of the harmonic oscillator energy eigen- 
statc that contributes most t o  the wave furlction of a classical one- 
dimensiona.1 oscillator with mass nr = 1 gram, period T = 1 sec, 
amplitude ~0 = 1 cm. 

(d) The ratio of the hyperfine structure splitting to the binding energy 
in the 1s state of atomic hydrogen, expressed in terms of the fine structure 
constant a ,  the electron mass nr,, and the protoll lllass m,. 

(Berkeley) 

Solution: 

(a) The kinetic energy T = & of a nucleon in a nucleus can be estimated 
using the approximation p  N Ap and the ur~certainty principle A s a p  -- h. 

As Ax - crn, Ap -- &, 
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(b) The Zeeri~arl splitt,ing is givcln by A E  - / L I ~  - 13, /L,, lxinp tllc Bohr 
magneton, and the Coulaml) binding energy of a hyclrogrrl ; ~ t o ~ n  is 13.6 eV. 
For the t,wo to hc compara1)le wc require 

(c) The energy of a classical one-dimensional oscillator is 

For 

we require 

((1) The ennrgy shift, d ~ i e  to  hypertilie-st,r~lr:t~lrr. splitt,illg of n hycirog(:rl 
at0111 in the ground st)at,c (in units wherc c = h, = 1) is 

where u is the fine-structure co~lstalll. The binding energy of t,he clcctron 
in the ground state is E, = T L , C ~ ~ / ~ .  Hcnce 

8005 

Some short questions to warm you up. 

(a) What can be said about the IIa~nilt~onian operator if L ,  is a constant 
iri time? 

(b) State the optical theorem in scattering theory. 

(c) W l ~ y  is the optical theorem not satisfied in first. Born approximation? 

((1) Explain why t.he prot.on cannot have an elect,ric quadrupole moment,. 

(e) What is the sign of the phase shift when a particle scatters fro111 a 
wcak short range at,tractive pot,ential? Justify your answer. 

(Berkeley) 

Solution: 

(a) If L, does not vary with time, [H, I;,] = 0. What this means is that 

i11 a spherical coordinate system H does not contain cp explicity, i.e., H is 
i~ivariailt in respect of rotation about the z-axis. (However, H may still 

c:orit,ain d~ explicitly). 

(t)) The optic:;~l t,licorc:i~i stat,cs t1i;lt the: tot;~l cross sc:c:t,io~i for elast,ic 
scat,t,c?ri~lg ar is givc?rl by 

whcrc k is thc w;~ve number of the incident particle and f (0) is the ampli- 
tlidc of the: scattered wave in the forward direction. 

(c) 111 first Born approximation when V(r)  is real, which is usually the 
cast), f (0) is also real and gives a nonzero total cross section, the imaginary 
part of f (6 )  appearing only in Born approximation of higher orders. Hence 
t l ~ c  optical theorern does not apply to Born approximation in the first order. 

((1) From the definition of electric cluadrupole and the form of spherical 
htxrmoiiic functions, we know that. pi~rl.icles of spin s < 1 cannot hilve 
electric: quadripole. This includes proton which has a spin of i. 

( c )  When V(r )  falls off more rapidly than f, i.e. when the potential 
is short,-rangcd, the phase shift aL of the lth partial wavr is givrri by the 
asymptotic for111 

where jl is the spherical Bessel function. Hence for attractive forces, I/(!.) < 
0 and so 6, > 0. 
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Answer each of the following qurstions with a bricf alitl, where possible, 
quantitative statement. Give your reasoning. 

(a) A beam of neutral ato~rls passes through a Sterll--G(:rlwc:h appa.ra- 

tus. Five equally-spac:cd lines arc o1)scrved. What is thc: t(ota.1 angillar 
momentum of the atom? 

(b) What is thc magnetic ~nolrlc:rlt of an ;lt,olrl in the stat,c (Disrc- 
gard nuclear cffcc:ts) 

(c) Why are the no1)lc. gasc:s ch(:nlic:ally illort:' 
(d) Estinlatc: thc twergy dcllsit,y of black body ratliat,iol~ ill tallis roo111 ill 

erg C I T - ~ .  Assllnle t l ~ c  walls arc: black. 

(e) In a hydrogen gas discharge both the spcc:tr;il 1i11c:s c:orrrspondillg 
to the transitions 2'P1/2 + 12S112 and 22P3j2 + l 2 S L I 2  il.l-(: ol)s(:rvc:(l. 
Estimate the ratios of their intensities. 

( f )  What is the cause for the existence of two intlc:~)c:l~tl(:llt t,c>rlrl 1~vc.l 
schemes, the singlet and triplet syste~ns, in at,orilic hrlillll~:l 

( cll,i(:i~~,o) 

Solution: 

(a) When unpolarizcd rlclitral atonis of tot,;rl i~ l lg l~ l i~r  ~ I ~ ~ I I ~ ( : I ~ ~ I I I I ~  .J IIHSS 

through the Stern---Gerlach app;~rat,us, thc: inc:itl(:~~t 1)c:a111 will sl)lit illt,o 
25 + 1 lir~es. Thus 2J + 1 = 5, giving J = 2. 

(b) An a.t,orn in tllc st,ate "P" has total ailglllar nlo11l(:l1t11111 .T = 0. H(HI(:c 
its irlngnetic rnonlr:~~t is equal t,o zcro, if 1111c:lea.r spill is ~lt:glcct,t:tl. 

(c) The  rnolrcilles of 11ob1e gases co~lsist of atoins with filll-shc:ll strllc- 
tures, whic:h rnakes it very diffic:ult for thc at,orils to ga i~ l  or losc: c:l(?c:t,rons. 
Hrrlc:c 11ol)lc gases are c:hc:rnically inert. 

(d) The energy density of black body radiation at room ten1pc:raturc: 
T z 300 K is 
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( f )  Tllc helium atom contains two spin-l/2 electross, whose total spin 
S = sl + s 2  ran have two values S = 1 (triplet) and S = 0 (singlet,). 
Transition between the two states is forbidden by the selection rule A S  = 0. 
As a result we have two independent term level schemes in atomic helium. 

(;i) Dcrivc: t,hc co~iclitioos for tlre v;ili(lity of the WKB approximation for 
the orlc:-~lilllcIlsio~lal t,imc:-in(1cl)cndent Schr6dirlger cqiwtion, and show that 
tllc sl)l)R)xiIil;~ti("I 111llst fhil ill t t ~ c  i~iirilrOiritr: iieigli1,orllwal of n classical 
t~lr~iil lg poi~lt .  

(1)) Expl;lin, llsiilg perturbation theory, why the ground state eriergy of 
;,I, a t o ~ n  ;ilways .lecrcases when the atom is placed in an external electric 

Solution: 

(a) The WKB method starts from the Schrodinger equation 

where it is assumed 

Substitution it1 the Schrijdinger equation gives 

Expanding s as a series in powers of h/i ,  

(Berkeley) 
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and substituting it in Eq. ( I ) ,  we obtain 

If we impose the c:onditior~s 

Ih.s$I << lsi;1, 

12hsbail << 1s;l , 

Eq. (2) can bc .  al~proxi~ni~ted t)y 

which is equivalent to setting 

(3) ancl (4) ;a<? tlic cooditioos for t,lii: vali0ity of t,lin WKU ila!tla)<i. hlt,c- 
gration of Eq. (5) gives 

so that (3) can be writ,terl as 
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where 
. Ti f i  A = - =  

P J 2 7 n ( ~  - V(x)) 

N m r  a tl~rning point V(z) - E, p + 0 and (6) is not satisIic.tl. I II.III 1 .  1 1 1 1 .  

WKB method cannot be used near classical turning points. 
(b) Consider an atom in an clxternal electric field E in the z tlil.c.c.I,~~ ~ I I  

The perturbation Harnilto~lia~i is 

H' = - c ~ z ,  

wherc: z = xi zi is the sum of t,he z coordinates of t,he electrons of tlw 
at,orn, a.nd tllc ellergy correc:t,io~~ is 

AEo = H&, + ) l"(Eo - E n )  . 
n#o 

As z is ;Lrl odcl operator and the pa,rit,y of thc g r o ~ n ~ t l  stat,e is defi~~it,c:, 
HAo = 0. F~lthcrinore Eo - E,, < 0. Hencc AEo < 0. This means that tl~c: 
allergy of the grouncl st,;~te dccrcases when the at,om is placed in an electric 
Iicl(1. 

A piuticlc of mass , I n  moves wit,h zero angular momc.ntum in a spheri- 
cally syrrlrl~ctric at,tract,ive potaentaial V(T.) .  

(a) Write down the differential eqr~ation of radial ~iiotion, definil~g yo~lr 
mdial wavc function carefully and specifying the boundary conditiolis o r t  

it for bound states. What is the WKB eigenvalue condition for s-statc:s i t ]  

such a potential'? (Be c:areful to incorporate in your one-dimensional WKU 
arlillysis the const,raints of radial motion (0 < r < oo). 

(b) For V(r )  = -Vo exp(-rla),  use the WKB relation to estimate tl~c: 
minimum value of Vo such that there will he one and only one bound ~ t , i ~ t , ~ l ,  
just barely bound. Comparc your value t,o t,he exact result for the cLxl)o 

nential potential, 2,mVoavh" 11.4. 
( l ~ ( , , l ~ k , ~ / f ~ ! / )  

(a) The wave funct,ion of the particle can be written as t,llc. O I O ~ I I I ~  I $ 1 1  .I 

radial part and an angulx  part, +(r) = R(~)l$,(B,cp). II(,r.ct / ( ( I  ) :.,I/ I , , I I ~ .  . 
the equation 
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ill which 1 = 0 for zero angular lnornelltllm has been i~~c :o r f~o ra t~d .  The 

boundary conditions for k t  l~ound stat,e are R(r) finite: h)r i 0, R(r) + 0 
for r i co. 

Let ~ ( r )  = R(r)/,r, t,he above bcconlcs 

subject t o  thci c:ondition 

Thus the problem becomes that of t>hc. o~ic:-diriic~iisioiii~l 111otio11 of a. piLrt,i(:le 
in a potential V ( r )  defined for r > O ollly. The WKB cigc:livaluc: c:olitlition 
for s-state is 

Hence 

giving 
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(n + $1 7rTi 
E = -  [l-  1 vo. 

2aJZSG 

If thcrc is to bc one arid only one bound state, we require -E  = IEl < Vo 
for n -- 0 t)ut not for n = 1, or equivalently 

Tlic inii~im~iin Vu that  satisties this condition is givcn by 

wl~ic:li is very (:lose to the exact result of 1.44. 

(b) Sul~stituti~lg V -- -Vuc,xp(-r/n) ill tlic, loop illLc,gr;~l wc, llavcx 

For a bo1111d statc, E = - 1  El and the. i~l)ovc t)c~c~ol~ic-s 

Within the rcquircmcnts that Vo is finite allti t h i ~ t  thc:re is orle a l ~ d  olily 
one bound state which is just ba.rely l)otlnd, wc can c:olisider tlie limit- 
ing case where (El - Vo. Then t,he irrtcgral 011 the Icft-hand side can be 
approximated by 

Sct up the relevant equations with estimates of all missing parameters. 
Thc lnolcclilar bond (sprilig constant) of HCl is about 470 N/m. The 

morrlellt of inertia is 2.3 x lo-" kkgm2. 

(a) At 300 K what is the probability that the molecule is in its lowest 
excited vibrational state'? 

(c) Olt.lie molecules in thc vibrational ground state what is the ratio of 
the riumber in the grotlnd rotatiorla1 state to the number in the first excited 
rotatiorla1 statc? 

( Wzsconszn) 

Solution: 

(a) Thc Hamiltonian for the vibrational motion of the system is 
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and the vibrational states are 

with w = a, K beirig the force constant and p the rcducc.d mass of 
the oscillating atoms. 

Statistically, the number of molecules in state E('&) is proportional to 
exp(-nx), where z = El k being Boltzmarln's constant and T is the 
absolute temperature. Thus the probabilit,~ that t,tle molecule is in the first 
excited statc is 

e-" 
4 = = epx 

1 + e--x + e-" + . . . (1 - P), 

As 

fiw 1.054 x x (470/1.67 x 1027)1/2 x = - -  
kT - = 13.5, 1.38 x x 300 

we have Pl - e-lS5 - - 1.37 x los6. 
(b) The Hamilt.onian for rot,atiori is 

and the energy st,ates arc 

Since the number of rnolecules in rotational state J is proportional to (25  + 
1) exp (--$) as t,he J statc is ( 2 J +  1)-tirncs degenerate ( 7 1 ~ ~  = -.& - J+ 

I,... .]), we have 

The potential curves for the ground electronic state (A) and an excited 
electronic state (B) of a diatornic molecule arc shown in Fig. 8.2. Each 
clec,tronic statc has a series of vibrational levels which are labelled by the 
cllinnturil riuinbcr v. 

(a) The eilergy differences between the two lowest vibrational levels are 
dcsignatcd as AA and AB for the elect,ronic states A and B respectively. Is 
A n  largcr or smaller than AB? Why? 

( 1 ) )  Soine molecules were init,ially a t  t,he lowest vibrational level of the 
clectror~ic stat,e B, followed by subsequent, transitions to the various vi- 
k)rational levels of the electrorlic state A through spontaneous emission of 
raditrtion. Which vibrational level of the electronic state A would be most, 
favort~bly populated by these transitions? Explain your reasoning. 

( Wisconsin) 

Fig. 8.2 

Solution: 
v 

(a) The force constant is K = (b) 1 ,=,r,, where ro is t,lie equilibrium 

posit,iori. It can be seen from Fig. 8.2 that K A  > K g .  The vibrational 
energy levcls are give11 by 

7 

Hence 

and so AA > AB 
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(b) Electrons movc rnwh faster than ~luclei i11 vibration. Whcrl an elec- 
trou transits to another statc, the distance betwcen the vihril.t,ing nuclei 

reina.ins practically unchanged. Hence thc probability of ail electroll to 
transit to the various levcls is determined by the electrons' init,ial distri- 
bution probability. As the ~nolrcules are initially on thc g rou~~ t l  sti~trl of 
vibrational levels, the pro1)ahility that the c1ec:trons are at  tlle cquilil)ri~lm 
position r = Ton is largest. Then from Fig. 8.2 we sre t,tiat the vibrational 
level v = 5 of A is most favora1)ly occ:~ipied. 

Siiiglct posit,rorlium decays by emitting two plioto~ls w1iic:h arc poli~rixed 
at right angles with respect to each ot,her. An expcri~~~cmt is ~)crforlnctl with 
photon detectors behind polarization analyzers, a,s show11 i11 Fig. 8.3. Each 
analyzer has a preferred axis such that light polarizcttl in t h i ~ t  tlirctc:tior~ is 
transmitted perfectly, while light pola.rizcd in thc 1)crpc:iiclic:ul;t.r c1iri:c:tion 
is absorbed completely. The analyzer axes arc a t  right a1iglc:s with rcspcct 
to each other. When many ~?vcilts arc ol)scrvcd, wliat is tho ratio o E  t,he 
number of events in which 1)oth t1ctcc:tors rc:cord a photo~l t,o t l ~ c  11111nl)er 
in which only one dctect,or recortls ;I pllotoii? 

(MITI 

- 0  .. --- Analyzers ' Photon detectors / 

Fig. 8.3 

Solution: 

Suppose the positronium is initially at rest. Then thc two photoris will 
move in opposite directions to conserve rrlorrier~tum, arid will reach the re- 
spective analyzers a t  the same time. Assume fi~rt~her that the detector solid 
anglc is very smaller. Then the directions of those photons that reacll the 
analyzers must be almost perpendicular to the latter. Hence the directions 
of polarization of these photons are parallel to the allalyxers. 
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Denote by 8 the angle between one photon's direction of polarizationn 
and thc direction of transmission of the analyzer reached by it. The prob- 
ability that it can pass through the analyzer is cos2 6 .  Consider the second 
photon produced in the same decay. As it is polarized a t  right angles with 
respcct to tllc first one, the angle bctween its direction of polarization and 
the dircct,ion of transmission of the second analyzer, which is oriented at 
right angles to that of the first analyzer, is also 8. Hence the probability 
that ,  of the two detectors, only one records the passage of a photon is 

whcrc: S1 is the solitl angl(: s~~l ) tc r~de t l  by tllc dctcc:tor, and the probability 
that bot,ll tlctcctors rcc:orcl tllc: passage of pllotorls is 

Hen(:(: tlic ratio of I,hc ~ i u ~ n l ~ e r  of evcnts of both detectors recording to that 
of o~ily one detcictor rccordiilg i11 a givc?11 time is 

A point source Q emits coherent light isotropically at two freq~lencies w 
ancl w + Aw with equal power I joules/sec at each frequency. Two detectors 
A and B each with a (small) sensitive area s, capable of responding to 
individual photons are located a t  distances L A  and L B  frortl Q as shown in 
Fig. 8.4. In the followillg takc A w / w  <i 1 and assuitle the cxperirnent is 
carricd out in vacuum. 

(a) Calculate the individual photon counting rates (photons/sec) at  A 
and B as functions of t,ime. Consider time scales >> llw. 

(b) If now the output pulses from A and B are put into a coincidellce 
circuit of resolving time 7,  what is the time-averaged coincidence counting 



684 P ~ o b l e m s  and Soli~t ions o n  Qi~ant,um Mechanics 

rate? Assuine that T << l / A w  and recall that a coincidence circuit will 
produce an output pulse if the two input pulses arrive within a time T of 
each other. 

( CUSl 

Fig. 8.4 

Solut ion:  

(a) The wave funct,ion of a photon a t  A is 

where C1 is real aiid, hence, the probability o f  lindiiig a protori at A in uiiit 
time is 

= c; {2 + 2 ~ 0 s  [Au (: - t)]} 

aw 
= 4c; cos2 [l (ln/c - t)] 

If there is only a single frequency, PA = Cy. AS each photon has energy 
f iw,  the number of photons arriving a t  A per second is 

Hence 

and 
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Siinilarly we have 

(1)) Ill a coincidence of resolving time r ,  the time-averaged coincidence 
c:ouiitiilg rate 

where 

x { 2, + 27 cos [aw (% - t)] ) d l ,  
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Hence 

1 
P = 8 r C 4  lim - 

T+m 2T LT{' + 

cos[(l*/c - t)Aw]) 

{l +as [(; - t )  Awl } di! 
= 8 r c 4  lim - {I + cos [(: - t )  A,] 

~ + m  2T 

+ 0 s  ( - ) A ]  + 0 s  [ (  - t )  A ]  c ( - t )  Awl } dt 

= 8 r c 4  l i ~ n  - 
(1 + COS [$ (11 - l g )  ~ + m  2T I 

+ m s  [(v - t )  nu] cos [(v) awl 

+ 2 cos [ (  c - 21)  Aw] ) dt 

2T cos [(e) Awl ) 
T-+w 2T 

1 AW (ln - lH )  
= 8 r c 4  {l + (:OS [ 
- 

c 

A charged oscillating (nearly) classical system is losing eriergy by radi- 
ation. At energy E it is radiating (and oscillating) a t  frequency v(E)  = 

a ( E / ~ o ) ~ f i ,  where a ,  P and Eo are posit,ive constants. Conlplite thc cluan- 
tum energy levels (of the system) En for large n. 

(Berkeley) 

Solution: 

According to the Bohr correspondence principle: the quantum frequency 
approaches the classical frequency for n >> 1, i.e. v,, + v , ~  as n + m. As 

a H  
VQ"' = - , d J  

where J = nh, r = n - m, and In, n >> 1. We have, with r = 1, 

Integrating 

we have 

ET, = [ h , a ( ~  + l)nE{ 

A spinlcss particlc of mass 7nz and charge q is (,oilstrained to  move in a 
circle of radius R i ~ s  shown in Fig. 8 5. Find its allowed energy levels (up 

to a corninon additive constant) for each of the followirig cases: 

(a) The motion of the particle is nonrelativistic. 
(b) Thcre is a uriiform magnet,ic field B perpendicular to the plane of 

the circle. 
(c) The same magnetic flux which passed through the circle is now 

c:onta.ined into a solenoid of ra.tlius b(b < R). 
(d) There is a very strong electric field F in the plane of the circle 

(qJFI >> fi2/,mR2). 
(e) F and B are zero, but the electron's motion around the circle is 

extremely relativistic. 
(f) The circle is replaced by an ellipse wit,h the same perimeter but half 

the area. 
(CUS) 

Solution: 

(a) Let the momentum of thc particle be p. The quant,ization condition 
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gives 

a.nd hence 

where 

Fig. 8.5 

(b) Take coordinates with origin at the center of the circle and the z- 
axis along the direction of B. Then the vector potential at  a point on the 
circle is 

call be written as ( ( I l l  

Itas solution is $J(cp) = Ceinv, The single-valuedness condition $(p) = $J(p+ 
2 ~ )  dcrria~~ds n = 0, f 1, k 2 , .  . . . Substituting the solution in the equation 

((:) Whcri the magnetic flux is confined to the inside of a solonoid of 
U ( I  

i' 

r;uli~is t, c:rlc~losc:cl by t,hc circ:ln, rn;~g~letic field is zero on the circular path. 
As D x A = B = 0, A can be t,akerl to bc a constant which is equal to 

'i 
/ I )  

$ BIi! wlic~l b --i R. 'llli(:~i 11 
! I l l  

As (1) r(wi<LIIls thr  sallic, the energy levels are the same as in (b). 
((1) Takr the &-axis parallel to F. Then 

F = F(cosp,-s inp) ,  dr = (0, Rdp ) ,  I(! 
; ~ n d  hence I / ,  111 

Thus the Hamiltonian is 

Because the electric field F is very stroiig., the prot);~bility that the particle 
moves near cp N 0 is large. Hence we car1 ~naka  the approximation 

The Schrodinger equation 

H + =  E*, 



690 Problems and Solutaons on  Quantum Mechunacs 

and obtain 

which has the form of the Hainiltonian of a harmonic oscillator of mass M = 

mR2 and angular frequency w givcm by Mw2 = q F R ,  whose ~ ~ i p ~ r ~ v a l u ~ ~ ~  are 

with 

Therefore 
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Consider the scattering of a particle by a regular lattice of basis a ,  b, 
c .  The interaction with the lattice car1 be written as V = Cj V([r  - r j / ) .  
where V(lr -I-;\) is the potential of each atom and is spherically symmetric 
about the atom's lattice point. Show using the Born approximation that 
the condition for non-vanishing scattering is that the Bragg law be satisfied. 

(Berkeley) 

Solution: 

The Born approxiination gives 

where r = rj + r'. Consider the sum Cj e"(k-ko)'r~.  

As we are to surn over all the lattice points, for the sum to be nonzero 
we require (k  - ko) . rj = 2n7r. 

Thus the condition for non-vanishing scattering is 
(e) The quantization coridit,ion gives 

for all the lattice vectors r;, whence 
or p = nh/R. 

If the particle is highly relativistic, 

( f )  The quantization condition gives 

and hence 
nhc E ' = p c = - -  
R l 

same as for a circular orbit. 

a .  ( k -  ko) = 27~11, 

b . (k  - ko) = 2 ~ 1 2 ,  

c . (k - ko) = 2 7 ~ 1 ~ .  

11, 12, l3 being integers. This is the Bragg law. 

8016 

To find approximate eigenfunctions of the Hamiltonian H we can use 
trial functions of the form $J = C z = ,  a k 4 k  in the variational method (where 
the $k are given functions, and the a k  are parameters to be varied). Show 

Ill\ 11 I '  

Ill,, 
\I!, 

ii 
ill, 

I 

)/II 
y r l '  

( i 
1 8 1 1  1 '  1 

/ 
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t,hat one gets n solutiolls .$, with energies E ,  = ($,IHlli,,)/(~,b~~l~,$,), where 
H is the Hamiltorlian. We will order then1 so that  ~1 < ~2 < ~ 3 . .  . . 
Show from t,he Hermitian properties of the Haniilt,oniari tha t  the  either 
automatically have or can be chosc~i t o  have t;he propertics ($,I+o) = dCy4, 

(+alHl+p)  = ~ ~ 6 , ~  Frorn thc  fact tha t  one can cert,;~inly find a linear 
combination of $1 and $2 which is orthogolial to $,, the  exact ground 
s ta te  of H with eigenvalue El,  Ilrovc that  EZ > E2, wl1c:re E2 is tlic cxtxct 
energy of t,he first excited state. 

( Wisconsin,) 

Solu t ion :  

Supposc? (4k) is the  set, of linearly independ(:llt fil1lc:tiolis. W(. irlay 
assume that  (4il4.) = hij ,  first. using Schmidt's ort l~ogoii ;~lia:~~t~io~l I)roc:clss 
if necessary. Then 
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where n is the Lagrange multiplier, we get 

i.e., a = AzL or (yr l  = 0. 
Htnce the  solutioils of the  variational equations are  

Thos wc get n solutions + a ,  the a t h  solution y lE)  = bj") corresponding to  

with E ,  5 FZ 5 E:(. . . . 
For +, = [X (Y)] , we h a w  

where 

As X is Hcrrnitian, we (.all choose a rotatioria.1 trarisforrrl;~t~iol1 X = jjY, 
such tliat A = $+A$ = @-'A$ is a, dia.gona1 matrix with diagolinl c:l(~~nc:nt,s 
Al l  5 A22 5 A33. Then 

71 

wherc y .  sat,isfy Iyii" 1. 
Applying the va.riationa1 principle 
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Then, by setting q, = $,/ Jm, a )  we have 

Let the exact wave functioiis of the ground state ant1 thc first exc:ited state 
of H be @1 and Q2, their exact energics be  El and Ez rc:spcctively. Then 
there must exist two numhers p~ and p2 such that (Dl = p l Q l  + p2\k2, 

/p1 l 2  + IP2l2 = 1. Roln  the orthogo~lality of and Q2,  wc: havc az = 
1-129 - p;\kz, and t~cricc 

8017 

Find the value of the  parameter X in the trial function 4(x) - ~ r : . . - ~ ~ " ~ ,  
where A is a normalization constant, which would lead to tho 1)ost ;q)prox- 
inlation for the  energy of thc ground st,at,e of tlic: on(,--l);lrtic:l(! II:llliilt,oliiiln 

2 2 

H = -h zm % d~ + bz4, wl1c:re 1) is a c:orist.arit. Tlic followiiig illt(:gl.ills IIiily 1,e 
useful: 

Solution: 

Using the trial function 4 = A(I-~"", (:onsi,l,:r the  integrals 
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+ 0 3  4 /XI ( 2 ~ ~ ) ~  

a11d obtain 

8X4 

As (u  + b + c) > (abc)'/"or posltive nr~mbers a ,  b ,  c, we have 
!I 

FIe1ic:e the best approximatiorl for the  energy of the ground state is 

Considcr the energy levels of the  ~ o t c n t i a l  V =. g J z \ .  (Il l  
' 1 1  

(a) By dimcnsiollal analysis, reason the dcpendence of a general eigen- 
illli 

value on the parameters m =mass, 1, g. 
I, 

(b) With the simple trial function 

compute (to the bitter end) a variational cstimate of the ground state en- 
ergy. Here c, a are variable parameters, O(x) = 0 for x < 0, O(X) = 1 for 
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(c) Why is the trial functioll = cO(z + a)O(n - r )  not a good onc? 
(d) Describe briefly (no equations) how you would go about a variational 

est,imate of the energy of the first excited state. 

(Bcrkcley) 

Solution: 

(a) T h e  Schrodingrr equation 

can be written as 

we have 

[(F) 3 ]  = [(T)~] , 

Hcricc tho cigcnval~ic. has thc. form 

whcre f (71) is a function of a positive int,eger 7 r .  

(h) First normalize the trial wave filnction. As 

we have 
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Then calculate the average value of the Hamilt,onian: 

we have 

and hence 
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For its minimum value, let 

which gives 

Hence an estimate of the ground state energy is 

(c) If we had used a trial function $ = cQ(x + a)O(a - x) and repeat the 
above calculation, we would have obtained 

and hence 

As 

H obviously has no extreme point. Therefore this trial function is not a 
good one. 

(d) We first choose a trial wave function for the first excited state. It 
must be orthogonal to that of the ground state. Then use the above method 
to find a variational estimate of the first excited state energy. 

(Use nonrelativistic methods to solve this ~roblem.)  

Most mesons can be described as bound quark-antiquark states (qtj). 
Consider the case of a meson made of a (qq) pair in an s-state. Let m, be 
the quark mass. 

Assume the potential binding the q to the q can be written as V = 

$ + B r  with A < 0 and B > 0. You are asked to find a reasonable approx- 
imation to the ground state energy of this system in terms of A, B, m, and 
h. Unfortunately, for a class of trial functions appropriate to this problem, 
a cubic equation has to be solved. If this happens to you, and you do not 
want to spend your limited time trying to solve such a cubic equation, you 
may complete your solution for the case A = 0 (wit,hout loss of credit). 
Please express your final answer in terms of a numerical (:onstant, which 
you should explicitly evaluate, multiplying a function of B, 7n,, ant1 /if. 

(Bcirkc1r:y) 

Solution: 

Method I 
Use for the trial function the wave function of a ground state hydrogen 

atom. 
$(I-) = e-'Ia 

and calculate 

tn where p = $ is the reduced mass of the qg system. Vary a to minimize H 
by letting = 0, which gives 

(&) ' I 3 .  Hence the estimated ground When A = 0, the solution is a = 3 B p  

state energy is 
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Method II 

Another estimate of the energy of the ground state can be obtained 
from the uncertainty principle. Consider 

As the principle requires 

we take the equal sign for the ground state and obtain 

TO minimize H ,  let 

As H is symmetric with respect to x, y, z ,  when it reaches the optimal value, 
we have x = y = z, or r = a x ,  and the above equation becomes 

Letting A = 0 we get 

Hence 
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8020 

An attractive potential well in one dimension satisfies 

-w  +ca 

V(x) < 0,1_ V(r)dz finite, La x2 V(x)dz finite . 

(a) Using trial wave functions of the form e-PX2/*, prove that the po- 
tential has a t  least one bound state. 

(b) Assuming further that the potential is quite weak (Jz V(z)dz, 

ST," z2V(x) dx are both  small")^ find the best upper bound (for the en- 
ergy) for this class of trial functions. 

(c) In  a dimensionless statement, state what is meant by 

LL~mall" in part (b). 
(Berkeley) 

Solution: 

(a) The given trial function is the ground state wave function of a one- 
dimensional harmonic oscillator. We shall use the normalized function 

where /3 = y. The Hamiltonian can be written as 

we have 

and 
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Since when p -z 0, 

we have i -m as i 0. When /3 i m, $ i > 0. Therefore 

$$$ = 0 a t  least for a certain positive 0, say Do. Thus the trial funcision is 
suitable arld the energy for the corresponding state is 

Therefore the system has at least one bound state. Note that wc ].lave uscd 

the fact = 0, which giws, for /3 = iJo, 

(b) ( c )  Let JFm V(z)dz  = A, SFCO z2V(z:)d5 = B. The requirement 
that A and B are small means that the potential V ( z )  can have large 
values only in the region of small 1x1. Flirthermore, for large lxl, V ( z )  must 
attenuate rapidly. This means that we can expand the integrals 

Then the minimization condition = 0 gives 

Hence the bound state energy is estimated to be 

As A and B are both negative, E < 0. Hence 

Since for turo arbitrary real numbers a and b ,  ( a  + b ) 2  2 4ab, the upper 
hound of E is given by 

8021 

A moves in an attractive central potential V ( r )  = -g2/7.3'2. 

Use the variational principle to find an upper bound to the lowest s-state - ~- 

energy. Use a hydrogenic wave fi.lnct,ion as your trial function. 
(Chicago) 

Sohtion: 

As the t,rial function we use the normalized ground state wave function 
of the hydrogen atom, 
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to calculate the energy. For an s-state, 1 = 0 and 

For H to be a minimum, = 0, i.e. k - g2k1/2 = 0, giving two 
sollitions kl = 0, 

k y 2  = 
3fig2m 

2h2 ' 

The first solution implies = 0 and is to be discarded. On the other haiid, 
if k:" = w, H reaches a minium - w. This is the upper bound 
to the lowest s-state energy. 

A system of spin-1 particles consists of an incoherent mixture of the 
following 3 pure spin states, each state being equally probable, i.e. one 
third of the particles are in state $( I ) ,  etc. 

(a) Find the polarization vector for each of these 3 pure states. 
(b) Find the polarization vector per particle P for the above mixed 

state. 
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(c) Calculate t,he density matrix p for the syst,em a ~ l d  verify that Trp  = 1 
(rl) Using p, fi11rl the polarization vector P and check against (b). 
Rcininclcr: for J = 1, 

Solution: 

(<L) Tllc I)ol;~ri.~ation vector for a. state z is given by 

P(%) = ( $ ( I )  ( J I  *(%)).  

and so P(') = (0,0,1).  
Similarly we have 

(b) For the incoherent inixturc, P is the sunl of the polarization vectors: 
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(c) In terns  of the orthonormal vectors 

we have 

Gencrillly a state can he expressed as 

wlit~c: i = 1, 2 , 3 .  The density matrix is defilled as 

i ) - l .  
as w (  - 5 for all i in t,hc present casi:. Tlir ~r~irtrix of the r,o~&cinIrts is 

and so 
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(d) As P = ( , J )  = Tr (pJ ) ,  we have 

The deuteron is a bound state of a r~eutrori ilnd a proton in which the 
two spins arc coupled with a resultant total angular ~nornentunl S = 1. By 
atxiorbing a gamma ray of more than 2.2 MeV the deuteron irlay disi~ltegrat~e 
into a free rleut,roli nrld a free proton. 

(a) Write a wave function for the final state in the reaction y+D -+ ~ l + p  

l~sing plane waves and being sure to include properly the spin coordin;it,c:s 
for t,he two particles. Assume that the interaction with the gamma ray is 
via electric dipole coupling. 

(1)) Suppose the neutron and the proton are to be det,ected Far apt~rt  from 
each ot,l~rr after the disintegration of the deuteron. Looking at this in the 
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center-of-mass system, what corrcliitions will I)(: folllid ill ti71i~ ii11(1 .S~(LCC, 

and in spin? Assume that  the target  consist,^ of uiipolnrixcd cle~lt~c~ro~ls. 
(You may use the followillg clefirritiol~ of spill correlatio~i: If a prot,ori is 
detect,ed with spin "up", what is t11~ 11rol)czl)ility t,hat tlic: c:orrcs~)o~itling 
deuteron will also be  detcctcd wit11 spi11 "I I~" ' . ) )  

(D(:7.kclc!j) 

Solution: 

(a) The groulld st ;~t .c d(:\itc:rnrl :'S1 ha.s l)osit,ivcx ~);irit,y. Tlic: c,l(rc:t,ric 
dipole transition rc:rluircs il, c:l~n~igc: of pi~rit,y I)ot,wc:c:r~ t,lic: init,ii\l ii11~1 fi- 

nal states. Hcnc:c t,lrc: pi~rity of t,hc: fi.c:c ( r ~ ,  p )  systc:lr~ ni~is t~  lii~v(> 1)iirit.y 
-1. Ass~i~rict that  t l ~ c  wave functio~l of ( r ~ ,  p) call 1 ~ :  wr i t tc :~~ ;LS Q@L, p )  - 
~/)(r,, , r,);y(n, p). For ;y = X : ,  after the nucleons are il~t(:r(.l~i~llg(:(l th(r W;LV(: 

function becomes Q(p, n) = (-l) 'Q(n,  p ) .  For :y = x!,, ;ift.or t,llcl iui(:l(:- 

011s are interchanged, the wave f u ~ ~ c t i o n  becomes Q ( p ,  11) = (- 1)' \I/(,,,,, p ) .  
A fermion system must be antisymmetric with respect t o  il~t,(:r(.hi~~ig(: OI 
any t>wo l)i~rt,i(:l(l~, wllich means that  for the former case, r! = 1, :J, . . . , ; L I I ( ~  

for t , l l t r  Iilt.t,or (:we, 1 = 0, 2, 4, . . . , and so tlir piiritics arc: -- I(1 - .  otltl) 

i r . ~ l t l  -1-l(1 = even) respectively. Consid(:rii~g t l ~ :  rc~cluirc>~~lc:~~t wc! so(: t,h;~t, 

o111y states with x = X f ,  i.e. spi11 tripltrt sti~t,(:s, arc' ~)ossil)l(:. IJ~lrtli(,r, 
S = 1, L = 1, 3, . . . , ant1 so .I = 0, 1, 2 ,  . . . . As t,hc: clc:~~t,crro~is i~r( :  11111)o- 
larized, its spin wn.vtr fil~ictior~ h i ~ s  t.1~: s;ir~lc: ~)rol)iil)ilit,y of 1)c.iiig ,y1 1 ,  xlo 
or  xi- 1. Tl~crcforc, iiftcr t.11~ t,r;iilsitiol~ ( I ) ,  p)  (:ill1 I)(' r ~ ~ ) r c s c ~ ~ t o ( l  I)y t,ti(, 
prodll(:t Of plallc: W;lV(: all(] t,ll(> iLV(!riLg(: s1)iii WibV(' fllll(:tiol~: 

Cl(k7L.rr.+kp.rp) . ,-l(w,,r+w,,r) 
) I  -+ Y O  + 1 ) .  

(I)) The c:orrclatio~~ of timo a.11d SI);L(:C is l~~i\l~if(>st,(:(l ill ( :o~iservii t io~~ of 
t?ll(!rgy iLll(1 (~011~(:~vati011 Of 1110111(?1l~lllll. I11 th(: (:(?llt(:r-Of-llli1~~ (.O~r(lilli\t,(~s, 
if the energy of t,hc protorl is rric:;~s~~rc:d t,o I)e E,,, t,llc elicrgy of tall(, ncnt,ron 
is En = E,,,, - E,,; if thc mornentrlnr of the proton is p, tlic: 111omcnt,un1 

of the nel~tron is -p.  Let ry l)c t11e spin f11nc.tion for "r~p" spill, ;~ritl [j 
be t,hat for "down" spin. Then y 11 = (I(,~L)CY(P), X I - I  = P(~) . ) l j ( j ) ) ,  ,YI(I = 

1 r ~ z  [a(n))Pp) + ry(p)$(n.)], aud thc  sp i~r  WiLVC function is 

Thus, if the, spill of p is dctcctecl to !I(, up, wc hnvc 

Hen(:(: tllc pro1)al)ility that the  spill st,a.tc of , / I .  is also up  is 

(a) Yo11 ;ire given a system of two identical particles which may occ~lpy 
1 ~ 1 1 ~  of t,llr(?(: c:ucrgy levels E,, = rt.e, n = 0,  1,  2. The  lowest energy state,  
co - (1, is (iouhly dcgenerat,c'. T h e  systern is in t,hermal equilibrium a t  
t,(:rlll)(tr;~tllr(: 7'. For each of t , l~o following cases, deter~nine the partition 

f~~n(:t,ioii i ~ i l ( 1  the energy and (,:~r(xfi~lly (~111111l(~riitc the configurat,ions. 

(1) Tl~cx Ixntic.los obey F ~ r n i i  stat,istic.s. 
(2) Tllc: 1);~rt,ic:l(xs obey Bosc sl;i~t,ist,ics. 
(:<) Tllc: (rlow clistillg~ish;~bl(:) ~)a.rt,i(;I(:s ok)(:y B o l t , z ~ ~ ~ i ~ ~ ~ r l  st,iit,ist,ic:s 

Sollition: 

D(,i~otc the two states with EO = 0 by A and B and the  states with e 
; i r l t l  2,- 1)y 1 and 2 respect~vely. 

(1) Tllc, system can have the  followi~lg configurations if thc 1)i~rticlcs 
ok)cy f(>rnii stiit,istics: 

Confignrat,ion: (A,  B) (A,  1) (B, 1) (A, 2) (B, 2) (1, 2) 
Energy: 0 E E ZE 2e 3~ 
Thus tllc partit,ion fullction is Z - 1 + 2e-' + 2e-" + e-3', 
and thc Inearl enrrgy is E = + 4 ~ e - ~ '  + 3 ~ e - ~ ' ) / Z  

(2) If t h e  part,ic:l(:s obey Bose stat.istics, in aclditinn t,o the above statcs, 
the following configur;~t,ions are also possible: 

Configuration: (A, A) (B, B)  (1, 1) (2, 2) 
Energy: 0 0 2~ 4,- 

Hence the  partition funct,ioii a.ntl average energy are 
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(3) for destinguisable partides obeying Bol tz~nanr~ st,;rtistics, Inore (:or]- 
figurations are possible. T h ~ s c  are (B, A) ,  (1, A), (1, B),  (2, A) ,  (2, I3) and 
(2, 1).  Thus we have 

(b) Fermioris i~11(1 ~ I O S O I ~ S  CiLrl 1 ) ~  tr(:iit('d B0lt,~11ii~iiii ~)i~rti(.l(\s wlicri 
the number of p;irt,ic:lcs is 1nlic:h less t,lii~li th(: iilinil)(!r of ~ii(:rgy lc:v(:ls, for 
then the ~xc:harigc cffcct. cil.11 1)o neglcc:t,ctl. 

8025 

Consider a free electron near a boundary surface. 

(a) If (l)k(:f:)'~ are the electron eigenfunctions, show that  tho f~iii(.tioil 

satisfies a diffusion-t,ypc: c(llli~t,ioli. Itl(,iit.ify tlic: c:orrcspoiitliiig diffiisio~i c:o- 

efficient. 
(1)) Fro111 the  theory of tliffiision how wolllcl yoti c:xpcc:t ( ~ ( 0 ,  t )  t,o I)(: 

illflllell(:~tl by t,hc [)l.(lSCll(:(: Of ;\ k)OlllldiL~y ilt i L  distiLil(:(: r! f~o l f l  t,h(: origili'! 
Wolllil the t)oliiicl;~ry t)c felt iiilriictiii~t~cly or olily at%c?r i111 (:~;LI)sc of. t.il~l(:'! 

((:) Exairiiiir t,hc cx~)rc:ssioli for u,(O, f )  21s i L  sliili ovrr k iiS giv('11 ill (ii). 
What is t,hc raiigc of EI, which contril)ut,c: sigllifi(:i~lit,ly t>o ~ L ( O ,  t )  i ~ t  tlic tiill(> 
whcri the iiifllience o f  tlic 1)ouiidary is folt by t,hr (~l~( : t rol i?  

( B ~ L  ff/i10) 

Solution: 

(a) The wave filrlctiol~ &(.c) satisfies tlie Schrodingcr ccltiation of :L frce 
particle 

Thus 
2m 

a ion: u(n:, t) si~tisfies the following diffusion-type equ t' 

Tlic: corrc:sponding diffusiorl coefficient is f,./2m. 
(b) Ii~it,ially u(x,O) = 6(x). When t > 0, the fur~ction u starts diffusing 

to t)oth sides. The boundary will not be felt b.y the electron before a lapse 
of t,irnc>. 

((:) Suppose the boundary is a t  x = 1. The solutior~ of thc diffusion 
c:clriation is 

Whc.11 t h ~ r n  is 110 1)oundary (i.c,., r! + a), thc: solution is 

7 rL 711, 
u(x ,  t )  = c exp [-% (gZ + z2)] exp (- - x') . 2 tit 

Fro111 the above two expressions, we see that  only when ( 0 - 2 ~ ) ~  -- I ,  i.e., 

i ~ t  t -- 2rn12/h,, will the electron start  t o  feel the existence of the I)o1111(1i~ry. 

Only states q5k for which the energy ~k is such that 9 5 1 will contribute 

~igllificant~ly t o  ,t,,(O, t ) .  At the time t -- q, we require i t  < & for iht 
to  lilakc a signific:ant contribution. 

8026 

Synl~netriaing Maxwell's equations by postulating a magnetic monopole 
charge of strength g, Dirac derived a quantization condition 
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where n = ari integer, e is t,he electronic: charge, and ,9 is the magnetic 
charge. 

In the spirit of the Bohr-Sommerfelt1 quarlt,ization procctlilrc, ticrivc 
semi-classically a similar quantiz;~tion condition by qual~tizillg the angulw 
molnentum of the field in the "nliscd dipole" systcill shown iri Fig. 8.6. 
Hint: How is the angular iliolnc!llt,uln of the ficlcl rclatcd t,o the. I'oy~ltillg 
vector? 

Solution: 

The clcctromngllctic ficdd corisists of two cornpollc~rits 

In cylindrical coordinates ( p ,  8 ,  z ) ,  we can write r = 2ae3, wllcre a = 

(r1/2, aiid 

x = p cos He1 + p sin Be2 + ze3 , 

The angular momentum of the electromagnetic field is 

1 
L,, = - l x  x ( E  x ~ ) d ~ x  

47rc . 

- c!lx x r 
- 312 ' 

[(x - ;)-' ( x  + ; ) I  
e,g[(x . r ) x  - x%] 

x x ( E x B ) = - -  
[(p" + z" aa" - 2az)(p2 + z2 + a-' + 2az)]"2 

- 
2ae!l(z0 cos Bel + z p  sin He2 - p2e3) 

- 
[ ( /~++- '+a2) -4a2z2]3 /2  ' 

w1ic:rc s = pla ,  t =- z l a .  It can be sliown that 

dt im s"s 
= 1 

. -00 [(s" tt" + 1)2 - 4t2]3J2 

Hence 

LC, = -- eg e3 
C 

The quantizatioi~ conditiorl is therefore 
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In a. crude picture, a metal is vicwetl as a, syst,crn of frcc el(!c:trons en- 
closed in a well of potent,i;rl diffcrcnc:e Vo. D I ~ I ~  to tlic~rrn;~l agit,at,iolls, (?It:(:- 

trolls with sufficiently high c:ncrgic.s will csc;ipc fro111 tlic? wtrll. Filitl itlld 
discuss the emission clirrc:llt tlcnsity for this ~riotl(,l. 

( Br~,fl(~l o) 

cur rent density - 
Solution: 

or, by setting P," + P; = P:, dP,dP, = 27rPTdP,-, and neglecting the 
rlurilber 1 in the denominator, 

-- 4mnIc2T2 e-(vo 
h." 

Tlic c,l(,c:tric current density is then 

Fig. 8.7 

Not(. that in the above, to siiilplify thc iiitegr;rtion, wc. havc assumed 

r 7 I 11(% syst,c!i~~ of free electrons can be consitlerc?d ;LS all c~l(~- t , rol~ gas of 
vol~iir~c: V which obeys the Fermi stt~tist~ics. At ;rl)sol~~t.c: t,(:1111)(~ri~t,1ir(: T t.l1(: 
11111nber density of electrons wit,li morr~c~lit~;~ k)c:t,wc:c:11 P ;LII(I P -1- tip, wlic:rc: 
P = (P,, P,, P,), is 

wlic:rc t,hc? f i ~ ( : t , ~ ~  2 is tho ( I ( ~ ~ ( I I I ( I ~ ; L ( . ~  (Ill(: to tall(: (\l(:(:tjro~1s lii~vi~lg two spill 
dircctioris. 

Uorlsit1c:r t,h(: ii111111)('r of (?I(~.t.r01is, j,,,, I('i~~illg V in tali(? z (lir(?(:t,ioll ~ ) ( ' r  
unit cross sr(:tdiol1;rl ;xr(x p(:r illlit t,i~rlc. S I ~ ( : ~ I  (:I(!(.~,I-OLIS 11111st, 11iivc ;L sp:(:(l 

At T = 0 t,he electron nuiriber density is 

wlic,rc, Po, po, are the limiting momentum and ericrgv At ort1iii;~ry tc~111pc.r- 

The q~lxntity Vo - p is the work f~in(~tioii  of t lic i11ft;11 i~lld the emission of 
electrons from incandescent catliotlt~s is known ns Richardson's effect. 

It is generally recognized that there are a t  least three different kinds 
of neutrinos. They can be distinguishetl hy the rea.ctions in which the 

iieut,rinos are creat,ed or a.bsorbed. Let us call t,ht,se three types of neutrino 
v,:, v,, and v,. It 11;~s \)ten speculated thht each of the neutrinos has a, small 
k)ut finite rest mass, possibly different for each type. Let us suppose, for 
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this extun question, that therc is a small pert,urt~irig intcrac:tion l)ct,wc~en 
these neutrino types, in the absence of whicli all three types have t,lic same 
nonzero rest illass hfo. Let the iilatris rlcmcnt of this p(:rt,~rbi~t,ioil lii~ve 

the same real value f iwl between each pair of neutino typcs. Lct it litrve 
zero expectat,ion value in each of tlie st:~tcs v,, v, and v,. 

(a) A neutrino of type v, is r)rotl~lcod a t  rest a t  t,i~rle xc:ro. What is t11c 
probability, as a func:tioii of tinic:, that the iieutrino will 1)o it1 c;~cli of tlic 
other two states? 

(b) [Can bc nnswcrcd iiitl(:l)c:iitl~i~tly of (a)] Ari c:x~)c:riiiiciit t,o tl(btc:c:t 

these "neutriiio osc:illnt,iolisn is t)ciiig pcrforrrictl. Tlic: flight 1)atli of t,hc: 
neutrinos is 2000 ~nctc:rs. Their energy is 100 CeV. Thc: sensitivity is s11c.li 
that thc preserice of 1% of neutrinos of one type diffc:rc:iit froin tliirt pro- 
duced a t  the start of the flight path can be measured with c:oiititl(~iic:c:. T ; L ~ ( I  
hfo to be 20 electron volts. What is the smallest value of TwL tliat (:ail l)c 
det,ected? How does this depend on Mo? 

( Bc:,r~X:clcyl) 

Sollition: 

(:I) In the representation of Ivr), Iv,.) i~iid jv, , t,li(' ~ ~ l i ~ t , r i x  of tali(, IIi~iiiil- 
tonian of the system is 

The Scliriidiiigc~r c1cluation 

whcre @ = L r t  1 , a being 1 1 .  wave function for s t a t  v L  has t l i  nlatrix 

form 

with the initial condit,ion 

The solutioii is 

II(>ric:c the probabilities of thc nc~~itrilio 1)c~iiig ill states v, and v, arc 

(1))  The time of flight of v, is At = in t,llc, laboratory time, or AT = 

At d m  -. 9, where E is t lr ,  toti11 energy, in the rest frame of ve. 

For P(v,,) > 1%, i.e., 

To a good approximation, an electron in a crystal lattice experitriic:c:s a 
periodic potential as shown in Fig. 8.8.: 

It is a theorem (Floquetls), and a physical fact, that thc s1)cctruin of 
any such periodic potential sparates int,o corltirluous "bands" wit,h forbidden 
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"gaps". To construct a very crude model of ( the lowrst band of) this effcct, 
imagine that  the barriers are high, so that  the sct of "grountl stat.rsn 17s) 
(-cc < n < +cc) (one for each well) are approxiinate eigt:~ist,atcs. Call Eo 
the energy of each In). Now suppose E = 1 ~ / r ? ' "  is tlie (small) ; ~ n l p l i t ~ ~ d c  for 
t,unneling between any t,wo nearest-ncighbol- wclls (~)rol)al)i l i t ,~ for In- 1)  t 
In,) + I ~ L +  1 > is I&/'). Set up a Herinitii~ii Haiiiilt,oiiia11 that, (1c:s~ril)cs this. 
Compute the energy E(0)  of thc: statc:(s) 

What is t,hr. width of your band? 

Fig. 8.8 

Solution: 

Wc writjc thc: I-I;~riiilt,oiiiail ;LS :L i~iat,rix, c.hoosiiig 171) i~,s 1)i~sis vc:c:i;ors. 
S~ipposirig 

we have 

where wc ~ ~ L V C  usctl the ; ~ s s ~ l n ~ p t ~ i o n  that  tl~iinelir~g oc:cnrs only l)(,t,wt:cil 
adjacent potential wolls i~ild tlic i~ii11)litnde for ttiillieliilg to  t,he right is 
E = 1.-lei=, that  to  the left is E* = ( ~ l e - ~ ~ .  Thus the matrix of H is 

= Eo[ l  - 2/&/  C O S a  + 21E1 C O S ( ~  - (Y)]]%). 

1-lcnc:c; the energy eigenvalue of 10) is 

Ee = Eo [ 1  - 2 j ~ l  (cos a - cos(0 - a ) ) ]  

Fro111 thc:se results it can be concluded as follows: 
(i) Sirlcc: a continuous variation of 19 results in a continuous variation of 

t,hc t:ncrgy, the energy levels become a n  energy band. Furthrrrnore, when 
0 = n ,  Ee = E ,,,,, = Eo{l  + 21~1(1 - cosa)}, and when 0 = .ir + a, Eo = 

El,,il, = E o { l  - 2 (E]  (1 + cos a)}. So t,he width of the band is E ,,,,, - EmIi, = 

41~1Eo. 
(ii) When a ,  which depends on the  shape of the pcriodic poteilt,ial wc.11, 

is sufficintly small, tunneling between neighboring wells always result,s i l \  ;I 

lowering of the  ground stat,c energy. 

Consider an  idealized (point charge) A1 atom (2 = 13, 2'7) I f  i t  

negative lepton or meson is captured by this atom it rapitlly t . i l ~ ( ~ ; ~ t l ( ~ ~  tlowi~ 
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to  the lower n states which are inside the electrorl shells. In the c:a.se of 
p-capture: 

(a) Compute the energy El for the ki in the I,. = 1 orbit; est,iin;~.tc also 
a mean radius. Neglect relativistic effects and nuclear inotion. 

(b) Now compute a correction to  El to t,akc into i~(:(:ollllt the 111i(:lcar 
motion. 

(c) Find a perturbation t,cri~i t,o the Hailiiltonian tluc to  rcl;~t,ivistic: 
kineniatics, ignoriiig spin. Estiillat,c the rt!sliltirig c:orrrct,ioii to  E l .  

(d) Define a r i~ i~ le i~ i -  ra(1i11s. HOW docs this ratliiis for A1 c:oinI)a.rt? to  
the mean ratli~is for the n = 1 orbit froin (a)'? Discuss qli;~lit,;~t,ivc:ly what, 
happens to  t,lic /A-  when the p atomic wave functioli ovc:rl;~ps tht: 1ilic:lcus 
subst,;~ntially. What happens t o  a ?r- under the circuillstaiic.c:s'! Iiiforinnt,io~i 
that limy be relevant: 

Solution: 

(a) Wc shall iicglcct tlit, c:fFcfcc:ts of t2hc clcctroiis out,sid(: t,lic! riuc:l(:us ;r.iitl 
consicier only the inotion of t,hc: LL in thc: Couloinl) field of tllc. A1 iiiic~l(:~is. 
The criergy levels of p in a liyclrogt+ii-likc at,oni of 1iucle;lr c:li;~rgc Z (iri tlic 
i~o~ircl;~t,ivisti(: a~)~)roxiinatioil) ilro give11 l)y 

Thus 

= -0.4732 MeV, 

(1)) To take into account the motion of tllr nucleus, we si1111)lv I~avc* l o  

replace the, mass rn of the meson with its reduced mass p = #I):,, , A 1  
1)eing thc nuclear mass. Thus 

= -0.471 MeV 

((:) Taking into account t,hc relativistic effects thc: i n i i o ~ ~  k i n ~ t i c  energy 
is 

P" P" 
T = - mc2 = - - , . . . , 

2rn 8r,t?c2 

Tllc rchtivistic correct,ion introtluces a perturbation Halnilt,ol~ii\.~~ 

Tliv cllcrgy correction A E  for El is then 

For roiigh estimate, take r- = a. Then 

2 ( E l 2  - 0 . 4 7 ~  
A E  sz -- = 1.06 x MeV 

2rrrc2 2mc" 2 x 105 

((1) In tlic, scattcririg of ncutrons by a nuclcus, an at,tractivc S ~ . I ~ O I I I :  I 

nuclear force sct,s ill whcn thc: tlist,arlcc 1)ecoines sinixller than T I 0 . 1  , 

whrre TO - 1.2 x 10-','cni aiitl A is thc at,omic: Inass number of t,llc> I I I I ( ~ ~ ' I I : . .  

T is generally taken t o  be thc ratlills of t,hc I I I ~ C ~ U C S ,  which for A I  I : ;  
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The difference between the ratli~is of the 1luc:lcus of A1 iill(1 that of the 
first or l~i t  of the p-mesic atom is not very large, so that there is a consider- 

able overlap of the wave furlctior~s of the n~iclc~ls i~11(1 th(: lnuon. This cffkct, 

tiue to the finite volume of thc nuc:leus, will givc rise t,o a positive energy 
correction. At the same time t1ic:rc: is iilso ;i 1;irgc inter;ic:t,ioil 1)ctwc:cll the 

muon and the magnetic molllent of tJhe nucleus. 

Under similar circ:~llilst,<~llc:os, for t l l ~  r-in(:si(: i~tolll tfi(?r(: is also the 
volume effect, but no interaction with tlic in:igncti(: 111oi11(:11t of tlic n11(:1e11s 

as pions have zero spill. 

Low energy neutrons from a nuclear reactor have been 11sc:tl t,o test 
gravitationally induced quantum interference. In Fig. 8.9, neutrons iil(.i(l(:nt 
from A ciiri follow two paths of equal lengths, ABCEF and ABDEF, 1i11d 

int,c,rf(,r(, a.ft,c,r they recombine a t  E. The three parallel slabs whic.11 t1iffr;ic:t 
t,li(: iio~it,rons are cut from one single crystal. To c:haiigc thc: cff(?c:ts of t,li(: 

gravitational potential energy, the syst,c~i1i (::ill 1 ~ :  rot;it,c:tl i ib~ l l t  th(: line 
ABD. Suppose q5 is t,hc iinglc of this rot,iit,ion ((p == 0 for tall(: pi~t,h ABCEF 
horizontal). 

(a) Show that the pllasc diff(:roncc: :it point E due to t,hc effect of gravity 
can he expressed as /3 = q sin cb, where q = KXS2 sin 28, X 1)c.ing the ilcutroll 
wavelengt,h and K an iy~propriatc (:onst;int which ( ~ C I I C ~ ~ S  on 1lc:litro11 rn;iss 
m, gravitational acceleration { I ,  Pliin(.k's ~or~s ta r l t  fi., 1ind n~lrncri(:al factors. 

Determine the constant K. Assumc. lierc: t,lli~t tllc gravitation;il potential 

energy differencs arc very small cornpared to the neutron kinetic energies. 

(b) The neutron wavelength used in the experiment is 1.45 A. Wlliit is 
the corresponding kinetic energy in electron volts? 

(c) If S = 4 cm, 6 = 22.5", and X = 1.45 A, how many maxima sho~iltl 
be seen by a neutron counter at  F as q5 goes from -90" to +90°? 

Mass of neutron = 939 MeV/c2, hc = 1.97 x lo-" MeV . cm. 
(CUS) 

Solution: 

(a) The wave function of tjhe incident neutrons can be taken as 

where c is a constant. When they move along a certain orbit from :I: - 0 to 
z = 1 it becomes 

+ ( r , t )  = cexp h 

T h ~ l s  the phase is 

The neutrons are separated a t  point B into two beams 1 and 2, for w11ic:li 

pn ,  = ( ~ 1 3 ~ .  

The. situations on lines BC and DE are same and so for the two neutron 
beams, ApCn = ApED. On line BD, wc can set the gravitational potential 
V = 0 , E  = Eo, and so 

where vo is the neutron velocity A d m .  
On line CE, the gravitational potential is 
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V = mgS sir1 2H sin 4 ,  

and 

Thus the phase difference of the two beams of neutrons a t  poilit F is 

its V << Eo. Thus 

where 

with 

(b) Thc ileutron has momentuin 

ant1 hri1c.e kinetic energy 

((:) It1 the range -1 < s i n 4  < 1, t,lic number of maxima S I Y ~ I I  I)y : I  

11c:litron counter a t  F is 
2 

2q 3 Sm,c2 
' / I . = - = -  - 

27r 4 ( n h c 2 )  
gX sin 28 

8032 

Consitler t,he Dirac equat,iorl in one diincnsioll 

il$ 
H$ = ,ih - , 

at 

where 

H = c a p r  + jjlr~c~ + V(z) = ca + PVLC' + V(Z) , 

I 0  

I  being the 2 x 2 unit matrix. 

(a) Show that cr = (: :3) conimutes with H .  
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(b) Use the results of (a) to show that the oiie-dirrlmsiollal Dirac equa- 
tion can b~ written as two coupled first order diEc:rcntial c3qu a t '  ions. 

(Buflalo) 

Solution: 

(b) As [n, HI = 0 ,  o and H have common eigenfunctions. n is i l  cli;~gonitl 

matrix. Let its eigenfllnction he 

Substit,uting these in the Dirac equation, wc obt,iiiil 

Each of these represents two coupled differential equations. However, the 

two sets of equat,iorls become identical if we let ,43 -t -$q, 4 g2. Thus 

the one-dimensional Dirac eqriat,ioil can I-)c writtcln as two coupled first 
ordrr differential equations. 

(a) Write down the Dirac equat,ion in Hanliltonian form for ;L S r c ~ b  I ) ; I . I -  

ticle, and give explicit forms for the Dirac matrices. 
(b) Show that the Hamiltonian H conlmutes wit,h the operator a . 1' 

whcre P is the momentunl operator and n is t,he Pauli spin operator in the 
spacc of four co~riporlent spinors. 

(c) Fiiicl plane wave solutions of the Dirac equation in the representation 
in which o . P is diagonal. Here P is the eigenvalue of the nlomenturn 

<I or. oper  t 
(Buffalo) 

Solution: 

(a) 
H = c a  . P + pmc2 = ca  . (-ihV) + pmc2,  

where 

are the Dirac matrices. 
(b) Write 
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and 

giving 

(c) Let P he aIorig the z dircct io~~.  Thm as u, = ( i , wc 11;~ve 

where the unspecfied elements are all zeros, which is diagonal. Thew as 
shown ill Problem 8032 the plane wave solutiolls of the Dirac c c l ~ .  ,L t,' iorl ill 

/ @ \  / 0 \ 

this representation are (: ,) e w h  an(1 ( s) , w1it:ro (Y arltl y, 0 

ancl 6 take two sct,s of difft:rcllt vxhi~s .  Suk)stit,uting t,hc: c:igc:iifi~r~c:t,iolls in 
t,he S(:hrodingcr cclu iL t '  1011 

we have 

giving 

Consitlcr ;L frcc real scalar ficld +(:I;,), where :I;,, = :c, y, z for p = 1 , 2 , 3  
i~rid n:4 = irt, satisfying the Klein-Gordon rquation. 

(a) Write down the Lagrangian density for the system. 
(b) Using Euler's equations of motion, verify that 4 does satisfy the 

Klcin-Gordon equation. 
(c )  Derive the Hamiltonian density for the system. Write down Hamil- 

ton's equations and show that they are consistent with the equation tl(~rivot1 
ill (b) 

( Dlljf(110) 

Solution: 

(a) The Lagrangian density is 

(b) Using the above expression for L in Euler's equations of motiorl 

we obtain 
a,a, d ( ~ )  - ,rn2+(x) = 0 , 

which is just the Klein-Gordon equation. 
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(c) The Hainiltonian density of the system is 

Hamilton's canonical equations 

where 

t,ht:li give 

-dllP, - m 2 4 ,  

i.e., 

a,d,@ - m24  = 0 ,  

same as obtained in (b). 

It call bc shown thitt the prol)al)ility lor ari on-s1ii:ll c:h;trgc:d p;~rt,ic:le 
with init,ial rriorllciltuiri 1' to i:rrlit il virt,lial photorl wit,ll 1110111(:11t1llil (1 is 
proportional t,o thcl c:ov;~ri;tnt tcllsor 

where A. B, C and D are real Lorentz-invariant scalar functioils of q" (p P 
aiid P2 = m2. 

(a) Use currerlt, conservat,ion to show t,hat W,,, has the for111 

i.e., only two of A, B , C  and D are independent. 

Miscellaneous Topics 73 1 1 

(b) Coinpute Wl and W2 for a Dirac part,icle of mass In for which I 
I 

(Buffalo) 

Solution: 

(a) Current conservation requires qPW,, = 0, i.e., 

where q.  P :: qvP,, q, = qpg,,, etc. As P,, q, are indepcwdent ;~iid q" # 0, 
this gives 

Solving for C aiid D and writing A -- Wl, B = W2, we have 

Hence 

q .  . (P" - q" -7 ,,=w1 ( , , - ~ ) + W ~ ( P ~ - C -  q2 "'1 9 

(b) We are given 

where p-  para, b = q,ya. The Dirac mat,rices satisfy the antic:oir~r~r~ll;l 

tion relation 
{ Y ~ L , Y Y }  = yILy" + yVy" = 2gPYr 

and so 
Tr(yWyU) = 4gPV , 
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Tr(ypl yp2 - .  . y p n )  = O for 11 = odd, 

~ r ( ~ ~ ~ ~ ~ ~ ~ ~ )  = 4(gp"gxu - .qpxS"u + !Ipu.qwx). 

Hence in lVpw the t,erms irlvolving an  odd nlinlbcr of y variish. Consider 

Then, as for an  011-shell particle P% rnb'', wc 1i;~vc 

A comparison with the givcn c,xprcssion for W ~ L U  wc' find 

Note that b r  a n  on-shell charge cnlittir~g a virtual photon, iriitially P" 
m2, and finally (P-q)' = P L Z ~ . P + ~ &  =m2, a ~ l d  so thr  two rxprcssiorls 
for W,, are co~lsisterlt. 

In order to account for tjhe anomalous mag~letic rno~ncrlts of particles, 
the Dirac cquat,ion give11 below can hc used: 

Here e and rn are the charge and mass of the particle, K is a dimellsiorilcss 
parameter, AbL(z) is the four-di11lensional potcrltial and Fp" is the elcc:t,ro- 
1nag11c:tic field ter~sor, i.e. 

dAp dAW i 
FlLV = __ - - , .,w = 5[7p, 7 w l .  

dx, drr, 

where y,, is a Dirac matrix, yo = = P ,  y' = -7% = ,9aX, i = l , 2 , 3  

(a) It, is well known that the above cquatioll is covariant if K = 0. We 
liavc 

gl(x') = ,S'I/J(X), 

where = afsV and afy" -- s - ' ~ ~ S .  Show that if K # 0, t h ~  c8cl11;~tion 

is still covariant. 
(1)) Write the equation in the Hamiltoniiul form and show that the atl- 

clitioilal intc~action dof?s r~o t  destroy t,he Hcrrrliticit,y of the original Hamil- 
to11i:~li. 

( Bc~ffa lo) 

Solutiori: 

(a) As 
s-ly,s = 4 7 "  

and n",ommutes wit,h S and y, wc have 
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Then as $(x) = S-'$'(xl) and y a n d  d a r e  invariant,, rlndcr t,ransfornla.tion 
the Dirac equation becomes 

i.t:. the equation is covariant. 

(b) As 

a a 
Y - Y ~ - = P - + ~ . v ,  

dx, d t  

tJhc Dirac: ccluation can be written as 

Note that wc have usctl uriits s1ic.h that 11, = c = 1. 
Mutiplyiiig both sidcs by 0 from the Icft, as yL = 1, (jy, = p2u, = (x,, 

WP h a v ~  the rrluation in the Halriiltonian forxti: 

where 

all 0 2 , 0 3  being Pauli's matrices and I the unit matrix. By defiilitioil 

{mi, mj) = a iu j  + a ju i  = 216~~ 

It  follows that 

and so 

Thcn 

{ ~ i  y j  1 = 2gij 1 

{P, yi) = 0 .  

since yiyjfl = -yi@yj = Pyi"ij, etc, arid similarly, 

Sirice by dcfiriitioii ai and P are Hermitiall, yo = /3 is Hermitiall and y; = 

ljai is anti-Hcrinitian. It follows that aij is Hermitian and soil o L o  are 
anti-Hernlitian. Then 

atup+ = u $ ~ +  + g&,L+ + a,Q+ = ui jP  - uioP - ooiP 

Hence the Hermitian conjugate of the additional interaction terrn is 

noting that K , e ,  m and F p w  are real numbers. Therefore the additional 
interactiori is Hermitian, and it does not destroy the Hermiticity of the 
original Hamiltonian. 

8037 

Proton and neutron nlay be regarded as two "isospin" stat,c,s 01' i t  siugle 
particle, the nucleon. Denote proton by I+) and neutron 1)y 1 ) ; l i l t1 define 
the following operators: 
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1 + - t - ) ,  ;l.rld t3 ca.ri be 1-~preseiitcd The operators t l  = (t+ +t-) ,  t2  = - i  (t  
by one-half times the 2 x 2 Pauli inatrices. Together tlicy foi-111 a vector t 
in isospin space. 

I11 a simple model the Hami1toni;ln for a system of N ri~ic:l(:oiis all i11 t,he 
same spatial state is the surn of tlirce terms: 

where Eo,  C I  ;~11tl C2 arc' positivr constants with CI > Ca,  t, is tlir isospili 
of the i-tli nucleon, and Q is the total electric charge in units of c. The, 

slim is over all pairs of nucleons. 

(a) Show that ti . t j  = [T(T + 1) - a N],  where T is thc "tot;ll 
isospin" quailtlim number of the system. 

In the rest of this problem it is essential to  remember that netitroils 1~11~1 
protons are spin-112 particles obeying Fermi  statistic:^. 

(b) What are the energy eige~istates ant1 cigenvxl~~es of ;L 2-111icl(:oii 
system'? What is the total spin of eacli statc? 

(c) What are the energy cigc:nstatcs ant1 cigcrivall~~s of w 4-iilic:lcon sys- 
tem? 

((1) What a.re the encrgy eigenval~ies of a 3-riuc:lcon systtrln? 

(MI77 

Solution: 

(a) As T' = ( E L  t,)"ias eigciivallie T ( T  + 1) aritl tf 11a.s eigerivalue 
?j (i + 1) '  we have 

(b) A system of identical spin-: particles must have ail antisymrnetric 
total wave function. Hence a system of two nucleons has the following 
possible s t ruc t~~res :  

Configurat.ion Isospin Stat,e Spin State 

The corresponding eigenvalues are as follows. 

In the above, la),  P )  represent siiiglc-particle states wit,h spin + and 
spin - respectively, and E is the energy above (2Eo - C1). 

(c) On account of Paul's principle, there can at  most be 2 prot,oi~s i~11(1 
2 neutrons, each pair of opposite spins, in a given energy state. For tali(: or- 
tlcrcd cornbination (pnpn) the spin states have four forrris (aaPP),  ([jjjtrtr), 

(nPPn), (Paap ) .  For other ordered coinbinations similar spin states ap- 
ply. However, in t,his case the total wave fiiilctioll cannot be expressed as 
a sirnple product of the spin wave function and the isospiil wave function. 
For the possible isospin values T = 2, 1 ,0 ,  the correspoi~ding energy values 
are 

But as the spatial wave functions of the four nucleons arr t,l~c- S ; I I L I ( ~  and 
there are only two spin stat,es for a nucleon, Pauli's princil)l(t rc,cl~~ires the 
systerri's total isospin to be 0 and its energy state can only I)( ,  t . 1 1 ~  eigenstate 
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(d) The configurations for a thrcc-nuclcori syst,ciri arc. (ppn) or (lilip), 
and the isospin can be or $ 

For (ppn): 
3 

E - 3Eo + 4 C 2  - C 1 ,  
4 

for ( n n ~ ) :  
3  

E  = 3E0 + C2 zk - C1 . 
4 

A molecule in the form of an equilateral triariglc: car1 ( : i~l) t ,~l~( \  a11 (:xtra 
elcctron. To a good approximation, this electron (:all go illto oric: of t,hrcc 
orthogonal states +,,, +o,  $c localixctl near t,lir corlicrs of t,lic: t,ri;~r~glc. 'To 
a better approximation, the energy cigc:rist,at,es of the r:lcc:troii arc: liiiear 
cornbinatioris of ,dlA, 1/jI3, ,5i,(; dcttrrrriined hy ari cffec:tivc H i ~ l ~ l i l t o ~ i i i ~ ~ i  wlli(:li 
has cc1lla.l cxl)ec:t;~t,ion vallics for , I / ) ~ , , * ~ ,  ,dlG' nlitl cc1tln.l rriatrix clciricrit,~ Vo 
betwcci~ c:ach pair of $A,  $ R ,  GC. 

(a) What does the syrnlrietry ~iridcr a rotation tliroligh 2.ir/:3 irliply al)out, 
the coeficieilts of +A,  gn,,$c in the cigeristates of the c:ffr.ctive Hsil~ilto- 
nian? There is also symmetry under intcrchangc: of B and C ;  wliat ad- 
ditional information does this give about thc eigenvalues of tlie cffcctivc 
Harniltonian? 

(b) At t i ~ n c  t = 0 an electron is captured into the state $A. Find th r  
probability t l l i~t it is in +A a t  time t .  

(fiIIrr7 

(a) Under the rotation through 2 ~ 1 3 ,  we have 

Mascellaneous Topics 

Then as 

wc have a" 1 and hence 

i 2n 1 4 "  
a = 1, e 7  and ( 5 3 .  

Suppose the eige~lstate of the effective Hami1toni:~li is 

Symmetry under the rotati011 through % means that R+ = $, i .c 

Theri the orthogonality of + A ,  $JB,  $c: retlliirtfs 

For a = 1 letting a l  = 1, for a = exp (2%) letting a1 = 1, and for a = 

exp (i?) letting a2 = 1, we have the three combinations 

Let the equal expectation values of H for the eigenstates $A, G B , + c  be 
zero, the11 the effective Halniltonian can be represe~lted by the matrix 

As H$(') = 2 ~ + ( ' ) ,  H + ( ~ )  = -v$(~),  H + ( ~ )  = -v+(~) ,  t11(, ( ~ I I ( , I { ; I ~ ~ S  

corresponding to +( ' ) ,+( ' ) ,  +(3) are 2V, -V, -V repectively. 
There is symmetry in the interchange of B and C.  D ( , I I ( I ~ ( ~  I)y P the 

operator for the interchange of the two atoms. As P (1o(,s 1 1 0 1  conlmutc 



740 Problems and Solutions o n  Quanturr~ Mechanics Miscellaneous Topics 74 1 

with R,  it cannot be represented by a diagonal rrlatrix on the basis of 

$ ( I ) ,  ~ ( 3 ) .  However, $('I is an  e ig~nsta te  of P and ,$('), ,4(3) i ~ r e  de- 
generate states, though not eigenstates, of P. So P irllposes no c:ondition 
on the eigenvalues of H. 

(b) At t = 0 ,  we can expand the wave fuilction ,$A ;is 

At a later time t we have 
1 ~ ~ ~ ( t )  = _ [c-z2Vt/h,$(L) + ,+7Vt/h.~,(" + +Ci2~/3C,+iVt/li, ( 3 )  

J3 4 ,  I .  
Hence the prol)al)ility of an electron, initially in state qb,,,, 1)c:irlg irl stjato 

a t  tirne t is 

The encrgy of a nlolccnlc is the sum of the kiiictic: cr~c:rgics of the ol(:c:- 
t,rons a r ~ d  of the rluclei arid of the various Colllornb eriergics. Supposo t,llat 
for a particular many-particle ~iorrnalized wave functiori .$(xl , .  . . , xN),  thr: 
expectation value of the kinetic cilcrgy is T ant1 of t,hr. pot,cntial trrlcrgy is 
-U(U > 0).  

(a) Find a variatioilal estimate of the grouild state energy using a wave 
function x ~ ~ / " ( L ( x x ~ ,  . . . , XXN) where A is a parameter. 

(b) Suppose is the true ground state wave function and that the true 
ground state energy is B ( B  > 0). What are the true values of T and U? 

(MIT) 

Solut ion:  

(a) The  mean kinetic energy T of the system is given by the sum of 
terms like 

When the trial wave function is used, the mean kinetic energy ?" is t : i \ i c s ~ ~  

by t,hc sun1 of terms like 

wllc:rf: yl = Axl, et,c. Hen(:(: T' = A". Similarly, U is givnll I)y l.111- X I I I I I  

of tcrllls like 

an(1 so U '  = -XU. Thus the mean value of t,hc energy is 

$. Hence the variational For tllc ground state, = 0, giving = - 

cstinlat,c: of the ground state energy is 

(1)) If J, is the true ground state wave function, the11 X = 1. Hence 

U = 2 T  and E = T - U = - T  

In diatomic molecules, rluclcar motions are generally ni~ic.l~ slowc51. I,lli~li 
'L 1011. arc those of the electrons, leading to  the use of adiabatic: ;rq)l)t-oxilii t .  
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This effectively means that the electron wave fiirlctions a t  any time are 
obtained for the instantaneous positions of the protons. A highly idealized 
version of a "singly-ionized hydrogen ~noleculc" is proviclcd by t,lie one- 
dimensional "electron" Hamiltonian 

where f xo are the protori coordiilatc:~ 

Fig. 8.10 

( i ~ )  What  are the eigenfunctions and eigenvalues of all t)ouiicl st,at,c:s for 
arbitrary z o ?  You may specify eigerival~~es ill tc:rnls of a tr;~risc:c!riclc:rital 
equation. Give the analytic reslilts for t,hc lirriiting casc:s >> 1 aricl 

<<I.  
(b) Assume that the protons (mass M >> m,) move ac1iat)atic;~lly aiicl 

have a repulsive potentii~l V(2zo) = g/200:co acting 1)rtwceil them. Calc~i- 
late approximately t,hc equilibrium separatiorr of the protons. 

(c) Calclilate approximat.ely the frequency for harinonic vit)ratioris of 
the protons abolit tlie ecluilibrium position. Is the adiat)atic approxiinat,ioil 
justified? 

(AIIT) 

Solution: 

(a) The  Schrodinger equation can be written as 

2mg k~ = - 2mE 2rnlEI where p = tL2 , 
- - 

a d  is negative for bound states. 

For x # ~ Z X O ,  the equation bccomes 9 = k2,q5. Furthersrorc as H is 
invariant under space inversion, its eigenstates arc of two types, with odd 
and even parities as: 

odd parity: 
( sinh kx, 0  < x < xo , 

even parity: 
( coshkx, 0  5 x 5 xo , 

where a ,  b are constants. Integrating both sides of Eq. (1) from zo - E to  
xo -t E and letting E + 0 ,  we find 

The  continuity of $ across zo requires 

These two conditions give, for odd parity, 

for even parity, 

As shown in Fig. 8.10, k and hence the eigenvalue E are given by the 
intercept of y = edZ with either 

where z = 2kxo. When /3xo << 1, as 

y and yo do not intcrcept and there is only solution for even parit,y. I ~ ' ~ ~ I  
this the interception occurs a t  small z given by 
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Hence 

When pzo >> 1, the interceptions occur near z E flzo Using this we 
have for the odd and even parit,ies respectively 

and hence 

Note that for odd parity the energy 

decreases as :co incrrases, even before we consider the repulsive force 1)c- 
t,wccn t,ho prot,ons. Thus the system is unst,able and the state is not a l)o~liltl 
stat(:. Therefore, in both the limiting cases only the even parity sol~itioris 
arc valid. 

(b) The total energy of the systerrl iilclutlilig tlic: prot,orils is 

where E, is the clec:t,ron erirrgy obtained abovc for even parity, T, z 0 in 
adiabatic approximation, ant1 V, = &. 

The equilibrium separatioll To of the protons is givcrl by 

which gives 

1 0 0 ( ~ : c ~ ) ~ ( 1  + e-ozo) = eOfo . 

If pzo  << 1, we have 
1 

(p:co)"2 - p3,) - - 
100 ' 

or 
1 :co " - 

10JZp ' 

If pzo  >> 1, we have 
100(pzo)" e b " ~  

Corisidcr 

d2 9 3 9 
h " ( ~ ~ )  -- , dz, (H)(,,, = -- 2 0 (1 + 2e-?"") e - ? " ~  + -- 1002; 

For 4:co << 1>  we have 

9 /I hl'(zo) z =: [l - 150(p5~)"  I -- > 0 , 
1003; 1005;; 

and the eqliilibrium is stable. For 0x0 >> 1 we have 

I1 - h (xo) - -- 2003; ( p i t o  - 2) < 0 ,  

and t,hc equili1)riuln is uiistable. Hence the ecliii1il)rium separation is 

((.) Co~isitlcr the case of stable equilibrium Oxo << 1. The force constant 

aritl so t,he vibrational frequency is 

As the kinetic energy of prot,ons is of the order 

while the electron has eriergy 

h2P2 
(Eel = --- = g p ,  

2,m 

we ha.ve T, << I Eel and the adia.bat,ic approximation is valid, i.v. t , l ~ c ,  protons 
rnay be taken to be stationary. 
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