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PREFACE

This series of physics problems and solutions, which consists of seven vol-
umes — Mechanics, Electromagnetism, Optics, Atomic, Nuclear and Parti-
cle Physics, Thermodynamics and Statistical Physics, Quantum Mechanics,
Solid State Physics and Relativity, contains a selection of 2550 problems
from the graduate-school entrance and qualifying examination papers of
seven U.S. universities - California University Berkeley Campus, Columbia
University, Chicago University, Massachusetts Institute of Technology, New
York State University Buffalo Campus, Princeton University, Wisconsin
University — as well as the CUSPEA and C. C. Ting’s papers for selection
of Chinese students for further studies in U.S.A., and their solutions which
represent the effort of more than 70 Chinese physicists plus some 20 more
who checked the solutions.

The series is remarkable for its comprehensive coverage. In each area
the problems span a wide spectrum of topics, while many problems overlap
several areas. The problems themselves are remarkable for their versatil-
ity in applying the physical laws and principles, their uptodate realistic
situations, and their scanty demand on mathematical skills. Many of the
problems involve order-of-magnitude calculations which one often requires
in an experimental situation for estimating a quantity from a simple model.
In short, the exercises blend together the objectives of enhancement of one's
understanding of the physical principles and ability of practical application.

The solutions as presented generally just provide a guidance to solving
the problems, rather than step-by-step manipulation, and leave much to
the students to work out for themselves, of whom much is demanded of the
basic knowledge in physics. Thus the series would provide an invaluable
complement to the textbooks.

The present volume consists of 380 problems. It covers practically the
whole of the usual undergraduate syllabus in quantum mechanics, just
falling short of quantum field theory, but in substance and sophistication
going much beyond.

In editing, no attempt has been made to unify the physical terms, units
and symbols. Rather, they are left to the setters’ and solvers’ own prefer-
ence so as to reflect the realistic sitnation of the usage today. Great pains
has been taken to trace the logical steps from the first principles to the
final solution, frequently even to the extent of rewriting the entire solution.
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In addition, a subject index to problems has been included to facilitate the
location of topics. These editorial efforts hopefully will enhance the value of
the volume to the students and teachers alike. The editor is most grateful
to Prof. C. H. Oh of the National University of Singapore for some most
illuminating discussion on the topics.

Yung-Kuo Lim
Editor

INTRODUCTION

Solving problems in school work is exercise of the mind and enhances
understanding of the principles. In general examination questions usually
parallel such problems. Thus working out problems forms an essential and
important part of the study of physics.

Magjor American University Ph.D. Qualifying Questions and Solutions
is a series of seven volumes. The subjects of each volume and the respective
referees (in parentheses) are as follows:

1. Mechanics (Qiang Yuan-qi, Gu En-pu, Cheng Jia-fu, Li Ze-hua, Yang
De-tian)

2. Electromagnetism (Zhao Shu-ping, You Jun-han, Zhu Jun-jie)

3. Optics (Bai Gui-ru, Guo Guang-can)

4. Atomic, Nuclear and Particle Physics (Jin Huai-cheng, Yang Bao-
zhong, Fan Yang-mei)

5. Thermodynamics and Statistical Physics (Zheng Jiu-ren)

Quantum Mechanics (Zhang Yong-de, Zhu Dong-pei, Fan Hong-yi)

7. Solid State Physics, Relativity and Miscellaneous Topics (Zhang Jia-
lu, Zhou You-yuan, Zhang Shi-ling)

o

This series covers almost all aspects of University Physics and contains
2550 problems, most of which are solved in detail.

The problems have been carefully chosen from a collection of 3100 prob-
lems, of which some came from the China-U.S.A. Physics Examination
and Application (CUSPEA) Program, some were selected from the Ph.D.
Qualifying Examination on Experimental High Energy Physics sponsored
by Chao Chong Ting. The rest came from the graduate preliminary or
qualifying examination questions of seven world-renowned American uni-
versities: Columbia University, University of California at Berkeley, Mas-
sachusetts Institute of Technology, University of Wisconsin, University of
Chicago, Princeton University and State University of New York, Buffalo.

Generally speaking, examination problems in physics in American uni-
versities do not involve too much mathematics. Rather, they are to a large
extent characterized by the following three aspects. Some problems involv-
ing various frontier subjects and overlapping domains of science are selected
by professors directly from their own research work and thus have an “up-
to-date” flavor. Some problems involve broad fields and require a quick

vii



viii Introduction

mind to analyse, while the methods needed for solving the other problems
are simple and practical but requires a full “touch of physics”. Indeed, we
venture to opine that the problems, as a whole, embody to some extent the
characteristics of American science and culture, as well as the philosophy
underlying American education.

Therefore, we considered it worthwhile to collect and solve these prob-
lems and introduce them to students and teachers, even though the effort
involved was formidable. As many as a hundred teachers and graduate
students took part in this time-consuming task.

A total of 380 problems make up this volume of eight parts: basic prin-
ciples and one-dimensional motions (72), central potentials (27), spin and
angular momentum (48), motion in electromagnetic field (16), perturbation
theory (83), scattering theory and quantum transitions (61), many-particle
systems (37), and miscellaneous topics (40).

In scope and depth, most of the problems conform to undergraduate
physics syllabi for quantum mechanics in most universities, while many are
rather profound and sophisticated or broad-based. A remarkable fact is
that the problems from American universities often combine fundamental
principles and latest research activities. Thus the problems may help the
reader not only to enhance understanding of basic principles, but also to
cultivate the ability of solving practical problems in a realistic environment.

This volume is the result of the collective effort of 19 physicists who
worked out and checked the solutions, notably Zhang Yong-de, Zhu Dong-
pei, Fan Hong-yi, Ren Yong, Dai Tie-sheng, Ning Bo. The original trans-
lation was carried out by professors Zheng Jiu-ren and Qi Bo-yun.
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1. BASIC PRINCIPLES AND ONE-DIMENSIONAL MOTIONS

1001

Quantum phenomena are often negligible in the “macroscopic” world.
Show this numerically for the following cases:

(a) The amplitude of the zero-point oscillation for a pendulum of length
I =1 m and mass m = 1 kg.

(b) The tunneling probability for a marble of mass m = 5 g moving at a
speed of 10 cm/sec against a rigid obstacle of height H = 5 cm and width
w =1 cm.

(¢) The diffraction of a tennis ball of mass m = 0.1 kg moving at a
speed v = 0.5 m/sec by a window of size 1 x 1.5 m®.

( Wisconsin)
Solution:

(a) The theory of the harmonic oscillator gives the average kinetic energy
asV = 1E, ie., ymuw?A* = jhw, where w = V/9/1 and A is the root-mean-
square amplitude of the zero-point oscillation. Hence

Aol B ps G4 50 1071 .
2muw
Thus the zero-point oscillation of a macroscopic pendulum is negligible.

(b) If we regard the width and height of the rigid obstacle as the width

and height of a gravity potential barrier, the tunneling probability is

T = exp l_%w \/Zm (mgH — % rm;?) ]

= exp (—?7—:1”— V2gH — ‘02) ;

where 9
% V29H — 02 % 0.9 x 109,

Hence
a0
T 4 e_{}_gx 11,1 et 0

That is, the tunneling probability for the marble is essentially zero.
(¢) The de Broglie wavelength of the tennis ball is

A=h/p=h/mv=13x10""" cm,
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and the diffraction angles in the horizontal and the vertical directions are
respectively

01~ A/D=13x10"% rad, 0 ~A/L=9x 10" rad.

Thus there is no diffraction in any direction.

1002

Express each of the following quantities in terms of k, e, ¢, m =electron
mass, M =proton mass. Also give a rough estimate of numerical size for
each.

(a) Bohr radius (cm).

(b) Binding energy of hydrogen (eV).

(c) Bohr magneton (choosing your own unit).

(d) Compton wavelength of an electron (cm).

(e) Classical electron radius (¢cm).

(f) Electron rest energy (MeV).

(g) Proton rest energy (MeV).

(h) Fine structure constant.

(i) Typical hydrogen fine-structure splitting (eV).

(Berkeley)

Solution:

(a) a = h?/me® = 5.29 x 10~° ¢m.

(b) E =1met/2h* = 13.6 eV.

(¢) up = eli/2me = 9.27 x 107! erg - Gs™'.

(d) A =2nh/me = 2.43 x 10710 ¢m.

(e) re = €2/mc? = 2.82 x 1073 em.

(f) Ee = me® = 0.511 MeV.

(8) Ep = Mc? =938 MeV.

(h) @ =e%/he = T7.30 x 1073 ~ 1/137.

(i) AE = e*me? /8R%c* = } a'mc® = 1.8 x 1074 eV.

1003

Derive, estimate, guess or remember numerical values for the following,
to within one order of magnitude:

-
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(a) The electron Compton wavelength.

(b) The electron Thomson cross section.

(¢) The Bohr radius of hydrogen.

(d) The ionization potential for atomic hydrogen.

(e) The hyperfine splitting of the ground-state energy level in atomic

hydrogen.

(f) The magnetic dipole moment of *Li? (Z = 3) nucleus.
(g) The proton-neutron mass difference.
(h) The lifetime of free neutron.
(i) The binding energy of a helium-4 nucleus.
(j) The radius of the largest stable nucleus.
(k) The lifetime of a 7° meason.
(1) The lifetime of a 4~ meason.
(Berkeley)

Solution:

(a) Ae = h/meec =243 x 1072 A

(b) o = & 2 = 6.56 x 103! m?.

(¢) a= mL;-; =0.53 A.

(d) I =& =136 V.

(e) The splitting of the ground-state energy level is

1 2
AE; =13. — | =10~1eV.
y 136x(137) 0-%e

The hyperfine splitting of the ground-state energy level is

AEn; =~ AE;/10° % 1077 eV.

(f) p =187 %10~ J . T,

(g) Am =m, —m, = —2.3 x 1073 kg.

(h) T = 15 min = 9 x 10? s.

(i) E=4 x 7 MeV = 28 MeV.

(j) The radius r corresponds to a region of space in which nuclear force

is effective. Thus

ra14 AY = 1.4 x (100)% = 6.5 fm.

(k) 7 =8.28x 1077 5.
(1) The decay of i~ is by weak interaction, and so 7 =2.2 x 1075 s.



4 Problems and Solutions on Electromagnelism

1004

Explain what was learned about quantization of radiation or mechanical
system from two of the following experiments:

(a) Photoelectric effect.

(b) Black body radiation spectrum.
(¢) Franck-Hertz experiment.

(d) Davisson-Germer experiment.
(e) Compton scattering.

Describe the experiments selected in detail, indicate which of the mea-
sured effects were non-classical and why, and explain how they can be
understood as quantum phenomena. Give equations if appropriate.

( Wisconsin)

Solution:

(a) Photoelectric Effect

This refers to the emission of electrons observed when one irradiates a
metal under vacuum with ultraviolet light. It was found that the magnitude
of the electric current thus produced is proportional to the intensity of the
striking radiation provided that the frequency of the light is greater than a
minimum value characteristic of the metal, while the speed of the electrons
does not depend on the light intensity, but on its frequency. These results
could not be explained by classical physics.

Einstein in 1905 explained these results by assuming light, in its inter-
action with matter, consisted of corpuscles of energy hv, called photons.
When a photon encounters an electron of the metal it is entirely absorbed,
and the electon, after receiving the energy hv, spends an amount of work

W equal to its binding energy in the metal, and leaves with a kinetic energy

1
—mv' =hv—-W.
2
This quantitative theory of photoelectricity has been completely verified
by experiment, thus establishing the corpuscular nature of light.

(b) Black Body Radiation

A black body is one which absorbs all the radiation falling on it. The
spectral distribution of the radiation emitted by a black body can be derived
from the general laws of interaction between matter and radiation. The
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expressions deduced from the classical theory are known as Wien's law
and Rayleigh’s law. The former is in good agreement with experiment in
the short wavelength end of the spectrum only, while the latter is in good
agreement with the long wavelength results but leads to divergency in total
energy.

Planck in 1900 succeeded in removing the difficulties encountered by
classical physics in black body radiation by postulating that energy ex-
changes between matter and radiation do not take place in a continuous
manner but by discrete and indivisible quantities, or quanta, of energy. He
showed that by assuming that the quantum of energy was proportional to
the frequency, € = hr, he was able to obtain an expression for the spectrum
which is in complete agreement with experiment:

_ Swhid 1

Eu—_—

¢ efF -1

where h is a universal constant, now known as Planck's constant,

Planck’s hypothesis has been confirmed by a whole array of elementary
processes and it directly reveals the existence of discontinuities of physical
processes on the microscopic scale, namely quantum phenomena.

(¢) Franck—Hertz Experiment

The experiment of Franck and Hertz consisted of bombarding atoms
with monoenergetic electrons and measuring the kinetic energy of the scat-
tered electrons, from which one deduced by subtraction the quantity of
energy absorbed in the collisions by the atoms. Suppose Ey, Ey, Es, ... are
the sequence of quantized energy levels of the atoms and T' is the kinetic
energy of the incident electrons. As long as T is below A = E| — Ey, the
atoms cannot absorb the energy and all collisions are elastic. As soon as
T > E) — Ey, inelastic collisions occur and some atoms go into their first
excited states. Similarly, atoms can be excited into the second excited state
as soon as T > Ey — Ejy, ete. This was exactly what was found experimen-
tally. Thus the Franck-Hertz experiment established the quantization of
atomic energy levels.

(d) Davisson—Germer Experiment

L. de Broglie, seeking to establish the basis of a unified theory of mat-
ter and radiation, postulated that matter, as well as light, exhibited both
wave and corpuscular aspects. The first diffraction experiments with matter
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waves were performed with electrons by Davisson and Germer (1927). The
incident beam was obtained by accelerating electrons through an electrical
potential. Knowing the parameters of the crystal lattice it was possible to
deduce an experimental value for the electron wavelength and the results
were in perfect accord with the de Broglie relation A = h/p, where h is
Planck’s constant and p is the momentum of the electrons. Similar exper-
iments were later performed by others with beams of helium atoms and
hydrogen molecules, showing that the wavelike structure was not peculiar
to electrons.

(e) Compton Scattering

Compton observed the scattering of X-rays by free (or weakly bound)
electrons and found the wavelength of the scattered radiation exceeded that
of the incident radiation. The difference A\ varied as a function of the angle
f between the incident and scattered directions:

AN=2 A sin? 9,
me 2

where h is Planck’s constant and m is the rest mass of the electron. Further-
more, A is independent of the incident wavelength. The Compton effect
cannot be explained by any classical wave theory of light and is therefore
a confirmation of the photon theory of light.

1005

In the days before Quantum Mechanics, a big theoretical problem was to
“stop” an atom from emitting light. Explain. After Quantum Mechanics,
a big theoretical problem was to make atoms in excited states emit light.
Explain. What does make excited atoms emit light?

( Wisconsin)

Solution:

In the days before Quantum Mechanics, according to the Rutherford
atomic model electrons move around the nucleus in elliptical orbits. Classi-
cal electrodynamics requires radiation to be emitted when a charged particle
accelerates. Thus the atom must emit light. This means that the electrons
would lose energy continuously and ultimately be captured by the nucleus.
Whereas, in actual fact the electrons do not fall towards the nucleus and
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atoms in ground state are stable and do not emit light. The problem then
was to invent a mechanism which could prevent the atom from emitting
light. All such attempts ended in failure.

A basic principle of Quantum Mechanics is that, without external inter-
action, the Hamiltonian of an atom is time-independent. This means that
an atom in an excited state (still a stationary state) would stay on and not
emit light spontaneously. In reality, however, spontaneous transition of an
excited atoms does oceur and light is emitted.

According to Quantum Electrodynamics, the interaction of the radia-
tion field and the electrons in an atom, which form two quantum systems,
contains a term of the single-photon creation operator a®, which does not
vanish even if there is no photon initially. It is this term that makes atoms
in excited states emit light, causing spontaneous transition.

1006

Consider an experiment in which a beam of electrons is directed at a
plate containing two slits, labelled A and B. Beyond the plate is a screen
equipped with an array of detectors which enables one to determine where
the electrons hit the screen. For each of the following cases draw a rough
graph of the relative number of incident electrons as a function of position
along the screen and give a brief explanation.

(a) Slit A open, slit B closed.

(b) Slit B open, slit A closed.

(c) Both slits open.

(d) “Stern—-Gerlach” apparatus attached to the slits in such a manner
that only electrons with s. = fi/2 can pass through A and only electrons
with s, = —h/2 can pass through B.

(e) Only electrons with s; = h/2 can pass through A and only electrons
with s, = hi/2 can pass through B.

What is the effect of making the beam intensity so low that only one

electron is passing through the apparatus at any time?
(Columbia)

Solution:
(a) The probability detected at the screen is that of the electrons passing
through slit A:
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T T
B

e

c) -|_--__.._-__-
7]
A
—
5 i Y R
v7n”
A
e) = s i
B
Fig. 1.1
I = Lu(a).

(b) The probability detected at the screen is that of the electrons passing
through slit B:
I, = Ig(z).

(¢) I. = Iia(z) = I) + I + interference term # I) + I5.

(d) The eigenstate of the electrons passing through slit A is different
from that of the electrons passing through slit B, and so there is no inter-
ference term. The intensity on the screen is just the sum of the intensities
of the single-slit cases:

Basic Principles and One-Dimensional Motions 9
lao=1 + 1 2.

(e) Similar to (c), but the intensity is half that in (c):
I,=1.)2.

Because of the self-interference of the wave functions of the electrons, the
answers above remain valid even when the incident electron beam intensity
is so low that only one electron passes through at a time.

1007

A particle of mass m is subjected to a force F(r) = —VV(r) such
that the wave function @(p, t) satisfies the momentum-space Schrédinger
equation

(p*/2m —aV}) p(p, t) = idp(p, t)/0t,
where i = 1, a is some real constant and
Vf, = 9% /op2 + 82/3;:3 + 0% /op?.

Find the force F(r).
( Wisconsin)

Solution:

The coordinate and momentum representations of a wave function are
related by

W t) = (,_,i)gfqo(k. 1) e d,

)§ /!}J(r, $) e dr,

|~

ek, t)= (2

3

where k = B, Thus (with h=1)

ple(p, t) » —V(r, t),
Vie(p, t) — —ri(r, t),
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and the Schridinger equation becomes, in coordinate space,

_Vz 2 » 8&(!‘, t)
(Er?+ar ) e, t) =1 R Tt

Hence the potential is
V(r) =ar?,

and the force is

F(r) = -VV(r) = —-:_5 % V(r) = —2ar.

1008

Consider the one-dimensional time-independent Schrédinger equation
for some arbitrary potential V(z). Prove that if a solution 1 (z) has the
property that 1 (z) — 0 as 2 — oo, then the solution must be nondegen-
erate and therefore real, apart from a possible overall phase factor.

Hint: Show that the contrary assumption leads to a contradiction.

(Berkeley)
Solution:

Suppose that there exists another function ¢(z) which satisfies the
same Schrodinger equation with the same energy E as ¢ and is such that
lim=_|.m é(;l’.') ={k ThEH

Vb= —-2m(E-V)/h?,
&' /b=—-2m(E-V)/h?,
and hence
wh‘¢_¢uw - D,
or
' — ¢'tp = constant

The boundary conditions at # — oo then give

VYo—¢'p=0,

Basic Principles and One-Dimensional Motions 11
or w' ¢’
v ¢

Integrating we have In 1) =In ¢ + constant, or 1 = constant x ¢. There-
fore, 1 and ¢ represent the same state according to a statistical interpre-
tation of wave function. That is, the solution is nondegenerate.

When V(z) is a real function, 1" and 1) satisfy the same equation with
the same energy and the same boundary condition lim,_,~ %* = 0. Hence
" = ¢, or ¢ = ™", from which we have |¢|? = 1, or ¢ = exp (i8), where
d is a real number. If we choose § = 0, then ¢ = 1 and 1 is a real function.

1009
Consider a one-dimensional bound particle.
(a) Show that
d 00
7 [ vt eend=o.
at. fiss
(¢ need not be a stationary state).
(b) Show that, if the particle is in a stationary state at a given time,
then it will always remain in a stationary state.
(c) If at t = 0 the wave function is constant in the region —a <z < a
and zero elsewhere, express the complete wave function at a subsequent

time in terms of the eigenstates of the system.
( Wisconsin)

Solution:
(a) Consider the Schrédinger equation and its complex conjugate

5 B oy
ih 8Y/0t = —o— V% +Vy, (1)
= L] ol ﬁg 2,1 -

Taking 1* x (1) — 1 x (2) we obtain

ih 2 W)= -2 v (Ve - )
ot 2m ’
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For the one dimension case we have, integrating over all space,

d - - _Ifl =i g .a]’!') 61!)'
dt _mw (I,tJT,b(I,i)dx—?;./—m = (,p _.8_5_,1,_8_2_) i

th " . .
= [W* oy /ox — pp® |0z, .

If 1 is a bound state, then 1 (z — +o00) = 0 and hence
d oo
g / ¥* (z, ) (z, t)dz = 0.
dt J.

(b) Supposing the particle is in a stationary state with energy E at
t = tp, we have

Hy(z, to) = E¢p(z, o),

where H does not depend on t explicitly. At any later time t, the Schro-
dinger equation

ihdw (x, t)/0t = H(x, t)

applies. As H does not depend on t explicitly, the Schrodinger equation
has the formal solution

W(x, t) = exp|—iH (t —to)/h) ¥ (z, to) .

Multi];zlyiug both sides by H Afrom the left and noting the commutability
between H and exp [—i(t — to)H /h|, we find

Hy(z, t) = exp l#—tu)] Hi(z, to)
=E exp [w} 1‘{;(3' tOJ

= E¢(z, t).

Hence ¢ (z, t) represents a stationary state at any later time t.
(¢) The wave function given for ¢t = 0 can be written as

C, |z|<a,
¢(I-0)={

0, otherwise,

Basic Principles and One-Dimensional Motions 13

where C is a constant. Normalization [? "¢ dz = 1 requires that
o= ()t .
Suppose the eigenfunction of the bound state is (x|n) and H |n) =

E, |n). Then
1= z Iﬂ)(ﬂl.

and
[9(z, 0) = Z |n)(n| 4 (z, 0)),
9(a, 1) = 3 Inh(n ¥z, 0) exo (-.s E?.a.) .
Hence
Yz, t) = Xﬂ: antn () exp (—i %t) A
with

o= (19 ) = [ Vi@ 0)de

1 =
=\/% 3 ¥ (2) da .

1010

¥ (z, t) is a solution of the Schrédinger equation for a free particle of
mass m in one dimension, and

¥(z, 0) = A exp (—2?/a®).
(a) At time ¢ = 0 find the probability amplitude in momentum space.

(b) Find ¥ (x, t).
(Berkeley)
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Solution:

(a) At time ¢ = 0 the probability amplitude in momentum space is

¥ (p, 0J=ﬁ / i e~ Pk o (2, 0) dx

A = <]
= m [ exp (—z*/a® — ipz/h) dzx

p L -]’ LT EN A »
= exp (—a’p?/4h?).

V2h

(b) The Schridinger equation in momentum space for a free particle,

2 2
iR (p, t)/0t = H(p, t) = ;—m ¥(p, 1),

gives

_gsd
U(p, t) =B exp (E’ET;)

At time ¢t = 0, we have B = ¢(p,0). Hence

_ Aa a’p®  ip’t
ﬂ’(PJ)—E exp [_W_ﬁ]’

1 g2 1
Y(z, t) = W [m exp [%J Y(p, t)dp

Aa x?
a2 A M (02 -+ %)
m

We can also expand the wave function as a linear superposition of plane
waves and get

Basic Principles and One-Dimensional Motions 15

1 00
Y(z, t)= (_2#—5)-17.2. -/_m ¥ (p, 0) pilkz—wt) dp

1 > Aa - _a*p?
@2 o, Van T [T

2
i(P . P35
X exp [z(ha: Zmﬁ)] dp

Aa = a’p* it ipx
T2 ) O [_ a2 " 2mh "Ff] dp

Aa z?

e e
-2
m

}2 2iht
a‘+—
m

which agrees with the previous result.
1011 \ /

A particle of mass m is confined to a one-dimensional region 0 < z < a
as shown in Fig. 1.2. At ¢ = 0 its normalized wave function is

(o, t=0) = VAT [1-+con (22)] sn(rs/e)

(a) What is the wave function at a later time £ = 7
(b) What is the average energy of the system at £ = 0 and at t = (7
(c) What is the probability that the particle is found in the left half of
the box (i.e., in the region 0 < x < a/2) at { = 147
(MIT)

Solution:
The time-independent Schrédinger equation for 0 < x < a is

h? d*y
— — + EY=0.
2m dax? 29
It has solution ¥ (z) = A sin kz, where k is given by k2 = 2—’;“;, satis-
fying 1(0) = 0. The boundary condition #(a) = 0 then requires ka = nw.
Hence the normalized eigenfunctions are
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@ @
Vix)
> X
0 a
Fig. 1.2
2 . (nmz
e )
and the energy eigenvalues are
n?m?h?
E“—W, ﬂ—1,2,3,....

Any wave function ¢ (z, t) can be expanded in 1,,:

?ﬁ(—":, t) = Z Ap (t)wn ('Tl' 0)

with _
An(t) = An(0) exp (-‘E; ) .
As
8 L\ ., TT
Y(z, 0) = \/5 (1 + cos ?)sm =
8 . wnx 2 ., 2nz
=\/— sin —+1}— sin —,
5a a Ha a
we have

AI(O) = ‘;ﬂs—t

A (0)=0 forn#1,2.

e

Basic Principles and One-Dimensional Motions

(a) Thus

[ 8 im2hto\ . wx
Y(z, to) = %5 &P (— a2 ) sin —=
i [ 2 o i2m2hto - 27x
T ma? a

_[E .. (4%%)
“V 5a P 2ma?

—i2m2 bty TT . WT
+exp | ———— ) cos — | sin —.
ma? a a

(b) The average energy of the system is
(E) = Z <¢r: IEhbn)

=Y Au(0)’E,

1
El+'5' Ey

- 4
5
- 42 k2

" 5ma?’

(¢) The probability of finding the particlein 0 <« < § att =1{g is

a a2 %
Plose<g)= [ 10 to)lds
- 8 ll["z

_5(1 0

2
+ 2 cos == cos Lsic dx
a 2ma?

1, 16 (3rhio
27 15 “C\2ma2 )

x
sin (22) 1+ coit 22
a a

17
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TI\\ J"'I.II
1012

A particle of mass m moves in a one-dimensional box of length [ with

the potential
V=00, <0,

V=0 0<z<l,
V=00, z>1.

At a certain instant, say ¢ = 0, the wave function of this particle is
known to have the form

W=/30/Bz(l—x), O<z<l,
Y=0, otherwise .

Write down an expression for 9 (z, t > 0) as a series, and expressions
for the coefficients in the series.
( Wisconsin)
Solution:

The eigenfunctions and the corresponding energy eigenvalues are

Yu () = \/? sin (1—}% n) v M= % (3} ")2’ m=1; 28

Thus
[9)=>"In){n | ¥),

where
(n|¢(¢=0))=£ \/g sin (1;5 n) ; ‘/?—?J:(I—:r)dz
=415 (n—lﬂ)s (1 — cos nx)
=4V15[1 — (=1)"] (1/nn)?®,
and hence

Vet = Y (0 6= 0) vnle) exp (~i 22 )

R 30 1 . [(2n+1 ik (22514)7,
&ZS i —'_M(2n+1)37r3 sm( 7 'rr:r:)e ( ) >

B
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1013
A rigid body with moment of inertia of I. rotates freely in the z—y
plane. Let ¢ be the angle between the z-axis and the rotator axis.

(a) Find the energy eigenvalues and the corresponding eigenfunctions.
(b) At time t = 0 the rotator is described by a wave packet ¢(0) =

A sin® ¢. Find (t) for ¢t > 0.
( Wisconsin)

Solution:
(a) The Hamiltonian of a plane rotator is
H = —(h*/21.) &*/d¢*
and so the Schrodinger equation is
—(W?/21.) d*/d¢* = Exp.
Setting a? = 21, E/h?%, we write the solution as
Y =Ae?+Beio?,

where A, B are arbitrary constants. For the wave function to be single-
valued, i.e. 1 (¢) = ¥ (¢ + 27), we require

a=m=0, +1,+42, ....
The eigenvalues of energy are then
Ep=m?h*/2I.,, m=0,%1,....

and the corresponding eigenfunctions are

w”'(¢J=‘% E“ﬂ¢| m=0' i1|‘*' ]
after normalization f;“ YrWmdd = 1.

(b) Att =0
¥ (0) = A sin® ¢=i;l (1 — cos 2¢)

= 4/2- 2 (@ 4 ),

which corresponds to m = 0 and m = +2. The angular speed is given by
En=31.4%0r¢= -’}—‘;’3 Hence we have for time ¢
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A A _
P(t) = T [er—{é—ﬁm.) p e-12(¢+htﬂ.]] .

1014

An electron is confined in the ground state in a one-dimensional box of
width 1071° m. Its energy is 38 eV. Calculate:

(a) The energy of the electron in its first excited state.

(b) The average force on the walls of the box when the electron is in
the ground state.

( Wisconsin)

Solution:

(a) An electron confined to a one-dimensional box can have energy levels
(Problem 1011)

E, = i*7’n%/2ma®, n=1,2,3,....

Thus for the first excited state (n = 2), the energy is By = 4E, =
152 eV.
(b) The average force on the walls of the box is
F = —(8H/da).

Differentiating the equation of a stationary state (H — E, )i, = 0, we
have

(aif OB,

- ¢ ﬂ—
Pa aa) i e S

and hence

. f T awn_ . %_@
"fJn(H—Eu)E—% (aa (')a) 'L'n-

Integrating the left-hand side of the above, we have

* 3191. = 31!:'». 3 .pe
[unttr—B) G ae= [ S (- Bo) v s,
which is zero since H is real. Integrating the right-hand side of the equation

then gives X
(0H |8a) = OE,, [Da.
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Hence
F = —-0E,/ba.

For the ground state, n = 1 and

F=2E/a=76x10°eV/cm = 1.22 x 1072 dyne.

f__:,) ‘r d
fo15 2 O5%

Give the energy levels EY of the one-dimensional potential in
Fig. 1.3(a) as well as the energy levels E of the potential in Fig. 1.3(b)
( Wisconsin)

] . BN
Vo Y
| | |
0 2a 0 a
fal (bl
Fig. 1.3

Solution:

(a) Use coordinate system as shown in Fig. 1.4. The Schrodinger equa-
tion is
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1 2,
—% % +Vip =Ey.
where
V=40 for x > a (region),
V=-V for —a<az<a (regionll),
V=0 forx < —a (region I11).

For bound states we require —V < E < 0. Let

k'.?

2m(E + V) B2 2mE
h? S h?

The Schriodinger equation becomes

d*y !
dii i k*3p =0 for region II,
and 2
ar -
dqf; — k"1 = 0 for region I and IIT,

which have solutions

h=Asinke+ B coske for-a<uz<a,
= Ce=*7* 4 Dek's lor o < ~aand x > a.

The requirement that ¢ -> 0 as 22 — 400 demands that

p =Ce ¥ for z > a (region 1),
Y =Dkt forz<a (region IIT) .

The boundary conditions that ¢ and 1)’ be continuous at = = -ta then
give
A sin ka + B cos ka = Ce™ %2
~A sin ka + B cos ka = De~¥e

Ak cos ka — Bk sin ka = —Ck’ e7 ¢,
Ak cos ka + Bk sin ka = DK’ e~ %@ .

or
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2A sin ka = (C — D) e™¥2,

2B cos ka = (C + D) e~¥
24k cos ka=—(C — D) k' e ¥,
9Bk sin ka = (C + D)k' e=*' .

For solutions for which not all A, B, ', D vanish, we must have either
A =0, C -~ Dgiving ktanka = &', or B =0, C = —D giving k cotka =
—k'. Thus two classes of solutions are possible, giving rise to bound states.

Let £ = ka, n = k'a.
Etan £ =1,
&+ =7,

Class 1:
0 " - " P - 2

where v = k%a? + k/2a? = 2100

Since £ and 7 are restricted to positive values, the energy levels are
found from the intersections in the first quadrant of the circle of radius
~ with the curve of £ tan £ plotted against £, as shown in Fig. 1.5. The
number of discrete levels depends on Vy and a, which determine . For
small 7 only one solution is possible.

m

Fig. 1.5
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Ecot £ =—7,
{2 i' .qg — ,.)(2 i

A similar construction is shown in Fig. 1.6. Here the smallest value of
; i :
Voa gives no solution while the larger two give one solution each.

Class 2:

7

Fig. 1.6

Note that { = 0,7 = 0 is a solution of £ tan £ = 7 and so no matter how
small 7 is, there is always a class 1 solution, whereas + has to be above a
minimum for a class 2 solution to exist, given by € cot £ = 0 which has a
minimum solution £ = Hieq= 5 or Voa? = ";Tf:z.

(b) Use coordinates as shown in Fig. 1.7.

v
A
Wi p—e X
E ———————
11 11 1
0 a

Fig. 1.7
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The Schrodinger equation has solutions

th=Asinkr+ B coskzx forO<z<a,
= Ct:'_k’r for x > a,
=20 forz <0,

satisfying the requirement ¢y — 0 as x — oo, The boundary conditions at
z =0 and xr = a then give B = 0,

A sin ka = Ce~ %,
Ak cos ka = —~Ck'e "',

and finally

£ cot & = —m
2

G Enpt=at,

as for the class 2 solutions above.

1016

Consider the one-dimensional problem of a particle of mass m in a
potential (Fig. 1.8)
V=069 <0

V=0 0<z<a,
V=W x>a.

(a) Show that the bound state energies (E < Vj) are given by the

equation
- v2mEa E
R~ Vw-E

(b) Without solving any further, sketch the ground state wave function.

( Buffalo)

Solution:

(a) The Schrodinger equations for the two regions are

"+ 2mEY/h? = 0, 0<z<a,
W' - 2m(Vo — EYW/h* =0, x>a
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with respective boundary conditions ¢ = 0 for # = 0 and ¥ — 0 for
x — +00. The solutions for E < V} are then

i = sin (vV2mEx/h), 0<z<a;
P = Ae—\/Zm(_Vu—E} z,’h, r>a,

where A is a constant. The requirement that i and % are continuous at
T = a gives

tan (V2mEa/h) = ~[E/(Vy — E)]V/2.
(b) The ground-state wave function is as shown in Fig. 1.8.

Vix)
A

Pix)

Fig. 1.8

1017

The dynamics of a particle moving one-dimensionally in a potential V (z)
is governed by the Hamiltonian Hy = p?/2m + V (), where p = —ih d/dz
is the momentum operator. Let E,(.o). n=1,2 3,..., be the eigenvalues
of Hy. Now consider a new Hamiltonian H = Hgy + Ap/m, where A is a
given parameter. Given A, m and E”, find the eigenvalues of H.

(Princeton)
Solution:

The new Hamiltonian is

H = Hy + A\p/m = p*/2m + A\p/in + V (z)
=(p+A)?/2m+ V(z) - \2/2m,
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or

2

H=L v,
2m
where H' = H + -2):—:., pP=p+A.
The eigenfunctions and EianValllBS of H' are respectively E,(fj ! and qbf,m.
As the wave number is & = & = } (p+ A), the new eigenfunctions are

= p® =N/

and the corresponding eigenvalues are

E, =E9 - \/2m.

1018

Consider the one-dimensional wave function
W(z) = A(/zo)" e/,
where A, n and x¢ are constants.

(a) Using Schrodinger’s equation, find the potential V(x) and energy E
for which this wave function is an eigenfunction. (Assume that as z — oo,
V(z) -+ 0).

(b) What connection do you see between this potential and the effective
radial potential for a hydrogenic state of orbital angular momentum 17

( Wisconsin)
Solution:

(a) Differentiating the given wave function,

n—1 i "
.i Y(x) =A i) (i) e~ T/T0 4 A (i) (_i) t,-z/zu.
dx Tp \To Ty Ty

9 N n—2
. h(z) =A Egi2—ll (i) e~ /%o

da? x To

n—1 "
—2A % (;—) e~%/%0 4 A ;:!:,_- (:\:3) &/
0 0 0 o

- [pesto L] v,

2 —+
= Ior Ty
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and substituting it in the time-independent Schrédinger equation

e :
( = d*/d:c"+‘-"($)) ¥(2) = By(a),

we have -
B — V(@) == ["——-—"(” L), —l;] _
2m x TOT T
As V(x) = 0 when z — oo, we have F — —h?/2maf and hence
h? [n(n-1)
V ¥y . ¥
(z) = 5 [ p z.u,}zgr] 2

(b) The effective radial potential for a hydrogen atom is ?/r (1 + 1)
h?/2mr?. Comparing this with V (z) we see that the 1/r? term is formally
identical wlth the 1/2? term with the angular momentum / taking the place
of n. The term of V' (z) depends on n = I, while the * (Coulomb) term in
the E‘ﬁFt.llVC potential for the hydrogen atom is independent of the orbital
angular momentum /. This is the difference between the two potentials.

1019

o ; : ; :
Consider the following one-dimensional potential wells:

Vix)
1 { S = %
H
Fig. 1.9
Vix)

Fig. 1.10
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(a) Can cach well support a bound state for an arbitrarily small depth
Vi (i =1, 2)?7 Explain qualitatively.

(b) For Vi = V,, what is the relationship between the energies of the
bound states of the two wells?

(c) For continuum states of a given energy, how many independent so-
lutions can cach well have?

(d) Explain qualitatively how it is possible to have bound states for
which the particle is more likely to be outside the well than inside.

( Wisconsin)

Solution:

(a) For bound states, we must have -V < £ < 0. Let

2 2m(F + V) 2 2mE
h? hi?
where V = Vi, V; for the two cases, and set € = ka, p = k'a, v =V 2;:"'5(1.

The discussion in Problem 1015 shows that for the potential in Fig. 1.9,
the solutions are given by

Eoot§=—n, E+n*=1

The energy levels are given by the intersection of the curve  cot £ = —n
with a cirele of radius v with center at the origin (Fig. 1.6) in the first
(nadrant. As the figure shows, v must be greater than the value of £ for
which € cot £ = 0, i.e. £ > 7. Hence for a bound state to exist, we require
‘/r:_’_;t > 5,orVy = %;

For the p()tt'Ilt-ld.l shown in Fig. 1.10, two classes of solutions are possible.
One class are the same as those for the case of Fig. 1.6 and are not possible

for arbitrarily small V5. The other class of solutions are given by

£ tan € = n,
& +n* =97

As the curve of £ tan £ = p starts from the origin, v may be arbitrarily
small and yet an intersection with the curve exists. However small V5 is,
Ihere is always a bound state.

(b) For Vj = Va, the bound states of the potential of Fig. 1.9 are also
hound states of the potential of Fig. 1.10.
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(¢) For continuum states of a given energy, there is only one independent
solution for well 1, which is a stationary-wave solution with 9 = 0 at z = QO
there are two independent solutions corresponding to traveling waves in +a
and —a directions for well 2.

(d) Let py, pa denote respectively the probabilities that the particle is

inside and outside the well. Consider, for example, the odd-parity solution
Y=Asinkr for 0<z<a,

Q=0 ** for a<ux,

where k = YERAE) (=12}, ¥K-= t%;’-j—l, for which

[

P1_ Jo A% sin® ka da A? Ka sin 2ka
P2 j:“ C2e~2Mz dy ~ C2 e-2'a 2ka ’

The continuity of ¢ at # = a gives

A e~ ke
C  sin ka’
Setting, as before, n = k'a, € = ka, we have
P ) sin 28\ 2n  — sin 2€
p2  sin® ¢ 26 ) 1 -—-cos 2 26 )

The odd-parity solutions are given by

{ & cot £=-n,

{2 - n'Z - 72

¥

where y2 = _Z_m?:/__ﬁ.g_’ (i=1,2).
An analytic solution is possible if ¥ = (n - §) , or
(n+ 1)*n%h?

Via? >
2m

i XE=0,2,2 0 )
for which the solution is £ — (n+ 1)x, n = 0, and

% - 0.

P2

The particle is then more likely ontside the well than inside.

Basic Principles and One-Dimensional Motions 3

1020

Obtain the binding energy of a particle of mass m in one dimension due
to the following short-range potential:

V(z) = Vo d(x).
( Wisconsin)

Solution:

The Schrodinger equation

d*ip/da? + 2}—:-.’- [E-V(@)v=0, (E<0),

om setting

k= \2m|E|/h, Uy =2mVy/h?,

can be written as
P (x) — K*y(x) + Ug 8(x) 9(x) = 0.

Integrating both sides of the above equation over = from - ¢ to &, where
is an arbitrarily small positive number, we get

() - ' (=) — k* ./E Y dx + Uptp(0) = 0,

which becomes, by letting £ — 0,
P'(0%) = '(07) + Uptp(0) = 0. (1)
At z # 0(d(z) = 0) the Schrodinger equation has solutions

p(z) ~exp(—kz) forz >0,
P(z) ~exp(kx) forxz < 0.

It follows from Eq. (1) that
P (0F) = (07) = —2ky(0).

A comparison of the two results gives k = Up/2. Hence the binding
cnergy is — E = h2k2/2m = mV@ [2h%.
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1021

Consider a particle of mass m in the one-dimensional § function
potential

Vi) =Wy 6(z).
Show that if Vj is negative there exists a bound state, and that the
binding energy is mV;}/2h°.
(Columbia)
Solution:

In the Schrodinger equation
d*yp/da* + 2m|E -V (z)] w/h* =0,
we set E < 0 for a bound state as well as
k* =2m|E| /R, Uy =2mVy/h?,

and obtain
d*yp /dz® — kP — Uy d(x)h = 0.

Integrating both sides over x from —« to +¢, where ¢ is an arbitrarily
small positive number, we obtain

P () =¥ (—¢) — 332/ Y da — Ugh(0) = 0.

With & — 0%, this becomes 9'(07) — ¢/(07) = Upp(0). For = # 0 the

Schrédinger equation has the formal solution #(x) ~ exp (=k|z|) with k
positive, which gives

; ~ke=kE. =0,

w'(i‘)“‘"’—}--’ me-klwlz :

z ke®, x <0,

and hence

P'(0F) —9'(07) = —2k(0) = Upsp(0) .

Thus k = Uy /2, which requires Vj to be negative. The energy of the
bound state is then £ = ~2% — —mV2/2h% and the binding energy is

Ey =0— E = mV§/2h%. The wave function of the bound state is

Ve 2
P(xr) = A exp (f—}z—o w|) =/ —mVy/h? exp(mVy |z |/h°),
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where the arbitrary constant A has been obtained by the normalization
f_(_]m P2 dz+ [ Yrdz=1.

1022

A particle of mass m moves non-relativistically in one dimension in a
potential given by V(x) ad(x), where §(x) is the usual Dirac delta func-
tion. The particle is bound. Find the value of zg such that the probability
of finding the particle with |z | < g is exactly equal to 1/2.

(Columbia)
Solution:
For bouud states, £ < 0. The Schrodinger equation
K2 d?
ot — —abd(x h(a E(x)
[ 2m dux? { )1 ¥(=) (
has for z # 0 the solutions finite at x = =oo as follows,
Aels  forz <0,
hx) =
¥a) Ae ™™ forz >0,
where k = @H aud A is an arbitrary constant. Applying lim, o+
[' _ dz to the Schrodinger equation gives
Forod s 2ma 2
PO =y (07) = ~ 2 P(0) (1)

Lnee

/ P () 8(z) dx = ¥ (0), 15‘1(1]/ (x)de =0
lor finite v (0). Substitution of 4 (x) in (1) gives
ma

k=

imnee
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On account of symmetry, the probabilities are

To 2
P({I!<Ifl}=2l}1[2/ e~ 2ks g _L%[_(l_e~‘2km..)'
J0 ¥
o= 2
P(—oo<m4oo):gl‘412/ (:‘2""‘“{;:[’1] _
0

As it is given

e c——?kzu . l
2 '

we have ”

1

— In2=——In2.

aIp = =
2k 2ma

1023

A particle of mass /m moving in one dimension is confined to the region
0 <z < L by an infinite square well potential. In addition, the particle
experiences a delta function potential of strengthi A located at the center of

the well (Fig. 1.11). The Schrédinger equation which describes this system
is, within the well,

2 2.0 :
o T 55— L/ (o) - Bple), 0<a<L.

Vix)

+- . X
0 L/2 L

Fig. 1.11

Find a transcendental equation for the energy eigenvalues E in terms of
the mass m, the potential strength )\, and the size L of the systerm.

(Columbia)
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Solution:
Applying lim._, f' I/22+: dx to both sides of the Schrodinger equation,
we get

W' (L[2+€) — ¢’ (L/2 —¢) = (2mA/h*) ¥ (L/2), (1)

Lje L
/:_e Tﬁ'(:ﬂ]é(m - g) dr = (5—)‘ sli-%é_f Gla)de =0,

’ ..
Subject to the boundary conditions ¥(0) = (L) = 0, the Schro-
dinger equation has solutions for z # £ :

Ay sin (kz), 0<z<Lf2-¢
U_’J(_’L’) — {

since

A; sinlk(z—L)], L/24+e<z<L,

where k = 3/-5}@ and £ is an arbitrarily small positive number. The

continuity of the wave function at L/2 requires A; sin(kL/2) = —A;

sin (kL/2), or Ay = —As. Substituting the wave function in (1), we get
Ak cos(kL/2) — Ay k cos (kL/2) = (2mAA, /k?) sin(kL/2),

L h? ombE L 2E h o ARSCaT.
whence tan *—2’ = —";‘3‘ or tan ~J_;~—-—-,|— = —\/ = 3y which is the transcen

dental equation for the energy eigenvalue E.

1024

An infinitely deep one-dimensional square well potential confines a par-
ticle to the region 0 < x < L. Sketch the wave function for its lowest
cuergy eigenstate. If a repulsive delta function potential, H' = Ad(x - L/2)
(\ > 0), is added at the center of the well, sketch the new wave function
.l state whether the energy increases or decreases. If it was originally Eo,
what does it became when A — 0o?

( Wisconsin)

Solution:

For the square well potential the eigenfunction corresponding to the
lowest energy state and its energy value are respectively

oo (2) = \/Zﬁ sin (wx /L),
w22

Eo 2mL?’
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A sketch of this wave function is shown in Fig. 1.12
With the addition of the delta potential H' = Ad(x — L/2), the Schro-
dinger equation becomes

" + k2 — ad(z — L)2)] ¢ = 0,

where k* = 2mE/h* o = 2mA/h?. The boundary conditions are

$olx)
4
] B
0 L_:/z s —X
Fig. 1.12
P(0) = (L) = 0, (1)

v |(3)] -9 |(2) | -ovam @
A@ BT e

£
Note that (2) arises from taking lim._, fjj_}: dx over both sides of the
2

Schrodinger equation and (3) arises from the continuity of 9(z) at = = L.
The solutions for @ # ’5 satisfying (1) are

y Ay sin (kx), 0<a<L/2
) =
Az sin[k(z - L)], L/2<z<L.

Let k = ko for the ground state. Condition (3) requires that A; = —
Ay = A say, and the wave function for the ground state becomes

{A sin (ko z), 0<z<L/2,
o () =
~A sin|ky(x - L), L/2<z<L.
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Condition (2) then shows that kg is the smallest root of the transcen-

dental equation
L(kL/2) mA
0 4 ) e ———
CC ’{‘,h‘!‘
As cot ("—:‘} is negative, /2 < kg L/2 <m orw/L<ky<2r/L. The
new ground-state wave function is shown Fig. 1.13. The corresponding
i v 2p2 3 :
energy is E = h*k%/2m > By = .05 | since kg > 5. Thus the energy of
the new ground state increases.
Furthermore, if A — +o00, ko — 2r/L and the new ground-state energy

E — 4F,.

lpulxl

0 L:/2 L

Fig. 1.13

1025

A nonrelativistic particle of mass m undergoes one-dimensional motion

i the potential
V(z) = —gld(x —a)+d(x+a)

where ¢ > 0 is a constant and §(x) is the Dirac delta function. Find the
pround-state energy eigenfunction and obtain an equation which relates the

corresponding energy eigenvalue to the constant g.
(Berkeley)

Solution:
Since V (x) = V(—x), the energy eigenfunctions have definite parity.
‘I'lie ground state has even parity, ¢ (—x) = ¢ (z). It is a bound state and

ils energy is negative, £ < 0.
For x > 0, the Schrodinger equation is

[—(h?/2m) d*/dz® — g6 (x — a)] Y(x) = Ey(x),
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whose solutions for x # a are ¥ ~ exp (+kz), where k = V2mFE/h.
With the condition that the wave function remains finite as -3 oo and
has even parity, we obtain

Ae~*=, r>a,
lf: (,‘5) =
B cosh (kx), 0<z<a.

The continuity of ¢ at # = a requires that A = Bek® cosh (ka). Thus

(z) Beke cosh (ka) e %%, z>a,
'l‘,‘! T =
B cosh (kx), 0<z<a.

Normalization fﬂa W dr + J:’“ ¥? dx = % gives

2k 2k

At x = qa, there is a discontinuity of the first differential of the wave
function (cf Problem 1024):

W' {at) — ' (a7) = ~(2my/h?) ¥ (a).
Substitution of ¥ gives
k 1+ tanh(ka)] = 2mg/h*,

which is to be satisfied by k. By symmetry the wave function for the entire
space is
Be* cosh (ka) e %17, |z|> a,
P(x) =

B cosh (ka), |z| <a.

1026

An approximate model for the problem of an atom near a wall is to con-
sider a particle moving under the influence of the one-dimensional potential
given by

Viz)=-Wix), x> -d,

V(I)_—.—m‘ i d,
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where § () is the so-called “delta function”.

(a) Find the modification of the bound-state energy caused by the wall
when it is far away. Explain also how far is “far away”.

(b) What is the exact condition on Vg and d for the existence of at least

one bound state?

(Buffalo)

Vix)

v

Fig. 1.14

Solution:
(a) The potential is as shown in Fig. 1.14. In the Schrédinger equation

¢’ + (2m/h?) [E + Voé(a)l ¥ =0, x=>-d,
let k = v/~2mE/h, where E < 0. This has the formal solutions

ae®® +be~* for —d<z<0,
#(x) e~k= for >0,

as 1(x) is finite for & — o0o. The continuity of the wave function and the
discontinuity of its derivative at z = 0 (Eq. (1) of Problem 1020), as well
as the requirement (z = —d) = 0, give
at+b=1,
~k — (a - b)k = —2mVy/h?,

ae * 4 bk = 0.
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Solving these we find

v 82L‘d ’ l
= 1 — e2kd *? = 1 _62&-:} 1
mV;
2 o !(’(1__8—2&1]'

K2
The wall is “far away” from the particle if kd > 1, for which k =

-m‘if'[)/hz. A better approximation is & ~ (mV;/h?)[1 - exp (—2mV; d/h?))
which gives the bound-state energy as -

_f12 k? - _!_”ti mVh 3 2mVyd 3
2m  2m \ K2 L~gxp (-_ h? )}

. mVy 2mVyd
N - [] -2 exp (— h?.n )]

- mVE mV? s (_ Qm‘/ijd.)

i

o T R B2

The second term in the last expression is the modification of energy
caused by the wall. Thus for the modification of energy to be small we
require d > 1/k = h®/mV,. This is the meaning of being “far away”.

Fig. 1.15

(b) Figure 1.15 shows Jine 1 representing y = k and curve 2 representing
Y = ye [1 —exp (-2kd)], where y. = mVy/h?. The condition for the equation

k=mVy [1 — exp (—2kd)]/h?

Basic Principles and One-Dimensional Motions 11

to have a solution is that the slope of curve 2 at the origin is greater than
that of line 1:

d ‘
W _omypd/i > 1.
dk |y _q

Hence if Vyd > %‘% there is one bound state.

1027

The wave function of the ground state of a harmonic oscillator of force
constant k& and mass m is

o () = (uf?r)”"e--nf;g, o =muwy/h, Wi =k/m.
Obtain an expression for the probability of finding the particle outside the
classical region.
( Wisconsin)
Solution:

The particle is said to be outside the classical region if E < V(x).
For the ground state, £ = hwg/2 and the nonclassical region is 3 hwy <

9.9
2 h l I (k‘

S mwiz®, ie.,
€rs s> — = - ar

wom 1
TR = e
@

The probability of finding the particle in this nonclassical region is there-

fore
P:f W2 () dx
-y o ()

_\/E{ ) o0 ;
:/ ‘/Ec"“zzd:r:-i--/ B \/E e~ dy
ot ™ \/l_/(r T
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1028

Consider a linear harmonic oscillator and Jet 1y and 3y be its real, nor-
malized ground and first excited state energy eigenfunctions respectively.
Let Ay + By with A and B real numbers be the wave function of the
oscillator at some instant of time. Show that the average value of z is in
general different from zero. What values of A and B maximize (z) and
what values minimize it?

( Wisconsin)
Solution:

The orthonormal condition
f (Ao + Bypy ) dx = 1
gi:ms A% 4 B? = 1. Generally A and B are not zero, so the average value
ol X,
@) = [ (A + By} dr = 248 (o [ )

is not equal to zero. Rewriting the above as

(z) = [1 - (A% + B2+ 2AB)| (o |z |t)
=[1-(4-B)?| (yo |z| )

and considering f = AB = A(1-A?)%, which has extremums at A4 — t—-‘\/—fj,
we see that if A = B = 1/V2, (z) is maximized; if A = -B = 1/V2, (2) is
minimized.

1029

Show that the minimum energy of a simple harmonic oscillator is fiw /2
if AzAp = h/2, where (Ap)% = ((p - (p))?).
( Wisconsin)
Solution:

For a harmonic oscillator, () = (p) = 0, and so

(Az)® = (2%), (Ap)* = (p?).

e
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Then the Hamiltonian of a harmonic oscillator, H = p?/2m + mw?z*/2,
gives the average energy as

(HY = (p?)/2m + mw?(2?)/2 = (Ap)®/2m + mw?(Az)? /2.
As for a, b real positive we have (y/a — Vb)2>0,0ra+b> 2v/ab,

(H)min = (Ap)(Az)w = hw /2.

1030

An electron is confined in the ground state of a one-dimensional har-
monic oscillator such that /((z — (z))?) = 107" m. Find the energy (in
eV) required to excite it to its first excited state.

(Hint: The virial theorem can help.]
( Wisconsin)

Solution:

The virial theoren for a one-dimensional harmonic oscillator states that
(T') = (V). Thus Eg = (H) =(T") + (V) = V) = mew? (x?), or, for the
ground state,

giving
_h
Y= 2me (22)

As (x) = 0 for a harmonic oscillator, we have

V@ — @D = /@ — @2 = @) =107 m.

The energy required to excite the electron to its first excited state is

therefore

52 Fi2e?
T 2me (2:2) T 2mec (%)
(658 x 10716) x (3 x 10°)?
- 2 x 0.51 x 1020

AFE = hw

=3.8¢eV.
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1031

The wave function at time ¢ = 0 for a particle in a harmonic oscillator
potential V = 1 kz?, is of the form

)2 sin 4
P(z, 0) = Ae—(ax)?/2 [cos 8 Hy(ax) + 2“:/{;2 Hy (u:;:)] ;

where  and A are real constants, a® = V/mk/h, and the Hermite polyno-
mials are normalized so that

/ e ™% |H, (az)|? dz = ‘/; 2l

(a) Write an expression for ¢ (z, t).
(b) What are the possible results of 2 measurement of the energy of the

particle in this state, and what are the relative probabilities of getting thesc
values?

(c) What is (z) at t+ = 07 How does () change with time?
( Wisconsin)
Solution:

(a) The Schrodinger equation for the systemn is
iho ¥ (z, t) = Hy(a, t),

where 9 (z, t) takes the given value 1 (z, 0) at t = 0. As H does not depend
on t explicitly,

Ya(Z, 1) = tn (z) e Ent/

where ¥, () is the energy eigenfunction satisfying
I}v’n (3‘.‘) = En1n (J-") .
Expanding v (z, 0) in terms of ¢, (z):

P(x, 0) = Zan Y (z),

where

y, :fgb;(I)?b(:r, 0)dx.
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Thus “ ;
us Pz, t) = Za,. Yn(z, t) = Z an Pn () e Ext/h

For a harmonic oscillator,
2.2
Un [J‘) — Nn g L Hy ({1.1.') y
so that
—02:'2;’2 ¥ A -a2z? (2
a; = Ny = % H, lox) + Ae

sin 3

22

As the functions exp (-3 27) H, (x) are orthogonal, all a,, = 0 except

X [cos. B Hy(ax) + H (n::.')] da .

T
g = .4N0 JE:}' cos B!

ay = AN2 J;% 2\/:2 Sinﬂ’j.
Hence

,';}(:rg t) A ‘/:; [NO cos ﬁ‘bﬁ(f) e—l'Eq!fﬁ.
I 2\/5 N;! Sin ﬁ’lz}?(;ﬂ} e_‘.EQ'!ﬂ] .
L ¢ o “ig’-ﬂ
=4 (3)" [eospte@ e sin Bapa (@) e |

: Ak Ny =504
as N, are given by [[tn (2)]2 dz = 1 to be No = (5 )%, Na = 55(5)%.
(b) The observable energy values for this state are By = hw/2 and

E, — 5 hw/2, and the relative probability of getting these values is
Po/P = cos® 3/ sin® 3= cot® .

(¢) As 1 (x, 0) is a linear combination of only 1 (2) and 12 (x) which
have even parity,

(=, 0) = W (z, 0).
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Hence for t = 0,
(z) = [ P (x, 0) zyp(z, 0) dz = 0.

It follows that the average value of x does not change with time.

1032

(a) For a particle of mass m in a one-dimensional harmonic oscillator
potential V = mw?z? /2, write down the most general solution to the time-
dependent Schradinger equation, ¥ (x, t), in terms of harmonic oscillator
eigenstates ¢y, (z).

(b) Using (a) show that the expectation value of z, (x), as a function of
time can be written as A cos wt + B sin wt, where A and B are constants.

(¢) Using (a) show explicitly that the time average of the potential
energy satisfies (V') = 1(E) for a general ¢ (z, t).

Note the equality

mw n+1 . n
\f—ﬁf‘-’ﬂﬁf’n:\/ 2 ¢n+1"”\/;¢n-1-

( Wisconsin)

Solution:

(a) From the time-dependent Schridinger equation
ih 2 ¥(z, t) = Hp(z, t),
ot
as H does not depend on time explicitly, we get
P (z, t) = e YR y(z, 0).
We can expand 1 (z, 0) in terms of ¢, (z):

14!) (“1:1 0) Z aﬂ¢1l (I) ]

where

Opy = (qbﬂ (T) I '!Z’ (-’l’n 0)) '

.
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and ¢, (z) are the eigenfunctions of
Hoy (x) = Epdn (z), with E, = (n = %) Nous.

Hence

w(Ii f) = Z and’n (I) C_iE"t’”‘ .
(b) Using the given equality we have
(z) = [ ot (x, t)xyp(z, t) dx

" Z a:la“' E_I(E"’_'E“jt/ﬁ_/ é:l (I) L (.I‘} dx

nn'

i e “ =1
=3 0 e~ Ew=En/h (

n,n'
! h
" 5‘".:1’ -1 A
2 W

- 2 ’_1 bt n+1 —iwt L
__%‘ a, (a.,,_1 J;c. + Q41 \f 2 e =

=A cos wt+ B sin wt,

n' +1

Jn.n’—}—l

where

h - n n+1
A—\/mgﬂn (an—l‘/é“}‘an-kl —2—) )

h e n n+1
B=y/— ; iaj, (a,.q \/% ~ant1 4/ —2—) ;

and we have used £, — B, = hw.

(¢c) The time average of the potential energy can be considered as
the time average of the ensemble average of the operator V on t (x, t). It
is sufficient to take time average over one period T' = 27 /w. Let (A) and A
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denote the time average and ensemble average of an operator A respectively.

As

1 mw
Vv — — | — I2
¥) =3 hw - B2 a?|y)
1 mw M nt
=g T w2 [T wda(a) e
- 1 me e n-+1
=g ?xzn“"( I+
4 g“’l-' ])) o= wnt1/2)t
1, e (n+1)(n+2
=§ﬁw§aﬂ [ -—-—-2—(———) | n+ 2)
1 n—1 [P}
+ (r;+§)]7a)-| Eé—)|n—2)] g
we have
V=@V
(.= 1
:§h«w Za,‘_a,, (n+ E) +§MZ&:_+_2

n=0 n=0

[(n+1)(n+2) 1 =
X (p ‘—'—4———-—-— i -+ E huww Z y,
n=0
X (l:..+-2 \/ (____n = 1)4(7; +2) grat

1. o= . 1
= ﬁwZa,, Qp (n + 5)

n=_0

l [= 0
+ 5 hw Y lapatn | V(n+ 1) (n+ 2) cos (2wt + 6,),

n=A(

where 4, is the phase of a}, | a, . Averaging V over a period, as the second
term becomes zero, we get

vi=i ¢ 13, i
():?/{’ thz—ﬁwZa.uaﬂ (n+§).

n=0

[a%
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On the other hand,

E= (| H|¢) = hw Z a, iy (‘n + %) )

n=>0

and (E) = E. Therefore (V) = (E)/2.

1033

Consider a particle of mass m in the one-dimensional potential

V(z) = mw2z?/2, |z|>Y;
Viz) =W, |z} <b,

where V> h%/mb® > fuw, i.e. a harmonic oscillator potential with a high,
thin, nearly impenetrable barrier at x = 0 (see Fig 1.16).

Vix)

Y
2b

Fig. 1.16

(a) What is the low-lying energy spectrum under the approximation
that the barrier is completely impenetrable?

(b) Describe qualitatively the effect on the spectrum of the finite penc-
trability of the barrier.

(MIT)

Solution:

(a) For the low-lying energy spectrum, as the barrier is completely im-
penetrable, the potential is equivalent to two separate halves of a harmonic
oscillator potential and the low-lying eigenfunctions must satisfy the con-
dition 9 (z) = 0 at x = 0. The low-lying energy spectrum thus corresponds



50 Problems and Solutions on Electromagnetism

to that of a normal harmonic oscillator with odd quantum numbers 2n + 1,
for which ¢, (z) = 0,atz = 0 and E,, = (2n+3/2)hw,n =0, 1, 2, ... with
a degeneracy of 2. Thus only the odd-parity wave functions are allowed for
the low-lying levels.

(b) There will be a weak penetration of the barrier. Obviously the prob-
ability for the particle to be in |z| < b, where the barrier exists, becomes less
than that for the case of no potential barrier, while the probability outside
the barrier becomes relatively larger. A small portion of the even-parity
solutions is mixed into the particle states, while near the origin the prob-
ability distribution of even-parity states is greater than that of odd-parity
states. Correspondingly, a small portion of the energy E!, = (2n+1/2)hw is
mixed into the energy for the case (a). Since (1| barrier potential [1) > 0,
the energy levels will shift upwards. The level shifts for the even-parity
states are greater than for odd-parity states. Furthermore, the energy shift
is smaller for greater energies for states of the same parity.

1034

The Hamiltonian for a harmonic oscillator can be written in dimension-

less units (m =h=w = 1) as
H=ata+1/2,
where
a=(&+ip)/V2, at = (&—ip)/V2.
One unnormalized energy eigenfunction is
e = (22° — 32) exp(—2?/2).

Find two other (unnormalized) eigenfunctions which are closest in en-

ergy to .
(MIT)

Solution:

In the Fock representation of harmonic oscillation, @ and a* are the
annihilation and creation operators such that

afn = Vn 1, & = Vo 1y, aati, = (n+ 1)

En:('”"‘%)!w, n=0,1,2....
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1 d d . _ o
&&."wﬂ = i (I+ []!_J,) (.’.I',' — t,_i_l) (2.'123 — -527) e 2

" x+ 3 (4z* —120% + 3) e"%{
2 dx

22 -
—4(22°% - 3z) e T = (3 +1)%s,

we have n = 3. Hence the eigenfunctions closest in energy to 1, have
n = 2, 4, the unnormalized wave functions being

1 3 ey
¢2=L a1y = L (£+J:) (22° — 3xz) e = /2

at1p, = L (;f: — diir-:) (2x* — 3z) e~=/

~ (4z* — 1222 + 3) =22,

where the unimportant constants have been omitted.

1035
At time ¢ = 0 a particle in the potential V(z) = mw?a? /2 is described
by the wave function

P(x, 0)=A4A Z (1/"6)" (),

where 1, (z) are eigenstates of the energy with eigenvalues E, = (n +
1/2) hw. You are given that (1n, ) = bnnr.

(a) Find the normalization constant A.

(b) Write an expression for ¢ (z, t) for £ > 0. o

(¢) Show that | (z, t)|? is a periodic function of time and indicate the
longest period 7.

(d) Find the expectation value of the energy at ¢ = 0.
(Berkeley)
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Solution:

(a) The normalization condition

(ﬁ'{:‘:s 0)! w("’:v 0)) — IAI‘e Z (]/2.}[,”+'I)/2 (wn- ’r"l"m)

m,n

=142 (%)m:2|A|2=1

m

gives A = 1/y/2, taking A as positive real.
(b) The time-dependent wave function is

(. t) = e HMy (2, 0)

= 1 n+l .
= (ﬁ) D o (). :

n

(c) The probability density is

[ l m“'“-{.l —1 - -
FTER D (5) g ) w26 W () -
mn
Note that the time factor exp [-iw(n — m)t] is a function with period 1'

(Tf:_n}u' the maximum period being 27 /w.
(d) The expectation value of energy is

| ‘ e S
H = (e, 0), H(a, 0)) =) (5)

m,n
!
2

1
(m + E) hw b
m,n

— 1 1
_L?l (nii)ﬁu.

n=0

(Yn, Hom)

'"il " 1

Il
il

Noting
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or, by differentiation,

we have

and hence H = 3lw/2.

1036

Counsider the one-dimensional motion of a particle of mass p in the
potential

V(z) = Vo (/a)®,

where nis a positive integer and Vy > 0. Discuss qualitatively the distri-
bution of energy eigenvalues and the parities, il any, of the corresponding
eigenfunctions. Use the uncertainty principle to get an order-of-magnitude
estitnate for the lowest energy eigenvalue. Specialize this estimate to the
cases n = 1 and n — oo. State what V(r) becomes in these cases and
compare the estimates with your previous experience,

(Buffalo)
Solution:

Since the potential V(x) — oo as @ — oo, there is an infinite munber of
bound states in the potential and the energy eigenvalues are discrete. Also,
the mth excited state should have m nodes in the region of £ > V() given
by kAwx ~ (m { 1)m. Az increases slowly as m increases. From the virial
theorem 27 o 2nV, we have

k% o (Az)®" o [(m + 1) /k]*",

and so
E o k% o (m + 1)?"/ (041

Generally, as n increases, the dilference between adjacent energy levels
increases too. Since V(—xz) = V(x), the eigenstates have definite parities.
The ground state and the second, fourth, ... excited states have even parity
while the other states have odd parity.
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The energy of the particle can be estimated using the uncertainity prin-
ciple

P~ h/2b,
where
b = \/(?HA—J:V .
Thus

1 ; a
E ~ — (h/2b)* + Vo (b/a)*™.
2p
For the lowest energy let dE /dh = 0 and obtain
B (h2a2-u/8.”nw)}1/2(114- 1) ,
Hence the lowest energy is
E ~ [(n+ 1)Vp/a*"| (h2a®" [8unVy )™/ ("+1)
For n = 1, V(2) is the potential of a harmonic oscillator,
V() = Voa*/a® = pos? /2.

In this case F equals hw/2, consistent with the result of a precise cal-
culation. For n = oo, V() is an infinite square-well potential, and

E = h?/8pa*

to be compared with the accurate result A%7?/2ua®.

1037
Consider a particle in one dimension with Hamiltonian
H =p®/2m + V(x),

where V(z) < 0 for all x, V(£oo) = 0, and V is not everywhere zero.
Show that there is at least one bound state. (One method is to use the
Rayleigh-Ritz variational principle with a trial wave function

O(x) = (b/m)"* exp (—b2?/2).

However, you may use any method you wish.)
(Columbin)

[#1)
o

Basie Principles and One-Dimensional Motions

Solution:

Method 1:
Assume a potential V(z) = f(z) as shown in Fig 1.17. We take a
square-well potential V' () in the potential V(z) such that

V’(:J‘J = — V0, |.'.I'.'| <,
Vi(e) =0, |z| > a,
Vi(z) > f(x) forallx.

Vix)

Fig. 1.17

We know there is at least a bound state () in the well potential V' (x)
for which

(p(x) |H' | () = (p|p*/2m + V' (z) | p)
= Fy < 0.

We then have

(p|H| @) =(p|p*/2m + [ (z)]¢)
< (plp*/2m+ V' (z)]| )
= En < 0.

Let -+, _y (x), ¥n(x), --- denote the eigenfunctions of H, and expand

J,D{:L') = Z Cu ll{}ll (J‘] *
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(& 4]

(ClH[9) =D |Cal*(thn | H|th) <0,

n

there is at least an eigenfunction ; (x) satislying the inequality

(i | H|) <0

Hence there exists at least one bound state in V ().
Method 2: Lel the wave function be

¥(x) = (b/m)"/* exp(—bx*/2),

where b is an undetermined parameter. We have

2m dx?

= 2 o & 3
(H) = \/E,F/ g=o= (3 ( — ——) e =12 dx 4 (V)
o

= h'“’b/fim +(V),

where -
(V) = (b/z)}/? f _ V() exp(-ba?) dx,

and thus

g

h?

4m <V) (£2V) =5

giving
b0

slen-g]

Substitution in the expression for (H) yields

[2(3:21;) 5 ff—] V)

’W“‘{@w_;]

a(H) R 1 p\? pres | 1
b 4m ‘2_ W= (;) _/_ 2V (g) e do
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As V(x) < 0forall z, V(£o0) = 0, and V is not everywhere zero, we have
(V) <0, (x*V) < 0 and hence E < 0, b > 0.

In fact, under the condition that the total energy has a certain negative
value (which must be greater than (V) to make (T) positive), whatever the
form of V a particle in it caimot move to infinity and must stay in a bound
state.

1038

The wave function for a particle of mass M in a one-dimensional poten-
tial V (i) is given by the expression

Plx, 1) = ar exp(—Gx) exp(int/h), x>0,
= [, ax < ),

where «, f# and v are all positive constants.

(1) Is the particle bound? Explain.
(h) What is the probability density p(£) for a measurciment of the total
energy E of the particle?
(¢) Find the lowest energy cigenvalue of V(x) in terms of the given
(uantities.
(MIT)
Solution:
(a) The particle is in a bound state because the wave function P(x, t)
sitisties
i (e, t) =0
T — O
lim ¢ (r, t) = lim e T —
r—r 400 T4
(b, (¢) Substituting the wave function for o > 0 in the Schrodinger

cquation
a o
i o )= | —— — T Wz, L
ih mw(;‘z) o3 {,h‘ﬂ-vm W (x, t)

gives

(B2 —28)+ V(z)z,

-— I
=T oM
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whence the potential for z > 0:
2

Vi(z) = —y+ Y]

(8% - 26/x).

As the stationary wave function of the particle in V (z) satisfies

h* d* 9 ,
g1 (g~ #+2602) ¥e@) =B+ @), @>0)

or
2

o .7 (T
) e (x) 4 N5l (E"+ ¢ [x) g (x) = 0

by setting
E'=E+~y-@K/2M, ¢ = gh*/M,

50 s .

and g (2)*=30, we see that the above equation is the same as that sat-
isfied by the radial wave function of a hydrogen atom with [ = 0. The
corresponding Bohr radius is @ = h*/M¢? = 1/, while the energy levels
are

E, = —Me*/2h*n? = —@2R*/2Mn?, n=1,2,....

Hence

E,=-vy+(BR/2M)(1 -1/n?%), n=1,2,...,
and consequently the lowest energy eigenvalue is F; = —+ with the wave
function

Y (r, t) = ax exp(—fz) exp (ivt/h) o gy (2) exp(—iEyt/h).

The probability density p(E) = ¢*) = o};,%e; is therefore

1 for E = -+,
p(E) =
0 for E# —y.

1039

A particle of mass mn is released at ¢ = 0 in the one-dimensional double
square well shown in Fig. 1.14 in such a way that its wave function at ¢ = 0
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is just one sinusoidal loop (“half a sine wave”) with nodes just at the edges
of the left half of the potential as shown.

Vix
A a
4
|"’b
_____ : :‘.Il I‘—_ N
oy
s N i
v
Iig. 1.18

(a) Find the average value of the energy at ¢ = 0 (in terms of symbols
defined above).

(b) Will the average value of the energy be constant for times subsequent
to the release of the particle? Why?

(¢) Is this a state of definite encrgy? (That is, will a measurement of
the energy in this state always give the same value?) Why?

(d) Will the wave function change with time from its value at £ = 07 If
“yes”, explain how you would attempt to calculate the change in the wave
function. If “no”, explain why not.

(e) Is it possible that the particle could escape from the potential well
(from the whole potential well, from both halves)? Explain.

( Wisconsin)

Solution:
(a) The normalized wave function at ¢t = 0 is ¢ (z, 0) = \/g sin %€,
Thus

(b) ([) is a constant for t > 0 since 9 (H) /0t = 0.
(c) It is not a state of definite energy, because the wave function of the
initial state is the eigenfunction of an infinitely deep square well potential
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with width e, and not of the given potential. It is a superposition state of
the different energy eigenstates of the given potential. Therefore different
measurements of the energy in this state will not give the same value, but
a group of energies according to their probabilitics.

(d) The shape of the wave function is time dependent since the solution
satisfying the given conditions is a superposition stite:

¥(z, 0) = \/g sin ( TT:) =" cavnl),

Y, 1) = Z enthn (z) € Ent/h

n

The shape of ¢ (x, t) will change with time because B, changes with n.

(e) The particle can escape from the whole potential well if the following
condition is satisfied: h*z?/2ma > V. That is to say, if the width of the
potential well is small enough (i.e., the kinetic energy of the particle is large
enough), the depth is not very large (i.e., the value of V4 is not very large),
and the energy of the particle is positive, the particle can eseape from the
whole potential well,

1040

A free particle of mass m moves in one dimension. At time ¢t = 0 the
normalized wave function of the particle is

Y, 0, 02) = (2702 ) M exp (~2*/40?),

¥ 2
where o2 = (z2).

(a) Compute the momentum spread o, = /(p*) — (p)? associated with
this wave function.

(b) Show that at time ¢ > 0 the probability density of the particle has
the form

l(z, ) = ¢(x, 0, 0F + a2t /m?)|?.

(c) Interpret the results of parts (a) and (b) above in terms of the
uncertainty principle.

( Columbia)
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Solution:

(a) As

= 1 T _-':_-‘? 0
-.:—-ihf P W) = 5 ] € : dx '
—oe (2'-"'“5:) ‘ 203

o g d;!
{pz) = ./,-,_. P* (— h? r_;) tdx

: 5
== h’.! " =—— I__ o= _l_ -+ .L }
> o (270 2)V/2 207 4o}

2
x ¢ 2% dx = W /402,

CRTTY h
op = V) = 3~
(b) By Fouricr transform,
¥(p, 0) (2—:])—!77 f e Prh y(x, 0) d
Th) /2

R SR P, S
= (2mh)1/2 ' (2._,”,'}3)1/4

x exp(—x’/4a2) dx
—[(2r02)/4 }\/ 2z h) exp |—a2p®/h*].

Then
(p, t) = (p, V) e PN,
where
T 2m

61
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for a free particle. By inverse Fourier transformation

ine /R 2ma2)L/4 P
i), t) f e™</My (p, 1) dp = (—J_Z(’—?i’g e'"*/M axp (—'E—E—t)

252 2y 1/4
X exp R ) o - 3
) PT\2
® g .y o R

9
ol

4 a2+ B
W 27!!.

1 2
[ (z, ) = ap | -2 — 2

2,2 (T, :

a=t 24 P

27 | a2 4+ 2 7z 2
= m? e

=|¢(z, 0, a2 + rr;f!fam_z] [

X exp |-

(c¢) Discussion:

(1) The results indicate the width of the Ganssian wave packet at time
t (which was originally o, at t = 0) is
where 02 = N2 /402,

2 ST
\/ 02+ o5t /m?,
2

(i) Asoz0, = h/2, the uncertainty principle is satisfied.

1041

A particle of mass m moves in one dimension under the influence of a
potential V (). Suppose it is in an energy cigenstate i (x) = (2 /m)}/A
exp (—v%x?/2) with energy E = h42/2m.

(a) Find the mean position of the particle.

(b) Find the mean momentum of the particle.
(c) Find V (z).
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(d) Find the probability P(p) dp that the particle's momentum is be-
fween p and p + dp.

Solution:

As

we

( Wisconsin)

(a) The mean position of the particle is

(z) = /_m V' (z) zy(x) de = \-/21: [_m ze” V' dx =
(b) The mean momentum is
i h(d
)= /w:,b'(;r) I(Z w(;f-)) dz
_lﬁ; ,—*,":72/2 _(.f ,_'12:2/2 e
=37 | e dr (e yda = 0.
(¢) The Schrodinger equation
h d?
SH Vir ) = Fulrx
( om dz® | (I)) ¥lz) wz)
can be written as
h? o d?
T (x) = [E - V(z)] (x).
o o Y(e) = [B ~ V()] $(a)
R d? %222 _ h? - LT - W
“Imal - am Y FTE)ETE
have
E-V(z) =~ (= +1'2%)
I) = m 'Y Y t

or

V(x)

(d) The Schrodinger equation in momentum representation is

(

-2

!
B

2mn

R R _d2

2m

4,

2

i o 7

2m

=%

dp?

(e A L
2m  2m

) v(p) = Ey(p).

0.
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Letting I i
wip) = Ve

and substituting it into the above equation, we get

4.4

? ap® h? 2 2.2 _—ap® —ap?
-— 4a” AR — Fe—0P

ZmP 2m { 2a a"p°) ¢ ¢

; 1 p?
I ST
4(]'.]) “-zrl—w(w—-l)‘
As the parameter a is independent of p, the above relation can be sat-
isfied by a = 1/2k*y*. Hence

or

(p) = N exp(—p*/2h%y%).

This is the eigenfunction of the state with energy fi%42/2m in the mo-
mentum representation. Normalization gives N = (1/h%y27)1/4, Thus the
probability that the particle momentum is between p and p + dp is

\ 1/2 p
Pp) dp=|y(p)|* dp = (m) exp (_ .&2.).2) dp

Note that 1 (p) can be obtained dircctly by the Fourier transform of

p(x):

d;.[.' [ o "}‘2 ol - Jim- B
] = e wu/h -7z /2
Vi / ()7 © (?r ) ‘

2 1’,1_1 . 2 2
@rR)i72 \ P\ Ve~ V2 P\ 2wy
1/4
1 2 9 0
= (W) e P [2h%y=.

1042

In one dimension, a particle of mass m is in the ground state of a
potential which confines the particle to a small region of space. At time
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| = 0, the potential suddenly disappears, so that the particle is free for time
{ > 0. Give a formula for the probability per unit time that the particle
arrives at time ¢ at an observer who is a distance L away.

( Wisconsin)
Solution:

Let g () be the wave function at ¢t = 0. Then

A 'Et
Pz, 1) - <;r exp ( 2:5}5) Wo {:;:)>

4 0o P« |
= / (x]e -ip7t/(2mh) | o1y dat (2 | ahp)

[ S {1. | f,—::s!rfizmh) | :r.") ‘-"”0 (;r?’)rf-,;r’ f

e

2 pz! ¢
. 8 = e N
PP 2mn

+ o " : p'JL ;
ff N (x| p) dpf <p exp (—1 == | | dp (p|a’)
ve 1 px _pr . pit

= — i — =1 — =1 ip
B /h 2wh, S |:1 R 2mh “

1 +00 . i' /
= — ¥ 1 /| —
2rh f,o e l Ll V 2mh

o' —x) ym)® o m
- & —2) \/m} }dp - exp [i(u:' - z)? £

where

- V2ht 20t
= Z_rlrz @ exp [-i.(a:' - z)? ;—;:?] /: e=id’ dq
=S5 Vam o [t 2" g5 -
Thus
sty =" \;’;ﬁ g : exp [i(a’ — ) 7] - pola') s
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Represent the particle as a Ganssian wave packet of dimension a:
Yo(z) = (wa®) """ exp (—2?/20?)
The last integral then gives

(L=1 m 1
2 wht /g2

" _ma? 1 m
exp (1 -
P om 2ht (2 + 54x)

1 oo .fz
x — f e ﬂ’f

m i
\/'mr'*'iiﬁ i

P, t) =

1 m ma? 1
= 7 T (‘x]} e
al2gV4 \ m+1i .":; 202 m+i fw’r '

whence the current density

. o h*xt 1
i =Re (-w = ») = , ,
4 m q&) vradm? (1+ 22 )J/L’-

‘“ﬂﬂi
X exp TZ L

By putting @ = L, we get the probability per unit time that the particle
arrives at the observer a distance L away.

1043

A free particle of mass m moves in one dimension. The initial wave
function of the particle is ¥(z, 0).

(a) Show that after a sufficiently long time ¢ the wave function of the
particle spreads to reach a unique limiting form given by

Y(x, 1) = /m/ht exp (—in/4) exp (ima*/2ht) p(mz/ht) ,
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where ¢ is the Fourier transform of the initial wave function:
(k) = (2r) /2 /‘ui'(;r, 0) exp (—tkx)dz.

(b) Give a plausible physical interpretation of the limiting value of
lh(x, .
Hint: Note that when o — 00,

exp ( iau?) = /m/oexp(—in/4)d (u).

( Columbia)

Solution:

(a) The Schrodinger equation is
[iho/ot + (h* /2m) d* Jdx® | y(x, t) = 0.

By Fourier transform, we can write

Yk, t) = T/—l-Z; [:: dxe” " y(x, t),

and the equation becames

g  hk*
ih — — — sty =10
(m at  2m ) Yk, t)

Integration gives

k*ht
Yk, t) =k, 0) exp (—t ) y

2m
where y -
Wik, 0) = _‘/;r /_m dze =y (x, 0) = @ (k).
Hence )
o) p [
bk, 1) = o(k) exp (—i=—)
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giving
/ ! 1 i ik
Plr, t) =— 1ke'™™ | ,
(i, t) o /_mr e* (k1)

! o : k2ht
=— dke(k) e thke — i '
V2r -/:-(xj w(F) exp (du. : E'HL)

1 5 . ma? ® y
=—— exp (i — 'k
Var CP\! 2t /_ "
. Nt may 2
X ex -1 — [k - — il B
’ p[ ‘om ( ) ] ¢ (k).

ht

With £ = k — max/ht, this becomes
1 ma? =
Yz, t) =—— ox | ——
( ) \/E); exp (& 25:) /_x dé
/7 ma
2EXD | —fe——i ™) e
I(IZZmE)’c(E-I-m{)'

P—'l{"ﬂz } Tr - Tr !5
: —] — @ e .
o =R ( ’ 4 ) (u),

and so after a long time ¢ (¢ - ),

PR 2am. o
exp ( am & ) S 8(§) exp (—-z I) ?

For o — o0,

and

i
e
Z|3

]

-

e
—_—
| H
N
1]

-
=
T

3_m:::"2 o ma
20t ) (-hT) :
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(b)

a2

; m me
=2 [+()
(= OF =+ ¢ 5
ecause (k) is the Fourier transform of ¢ (x, 0), we have
+o0 ? o -
/ | (k) |? dk = / | (x, 0) | da.
J - —0C
On the other hand, we have

3

koo 00
s e e S &
./_:m |4 (z; £)|° dx ./_m = @ ( e ) da
+o0 = + o 5
= [ lewPdk= [ (o 0 da,

which shows the conservation of total probability. For the limiting case of

{ — oo, we have
|9 (=, t) > >0 [9(0)* =0,

which indicates that the wave function of the particle will diffuse infinitely.

1044
The one-dimensional quantum mechanical potential energy of a particle
of mass m is given by
Viz)=Vi(z), —a<z <o,
V(z) =, T < —a,
as shown in Fig. 1.19. At time ¢ = 0, the wave function of the particle

is completely confined to the region —a < x < 0. [Define the quantities
k= +v2mE/h and o = 2mV,/h?]

(a) Write down the normalized lowest-energy wave function of the par-
ticle at time t = (.
(b) Give the boundary conditions which the energy eigenfunctions

e (2) = 'WL (x) and Y (x) = w,’c] (x)

must satisfy, where the region I is —a < « < 0 and the region Il x > 0.
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Vix)
I 1l
: > X
-a 0
Fig. 1.19

(¢) Find the (real) solutions for the cnergy cigenfunctions in the two
regions (up to an overall constant) which satisfy the boundary conditions.
(d) The t = 0 wave function can be expressed as an integral over energy
eigenfunctions: -

P (x) = / J (k) Y () dk.

Show how f (k) can be determined from the solutions ¥y ().

(e) Give an expression for the time development of the wave function in
terms of f (k). What values of k are expeeted to govern the time behavior
at large times?

( Wisconsin)
Solution:

(a) The required wave function 1 (x) must satisfy the boundary condi-
tions ¢ (—a) = ¢(0) = 0. A complete orthonormal set of wave functions
defined in —a < x < 0 and satistying the Schrédinger equation consists of

\/_2 e nwr
Pn (z) = Sy (T) BEx <0,

0, outside|-a, 0],

wheren =1, 2, ..., with

(n| H|Pm) = Epbmn, E, = (h*/2m)(nn/a)?.

The normalized lowest-energy wave function is given by n = 1 as

!.f)(r) —= \/g sin (T_rf)‘ == <A il [)1

0, outside [~a, 0].
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(b) The Schrodinger equation for > —a is

R d? =
—2?& @U"+M‘5[I)Idj_ Ey,
our
W (x) + K24 (x) = ad () ()
b 2 2mE 2mVy
e —— a=—5—
h? h*

The boundary conditions and the discontinuity condition to be satisfied

are

P (=a)=0, ¥'(0)=v"(0), P! (+00) = finite,
P! (0) — 9" (0) = e’ (0).

The last equation is obtained by integrating the Schrodinger equation
over a small interval [ £, £ and letting € — 0 (sec Problem 1020).
(¢) In both the regions I and II, the wave equation is

" (x) + K> (2) =0,

whose real solutions are sinusoidal functions. The solutions that satisfy the

boundary conditions are

i () = ¢k sin k(x + a), —a < x <0,
() = { () = ek sin k(z + a) + Ay sin kz, x>0,
0, I < —a.

The discontinuity and normalization conditions then give

cra
Ap = — sin ka,

. 1 nsi|12ku+ asin ka\* i
Cp = E -+ o _—k .

(d) Expand the wave function ) (z) in terms of ¥ (z),

b@ = [ 1)) dk,
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and obtain

/ e () i (x) dx = [ [ FORY U (e) vy () dkdr

-

s /_ _ FR)S(k—K') dk = fF(K),
or

f(k) = /_m by (2) 9 (x) da .

P 0) = [ v a,
we have -

. koo
Pz, t) / F (k) e () e "Bxt/ gpe

o

At time t = 0, the particle is in the ground state of an infinitely deep
square well potential of width a, it is a wave packet. When ¢ > 0, since thlc-

d(x) potential barrier is penetrable, the wave packet will spread over to the
region r > 0. Quantitatively, we compute first

f(k) = /U cg sink(xr +a) - ‘/é sin — dg
—-n (1 (1
1 0
= \/; ‘/:“ C {cos [(k - g) x + ka.]
— Cos ((Ar + ~:) T -+ .’m] } dx

and then

P(z, t) \/' /m P m_l ;:)2

a

5 { sin k(z + a)

sin k(x4 a) + % sin ka sin kx

} gt g
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where Ej = h2k?/2m. Tu the last expression the upper and lower rows are
for regions I and II respectively.

When 1 — 0o, the oscillatory factor exp(—iEgi/h) changes even more
rapidly, while the other functions of the integrand behave quite normally
(k = w/a is not a pole). Thus ¢ (x, 1) tend to zero for any given . When
t is very large, component waves of small wave number k play the principal
role. At that time the particle has practically escaped from the region
[~a, 0].

1045

The radioactive isotope g3Bi*'? decays to g TI*® by emitting an alpha
particle with the energy E = 6.0 MeV

(a) In an attempt to caleulate the lifetime, frst consider the finite po-
tential barrier shown in Fig. 1.20. Calculate the transition probability T
for a particte of mass . incident from the left with euergy E in the limit
Tl

(b) Using the above result, obtain a rongh numerical estimate for the
lifetime of the nuclens Bi*'2. Choose sensible barrier parameters to approx-
imate the true alpha particle potential.

(CUS)

Vix)

A
Y

-V . (I -
> X
0 b
Fig. 1.20

Solution:
(a) If T < 1, the incident wave is reflected at x = 0 as if the potential
barrier were infinitely thick. We thus have
i (z) = e*r 4 (ty — 1) e~kT 3 <0,
W (z) :tle'k’x. 0<x<bh
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where t; is the amplitude transmission coefficient and

s 2m(Vy — E) i = 2mFE
h* A (R

The continuity of ¥’ (z) at x = 0 gives

2k

: - — —’ -
Tk(? -f,;) == !\-1], or f-[ = ,E.T_iﬁ-" -

Consider the reflection at b. We have

P (x) = ek [P.""("'“*’) + (ta — 1) t”"'(""b)], 0<x<h,
Y(z) = titg e ¥'b gika=b) z>bh,
and so

—k'(2 fg} = 'n':ktg, or n'.'_g = 238‘/(’\ +4 Lk’}

Hence the transition probability is given by

o — 1112 € k'

to be

|IT|* = —1-;“———&2”.2‘ R .————ﬂ[GE(W,’_ B) e-awb,
[k 1 kr!.)z Vﬂz

(b) To estimate the rate of a-decay of g3Bi?'?, we treat, in first approx-
imation, the Coulomb potential experienced by the a-particle in the g T1

nucleus as a rectangular potential barrier. As shown in Fig. 1.21, the width
of the barrier ry can be taken to be

2Ze*  2(83-2) e he

= E 6 he MeV
162 1
= n ~22 ., f 10
5 X [37x6Ad8xIU x 3 x 10

=39%x 107" ¢m.
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AN

Fig. 1.21

The radius of the nucleus of Tl is
R=1x10""x208% =6x10"" cm,
corresponding to a Coulomb potential height of

g
szze f—}% 39 MeV .

To

3 = H 1 . v
An a-particle, moving with speed v in the nucleus of TI, makes 5

collisions per second with the walls. Hence the lifetime 7 of g3Bi*'* is given

by

TR 2L ~1
7|T]| 2R 3
or 2R
¥ v{T |2

Taking for the rectangular potential barrier a height Vo ~ 3(39-6)+6 =
99.5MeV. b= ro— R = 33x10~3 cm (see Fig. 1.21), v = \/i TIPS
0.1¢c, we find

G ‘ . i
_ 2.\/2mc%(Vy — E) o 22 x 940 x 16.5 x 33 x 1071 -

2K'D = 658 x 10-Z x3x 100

2x6x10-1 22.5? 5
= —— % — X €
3 % 109 16 % 6 x (22.5 — 6)

- 54x10°s.
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1046

An electron with energy £ = 1 eV is incident upon a rectangular barrier
of potential energy V5 = 2 eV (see Fig. 1.22). About how wide must the
barrier be so that the transmission probability is 10~ 3?

( Wisconsin)

Vixl
A

[

Ifa»--“--_

l"ig. 1.22
Solution:

The transmission probability is (Problem 1045)

16E(Vp — E 2d
e BB o [ 2 e
V. h

i

2d
=4 exp _-H v 2'”7'(1/“ == E) ¥
whence
In (‘TT") he
2 \/2mc2(V, - E)

d=—

In (m d s = —16 9 o 1410
I 3 xb..}le{] x 3 x 10 — &1 8
2 VEROBiRIl ool a.

1047
Consider a one-dimensional square-well potential (see Fig 1.23)
V() =0, x'< 0,
Vizg) = -V, 0<az<a,
Viz) =0, T S,
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where Vj is positive. If a particle with mass m is incident from the left with
nonrelativistic kinetic energy E, what is its probability for transmission
ihrough the potential? For what values of £ will this probability be unity?

(Columbia)
Vix)
A
Yecnwisa a _ —>x
o

Iig. 1.23

Solution:

Let the wave function be

() = etke L Re—ik= < 0,
i(x) Setk® x> a,
() Ac¥* + Be ** 0<x<a,

where

po V2ZME L, V2m(E+ Vo)
- N = h
The constants R. S, A, B are to be determined from the boundary cou-
ditions that ¥:(x) and ¢'(x) are both continuous at x = 0 and x = a, which
give
1+R=A+B,
k(1 - R) =k'(A-B),
Ae:k'u ik Br:v—lk'n = Setkﬂ‘
A.I(Aﬂzk'u Be-aﬁ"u) — kSetka.
Hence
4&)‘-3’(? ~1ka

8= (k + k)2 e Fa —(k — k)2 eik’a
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and the probability for transmission is
p=2t_|sp

i

. AR2 2
~ 4(kK' cos K'a)? + (k2 ~ k)2 sin? (K'a)

Resonance transmission occurs when k'a = nm, i.e., when the kinetic
energy E of the incident particle is

E = ﬂ.2nzf¢2/2frta2 - Vo.

The probability for transmission, P, then becomes unity.

1048

Consider a one-dimensional square-well potential (sce Fig. 1.24):

Vix)
A
- - - - - - —— X
0 a
Y
Fig. 1.24

V(z)=00, 12%<0,
Viz)= -V, 0<z<a,
Vi{z) =0, T >a.

(a) For E < 0, find the wave function of a particle bound in this poten-
tial. Write an equation which determines the allowed values of .

(b) Suppose a particle with energy I > 0 is incident upon this potential.
Find the phase relation between the incident and the outgoing wave.

(Columbia)
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Solution:

The Schrodinger equations for the different regions are
2
—-L -ff-— - Vo — E] P(x)=0 0<zx<a,
2m da?

e &
—— e — | N =0 @A
[ 2m dx? ] V(=)

(a) B < 0.

(i) Cousider first the case of Vp < —I7, for which the wave function is

0, x < 0,
¢(z) = { Asinh(kz), 0<x<a,
Bf"k“’, r>a,

where

\/im(—Vn - Ej v 2m( E)
k=y\——7——" K=\—37"-
h? Bt

T'he continuity conditions of the wave function give

A sinh(ka) = Be~¥a
Ak cosh (ka) = —Bk'e” ka
and hence |
k coth(ka) = k.

As coth z > 0 for & > 0, there is no solution for this case.

(i) For Vo > —E, ik = k, k = y/2m(Vp + I2)/h, and the equation
determining the energy becomes k cot (ka) = —&’. The wave function is

0, b L )
P(z) =< Asin(kr), 0<z<a,
Be~ K=, T > a.
From the continuity and normalization of the wave function we get

1/2

2
1

L sin® (ka) + a — 5 sin(2ka)
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B = 2 e Ka
a & sin® (ka) +a— sc sin (2ka) st o 1
(b) E > 0. The wave function is
0, T =0
Y(z) = { A sin(kz), 0 <s<a,

B sin(k'z+¢), x>a,

where

2m(E + W
k= J—m-(-?z—l—i], k' = \/2mE/h?.

As dIny/dInz is continuous at z = a,

{ka) cot (ka) = (k'a)cot (K'a + @),

whence
k . 7
@ = arccot (A_’ cot(ka) | — k'a.
For z > a,
"ﬁ’(-"-) = E e k' z—ip E ‘?:k'm-'} itp.

2i 21 5
where

‘Pinc(I) ocg wE :‘w,

ik’ o449

Pour(T) x €

Hence the phase shift of the outgoing wave in relation to the incident

wave is

d=2p=2 [ar(:cot. (% cot.(ka)) - k'a] :

1049

Consider a one-dimensional system with potential energy (see Fig. 1.25)

Vig) =W, x>0,
Vgl =0 =z<0;
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wlhere Vg is a positive constant. If a beam of particles with energy FE is
wwident from the left (i.e., from = —oc), what fraction of the beam is
i ansmitted and what fraction reflected? Consider all possible values of E.

(Columbia)

Vix)
A

Vo

Fig. 1.25

Solution:

For & < 0, the Schrodinger equation is

whose solution has the form

P(x) = P

2mkE
.

d* 2m (E — V)
a2 ¥ h2

where

lor x > 0, the equation is
¢ = 0.
(i) If E < Vp, write the above as

dt 2m(Vo — E) ,
o h — 3 Y =

0.

As ¥ (z) must be finite for & — oo, the solution has the form

—k'z

P (x) = te 2
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where

L am [H“. = L‘_)-

h? '
The continuity conditions then give

l4r=1

ik — ikr = k',

whence r = (k' + ik)/(ik — k') = (1 —ik'/k)/(1 + ik'/k). Therefore the
fraction reflected is R = jot/fine = |r|? = 1, the fraction transmitted is
T=1-R=0.

(ii) £ > V. For > 0, we have

d? 2m(E — 1) ;
T ST 1 I = U‘
[rf:::l i h? ] v(z)

where

[ 9, 5 —
w{i‘_) f(f‘kl, k’ = \/M
h?

Noting that there are only outgoing waves for = —+ oo, we have 1 4 r = ¢,
vk —ikr =1kt and thus » = (K — k)/(k' 4 k). Hence the fraction roflocted
is R = |(k' - k)/(k" + k)|?, the fraction transmitted is T = 1 — R =
akk’f (k + k)2

1050

A particle of mass m and momeutum p is incident from the left on the
potential step shown in Fig. 1.26.

Calculate the probability that the particle is scattered backward by the
potential if

() p*/2m < V,,

(b) p2/2m > W
( Columbia)
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Vix)
Wr—r——
- X
0 xg
Fig. 1.26

Solution:

T'he Schrodinger equations are

( d? 2mE

ol —— | ¢(r)=0 for =x < ¥p,
d:r:"e+ h? ) ()

[ o? 2m

i e (& Vu}] (x) =0 for x> xg.

(a) Il E < V,, we have

ekx=x0) 4 pe-ik(r=x0) 4 <« pp,
) =

.“-('_k"':l 'Ilb}‘ = >J-ll]l

where

k 2mE
o

2m(Vy f_:}

h? 5

K -

the condition that ¢ (z) is finite for z — oc having been made use of.
. Ry ! FEETY =
The continuity conditions give 1 + v = 1, ik — 1kr = —k't, whence 1

(k' | ik)/(ik — Kk'). The probability of reflection is R=gelis=\r?=1.
(b) If E > V,. We have

etk(z=30) | pe—tklz—20) 2 2 g,
Y (x) =

i — y -
f(l'* (x -rn}' T > Ta,
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where
k 2mE
A# "

. \/E-m(EI— W) ‘
n?

noting that there is only outgoing wave for » > ry. The continuity condi-
tions give 1 + r = ¢, ik — ikr = ik, and hence r = (k — &)/ (k 4 k'). The
probability of refloction is then R = [r|? = [(k = &')/(k + k')}2.

1051

Find the reflection and trausmission coefficients for the one-dimensional
potential step shown in Fig. 1.27 if the particles are incident from the right.

( Wisconsin)

Vix)
A

Vul..____.__.._._

A
x

Pig. 1.27

Solution:

As the particles are incident from the right we must have E > V.
And there are both incident and reflected waves in the region z > 0. The

Schrodinger equation for x > 0,

U () + k3 ¢ (x) =0,
where ky = \/2m(FE — Vy)/h, has solutions of the form

Y = exp(—1kyz) + R exp (thyz).
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‘I'iere are only transmitted waves in the region z < 0, where the

«lwilinger equation is
" () + k3¢ (z) =0
wilh ky = v2mE/h, and has the solution
YP(x) =S exp(-ikz2).

Using the continuity conditions of the wave function at z = 0, we get
I | It = 8. From the continity of the first derivative of the wave function,
wepot ky(1-R) = ke S. Hence R = (ky — k) / (ki + k2). giving the reflection
coellicient " "
| R o | Jf' ;” | V;} -

ky + k» (VE + JE = Vo)1

il the transnnssion coefhicient
v;’?.

|ISE=1—-|RI*’=1 (\_ff‘j I—\“/*[——_——V—'u—), y

1052

Consider, quantum mechaunically, a stream of particles of mass m, each
moving in the positive x direction with kinetic encrgy £ toward a potential
puap located at x = 0. The potential is zero for 2 < 0 and 3E/4 for z > 0.

What fraction of the particles are reflected at x = 07
( Buffalo)
Solution:
The Schrodinger equations are
W+ k% =0 for <0,

LT/ (k/?.jzu’.' =0 -for >0,
where k = V2mE/h. As for x < 0 there will also be reflected waves, the
solutions are of the form
i = exp (ikz) + r exp(—ikz), =<0,
=1t exp(ikz/2), z>0.
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From the continuity conditions of the wave function at = = 0, we obtain
L+r =1t k(1 —r)=Kkt/2, and hence r = 1/3. Thus one-ninth of the
particles are reflected at = = 0.

1053

Consider a particle beam approximated by a plane wave directed along
the z-axis from the left and incident. upon a potential V(z) = v4d(x), v >
0,4(x) is the Dirac delta function.

(a) Give the forin of the wave function for 2 < 0.
(b) Give the form of the wave function for & > 0.
(¢) Give the conditions on the wave function at the houndary between
the regions.
(d) Calculate the probability of transmission.
(Berkeley)

Solution:

(a) For & < 0, there are incident waves of the form exp (ikz) and re-
flected waves of the form R exp (—ikz). Thus

P(x) = exp (thx) + R exp(—ike), & <0.

(b) For = > 0, there only exist transmitted waves of the form S exp

(ikx). Thus
P(x) = 5 exp (tha), x> 0.
(¢) The Schrédinger equation is
h* d* :
~ge= W Plw) +yo(x) P(x) = Eg(r)

and its solutions satisfy (Problem 1020)
1}'# (01—) il 'lf'f.“’([)_) = %{? Q'I((])

As the wave function is continuous at z = 0,¢(0%) = ¥(07).
(d) From (a), (b) and (c) we have 1+ R = S, ikS —ik(1—R) = 2m~S/h?,
giving § = 1/(1 + im~/h%k). Hence the transmission coefficient is

2 m2y2\ ! my? S
T= e + —— =114 —-
|51 (1 s ﬁ:‘k“) ([ ' 2Eh?) ’

where E = h2k?/2m.
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1054

Consider a one-dimensional problemn of a particle of mass m incident
wwn o potential of a shape shown in Fig. 1.28. Assume that the energy
I 1 3 —oc is greater than Vp, where Vp is the asymptotic value of the
peotential as T — oo.

“how that the sum of reflected and transmitted intensities divided by

i1 mcident intensity is one.
(Princeton)

Vix)

Fig. 1.28
Swolution:
As E >V, we may assume the asymptotic forms

b — e*F yre~ = for & - —o0,

P > tef* for x — too,

wherve 7, t. k, @ are constants. The incident intensity is defined as the
nimber of particles incident per unit time: I = hk/m. Sunilarly, the
ellected and transmitted inteusities are respectively

R =\|r|*hk/m, T =|t|*hg/m.
Multiplying the Schrodinger equation by ¢,

2
—-;; y’)'vzlj') + Vi = By,
T

anud the conjugate Schrodinger equation by 1,

2
) -;_i YV VY = By,
T
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and taking the difference of the two equations, we have
V'V — VYt =V . (Ve — PYVy*) = 0.

This means that

f(x) =y dy/dx — pdy* [dx

is a constant. Then equating f (+00) and f (-o0), we find

k(1—|r?) =8|t
Multiplying both sides by ;’i‘ gives

I=R+4T.

1055

A Schrédinger equation in one dimension reads
(—8%/0x® — 2 sech? )y = 4
(fi=1,m=1/2).

(a) Show that exp (ikz)(tanh = -+ coust) is a solution for a particular
value of the constant. Calculate the S-matrix (transmission and reflection
cocfficients) for this problem.

(b) The wave function sech happens to satisfy the Schradinger equa-
tion. Caleulate the energy of the corresponding bound state and give a
simple argument that it must be the ground state of the potential.

(¢) Outline how you might have proceeded to estimate the ground-state
energy if you did not know the wave function.

(Buffalo)
Solution:

(a) Letting the constant in the given solution v be K and substituting
i in the Schrodinger equation, we obtain

k* (tanh z + K) — 2(ik + K) sech® x = & (tanh x + K).
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‘['his equation is satisfied if we set K = —ik and £ = k?. Hence
P(x) = ** (tanh x — ik)

i a1 solution of the equation and the corresponding energy is k%. Then as
fanh & — 1 for & = 0o and tanh (—z) = — tanh 2 we have

= 1-—-1k)e™™ as x - oo,

= —(1+ f_}.:)aik“’ as T — —00.

Since V(x) < 0,2 > 0, the transmission coefficient is T = 1 and the
nllection coofficient is B = 0 as the particle travels through V(). So the

Ynatrix is

1 —(1 —ak)/(1 + i’\?))
(eﬂ-imﬂl+m) 0 '

(b) Letting ¢» =sech x in the Schrodinger equation we have — = £¢.
Hence £ —1. Because scch @ is a non-node bound state i the whole
coordinate space, it mnst be the ground state.

(¢) We might proceed by assuming a non-node bound even function with
2 parameter and obtain an approximate value of the gromud state energy
by the variational wethod.

1056

A monoenergetic parallel beamn of nonrelativistic nentrons of energy £
is incident onto the plane surface of a plate of matter of thickness 1. In
the matter, the neutrons move in a uniform attractive potential V. The
incident beam makes an angle @ with respect to the normal to the plane
surface as shown in Fig. 1.29.

(a) What fraction of the incident beam is reflected if ¢ is infinite?

(b) What fraction of the incident beam is reflected if V is repulsive and
V = E7 Consider 1 finite. :

(CUS)
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y

Solution:

(a) Let ko be the wave number of an incident neutron, given by l’lt‘; =

2mE ) 2 g 7
“r - For & < 0, the wave function is

T\Lll (.'L', .U) = e-j.‘m:r cos 4 tkoy sin §)

+ Re~ ikpe cos A4akyy sin @

With ¢ infinite and the potential negative, for z > 0 the Schrodinger equa-
tion is

h* 5
-2—;” Vb = (E + V i

Assuming a solution
iy (J‘.‘ 'b') = T’_iﬁzgz-l-‘kuy

and substituting it the cquation, we obtain k2 + k2 =2m(E +V)/h2.
The boundary conditions at o = 0

1 (0, y) = 12 (0, y),
(‘]'I'IJ'I

( Oy
Jdx s

I

H

z=0 O
then give
eikoy sin ¢ + Retkoy sin @ __ Te!kyy’

ika cos Bea‘kuy sin @ . ;. tkpy sin 6 1. ik
0 Riky cos fe = Tk, e'™v¥
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As the potential does not vary with y, k, = ko sin 6 and the above
lwcome
1+R=T,
k’[](l = R) cos 1 = kIT,
which give R = (ko cos 8—k.)/(ko cos 0+k, ). The probability of reflection
vithen P = | R|? = (ko cos 8 — k;)*/(ke cos 0+ k;)*, with k2 =2m(E +
\')/h? — kZ sin? 0, k% = 2mE/h*.

(b) For x < 0 the wave function has the same form as that in (a). For

Wz <t E -V =0,and the Schrédinger equation is
- (h?/2m) V*¢ = 0.

As the potential is uniform in y we assmmne ¢ = exp (ik'y) exp (kz),
where k' = ko sin 6. Substitution gives —k'> + k? =0, or k = +k'. Hence
the wave function for 0 < o < tis

tha (x, y) = (nr.(’,k'I + brf."",’) ey,

Writing 1 (z, 1) = ¢(z) ek'v we have for the three regions
z<0, ¢(x)= 5= 4 re'“‘",

O<x<t, ¢ofx)= ae*'® 4 pe**

x>t ¢a(x) = ce'r=?,

(]

with

cos 0, kK = /2mE/h? sin 6.
The boundary conditions

¢1(0) = ¢2(0),  @2(t) = ¢s(t),
| ds| _ds

 dx de [, d

depy

dz :

=)

x=0 Text

give
l+r=a+b,
ik (1—71)=k'(a-b),
¢ exp(ik.t) = a exp(k't) + b exp(—k't),
ik, exp (ik.t) = k'a exp (k't) — k'b exp (—k't),
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. . . T a0 "he o it ] >
whose solution is mdium 1. Take the amplitude of incident wave as 1. Then the amplitude

| ol Lhe wave that is transmitted to medimn 2 is the sum
o F - ke (a/b-t1 ) : -3 26 o
r=|—= -1 L —1 7 r‘::-.,_é.?: r[ng ¢ [{'|(t {{21l[21
[k’ (ﬂ/b—l) J [*-" a/b—1 - T =Te a1+ T :
- = 2R V2 L Ty e
: k)] ' t Tiaze ™ - (Rzie ™" Ryy) 21
a/b=[(K 4 ik:) /(K — the)] - e 2t T (Ray ‘ s B~ |
=Tyae~ T [1+4 R-ﬁl e % 4 (Rg1e7 )Y+ ---
Hence
r»'.!.i-'f =1 _T -JTvll‘.‘nﬁ 4})_ )
T = 1 vt 1252 1 — RZ, e 2
— st ‘ ‘ N
il I the above exp(—4) is the attenuation coeflicient of a wave in medium 2,
with ; >
B = b ks wliere
Ktk

§ =K1t with k' = \/2mE(1 — cos?8)/h= V2mE sin 0/h.
From (a) we have the cocHicients of transmission and reflection
Rys = (kiz — k2z)/(kiz + k2z),
Tia = 14 Ryz = 2k /(k1s + ko).

and the fraction of neutrons reflected is

L' ALt
nﬂrl + e 2Kt _ o

CZ't 4 o=2K't _ D cos 46

|IRI* = [r|* =

Alternative Solution:

As
The solution can also he obtained by superposition of infinite ampli- kiz = V2mE cos 8/h,
tudes, similar to the case of a Fabry Perot interferometer in opties (see .
Fig. 1.30) kye = ik' = iV2mE sin 0/h,
y we find .
A COs
1

y f1n— i
Tz = 2krz/ (kts + kax) = ———mpy = 2 co8 0077,

/ cos 0 + 1 sin @
2i sin 0 T
\§/ Toy = 2kae/(K1e + ko) = ————— = 2isinfe™",
8
1

cos @+ 1 sin @
L~ — 3 x isin @ — cos @ _ . —2i0
0 |t Ray = (kax — kiz)/(Krx + koe) = T Ty o

and hence

g 1
: s g
g T'=TwuThe™ — 55—
Fig. 1.30 e 1— R e %
§ . -2i0 ~k't
: 41 cos @ sin fe “.€
We need only consider the X-component of the waves. Let Ty, R» de- = 1 10.—2k1
i 3 el : — g MW p— s
note the coefficients of amplitude transmission and reflection as a wave 3
. - : : P TI e T ee ] |
goes from medium 1 to medium 2, respectively. Let Ty, R, denote 2i sin 20e *"e
b - . - . . == = - ’
coefficients of amplitude transmission and reflection from medium 2 to 1 — g~ 1g—2k"t




94 FProblems and Solutions on Electromagnetism

The transmissivity is therefore

T2 - 4 sin® 202Kt
(1 — e=2¥t cos16)2 4 (e~ F gip 46)?

4 sin® 20¢ 2kt

1+ e~ 11 _ 20—2F1 o0 ap

4 sin” 20

2Kt L o~ _ 9 e 4D

and the reflectivity is

4 sin? 20
ekt 4 e~2K1 _ 9 o5 40

O ) O

gt il
el o2kt _ o

et 4 o=2t 9 os 40

where k' = V2mE siu 0/h.

1057

ind T,lm wave function for a particle moving m oue dunension in a
constant inaginary potential - iV where V < 1

Caleulate the probability current and show that an imaginary potential

represents absorption of particles. Find an expression for the l

3 . . absorpti
coefficient in terms of V. i plion

( Wisconsin)
Solution:

The Schrodinger equation is
thoy /ot = (p* )2m — iV) y.

Supposing o = exp (—2EL/h) exp (ikz), we have k? = @mE/R)(1 +

iV/E). As V < E,
2mE
kﬁi\/ﬁhf,— (1+i—‘fﬁ) .
= 2K
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aul hence

5 s r‘?mﬁ 1 i 2mkE i _t'f'}f
vy t) =exp | F e 2E,'I exp | tt¢ % T | exp =)

where ¢ and 1 refer to the exponentially attenuated right- and left-
tvaveling waves respectively. The probability current is

7 ke K 2mE VvV
j, = He (u’:‘ P ajr) = Re (ub' L 1};) Re b— exp (-H/ ﬂ_t — .r)]
m m m he E
ek i 2mb X + ~/ 2mE K .
iy &P K ET |

These are the exponentially attenuated currents in the respective direc-

[2mE _L:
N h: E

The imaginary potential iV is responsible for the absorption of the
particle, since the exponent in j would be imaginary. Hence there would

tions. The absorption coefficient is then

1 dj

dln j
j dr

dr

u=|

L no absorption if V' were real.

1058

Let the solution to the one-dimensional free-particle time-dependent
Schrodinger equation of definite wavelength A be ¢ (x, t) as described by
some observer ( in a frame with coordinates («, t). Now consider the same
particle as described by wave function ¢’ (x’, t') according to observer o
with coordinates (2, t') related to (x, t) by the Galilean transformation

r =x—1ut,

(a) Do ¥ (x, t), ¥ (', t') describe waves of the same wavelength?
(b) What is the relationship between ¢ (z, t) and Y’ (2!, t') if both sat-
isfy the Schridinger equation in their respective coordinates?
(Berkeley)
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Solution:

( ) 11 (8] - !' - ‘i Nl I i =i p O }., (l

1e one-dimensu 118 |.ll|l(J l - I : S '}.l! (][]i“ TOr e 1 ra 1“‘[“
; depe l‘l{"“t L 'T € uat-l{)“ ft) i
pal I.-lC]C -

ihdyy (x, 1) = (—h*/2m) 9% (x, t)

has a solution corresponding to a definite wavelength A

Ya(z, t) = exp [i (ke — wt)]
with
A=2r/k =2xh/p, w=hk%*/2m.

As the particle mome is different i !
parficle momentum p is ditferent in the two reference frame

: . ' . s, the
wavelength A is also different.. o

' {b) Appl]{mg the Galilean transformation and iaking use of the Scliri-
dinger equation in the (', t) frame we find

thag' (2!, 1) = ihoy! (= — i, 1)

= th[Op' (2, t') —vdly' (o, 1')]

o h'2 o2t ’ ’
= =g V(@ ) — il (2, )
2 ¥

== o G (@ — vty 1) — i,/ (z vty 1), (1)
Considering

'HLH; [e!(km—w!}w! (LI’.", t})]

= ihe ™ =) (9’ — iwy)

and

2

B 30 itko—u
- o d:: 1,("“:_"'”1;3,(.‘1.'!, [f)]
B .
= g €T (i 4+ 2ik B9 + 2Y)

= ihe'(kz—wt) (g, _ w'),
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wking use of BEq. (1) and the definitions of k and w, we see that

[ TP ]
_i_ t)f_ lelnmrﬂl C--lml‘l‘fzfxw-"(r -~ ut, f)]
m -

— ihi), [(:tm‘l-xﬂa ‘!-:m-;.'”/'.!hwr(:r — it 1)1
This is just the Schrodinger cquation that (i, 1) satisfies. Hence,
J g
accurate to a phase factor, we have the relation

2

T . 1 o muv
ih (i, 1) = @' (& —vt, 1) exp {h [m..u 5 f]} ;

1059

A particle of mass m bound in a one-dimensional harmonic oscillator
potential of frequency w and in the ground state is subjected to an nupulsive
lorce pd(1).

Find the probability it remains in its gronnd state.

( Wisconsun)

Solution:

The particle receives an instantaneous momentum p at ¢ = 0 and its
velocity changes to p/m instantancously. The duration of the impulse is,
however, too short for the wave fanction to change. Hence, in the view of
a frame K’ moving with the particle, the latter is still in the ground state
of the harmonic oscillator e (). But in the view of a stationary frame
I, it is in the state o (z') exp(—ipz/h). We may reasonably treat the
position of the particle as constant during the process, so that at the end
of the impulse the coordinate of the particle is the same for both K and

K. Hence the initial wave function in K is
Yo = Yo (x) exp(—ipz/h).

Thus, the probability that the particle remains in its ground state after
the impulse is
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pa 12
Py~ [l exp (~i22) o)

2 | +o0 2

a B e 3 I

— g / e oxTr 1 I d:["
T | oo

2 50 r ; 5 %
—oxp (-2} |2 2, P _
exp ( 20%2) | 7 ./:m exp [ (8 (.’f. | m) d.r.‘

- p2
= 0ED [ .
! 2rmwh.

where o = \/mw/h.

1060

An idealized ping pong ball of mass m is bouncing in its ground state on
a recoilless table in a one-dimensional world with only a vertical direction.

(a) Prove that the energy depends on m, g, h according to: £ = Kmg
(m29/h%)* and determine .

(b) By a variational calenlation estimate the constant K and evaluate
€ for m =1 gram in ergs.

(Princeton)
Solution:
(a) By the method of dimensional analysis, if we have
: l lnl_il+‘.‘!n Igll-l-tx
£l = - ¥
| [h]m
Or ,
[l (L2 ] L] -5
rE T
then o = "]; Thus, provided o = — li the expression gives the energy of
the ball,

(b) Take the z coordinate in the vertical up dircction with origin at the
table. The Hamiltonian is

2 5 5
p h* d

H= — {mgxr=-—— e
2m 4 2m dx? 9T,

: ; & 8
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srence poi avitational potential.
( g the table surface as the reference point of gravitational p

a2 f _
Iy o ground state wave function of the form ¢ = x exp (—Az /2), where

\ 1. Lo be determined. Consider

" Hipdx
iy = LI
[ ¥*pda
fm pe—Ae 2 (- .f:l ‘-;fs i my.r.) pe= A2 dy
J0 . ¥
N J‘;‘J x2e—Ae? g
3h? 2my

=i il - — .
4m VA2
2
1) .- i’.’_‘_z‘i.)ﬁ
1o minimize (H), take ‘—f‘ﬁ =0 and obtain A = | 3555 ) .

The ground state cnergy is then

(HY = 3(3/4m)"/* mg (m*g/h*)~/*.

AvIng .
e K =3(3/4m)'/?.

o u g
_ ant \*
&=img Arm?y

1
3 % 1.0542 x 10751\ 3
3 % 980 x ( _W

6

Numerically

=1.9 x 10 Perg.

1061

The following theorem concerns the energy eigenvalues E,, (E, < E2 <

E3 < ...) of the Schrédinger equation in one dimension:
l Theorem: If the potential V; (z) gives the eigenvalues Eypn and the po-
tential Vi () gives the eigenvalues E,, and V; (z) € Vi (x) for all x, then

Eln S EZ!:-

(a) Prove this theorem.
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Hint: Consider a potential V(\, z), wher
: F: it i ,x), e V(0, ) = V) (z) and V(1, o
=V, (2) and OV/IA > 0 (for all ), and calculate JdE, [ON. -
(b) Now consider the potential (Fig. 1.31)

U(x) = kz?/2, |z|<a,
U(x) = ka?/2, |2| > a.

Ulx)

Fig. 1.31

We want to determine the number of bonnd states that this potential
can hold. Assume this number N is > 1. It may be hc-.lpfu].m l]r;nw"
qualitative picture of the wave function for the highest bound Hf};l(‘ o

Clu?use a solvable compatison potential and use the theorem above to
determine either a rigorous upper bound to N or a rigorous lower i.‘ml.l rl
to N. (Both can be done but you are asked for only one.) . N

(Berkeley)

Solution:

y ((d.) l?(’.ﬁllt.‘ VA 2) = AVy () + (L — NV, (). Obviously V(0, x) =
”te:], (1, z) = Vo (x), 8V/OA = Va(z) = Vi(z) > 0, The Hamiltonian is

H(\) = p2/2m + V(A x),
and the eigenequation is

H(X) |n, A) = E, (\) [, )),

where E, (X) = (n,A| H(\) |n, A). As
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OE, (\)/OA = % [(n, A| H(A) | n, A)]
— (nA|OV(A)/OX|n))

— [ % I‘Q"J" (__'l':‘ .\) |2 d.’f.’ ? ﬂ,

we have By, = En(0) € E, (1) = Egn, and the theorem is proved. Note
thil we have used (nA|nA) = L.

(b) Let V(1) ka?/2. Then V(x) 2 U(x). I E, is an energy level
Lo the potential U(z), then E, < (n + 1/2) hw, where w = Vk/m. For a
Lound state, By, < ka?/2. Solving (N +1/2) hw < ka*/2, we find

N < _
=N 2h

Cqpwn® mwa®
=B B2

indicates the maximmn integer that is less than A.

where [A

We now clioose for V() a square well of finite depth,

V(x) = ka®/2, |x]|>a,
V(x) =0, | x| <€ a.

The number of bound states of U(x) is less than that of V(x), which
lor the latter is [2mwa®/mh| + 1. We can take the upper bound to the
nmber of bound states of U(x) as [2mwa®/wh| as for N > 1 the term 1
v be neglected. Taken together, we get that the number of bound states
it between [mwa?/2h] and [2mwa®/mh|.

1062
For eloctronic states in a one-dimensional system, a simple model Hamil-

lonian is

N N
H = Zﬁgln) (n}+ ZW’“H){H +1l+in+1){nl},

n=1 =1

where |n) are an orthonormal basis, (n [n') = Ounr; Eo and W are pa-
rameters. Assume periodic boundary conditions so that |N +3) = |J)-

Caleulate the energy levels and wave functions.
( Wisconsin)
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Solution:

From the fact that |n) form a complete set of orthonormal functions
wheren=1,2,3, ..., N, and A

?

) N N
H:ZEOML)('n{JrZW{}n)(n+l}+)n+1)(n|},

n=1 n=1

or
H=FEy+ W(A + A1),
with
N N
A=3" )t 1], A% = Y 1) (g,
n=1 n=1
and

Aln) =|n—-1),4"n) =|n+1),
AAT = AT4A =1, or At = AL

we kno ] ¢ "~ he 1
ln(W that H, A and A" have the same eigenvectors. Hence we only
nee ] i e 5 i ¥ v A
eed to find the cigenvectors and eigenvalues of the operator AT to solve
the problem. As ‘ '

Api = (K| ATk) = 6pr 41,

We have

Loo - - 0/,
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and so

-2 1 0 0
0 —x 1
0o —-x 1
A*)\]: )
-2 1
1 0 0 “X NxN
i.e.,
det (A — M) = (-0 + (=) = ¥V -1 =0,
giving

) 2
Ajizcwjygfii?g_jaj :(L1727""A7—1'

If |E) are the same eigenvectors of the operators A and AT, Le.,
N 1
A|Ey) = N B;), AV E;) = | Ey),
y]

then
R 1
H|E,)) = [E0+W (x\jﬁ—r)} | E£5)
)
= (Ep + 2W cos 0;)| E;) -

Hence the cigenvalues of H are

2m

E. = Eg+2W cos §;, with 0; = — J, j=0,1,2,...,N—1).
2 7 7 N

The corresponding eigenfunctions can be obtained from the matrix equa-

tions
(A= )| E;) = 0.
Thus
1
eiﬂj
1 i20;
E))=— e ,
)= TN
ez‘(Nﬂ)eJ
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or
1 N
‘ _ i(n-1)0,
|Ej) = —= ) ein=D0 .
R
1063

Give a brief discussion of why there arc energy bands in a crystalline
solid. Use the ideas of quantum mechanics but do not attempt to carry
out any complicated calculatious. You should assume that anyone reading
your discussion understands quantum mechanics but docs not understand
anything about the theory of solids.

( Wisconsin)
Solution:

A crystal may be regarded as an infinite, periodic array of potential
wells, such as the lattice structure given in Problem 1065. Bloch’s theo-
rem states that the solution to the Schrodinger cquation then has the form
uw(z) exp(1Kx), where K is a constant and u(x) is periodic with the pe-
riodicity of the lattice. The continuity conditions of u(z) and du(z)/dx
at the well boundaries limit the energy of the propagating particle to cer-

tain ranges of values, i.e., energy bands. An example is given in detail in
Problem 1065.

1064

A particle of mass m moves in one dimension in a periodic potential of
infinite extent. The potential is zero at most places, but in narrow regions
of width b separated by spaces of length a (b < a) the potential is Vg, where
Vo is a large positive potential.

[One may think of the potential as a sum of Dirac delta functions:

oo
V(z) = Z Vo bd(x — na).
n=—mo
Alternatively one can arrive at the same answer in a somewhat more
messy way by treating the intervals as finite and then going to the limit. |

(a) What are the appropriate boundary conditions to apply to the wave
function, and why?

imensi i 105
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(b) Let the lowest energy of a wave that CiLl.l propagate througill t}tns1
potential be Ey = h2kZ/2m (this defines ko ). Write down a Frar]iscende;ljs
cquation (not a differential equation) that can be solved to give ko an
Il”'(c) Write down the wave function at energ_y E.O valid in t,h(?_refgl(;lnt%j
r < o (For uniformity, let us choose 110rma11-z;1‘t1(?11 and ph(‘l‘%, 511_(: -
:/r(; = 0) = 1). What happens to the wave function between x =

c=a+0? - .
(d) Show that there are ranges of values of E, greater than Eyp, for which

K ¢ > first such
there is no cigenfunction. Find (exactly) the encrgy at which the hrst st

b e (Berkeley)

Solution:

(a) The Schrodinger equation 1s

}1,2 (12 o . | p ) — E’d)(llﬁ).
- 53 Vob 6 (x —na)| (x)
{ 2m, dx? + ”;w 0

Integrating it from # =a —ctoxr =a+¢ and letting £ — 0, we get
¢ (aT) =4 (a7) = 20p(a),

where 2 = mV()h/hfz. This and the other boundary condition

plat) —pla) =0

i > = — ., =501, ...
apply to the wave function at x = na, where n = —o0, ..., =1, 0,
+oo(.b) For x # na, there arc two fundamental solutions to the Schrodinger
: , there
equation: . ;
wy (z) = * ug(z) =,

the corresponding energy being

E = K%k*/2m.

Let ' ’_
P(x) = Aetkt 4 Bem#T 0<z<a.
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According to Bloch’s Theorem, in the region a < x < 2q
lfl(ll«') _ eiKa {Aelﬁk(zra) 4 BC——ik(fE——a)] ’
where K is the Bloch wave number. The boundary conditions give
efe (A + B) = Ae'*® + Beike
ke (A — B) =ik (Ac™*e — Be~ o)
+ 20 (Ae™*® + Beika).
For nonzero solutions of A and B we require
cilka __ yika piKa

_ (3~Lk:u.

,l:keil(a _ (lk + 252) Cika —'I:k?(?il(a 4 (Lk _ ‘ZQ) (:_,ik“ =0,
or

Q
cos ka + - sin ka = cos Ka,

which determines the Bloch wave number K. Consequently, the allowed
values of k are limited to the range given by

<1

1

Q.
cos ka + % sin ka

or

k

kg is the minimum of k that satisfy this inequality.
(c) For E = F,

Q. 2
cos ka + — sin ka <1.

where kg = 1/2’"%.
Normalization ¢ (z = 0) = 1 gives
P(x) = 24 A sin kox + e“ik‘”", 0<r<a.
The boundary conditions at = = a give

K . . ;
€% =21 A sin koo + e—”“““,
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2iA = (K — e}/ sin koa .

sin ko
SR | etk g < g <a.

w(‘,l:) — (eiKu. o eﬂikga)
For z € [a, a + b], the wave function has the form exp (+ky, z), where

kl =/ 2m(V0 - E())/h,

(d) For ka = nw + §, where § is a small positive number, we have

’

sin kopa

Q.
cos ka + % sin ka

Q
cos (nm + 6) + % sin (nw + §) ~

"“' 1 ﬁ + L 5‘ <1

2 k|
When § is quite small, the left side = 1+ Qd/k > 1. Therefore in a certain
region of k > nm/a, there is no eigenfunction. On the other hand, ka = nw
corresponds to cigenvalues. So the cnergy at which the first energy gap
begins satisfics the relation ka =, or = w2h2 [2ma?.

1065

We wish to study particle-wave propagation in a one-dimensional peri-
odic potential constructed by iterating a “single-potential” V(x) at inter-
‘vals of length I. V(x) vanishes for |« | > 1/2 and is symmetric in z (ie.,
V(z) = V(—x)). The scattering properties of V(x) can be summarized as
follows:

If a wave is incident from the left, ¥4 () = exp (ikx) for x < —1/2,
it produces a transmitted wave ¥, (x) = exp (ikz) for =z > 1/2 and a re-
flected wave ¥_(z) = exp (—ika) for z < —1/2. Transmitted and reflected
coefficients are given by

T(s) — LUl = ki e g 0],z 2 3
, ‘(l/}—("lﬁl’") Nl ik @ ide 2180 T i
R(@) = oy =g O m e el 2 g
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and 4. and dg are the phase shifts due to the potential V(z). Take these
results as given. Do not derive them.

Now consider an infinite periodic potential V,, (2) constructed by iter-
ating the potential V() with centers separated by a distance { (Fig. 1.32).
Call the points at which V(z) = 0 “interpotential points”. We shall
attempt to construct waves propagating iu the potential V., (z) as super-
positions of left- and right-moving waves ¢, and ¢_.

Voolx)

A

- 1/2 0 !/2

NPANNP2A

Y
x

Fig. 1.32

(a) Write recursion relations which relate the amplitudes of the right-
and left-moving waves at the nth iuterpotential point, ¢, to the ainplitudes
at the (n — 1)th and (n + 1)th interpotential points, ¢t " and 471

(b) Obtain a rccursion relation for ¢_ or ¢y aloue by eliminating the
other from part (a).

(¢c) Obtain an expression for the ratio of amplitudes of ¢, to ¢_ at
successive interpotential points.

(d) Find the condition on k, 8, and & such that traveling waves are
allowed.

(e) Use this result to explain why it is “normal” for conduction by
electrons in metals to be allowed only for bands of values of energy.

(MIT)
Solution:

For the wave incident from the left, the potential being V' (z), let

i 1, . )
Yey = t¢+€"k$, t= 5 (612‘sc + 61250)

?

'l/]'r— — T‘(]S_e‘ikz, P (ei2§e _ ei2§g).
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For the wave incident from the right, let the transmission and reﬂectlion
coofficients be ¢ and 7 respectively. It can be shown that ¢’ = .t, r =
7*t/t*. In the periodic potential, the transmissior.l and reflection co-
cllicients at adjacent interpotential points have relations t, = tn_1 and

v, = ra_1 exp (i2kl). So the transmission coefhcient can be denoted by a

no n— %

:iingle notation t. . . ‘
(a) The waves at adjacent interpotential points are as shown in

I'ig. 1.33. Obviously, only the reflection term of ¢" and the transmission

term of gbffl contribute to ¢ :

RN (1)
Similarly,
¢ =radt + et (2)
Thus we liave
P = ei‘ZHT:L " + t(/)’ifl , (3)
e N o A (4)

n— L 1 741
P oy Py

— — —

“— —

nobogn gt
Fig. 1.33
(b) With n replaced by n + 1, Eq. (1) gives
IR R AR (5)

Equations (3), (4), (5) then give

- i +1
_ t(¢’1 1+612kl¢1 )
¢y = 1t 212kl — p 77 @ikl
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Let 7o = r. Then r, —= ;
. n =T exp(i2nkl). Assume r, — —p* ¢/¢*
Ty, = 1" exp (—i2nkl). Hence ” 71/t Then

_ t(qbi'—l +6i2qu§i+l)
1+ #2 gi2kl _ ! ei2kl ° (6)

Similarly,
B ¢ ekl gy

¢
regif)crz ﬁi E}f gir]iotcilzi tq;}l(expi)tl(;n;i{al i§ 51 , %f P(z) is tho: wav'e function in the
e Lo , p (i4) is the wave function in the region
{ gt ei(5~k1)¢i’
¢7_L+1 — pi(d+kl) . (7)
Let ¢, = ¢" /¢™ . From (4) and (5) we obtain respectively

S Pt
1 = Thin +t (bﬁ s (8)

n+tl ) ¢71+1

+
n = Tn Cn -
" gn Hien (9)

Using (7), (9) can be written as

+1
o2kl [ i
e QS"' =Tn ¢7"_ +ten y
or, USing (8)7

— 52kl
cne” (1 = rye,) = (1 — Tnen) + t2cp,

2 2 12kl i .
TnCy + (17— ! gi2KE 1) ¢, + ek — g

Solving for ¢,, we have

(L + rriek — g2ei2kly 4 (/A

Cp =

3

2r,

Basic Principles and One-Dimensional Motions 111

where

A = (tzemct _ ,,.n,r,:lez‘Zk[ 12 47”117”;,,6i2kl

— (2o 2R 1)2 _ gy 12K

(d) The necessary condition for a stable wave to exist in the infinite
periodic field is
L i
g g = e,
where 4, is real and independent of n. If this were not so, when n — o0
oue of ¢7 and (b(J:") would be infinite. From (7), we see that 6, = 6 — kl.

l'rom (6), we obtain

-1 +1
14 £2ei2k gt i2 Py | ikl Py
e S G &
+ +
:t[ei(kl-(s) 4 kL)),

Substituting r’ = —*#/t* in the above equation and using r77* +tt* =1,

we obtain

tetkl 4 ekl — 21t* cos 6,

which mecans
f(,l,kl + f*(,A'ik‘l

<1,
21+

or, using the definition of ¢,

<1

— 3

c0os (28, + ki) + cos (260 + kl)
1+ cos (2 (8. — dg)]

cos (8 + 8o + ki)
cos (8 — o)

In general, only some of the values of k satisfy the above inequality,
i.e., only energy values in certain regions are allowed while the others are
forbidden. Thus we obtain the band structure of energy levels.

(e) In metals, the distribution of positive ions is regular and so the
conduction electrons move in a periodic potential. (d) Shows that the

<.
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ele i
ectron waves can only have certain & values, corresponding to bands of
electron energies. k

1066

You are given a real operator A satisfying the quadratic equation
A2 3A+2-0.
This is the lowest-order equation that A obeys.

(a) What are the eigenvalues of A?
(b) What are the eigenstates of A?
(¢) Prove that A is an observable.

(Buffalo)

Solution:

(a) As A satisfies a quadratic equation it can be represented by a 2x2

matrix. Its eigenvalucs are the roots of the quadratic equation A2 —3A+2 =
0, A1 =1, Ay = 2. -

(b) A is represented by the matrix

. 1
i :< 9.
0 2
The eigenvalue equation

1 0 a :
o 2) G) = (0)
0 2 b b
then givesa = 1,6 =0 for A = 1 and
: 1, = a=0,b=1for A =2 ;
eigenstates of A are ((1)) and () Henee the

(c) Since A = A*, A is Hermitian and hence an observable.

1067

If |44 ) is any eigenstate of th i
: é e electric charge operator Q cor 1
to eigenvalue g, that is to say, @ corresponding

QlYg) =q|vg),
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ihe “charge conjugation” operator C applied to | ¥, ) leads to an eigenstate
| p_q) of Q corresponding to cigenvalue —q:

C‘wq> - “/)/q>-

(a) Find the cigenvalues of the operator CQ + QC.
(b) Can a state simultancously be an cigenstate of C and of Q7
(Chicago)

solution:
(a) Let
1) = cqliby)-
q

Then
(0(2 + (QC) lll/)r1> = (IC l'l/)q> + (2 I 'I/J—a) =4 I 'l/)”'(l) -4 I (l/)7q> =0.

Thus the cigenvalue of the operator CQ + QC s zero.

(b) As C is the charge conjugation transformation, CQC~! = =@, or
CQ + QC = 0, ie., C and Q do not commute (they anticomniute) they
cannot have common cigeustates. (Unless ¢ = 0, in which case it is quite
meaningless to troduce charge conjugation.)

1068

A quantum-nechaunical system is known to possess only two energy
eigenstates denoted [1) and {2). The system also inctudes three other ob-
servables (besides the energy), known as P, (2 aud R. The states |1) and
|2) arc normalized but they are not necessarily cigenstates of P, @ or IR.

Determine as many of the cigenvalues of P, @ and It as possible on the
basis of the following scts of “cxperimental data”. [Warning: one data set
is unphysical.]

(a) (1| P|1)=1/2, (1|P?|

1) = 1/4.
(b) (11QI1) =1/2, (1@ |1)=1/6.
(¢) (1| R|1) =1, (1|R?|1) =5/4, (1| R*|1) = 7/4.

i

(MIT)
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Solution: where X is to be determined. Then

We are given three observables P, @, R, which satisfy the Hermiticity
(n}P|m) = (m|P|n)*, and that the mechanical system has a complete
set of energy eigenstates |1) and [2).

(1IR[2) = (1]2) + A7 (2]2) = A",

showing that
(a) The completeness of the two states and the “experimental data”,

give

P =510 +al2),

where « is a constant to be determined. The orthogonality of the eigenstates

and the Hermiticity of P give

(1]1’]2}:%(1]2}—!-(12(2(2):(1*.

R[2) = A" |1) +n|2).

wliere 7 is to be determined. Consider

R*|1) = R{1) + AR|2)

= 1)+ A[2) + AA" 1) + An2).

Then as 5
(LIR* 1) = 142X =,
So we have
P2) =a™|1) + 5(2), we have 1
AN =,
where 3 is to be determined. Then 4
2 and so 1
P71y = P(P 1)) A= 7 exp (id),
1
=-P ) +aP 2)=(1/4+a"a)|1) + (¢/2 +aB)|2).
2 and
As P*1) = L according to experiment, o*a = 0 and hence o = 0. RIL) = 1) + % e )2y,
Therefore,
1 1
i.e., at least one of the cigenvalues of P is 1/2. R%|1) = > |1y + % (1+mn) et 12) .
(b) Let 4
1
Q) = 9 1) +v12), 1t follows also
where v is to be determine.d. By a §i1nilar procedure, we get y*y = 1/6 — R 1) = § R|1) + l (1+7) CleQ)
1/4 < 0. So this data set is unphysical and the eigenvalue of Q could not 4 2
. e 5 . 1
be determined. . _2 )+ e 2) + = (1+m) 1)
(c) As (1|R|1) =1, we can write 4 8 4
1 i8
1+ e 12) .
RI1) = (1) + AJ2), Fyltrmnen

115
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Experimentally (1| R*|1) = Z. Thus 2 + 1 (1 4+ 5) = 7, giving n = 1.

Hence on the bases |1) and |2) the matrix of R is

1 ,—is
( 1 5 et
%e“s 1 ’

To find the eigenvalucs of R, solve

1-X %e”“s

” =90,
%e“’ 1-A

te, (1-N2—2=(1-x- %)(1 ~ A+ &) =0, and obtain the cigenvalues

1069

For a charged particle in a magnetic field, {ind the commutation rules
for the operators corresponding to the components of the velocity.
(Berkelcy)
Solution:

Suppose the magnetic ficld arises from a vector potential A. Then the
velocity components of the particle are

b = Pi/m — qA; /mc.

Hence
(0 f,.])i [p.*QA, P14
VT Y T ]]
q . . thqg [0A; OA
= —— ';Ai — ’“A’. _ : ] 1
m2c {085, A} = [, Aj]} me2 (f)wi o,
: 3
ihq
= m—%zgijkBk,
k=1

where €45, is the Levi-Civita density, use having been made of the corre-

spondence rule p; — % %.

Basic Principles and One-Dimensional Motions 117

1070

Using the coordinate-momentum commutation relation prove that

Z (E,, — Ep)|(n|z] 0)* = constant,

n

where E,, is the energy corresponding to the cigenstate in). Obtain the
value of the constant. The Hamiltonian has the form H = p?/2M + V (x).

(Berkeley)

Solution:

As

H =p*/2M + V(x),
we have
[H, =] = ,—zlﬁ [p?, x| = —ihp/M,
and so
[[H, x|, x] = —% [p, 2] = —h*/M
Hence
h‘l

On the other hand,

(ml[[H, z], z] |m) = (m] Hz? — 2¢Hz + 2*H [m)
= 2E,, (m|z*|m) — 2(m|zHx|m)

:2Em2|<m\x\n> |2 422E,L‘<m\$in> 2

:22<E7H_En)|<m|m|n>|2

In the above we have used
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H|m) = Ep, |m),
(m{z*|m) = Z (m|z|n)n|x|m)
n

= |(m]z|n)?
(m|aHx|m) = Z(m |cH |n)(n]| x| m)

n

= Z E,(m|x|n)(n|z|m)
= Z E,|(m]|xz|n)?

Equating the two results and setting m = 0, we obtain

> (Ew — Eo) | (n]x]0)|* = h*/2M.

n

1071

(a) Given a Hermitian operator A with cigenvalues a,, and cigenfunc-
tions u, () [n=1,2, ..., N; 0 <u < L], show that the operator exp(iA)
is unitary.

(b) Conversely, given the matrix U, of a unitary operator, construct
the matrix of a Hermitian operator in terms of U,,,,.

(¢) Given a second Hermitian operator B with cigenvalues by, and eigen-
functions v,,(2), construct a representation of the unitary operator V that
transforms the cigenvectors of B into those of A.

(Chicago)
Solution:
(a) As AT = A, A being Hermitian,
{exp GA)} = exp (—1A") = exp (—iA) = {exp (1A)} !

Hence exp(iA) is unitary.
(b) Let
Cmn - Umn + U:m Umn + (U+)mn y
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ie.,

C=U+U".

As Utt = U, Ct = C. Therefore C,,;, = Uy + U*

o 1s the matrix

representation of a Hermitian operator.
(c) The cigenkets of a Hermitian operator formn a complete and orthonor-
mal set. Thus any |u,,) can be expanded in the complete sct |u,,):

|“7n> - Z |/”k Vg | ”771 Z l“k Vkm ’

k

which dcfines Vi,

L
Viem = / UV A(X) Uy () dar.
Jo

Similarly,
[v,) = Z ) (| vn)
*Z|“ (v |uy)*
= Z [u7) Vi
- Z |“‘ J’H
= Z i) Vi -
Hence
[thyn) = Z Z l“j) Vf; Vim = Z |uj> djm s
ik J
or
Vty =1,
ie.,
yt=v-L
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showing that V' is unitary. Thus V is a unitary operator transforming the
eigenvectors of B into those of A

1072

Counsider a one-dimensional oscillator with the Haniltonian
H =p*/2m + nuw?x?/2.

(a) Find the time dependence of the expectation values of the “initial
position” and “initial momentum” operators

To = cos wt— (p/rmw) sin wt,
Do = p cos wt + mwz sin wi.

(b) Do these operators commute with the Hamniltomian?
(c) Do you find your results for (a) and (b) to be compatible? Discuss.
(d) What are the motion equations of the operators in the Heisenberg
picture?
(e) Compute the commutator [py, wo]. What is its significance for mea-
surement theory?
(Princcton)

Solution:

(a) Making usc of the relation

df 1 of
we have
d 1
<;0> = [{x) cos wt, H) — w{x)sin wt

1 \
- = {@ sin wt, H} — @ cos wt
M m

1
= @, H] cos wt — w(x) sin wt
1 1 —— 1
- T 7H ] 1,— — =
o Th [p, H] sinw - (p) coswt =0,
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[ 1 ‘
dg):) - Th [(p) cos wt, H] - <P)w sin wt

1 .
+ T [ (2) sin wt, H] + mw?(z) cos wt
il

1 -
= — [p, H] cos wt —w(p) sin wi
ih
+ # [#, H] sin wt + mw? (z) cos wt = 0.
ih

Thus the expectation values of these operators arc independent of time.
(b) Consider

y, H] .
[y, HY = [z, H] cos wt — u sin wt
i,
1hp . .
= — cos wt + thwae sin wt,
m

[po, H| = [p, H] cos wt + mw [x, H| sin wt
— ihmw?e cos wt + thwp sin wt.
Thus the operators ag, py do not commute with H.
(¢) The results of (a) and (b) are still compatible. For while the ex-

pressions for a:y and po contain ¢ explicitly, their non-commutation with H
does uot exclude their being conserved. In fact

dxg 1 Oxo
— = — [wo, H|+ - =0,
o~ o Hl
dpy 1 Ipo
— = = LPo H| + = = 01
g~ o Hit oy,

showing that they are actually conserved.
(d) In the Heisenberg picture, the motion equation of an operator is

1 JA

Thus the motion cquations of zy and py are respectively

dag/dt =0, dpo/dt =0.
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(e) Using the expressions for zo and pg, we have

[po , zo] = [p cos wt + rwa sin wt, zo]
= [p, xo] cos wt + [x, xo] mw sin wt

= [p, & cos wt - P sin wt] Ccos wt
mw

P .
+ [:n, € cos wl — — sin wt| mw sin wit.
mw

=[p, ] cos®wt — [z, p| sin® wt
= — [z, p| = —ih,

as [z, z] = [p, p| = 0, [z, p] = ih.
In general, if two obscervables A and B satisfy the equation

(A, B] = ih,

then their root-meai-square deviations AA;, AB, when they are measured
simultaneously, must satisfy the uncertainty principle

AA~AB2%L.

In the present case, the simultancous measurcients of position and
momentum in the same direction must result in

Ax - Ap > ﬁ
2

The relation shows

\ Az ApE > h)2.

Tt is a relation between possible upper limits to the precision of the two
quantities when we measure them simultaneously.

2. CENTRAL POTENTIALS

2001

An electron is confined in a three-dimensional infinite potential well.
'The sides parallel to the x-, y-, and z-axes are of length L each.

(a) Write the appropriate Schrodinger equation.

(b) Write the time-independent wave function corresponding to the state
of the lowest possible energy.

(¢) Give an expression for the number of states, N, having energy less
than some given E. Assume N > 1.

(Wisconsin)

Solution:

(a) The Schridinger equation is

ihon (r, t)]0t = —(h?/2m) V%) (r, t), 0<z,y,z<L,
P =0, otherwise.

{b) By scparation of variables, we can take that thie wave function to be
the product of three wave functions each of a one-dimensional infinite well
potential. The wave function of the lowest energy level is

Y (e, v, 2) = Y1(x) P (y)¥i(2),

where

Thus

3/2 )
E z ] (B) sin (H) sin (ﬂz)
Yz, y, z) = I sin I L) L)

The corresponding energy is 111 = 3h%7?/2mL2.
(c) For a set of quantum numbers n;, n,, 7, for the three dimensions,
the energy is
h2r?
" 2mlL?

Hence the number N of states whose energy is less than or equal to E is

(n? + n,ﬁ +n?).

equal to the number of sets of three positive integers ng, ny, n, satisfying
the inequality

123
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2
> 9 2mL
nx+'n,y+n§ < TE
h2q2
Consider a C: i in: j
Cartesian coordinate system of axes n,, Ty, Nz. The number

N required is numerically equal to the volume in the first quadrant of a
sphere of radius (2mL?E /h?x2)'/2 provided N > 1. Thus

N 1 . dm 2mL? o 3/2 _4n mlL? 3/2
8§ 3 h2? T3\ 2h2g2 E ’

2002

A ‘quark’ (mass = m,/3) is confined in a cubical box with sides of
length 2 fermis = 2 x 1071 m. Find the excitation encrgy from the ground
state to the first excited state in MeV.

(Wisconsin)

Solution:

The energy levels in the cubical box are given by

hin? 2 2 .
s(mitny+n3), ni=12 ... .

En1 nony — m

Thus the energy of the ground state is Eyyy = 30272 /2ma?, that of
the first excited state is Epy1 = 6A%7?/2ma? = 3K%x2/ma®. Hence the
excitation energy from the ground state to the first excited state is

1.57%2h%¢2

2

AFE = 3hz7r2/2mu,2 = .
me2a?

_ L5m2(6.58 x 1072%)% x (3 x 10%)?
(238) x (2 x 10-15)2

= 461 MeV .

2003

A NaCl crystal has some negative ion vacancies, each containing one
electron. Treat these electrons as moving freely inside a volume whose di-
mensions are on the order of the lattice constant. The crystal is at Toom
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Lemperature. Give a numerical estimate for the longest wavelength of elec-

lromagnetic radiation absorbed strongly by these electrons.
(MIT)

Solution:

The cnergy levels of an electron in a cubical box of sides a are given by
B = (0202 /2ma?)(n? +m? + k%),

where n, m and k are positive integers. Taking @ ~ 1 A, the ground state
cnergy is By, = 30%7% /2ma® =~ 112 ¢V. For a crystal at room temperature,
the electrons arc almost all in the ground state. The longest wavelength
corresponds to a transition from the ground state to the nearcst excited
state:

322
AE = Fyy — Byt = e = 112 ¢V,
mna
for which ;
C L ,
A= —=——=110A.
v AE
2004

An clectron is contined to the interior of a hollow spherical cavity of
radius R with impenctrable walls. Find an expression for the pressure
exerted on the walls of the cavity by the electron in its ground state.

(MIT)
Solution:
For the ground state, I = 0, and if we set the radial wave function as
R(r) = x(r)/r, then x(r) is given by
d’x  2uFE
dr? k2

x=0 forr <R,
x=0 forr>R,

where s is the electron rest mass. R(r) is finite at 7 = 0, so that x(0) = 0.
The solutions satisfying this condition are
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for which
252
B, = i n?.
2uR?

The average force F acting radially on the walls by the electron is given

by
oV oH 9 - i
F=(-75)=-(+5 :*T_<H>:‘0—E’~
OR OR OR R
As the electron is in the ground state, n = 1 and
F = -0E|JOR = 7*h?/uR® .
The pressure excrted on the walls is

p=F/4nR* = nh?/4uRR® .

2005

A particle of mass m is coustrained to move between two concentric
impermeable spheres of radii ¥ = a and 7 = b. There is 1o other potential.
Find the ground statc cnergy and normalized wave function.

{(MIT)

Solution:

Let the radial wave function of the particle be R(r) = x(r)/r. Then
x(r) satisfies the equation

dz, r m
ﬁ_F{z [E—V(r)]~l(l;l)}x(7'):0'

dr? h? r2

(a <r <b)

For the ground state, [ = 0, so that only the radial wave function is

non-trivial. Since V(r) = 0, letting K2 = 2mE /h?, we reduce the equation
to

X// + KBX — O)
with
X Ir:a =X lr:b =0.
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\ (a) = 0 requires the solution to have the form
x(r) = A sin[K(r —a)].
Then from x(b) = 0, we get the possible values of K:
K=nn/(b—a), (n=1,2,...)
For the particle in the ground state, i.e., n = 1, we obtain the energy
E = KPK?/2m = h*7%/2m(b — a)* .

From the normalization condition

b
Ry [ =1,

a Ja

b

we get A = /2/(b — a). Hence for the ground state, the normalized radial

wave function ig

and the nonnalized wave function is

1 2 1 . w(r—a)
. ~ sin )
Aar Vb—a r b—a

Y(r) =

2006

(a) For a simple harmonic oscillator with H = (p®/m + kx?)/2, show
that the energy of the ground state has the lowest value compatible with
the uncertainty principle.

(b) The wave function of the state where the uncertainty principle mini-
mum is realized is a Gaussian function exp(—az?). Making use of this fact,
but without solving any differential equation, find the value of a.

(c) Making use of raising or lowering operators, but without solving any
differential equation, write down the (non-normalized) wave function of the

first excited state of the harmonic oscillator.
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(d) For a three-dimensional oscillator, write down, in polar coordinates,
the wave functions of the degenerate first excited state which is an cigen-
state of /.

(Berkeley)
Solution:
(a) The ground state of the harmonic oscillator has even parity, so that

T=(0|z|0)=0, p=(0]p|0)=

and so

Ap? = ?, Az? = 42|

The uncertainty principle requires

&7 A
Y4 S
It follows that
2
g P k=
T 9m + 2 *
k
> — 2 2
m YP o r
h k
> -\ —=hw/2=E
-2 m w/ 0>

as ,/% = w. Thus the cnergy of the ground state has the lowest value

compatible with the uncertainty principle.
(b) Using the given wave function we calculate

A [ zd// oy 1 ae
—o0

=l
N

Il

|
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=

and hence
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From (in_F — 0 we see that when a = Vkm/2h = mw/2h the energy is
o
minimum. Therefore « = mw/2h.
(¢) In the Fock representation of harmonic oscillation we define

= i (P — imwz)/V2mhuw,
at = —i(p+ imwz)/V2mhw .
Then [a, at] =1,
H=(ata+1/2)hw.

. l .
Denoting the ground state wave fauction by [0). As H|[0) = 5hw|0),
the last equation gives a¥a|0) = 0. It also gives

H(a*t|0)) = % hwat |0) + hwataat | 0)
= % hwat | 0) + hwat (@ta + 1)10)
S
=5 hw(a™ | 0)).
Hence

—1 ( mw .
H=at]0o)= . —ih i +imwr )} exp | ——= z?
l > l ) V2mhw Ox 2h

S e (2 02)
= T* X exp o

in the coordinate representation.
(d) For a 3-dimensional oscillator, the wave function is

",bn.ln,zng (I‘) - "/«’nl (I) l‘:bﬂvz (l/) ¢713 (Z) -

For the ground state, (ni, na, n3) = (0, 0, 0). For the first excited
states, (n1, ng, n3) = (1, 0,0); (0,1, 0);(0, 0, 1).

| —
Q
o
~
1N
N’

Y100 (r) = N§ Ni2ax exp <~

t\.’)|>—l
\_,/

Poto (r) = N N 2ay exp (

Nl’—‘
lv
R

N

oo1 (r) = N3 Ni2az exp (
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Expanding z, 3, z in spherical harmonics and recombining the wave

functions, we get the eigenstates of I,

1 )
Ym (r) = Ny, exp <§ (12r2> Y1 (0, ©) .

where

N, = \/E/(rz.
Note that here « = y/mw/k, which is the usual definition, different

from that given in (b).

2007

The diagram (Fig. 2.1) shows the six lowest encrgy levels and the asso-
clated angular momenta for a spinless particle moving in a certain three-
dimensional central potential. There are o “accidental” degeneracies in
this energy spectrum. Give the munber of nodes (changes in sign) in the
radial wave function associated with cach level.

(MIT)
Solution:

The radial wave function of a particle in a three-dimensional central
potential can be written as R(r) = x(r)/r. With a given angular quantum
number I, the equation satisfied by x(r) has the forin of a one-dimensional
Schrédinger equation. Hence, if an energy spectrum has no “accidental”
degencracies, the role of the nodes in the radial wave function of the particle
1s the same as that in the one-dimensional wave function. For bound states,
Sturm’s theorem remains applicable, ie., x(r) obeys Sturin’s theorem: the
radial wave function of the ground state has no node, while that of the nth
excited state has n nodes. Thus, for a bound state of energy E,,, which has
quantum number n = n, + [+ 1, the radial wave has n, nodes.

For angular quantum number I = 0, the numbers of nodes for the three
energy levels (ordered from low to high energy) are 0, 1 and 2.

Similarly, for [ = 1, the numbers of nodes are 0 and 1; for I = 2, the
number of nodes is 0.

Thus, the numbers of nodes in the encrgy levels shown in Fig. 2.1 are
0,1,0,0, 1, 2, from low to high energy.
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E =0
{ =1
=2
{ =1
! =0
(=0
Fig. 2.1
2008

A particle of mnass m and charge ¢ is bound to the origin by a spherically
symumetric lincar restoring force. The energy levels are cqually spaced at
uttervals fuwg above the ground state energy Fy = 3hwg /2. The states
can be described alternatively in a Cartesian basis (three one-dimensional
harmonic oscillators) or in a spherical basis (central ficld, separated into

angular and radial motions).

(a) In the Cartesian basis, table the occupation numbers of the vari-
ous states of the oscillators for the ground and first three excited levels.
Determine the total degeneracy of each of these levels.

(b) In the spherical basis, write down (do not solve) the radial equation
of motion.

(Note that in spherical coordinates V2= 71; % (r2 %) — i—j , where L7 is
the operator of total orbital angular momentum squared in units of h2.)
' Identify the cffective potential and sketch it. For a given angular mo-
mentum, sketch the “ground state” radial wave function (for a given { value)
and also the radial wave functions for the next two states of the same [.

(c) For the four levels of part (a), write down the angular momentum
content and the parity of the states in each level. Compare the total de-
generacies with the answers in (a}.

(d) Does the second excited state (FBy = 7hwe/2) have a linear Stark
effect? Why or why not? Compare similarities and differences between this
oscillator level and the second excited level (n = 3) of the nonrelativistic

hydrogen atom.
(Berkeley)
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Solution:
(a)
o Table 2.1
Energy level | Occupation Numbers Degeneracy
Ey |0, 0, 0) 1
El llso) O),IO, 1) 0>7|U’03 l) 3
E2 127 07 O)? |07 27 O)a ‘07 07 2> 6
'17 17 0)’ |1’ 0) 1>7 |0’ 17 1>
E3 |3: 01 0)1 |O7 '31 0>7 |07 07 3> 10
12, 1, 0),[0, 2,1),]1, 0, 2)
'17 27 0)’ |O7 1’ 2>’ |23 ()) 1>
i1, 1, 1)
(b) Let

P(r) = R(r) Yon (0, ¢).

The radial wave function R(r) satisfics the cquation

1
d (rQiR) + [3@ (Ef Tw%-?) - —l(”l?] R—0,

r2 dr dr h? 2 r?
so that the effective potential is
Ve = mw?r? /2 + K21(1 + 1) /2ma?,

which is sketched in Fig. 2.2, where r¢ = [h2(l + 1)/m?w?|}/4. The shapes
of the radial wave functions of the three lowest states for a given [ are shown
in Fig. 2.3.

vir)
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RIir)

Iig. 2.3

Note that the number of nodes of a wave function is equal to n,..

(¢)

Tablc 2.2

F ] l 7 P DT

Ey | 010 + 1

E, 1|0, =1 — 3

E, | 2] 0, £1, £2 + 6
0] 0

Es | 3] 0,£1,£2,£3 | — 10
1] 0, t1

L I

Note: I’ = parity, I = degeneracy.

(d) The sccond excited state does not have a linear Stark effect because

& is an operator of odd parity while all the degenerate states for Fy have

even parity, with the result that the matrix elements of H " in the subspace
of the energy level F, arc all zero.

On the other hand, for the second excited level of the hydrogen atom,
n = 3, its degenerate states have both even and odd parities, so that linear
Stark effect exists.

2009

(a) A nonrelativistic particle of mass m moves in the potential

Via, y, 2) = A(a® +y? + 2Xzy) + B(2% + 2u2),
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where A >0,B > 0,|A\| <1, p is arbitrary. Find the cnergy eigenvalues.

(b) Now consider the following modified problem with a new potential
Vaew: for z > —p and any z and y, View = V, where V is the same as in
part (a) above; for z < —p and any z and y, View = +00. Find the ground
state energy.

(CUS)
Solution:

(a) We choose two new variables g, ¢ defined by
1 1

“:%(:1:+?/)’ t:ﬁ(w—'y),

or

=+ O/VE, y:§%0k¢x

and write the potential as

1, . . 1, . .
Vi, y,z)=A {5 (% + 2 + 2pl) + 3 (1? + t? — 2ut)

1 . .
+2X - 5 (p* — 1‘,2)} + B(2* + 2pz)

=A{(L+X) g+ (1 - Nt} + B2 + 2pz)
and the differentials as
0 o 1 0 1
o op R o
0 (91 9% 1 1
ox? <d_uz V2 ' oot \75) V2

+<()2 1+82 1 1
otou 2~ 0t2 \2) /2’

Oy o V2 0t /2
P ey
Oy? ou? V2 oudt \2) V2
_i(éﬂ 191
V2 Mﬁﬁﬁ)
, 0 ot 9?2
AR L
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Then Schrodinger equation becomes
— + ;
Au?  Otr 02?2

Let ¢(u, t, 2) = U(u)T(t)Z(z). The above equation can be separated

mto

(92 2 32 2
(—+i —)Wmd+$w4WmMWmdﬂ-

H? 2m )
o2 U(p) + g [y — AQ+ 2) 7] U () = 0
02 27” P}

02
552 Z(2) + (2m/h%) [Ey — B(2? + 2u2)) Z(2) = 0,
z
with
Ei+FE,+FE3=FE.
By sctting 2" = z + u, By = E3 + Bp?, all the above three equations can
be reduced to that for a harmonic oscillator. Thus the energy eigenvalues

are

1 2A

E = <7111 + —2—> Tuoy, wi =/ — (1 +A);
1 2A

E‘Z — <7I‘2 + _) tha w2 = - (1 - A)
2 m

1 2B
FEy = (n;; + 5) fuws — B;LZ, Wy = —.
(ny, ne,n3 =0,1,2,3,...)

(b) With a new potential Vjew such that for z < —pu, View = 0o and for
2> —pt, View 15 the same as that in (a), the wave function must vanish for

z — —pu. The Z-equation has solution
7~ Hyo (e

where ¢ = (2mB/h?)Y/4(z 4 1), Hy, (C) is the ngth Hermite polynomial and
has the parity of n3. Hence ng must be an odd integer. The ground state
is the state for ny = ny = 0 and ng = 1, with the corresponding energy

E = h(wy +w2)/2 + 3hws/2 — Bu?.
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2010
A particle of mass m moves in the logarithmic potential
V(r)=Cln (r/ry).
Show that:

(a) All cigenstates have the same mean squared velocity. Find this mean
squared velocity.

(b) The spacing between any two levels is independent of the mass m.
(CUS)
Solution:
(a) We have

. . . 1 . 1 .
VZZPZ 2:_P2:7 3 * P2,
v = (Pmd) = — (B = [ PRy
and, for a stationary state, the virial law gives
- 1
(T = 2 {r - VV).
Hence
. 1 1
(v = (P¥/m?) = — . AT) = —(r - VV)
m m
1 3 . d "
= / d'’r - <I drChll/lo) P
C
=— [ &Priy)*= ¢ ,
m m

which is true for any cigenstate.

(b) Since
OE, [|0H |\ _ P2
om ~ \|om |/ \| 2m?

C

2m’
OF,, /0m is independent of n. It follows that
ME,—Ery)_ C C
om 2m = 2m
i.e., B, — E,_1 is independent of the mass m.

) =3
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2011

Assume that the eigenstates of a hydrogen atom isolated in space are
all known and designated as usual by

'(/}n,lm(rv 97 (/)) = Rnl(r) Yzm,(ea ¢) .

Supposce the nucleus of a hydrogen atom is located at a distance d from an
infinite potential watl which, of course, tends to distort the hydrogen atom.

(a) Find the explicit form of the ground state wave function of this
hydrogen atom as d approaches zero.

(b) Find all other cigenstates of this hydrogen atom in half-space, 1.c.
d — 0, in terms of the R,y and Yyy,.

(Buffalo)
Solution:

(a) Choose a coordinate system with origin at the center of the nucleus
and z-axis perpendicular to the wall surface as shown in Fig. 2.4. Asd — 0,
thie solutions of the Schrodinger equation are still 12,,; Y, in the half-space
:>01ie., 0 <60 < 7/2 but must satisfy the condition ¢ = 0 at § = 7/2
where V = oo. That is, only solutions satistying { +m =odd integer arc
acceptable. As |m| <1, the first suitable spherical harmonic is

Yl() = v/ 3/47T cos 0.

Ty Vo=

Fig. 2.4
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Since n > 1 4+ 1, the ground state wave function is Ra1 Yig.

(b) All the other eigenstates have wave functions R, Y,, where | +m =
odd integer. For a given [, we havemm =1—1,1-3, ..., =141 and hence
a degeneracy [.

2012
At the time ¢t = 0 the wave function for hydrogen atom is
1
V10

where the subscripts are values of the quantuin nunbers n, [, m. Ignore

P(r, 0) = (29100 + Wa10 + V201) + V3iha1_y),

spin and radiative transitions.

(a) What is the expectation value for the encrgy of this system?

(b) What is the probability of findiug the systemn with [ = 1, m = +1
as a function of time?

(c) What is the probability of finding the electron within 10~1% cin of
the proton (at time ¢t = 0)? (A good approximate result is acceptable here.)

(d) How does this wave function evolve in time; i.c., what is ¢(r, ¢)?

(e) Suppose a measurement is made which shows that L =1 and L, =
+1. Describe the wave function innnediately after such a measurcment in
terms of the 4, used above.

(Berkeley)

Solution:

(a) Making usc of the orthonormality of the wave functions, the expec-
tation value for the cuergy is

1
E={|H|y) = 0 (29100 + WYa10 + V2211 + V3ta1_1 | 2E14h100
+ Exparo + V2Eatpors + V3Eothar 1)
1 1
=— (4E, + E2 + 2E, + 3E,) = — (4F; + 6F»)
10 10
055 o [e2\’
2055E1 = —T ’ITLCZ (%)
0.55 1
= — x0.51x10° = —7.47
7 % X X {372 ev,
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as By = —me*/2h%, E; = 1 F; for the hydrogen atom.
(b) Since

9(0) = exp (1) 1910),

(n11{4h(t)) = b2 <211 exp (—%Ht) '¢(0)>

1 %
= 511.2 \/; €xp (*E E2t> )

nsing the given wave function for ¢ = 0. Hence the probability required is

P19 [ = ¢ e

we have

Thus if n = 2, P = 1/5; otherwise P = 0.
(¢) Let a = 107 1% cin. We have

r= Y pr? dr dQ
0

« 1 .
[ g @Rl 6 R )%
0

making use of the given wave function as in (a). Here for the hydrogen

atom

. 4 .
IRlolzzﬁe /e | Ry |2 =

—r/2a
24a5

)

and @ =520 x 1072 cm. As r < a € a, we can make the approximation

6—27'/11 ~1— 277' 6—1'/2(1 =1- L )

a’ 2a

4 [* 4 2r\ o 6 [* T 5
~— — - — dr + — <1 — 7) rodr
P 10 /0 a? <1 a) rart 10 J, 24a° 2a

SHARION RIS 0N
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(d) The wave function at time ¢t is

P(r, t) =exp [4% Ht] P(r, 0)

1 i i
V1o 267" 4100 + € ahy10

FV2e by \/gegiwzl'l/hlfl],

where Wy = El/h, Wy = Ez/h
(e) Since n > L+ 1, with L = 1 we have n = 2. Conscquently the
required state vector has the form

1) = C, 1211) + Cp | 210) + C_ |21 — 1).

Using L, = (L + L_)/2, with L_Yy, = /(—m+ 1) +m)Yin_1,
L Yy, = \/(l +m 4+ 1) (1 —m) Yini1, we can write L,|) = |) as

%{\/écoml) +V2(Ch + C )| 210) + V20 [ 21 — 1))

= O, |211) + Cp|210) + C_ |21 — 1),

and obtain c
Cy=0_="2.
* V2
Hence !
= Eco(ﬂ|2n>+2|21o)+ﬂ|21_1)).
Normalization

<|>:%3(2+4+2):1

gives Cy = % Therefore

(1211) + V2| 210) + | 21 — 1)).

N | =

)=

2013

The ground state energy and Bohr radius for the hydrogen atom are
Ey = —€?/2ag, ap = h?/me?, where m is the reduced mass of the system.
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e = 9.11 x 10728 g, m, = 1.67 x 1072' g, e = 4.80 x 1070 es.u, h =
t.05 x 10727 erg sec.|

(a) Compute the ground state energy and Bohr radius of the positron-
nn.

(b) What is the degeneracy of the positronium ground state due to
clectron spin? Write down the possible spin wave functions which have
lefinite values of the total spin together with the corresponding eigenvalues.

(¢} The ground state of positronium can decay by annihilation into
photons. Calculate the encrgy and angular momentum released in this
process and prove that there must be at least two photons in the final
shate.

(Buffalo)

Solation:
-r . - . ; 1 _ 1 1
(a) The reduced mass m of the positronium is given by =t

Lo, mo=1m,. /2. Its use in the formulas gives

a2 me* (2% —0.51 x 10°
e me <(> o0l XY 68 eV,

Ey = o _me e ;
7 240 2 he 4 x 1372

ag = 1.05 x 1078 o

(b) The degeneracy of the positronium ground state is 4. Denote the
positron by 1 and the clectron by 2, and let the spin eigenstates in the z
direction of a single particle be « and 3, corresponding to eigenvalues 7/2
umid —h/2 respectively. Then the ground eigenstates with definite total spin

= 81 + 82 and z-component of the total spin S, = s1, + $2, are

a(1) a(2), S=h S,=h

1
ﬁ [a(H)BR2)+81)a(2)], S=Hh, S,=0.

1
— [x(1)B(2) — B(1)«(2)], S=0,
ﬁ[()ﬁ() (1) a(2)]
(¢} The energy released in the annihilation process mostly comes from
(he rest masses of the electron and positron, AE = 2m.c? = 1.02 MeV.
The released angular momentum depends on the state of the positronium

S, =0.
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before the annihilation. For the ground state S = 0, no angular momen-
tum is released. For the state S = ki, the angular momentum releasced is
AT =\ JIl+1)Yh= V/2h. There must be at least two photons in the final
state of an annihilation, for if there were only one photon produced in the
annihilation of a positronium, the energy and momentuin of the systein
could not both be conserved. This can be shown by a simple arguinent.
If the single photon has energy FE, it must have a momentum E /¢ at the
same time. Thus the momentum of the photon cannot be zero in any ref-
erence frame. But in the positronium’s rest frame the momentumn is zero
throughout the annihilation. Hence we have to conclude that there must
be at least two photons in the final state of an annihilation whose mmomenta
cancel out in the rest frame of the positronium.

2014

Consider an electron moving in a spherically syminetric potential V- =
kr, where k > 0.

(a) Use the uncertainty principle to estimate the ground state energy.

(b) Use the Bolr-Sommerfeld quantization rule to calculate the ground
state energy.

(¢) Do the same using the variational principle and a trial wave function
of your own choice.

(d) Solve for the energy cigenvalue and cigenfunction exactly for the
ground state.

(Hint: Use Fouricr transforms.)

(e) Write down the effective potential for nonzero angular momentum
states.

(Berkeley)
Solution:
(a) The uncertainty principle states that
k
ApAr > 2,
2
where
Ap = [(p=1)'"? = [(1® — 205+ P
2-pH2,
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Ar = (r? — 72)1/2,
The potential is spherically symmetric, so we can take p = 0, i.e. Ap =

\/ P For an estimate of the energy

2

E=2 4 kr,
2m
we shall also take
Ar ~T.
Then (Ap)’ (Ap)? .
P P i
2 Ar > +—.
2m kAT 2 2m 2Ap
For the ground state encrgy E, we have
OE  Ap kh 0
OAp  m  2(Ap)2
giving p
mkh\'*
A =
= ("7
and

3 /K2E2\ 3
gl ( > .
2 4m

(b) The Bohr- Sommerfeld quantization rule gives

7{ P, dr = n..h, ?{ Pypdp = ngh.

Choose polar coordinates such that the particle is moving in the plane
# = w/2. The ground state is given by n, = 0, ny = 1, and the orbit is
circular with radius a. The second integral gives

P¢:Iw:ma2w:h.

'The central force is
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Combining we have a = (h? /mk)1/3, and hence

Ey = Pj/Zma2 + ka = g (K*R% /m)'/3 .

(¢) The notion in the ground state does not depend on 6 and ¢. Take a
trial wave function ¢ = exp (- Ar) and cevaluate

g WlH )
{4 | )
where
2 B
H— " %24 ky
I + ki
As
WA o 22 [T LA (o N
2m J, c e\ ae > rdr
—+ k/ 7.3(1'-2/\1‘ (17.
0
2 o0 P .
:L)‘ 2 A em P gy &
2, 0 r : : @)1
_» . 3k
C 8mA | 8ALY
o0
Wl o [T erras 2o L
0 (2X)% 7 4x
we have
— hEXT 3k
H = o
2m + 22

For stable motion, H is a minimum. Then taking

oH
o

\ 3m,k 1/3
K2 :

0 7

we find
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el hence

_ q 1L 232 1/3
g3k _3 [(9FKh ,
4 A 2 \4 m

(d) The Schrédinger equation for the radial motion can be written as
h? o d?
2. dr?

where x = 7R, IR being the radial wave function. For the ground state, the
angular wave function is constant. By the transformation

o 2mk 173 ] E
Y=\ T2 ! k)’

the Schrodinger equation becomes the Airy equation

d*x(y)
— —yxly) =90,
o yx(v)
whose solutions arc Ai(—z) and Ai(x), where @ = —|y|, fory < 0andy > 0
respectively. The boundary conditions that R(r) and R'(r) be continuous
abr o= ITv Le. oy o= 0, are satisfiecd automatically as Ai(z) = Ai(—a),

Ai'(z) = Ai'(-x) for z —» 0. The condition that R(r) is finite at r — 0
requires that Ai(—x) = rR(r) — 0 as r — 0. The first zero of Ai(—x)
oceurs at ¢ = rg = 2.35. Heuce the ground state energy is

n? g
Eo = (2mk> ko,

and the ground state cigenfunction ts

mk 3R
R(r) = lA'I:(*.’l,') with T = (2;7;k> (ko — r) .
r !

(e) The cffective potential for nonzero angular momentum is

Veir = kr + B2 1(L+ 1) /2mr®.

2015

The interactions of heavy quarks are often approximated by a spin-
independent nonrelativistic potential which is a linear function of the radial
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variable 7, where r is the separation of the quarks: V(r) = A+ Br. Thus the
famous “charmonium” particles, the ¢ and ¢/, with rest energies 3.1 GeV
and 3.7 GeV (1 GeV= 10% V), arc believed to be the n = 0 and n = 1
bound states of zero orbital angular momentum of a “charm” quark of mass
me = 1.5 GeV/c? (ie. E = 1.5 GeV) and an anti-quark of the same mass
in the above linear potential. Similarly, the recently discovered upsilon
particles, the T and Y’, are believed to be the n = 0 and n = 1 zero orbital
angular momentum bound states of a “bottom” quark and anti-quark pair
in the same potential. The rest mass of bottom quark is my, = 4.5 GeV/c?.
The rest energy of T is 9.5 GeV.

(a) Using dincnsional analysis, derive a relation between the energy
splitting of the 4 and %' and that of the Y and Y’, and therchy evaluate
the rest energy of the Y'. (Express all energies in units of GeV)

(b) Call the n = 2, zero orbital angular momentum charmonimn particle
the 9" . Use the WKB approximation to estimate the encrgy splitting of
the 1" and the 4" in terms of the energy splitting of the 4 and the 4/, and
thereby give a numcrical estimate of the rest energy of the .

(Princeton)

Solution:

In the center-of-mass systemn of a quark and its antiquark, the equation
of relative motion is

2
[_% V‘f + V(’I):l l/}(r) - ER’(/)(I'), = 771/([/27

where Eg is the relative motion cnergy, my is the inass of the quark. When
the angular momentum is zcro, the above equation in spherical coordinates
can be simplified to

[Z;%g:GZ%>+VW}RM:EhMW

Let R(r) = xo(r)/r. Then xq(r) satisfies

xo0 | 2p ,
dr2 E [ER - V(T)} X0 = Oa
ie.,
d*xo0 | 2p
ar? +§(ER\A—BT)X0:0.
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(a) Suppose the energy of a bound state depends on the principal quan-
i number n, which is a dimensionless quantity, the constant B in V(r),

the quark reduced mass 1, and R, namely

E=fnDB"pvh*.

As,

[E] = [M][L]*[T]7%,
(B} = [M][LI[T]7%,  (u] = [M]
(1] = [M][LI* [T},

wi have

2 1
r=z= 3 y =
and hence

E = f(n) (Bh)?*? (;L)”l/:"

where f (n) is a function of the principal quantum nunber 7. Then

BR)2/3 (BR)?/3
amy =By~ 5o = 1) C - s U
He ¢

12/3
~(’i—”/— £ £O),

ndd similarly

BHh 2/3
agy - PV rwy- ).
Hy
Hence .
AEqy e 1/3 3
s () 6)
As

ET/ — ET ~ 0.42 GeV,
Ev' =Ex +042 =95+ 042~ 9.9 GeV.
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(b) Applying the WKB approximation to the equation for x¢ we obtain
the Bohr-Sommerfeld quantization rule

ER-‘A
B ?

2/ \/2;1(E1{~A—B1‘5dr=(n+3/4)h, with a=
0

which gives, writing FE,, for Eg,
3 (n+ %) Bh/a)"

E,=A- :
' ' (2p)1/3

Application to the energy splitting gives

b g B Mg\
vt () () |-

o m (BR)2/% [ (33\**  [21\**
WPt 1/11 - (2/11(:)1/3 1() 16 ?

By — By (33)2/3 _ (21)2/3 .
Ey — By (21)23 —(9)2/3 © 70

and hence

Thus
Eyn — By = 0.81 x (By — Ey) = 0.81 x (3.7 - 3.1)
~ 0.49 GeV,

and

2016

Two particles, each of mass M, are attracted to each other by a potential
V(r) = —(¢°/d) exp (-r/d),

where d = h/mc with mc¢? = 140 million electron volts (MeV), Mc? =
940 MeV.
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(a) Show that for I = 0 the radial Schrodinger equation for this system
can be reduced to Bessel’s differential equation

2 oy 2
wgw%l_%) Jy(@) =0

da? r dx 22

by means of the change of variable @ = « exp (~pr) for a suitable choice
of a and 3.

18 7 /;0 // / 4 / f _g.'; Jptx)
S I 0
100 T e

y/ e

i

/7;’// ey /% 7: 7&
/

i

// 0.2
//
//

01

N

RN

25
N

22
-‘
N

P
W)
‘\

Fig. 2.5

PSS
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(b) Suppose that this system is found to have only one bound st

with a binding energy of 2.2 MeV: 2 .
units. &Y eV; evaluate g°/he numerically and state

ate
its

[Note: a gr: Vi 3 1
| [' ?tc a gra.ph of values J, (z) in = — p plane has been provided with
le mtormation at the beginning of the examination (Fig. 2.5)]
(¢) What would the minimum value of 9%/ he hiave to be

o) o the ! of in order to have
0 bound states (d and A remaining the same)?.

(MIT)
Solution:

(a) When I = 0, the radial wave function R(r) = x(

equation r)/7 satisfies the

dr? + 2

dzx('z') M a2
L9
<E+F ¢ /l) x(r)y =0,

the reduced mass being ;= M/2. By the change of variable

ror=ac M peo, af,
and writing x(r) = J(x), we have

2 . 2
d J(z) 1 dJ) [M_q“ (g;)x/dﬂ 1 ME 1} i
.

dz? r  dr p2dE? \o = 2R =0.
Letting
2
a="2Vama, p-L
h 2d’
and

Pt = M _ _4d*ME
i

we can reduce the Schroding: ati i
‘hrodinger equation to Bessel’s differenti

order p al equation of

da>.J,(x x -
ﬁvﬁﬁd"ﬂ_(u(l"g) (@) =o0.

dz? r dx
Thus the (uunormalized) radial wave function is

b (ae™0m)

R(r)
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(b) For bound states we require that for r — oo, R(r) — 0, or J, remains
finite. This demands that p > 0. R(r) must also be finite at 7 = 0, which
means that x(0) = J, () = 0.

This equation has an infinite number of real roots. For E = 2.2 MeV,

2d 2 : 2 :
p="F7 VMIE|=—; VMETE| = 215 V010 222065,
mc

Figure 2.5 shows the contours of J, () for different values (indicated by
right and top numbers) of the function in the x —p plane. The lowest zero
of J, () for p=0.65is 3.3, the next 6.6. Thus for o =~ 3.3, the system has

one | = 0 bound state, for which
g*/he = ho*JaMed = mcta JaMe? = 0.41,

which is a dimensionless constant.
(¢) For « ~ 6.6, there is an additional { =0 bonud state. Thus the

minimum value of e for two I = 0 bouud states is 6.6, for which

(g% / 1¢)in = ""I‘:Z"ﬁ.m/‘l]w“z =~ 1.62.

2017
Prove that in any single-particle bound energy cigenstate the following
relation is satisfied in nonrelativistic quantum mechanics for a central field-

of-foree potential V (r),

’ , m [dV(r) 1 E
l (/)(OHZ - ﬂ < dr > 9 <,r1{ > ’

where 4(0) is the wave function at the origin, m the particle mass, and L?
the square of the orbital angular momentun operator (let b = 1). Give a
classical interpretation of this equation for the case of a state with angular

momentum # 0.

(Columbia)

Solution:

(a) In the field of central force, the Schrodinger equation is

; . 72
! [1 0 <r2 d)—%] P+ V() = Ev.

“om |2 o \7 Br
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Let |
’l/J(Tv 07 (,0) = R(T) )/lm (6’ 90) = ; u’(r) )/lm (91 90)1

where u(r) = rR(r), and we have for the radial motion

u” + {Qm [E-V(r)] - [—(17—21—)} w=20, (r>0}.

Multiplying the two sides of the above with u’(r) and integrating from
r=0tor =00, we get

/u'(’r)u”(r)dr +/ {Qm[EV(r)} l(’:”} ( ‘(1)>Idr‘(),

For the eigenstates we may assume ' (00) = 0, u(co) = u(0) = 0. With
u'(0) = [R(r) + r R’ (r)],=0 = R(0), partial integration gives

1. 1 , dV(r) .
—5 R*(0) + 3 [Qm / R? dvir i(vz ridr - / ZZ(l + Y R? rdr } =0.
. . 7

ar

Hence

[$(O0)* = — 7*(0)

7

g [ i te o) T

[R(r) Yirm (8, @)] r2drdS2

_ 51; / [R(T) )/lnl (97 80)}

o (52) 4. (5)

(b) For [ #£0, |9(0)|2 =0, and so

() (5)

Its corresponding classical expression is

i ,
3 () Yo (6, ©)]r2drdsy |

or

d 1 L?
= Vir) =
dr <T)

m 3
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dvi(r) . . .
Here F, = —# is the centripetal force, and
2 2 2
1 L* frxv[® 1 s U
— — =m ——— =m = (vsin/r, V) =m 4,
m r r r r

=1Mma,.,

where v is the tangential velocity along the spherical surface of r, is mass
2
. . . . (% .
multiphied by the centripetal acceleration a, = =t The equation thus

expresses Newton’s sccond law of motion.

2018

A spiuless particle of mass m is subject (in 3 dimensions) to a spherically
symmetric attractive squarc-well potential of radius rg.

(a) What is the minimuom depth of the potential needed to achieve two
bound states of zero angular momentum?

(b) With a potential of this depth, what are the cigenvalues of the
Hamiltonian that belong to zero total angular momentum?  (If necessary
you may cxpress part of your answer through the solution of a transcen-
dental cquation.)

(¢) If the particle is in the ground state, sketeh the wave function in the
coordinate basis and the corresponding coordinate probability distribution.
I'xplain carefully the physical sigmticance of the latter.

(d) Predict the result of a (single) measurement of the particle kinetic
cnergy in teris of this wave function. You may express your prediction
thirough one-ditnensional definite integrals.

(e) On the basis of the uncertainty principle, give a qualitative connec-
tion between parts (¢) and (d) above.

(Berkeley)
Solution:
(a) The attractive potential inay be represented by V= =V, where Vg

is a positive constant. For bound states 0 > E > —V. Thus for [ = 0 the
radial wave function R(r) = x(r)/r satisfics the equations

n? d?y

o d)—VOX‘EXq (0 <7 <rg)
K2 d%x

A%W:Ex, (ro <r < o0)
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with x(0) = 0 and x(oo) finite. To suit these conditions the wave function
may be chosen as follows:

x(r) = sinar, 0<r<ry,
x(r) = Bexp (=fr), 1o <r<oo,

where a = % V2m(E+Vy), 8= +v—2mE.
From the boundary condition that at r = rg, x and x’ should be con-
tinuous we get —a cot arg = B. Defining £ = arg, n = Ory, we have

& 4t = 2mVorg [h?,

—Lcoté=m.
Each set of the positive numbers £, 1 satisfying these equations gives
a bound state. In Fig. 2.6 curve 1 represents n = —¢ cot ¢ and curve 2,

€% +n? = 22, for example. As slown in the figure, for a given value of Vg,
to have two intersections in the quadrant we require

27!1,V07'(2) 3\ 2
— 2| = s
h? —\2

92 p?

02 T3
8nrg

or

which is the miniinum potential depth needed to achicve two bound states
of zero angular momentum.

n
3

2 2

™

0 112 3 Lis5°
7 ¥

i
Fig. 2.6

(b) With a potential of depth given above, one intersection occurs at
1 = 0, for which § = v/—-2mFE = 0, ie., E = 0. The other intersection

oceurs at £ +7% = (31)2 je, £ = 3 /1~ (2070)2 and —€ cot £ = 7, ie.,
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1 /3« 2870\ > 3 _ 25T0>2 _
7;(; <7> 1)<37r> cot 5 1 (37r B.

Solving for 3, we get the second eigenvalue of the Hamiltonian,

B ﬁ'lh?
E=— o

(¢) Setting the normalized ground state wave function as

x(r) = A sin ar, 0<r <y,
x(r) = A sin arg explfB(ro — )], r>ro,

we have
o ] o0
2 2
4 / R%r? dr = A7 / u” dr
Jo Jo
e 2 .2 2
v . Y - T
— 47 A? / sin? ardr + 4w A? sin” are”’™
0
oo
X / e~ ¥rdr =1,
Jro
or
1 1 . 2
——— = — (arg — sin arg cos arg) + 5 sin” arp.
ATA? 2« 23

The wave function and probability distribution are shown in Figs 2.7(a)
and 2.7(b) respectively.

It can be seen that the probability of finding the particle is very large
for r < ro and it attenuates exponentially for r > 7o, and we can regard
the particle as being bound in the square-well potential.

(d) The kinetic energy of the particle, Er = p?/2m, is a function depen-
dent solely on the momentum p; thus the probability of finding a certain
value of the kinetic energy by a single measurement is the same as that of
finding the corresponding value of the momentum p, | (p) 2. Here ¥(p)
is the Fourier transform of the ground state coordinate wave function,
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Xir)

]
:

0 : >r
0

Iig. 2.7(a)

0 o

ig. 2.7(h)

o 2
X—(rl emeer/h gy

1 |
(27rh)3/2/ NZT

1 0 T 2m
- - } (T) —iprecos@/h s 2
dn(2rh)? ‘ /0 /0 L el sin 8d@dpr® dr

0(p) 2 = | 9p) 2 = |

2

1 /°° x(r) sin (2) 2
= e — e
S E N (O R

The integration can be effected when the expression for x(r) in (c) is
substituted in the integrand. The average kinetic energy Ep is
p?
2m

ET = <"/’1

"/’1> = Er = (0 [V )

=E +V, / A sin®or - — - dnrtdr
0 T
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sin 2arg )

= Fi+ 27TV0A2 <7‘0 -
200

(e) From the above we see that the wave function in space coordinates
in (c) gives the space probability distribution, whereas the wave function in
p-space in (d) gives the momentum probability distribution. The product
of uncertainitics of one simultaneous mcasurement of the position and the

momentum must satisfy the uncertainty principle
ApAr > h/2.

That is to say, the two complement each other.

2019

(a) Given a onc-dimmensional potential (Fig. 2.8)

V==V, |lz|<a,
V=0, {z]>a,

show that there is always at least one bound state for attractive potentials
Vo > 0. (You may solve the eigenvalue condition by graphical means.)

(b) Compare the Schrodinger equation for the above one-dimensional
case with that for the radial part U(r) of the three-dimensional wave func-

tion when L = 0,

P(x) =r'Ur) Yom(Q),

where () is the solution of the Schrodinger equation for the potential

V==V r<a,
V =0, T>a.

Why is there not always a bound state for Vo > 0 in the three-dimen-

sional case?

(MIT)
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Vix)
\
-a a
_____ O -, - - - ~9X
_VO
Fig. 2.8

Solution:
(a) For the bound state of a particle, E < 0. For [2] >0,V =0 and

the Schrodinger equation

d>  2mE

daz? h?

=10

has solutions

Ae %7 g,
P(x) = {

v’/
Bek* r < —q,
where
2mE
K2

For | z| < a, the Schrédinger equation

K=/

a? ‘!J

2m
EE+hT(VO+E)Z/):O

has solutions
YP(z) ~ coskz, (even parity)

Y(x) ~sinkz, (odd parity)
where
2m(Vo + E)
h? ’
Provided E > —~Vj. Here we need only consider states of even parity which
include the ground state. ) |

k:
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The continuity of the wave function and its derivative at z = +a requires
k tan ka = k. Set ka = £, k'a = 7. Then the following equations determine

the energy levels of the bound states:

¢ tané =17,
€ 4 = 2mVoa® /1.

These equations must in general be solved by graphical means. In
Fig. 2.9(a), curve 1 is a plot of p = £ tan &, and curve 2 plots ey =1
The dashed line 3 is the asymtotic curve for the former with € = /2. Since
curve 1 goes through the origin, there is at least one solution no matter how
small is the vajue of Voa?. Thus there is always at least one bound state
for a one-dimensional symmetrical square-well potential.

8

1
3 |

1

|
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l
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o
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Fig. 2.9(a)
1
3 |
12
1
2

- - — — — —

Fig. 2.9(b)
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(b) For r > a, the radial Schrédinger equation

PU L mE
dr? h? -

has solution U(r) = A exp(—x'r), where
, 2mFE
K = 7? .

d?U  2m
w+F(V0+E)U:0

For r < a, the equation is

and the solution that satisfies the boundary condition U(r)r;)?() is U(r) =

B sin kr, where
2m(Vp + E)
Iﬁ', — T .

The continuity of the wave function and its derivative at r = a, requires
K cot ka = —x'. Setting ka = ¢, K'a = 7 we get

€ cot €= =1,

£+ 9% = 2mVpa®/R2.
These are again to be solved by graphical means. Fig. 2.9(b) shows curve 1
which is a plot of £ cot £ = —5, and the dashed line 2 which is its asymptotic
if £ = m. It can be seen that only when

2
2 4P = 2mVpa? /K% > (g) ,
or
Voa? > ©*h2/8m.,

can the equations have a solution. Hence, unlike the one-dimensional case,
only when Vga? > n2h2/8m can there be a bound state.

2020

(a) Consider a particle of mass m moving in a three-dimensional square-
well potential V(] r|). Show that for a well of fixed radius R, a bound state
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oxists only if the depth of the well has at least a certain minimum value.
(‘alculate that minimum value.

(b) The analogous problem in one dimension leads to a different answer.
What is that answer?

(c) Can you show that the general nature of the answers to (a) al'ld (b)
“bhove remains the same for a well of arbitrary shape? For example, in the

one-dimensional case (b)

V(z)= M(@)<0, a<z<bh,
(

Vi) 0, r<a or z>D,

consider various values of A wlile keeping f(z) unchanged.

(CUSPEA)

Solution:

(a) Supposc that there is a bound state 1(r) and that it is the ground
atate (I = 0), so that ¥(r) = ¢(r). The eigenequation is

R 1 d 5 d (1) = r),
- = <,25¢;(r)) + V(r)y(r) = Ep(r)

2m r? dr

where E < 0, and
V('I) = 0, r > Rv
V(T) = —‘/07 0<r< R,

with V4 > 0, as shown in Fig. 2.10. The solution is

vir)
A
R
o) Y
-

Fig. 2.10
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. 2m(E + V
Asin(kr)/r, r<R, k= —-—(-52—0) ,
() =
; —-2mkE
Be K7 [y, r>R, k= 5z

where A and B are normalization constants. The continuity of 4 and P’ at
r = R, or equivalently

a(ri(r)iop- = Wbl _pe
gives

k cot (kR) = —K,

while the definitions of k, k' require

2mVy

B2+ k72 = -
+ h?

These equations can be solved graphically as in Problem 2018. In a
similar way, we can show that for there to be at least a bound state we
require

2mVy R? > <7r>~’ 7

h2 2
lLe.,
212
=l
Vo > .
0= SmR?

(b) If the potential is a one-dimensional rectangular well potential, no
matter how deep the well is, there is always a bound state. The ground

state is always symmetric about the origin which is the center of the well.
The eigenequation is

d? 2m

where, as shown in the Fig. 2.11,

V(il?) = —-W, (V() > 0), IIEI < R/?,
V(z) =0, x| > R/2.
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Fig. 2.11

For bound states, we require 0 > E > — V. As V(z) = V(—x), the
equation has sohution

R

A cos(kzx), |z|< 5

P(=) —

I3 R
BC_klx\, lml>—2_a

- oy

where k. k' have the same definitions as in (a). The continuity of + and
y

at x = —122 gives

tan(kR/2) = k' /k .

or VO

E+Vy’

E+Vy
cos (kR/2) =+ Vv,

Since Vp > —F > 0, there is always a bound-state solution for any V5.
(c) For a one-dimensional potential well of arbitrary shape, we can al-
ways definc a rectangular potential well V. (x) such that
Vi(z) = Vo, lz| < R/2,
Vi(z) — 0, |z | > RR/2,
and —V, > V(x) always (see Fig. 2.12). From (b) we see that there always
exists a | o(x)) which is a bound eigenstate of V,(z} for which

<’l/)0 ([)()> <0.

sec?(kR/2) =

1e.,

2
2L vi(a)
2m
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Vix)

Fig. 2.12

"/)0> < <'l/10

Since

P2
Rl Sy
2 T Vi) + Vile)

<"/)U 1/)()> < 0.

This means that there is always a bound state for a oune-dimensioual
well of any shape.

< o

“/)0> )

»
2m

we have
2

p
— + V(z
2m + V()

2021

. . . C
Calculate Green’s function for a nonrelativistic electron in the potential

Vir,y z) =oco, <0, (anyy, z)
V(g,9,2) =0, >0, (anyy, )

and evaluate | G(r, r', ¢) [2. Describe the evolution in time of the pattern
of probability and interpret physically the reason for this behavior.
(Berkeley)

Solution:
The potential in this problem can be replaced by the boundary condition
G(r,1’,t) = 0 and 2 = 0. The boundary problem can then be solved by

the method of images. Suppose at r” is the image of the electron ab r'

about 2 = 0. Then

(Ghdy — H)G (r, r', t) = 6(1) [6(r — ') — 6(r — 1x"")]. ()
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The Green’s function is zcro for ¢ < 0 and for « > 0 is equal to the
x> 0 part of the solution of (1). Let

1

G(r, ', t) = G

/ Bk / pile-T—iwt G(k, r', w)dw. (2)

We have ih0,G = hw(G and H = "% and the substitution of (2) in (1)

21 0 ©
gives
Gk, r',w) = ——_l“ﬁ (et ey, (3)
hUJ h2k
~ 2m

Re-substituting (3) in (2) gives

7 ! 1 37 ik - r—iwt (()'V'i’k‘r[ — (’,_ik'r”)
G(I‘,r,t):m/d k /I ¢ PO dw . (4)

2m

We first integrate with respect to w. The path T is chosen to satisty the
causality condition.

Causality requires that when ¢ < 0,G(r, ', t) = 0. First let the polar
point of w shift a little, say by —ie, where £ is a small positive number.

Finally letting € — 0, we get

i hk? o et
Gl v, 1) = s [ e (m . r—z-g-,;t) (e — et d'k

1 m 32 im(r —r')?  Jam(r —x'")?
== xp |————| —exp |/ | ¢ -
Pl 1| P 2w )

Hence when both  and ¢ arc greater than zero, the Green’s function is
piven by (5); otherwise, it is zero. When z >0 and t > 0,

Gr, v 1) 12 :% [2‘%]3

X {2 -2 Reexp(% 2 —r"*—2r  (r - r”)]) }

If the potential V (2, y, z) were absent, the Green’s function for the free
space, |G(r, r', t)|?, would be proportional to t~3. But because of the
presence of the reflection wall the interference term occurs.
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2022

An electron moves above an impenetrable conducting surface. It is
attracted toward this surface by its own image charge so that classically it
bounces along the surface as shown in Fig. 2.13.

(a) Write the Schrodinger equation for the energy eigenstates and cnergy

eigenvalues of the electron. (Call y the distance above the surface.) Ignore
inertial effects of the image.

y

Fig. 2.13

(b) What is the = and z dependence of the eigenstates?
(c) What arc the remaining boundary conditions?
(d) Find the ground state and its energy.
[Hint: they are closely related to those for the usual hydrogen atoin).
() What is the complete set of discrete and /or continuous cnergy eigen-
values?

(Columbia)
Solution:

(a) Figure 2.14 shows the electron and its image. Accordingly the elec-
tric energy for the system is V(r) = £ 37, ¢, Vi= e - 3y T gl=
—e?/4y. The Schrodinger equation is then

2 €

12 2
(—% Ve — @> vz, y, z2) = EY(z, y, 7).
(b) Separating the variables by assuming solutions of the type
(@, ¥, 2) = Yn (y) $(, 2) = Pn () b (2) b2 (2),
we can write the above equation as
h? 42

‘% Eg_ﬁ U, (y) - ZT; Un (1/) = Ey"/)n (y) , (1) i
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Y
elx,yz)
1
i
1 S
1
)
l
elx,-y,z)
Fig. 2.14
W d? 24
(k) = — P (x),
" 9m dx? ¢z (%) 2. ¢ ()
. . 9
R d? p:
el - Yz x),
_Zrz dzz d)z (z) 2 ¢z( )
with ) N
pe P _p
Byt 2m tom
i > 3 3 are constants
Note that since V(y) = —§; depends on y only, p, and p;

of the motion. Hence
i(paztp.2)/h
#(z, 2) = bo (2) b= (2) ~ € (pawtp2)/h
and | 7
b, y, 2) = P (y) PP

(c) The remaining boundary condition is ¥ (x, y, z) = 0 for y < 0. )
(d) Now comnsider a hydrogen-like atom of nuclear charge Z. The Schro-

dinger equation in the radial direction is

: 2
Ro1d o, dR f@R+—~l(l+1)2h R=ER.
T om 12 dr dr r 2mr
On setting R = x/7, the above becomes
2 g2 ;2 I(1 +1)R?
By ze MEDR o

om dr? r 2mr?
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In particular, when [ = 0 we have

-2 v =R 2
2m dr? r X X @)
which is identical with (1) with the replacements r — Y, Z — . Hence the

solutions of (1) are simply y multiplied by the radial wave functions of the
ground state of the atom. Thus

)

7\ 3/2
Yi(y) = yRio (y) =2y <;> e Pl
where a = % With Z = %, we have

- me2\ */? me2y
1 (y) = 2y i oxp |- oz |

Note that the boundary condition in (c) is satisfied by this wave func-
tion. The ground-state energy due to y motion is similarly obtained:

5 Z’me“_ me?
v 22 T 32R2

(e) The complete energy eigenvalue for quantum state n is

4
me 1 2 2 .
En,pr,pz:‘mﬂL%(mﬂLm), (n=1,2,3,...)

with wave function

1
e ©) = ArFas () 50 [ 1 p.7)]

where A is the normalization constant.

2023

A nonrelativistic electron moves in the region above a large flat

grounded conductor. The electron is attracted by its image charge but
cannot penetrate the conductor’s surface.

] 169
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(a) Write down the appropriate Hamiltonian for the three-dimensmnz?l
motion of this clectron. What boundary conditions must the electron’s
wave function satisfy?

i s e evels of the electroi.
(b) Find the energy levels o . - _
(¢) For the state of lowest energy, find the average distance of the elec

? P
; » conductor’s surface. .
tron above the (COlumbm)

Solution: | |
(a) Take Cartesian coordinates with the origin on and the ‘z‘—ax‘ls p:ﬁ;

pendicular to the conductor surface such that the co_nductf)r.()z(,ll‘pxezt(;n;

half-space z < 0. As in Problem 2022, the electron is subject to a pote

tial V(z) = — % Heuce the Hamiltonian 1s
1 2 2 2) o i
1= et py v ry)

W[ o 02+0'“’>ff
:*%(@”waz 1z

The wave fuiction of the clectron satisfies the boundary condition
W(w, y, z) =0 for z <0. o
( (b) As shown in Problem 2022 the cnergy eigenvalues are

11
Lo,2, 2y MC =~ ,_123..)
Bu= g 240 g o

(¢) The ground state has energy

4
me
2 2y _ T

and wave function

Az
¢100 (:177 Y, Z) = 0‘13/2'

e,

where

,  4h?

— 5
me?
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and A is the normalization constant. Hence
oy — S oo 2 Y100 dz dy dz
[ %00 Y100 dx dy dz

oo
B -[0 236——22/11’ dz

=24 -
o0 7
fO z2e—2z/a dz

3 (2)3
()2
_ 3 o - 6h?

2 me2

e e L et

3. SPIN AND ANGULAR MOMENTUM

3001

Consider four Hermitian 2 x 2 matrices I, o1, o2, and o3, where [ is the
unit matrix, and the others satisfy o; o; + o;0; = 2045.
You must prove the following without using a specific representation or

form for the matrices.

(a) Prove that Tr(s;) = 0.

(b) Show that the eigenvalues of o; are +1 and that det(o;) = —1.

(¢) Show that the four matrices arc linearly independent and therefore
that any 2 x 2 matrix can be expaunded in terms of them.

(d) From (¢) we know that

3
M= mOI+Z ™mio;,

=1

where M is any 2 x 2 matrix. Derive an expression for m; (i =0, 1, 2, 3).

(Buffalo)
Solution:
(a) As
o0 =—o;0; (i#7), o50;=1,
we have
0, =0,0;05 = —0;50,0;,
and thus

Tr(o;) = —Tr(ojo,05) = =Tr(o,050;) = =Tr(o:).

Hence Tr (o;) = 0.
(b) Suppose o; has eigenvector ¢ and eigenvalue A;, ie.

oid =M.

Then
Gioip =0 Nd = Nosd =M.

On the other hand,
g0 =1¢p=2¢.

171
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Hence

=1,
or

A= +1
As

TT(Uq_') = /\1 + /\2 = 0,

the two eigenvalues of o; are \y = +1, A, = —1, and so Det(o;) =
AlAg = —1.

() f I, 04,7 = 1,2, 3, were linearly dependent, then four constants
mo, m; could be found such that

3
mol + Z m;o; =0.
i=1

Multiplying by o; from the right and from the left we have

3
mo 0oy +Z m;o;0; =0,
i=1
and
3
Mmoo, +Z miojo; =0.
i=1

Adding the above two equations gives

2myoj + Z m; ((in'j + O'J'Ui) +2m;I =0,
it
or
moo; +mil =0.
Thus
Tr(moo; + myI) =mg Tr(o;)+2m; =0.
As Tr(o;) = 0, we would have m; = 0, and so mgy = 0. Therefore the

four matrices [ and o; are linearly independent and any 2 x 2 matrix can
be expanded in terms of them.
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(d) Given M any 2 x 2 matrix, we can write

3
M =mgl +Z ™m;o; .

i=1

To determine the coefficients mq, m;, take the trace of the above:
Tr(M) =2my,

or l
me == Tr(M).
2
Consider \
oM =mgo; + E m;o;0;,
i=1
and .
Ma; = moo; + E mio; ;.
i=1

Addiug the last two equations gives
o;M + Moj; = 2mgo; +2m; 1.
Thus
Tr{oc;M + Ma;) =2Tr(o; M) = 4m; ,

ar

1
mj =5 Tr(o; M).

3002
The three matrix operators for spin one satisfy sz s, — sy sz = 15, and

cyclic permutations. Show that

53 =5, (sctisy)’=0.

( Wisconsin)
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Solution:

T i ' Spi
N th matrix forms of the spin angular momentum operator (s = 1) in
the (s » ati i i o
(%, s.) representation, in which s2, s, are diagonal, are
el

()

=~ 751:—1‘0"
V2 \o 1 0 J\/ioié’
1 0 0

S, =10 0 0
0 0 -1

Dircct calculation gives

y Lo 0 1o o
s, =10 0 0 =10 0 0] =s,
00 —1 00 -1 ’

<o
e}
o]

3]
(el
<

~~

o

3

_+_

.

v

&

p—

<,

I
1

Sl sl-
= oo o
bo e )
k=) Do
\_‘/\__/

Il

<

3003

knOThree matrices Z‘VII, M,, }‘\/[z, each with 256 rows and columns, are
wn to obey the commautation rules [M,, M, | = iM, (with cycli
mutatlo‘ns of z, y and z). The eigenvalues of tﬁe matri:z M, aréy£;C (f;e;r};
;gcte, +3/2, each 8 timesg *£1, each 28 times; £1/2, each 56 times; a’,na O
1mes. State the 256 eigenvalues of the matrix M2 = M2 + M2+ M2 7
Z /) z*

(Wisconsin)
Solution:

M? commutes with M,.

So we ¢ .
[M, M,). Then an select the common eigenstate

M? | M, M,y =m(m +1)| M, M,),
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For the same m, m, can have the values tm,m —1,..., —m, while
112 has eigenvalue m(m + 1). Thus
Fn Mg M2 =m(m + 1)
- = I _
2 +1 } each once 6 5x 1 =25 times
0
: 15 .
3/2 3/2 each 8 times it 4 x 8 = 32 tumes
+1/2 1
+1 o . ny .
1 o ecach 27 times 2 3 x 27 = 381 imes
1/2 +1/2 each 48 times % 2 x 48 = 96 times
0 0, each 42 times 1 x 42 = 42 times
Total 256 eigenvalues
3004

A certain state |10 is an eigenstate of L2 and L,
L2[g) =1+ 1) R2|%), L.lp)=mh|y).

For this state calculate (Lg) and (L2).
(MIT)

Solution:

As [, is a Hermitian operator, we have

Loty =mh|$) = (Y| L. =mh{i].

Then
Fa) = ) = [y Bl 1) = o (0] By B = B Ly 10
<”L>_‘<1/)‘E yy Mz —Zh y&iz z iy [
mh 5 -
= Tn () Ly)9) — () Ly |4)) = 0.
Considering the symmetry with respect to z, y, we have
;2 coy _ Lozo soy _ Lra 5o
<Lz>j<Ly>_§<JI+Ly>_§< Lz>7
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and so

N IO
(L2) = 5 WIE2 = E2Jw) = (it + 1) — m?] 2.

< 15( b W .
“, can a ) De Cal(, l
u ated USIIlg t he IaISIIlg aﬂ(l 10 wer Illg Op(‘I ators

3005

r]- h(, Upln fllllCthIlo fOI’ A fI’E‘e € lecl,ron 1m a I)dSL) W hE‘IC SZ 15 11 lg lldl
can he WI IH,E‘,II as ( ) a (l wit h €1 Val S Qg C g +1 2 dl( l( _’ ()l 2
a; 0 Il ( 1 ) gCH ues ()f S bClﬂ / (1C /
I(’Ape(,llvely. s g S bas ﬁ Illrll 7 Pg?llhl 1Ct1 I ! S Wllh

b I\(i a IIOoT A1l JCd > A’,
. /U\lﬂ y ¢ hl l' asls Cl10 O 1y

(MIT)

Solution:

It the diagonal i G
> 1l represe ; 32§ .
£0Na presentation of §°, §,, we can represent Sy, by

Let the required eigenfunction of §, be o, = (3)- Then as
b . A

(o) ()= 6)

we have a = ib, and so o, = b (;)
Normalization

oy oy = b*(i, 1) (;>:2b2 ,

gives b = L. Hence
oL (F)
V2 1

V2
3006

Consider a spinless particle represented by the wave function

Y=K(@x+y+2z)e

?
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where 7 = /22 + y2 + 22, and K and « are real constants.

(a) What is the total angular momentum of the particle?

(b) What is the expectation value of the z-component of angular mo-
mentum?

(c) If the z-cowponent of angular inomentum, L, werc ineasured, what
is the probability that the result would be L, = +h?

(1) What is the probability of finding the particle at 6, ¢ and in solid
angle d§)? Here 0, ¢ are the usual angles of spherical coordinates.

You may find the following expressions for the first few spherical har-
monics useful:

/1 +1 3 g tid
Yy = . Yo = ;E\/;sm()c ¢,
3 | /15 ;
Yl() = \/i cos b, YQJ:1 T4/ — sinf cos feti®
4 BT

(CUS)

Solution:

The wave function may be rewritten in spherical coordinates as
o = Kr(cos psing -+ singsiné + 2cos8) e,
its angular part being
(8, ¢) = K'(cos psinf + sinpsint) + 2cosb),
where K7 is the normalization constant such that
) v 2T
K™ / db / sin @ (cos ¢sin 6 + sin psin @ + 2 cos 0)*de =1.
Jo Jo
Since
Loig , —id . L g —ie
cosd = 5(0 +¢7*?), sing = ;Z«_(e —e '),
i

we have

P . 1 . )
(8, §) =K' B (e + e ') sinf + > (e — e7™) sinf + cos 29} ,
1

1 8 1 /8 4
K'[-E(pi)\/gylwz(ui) %Y{lw\/gyl"].
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‘The normalization condition and the orthonormality of Y,

or

and thus
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™ then give

|l 8T 1 8x 4
K? - 2 dm)
{2 3 T3y T4 :3J =1,
KoL
87’

(o, ¢) \/‘[ﬁégﬁi)\/%w
%1+z \/_Yl+2\/EY°J

(a) The total angular momentum of the particle is

VIR =

VI{L+1D)h=v25h.

as the wave function corresponds to { = 1.

(b) The z-component of the angular momentum is

WNLAM:K”F

5

81 1

TR %(__ﬁ)(y;l)z

F ooy

_ 118
8t (2

™ 1 87
§4+®+§-§%~m}:0

(¢) The probability of finding L, = +h is

P=|(L, = +h|¢(6, ¢))|?

_1
T 87

1 8« 1

2 3 G-

(d) The probability of finding the particle in the solid angle df) at 0,y

[

) (8,

p)dQ =

1
[sm B(sin ¢ + cos ¢) + 2 cos0]2 d2 .
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3007

A particle in a central potential has an orbital angular momentum [ = 2h
aud a spin s = 1A. Find the energy levels and degeneracies associated with
A spin-orbit interaction term of the form Hy, = AL - S, where Als a
vonstant.

(MIT)

Solution:

Choose {H, J2, J,, L?, S} as a complete set of mechanical variables.
'The wave function associated with angle and spin is ¢ ,1,, for which

Jz(/ﬁjmjls = h'zJ(J + 1) ¢jmjls, Lz(ijn_,-ls - hzl(l -t 1) d)j'mjls )
SQ(ﬁjvynJ[‘g = hzs(-‘; + 1) (b_jnzjls: sz)jm.j ls = ﬁ"’n'j (ff)j'mjl.s )
with .
Hm:AL-S:EAQ“—L”A§%

as J =L | S. Thus the energy levels and degeneracies are respectively

P = %A[j(j + 1)~ (I +1) ~s(s +1)]

2AK2, =3,
= —A}#, _/ :2,
—3Ah%, j=1,
7, j=3,
d=2j+1=<¢ 5 =2,
3, j=1.
3008

One can show that the “raising” and “lowering” operators for angular
momentum, Jy = J, £ 4Jy, commute with J?, and that, if j, n are the
eigenvalues of J, .J,, then

Ji|d, m) = EViG+1) —m(m=£1) |j,mtl),
for appropriately chosen phase conventions of the state vectors. Use these

properties to express those states | j, m) for which m =1 - 1/2 in terms of
the states |1, my; s, my) with s =1/2.

(MIT)
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Solution:

According to the theory of angular momentum coupling, the possible

values of t . > are j = j !
a ue;s of the total angular momentum are § =1 + 1/2 and J=1-1/2 for

S = =

5-

(a) For j =1+ 1/2, siuce |1 +1/2, 1 + 1/2) = [1,1; 1/2,1/2), we have
JANU+1/2, 1+ 1/2) = (L + S )L, ; 1/2, 1/2).
Using the properties of J_, L_ and S_
1 1 1 1
LA S AV R I 1\—>
2 2’ 2/

L.\l 1

B[ =

2

. 11 1 1
S lv l: TP A £ N
’ 5 2> h‘l, [ 5 2>

m the above cquation, we get

1
'1+—71_1>:\/I ll—-l-l 1
2 2 20+ 1 |7 2002
[ 1 1 1
+ A S
2/+1’l’l’2’ 2>'

1 1
Li-1; §>+b

1
, ~>=h\/2—lll,l\1; L 1>
22/

1

(b) For 5 =1 1/2, Yot

1 1
l“?’“§>“

1 1 1 1
I+ =, 1-Z]1-2,1--)=
< 5 2‘1 5o 2>_0, (1)

1 1 1 1
[ B LAY
< 5! 2’1 70! 2>“1- (2)
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Using the result of (a), Eq. (1) can be written as

2 llfl‘l 1+ ! 1z-1 L
2041\ 272 2041\ 727 2
1 1 1 1
iLl—1;, =, = bl =, —=
(efertge5)vefrng -3))
= 2 41 L =0
W T "WWau

Similarly, . (2) can be written as

a?+b¥=1.

The last two equations show that a,b arc both real and can be taken as

w=—~/1/(21+1), b= +/21/(2l+ 1). Hence

1 1 [ 1 11
I- 2 l—y=—y/=—=|LI-1 -, ¢
’ 2’{ 2> 2z+1l’ 1’2’2>
[ 2l 1 1

— L=, —z).
* 21+1l”2’ 2>

3009

Suppose an clectron is in a state desceribed by the wave function

1 .
\ 220 <
h = e'?sind + cosd) g(r),
‘/ i ( ) g(r)

where

oQ - .
/ fg(r)*ridr =1,
Jo
and ¢, 8 are the azimuth and polar angles respectively.

(a) What are the possible results of a measurement of the z-component
L, of the angular momentum of the electron in this state?

(b) What is the probability of obtaining each of the possible results in
part (a)?

(c) What is the expectation value of L.?
( Wisconsin)
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Solution:

(a) As

/3 3 .
Yip = ECUSQ, Yig = $\/;sineeiwb,

the wave function can be written as

= \/g (—V2Y, + Yio)g(r).

Hence the possible values of I, are +h, 0
(b) Since

o 1 00 L ™ 2z
/ [ |7 dr = o /{) [g(r) |2 r2dr /0 dg / (14 cos ¢ sin 20) sin § de
. Jo

1 i
25/0 sin@df = 1,

the given wave function is normalized. The probability deusity is theu given
by P = |4 |*. Thus the probability of I, — +/ is (
of L, =0is (7§)2 or 1/3.

(c)
/ W* L, pr? sin Od 0d pdr :/ {\/E (—V2 Y1, + Yo ):l
X i[z l:\/g (*\/EY“ -+ Yu))}

x| g(r) *r? dr sin 6 do de

2 " 2 )
=Zh , Pdg == h
: h/o @ | Vg =2

\[) or 2/3 and that

3010

It U(8, §) refers to a rotation through an angle 3 about the y- axis, show
that the matrix elements

GmiUB, 94, m')y, —j<m,m <j,
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e polynomials of degree 25 with respect to the variables sin (8/2) and
v (3/2). Here | 3, m) refers to an eigenstate of the square and z-component
of the angular momenturn:

P1gm) =3+ 1)K G m),
3z | 4m) = mhl| g, m).

( Wisconsin)

Solution:

We use the method of mathematical induction. If 3 = 0, then m =
o/ = 0 and the statement is obviously correct. If j = 1/2, let

~  h o h (0 —i
Jy = 5% =5 \i 0)°

3 M A —— oy A -
Consider Pauli’s matrices oy, where k = %, y or z. Since

. ; . 1 0
(Tf:(f,zl(fﬁi(o 1>7

tlie unit matrix, we have for o =constant

ticoy)?  (Liaoy)?
iagy | (tiooy)? | (Eaok)”
1 2! 3!

a2l
= 17§+14‘“
[¢3 (Ys 015 .
+ 1o 1'*3—!4‘”5_!""'

=cosc t oy sin .

exp (Licop) =1+

Thus
AN h) :(‘oqg—ia siné
U(B, §) = exp(=if3,/h) =exp P VT
g s
—= COS 5 — f Jy sin —2—,
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1 1 1 1
<§,m’Ul—2—,m’>;<§,m o m,’>
5 . a 2 /1 N . 3
=O0mm?’ COS — — — ( — m Ty ysm — .
2 h\2 2 2

As the matrix elements of }1, in the second term arc independent of 3,

exp ('“ Zﬁ.}y/}i)

Jy

(1/2, m|U|1/2,m’)

is a linear homogencous form of cos (4/2) and sin (8/2) and the statement
Is correct also.

If the statcment is correct for 7, ie.,

(5, mU |7, m") = (j, m|exp [~'iﬁj!,/fL] | 7, )

2 2j-n I
= Z A, (COS E) (sin E) )
2 2

n=0

where A,, depends on j, m, m’, i.e.,
A, =4, (5, mm),

we shall prove that the statement is also correct for jH+1/2 LetJ ] +1,

where the quantum numbers of j and i1 are J and 1/2 respectively. We can
expand

|J,m) =]+ 1/2, m)

in the coupling representation using terms of the uncoupling representation:
. n 1 1 1
y m a9 PN
PMTS )2 e
. INIT 1
]7 m 2 2 ? 2 7

where C} and C, (independent of 3) are Clebsch-Cordan coefficients. Ap-
plying the expansion to

.+1
J iam

1 .
’j+§,m>:Cl

+

exp [—iB(Jy + J1y ) /H]

I
L y
I3
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we reduce the procedure to calculating the matrix elements

1 1 1
1 1 o EVIE LY
<%7:F§‘<]) ’”Li:z‘ g, m i2>l.27 :’:2>
1 1 1
1 1 . 1 S AN A
<§7i§ <]y YFL:Fi J, m :Fz>]27 2>
For example,
1
11}/, 1 o, _>
o3 y + = 7, m +
<2’2‘@”"+2 2
1 1 D
={ =, —=lexp|—iBh,/h ’
<27 2 I [ ly }
. n 1
’ ) —
x { 4,1 5
. 29 29-m A n
g B ha - h
= (al (',()S% 4+ by sin E) E A, ((os 5 sin 5

=0

2(”'%) 1 i 2(] F-‘i‘)’l ) b» !
= Z B, <] 5 m'> ((:os 5) <s111 5 )

1==0

cXp [*iﬁ(ﬁy 4 j]z/)/h]

oxp [Ty + J1y)/ 1)

CxXp [‘LBgy + jl‘y)/h]

L
)

. ] 1
exp [—107y /P '], m’ - §>

Do —

Thus the statement is also valid for 7 +1/2. That is to say, the matrix

clements
Gy m OB, 9) Uy m') = (G, el exp(=ifiy/B) |4, m')

are polynomials of degree 25 with respect to the variables cos (3/2) and

SN (ﬁ/Q)

3011
An operator f describing the interaction of two spin-1/2 particles has

Lhe forin
f=a+boy - o2,

. L ’ i
where a and b are constants, oy and o are Pauli matrices. The total spi

. . - _ R )
angular momentum is J = ji +j2 = 5 (01 + 02).
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(a) Show that f, 3% and J, can be simultaneously measured.
(b) Derive the matrix representation for f in the | J, M, ji, 72) basis.
(Label rows and columns of your matrix).

2 2 .
=adyy dppmr + 0 liﬁ‘]/(.]l—i-l)h —3]

X 85 Spm

(c) Derive the matrix representation for finthe | 41, 42, my, my) basis. o+ 2bJ(J + 1) 368,150 Sarnss

(Wisconsin)

Solution: where J, M are row labels, J', M' are column labcls. T y
) _ 1 . =1 an = as
: Denote the state of J = 0 and the state of J z
(a) f, 3% and J, can be measured simultaneously if each pair of them ((I:l)d ¢ respectively. Since j; — jo = 1/2, we can denote the state
B ‘v a y 25 . A

co_rtr}lmut.& Wet kntow that J2 and J, commute, also that either comniutes ‘\;1’ i ;1111:4m2> simply as | m1, ma2). Then as
with a, a COI.IS.a.Il,. ‘ X . . -

From definition, j Xo = — { \ = %) "7 505 ,

. 212 2 2
Jzz%(of—l—ag-l—?(n'tfz), ‘ S 11 +‘Al l>},
XIO - \/5 2 ’ 2 2 2
or
272 1 11
(e8] UZ—F 2((7‘12‘*'0'5) Xlil::lljti,:ta ;
Now for cach particle we have , .
02:054—05—!—03:31, igyi§>:X1,ilv
I being the unit matrix, so 1 i 1
’ -, —= :_(X0+X10)a
o2 27 2 V2
0’1-0’2:§‘3- 1 l *L(—XO+X10)~
H 272 V2o
ence

Using the above expressions and the result of (b) we can write the matrix
clements (my, ma | f|{m], m5) in the basis | 41, 32, M1, ma) as follows:

[Jz’ f] - [J27 a] + b[J27 o] - 0'2]

2
~b[J2,£~B] =0,

e my,myl 111 1 101 b ,%
) ‘ my, ma 272 27 2 2”2 2
2J
[Jz,f}wz,aub[Jz,—fs]:o L1 aib 0 0 0
R 2 2
Therefore, f, J? and J, can be measured simultaneously. %, v% 0 a—b 2b 0
(b) In the | J, M, j), 2) basis, >
11 0 2 a-b O
(s M, g1, Go | f 1T, MY, Gy, G2) = abagr Spaarr 4+ b(J, M, 5y, ja | o1 - 009 2 ?
1 0 a+b
|']/a A'Ilv j17j2> 457 __2_ 0 0
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3012
Consider the following two-particle wave function in position space:
p(r1, 12) = £(r}) 9(r3) [a-11) (b-r2)+8(b-11) (a-12)+7(a-b) (r1 -r2)},

where a and b are arbitrary constant vectors, f and g are arbitrary func-
tions, and «, @ and «y are constants.

(a) What are the eigenvalues of the squared angular momentum for cach
particle (L and L3)?

(b) With an appropriate choice of a, 8 and =, #2(r(, r2) can also be
an eigenfunction of the total angular momentum squared J? = (L + La)?.
What are the possible values of the total angular momentun squared and
what are the appropriate values of «, 8 and v for cach state?

(MIT)
Solution:

(a) We first note that
Vi) =f) -

‘Jv-s

or

ex Vf(r) =) =0,

and that
rxV{a-r)=rxa,
(rxV)-(rxa)=-2a-r
AsL=rxp= —ilhr x V, we have
L3 (r1,r2) = = B (ry x Vi) - (11 x Vi) {f(r]) g (r3) [(a - £1) (b - r2)
+pB(b - ri)(a - r2) +y(a- b)(ry - r2)]}

== f(r})g(r3) (ry x V1) - (11 x Vi) [a(a - v1) (b - 1r2)
+8(b - ri)(a-r2)+vy(@- b)(r - r)]
=~ B2 f(rDg(rd) (r1 x V1) - {a(r; x a)(b - ry)

+ 8(r; xb)(a - rz) +v(a - b)(r; X r3)]
=21 f(r})g(r3)[a(a - r1)(b - r2) + B(b - r1)(a - )

+7(a - b)(r1 - r2)]
=1(1 + 1) A%¢(r1, 12),
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and similarly
Lgl/)(ll . 1“2) = —ﬁz(r2 X V2) : (1‘2 X V2)1/)(I‘1 : 1‘2)
=1(1+ 1) R2(ry, 12) -

i ‘ : . -2
Heuce the eigenvalues of L? and L3 are cach equal to 2A%, and so each

particle has the quantum number [ = 1.
(b) We further note that

(rxV)-(a-rje=(rxa)-c,
(axb) - (de):(a»c)(b-d)~(a-d)(b - c).
Thus we require
Ly - Log(ry, r2) = — B2(ry x V) - (r2 x V2) {(f(r1)g(r3) [ea - 1)

x (b - 1)+ B(b - r)(a-r2) +y(a- b)(r - m2)]}

= W[} g(r3) (1 x V1) - (r2 x Va)[a(a-11) (b - 12)
+6(b - r)(a-r2) + (@ b)(r - 1)

=~ W f(r})g(r5) (x1 x V1) - [a(a - 11)(r2 x b)
+B(b - r)(ry x a) +7(a - b)(rz x r1)]
=~ B f(r{)g(r3) [a(r1 x @) - (r2 X b)
+B(r; xb) - (rz2 x a) +v(a - b)(2ry - r2))
= K f(r})g(3) [-Ba-r1)(b-r2) —a(b 1) (a-r2)

+(a+8+27)(a- b)(r1 - r2)]
= — W AY(ry, 12)

) o
(

for ¢(ry, r2) to be an ecigenfunction of Ly - L. This demands that
—ﬂ:A(J, _Q:Aﬁv (¥+ﬁ+27:>\’7,

which give three possible values of A:
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, Thezrefore the possible values of the total angular momentum squared
2 _ 2 7
J° = L{ + L3+ 2L, - Ly, and the corresponding values of o, 3 ¢ ¢

g , 0 aud v are

2(2+ 1)Rr%, <(1 =0= g'y>
J? =92h% 1 287 — 2R°A =

11+ DR, (o= -0, ~v= 0)
0. (a=03=0)
3013

A quz ~ Tianieal ot P ; : ;
;u(mt.um mechanical state of a particle, with Cartesian coordinates
x,y and z, 1s described by the normalized wave function

ez, y, 2) = o/ zexp|— (22 4 32 2\1/2
Jr pl—a ye 4 27) e

' Show that thie system is in a state of definite angular mowmentun and
give the values of L? and L, associated with the state.

(Wisconsin)
Solution:

Transforming to spherical coordinates by

x=7rsimbeosp, y=rsinfsing, z=r7rcosh,

we have
«5/2

Wir, 8, o) = 7 rcosfe " = f(r) Yy .

Hence the ‘parti(:le is in a state of definite angular momentum. For thig
state, [ =1, L = [(I + 1) h? = 2K2, L, = 0.

3014

A frec atom of carbon has four paired electrons in s-states and two more
electrons with p-wave orbital wave functions.

(a) How many states are permitted by the Pauli exclusion principle for
the latter pair of electrons in this configuration?
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(b) Under the assumption of L-S coupling what are the “good” quantum
numbers? Give sets of values of these for the configuration of the two p-wave
clectrons.

(¢) Add up the degeneracies of the terms found in (b}, and show that it
is the same as the number of terms found in (a).

(Buffalo)

Solution:

(a) Each electron can occupy one of the (20 + 1) (2s + 1)=3x2=6
states, but it is not permitted that two electrons occupy the same state. So
the number of permitted states is C§ = 15.

(b) The “good” quantum numbers are L2, 8% J% and J,. Under the
assumption of L-S coupling, the total spin quantum numbers for two elec-
trons, S = s; + s, are § = 0, 1 and the total orbital quantum numbers,
L =1+, are L = 0, 1, 2. Considering the symmetry of exchange, for
the singlet S = 0, L should be evew: L =0, 2, corresponding to 'Sa, ' Dg
respectively; for the triplet $ =1, L odd: L =1, corresponding 3Py 1 2.

(¢) The degeneracy equals to 2J 4 1. For J =0, 2 and 0, 1, 2 in (b),
the total number of degeneracies is 1+ 541+ 3+5 = 15.

3015

(a) Determine the cnergy levels of a particle bound by the isotropic
potential V (r) = kr?/2, where k is a positive constant.
(b) Derive a formula for the degeneracy of the Nth excited state.

(¢) Identify the angular momenta and parities of the Nth excited state.
( Columbia)

Solution:

(a) The Hamiltonian is
H=—(r¥/2m)V* 4 kr?/2.

Choose (H, 2, fz) to have common eigenstates. The energy levels of
bound states are given by

E = (2n, +1+3/2)hwy = (N + 3/2) hwo, wo =/ k/m.
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(b) The degeneracy of the states is determined by n, and I. As N =
2—n,. + {, the odd-even feature of N is the same as that of [. For N even
(ie., L even), the degeneracy is

- N N I N/2
f= > (@+1)=4 > (—+—>:4Z<l’+l>
=8 (Ll even) =0 (leven) 2 4 =0 4
1
:5 (N+1)(N+2)
For N odd (i.e., { odd),
N N :
; (N-1)/2 ‘
F= > @+1)= Y RI-1)+3]=4 > <z’+f
1=1 (! odd) =1 (lodd) =0 4

1
=3 (N+1)(N+2).

Hence the degeucracy of the Nth excited state is f = (N +1) (N +2)/2.
(c) In the common eigenstates of (H, 12, 1,), the wave function of the
system is

wnrl (Ta g, (P) = R(") Yim (9: 90) ,

and the eigenenergy is
Lt — 20y + 14 3/2) Tug .

N As N = 2n, 41, the angular momentum ! of the Nth cxcited state has
E) —?—1 values 0, 2, 4,6, ... , N for N even, or %(N—e— 1) values 1, 3, 5, ...
N for N odd. Furthermore, the parity is 1 7

P= (_1)1 = (*l)N.

3016

The ground state of the realistic helium atom is of course nondegencrate
However, consider a hypothetical helium atom in which the two electrons-
arg replaced by two identical, spin-one particles of negative charge. Neglect
spin-dependent forces. For this hypothetical atom, what is the degenerac‘
of the ground state? Give your reasoning. o

(CUs)
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solution:

The two new particles arc Bosons; thus the wave function must be
symmetrical. In the ground state, the two particles must stay in 1s orbit.
'hen the space wave function is symmetrical, and consequently the spin
wave [unction is symmetrical too. As s; = 1 and s = 1, the total S has
three possible values:

S = 2, the spin wave function is symmetric and its degeneracy is
25 +1=25.

S = 1, the spin wave function is antisymmetric and its degencracy is
285 +1=3.

S = 0, the spin wave function is symmetric and its degencracy is
286+1=1.

If the spin-dependent forces are neglected, the degeneracy of the ground
stateis 5 +3+ 1 =9.

3017

The z-componcut of the spin of an clectron in free space (no electro-
magnetic fields) is measured and found to be +h/2.

(a) If a subsequent mcasurcment is made of the x-component of the
spin, what are the possible results?

(b) What is the probability of finding these various results?

(c¢) If the axis defining the measured spin direction makes an angle ¢
with respect to the original z-axis, what is the probability of the various

possible results?
(d) What is the expectation value of the spin measurement in {e)?
(Berkeley)

Solution:

(a) In the o, representation, the spin wave function is ( (1)), the eigen-
functions of o, are % (1), % (_i), corresponding to cigenvalues +1, —1
respectively. Expanding (})) in these two states, we see that the possible
results of a measurement of s, are +h/2 since §, = éom, the mean value

being zero:

(52) = (1, 0) 3, (é) 0.
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(b) The probabilitics of finding the result to be +2 and —2 are P, and
P_ respectively:

2

Q-
R:%(L—m (é) 2:—;-.

(c) Suppose the spin axis is n = n(f, ¢) =. (sinfcosyp, sinfsin p,
cosf). Then the eigenstates for s, = s - n are

0 .. e _. .
cos = ¢~ /2 —sin — e #/?
2
0 ’ 0 . ’
sin — /2 cos . /2
2 2
corresponding to cigenvalues +h/2 and —h/2 respectively. The probability

of finding the cigenvalues +h/2 and —h/2 are cos? (0/2) and sin? (6/2)
respectively.

(d) The expectation value of the spin is

: h h 0 h .0 h
g P+ (’ é) .= 3 cos® 3 EI sin? 3= 2 cosh.

3018

(a) Consider a system of spin 1/2. What are the eigenvalues and nor-
malized eigenvector of the operator A §,+ B §,, where §,,, §, are the angular
momentum operators, and A and B are real constants.

(b) Assume that the system is in a state corresponding to the upper
eigenvalue. What is the probability that a measurement of 3, will yicld the
value /27 The Pauli matrices are

(01 (0 =i (1 0
=1 0) 7\ o) 27\ o 1)

Solution:

(CUS)

(a) Using the definition of angular momentum operators let

. 1 1
T=A8 + B3 = A5 hoy + B | ho.
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'Then
Y [ 2 2 . 1 2 A2 BQ
(1) = {4 + B 4+ AB{oy, 0:}) = 7 W*(4% & ),
as L o
2 _ . .
o] = <0 1) =1, i=1,2,3,
and

{0y, 0j} = 0y05+ 0500 = 20;5 .

Hence the two eigenvalues of T are
T - LhVAT B T

. ~ N
In the representation of §° and 5.,

Il

J?.hm.

SR

- h , ( B —iA
T:E(Ag!/+BOZ):_<iA AB)

Let the eigenvector be (3). Then the cigenequation is

(5 ) 6) 6

where b/ m 0 )
T=3 0 FVAZ+B? )’

or Bt VA1 B? —iA ) <a> _
( iA ~-BFVA?+ DB?
Hence

a:b=1iA: B¥A?+ B2,

and so the normalized eigenvector is

<7>> - {Amml«m)zrﬁ (BJAA—WLB‘) '

(b) In the representation of 52 and 3,, the cigenvector of 5y Is

)50
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2 2

Hence the probability of finding s, = h/2 is
P ‘ ! (u)(”‘) L i+ b)? (B3 vA* + 157 — A)°
TolveY T\ V2 2(BF VAT B2)? + A7
Note that P_ is the probability correspondiug to the systein in the state

of cigenvalue T = hv A% 4 B2/2, and Py is that correspouding to the state
of T'= —h/A2 4 B2/2,

3019

A system of three (non-identical) spin one-half particles, whose spin
operators are sy, sy and sy, is governed by the Hamniltoniau

H= AS[ . Sg/h2 +B(S; +Sg) : S;;/hz.
Find the energy levels and their degencracies.

(Princcton)
Solution:

Using a complete set of dynamical variables of the system (H, s,
sz, s3), where s10 = s, + 82, 8 = 812 + 83 = 8; + 83 + 83, the eigenfunction
is {512 83 M), and the stationary state equation is

H | s12838m) = E|s10838m,) .

As
1 0
22 2
s]=si=si= " p (0 1)’
Lo 2 2
51 52:5(512 ST —53),
Lo 5
(Sl+52)‘53=§(5 — iy —s3),
we have

~ A B
H:Esl . 52+§(sl +82) - 83

A Lo 3 3
T2 RV g

Bl1 , 1, 3
g s TS gl
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Now as the expectation value of s is s(s + 1), etc., we have

N A 3
H!812 53 .‘a'TfL5> = {5 [.5‘12(312 -+ 1) — 5]

3
+ E [h‘(a‘ + 1) - 812(812 + 1) - ﬂ } '\ 8§12 83 Sms> )
2
and hence
A 3
E= B [812(312 +1) — E]

3
+ % l:b‘(s +- 1) — S12 (312 + 1) — Z] .

It follows that for s12 = 0,8 = 1/2: E = —3A/4, the dogen(:r;(:y }of
: 2 for 19 = 1,8 — 1/2: E = A/A~ B, the

ih erpy level, 25 + 1, is 2; for sj2 = 1,8 = 1/2
e energy s

i

degeneracy of the energy level, is 2; for 3. =1,5s=3/2: B
the degeneracy of the cnergy level is 4.

3020

A particle of spin one is subject to the Hamiltonian H = A.sz + Bs2,
where A and B arc constants. Calculate the energy levels of this system.
If at time zero the spin is in an cigenstate of s with s, = +h, calculate the
expectation value of the spin at time ¢ _

(Princeton)

Solution:

We first find the stationary energy levels of the system. The stationary
Schrodinger equation is

Ey = Hy = (As, + Bs;) ¥,

where
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1s a vector in the spin space. As

0 0 0
$.=10 0 -1 i,
0 1 0
0 -+ 0
s5.= | 1 0 0 h,
0 0 0
0 0 O
s2=10 1 0] K2,
0 0 1
we have
) 0 —iA
H=As, +Bs:=|iA" D
0 0

where A" — Ah, B' = BA?. The energy levels arc given by the cigenvalues

0
0
B

of the above matrix, which are roots of the equation

-E -4 0
Det | :A B - F 0
0 0 B —F

i.e.,

~0,

(E-B)(E*-BE-A)=0.

Thus the encrgy levels are

Fo=B' Ey=(B"+w)h/2,

where w = VB + 44 /k, B" = B'/h = Bh. The corresponding eigen-

functions are

EQ:B/'. Pgy =

£y Ps+ =

b JETRaAr
2 2 )

0
0
1

w~ B’

1

. w+B/I

! w-B" |’
0
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1
B VB?14A” wtB | . [o-B
Bo=g - g VT [T Ve
0

The general wave function of the system is therefore

el C >’ —i—E—+t
Ws(t):cﬂpsoexp —‘Tt + C2 954 €Xp "

E_
+ Cyps— exp | & = B

Initially,
85 s (0) = hpy (0) .-
Let
«
ps(0) =18
~
The above requires
0 — 0 o 167
i 0 0 gl=181.
0 0 0 v 107
Le.,
B=ia, v=0.

Thus we can take the initial wave function (normalized) as

ps(0) = \/ii (l)

Equating ¢, (0) with Cigpso + Caps+ + Cips— gives

(w + B2 4 (w— B')/?
251/2

(w+ B//)l/z —(w— B”)l/2
Cs = 0172 ’

01:07 02:

’
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We can now find the expectation value of the spin:
(52) = @3 (1) Satps (1) = 0,
where we have used the orthogonality of pgo, wsi and pg_. Similarly,
{8, =0,

282 ji?
) =63 Ot~ [1- 22

sin® (wt/2) [ k.

3021

A system of two particles each with spin 1 /2 is described by an effoctive
Harmiltonian

H:A(Slz +521)+BSI - Sy,

where sy and s, are the two spins, s;, and s, are their zZ-components, and
A and B arc constants. Find all the energy levels of this Hamiltonian.
(Wisconsin)

Solution:

We choose xsar; as the common eigenstate of S? = (s, + s5)? and
Sy = S1z + s2,. For § = 1, Mg = 0,41, it is a triplet and is synimetric
when the two electrons are exchanged. For S$ =0, Mg =0, it is a singlet
and is antisymmetric. For stationary states we use the time-independent
Schrédinger equation

Hxsms = Exsars -

As
S*x1ms = S(S+ 1) B xamts = 2K 115, SPx00 =0,
S* = (s; +82)% =8} 485+ 25 - 5y
32 3
:-4—+Z h2+251 - Sy,
we have
523, s 3, h?
S| ‘52X1M5:<2 —Zh> XlMg:(h _Zh>X1MS:Z,X1Ms,
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3, 3,
51'52,3(00(0*17‘11) XOOZ”ZH X00 ,

,Hl(l

S,X1Ms = (812 + $20) Xams = Mshxinrs

SX00 — 0.
Hence for the triplet state, the energy levels are
12

E = MghA + a1 B, with Mg¢=0, %1,

comprising three lines 4
e " ~ A g
ElzhrA-{'zB, EzizB, E;;-—*J/ - 2 -

For the singlet state, the encrgy level consists of only one line

3 .
E() = 45 th.

3022

Suppose an atom is initially in an excited LSy st;.xto (Flg J]) %L-I)(\ subse-
quently decays into a lower, short-lived ' P} state with cmission of a pk.lot.on
1 (Fig. 3.2). Soon after, it decays ito the 1Sy ground state by o,ml?tmg
a second photon 2 (Fig. 3.3). Let 6 be the angle between the two emitted

photons.

Fig. 3.1

Fig. 3.2
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Y, ”\i f Y,

Fig. 3.3

(a) What is the relative probability of  in this process?

(b) What is the ratio of finding both photons with the same circular
polarization to that of finding the photous with opposite cireular polariza-
tions?

It may be of sowe help to know the rotation matrices d,,,,, which

relate one angular momentum representation in one coordinate system to

another angular mowentuin representation in a rotated coordinate system,
given below:

m=1 m =0 o= —1
m =1 Ihcosa 1 Sin oy hl o
, 5 7 < 5
Apprm, = 1) =0 ﬁ sin ex COS (v 4% sin v
, 1 — cosaw 1 . 1+ cosa
m=-1\ ———- — sy _—

2 V2 9

where « is the angle between the z-axis of one system and the z’/-axis of
the other.

(Columbia)

Solution:

The atom is initially in the excited state 'Sy. Thus the projection
of the atomic angular momentum on an arbitrary z direction is L, = 0.
We can take the direction of the first photon emission as the z direction.
After the emission of the photon and the atom goes into the 1 P, state, if the
angular momentum of that photon is L, = £h, correspondingty the angular
momentum of the atomic state ' Py is L, = A, i.e., m, = F1. If we let the

direction of emission of the second photon be the z’-axis the projection of
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the eigenstate of the z-component of angular momentum on the 2’ direction
is equivalent to multiplying the initial state with the dym matrix. Only
atoms that are in states m/, = %1 can emit photon (as L}, = h must
be satisfied) in 2z’ direction and make the atom decay into the 18, state
(m/, = 0). Theu the transitions arc from m = £1 to m’ = £1, and we have

Cy =(my = =1|dyp |, = +1)

1+ cosh L. p 1—cosd
5 7 sin 5
1 1 1
=(0,0,1) | —= sinf cos 0 —— sinf 0
V2 V2
0
1--cost 1 . 1+ cosf
———  — sin# _
2 V2 2
1 —cos 0
. 5 )
Cy = {my = +1|dyry |y 1)
1-+cos@ [ 0 1—cosb
2 7 sin 5
1 1 !
=(1,0,0) | —= sinf cosf ——— ginf 0
V2 V2 0
1 - cos@ 1. 0 1 -+ cosf
5 NG sin 5
L4 cosd
— 5 Y
1—cosf
Cy = ("”fz’ = +1 l drnron l m, — ”l> = —;L’
1+ cosf
Cy={(my = —1|dy|m, = -1) = %

(a) The relative probability of 9 is
P(6) o |Cl|2+|C2|2+|Cg|2+|C4\2: 14 cos2h.

(b) The ratio of the probability of finding both photons with the same

circular polarization to that of finding the photons with opposite circular
polarizations is

(C22+1Ca 1) (1 CL 12+ Cy %) = (1 + cosh)? / (1 — cosh)?.
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3023

Consider an electron in a uniform magnetic field in the positive 2 di-
rection. The result of a measurement has shown that the electron spin is
along the positive x direction at t = 0. Use Ehrenfest’s theorem to compute
the probability for ¢ > 0 that the clectron is in the state (a) 5o = 1/2, (b)
Se = —1/2,(¢c) s, = 1/2, (d) Sy =—1/2,(c) s, = 1/2, (f) s, = —1/2.

Ehrenfest’s theorem states that the expectation values of a quantum
mechanical operator obey the classical cquation of niotion.

[Hint: Recall the connection between expectation values

and probability
considerations].

( Wisconsin)

Solution:
In the classical picture, an clectron spinning with
s I a magnetic field B will, if the directions of s
precess about the dircction of B with an

angular womentuin
and B do uot coincide,
angular velocity w given by

ds

dt
where w = e B, m being the clectron mass, Ehrenfest’s theorem then

states that in quantum mechanics we have

d e
C) = (9 xB.

me

'..:S)((‘)7

This can be derived directly as follows.

An clectron with spin angular momentunt s las a magnetic moment
B = ;= s and cousequently a Hamiltonian
(¢
H:¥[J,'B:*‘B$z,
me
taking the z axis along the direction of B. Then

d{s) T . el3 e O e d o
= — H] = - SaX + 5y Y 822, 82
dt if & thime 52X ¥ gy 523, 5]
eB i
= o {lse, 5%+ 5y, 5.]9)
e . .
— 7% B(-(Sy> X + <3T> y)
e
= B
me s) B,

205
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' . cominu-
in agreement with the above. Note that use has been made of the

i i Sy = b ste.
tation relations [sz, 8y] = ifis;, ¢ | P
Initially (s;) = 1/2, (sy) = {52) = 0, and so we can wr ,

50 = (8] 2, {5,y =0.
s5.) = (coswt)/2, (s,) = (sinwt)/2, (s o - i
<SJV>I ot (tho probability for ¢ > 0 of the electron being in the state ilh n/1
be I /zmd being in the state sg = ~1/2 be 1 — P since these are the only

two states of s,.. Then

1 1
! . —= ) = —-coswt,
r(5)ra-n(3) -3

giving P - cos? (wt/Q), 1 - P = sin? (wt/2).

g » states s, =
Similarly, let the probabilities for the clectron being in the states sy
1/2, sy == -‘il/Z be P and 1 — P respectively. Then

: 1 1._a,1..71*,>
p <§> +(1-r) <4E> = Esmwt = 5(,()5 (2 wt)

or

in? (< astly for (¢) and (f), we have
and henee 1— P = sin® (4 — %). Lastly for (¢) and (f)

H

L-P=;.

[SeN

r— l =0, giving I =
2

¢ 1 > wat Y - S W 1 ‘ 2 tud
A I)')r i('l( l ,h l]lﬂ,bn(‘,tl(, Hl()lnont lJ, ’LQS '(llld v plll S, 1 r}l mafblll e
| Jacoc 1 “l l e r-axls.

‘S ¢ R 1 ) )] ¥ Stc t lnagll(‘,!,l(t hel(l p()ln y Ilg a Ollg t [ > b. At
1 2 15 pl(],(/(,( 11} a4 COIL: tdl’l 5 . ‘ -

1 /7’( h(‘ [)al‘ti(: ¢ 15 fOund to }13. e 8y — / . Flnd the I) Obdbl 1T1CE

4 )’ the l S \% S +1 2 T l tics a‘

. . S the i ith s, = +1/2.
any later time of finding the particle with sy / ( Columbia)

Solution:

The Hamiltonian (spin part) of the system is

H:’,UO'§B:7 a':c-B/'l‘07

DO |




206 Problems and Solutions on Quantum Mechanics

as s = %hoz, being in the z direction. In the o, representation, the
Schrédinger equation that the spin wave function (21) satisfies is
2

L d al) 1 0 1 ay
Zh— + - B =
dt (a2 o 1o <1 0) (ag) 0

' d N 1 B 0
L — — Ly =
dt ay 9 Mo D0 ’

or

ih Loyt L oBay =0
ar @2 T g Herer =0,

Elimination of a; or ay gives
d? N psB? 0
5 @12 5 (]2 =
de2 "N T gpz M2

which have solutions

twt —1
(L1)2 :Alyg(le +Bl,2€ twt

El

where
= —MO B
2h

and Aj 3, B are constants. As

and

the initial spin wave function is (), ie. a;(0) = 1,a2(0) = 0. The
Schrodinger equation then gives

da:(0) _
dt

o da20)  mB
’ At - 2h = Ww.

These four initial conditions give

{AH—Bll, Ay + By =0,
W(Al ‘Bl):(), LL)(Az *Bg) =w,

Spin and Angular Momentum 207

w1l the solution Ay = Ay = By = —Bp = 1/2. Substitution in the

-~ pressions for ap 2 results in
ar(t)) [ coswt
ax(t) )~ \isinwt )~
As the cigenstate of s, = +1/2 is

) = 5 (1)

and that of Sy = —1/21s

-0 =5 (1)

the probability of finding s, = +1/2 is

2

P(+) = [{sy(+) [9(0) 7

1 (1-1) ( coswt )
=] —(1 —1
V2 1 sinwt

1
=3 (1 + sin2wt) .

2

Similarly the probability of finding s, = ~1/2 is

P) = sy 9O = 5 (1 = sin2ut).

3025

The Hamiltonian for a spin—% particle with charge +e in an external

magnetic field is
_ g_ e_ S .

2mc
Calculate the operator ds/dt if B = By. What is s,(¢) in matrix form?

(Wisconsin)
Solution:
In the Heisenberg picture,
ds 1 ge

P s HY— —
it Sl Rty o

[s,s - Bj.
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As
[, 8 - Bl = [sz, 5 - B]X+ [sy, s - B]§+[s,, s - B]
and
84,8 - B] = [Sz, Sz] BJ: + [51'7 5'_1;] By + {5'1;; Sz] Bz
=ih(s; By — s, B,)
=ih(B xs);, etc
we have
[s,s - B|=—ihsx B,
and hence
B 9B
dt ~ e T

If B =By, the above gives

ds;(t)  geB

dt  2me s2(t),
ds:(t)  geD

dt  2me s2(t),

d?s,(t B\ >
()+ <(JC—) 5:(8) =0,

dt? 2me

and so

with the solution
52(t) = ¢1 cos (gwt) + eosin (gut)
where w = eB/2mec. At t = 0 we have
32(0) =1, $,(0) = c2g9w = gws(0),

and hence

s2(£) = 5,(0) cos (ge—Bc t) + 5¢(0) sin (gjﬁ t) .

m

Z
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3026

Two clectrons are tightly bound to different neighboring sites in a cer-
taim solid. They are, therefore, distinguishable particles which can be de-
«ribed in terms of their respective Pauli spin matrices o and o{*. The
ILuniltonian of these electrons takes the forin

H=—JM s 4 ng) (7,52) ),

wlere J i1s a constant.

(a) How wmany encrgy levels does the system have? What are their
«nergies? What is the degencracy of the different levels?

(b) Now add a magnetic ficld in the z direction. What are the new
«nergy levels? Draw an cunergy level diagram as a function of I3, .

(Chicago)

solution:

(a) The Haniltonian of the system is

H=— ,][051) ’73(52) 4 olh 0(2)]

v Yy

; [(Um Jr_a(z))z _ oW a7

2

2
g [leteetr s

(00 40Py g0 022)2}

o]

(0t o) -1 - 1}
2

[l oy

where
h

> (6 + (@)

s — s L g®
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is the total spin of the system and
NGO N L (VRN )
Sz =857 + 83 :5 (Uz + o, )

is its total z-component. s%, s, and H are commutable. Using the above
and the coupling theory of angular momentum, we have (uoting the eigen-
value of s? is s(s + 1)h?)

number of states energy
0
—2.J
0

2J
L |

(a) As seen from the table, the systemn has three energy levels —2J, 0,
2J, each with a degencracy of 2. Note that if the clectrons are indistin-
guishable, the second and fourth rows of the table would be different from
the above.

(b) In the presence of a maguetic ficld |B| = B

Zy

H=—Joe® 4+ 0151) 0152)] —u- B

bl

where
e

mc

—e and m being the electron charge and mass respectively. Thus

H=—JoMe® + al(ll) 0152)} b s, B,

me
52 B
=-2J {s(s+1)—;;—l emcl .

s2, s, and H are still commutable, so the new energy levels are: 2J,
eB.h/mc, —eB,h/mc, —2J. The energy level diagram is shown in Fig. 3.4
as a function of B, (lines 1, 2, 3 and 4 for the above levels respectively).

- s st A o T M R

P e e Ll

Spin and Angular Momentum 211
E
A
2
2J 1
0 > B,
L
/ * \
3
Fig. 3.4
3027

A free atom of carbon has four paired electrons in s-states and two
clectrons in p-states. Assume therc is the fine structure coupling L - S, i.e.,
12, 82 and J? are “good” quantum numbers.

(a) Give the values of S, L and J of possible states by a table, indicating
the corresponding multiplicitics.

(b) Which state has the lowest energy? Give your reasoning.
(Columbia)

Solution:

(a) A carbon atom has two 1s electrons and two 2s electrons, which form
iwo closed shells. Thus the atomic states are determined by the combination
of the two 2p electrons. In L — S coupling, as l; = Iz = 1, s1 = 52 = 1/2,
we have L = |1, + 12| =0, 1, 2; S = |s; +s2| =0, 1. Taking into account
Pauli’s exclusion principle and the antisymmetry of the total wave function,

we obtain the following table.

(b) According to Hund’s rule, the 3P, state has the lowest energy.
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L S| J 241y, multiplicity
0 0 0 ISO 1
O T 5 p,
1 1 1 3P 3
1 1 0 3P
2 0 2 1Dy 1
3028

A negatively charged 77 meason (a psendoscalar particle: zero spin,
odd parity) is initially bound in the lowest-energy Couloml wave function
around a deuteron. It is captured by the deuteron (a proton and a neutron
in a 35, state), which is converted into a pair of neutrons:

T 4+d—oan+n.

(a) What is the orbital angular momentuim of the neutron pair?

(b) What is their total spin angular momentum?

(c) What is the probability for finding both neutron spins directed op-
posite to the spin of the deuteron? _

(d) If the deuteron’s spin is initially 100% polarized in the R direction,
what is the angular distribution of the neutron emission probability (per
unit solid angle) for a neutron whose spin is opposite to that of the initial

deuteron?
You may find some of the first few (not normalized) spherical harmonics
useful: YOO —1, letl — Tsinfetit
YP =cosf, Yt = Fsin26 et
(CUS)
Solution:

(a), (b) Because of the conservation of parity in strong interactions, we
have

p(r ) p(d) (—1)"* = p(n) p(n) (—1)%2,

where L;, Ly are the orbital angular momenta of 7= + d and n + n re-
spectively. As the 7~ being captured, is in the lowest energy state of the

-y
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«‘vulomb potential before the reaction, L; = 0. Since p(r~) = —1, p(d) =
I p(n)p(n) =1, we have
(71)142 =-1,

and so
Lo=2m+1,m=0,1,2,....

The deutron has J = 1 and 7~ has zcro spin, so that J = 1 before the
reaction takes place. The conservation of angular momentum requires that
alter the reaction, Ly +S = J. The identity of n and n demands that the
total wave function be antisymmetric. Then since the spacial wave function
i antisyminetric, the spin wave function must be symmetric, ie. § =1
and so Ly =2, 1 or 0. As Ly is odd, we must have Ly =1, S = 1.

R

The total orbital angular momentum and the total spin angular mo-
mentum arc both /1(1 4+ 1)k = V2 h.

(c) Assuine that the deuteron spin is in the dircction J, = 1h before the
reaction. If both neutrons had spins in the reversed dircction, we would
have S, = —1h, L, = 2k, which is impossible since Ly = 1. Hence the
probability is zero.

(d) Take the z-axis along the R direction. Then the initial state is
|J, J.) = |1, 1). In the noncoupling representation, the state is |L, L,
5, 8.y, with L =1,5=1. Thus

V2 V2

2
=2 1) — Y211,1,1,0).
L= 11,01, 1) - 5| )
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The state
[1,1,1,0) =Y (0, #)|1,0) = —/3/8m sinfe'? |1, 0)

has S, = 0 and so there must be one neutron with s, = —f/2. Hence the
probability distribution required is

1 3 . 3 .
r = - . gin%0 = — gin?o.
dr(o, ¢)/d 5 Bx sin” 6 o sin“ @

3029

An Q™ hyperon (spin 3/2, mass 1672 MeV /c2, intrinsic parity +) can de-
cay via the weak interaction into a A hyperon (spin 1/2, nrass 1116 MeV /¢2,
intrinsic parity +) and a K~ meson (spin 0, mass 494 MeV/c?, intrinsic
parity —), i.e., Q7 > A+ K.

(a) What is the most general form of the angular distribution of the
K~ mesons relative to the spin direction of the 2~ for the case wlien the
7 has a maxinmum possible component of angular momentum along the

Qp) = |SZ;L/2/Z) (Assuwie that the 27 is at

z-axis, i.c., the initial state
rest).

(b) What restrictions, if any, would be imposed on the form of the
angular distribution if parity were conserved in the decay process?

{(Berkeley)

Solution:

(a) The initial state of the system is [3/2, 3/2), where the values are
the orbital and spin momenta of the 7. The spin part of the final state
is [1/2, 5,)10,0) = [1/2, s.), and the orbital part is Yy, (6, @) = |1, m).
Thus the total final state of this system is

[, my|1/2, s,).

By conservation of angular momentum ! = 1, 2;m = 3/2 — s,. Thus
the final state is a p wave if | = 1, the state being |1, 1){1/2,1/2); a
d wave if [ = 2, the state being a combination of |2, 2){1/2, —1/2) and
|2, 1)|1/2, 1/2).

Hence the wave functions are

Pp = Y11 (0, 9) ((1)) ;

PRESIS
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4 1 1 1 1 1
— SN _ ./ DY I
1/}11*!:\/%“272)‘27 2> \/;,27>’27 2
1
o
= i ,
\/; Yau (0, )

and
1 =aqPa + ap Py
ap Y11 (0, @) — ad % Y1 (0, ©)
! \/% aqY22(0, ¥)
Thercfore

P = Si sin?@ [|a, >+ |aq|* — 2Reajaq cos 6],
™

i.c., the intensity of the emitted particles is

I o sin® 6(1 + ccos ),

where ' S
a = —2Reayaq/(] ap 12 4 1aql?).

'This is the most general form of the angular distribution of the K~ mesons.
(b) If parity were conserved in the decay process, the final state would

have positive parity, i.e.

(71)LPKPA =+1.

Since
Pg Py = (—1)(+1) = —1,

we get [ = 1. It would follow that

Yr=Yn (0 ¢) (é) ;
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and

3 3 ;
vy = P sin? @ = o (1-cos*0).

form

Toc (1~ cos8).

3030

Given two angular momenta J; and J, (for example, L and S) and the
corresponding wave functions, where j; = 1 and j; = 1/2. Compute the

Clebsch-Gordan cocfficients for the states with J = J, +Ja, m = my + mao,
where:

(a) j=3/2, m= 3/2,
(b) j = 3/2,m=1/2.
Consider the reactions

K p—s o at,
— ot
- 2070

K™ n— 7%
— Y%

Assume they proceed through a resonance and hence a pure I-spin state
Find the relative rates based on I-spin conservation:

(¢) for an I = 1 resonance state,
(d) for an I = 0 resonance state.

Use the Clebsch--Gordan cofficients supplied. The I-spins for K, n,
and 7 are 1/2,1/2 1, and 1 respectively.

( Berkeley)
Solution:

(a) As j1 =1, jo = £, we have

13/2,3/2) =11, 1)|1/2,1/2).

Hence parity conservation would impose an angular distribution of the
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(b) Defining the operator J_ = J1— + J2—, wc have
J_13/2,3/2) = (Ji— + J»_)|1,1)[1/2,1/2),
o1, using the propertics of J_ (Problem 3008),
h313/2,1/2) = hv/211,0)|1/2,1/2) + A|1, 1)[1/2, —1/2),

.nd hence

13/2,1/2) = /2/3]1, 0)11/2, 1/2) + v/1/3]1, 1)|1/2, =1/2) .

To calculate the relative reaction cross sections, we use the coupling
representation to describe the initial and final f-spin states:

K~ p) = | 1/2, —1/2)11/2,1/2) = V/1/2|1, 0) ~ v/1/2]0, 0)

£ rty = |1, -1 11, 1) = V17612, 0) = /17211, 0>+\/1/3IO 0},
(Str) =1, 1) (1, —1) = +/1/6 ]2, 0) + /1/2( 1, 0) + /1/3]0, 0)
13079) = | 1, 0) | 1, 0) = \/2/3]2, 0) — /1/3]0, 0},

|K™n) = 1/2, -1/2)|1/2, =1/2) =11, =1},

=ma® = {1, )1, 0) = /1/2(2, 1) —/1/2]1, -1)

IZ077) = [1,0)[1, —1) = /17212, ~1) + /1/2]1, -1)

To K ~p reactions going through the resonance state I = 1, the fi-

—_ - 1
~7 ) contributes -\/gl 1, 0), | ©¥7~) contributes \/;] 1, 0),
while | £°7°%) does not contribute. Hence

o nt) o8t} o(X%7%)y =1:1:0.
Similarly for K ~n reactions we have
o) s o(X0r ) =1:1.

Only the K ~p reactions go through the I = 0 resonance state. A similar
consideration gives the following reaction cross section ratios:

o(Z"mt) i o(BTr ) i o(2%%) =1:1: 1.
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3031

(a) Compute the Clebsch-Gordan coefficients for the states with J =
J1+J2, M =my +ma, where j; =1 and jy = 1/2, and j = 3/2,M =1/2
for the various possible m; and .y values.

(b) Consider the reactions:

7tp > atp ()
TTp—>A P (ii)
T p— 7%n (iii)

These reactions, which conserve isospin, can occur in the isospin [ = 3/2
state (A resonance ) or the I = 1/2 state (N* resonance). Calculate the
ratios of these cross-sections, o) : oy 1 oy , for an encrgy corresponding to
a A resonance and an N* resonance respectively. At a resonance energy
you can neglect the effect due to the other isospin states. Note that the
pion is an isospin I = 1 state and the nucleon an isospin I = 1/2 state.

(Berkeley)

Solution:

(a) As M =my+my = 1/2, (1, mg) can only be (1, -1/2) or (0, 1/2).
Consider

13/2,3/2) = |1,1) |1/2, 1/2).
As
M_|3/2,3/2) =V3]3/2,1/2),
and
M_13/2,3/2) = (My_ + My_)|1,1) |1/2, 1/2)
= V21,00 |1/2,1/2) + |1, 1) 1/2, —1/2),
we have
(4, 1,1/2, —1/213/2,1/2) = 1/V/3,
(1,0,1/2,1/2]3/2,1/2) = \/2/3.
(b) As
™ =11,1), «°=[1,0), x =|1,~1),
P=t1/2,1/2>, n:‘1/27~1/2>7
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we have
I7T+p>:ll, 1) ]1/2’ 1/2>:|3/27 3/2>1
|7=p) = |1, =1} |1/2,1/2) = a|3/2, —1/2) +b|1/2, -1/2),
|7%n) = |1, 0) |1/2, —1/2) =¢|3/2, =1/2) +d|1/2, —1/2).

From a table of Clebsch-Gordan coefficients, we find a = /1/3, b =
/273, ¢ = /2/3, d = /1/3. For the A resonance state, I = 3/2 and the

1alios of the cross sections are

(Ti:rf-,izaiiizlzla|4:|ac|2:1:—

QW

For the N* resonance state, [ = 1/2, and the ratios are

4 2
i - i - iii:0:|143 bd2:03—1—.
gi 0w O 6] - | bd] 59

3032

Consider an clectron in a uniform magnetic field along the z direction.
1ot the result of a measurement be that the electron spin is along the
positive y direction at ¢ = 0. Find the Schrodinger state vector for the
.pin, and the average polarization (expectation value of s;) along the

direction for t > 0.
(Wisconsin)

Solution:

As we are only interested in the spin state and the magnetic field is
uniform in space, we can leave out the space part of the wave function.
Then the Hamiltonian can be taken to be

H=-p -B=p.o- -B=hho,,

where p = —peo, w = peB/h = eB/2mc, p. being the Bohr magneton
ch_ - Ag the electron is initially along the y direction, the initial spin wave

w5 ()

function is
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Let the spin wave function at a later time ¢ be (). The Schrodinger

. B
equation

w(§)=m (s ) (5),

& = —iwa, f=iws,

then gives

or

with the solution
(1(t> Cf'i,wt QU) i C—iut >
Wty = = . = — . .

(s2) = (1) |35 | 9(2))

Hence

h
= 5 <1//|(T'r, /‘/)>
h 1 it ot 0 1 (3*.iul
— 5 . 5 ((/ —1e ) 1 0 i et
ih . 2
_ % (Cluut, o C-—~2’LLAJL)
h
= —EL sin (2wt) .

3033

Consider an electron in a uniform magnetic field pointing along the 2
direction. The electron spin is measured (at time #) to be pointing along
the positive y-axis. What is the polarization along the x and 2z directions
(i.e. the expectation values of 2s, and 2s,) for t > to7

( Wisconsin)
Solution:

The Schrédinger equation for the spin state vector is

i () e m (i) ().
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wliere po = |e|h/2mec is the magnitude of the magnetic moment of an
clectron. As B is along the z direction, the above becomes

o a(t)\ I 0 a(t)>
o (b(t)) b <0 *1) (b(t) ’
ih Oy a(t) = peBa(t),
th O, b(t) = —pBO(t).
The solutions are
a(t) = alto) e H#e B,
b(t) == b(to) (i% llaB(tit’o) .

At time to, the clectron spin is in the positive y direction. Thus
a(to)\ _h [0 —i a(to)> _h (G(ﬁ0)>
By <b(t0) T2\ 0 b(to) 2\ b(to)
{ *i b(f,()) = (L(f,()) 5

’I:(L(to) = b(f,o) .

The normalization condition

la(to) |* + [ b(to) > =1,

or

Lhen gives

[ A

la(to) |? = | b(to) I*
As 20l i e can take

a(ta)
(L(to) = 1/\/5, b(to) :Z/\/i

Hence for time ¢ > %o, the polarizations along z and z directions are

(25,) = h(a*, ") (? (1)> <Z)

2pte
= h(a*b+ b*a) = —~hsin [—2— B(t — to)] ;

(2s.) = h(a*, b*) (}) ff) («;)

= h(a*a —0"b) = 0.

respectively
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3034

Two spin—% particles form a composite system. Spin A is in the cigen-

state S, = +1/2 and spin B in the eigenstate S, = +1/2. What is the
probability that a measurement of the total spin will give the value zero?

(CUS)
Solution:

In the uncoupling representation, the state in which the total spin is

zero can be written as
1 1 1 1 1
0 _ — S 2 = = S , = — = — S , = — — 3, = —
1) ﬁ( A 2> " 2> A 2> o 2>>’

where S4. and Sp, denote the z-components of the spins of 4 and B
respectively. As these two spin—% particles are now in the state

Q) =|Sa. = +1/2)

Spe = +1/2),
the probability of finding the total spin to be zero is
P=10]0)2.
In the representation of S2 and § 2, the spin angular momentum operator

S, is defined as
A h h /o 1

Solving the cigenequation of S, we find that its eigenfunction | S, =
+1/2) can be expressed in the representation of 82 and S, as

182 = 41/2) = <= (18: = 1/2) +15. = - 1/2)).

Thus
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and hence

010 =75 (543

Therefore .
P=10|Q)* = i =25%.

3035

(a) An electron has becn observed to have its spin in the direction of
the z-axis of a rectangular coordinate system. What is the probability that
a second observation will show the spin to be directed in x — z plane at an
angle 8 with respect to the z-axis?

(b) The total spin of the neutron and proton in a deuteron is a triplet
state. The resultant spin has been observed to be parallel to the z-axis
of a rectangular coordinate system. What is the probability that a second
observation will show the proton spin to be parallel to the z-axis?

. (Berkeley)
Solution:

(a) The initial spin state of the electron is

o= ()

The state whose spin is directed in z — z plane at an angle  with respect

Lo the z-axis is

COs —
|¥) =

Sin —
2
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Thus the probability that a second observation will show the spin to be
directed in x — z plane at an angle 6 with respect to the z-axis is

o .0 1
COSE,SIDEZ- 0
o [0
_ pna? e
et (2.

(b) The initial spin state of the neutron-proton systein is

o) =11, 1) =[1/2,1/2),]1/2,1/2),,.

2

PO) = {{¢]%0) |* =

Suppose a second observation shows the proton spin to be parallel to the
z-axis. Since the neutron spin is parallel to the proton spin in the deuteron,
the final state remains, as before,

|/'1/)f> = ll/zv 1/2>n|1/27 1/2>p-

Hence the probability that a second observation will show the proton
spin to be parallel to the z-axis is 1.

3036

The deuteron is a bound state of a proton and a neutron of total angular
momentum J = 1. It is known to be principally an S (L = 0) state with a
simall admixture of a D (I = 2) state.

(a) Explain why a P state cannot contribute.

(b) Explain why a G state caunot contribute.

(¢) Calculate the magnetic moment of the pure D state n — p system
with J = 1. Assume that the n and p spins are to be coupled to make
the total spin S which is then coupled to the orbital angular momentum
L to give the total angular momentum J. Express your result in nuclear
magnetons. The proton and neutron magnetic moments are 2.79 and —1.91
nuclear magnetons respectively.

(CUS)
Solution:

(a) The parities of the S and D states are positive, while the parity
of the P state is negative. Because of the conservation of parity in strong
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irteraction, a quantun state that is initially an S state cannot have a P
state component at any later moment.

(b) The possible spin values for a system composed of a proton and a
teutron are 1 and 0. We are given J =L+ Sand J=1. f S =0, L =1,
the system would be in a P state, which must be excluded as we have seen
m (a). The allowed values are then S =1, L = 2, 1, 0. Therefore a G state
(L = 4) cannot contribute.

(¢) The total spiu is S = s, + s,,. For a pure D state with J =1, the
orbital angular momentum (relative to the center of mass of the » and p)
is L = 2 and the total spin must be § = 1. The total magnetic moment
arises from the coupling of the magnetic moment of the total spin, p, with
that of the orbital angular womentum, pr, where g = p, + pn, fp, Pn
heing the spin magnetic moments of p and n respectively.

The average value of the component of g in the direction of the total
spin S is

Yp N Sp + gn UN Su) - S 1
s = (9p 11N Sp .SISH n) Szi(gp+g”),uNS,

where
ch B

gp = 5.58, gp = —3.82,

IN =
/ 2myc’

as 8, = Sy, = %S.

The motion of the proton relative to the center of mass gives rise to
a magnetic moment, while the motion of the neutron does not as it is
uncharged. Thus

B = ,U'NLp ,

where L, is the angular momentum of the proton relative to the center of
mass. As L,+L, =L and we may assume L, = L,, we have L, = L/2 (the
center of mass is at the mid-point of the connecting line, taking my, = my).
Consequently, gy, = uyL/2.

The total coupled magnetic moment along the direction of J is then

1
%/wL IS gptgn)unS - I I

pr=- J(J+1)
SinceJ=L+8,S L=j(J?-L*-5%). WithJ=1,L=25=1
andso J? =2, L?=6,5?=2 wehave S - L= -3 and thus L - J = 3,

S . J = -1. Hence
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1 !
pr =g -3+ 5 (9p + gn) un(-1)| 3/2

1 1
= {1.5 5 (gp + gn)] 5 und =031unJ.

Taking the direction of J as the z-axis and letting J, take the maximum
value J, = 1, we have pup = 0.31uy.

3037

A preparatory Stern—Gerlach experiment has cstablished that the z-
component of the spin of an electron is —/i/2. A uniform magnetic field in

the z-direction of magnitude B (use cgs units) is then switched on at time
t=0.

(a) Predict the result of a single measurement of the z-component of
the spin after clapse of time 7.

(b) If, instead of measuring the z-component of the spin, the z-compo-
nent is mecasured, predict the result of such a single measurement after
elapse of time T'.

( Berkeley)

Solution:

Method 1

The spin wave function () satisfies

o [a) _ehB a\ 01 ay b
woc () = e (3) = (T 0) (5) = (2).

where w = eB3/2mc, or
10 = wbh,
ib =wa.
2

o= —wh=—w’a,

s by

Thus

the solution being

a=Ae“t 4 Ce !

?

b= _— —(A eiwL - Cc—’i,wt)

b

1
w
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where A and C are arbitrary constants. From the initial condition a(0) = 0
and b(0) = 1 as the initial spin is in the —z direction, we get A=-1/2,C =
1/2. Hence

a==(e W —et) = —isinwt,

b:

(et + e7™*) = coswi,

NN NG R S

and the wave function at time t is
—¢sinwit
¥it) = ( coswt > :
(a) At t =T

—isinwT o 1 - 0
P(Il) = ( cos wi ) = —isinwT <0> + coswT <1> .

As () and ( ) are the cigenvectors for o, with cigenvalues +1 and —1
respectively the probability that the measurcd 2- (Omp()n(‘nt of the spin is
positive is sin? wT'; the probability that it is negative is cos’ 2wT.

(b) In the diagonal representation of @, the eigenvectors of o, are

Yoo =1~ 7> (}) Yor=-1= (‘}) |

As we can write
—isinwT 1 _or 1 (1 ) r or 1 (—1 )
pum— = — v . —_— + —_— 6 . —_
T = ( coswT ) \/2_6 V2 (1 V2 V2 1

=L Ty, = 1)+ = T lon = —1),

1
V2 V2
the probabilities that the measured z-component of the spin is positive and
is negative are equal, being

2 .
6u...:T

DO | —

] e~uuT

V2

Method 2
The Hamiltonian for spin energy is
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H=—p - -B=eBhio;/2mc.

The eigenstates of o, are

S0 5 ()

We can write the initial wave function as

e (2) -5 [ (- ()

The Hamiltonian then gives

. . 1 1 —iwt 1 1 1wt _ C B
¢@§<J€ 5(-06 i .

(a) As
oo = (Tt

the probabilities at ¢ = T are

P =sin®wT, P, = cos*wT.

(b} As in method 1 above,

3038

An alkali atom in its ground state passes through a Stern-Gerlach ap-
paratus adjusted so as to transmit atoms that have their spins it the +z
direction. The atom then spends time 7 in a magnetic ficld H iu the
z direction. At the end of this time what is the probability that the atom
would pass through a Stern—Gerlach selector for spins in the —z direction?
Can this probability be made equal to unity? if so, how?

(Berkeley)
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Solution:

The Hamiltonian

e|hH B
=g, =hwo,, w=

H = H H 2me 2mc '

pives the equation of motion

hd (v 0 1\ (¥ _, (1/12)
_ia<d>fm<lo)<w) mo (V2.
711/)1 = wiphy ,

11/)2 = wi .

(/)1 +w2'(/,q = O .

or

and hence

The solutiou is ¢ = (Zg ), with
PL(t) = ackt 4+ bem Wt
'l/)z(t) — i "Z’l — _a(:‘iwb + bcf'i,wt .
w

The initial condition

then gives a = b = 1/2. Thus
U 1 et 4 o7t _{ coswt
V= <l/,2 T o\ _pwt et [\ —isinwi
1 i sinwt 0
= coswt o)~ ¢ sin w e

In the above ((1)) is the eigenvector o, for eigenvalue —1. Hence the
probability that the spins are in the —z direction at time 7 after the atom
passes through the Stern—Gerlach selector is

‘(0 1) ( coswr > rzsinzuﬁ) ——1_008&01-

—isinwT 2
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The probability equals 1, if

or
cos 2wt = —1,
l.e. at time @ 1)
2n 4+ s MeT
- = 2n+1 .
4 2w ( ) le| H

Hence the probability will become unity at times 7 = (2n + 1) men/
le| H.

3039

A beam of particles of spin 1/2 is sent through a Stern Gerlach appa-
ratus, which divides the incident beam into two spatially separated com-
ponents depending on the quantumn number . of the particles. One of the
resulting beams is removed and the other beam is sent through another
similar apparatus, the magnetic field of which has an inchination « with
respect to that of the ﬁrst.apparatus (sce Fig. 3.6). What arc the rela-
tive numbers of particles that appear in the two beams leaving the second
apparatus?

Derive the result using the Pauli spin formalism.

(Berkeley)

Solution:

For an arbitrary direction in space n = (sin @ cos ¢, sinfsingp, cos#) the
spin operator is

Fig. 3.6
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o - n=o0;sinfcosy + oysindsing + g, cosd

cos @ sin @ e~
sin @ e*¥ —cos@ ’

(0 1 0 10
Or = ) vy = 3 z =
1 0 w0 ° (0 ;1) ’

are Pauli’s spin matrices. Let its eigenfunction and eigenvalue be () and

A respectively. Then
a a

a(cos@—A) +be “sing =0,

where

or

aesing — b(A +cosb) =0.
For a, b not to vanish identically,

cosd — X e ¥ gind

i =)\ _ 29 «in2p —
e'¥sind ;()\4_(.’080)’ cos“ @ —sin“ 6§ =0,

2 o . . -
or A* = 1,i.e, A = +1, corresponding to spin angular momenta i% h. Also,
normalization requires

(a* b*) (Z) =lal? +[b>=1.

For A = +1, we have

b 1-—cosf sind
v _ 1 - e
a e *¥sin® cosg ’

and, with normalization, the eigenvector

0

= | 2

€% sin —
2



232 Problems and Solutions on Quantum Mechanics
For A = —1, we have
[
b cosf + 1 €OS 3
o e smH e~ ¥ sin g

and, with normalization, the eigenvector

io i O
—e 'Y sin 3

o8 =
2

For the first Stern—-Gerlach apparatus take the direction of the magnetic
field as the z direction. Take n along the magnetic ficld in the second Stern
Gerlach apparatus. Then ¢ = 0, @ = a in the above.

If the particles which are sent into the second S — G apparatus have

spin up, we have
12y =l tn)+dlin),
= (1t n| 1 z) = (cos(a/2), sin(a/2)) <(1)> = cos (a/2),

={{n|tz)=(-sin(a/2), cos(a/2)) (é) = —sin (/2).

Thercfore, after they leave the second S — G apparatus, the ratio of the
numbers of the two beams of particles is
c]?  cos’ (a/2) 5

= — cot? =.
ld2  sin® (a/2) 2

If the particles which are sent into the second S — G apparatus have

spin down, we have
L2 =eltn)+dlin),
0
= (tnl|lz) = (cos(a/2), sin(a/2)) (1> = sin (a/2),

~(Lnl L) (sinla/), cos(a/2) () = eon(a2),
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and the ratio of the numbers of the two beams of the particles is

sin (r/2)
cos? (a/2)

2

¢ o
= tan® —
2

3040

The magnetic moment of a silver atom is essentially equal to the mag-
netic moment of its unpaired valence electron which is u = —vs, where
v = ¢/me and s is the clectron’s spin.

Suppose that a beain of silver atoms having velocity V is passed through
a Stern Gerlach apparatus having its ficld gradient in the z direction, and
that only the beam with my = //2 is to be considered in what follows.
This beam then enters a region of length L having a constant magnetic
field By directly along the axis of the bean (y-axis). It next enters an-
other Stern Gerlach apparatus identical to the first as shown in Fig. 3.7.
Describe clearly what is scen when the beam exits from the second Stern-—
Gerlach apparatus. Express the intensities of the resulting beams in terms
ot V, L, By and the constants of the problem.

Use quantum mechanical equations of motion to derive your result.

(Berkeley)

By

A J | B
SSE R

—L—

4

Fig. 3.7

Solution:

If we took a picture at the exit of the second S — G apparatus, we would
see two black lines arising from the deposition of the two kinds of silver
atoms with m, = £/2 and my, = —h/2.

Denote the state of the system in the region L by |#). If we consider
only atoms of m,; = h/2 in the beam that enters the region L at ¢ = 0, then
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The Hamiltonian of the system in the region of length L is

_ vhBo

H=—pn-B 5

Oy,

and so

|£) = exp (—%Ht) It = 0)

= CXD - 7
! 2 7v) \o
vBot . Bet\ (1
= COS 2 — ’I,O'y S111 2 0

’)’Bot 1 . ’)’B()t 0
= COSs + sin .
2 0 2 1
h

Hence at the cxit of the region, the intensitics of beams with m, = 3

and m, = *g arc respectively

. Dot . Byt
I, = Iy cos® (720 ), I_ = Iysin? (720 ) ,

where I is the intensity of the beam that enters the region.
When the beam leaves the region L, ¢ = L/V. So the ratio of intensitics

is

cot?(YBoL/2V).
The splitting of the beamn is seen when it exists from the second Stern—
Gerlach apparatus.

3041

Two oppositely charged spin—% particles (spins s; and s3) are coupled
in a system with a spin-spin interaction energy AFE.

The system is placed in a uniform magnetic field H = Hz. The Hamil-
tonian for the spin interaction is

= (AE/4)(01 - 02) — (w1 + pp2) - H
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where p1; = g;p108; is the magnetic moment of the ith particle.
The spin wave functions for the 4 states of the system, in terms of the
eigenstates of the z-component of the operators o; = 2s;, are

Y1=00on, Y2=sbiay+carfy, 3= cBias — 518z, by = B15s,

where

(02)ici =i, (02)ifBi=—Bi, s=(1/V2)-(1—2z/V1+ x2)!/2

c=(1/V2) (1 +2/v/1+22)V2,
t = poH (g2 — g1)/AE.
(a) Find the energy cigenvalues associated with cach state ;. Discuss
the limiting cases po H/AE > 1 and poH/AFE < 1.
(b) Assuine that an initial state 1(0) is prepared in which particle 1 is

polarized along the ficld direction z, but particle 2 is unpolarized. Find the
tine dependence of the polarization of particle 1:

P (1) = () o1z |9(1)) -

Again discuss the limiting cases poH/AE < 1 and poH/AE > 1.
(Columbia)

Solution:

(a) o, a, B may be represented by matrices
oo (01 (0 (1 o0
“ 1 0/ y ) 0/’ 7\ 0 —1
(1 _ /0
= (o) o=(1)

for which the following relations hold:
Tz = B, 0wl =y,
iy = 10;, 04y B = —iay,

Tiz 0 = o, 0,03 =—0;.
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Then as

H =(AE/4)(o1 - 02) = (1 + p2) - H

= (AE/4) (O’lmUzz + O1y02y -+ 0'11(72:)

1
= 5 Hofl (91012 + 92022) 5
where we have used g = guos = %gp,oa, we have
- - . 1
Hiy = Hoyag = (AE/4) (182 — B1Ba2 + o) — 5 toH (91 + g2) cnce

g1+ .
= (AE/4 - g% #OH) 0y = <AE/4 - ]l‘zi : M)H) P,

and hence )
E] = AE/4 e 5 (gl +{]2)[LOH.

Similarly,
. AE
Hypy = e [s{a1 B2 + a1 B2 — Brow) + c(Braz + Proe — ay(32)]

+ % (g1 — 92) poH (sB1a2 — canB2)
=[(AE/4)(2¢— s) — (AE/2)xs] Braz
+ [(AE/4)(2s — ¢) + (AE/2)xc] B2
=(AE/4)(2c/s — 2z - 1) sf10s + (AE/4) (25/c + 2z — 1)car (.

Then as
(1+x/V1+2?)/? 5
2¢/s —2x =2 —— —2x =21+
ofs A= T T
=2(V1+a2?—x)+ 2z =2s/c+ 2z,
we have X
Hoypy = (AE/4) (21 + 22 — 1) 1p2,
or

Ey = (AE/4)(2¢/1 4+ 22 —1).
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By the same procedure we obtain

Es=(-AE/4)(2V1+ 224+ 1),

E, = (AE/4) + % joH .

(b) As particle 2 is unpolarized and can be considered as in a mixed
state, its state €2 can be expanded in terms of «y and B:

& = aqg + By,

where |a |* = |b|*> = 1/2. Then the initial total wave function is

'lﬁ(()) = (1162 = (.\/1<(l(12 + l)ﬁz)
C S
= (l’l/)] + b (‘Z—Hj ’l/)z —b m ’l/)3

= a1 + beps — bsiha

s
. . 1 x 1 T
2 2
s ==1+— 4= (1 —=1]=1
2< \/1+r2) 2< \/1+x2)
Hence

E E
P(t) = ay exp <7 i—zl t) + beipy exp (7 TQ t)

E
— bsys exp <1 = t) .
I
Then using the relations

1291 = 01,002 = Q1o
T = 01, (8810 + ca182) = —sB1aa + ca Sz,

T3 = 015 (cBrag — saiflz) = —(cBras + sa1 B2)
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we obtain

Pr.(t) = ((t) o= | ()
=[af? + b (exp (~iBast/h) c(sProe + carBa)
— exp (—iEst/h) s(cPro — sa1f2) || exp (—1Est/h)
X o(—spray + confa) + exp(—iEs/h) s(cHraz + s f2))

- % % (2 — )2 + 4527 cos (By — Ex)t/H]
1

(4% + cos (V1 + 22 AEt/h))

7§+2(1+$2)

=1- ! sin® (V1 + 22 AEt/2h).

1+ 22

(¢) Tu the limit poH/AE > 1, ie., x> 1, we have

E, = % — % poH =~ *% (91 + 92) o,
Ey = AE (2V1+ 22— 1) = (AE/4) x 20 = % (92 — 1) moH ,
E; = *% (1 +2¢/1+a2) = ‘% (92— q1) o H ,
E4—ATE+QI;QZ uoH%%(QrF.@z)ﬂoH,

P (t)y~1.

When poH/AE < 1, ic., z < 1, we have

E1 %E4%AE/4,

AE S L AE
Eg:—4—(2\/1+J, )~
b~ 3OE
3~ 4 3

Py, (t) = 1 —sin® (AEt/2h).
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3042

A hydrogen atom is in a 2P1/2 state with total angular momentum up
along the z-axis. In all parts of this problem show your computations and
reasoning carefully.

(a) With what probability will the electron be found with spin down?

{(b) Compute the probability per unit solid angle P(6, ¢) that the elec-
tron will be found at spherical angles 8, ¢ (independent of radial distance
aud spin).

(¢) An expcrimenter applies a weak magnetic field along the positive
z-axis. What is the effective magnetic moment of the atom in this field?

(d) Starting from the original state, the experimenter slowly raiscs the
magnetic ficld until it overpowers the fine structure. What are the orbital
and spin quantum numbers of the final state?

[Assume the Hamniltonian is linear in the magnetic field.]

(¢) What is the cffective magnetic moment of this final state?

{Berkeley)

Solution:

(a) For the state 2Py, 1 = 1,5 = 1/2,J = 1/2, J, = 1/2. Trans-
forming the coupling representation into the uncoupling representation, we
have

VJ, 1) = 1/2,1/2) = +/2/3|1, 13| 1/2, —=1/2)
- V1/3]1,0)[1/2, 1/2).

Therefore P = 2/3.

(b) As
s (VE),

1
P(0, ) dQ = 5 2V} Y11 + Y{p¥i0) d2.

Hence the probability per unit solid angle is

we have

1 3 3 1
P = [2%x = sin?0+ — cos?h | = —.
6, ¢) 3< X g sin +47r cos ) ye
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(c¢) In the weak magnetic field, J and J, are “good” quantum numbers
and the state remains unchanged. The effective magnetic moment is

11 11 e /1 1 11 ch
— —_ —_ — —_ = ( — —_ —_ —_— fmad . -
F=\2" 2 32/ 9 2me \27 2 22/ 7 dme’

where m is the electron mass and

L JU D=+ 1) Fs(s 1) 2
g=1+ 2J(J + 1) e

Hz

vz

Hence p = efi/6me.

(d) In a strong magnetic field, the interaction of the magnetic moment
with the field is much stronger than the coupling interaction of spin and
orbit, so that the latter can be neglected. Here I and s are good quantuin
numbers. The Hainiltonian related to the magnetic ficld is

W=—-u-B-—p, B= eBiz/erz,c+ eBs, /mec.

When the magnetic field is increased slowly from zero, the state remains
at the lowest energy. From the expression of W, we sce that when the
magnetic field becomes strong, only if I, = —h, s, = —h/2 can the state
remain at the lowest energy. Thus the quantuin nuinbers of the final state
arel=11,=-1,s=1/2, 5, = —1/2.

(e) the effective magnetic moment of the final state is

p =T, + s, = —eh/2me — eh/2me = —eh/inc.

3043

Consider a neutral particle with intrinsic angular momentum /s(s + 1),
where s = h/2, i.e., a spin-1/2 particle.

Assume the particle has a magnetic moment M = s, where -y is a con-
stant. The quantum-mechanical state of the particle can be described in a
spin space spanned by the eigenvectors |+) and [—) representing alignments
parallel and antiparallel to the z-axis:

h

D=0, = ).

52
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At time ¢ = 0 the state of the system is |¢(t = 0)) = |+). The particle

moves along the y-axis through a uniform maguetic field B = By oriented
along the y-axis.

(a) As expressed in the |+), |—) basis, what is [ ()7
(b) What would be the expectation values for measurements of the
observables s;, sy, s, as functions of time?

(CUS)

Solution:

(a) The Hamiltonian of the particle is
H=-M B=-v,B.

In the representation of §2, §

and so the two cigenstates of §, are

[%:wm;ji(f),%:_wmziﬁ(g.
As

|
B =

H

L
Sy =3 k)=~B

any state of the particle can be expressed as

1 1
(syfgh exp +1§7Bt
h>exp<~i%7Bt>.

[9(t =0)) =|s, = h/2)

[9(t) =1

Fea) 8y = —

)=

Then the initial condition
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gives 1
1
91§h>cl Sy —h>+02 .Sy:—2h>,
and so
1 1 1 —1 *
61:<§h:3U Szigh = 5 1 0
1 1 1
——— (11 = —=1,
700 (0) 7
1 1 1 /i\" /1
c2<—§hsu sz—§h =75 0
1 1 1
=— (-11 = — 1
2(Z )<0> V2
Therefore

s
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{sy) = 0, because {(s,) = 0 at t = 0 and s, is conserved.

0 1
(sz) = | cos L vBt — sin 1 vBt L h
2 2 2 10
1
cos (5 th) 1 1
. = (— sin (5 wBt) cos (5 7Bt>>
—sin <5 7Bt>

1
) cos | = vDBt
1 2
- h
. 1 Bt
—sin | = A
3 v

3044

1
X =3 Asin (yBt) .

A particle of spin 1/2 and magnectic moment g is placed in a magnetic
field

B =D3Byz+ Bycoswtx — Bysinwty,

which is often employed in magnetic resonance experiments.

Assume that the particle has spin up along the +z-axis at ¢ 0
(ms = +1/2). Derive the probability to find the particle with spin down
(my, = —1/2) at time ¢ > 0.

(Berkeley)
Solution:

The Hamiltonian of the system is
H=—-uo -B.
Letting
wo = uBo/h, w1 =puB1/h,

we have

H = — u(Boo, + B0, cos wt — Byoy sinwt)

0 e'iwt
— hwoo, — hwi (e—i“" ) )

0
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/(0 1 _ (0 =i (1 0
Te=\1 0) %= \i o) %" \o 1)

Let the wave function of the system be

where

The Schrodinger equation ihd, [t) = H |t), or

S fa\ 1 0 ay 0 ctt a
t i) = Two 0 —1 b “1 (37/’:“[‘ O I) ’

{ @ = iwoa + fw ™,

gives

b= —iwpb+ iwlﬁilwt(t .

Try a solution of the type
a = «exp (iwot) ,
{ b= Bexp (—iwgt) .
Substitution in the above equations gives
& = dw exp [i(—2wp + w)t] 3,
{ 0 = iw; exp [—2(—2wp + w)t] ce.
Assume that @ and § have the forms
a= Ayexp[i(—2wy + w + Q)]
{ B = Ay e,
where A1, Az, and €2 are constants. Substitution gives

(—2wo+w+Q)A1 *wlAz :0,
—w1 A1 + QA4 = 0.

For this set of equations to have nontrivial solutions the determinant of
the coefficients of 4;, A2 must be zero, i.c.,

(2wo4+w+ DN —wi=0,

Spin and Angular Momentum

giving

Q, = v<—w0+ %) + \/(—w0+w/2)2+w12.
Therefore the general form of 5 is
B = Axpexp (iQ4t) + Ao exp (12_t),
and that of « is
o Bexp [i(—2wo + w) t]
iw

1
= exp [i(—2wo + w) t] [0y Aoy oxp (1824 1)
1

+ Q2 Ay exp (i2_t)].

Initially the spin is up along the z-axis, so
1 a() «(0)
t=0) = — =
[t=0) (0) (b@)) <ﬁm) *

1
— ((2+A2+ + Q_AZ,) =1,
Wi

giving

A2+ + Agk — () .
The solution is
Agp = = Ay =w1 /(24 — Q)
2\/(w0 —w/2)? +w? ’

Hence
b(t) = exp (—iwot) B(t)
= exp (—iwot) Ao,
x [exp (i€24t) — exp (i2_t)]
=exp (—iwt/2)21 Az,

x sin (1/(wo — w/2)? + wit)

iwpexp [—i(w/2)t]

Vo — w/2)% + wf

X sin(\/(wo —w/2)? + wit).
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The probability that the particle has spin down along the z-axis at time
tis
2
P=[(z{]t)]

w?sin? (Vwo —w/2)2 + wit)
(w0 D+

=1b(t)|* =

3045

A spin% system with magnetic moment g = poo is located i a uuniform
time-independent magnetic ficld By in the positive z direction. For the
time niterval 0 < ¢ < T an additional uniforin tune-independent ficld B,
is applied in the positive @ direction. During this interval, the system is
again in a uniform constant maguctic ficld, but of different magnitude aud

m = 1/2 state with respect to the z-axis .

(a) At ¢t = 04, what are the amplitudes for finding the systein with spin
projections m’ = +1/2 with respect to the 2’ direction?

(b) What is the time development of the cuergy cigenstates with respect
to the 2z’ direction, during the time interval 0 < ¢ < T

(¢) What is the probability amplitude at ¢ = T of obscerving the systemn
in the spin state m = —1/2 along the original z-axis?

[Express your answers in terms of thie angle 8 between the z and 2’ axes
and the frequency wo = poBo/h.)

(Berkeley)

Solution:

(a) In the representation of s,, the eigenvectors of s, are

.0
cos —sin —
2

9 )

sin cos —

[SCR ISR NCRIES

corresponding to the eigenvalues s,» = 1/2 and —1/2 respectively. Then
the probability amplitudes for m’ = +1/2 are respectively

Spin and Angular Momentum

Cy = csg si o LYy _ 0

+={cos n 0) =085,
.0 0 0

C*:<~sm§ cosg) (é):—sini.

(b) The Hamiltonian in the interval 0 < ¢ < T is

H= —p-B= —Ho (BOUz +B10—z)
_ By By
T He (Bl *Bo> ’

The initial eigenfunctions are

€os 3 —sin g

X+(0) = 0 ) X—(O) = 0 ’
sin — cos —
2 2

where

A = tan"! <§l> .
By

Substitution in the Schrédinger equation Hy +(0) = £Ex4(0) gives

E=—poBy/cos0 = —uoB,

B =./B}+ B?%.

At a later time ¢ in 0 < ¢ < T, the eigenstates are

where

Xx(t) = exp (FiEt/h) x+(0) = exp (+ipoBt/h) x+(0) .
(¢) The probability amplitude at ¢t = T is
C_(T) =(0 1)exp(—iHT/R) (é)

= («B1/4/B§ + B})sin (uoT 1/ B¢ + B3/h)

=isin@sin (uoBT/h).

247
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An alternative way is to make use of

50) = () = 05 G 0) —sin § (0,

0 2
and so
0 .
P(t) = x+(0) cos 5 &P (ipoBt/h)
) .
— x—(0) sin 5 XD (—iuoBt/h),
to get

C_(T) =B"(T) = cos g sin g

x {exp (ipo BT/h) — exp (—ipoBT/h)},

BT 0
=isinfsin ,uor ,  where 3 = ( ) ) .
)

3046

A spin—% system of magnetic momment g is placed in a dc inagnetic field
Hype, in which the energy of the spin state | + 1/2) is fuwy, that of | — 1/2)
being taken as 0. The system is in the state | — 1/2) when at ¢ = 0, a
magnetic field H (e, coswpt + ey sinwgt) is suddenly turned on. Ignoring
relaxation find the energy of the spin system as a function of wo, H, ¢ and

t, where
¢ = (11/2) iy | — 1/2).

Why is the energy of the spin system not conserved?
(Columbia)

Solution:

The Hamiltonian is
H=—p- (H+Hp) = —po - (H+H)
= — w(Hoy coswot + Hoy sinwyt + Hoo,)

_ H, H exp (—iwot) )
-k H exp (iwot) —Hy )

Spin and Angular Momentum
In the Schrodinger equation

ihoy /ot = Hy,

setting
- ()
b(t) )
we get
i
% = % [Hoa + H exp (—iwot) b]
db 1
i % [H exp (iwgt) @ ~ Hob] .

Try a solution of the type

1

a = Acxp {——i(ﬂ+ 3 wo) t] )
) 1

b =DBexp [1, (Q 3 wo) t} )

where A, B and Q are constants. Substitution gives
1 !
Q—+—§wo+w A+Ww'B=0,
1 /
Q—Ewo—w B+Ww A=0,

where

For nontrivial solutions we require

1
Q+(§w0+w) w’

3

249
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giving
1 2
0=+ w’2+<§w0+w) ::tQ,
where Q = | /w? + (4 wo + w)?|. Hence
P(t) = (AlefiQ" + AgeiQt)exp ( —1 % t) «
+ (Ble"‘QL + BgeiQt) exp <z % t) g,
where
1
Ql‘g + | w4+ 5 wo
By o=-4, , ,
w

the subscripts 1, 2 corresponding to the values of 2 with 4, — signs respec-

tively, and
1 0
(o) 2= (1)

At t = 0 the system is in the | — }) state and ) = <(1)) Thus B, +
By =1, Ay + A3 = 0. Then as

1
<Q+ 5&)04—&)) A1+UJIB1:O,

1
<Q+§wo+w) Ay +w'By =0,

we have

Q(A1~A2)+w':0,

1
<§w0 +UJ> (A1 - Az) +UJI<BI - BZ) =0,

giving

Therefore the wave function of the system is
. Wo
-1 — ]«
(=)
N 1
W+ - w
5 Wo

P(t) = Q 1sin (Qt) exp

-+

UJI

Spin and Angular Momentum

cosQt — 1

and the energy of the system is

Q

E=<’d)|H|¢)u{—HocOSQQt

-+

2
1
w?Hy — <w+ 5 wo) Hy— 2w H <w+ %)

Note that as

Q2

1 . 1

RN L s
1 ‘

o +§ z oy | —

sin Qt| exp (1 ? t) g,

sin® Qt} .

251
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As the energy of the system changes with time £, it is not conserved.
This is because with regard to spin it is not an isolated system.

3047

A beam of neutrons of velocity v passes from a region (I) (where the
magnetic field is B = Bje,) to a region (II) (where the field is B = Bge,).
In region (I) the beam is completely polarized in the +2 direction.

(a) Assuming that a given particle passes from (I) to (II) at time ¢ = 0,
what is the spin wave function of that particle for ¢ > 07

(b) As a function of time, what fraction of the particles would be
observed to have spins in the +x direction; the +y direction; the +2
direction?

(c) As a practical matter, how abrupt must the transition between (I)
and (IT) be to have the above description valid?

( Wisconsin)

Solution:

(a) Cousidering only the spin wave function, the Schrodinger equation

is
ihd|x)/0t = H|xX),
where
H=—p-B=—pBso,,
with g, = —1.9103 un being the anomalous magnetic moment of the neu-

tron, gy = ehi/2m,, ¢ the nuclear magneton, m,, the mass of a proton. Thus

1

h pnB2 05| X) = —iwa0o, |X> )

d
%|X)f

| B
where wqy = % Let

x) = (3). The above gives

a= —iwgb,
i) = —iwga .
The initial condition is a(0) = 1, b(0) = 0 as the beam is initially

polarized in the +z direction. Solving for a and b and using the initial
condition we obtain for t > 0
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cos wot
Ix)=1{ .. :
—7Sinwsy t

(b) The mean value of the spin in the state | x), i.e., the polarized vector
for neutron, is

p:<X|U|X) = <X|U$ez+0yey+0’zezlx>
= (0, —sin2wqt, cos2wat)

Thus in the region (IT), the ncutron spin is in the yz plane and precesses
about the « direction with angular velocity 2w,.

(c) For the descriptions in (a) and (b) to be valid, the time of the
transition between (I) and (IT) must satisfy

27 h

P — = .
%) I,U'nlB‘Z

For example if By ~ 10° Gs, then ¢ < 0.7 ps.
If the kinetic energy of the incideut ncutrons is given, we can calculate
the upper limit of the width of the transition region.

3048

The Hamiltonian for a (u*e™) atom in the n = 1,1 = 0 state in an
external magnetic field B is
H:as“~se+ﬂse~B—ﬂs#~B.
MeC muc
(a) What is the physical significance of each term? Which term domi-
nates in the interaction with the external field?
(b) Choosing the z-axis along B and using the notation (F, M), where
F = s, +s., show that (1, +1) is an eigenstate of H and give its eigenvalue.
(c) An rf field can be applied to cause transitions to the state (0, 0).
Describe qualitatively how an observation of the decay p* — e v.v, could
be used to detect the occurrence of this transition.
( Wisconsin)

Solution:

(a) The first term in H is due to the maguetic interaction between s
and e, the second and third terms respectively account for the magnetic



254 Problems and Solutions on Quantum Mechanics

interactions of 2 and e with the external field B. Of the latter, the term
le|se - B/mecis dominant as me = m,,/200.

{b) As
F=s,+s,
- 1 . , el el
H = - o[F? - s —s? : :
2 o sel + MeC muc Sz

Consider the state

(3, ),

As the cigenvalues of F?, s2, 52, sz, sez are 1{L + 1) b2, L (5 + 1)h?,

%(% + 1) 13, %h, %h, respectively, we have

: 1 31 eh o
H(1,+1){§ah2[2—2-—] P po O

4 2mec 2myc

1 . h 2N,
<~ah2+ ‘oo &

4 2m.c 2m,c

B} (1, +1)

B) (1, +1).

Thus (1, +1) is an eigenstate of H, with the eigenvalue
ah?/4 + ehB/2mec — ehB/2m,¢.

(¢) The decay pt — etrer, can be detected through the observation
— 2. For the state (1, +1),
the total angular momentum of the ete™ system is 1, and so ete™ cannot
decay into 2y whose total angular momentum is 0. For the state (0, 0), the
total angular momentum of the ete™ system is 0 and so it can decay into

of the annihilation of the positronium ete™

2v. Hence, detection of ete™ — 2 implies the decay pt — etver, of the
(;ste™) system in the state (0, 0), as welt as the transition (1, +1) — (0, 0).

Chbmim x o e e

DU

4. MOTION IN ELECTROMAGNETIC FIELD

4001

We may gencralize the semi-classical Bohr-Sommerfeld relation

%P cdr = (n+1/2)h,

(where the integral is along a closed orbit) to apply to the case where
electromagnetic ficld is present by replacing P with p — eA /¢, where e is
the charge of the particle. Use this and the equation of motion for the linear
momentuin p to derive a quantization condition on the magnetic Hux of a
semi-classical clectron which is in a magnetic field B in an arbitrary orbit.
For clectrons in solids this condition can be restated in terns of the size S
of the orbit in k-space. Obtain the quantization coudition on S in terms of
B (Ignore spin cffects).

(Chicago)

Solution:

I the presence of an clectromagnetic field, the mechanical womentum
P s
P=p-¢cA/c,

where p is the canonical momentum, e is the charge of particle. The gen-
eralized Bohr Somumerfeld relation becomes

‘%P-dr:f (piA) cdr=(n+1/2)h,

?{p»dr'—g¢:(n+1/2)h,

(/5:/B-ds:/(VxA)-ds:j{A-dr,
JS S

using Stokes theorem. The classical equation of the motion of an clectron

or

where

in a constant magnetic field B,
dp e dr

- ea’®

gives p = —er x B/c and

j{p-dr:—}gf(pr)-dr: EV><(B><r)-ds
[ s C

255
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€
C

/ZB-ds:Z(id)/c.
> Js

Hence
¢=(n+1/2) o,
where ¢o = he/e.
Defining k by p = hk = —erxB/¢, we have, assuining r is perpendicular
to B,
hAk = —BeAr/c,

or

Ar = —hcAk/Be.

Therefore, if the orbit occupices an arca S,, i1 k-space and an arca A,
in r-space, we have the relation

A, = (he/Be)? S, .

As
/) / B ]A - ,{):? 2 / B {g - —{LC | S ( I /2) { /
¢ LAy = WDqy = - 3 n ANk c/e,
¢ B ' [¢ - n e/
we have

Sy =2rBe(n+1/2)/he.

4002

rticle of charge ¢ 9 ass m is subject to ¢ iform clectrostatic
A particle of charg aid mass mis subject to a uniform clectrostatic

field E.

(a) Write down the time-dependent Schrodinger equation for this
System.

(b) Show that the expectation value of the position operator obeys New-
ton’s second law of inotion when the particle is in an arbitrary state ¢ (r, t).

(c) It can be shown that this result is valid if there is also a uniform mag-
netostatic field present. Do these results have auy practical application to
the design of instruments such as mass spectrometers, particle accelerators,
etc.? Explain.

(Buffalo)

Motion in Electromagnetic Field 257

Solution:

(a) The Schrédinger equation for the particle is

) h?
ih —

= V) —qE 1y
’ at 21n, voa ry
(L) The Hamiltonian of the particle is
2
H = —p— —-qE - r
2m,
Then
dx 1 1 p2 pe 1 Doy
— =z, Hl = — (&, 25| = = — [x, ps| = —,
dt ik [, 4] ih {I’ 27!1} o th [, pal m
(l’/pm 1 1 (IE.'I:
— = |Pu, Hl = = [ps, —Eex] = —— Pus ) = qFy
ar " an Pe HI= g d i [Peal =

and hence

dt m
d(p)
= gk .
di 1
Thus ‘ ()
d? L di{p
@ T w
or
e
mon (r) = qE,

which is just Newton’s second law of motion.

(¢) These results show that we could use classical mechanics directly
when we are computing the trajectory of a charged particle in instruments
such as mass spectrometers, particle accelerators, etc.

4003

The Hamiltonian for a spinless charged particle in a magnetic field

B=VxAis
1 e 2
H-— — (p-%aA
2m <p c (r)),

where e is the charge of particle, p = (pg py, p») Is the momentum conjugate
to the particle’s position r. Let A = —Byye,, corresponding to a constant
magnetic field B = Bye,.
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(a) Prove that p, and p, are constants of motion.
(b) Find the (quantum) energy levels of this system.
(MIT)
Solution:
The Hamiltonian for the particle can be written as
2 .
H=— {pe+—y) +—p>+ — p*.
2m (T i ¢ J) am Py T o P2
(a) As H does not depend on @ and z explicitly, the basic commutation
relations in quantum mechanics
[€i, p;} = ihdyj, [pir pi] =0,
require
[p:m H] - 0, [pz: H] #= 0,
which show that p,, p, arc constants of the motion.
(b) In view of (a) we can choose {H, p., p,} as a complete set of
mechanical variables. The corresponding eigenfunction is
Pz, y, z) = Hopatepa)/h oy),
where pg, p, arc no longer operators but are now constants. The Schro-

dinger equation

Hy(x, y, 2) = Ey(x, y, z)

1 By \° ., 42
Kpm +((_° :1/) SR p;} P(y) = Edly),

2m dy?

R 29 m [eDy 2 CPx 2 p*
_ = o L T - |E - 2=
2m dy? + 2 <m(‘,> <U - RB()) ¢ ( 2m> ¢

Setting

then gives

or

w = el Bo Yy =1 +_(:px E=F- P
me 7Y ey’ T o
we can write the cquation as
R d% m o,
—e— o T o WY =E'¢,
2m dy? 2 yoe ¢

which is the energy eigenequation for a one-dimensional harnnonic oscillator.
The energy eigenvalues are therefore

E=E-p*/2m=(n+1/2)hw, n=0,1,2,....
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Hence the energy levels for the system are

E, =p2/2m+(n+1/2)hw, n=0,1,2,. ...

4004
An clectron of mass m and charge —e moves in a region where a uniform

magnetic field B = V X A exists in z direction.

{a) Sct up the Schrodinger equation in rectangular coordinates.
{(b) Solve the equation for all energy levels.
(¢) Discuss the motion of the clectron.

( Buffalo)
Solution:

(a) The Hamiltonian s

~ 1 N 16 2
H=—— (P + = A) .
2m C

As
0A, 04, 0
dy 9z
A, _9A,
Oz dr
04y A g
ox Oy

we can take 4, = A, = 0, A, = Bz, i.e. A = Bxy, and write the
Schraodinger equation as

1
2m

Bx

2
Hy [15_3 + (Py + —) + 153} Y = Ei.

e
N c

(b) As (P, H] = [P,, H] = 0, P, and P, are conserved. Choose
H, P,, P, as a complete set of mechanical variables and write the Schrod-
inger equation as

1 . 1 . eBz\? P?
P2y (P +— =(E~ = )4.
{‘Zm = 2m ( vt c ) ] ¥ ( 2m> v

Let £ =z 4¢Py /eB, }:’5 — P,. Then £, If’g] = 1h and
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. 2
- [ m [ eBB . 1 ..
H=—_—p’+ = 24— pP.
¢t 2 (mc) ¢ 2m -

o P2 . . . .
The above shows that H - 5= 1s the Hamiltonjian of a one-dimensional

harmouic oscillator of angular frequency w = £2. Hence the energy levels

of the system are ‘
E=(n+1/2)w+ P?/2m, n=0,1,2 ...

.

Because the expression of I does not contain [, explicitly, the degen-
eracies of the energy levels are infinite.

(¢) Tu the coordinate frame chosen, the energy cigenstates correspond to
free motion in the z direction and circular motion in the « — y plane, i.c. a
hetical motion. In the z direction, the mechanical momentum rnw, = P, is
couscrved, deseribing a uniform lincar motion. In the @ divection there is a
simple harmouic oscillation round the equilibriuin point 2 == —c, /eB3. In
the y direction, the mechanical momentum is vy, = ) - cBufe = ¢BE/
¢ = mwé and so there is a simple harmonic oscillation with the same am-
plitude and frequency.

4005

Write down the Hamiltonman for a spinless charged particle in a niag-
netic ficld. Show that the gange transformation A(r) — A(r) + Vf(r) is
equivalent to multiplying the wave function by the factor exp [icf(r)/lic].
What is the significance of this result? Consider the case of a uniform ficld
B directed along the z-axis. Show that the energy levels can be written as

1 F S22
le| T B k7

E=(n+1/2) " .
mc 2m

Discuss the qualitative features of the wave functions.
Hint: use the gauge where A, = —By, 4, = A, =0.

(Wisconsin)

Solution:

The Hamiltonian for the particle is

2

N 1 . e

H:_<p~_A),
2m c

where A is related to the magnetic field by
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B=VxA.

The Schrodinger equation is then

21, ¢

1 >\’
— <3 _ £ ) W(r) = Ey(r).
Suppose we make the transformation
A(r) = A'(r) = A(r) + Vf(r),
; i
Py /() = gy § 1 )
and cousider

e

(13 —A) P (r) = b (x) - { A W(r)} xp {,’) f(r)} ()
10 . ¢
= CXp LNT f([)} <p - A) W(r),

(f) . %,y)g ¢ (x) = oxp L’:{ f(r)} (f) - §A>2't/’(r),

where we have used

py/(r) = 2w {cxp {,L f(r)} wﬁ(r)} = oxp {% f(r)} E Vi) + fn} Y(r).

3

Substitution in Schrodinger’s equation gives

2
1 . e -
o (P 28) v = Bu).
21 c
This shows thiat under the gauge transformation A” = A + Vf, the
Schrodinger equation reinains the same and that there is only a phase dif-
fercnce between the original and the new wave functions. Thus the system
has gange invariance.
Now consider the case of a uniform field B = V x A = Be,, for which
we have
AL:‘BU, Ay—_—Az:O
The Hamiltonian can be written as
2
- 1 eB R y
H=_— Kﬁm + —y) +p.12/+p4 )
c .

21n
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Since [pe, H] = [P, H] = 0 as H docs not depend on x, z explicitly,
we may choose the complete set of mechauical variables (p,, p,, H). The
corresponding cigenstate is

’l/)(.’li, v, Z) _ (i'lv(h,rvr'}’l)zz)/“. X(U) ]

Substituting it into the Schrodinger eqnation, we have

1 B \* ., 0 . ,
— {(1).:-, + F(— ;l/> - h? dT/Z 4 g)ﬁ} x(y) = Ex(y).

2m

Let epy/eB = —yp. Theu the above equation becomes

h? m (eBY’ . L
— X"+ = )t x=(F - pif2m)x,
21, 2 \me

which is the equation of motion of a harmonic oscillator. Hence the energy

B 1 B
E- ki (n+-)h el o
21 2 :

levels are

where &, = p,/h, and the wave fuuctions are

. ()1,('/),,; wpaz)/h

"/)pj.pz'n(-'lﬂ Y, Z) X'H,(U - :’/()) ;

where

o lelB L, ](IE ,
Xn(y — o) ~ exp { o (v — o) | I, e (v ~wo) ),

H,, being Hermiite polynomials.  As the expressious for energy does not
depend on p, and p, explicitly, there are infinite degeneracies with respect
to pr aud p,.

4006

A point particle of mass mn and charge ¢ moves in spatially constant
crossed magnetic and clectric ficlds B == Bz, E = Eyx.

(a) Solve for the complete cnergy spectrum.
(b) Evaluate the expectation value of the velocity v in a state of zero
morentum.

(Princeton)

el 1]
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Solution:

(a) Cloose a gauge A = Boxy, ¢ = —Epx so that V x A = Byz,
-V - ¢ = Fy. Then

2 2
1 1 . ( .
H=— <p - ?A) +op=— {pi + (1)1, - %Bws) + })4 —qgbyx.

2m 2m.
As I doces not depend on y and z explicitly, p, and p, each commutes
with H, so that p, and p, arc conscrved. Thus they can be replaced by
their cigenvalues directly. Henee

: 2 ' 2
ety OB (b fr*mEo>
2m 7 2me2 \ qBy qB2

1, me*E;  cpyEo 1,

+ y - v - = — D¢
2, bz 282 By 2m P
mo 1 . mclEZ ep, Fy
R T e e B0,
2 2m 2B By
where )
De — p £ u cpy  mctEy
& = P, =T — — - -
’ 9By qBg
are a uew pair of conjugate variables. Let w = || Bg/me. By comparing

the expression of H with that for a one-dimensional harmonic oscillator,
we get the cigenvalues of H:
E, = (n+1/2) hw + p2/2m — mc*E3 /2B — ¢cpyEo/Bo, n=0,1,2,....
The fact that ouly p, and p,, but not y and 2z, appear in the expression
for cuergy indicates an infinite degencracy exists with respect to py and to
pe.
(b) A state of zero momentum significs one in which the eigenvalues of
py and p, as well as the expectation value of p, arc all zero. As velocity is

defined as
1 1 q
V = — Pmec = (pAA) )
m m ¢

its expectation value is

™m 14 ™me me
Then as ‘
(2) = (&) Cpy metEy  meFy
L) = — = ,
¢By = qB} qB¢
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since {£) = 0 for a harmonic osciltator and p, = 0, we have

cky .
(v) = *B;O}’-

4007
Determine the cuergy levels, their degeneracy and the corresponding
eigenfunctions of an clectron contained in a cube of essentially infinite vol-
ume L3, The electron is in an etectromagnetic field characterized by the
vector potential
A =Hyzé, (J&,]=1).
(Chicago)
Solution:
As A = Hyx &, we have the Schrodinger equation
N 1 . . .
52 52 5 T e [ N2 4y — I
Hy = 5 (P74 p; + (py — Hoze/e)*|1p = E,
where ¢ is the clectron charge (¢ < 0).
As [H, p,) = [H, D] = 0, [py, P=] = 0, we can choose H, p,, p. as a
complete set of inechanical variables, the corresponding cigenfunction being

W = Moty

where p,, p, are arbitrary real numbers. Substitution of 4 in the Schro-
dinger equation gives
1. ' .
A2 N2 (o . 5 21,0 — F
— [p% + (eHo/e)” (x — epy/eHo)*| 1ho = Egib
2m
2 /9,
where Ey = E — p2/2m, or
R, s M . .
2 2 ' )2 (o VN
o d=apo/da” + 5 (Hoe/cem)” (w — x0)” o = Eotho,
where g = ¢p,/cHg.
The last equation is the encrgy cigenequation of a one-dimensional oscil-
lator of natural frequency wy = —Hpe/me and equilibrium position @ = g,
the energy eigenvalues being

Ey=(n+1/2)hwy, n=0,1,2, ..,

or
E = pf/Zm — (n+1/2) Hoeh/me, n=0,1,2,...
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The corresponding etgenfunctions are

2 H . -H,
Yoy ~ CXP {(0 (r — ;1:())2} H, < _ e (z — x0)> ,

2he he
where H,, are Hermite polynoiials.
As 1o p, terms oceur in the expression for energy levels and py can be
any arbitrary rcal number, the degeneracies of cnergy levels are infinite.
The cigenfunctions for the original system are thercfore

(pyy -+ 0.2 :H )
'(/"(X) = O, exXp [W‘l) + ol (LL‘ - :I:())2:|

h 2he

1 H
x H,, < ero (v — :1:0)> ,
fic:

whoere €, 1s the normalization constant.

4008

Consider a loop of thin wire in the shape of a circle of radins 12 (IFig. 4.1).
A constant niagnetic field perpendicular to the plane of the loop produces a
magnetic Hux passing through the loop. Imagine that the wire contains only
one clectron which is free to wove. This electron has a wave function ¢(6)
whicli depends only upon the angular coordinate 8. Neglect all interactions
between the electron spin and the wmagnetic field as well as all magnetic
fields produced by the clectron itself.

z

Fig. 4.1

(a) How does the ground state energy of the electron depend upon the
value of the applied inagnetic ficld in the approximation we have described?
Derive a formula and give a rough picture of the result.
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(b) Imagine that we start with the wire in its ground state in the pres-
ence of a magnetic flux ¢. Next the magnetic field 1s turned off. Calculate
the current in the loop.

(¢) Calculate the current in amps assuming 2 = 2 ¢ and ¢ = 0.6

gausscm 2.

(Chicago)
Solution:

(a) In cylindrical eoordinates 7, 8, 2, as V. x A = Bé, where I3 is a

constant, we can take A, = A, = 0, 4y = ’—f, ie, A = %é(), and

consider the Schrodinger cquation for the clectron,

1 e 2
—|p~-A) Y= FEy,
¢

2m

where ¢ 15 the clectron charge (¢ < 0). Lot

P =" exp <,( / A - (b() .
ch
Then as

<p fA) b = exp (” / A dx) <13 ~faq fA) o
c ch c ¢
TR R
exp < / A dx) Py’
ch
e 2 e [T
<I3 *'A) P = exp <‘A / A - dx) Py,
c ch

the Schrodinger equation becomes

"
11

1

p2y = Ey’.
21

Since the electron is confined to a loop of radius R, we have

. . . 0
P =1(0) =1 exp <E A - dx) = exp <Z; / AR d9>
r=R ch

ch

o ' exp (1; ARO> .

R e o 42

A o
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Note that v’ = ¢/(f) and p = —*& L Thus we have

B d(0)

_ L~ = 4
2mR?  df? Ey'0),

with solution
Y'(0) ~ e

where c¢; is a constant given by E — %;5 Thus
(@) ~expli(c: + eAR/ch) 6].
For single-valuedness, ¥(6) = ¢(0 + 2x), i.e.,
27 (1 + €AR/ch) = 2nm,
where n is zero or an integer (0, +1,+2,...). Solving for ¢; we have
ci=n—eAR/ch=n — eR*B/2ch,

and hence
Bo= (e er2Bfaeny — 2
" Rzt C N omR? (n+ ¢/d0)",

where ¢ = TR?B, ¢g = —ch/e. It is seen that the dependence of E,, on the
external magnetic field B or the flux ¢ is parabolic, as shown in Fig. 4.2.

EnlB)

1

=-

Fig. 4.2

As n is an integer, the ground state (lowest energy level) energy E, is
given by
h2

g — W [n* — €R2B/2Ch]2,
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where n* is the integer nearest to eR*>B/2ch (or e¢/ch), which is negative
as e is negative for an electron.

(b) Suppose we start with a state E, which is the ground state, n will
remain the same when B is turned off. Thus the wave function will be
1 = Cexp (inf) and the electric current density is

eh

! 2
=¢ L (W Vp — VY™ | =r (in) I e

21 2mz

L

ehn

.
= —— Y*éy
mR(l Weo

where C is the normalization constant. Let S denote the cross section of
the thin wire. We have from the normalization condition

/ W dldS =271R|C|*S =1
that |
2 _
¢ = 2rRS
Henee

" chn 2 chin
= / Jods = mR G5 = 2mwmi?

Note that j has been considered to be unifornn in any cross section as
the wire is thin.

Because the electron is initially in the ground state, for which £, is the
minimum cnergy, we have

 Jeg (%(/5} 1
n = L’h or | -1

where [A] denotes the greatest integer which is not greater than A.

For the case of macroscopic magnetudes as in part (¢), the quantum
number is numerically large and we can simply use n &~ e¢d/ch, in which
case

I = 2p/4n*R¥mec.

(c) For R =2 cm, ¢ = 0.6 gausscm?, we have in SI units

I =€%¢p/47*R%m = (1.6 x 1072 x 0.6 x 107* x 107 /[4x?
% (2%x107H)2x 0.9 x 107 = 1.1 x 107" A.

T T
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4009

(a) Assuming that nonrelativistic quantum mechanics is invariant un-
der tiine reversal, derive the time reversed form of the Schrodinger wave
function.

(b) What is the quantuni mechanical Hamiltonian for a free electron
with magnetic moment g in the external constant magnetic ficld H, in the
z-direction, in the reference frame of the electron?

(¢) Suppose that an extra constant magunetic ficld H,, is imposed in the
y-direction. Determine the form of the quantum mechanical operator for
the time rate of chiange of p in this casc.

(Buffalo)

Solution:

(a) Consider the Schrddinger equation

0 .
it p(t) = H).

Making the time reversal transformation £ — —¢, we obtain

i T,
—f—'l,hva W=ty = H(=t)p(-t),
or

B
’1,})/&'(/) (—ty = H"(—t)yp*(-t).

It [:I*(~—t) = H(:‘) then the Schrodinger equation is covariant under
time reversal and the time reversed form of the wave function is ¢¥* (—¢).

(b) Let —e be the charge of the electron. Then p = — 32" o and in the

refercnce frame of the electron,

fI:i” ’ H:ilu’ZHZ - ;0—sz~
2me

(¢) The magnetic field is now Hyy + H,z, and so

- eh
H = % (OZHZ +O'yHy)7
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2
du 1 - 1 ch R .
. T 1 }[ = - - .I‘A Uy T Uzdh,
dt ih 1, H] 1h <2m(:> [FonX - oyy 0.2

2 [ eh \’
o H. 40yl =7 (2‘7”’() (o H. — 0, Hy) &~ o Hoj
2 [ ch \°
1o, H 2l = = [ — x H
+ s 2] h <2’m(7> T
-0 H x p,
e

wliere use has been made of the relations .0, 1T, OyT, 5 A0y,

T,05 = i3y,

4010

A particle has wmass mn, charge ¢, ntrinsic angular womentum s (s is
not necessarily equal to //2) and a maguetic dipole moment g = ggs/2rmne.
The particle moves in a uniform magnetic ficld B with a velocity small

comparcd with e.

(a) Write down the Hamiltonian for this systemn. (The vector potential
for the uniform magnetic field may be written as A = B X r/2)

(b) Derive the quantim mechanical (Heiscuberg) equations of motion
from this Hamiltonian, for the linecar momentuin P oand for the angular
momentum s. The A? term may be neglected in this nonrelativistic ap-
proximation.

{(Note that the results look exactly like the classical equations of motion.)

(c¢) Without solving these equations, identify the value of the constant
g for which the helicity will remain constant. (Helicity is defined here as
the cosine of the angle between the vectors P and s)

(d) What is the actual value of the constant ¢ for any one of the following
particles: e, p, n, w7

(Berkeley)

Solution:

(a) The Hamiltonian for the system is

e i
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2 ;
1 1 .
H=—(P-9A) ~p.B=—pP2_ L A.p
21n c 2m me

2
q 2 gq
B B.
22 2me

S -

(b) Neglecting terms A? and higher in H we have

dpr; 1 1 q
=— I[P, Hl=— | -——A P
dt ih [ ] ih [ me A
g4 iq
- ;. Bl - P, AP
2me S } hrne [ J "]
_ M (pa, P~ APP)
Chne U I
g
= DA Dy + A DD — AP D]

i q
o — ). " . — 1 )“} ) )v‘ )
o LA ) Py = (0iA)) 1

% s H] = — {s'i, LR B}

dt  ih 1h 2me
14q
= —— s $: 3
2hme [s0: 5555]
—94q
" 2me (Bjse = Bs;)
= ﬂ‘(B X s)i,
2me

as [si, s;] = thsk. Note that we have used the convention that repetition
of a subscript implies summation over that subscript.

(c) As P and s commute we can consider the problem in the common
eigenstates of P, s2 and s, .

The helicity h is defined as

' D;s;
h=Ps/|P|]s| = 5,
[Pl ]s]

and as

1
A,L' = (B X I‘)i = 5 6’ijkBj i,

b | —
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we have
q
hy ——A - P :7[5 P;, A; P}
me mels| | P
—qs;
=—— [P, AP
mels| | P [P A ]
qsi Pj thy O
= — (eju Brx
mels| | P < ) Ow; (&0 Brm)
thq s; Py
=—— ik Dé;
2me M s PR
ihy si D
= £ — —
2me Is| | P]
94 — 44
h,) — g - B - — S'L'[)'L'a s, 3
[ 2me ] 2mels| | P | 1Bil
—qq I
= 4[ ‘(/(1 - [(S)i7 '§7B7J
2mels| | P| T
thgq sy by

bt R
2me Ik |s| | P]|

If the helicity is a coustaut of the inotion, then

UI/, I‘[] = |:]I 47A P:| + |:}I,, . {/(I‘S . B:| . 0,

mce 29n¢

which requires g = 1.
(d) The values of ¢ for the various particles arce

Particle e v n ™
g 2.0 | 5.6 | —38 | 0O
4011

In a recent classic table-top experiment, a mouochromatic neutron beam

(A=1.445 A) was split by Bragg reflection at point A of an interferometer

into two beams which were recombined (after another reflection) at point
D (see Fig. 4.3). One beam passcs through a region of transverse magnetic

R Lt T

b SRS e

e fasasioae 43
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field of strength B for a distance [. Assume that the two paths from A to
D are identical except for the region of the ficld.

B

Fig. 1.3

Find the explicit expressions for the dependence of the inteusity at point
D on B, [l and the ncutron wavelength, with the neutron polarized cither
parallel or anti-parallel to the magnetic field.

(Chicago)
Solation:

This 1s a problem on spinor iuterference.  Consider a ncutron in the
beam. There is a magnetic ficld B in the region where the Schrodinger
equation for the (mucharged) neutron is

<h—Hv2A/La’B>1//‘E1/)

2m,

Supposing B to be constant and uniform, we have

D(t) = exp |[—iH(t) — to)/h] ¥ (to),

where tg, ty arc respectively the instants when the neutron enters and leaves
the magnetic ficld.
Write ¥(f) = ¢(x, t) (s, t), where ¥(r, t) and ¢¥(s, t) are respectively
the space and spin parts of . Then
i B,
Yir, t1) = cxp [ 7 < - — V“) (t, — to)} P(r, to),

2m

which is the same as the wave function of a free particle, and
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1
W(s, t1) = exp 5 MO B (t1 —to)| ¥(s, to).

The interference arises from the action of B on the spin wave function.
As ¢(r, t) is the wave function of a free particle, we have £, — ¢y = [/v =
ml/hk and

W(s, t1) = exp [i2rpmiio - B/ (s, to),

where k = sz = %% is the wave nuinber of the nentron. The intensity of

the interference of the two beams at D is then proportional to

1) (x, 95 (s, )+ (x, 0wl (s, 01

o 1 (s, 1)+ 8D (s, 1) 12 = P (s, ta) + 9P (s, 1) ]

As

h2 3

2rpumiAD
2 '

C 2mwprnd A 2w pumIAB ) B
exp |4 T o -B|=cos —— +ioc - —

X S

and o - B = +oB depending on whether o is parallel or anti-parallel to
B, we have

2

. . y 2 A .
\1/1(2)(5, to) + ’l/)(z)(s, t)|° = ’ 14 exp <1 ZTimA o - B> | (s, to) |2

h?

2rpmIAB - 2wl AB
T + 2o s 2

2rpmiAB N\
= <l + cos %>

h?
o 2mumiAB — deo mumlAB

h? o h?

2
:‘1+cos ‘

+ sin

Therefore, the interference intensity at D oc cos? (mpumiAB/h?), where
it 1s the intrinsic magnetic moment of the neutron (u < 0).
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4012

A neutron interferometer beam splitter plus mirrors as shown in
Fig. 4.4 has been built out of a single crystal.

> out

- thin ptate

>~
|

A inc

Fig. 1.4

(a) By varying the thickness of a thin plastic sheet placed in the beam
in one arm of the interferometer one can vary the relative phase and hence
shift the fringes. Give a Drief qualitative explanation of the origin of the
phase shift.

(b) By inserting in one arm a magnetic field which is normal to the
beam, time independent and very ncarly uniform so that the force on the
neutrons can be neglected, and by choosing the field so each neutron spin
vector precesses through just one rotation, one finds the relative phase of
the two beams is shifted by 7 radians, or one-half cycle. Explain, with
appropriate equations, why this is so.

(Princeton)

Solution:

(a) When a neutron passes through the thin plastic sheet, it is under the
action of an additional potential, and so its momentum changes together
with its de Broglie wavelength. The phase change of the neutron when
it passes through the plastic sheet is different from that when it passes
through a vacuum of the same thickness. If the thickness of the plastic
sheet is varied, the relative phase of the two beams (originating from the
same beam) also changes, causing a shift in the fringes.

(b) The neutron possesses an anomalous magnetic moment fi, = —ft, o
and its Schrédinger equation is
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(p%/2mp + pm o - By = Evp.

We may ncglect the reflection that occurs when a neutron wave is inci-
dent on the “surface” of the shect-like magnetic fickdt as the action of the
ficld on the neutron is rather weak. Under such an approximation we may
show (by solving the above two-spin-component Schrodinger equation for
a one-dimensional squarc well): The wave function 4, for a neutron inci-
dent normally on the sheet-like magunetic ficld is related to the transmitted
wave function ¥y, out of the ficld by a unttary transformation

Youe = cxp (—io - p/2) Prye,

where p = wyrep, with w;, = 2u,B/h being the Lannor frequency, 7
Lm,/hk the time taken for the neutron to pass throngh the magnetic field
of thickiess L, ep the unit vector in the direction of B, & the wave munnber
of the mcident neutron.

If a neutrou is polarized in the (8, ¢) direction before eutering the field,
i.e., its polarized vector is

(Pine | 0 [1hine) = {5100 cosp, sinfsing, cosd}

then we can take 0
(?”"F’/'“’('.()Sj
'l/)' — 2 (,'i,k -x
me - bl
ips2 i 0
et sin
2
where 6 is the angle the polarized vector makes with the direction of the
magnetic field. Taking the latter as the z direction, we have p - o = po,.
Then as

P 0 . .p P 1 0
exp — 1 = Tz = COS - 17, SH o= COS -
2 2 2 2 0 1
o 1 0 c*’l./r/l 0
— sl ] = PR B
2 \0 -1 0 ool

. , 0
o e P2 o6~

e~ ip/2 0 2
wmxt - < > '(/jiu(: = (3Zk *.

ip/2
0 ¢ cilotn)/2 sing
9

4

we have

e

| omiein e

Motion in Electromagnetic Field 277

By adjusting B (or L) so that p = 27, we make the polarized vector
of a neutron precess through one rotation as it traverses the region of the
magnetic field. Then

eTiw/2 Cos
, o kx4
lj)uul, - C ( ) ’

] 9.
e/ sin
2

le., the phase of the transmitted wave increases by oo Hence, compared
with the wave traversing the other ann (without magnetic field), the relative
phasc of the beamn changes by a half-cycle.

4013

(a) A hydrogen atom is u its 217 state, in a state of L, = Fh. At time
t = 0 a strong magnetic ficld of strength | B | pointing in the z direction is
switched on. Assuming that the cffects of electrou spin can be neglected,
calculate the time dependence of the expectation value of L.

(b) How strong mmst the magnetic ficld in part (a) be so that the cffects
of cleckron spin can actually be neglected? The answer should be expressed
in standard macroscopic units.

(¢) Suppose that, instead, the magnetic field is very weak. Suppose,
further, that at ¢ = 0 the atom has L, = +hk and s, = —é—h, and the
magucetic ficld is still oriented in the z direction. Sketch how you would
calculate the time dependence of the expectation value of Ly in this case.
You need not do the full calculation, but explain clearly what the main
steps would De. '

Note: All effects of nuclear spin are to be ignored in this probleni.

(Princeton)

Solution:

(a) The initial wave function of the atom is

Y(r, t =0) = Raa(r) © (6, ¢),

where

0, ¢) == Yu+Yi_ + \/Eylo) ;

1
2
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is the eigenstate of L, = h.

At t = 0 a strong magnetic field Be, is switched on. Then for £ > 0 the

Hamiltonian of the system is

i - p? eBl, C‘ZBZ( +y?) ﬁ

2me  2mgc 8.2 r
L « .
For a not too strong magnetic field B ~ 10° Gs, we can neglect the B2
7
term and take as the Haniltonian

a- p +(3Blz e?

2. e 1

The Schrodinger equation
i O Ot = Hyp
then gives the cigenstate solutions
(1, t) = Ry (r) Y5, (0, @) ¢ St/ ,

where

mh.

. el
En,l‘m, e I‘/'nl + -
2m..c

Thus the general solution is

. [jul‘m,
Y. A i Ty exXp { — 1 -1 .
B, 1) Z APyt (T) 0X] ( 0 o )

mn,b,m

For t = 0, we then have

1. L. 1
D antutin(r) = R (v) (2 Yoo+ oY+ 7 Ym) :

n,l,m
or 1
aziay (r) = 5 R (r) Y1y, cte.

1 E.
P(r, t) = Ry (v) [Z Vi exp ( 1 ;“ t)
i

1 Eo_
+ §Ylloxp<~7ﬁ“_1t)

Hence

h

1 K.
+ ﬁ Yigexp < 1 ;10 T)} .

ﬁw b
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The expectation value of L, is given by (¢(r, t)| Ly [¥(r, t)). As L, =
(Ly +L_)/2,

L. Y,,="h \/(l +m+ 00 —m)Y, mi1,
L Yin=h/U=m+D){+m) Y e,

we have

3 h h
L.Y = 7§Y10, L,Y1 1= 7 Yo,
h
L,Yio=—=Yu+Y_1),

and hence B
Lo(t) = (b(x, t) | Lo | 0(x, t)) = hcos ; /

2. C

(b) The effects of electron spin can be neglected if the additional cuergy
due to the strong maguetic field is inuch greater than the coupling energy
for spin-orbit interaction, i.c.,

chB

Qe > AES[)ill-()l'l)if. ~ 10 3 (‘,V,

or
B> 10% Gs.

Thus when the magnetic field B is greater than 10% Gs, the effects of
electron spin can be neglected.

(¢) If the magnetic field is very weak, the effects of electron spin must
be taken into consideration. To calculate the time dependence of the ox-
pectation value of L., follow the steps outlined below.

(1) The Hamiltonian is now
P ~—5+7€2 (6-L)+ B j+KGB 3.,

H= i
21 T 2m2c?r3 2m,.c 2m.c

which is the Hamiltonian for anomalous Zeeman effect and we can use
the coupling representation. When calculating the additional energy due
to the §, term, we can regard §, as approximately diagonal in this repre-
sentation.
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(ii) Write down the time-dependent wave function which satisfies the
initial condition L, = +A and s, = % h. At time ¢t = 0 the wave function is

Yo(r, s2) = Raa1(r) © (0, ¢) ¢,
where © and ¢, are the eigeufunctious of L, = I aud s, = h/2 in the
represcutations (12, 1,), (82, s,) respectively. Explicitly,

’l/}o(I‘7 S_/E) — Rzl(’f')

1 1
— Y] Yi_ 2Y0 —= + 0
2[11+ 11+\/_10]\/§((YH)

_ B(r)
2V2

+ V2Y 00+ V2Y08) .

CEREES \/7Y11/J+\/7Y10(¥
(/)_E*l» = \/7Y1[(¥+ \/7)/1()/'} (/)l Es = . /},

1o can be written i the (:ouphng‘ represcutationn as

’l/fo(h b‘:n)

Yo+ Ynp+Y o+ Y18

Ly == = Y\,

Ry (r) (ds s + V3.

3
2

tim

2f
-+ \/3(/5%_% + (/>%4

where @, is the eigenfunction of (52, j2) for the energy level Entjm;

s},

3
2

Theretore, the ti111(>,~(lep(—én(‘lout wave function for the systewn is

EzL-‘_‘
2\/— Rll( ) : [(/’%% exp<i ,Lz 2 t)

w(r) Si f)

Eay-g
+ ¢33 exp —th .

(ii1) Calculate the expectation value of L, in the usual imanner:

@ (r, s, t) [Le| 9(r, s, 1))
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4014

Consider the one-dimensional motion of an uncharged particle of spin
1/2 and magnetic moment p = —2pups/h. The particle is confined in an
infinite square well extending from @ = —L to « = L. In region I (z < 0)
there is a uniforin magnetic field in the z direction B = Bye,; in region
It (x > 0) there is a uniform ficld of the same magnitude but pointing in
the « direction B = Bye,. Here e, and e, arc unit vectors in the z and z
dircctions.

(a) Use perturbation theory to find the ground state energy and ground
state wave function (both space and spin parts) in the weak field limit
By < (W) L)/ 2myuy.

(1)) Now consider fields witlh By of arbitrary strength. Find the general
form of the cnergy cigentunction ¢ (both space aund spin parts) in region I
which satisfies the left-hand boundary coudition. Find also the form ¢y
that the cigenfunction has in region IT which satisfics the right-hand bound-
ary coudition (Fig. 4.5).

(¢) Obtain an explicit determinantal equation whose solutions would
give the energy cigenvalues £,

(MIT)

Bl:Boez BH:Boex
-L 0 L

Fig. 1.5

Solution:

(a) In the abscnce of magnetic fielkd, H = Hy and the energy eigenfunc-
tions (space part) and cigenvalues are respectively
oonm(x+ L
P, = V1/L sin (7—L) ,
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E, = .

—0 = 1) 2, 3
8mL? "’

As for the spin part, we know that each energy level has a degeneracy
of 2. When a magnetic field is present, H = Hy + H’, where

T2 A2 i

toBoo,, —L<z<0,
2108 - B
H =-p B= Hoh =poo - B =< pwBoo,, 0<a <L,
0 elsewhere .

If the field is weak, let uy = ¢1(2)(}), uz = '1/11(17)(?) be the base
vectors. Then

mpWMmew%“”<$(D<w

0 BB
x / Yi(z) (1) do = [02 9
-L

Hj =Hyy = (uy | H' |uy) ;

0 1Y /0 k ol
= noBo(1 0) <1 0) <1> /0 Py (x) de = “02&>

Hiyy = (o | H' | p2)

L0y /oy f° :
=— poBo(0 1) <0 _1> <1> /1 P (a)y (@) do = ~NOTBO

and from det (H' — EMI) = 0 we get,

P L= LRI

<MOTBOE(1)><—@~E(”)-N§4330, );

or 1
E(l) == :f:—{) /I,()B() .

7%

The ground state energy level is therefore
T2 R? 1

= smi2 5 Do

oo ()-(2) |

Ey

From
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we get the ground state wave function

(unnormalized)

— V2
(p():(l7Ll+b'u2:wl(_’E) (1 1\/_> .

(b) The space part of the wave function in region I is

0

’ Asinki(z + LY+ Beoski(x + L), —L <z <0,
1 1k, -
< —L.

’

The continuity condition of the wave function gives B = 0. Iu region I,
the spin is aligned to the z direction, the cigenvectors being ((1)) for z | and
((1)) for z 1. Hence

, 0 h2k?

Wik zy =sink (x + L) <1), E = 2ml — poBo;
. 1 R2k?

Y1k, 2+ = sink (z + L) <0>, E = 2m1 “+ po Bo -

In a similar way we obtain the eigenfunctions for region II (0 < z < L)

, 1 h2k2
Wil kywy = sinko(z — L) <_ ), E = 2 — 10 Boj;

1 2m

g —sinka(z— L) | g="r g
I[koxtT = SIN KT E = om Lo Dg -

(¢} Considering the whole space the energy eigenfunction is

AYtk, 2y + BYrg a1, —L<zx<0,
VY = C¥iikyey + Dduigger, 0<2 <L,
0, elsewhere.

Thus
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Hyp =
P2k h2k{2
— 110 Bo | Atk 2y + L+ 0By | B [ <z<0
( o Mo Do Y1k, 21 o+ HoBo ) Bzt <z <0,

h2k2 B2k}
2m - HOBO C'd’]]k:fci -+ o + /LOBO D,(/}Hk,’z:n‘r, 0 S 2 S L’

0. elsewhere.

From Hyp = Ey for cach region we have

h2 k2 h2R? h2k2
E=——t —jgBy = ——— + poBo = 2 ~ iy By
2 2m 2m
R2ET?
= ‘)mz + poBo

and so ky = ky =k, k| =k, = k.

Then the coutinuity of the wave function at x = 0 gives
Bsiu k'L = ~C sin kL — D sin k'L,
Asin kL = C sin kL - D sin k'L,
and the continuity of the derivative of the wave function at x — 0 gives
BE' cos k'L = Ck cos kL + DK cos k'L,
Ak cos kL == -Ck cos kL + DK cos k'L .

To solve for A, B, C, D, for nonzero solutions we require

0 sink’L sin kL sink’L
sinkL 0 —sinklL sink’L 0
0 K cosk'L —kcoskl —k cosk’L]
kcoskL 0 kcoskl  —k cosk’L
le.,
ksinkLcosk’'L — k' sink’L coskL = 0.
This and o L
B2k B4
= o toBo = + 1o B
m 2.

determine the eigenvalues E.
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4015

Consider an infinitely long solenoid which carries a current I so that
there is a constant magnetic field inside the solenoid. Suppose in the region
outside the solenoid the motion of a particle with charge ¢ and mass m is
described by the Schrodinger equation. Assume that for I = 0, the solution
of the equation 1s given by

Po(x, t) = ¢ty (x). (h=1)

(a) Write down and solve the Schrodinger equation in the region outside
the solenoid for the case I # 0.

(b) Consider a two-slit diffraction experiment for the particles described
above (sce Fig. 4.6). Assuine that the distance d between the two splits
is large compared to the diameter of the solenoid. Compute the shift AS

screen

source

solenoid

Fig. 4.6

of the diffraction pattern on the screen due to the presence of the solenoid
with I 5 0. Assuine [ 3> AS.

Hint: Let
P(x, 1) = tho(x, )Ya(x),
where
<v —i ‘; A(x)) wa(x) =0. (h=1).
(Chicago)
Solution:

(a) In the presence of a vector potential A, p —» p — eA/c. In the
absence of clectromagnetic field the Schrodinger equation is

o 1
gy ol )= |4 VG0 ol 1),
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where, as below, we shall use units such that i = 1. The Schrédinger
equation in the presence of an electromagnetic field can thus be obtained
{using the minimum clectromaguetic coupling theory) as

1

, 2
i%l/)(x, t) = [ﬁ < —iV - ?A) + V(x)} P(x, t),

where 4 s given by V x A = B. Let

P(x, t) = ¢i(x, t) exp (I /X ;A . (1x> .

Then the above becomes

<

0 1 . .
i (x, 1) = | ——p? + V(X)) i(x 1),
ot 2.
which is the Schrodinger equation for zero magnetic field. Hence

i(x, t) =1pp(x, 1) = ettt (x),
and so

W(x, t) == e oty (x) exp <L / CA - (lX) .
. ¢

(b) This is a problem on the Aharonov Bohm effect. When I = 0,
for any point on the screen the probability amplitude [ is f o= fy -+ f |
where f and f_ represent the coutributions of the upper and lower slits
respectively, When the current is on, i.c., 1 # 0, we have the probability
amplitude "= fl + f/ with

7l = exp (/ ‘A dx) fi
SOy ¢

Flo=cxp <I / CA . dx) [,
e C

where ¢, and c_ denote ntegral paths above and below the solenoid re-
spectively. Thus

f’f;+flex1)<'[ / :A-dx> f++(!xp<'i/ A-dx) I
~exp<i]{§A~dx> f—+f+,
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on dividing the two contributions by a common phase factor exp(i f:: A
dx), which does not affect the interference pattern. The closed line integral,
to be taken counterclockwise along an arbitrary closed path around the

solenoid, gives

e e e €
—A-(lef/VxA-ds:—/B-ds:—d),
¢ ¢ c c
where ¢ is the magnetic flux through the solenoid.
Thus the introduction of the solenoid gives a phase factor ed/c to the
probability amplitude at points on the screen contributed by the lower slit.
Using a method analogous to the trcatment of Young’s interference in
optics, we see that the interference pattern is shifted by AS. Assuming
[>dand !> AS, we have
d

AS - S k=S¢,
l c

k being the wave nuiber of the particles, and so

as— o v

cdk m

Note the treatinent is only valid nonrelativistically.

4016

(a) What arc the cnergies and energy eigenfunctions for a nonrelativistic
particle of mass m moving on a ring of radius R as shown in the Fig. 4.7.7

Fig. 4.7

(b) What are the energies and energy eigenfunctions if the ring is dou-
bled (e

(each loop still has radius R) as shown in Fig. 4.87?
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S

Fig. 4.8

(c) If the particle has charge ¢, what are the energies and energy cigen-
functions if a very long solenoid containing a magnetic flux passes the rings
in (a) as shown in the Fig. 4.9.7 and in (b)? Assume the system does not

radiate electromagnetically.
(Columbia)

3>
g

Fig. 4.9

Solution:

(a) As
R f)z B h‘z dz

T omR2 T 2mR2 62

we have the Schrodinger equation

K2 d?
——— =Ev¥
o o V(0) = BV (6),
where
I =mR*,
" "5 (0)
d=¥ (o 9
102 +n ¥(g) =0,
with
o  2IE
T

Thus the solutions are
T, (0) = Ae™? .
For single-valuedness we require

(0 + 27) = V(B),
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ie.,
n=0,+1, £2, ...

Normalization requires
A*A=1, or A= —.

Henee the eigenfunctions are
1 ing ‘
—c", n=0,+1, +2, ...,

V2

and the energy eigenvalues are

\IJ,,L({)) fesied

n2k?

En(0) = =7

(L) The same Hamiltouian applies, and so we still have the same

Schrodinger equation

o
21 do?

U(4) = EV(0).
However, the single valuedness of the solutions now requires
V(6 +4r) =¥ (6).

Hence the normalized eigenfunctions and the energy eigenvalues are now

1 ing ;
e n=0,=x1, £2, ...,

\Ijn(e) - \/E 3

and
n*h?

81

En(6) =

(¢) The Hamiltonian in the presence of a magnetic field is
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In the region where the particle moves, B = V x A = 0 and we can

choose A = V. From the symmetry, we have A = Agep, Ap = constant.
Then

2m
}[A -dl = / AgRdO = 2nRAy = ¢, say.

Jo
Thus

pey ‘
= o = V(¢0/2m),

and we can take ¢ = ¢8/27, neglecting possibly a constant phase factor in
the wave functions. The Schrodinger equation is

A 9 . 2
o= (v g)
2m 2mh

2 ;
= floxp z‘flﬁo V2 lexp [ — ﬂf(} V| =EV.
21 2mh 2mh

On writing

D0 = oxp i 1%
' (0) = exp ( oy 6) W (0),

it becomes .
h? d?

T2 de?
[21E
' (0) = exp ( +1 R 9> .

W(0) = cexp (1ad) ' ()

= cexp [ila £+ 3) 0],

7 (0) = Ev’(0)

with solutions

Hence

where

96

3 (21K tant
o = ) = —5—, ¢ = a constant.
oh % con

For the ring of (a), the single-valuedness condition

(0 + 27) = U(0),
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requires
at+fB=n n=0,=x1, £2,. ..
ie.,
ﬂ + \/EE/h2 =7.
2mh
Hence ‘ )
E, = e n— a9
"Tor \ 2mh)
and
P (0) = ——= e
() = =
where

n=0,+1, +2, ...

Similarly for the ring of (b}, we have

0 2 2
g (n e\
T or\2 2@k 87
and ) ,
n
P, (0) = ——=—exp <i—9> ,
5a0) = =0 (i
where

n=0,+1, £2, ...

a

wh
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5. PERTURBATION THEORY

5001

(a) Show that in the usual stationary statc perturbation theory, if the
Hamiltonian can be written H = Hy + H' with Hydo = Eygo, then the
correction AFEy is

AEy = (dolH'|do) -

(b) For a spherical nucleus, the nucleons may be assumed to be i a

0, r<R,

oo, 1> It
For a slightly deformed nucleus, it may be correspondingly assumned that

spherical potential well of radius 12 given by V), = {

the nucleons are in an elliptical well, again with infinite wall height, that

1S: . . .
0 imside the ellipsoid -t 4 20— 1

mscle 1¢ CLIPSOIC p - r— y
V, = ps¢ b2 a?

oo otherwise,
where a = R(1+28/3), b= (1 — 3/3), and B < 1.
Calculate the approximate change in the ground state cnergy Fo due

to the ellipticity of the non-spherical nucleus by finding an appropriate H'
and using the result obtained in (a). HINT: Try to find a transformation
of variables that will make the well look spherical.

( Buffalo)
Solution:

(a) Assuming that H’ is very small compared with Hy so that the wave
function ¥ can be expanded as

v = |¢0> + /\lf(/ﬁl> +---+ /\n|¢n> +

where A --- A, - -+ are small parameters. The Schrodinger equation is then

(H' + Ho) (|0} + A1ln) + -+ Anldn) +---)
= (Eo + AEy) (|¢o) + Atlgr) + -+ Anldn) + ).
Considering only the first order correction, we have
H'|go) + Ho(Mld1) + -~ + Anfdn) + )
= AEg|po) + Eg(Ai]|d1) + -+ Anldn) +---).

Multiplying both sides of the equation by “{¢o| and noting the orthonormal-
ity of the eigenfunctions we get

292
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AEqy = (¢o| H'| o).

(b) For the stationary state,

- h? )
H=—— V4V,
2m
where
0 inside the ellipsoid w oy + < 1
side the ellipsol ST
‘/ = ! b'Z (112 ’

oo otherwisc.
Aci s varinbles 7 4 b [ ] . : :
Replacing the Yarmbl(.s z,Y,z b}{ 7 3 %1, # ¢ respectively, we can write
the cquation of the cllipsoid as €2 +7? + ¢? = R? and

g (o
T 2m \ 9a? +(’);l/72+@

LR (RO @ R
o2m \ b2 g2 b2 W%(TZ ac?

ac?
. h? o? 0? 0?
“am \oetop e
hG [ 67 0? o?
— Vst 25
3 \0E2  In? ¢z
2 2 2 2 2
h/ AVAE M 8_ + 8_ 9 i )
2m 3m \0€  on? a¢?

The sccond term in H can be considered a perturbation as 8 <« 1. Thus

h2 2 2 2
AEo = {golH'ldo) = (o] — "0 (86—52 " ;—nz 2 88—@) 160)

3m
where ¢q 1s the ground state wave function for the spherical potential well,

2 sin
$o=\/% TR, rt =& 40+t

nr

As ¢g is spherically symmetric,

o% 2 H?
(ol oe2 |#0) = (o] o [¢0) = (dol ac [do),

and so AFg = 0.
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5002

Employing first order perturbation theory, calculate the cnergy of the
first three states for an infinite square well of width a, whose portion AB
has been sliced off. (Note: The line OA is a straight liuc).

Vix)po @
AT
N
1 — X
0 a 1
Fig. 5.1
( Buffalo)
Solution:
The modification to the Hamiltonian, H' = %LIT (0 < & < a), can

be considered as a perturbation. The unperturbed cigenfunctions and the
corresponding eigenvalues of the first three states arc

2 .0 T h?
oY = \/tsm —z, E)= 55

17 a 24

2 . 2w 212 h?
T = \/jsm ““ux, EY= 5

@ a ua

2 3 9m?h?
\Ilp\/jsin—ﬂm, EY = T L .
a a - 2ua?

The first order energy corrections are then

1%
WRIH D) = 5

Ve
WRH'93) = =,

|%
WIIH'S) = =

o i B e e TR

i, o T
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and the energics of the first three states are
7'1'2ﬁ4‘2 n Vo 271'2h2 4 V() 97’1’277,2 4 VO
2ua? 27 pa? 27 2ua? 2

5003

A particle of mass rn moves one-dimensionally in the oscillator potential
Viz) = %mwzzl;z. In the nonrelativistic limit, where the kinetic energy T
and momentum p are related by T = p?/2m, the ground state energy is
well known to be El hw.

Allow for relativistic corrections in the relation between T and p and

compute the ground state level shift AE to order C% (c =speed of light).
(Buffalo)
Solution:

In relativistic motion, the kinetic encrgy T is

T =E —mc® = /m2c* + p2c2 — mc?

1
2 z
= mc? <1 + p) — mc?

m2c?
2 4
2 p P 2
~me {1+ —5 — —— | —mc
( 2m2c?  8mict >
A

T 2m 8mic2
4
to order le The 4 k> term may be considered as a perturbation. Then

the energy shift of the ground state is

4 e o] ~4
/P . * -
AE < 8m3cz> - /_Oo 0 <8m302> Go dz

[ ) e[+

—00
Rt 0t mw\ mw
x <—smscz aT) () oo [ 5 =] o
15 (hw)?

32 me?
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5004

An electron moves in a Coulomb field centered at the origin of coor-
dinates. With neglect of spin and relativistic corrections the first excited
level (n = 2} is well known to be 4-fold degencrate: I = 0, m; = 0;1 =
1,m; = 1,0, —1. Consider what happens to this level in the presence of
an additional non-central potential Vpers @ Vpere = f(r)ay, where f(r) is
some central function, well-behaved but not otherwise specified (it falls off
rapidly enough as r — o0). This perturbation is to be treated to first or-
der. To this order the originally degenerate n = 2 level splits into several
levels of different energies, each characterized by an energy shift AE and
by a degeneracy (perhaps singly degenerate, i.c., nondegencrate; perhaps
multiply degenerate).

(a) How many distinct energy levels are there?
(b) What is the degeneracy of cach?
(¢) Given the energy shift, call it A (A > 0), for ouc of the levels, what
are the values of the shifts for all the others?
(Princeton)

Solution:

With V = f(r)zy = f(r)r? sin? 0 sin ¢ cos ¢ treated as perturbation, the
unperturbed wave functions for cnergy level n = 2 arc
1=0, my =0, Ra(r)¥oo,
I=1, my=1, Ra(r)Yi,
I=1, my =0, Ra(r)Yo,
[=1, my=-1, Ru(r)Yi_:.

As they all correspond to the same energy, i.e., degeneracy occurs, we have
first to calculate

Hj = {I'm/|V|lm)

m'lm

= / Ry (T‘)RQ[(T‘)T‘2 (Y. sin% 0 sin ¢ cos Yy, dV .

The required spherical harmonics are

i v

-
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‘ 3
, Y= <—) sinfe'?
8
5\ 4 -~
Yio={ — ] cos8, Yi_1= | — ] sinfe *¥.
4T ' 8w

Cousidering the factor involving ¢ in the natrix clements Hyr, g, we note

[

s
S
I}
TN
S
:\\"
N
b

that all such elements have one of the following factors:

2 27T
/ sin ¢ cos pdy = 0, / et sin cospdp = 0,
0 0

except H| _, |, and H|, | _,, which have nonzero values

3 « i <
Hi 111 = = /[R21(7')]27‘4f(r) dr /o sin” 8d6
2m )
X / sin cos e Pdp = 1A,
0

1 .
Hi,_=—iA, withA=_ /[R('r)]z'r~4 flrydr.
L1, 5

We then calculate the seeular equation

0 0 0 0 AE 0 0 0
0 0 0 A 0 AE 0 A
~ AEI| = -0,
0 0 0 0 0 0 AE 0
0 —iA 0 0 0 —iA 0 AE

whose solutions arc AE =0, AE =0, AE= A, AE = —A.
Thus with the perturbation there are three distinct energy levels with
n = 2. The cnergy shifts and degeneracies are as follow.

A, one-fold degeneracy,
AE =< —A, one-fold degeneracy,

0, two-fold degeneracy .

Thus there are three distinct energy levels with n = 2.

5005

A particle moves in a one-dimensional box with a small potential dip

(Fig. 5.2):



m.mm—w—g!ﬁ—n—wwmm L
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14

0{--=- 17—

1

1

-b ; —> X
0 7 {
Fig. 5.2

V=oco fore<0andx>1,
V=-b for 0 <z <(1/2)I,
V=0 for (1/2)l <z <.
Treat the potential dip as a perturbation to a “regular” rigid box (V =
oo forx <Oand x>, V =0 for 0 < & <l). Find the first order cnergy

of the ground state.
(Wisconsin)

Solution:

For the regular rigid box, the energy and wave function of the ground
state are respectively

The perturbation is H() = —b, 0 < 2 < é Hence the energy correction of
first order perturbation is

B = / 6O @)D ()
0

Il Il
| S—
o~ o
S~ ~iw
W]~ @,
N Dk\.?
=
—
NG
&8
2 ~——
T
~|3
‘& =
N =8
)
jo
5
Il
|
N o

e ks e e i
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Thus the energy of the ground state with first order perturbation correction
is

R2m?
2ml?

E=E©®  g)) _ _9.
2

5006

An infinitely deep one-dimensional square well has walls at z = 0 and

z = L. Two small perturbing potentials of width a and height V" are located
at x = L/4, x = (3/4)L, where a is small (a < L/100, say) as shown in
Fig. 5.3. Using perturbation methods, estimate the difference in the energy
shifts between the n = 2 and n = 4 encrgy levels due to this perturbation.
(Wisconsin)

Fig. 5.3

Solution:

The energy levels and wave functions for a one-dimensional infinite po-
tential well are respectively

252
Vil 0}
n?

EO) —
" 2ulL?

2 s
d}n(z):\lzsinn%x, n=12....

The shift of the energy level n, E,(ll) = H!

nmn?

b

according to first order per-
turbation is given by
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) L/4+a/2 2 , [T
H,. = V. —sin (f— ;11) dx
L/d—a/2 L L

3L/4+a/2 2 ) ™
+/ V. = sin® (—3‘) dr .
3L/4—a/2 L L

As a <« L/100, we can apply the mean value theorem to the integrals and

obtain
Jo 2Va |, 5, (mm L + sin? mn, 3L
= sin” (| — - — sin® | — - —
nn L 4 4 L 4

2Va ( Ly TN 37m>
= —— | s1n T—l—sm —_— ] .

L 4

Therefore, the change of energy difference between cnergy levels n = 2 and
n=4Iis

2Va
L

3 . .
Eél) — Eil) = <sin2 g + sin? g —sin? 7 — sin? 37r>

5007

A particle of mass m moves in a one-dimensional potential box

oo for |z| > 3|al,

() 0 fora <z < 3a,
Viz) =
0 for —3a <z < —a,

Vo for —a<xz<a,

as shown in Fig. 5.4.
Consider the Vg part as a perturbation on a flat box (V =0 for —3a <
z < 3a, V = oo for {z| > 3lal]) of length 6a. Use the first order perturbation
method to calculate the energy of the ground state.
(Wisconsin)

S ——————————
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v
Yo
-3a -a a 3a
Fig. 5.4

Solution:

The cnergics and wave functions of a particle in a flat box of length 6a
are respectively

B _ T h2n?
 T2ma?’

1 T
'(/1(0)(;1:) =4/ 34 008 7’67:11 ,  n =odd integer,

1 . nma .
'(/)(0)(:1;) =4/ 3g S~ n=cven integer.

Particularly for the ground state, we have

:1727"'7

The energy correction of first order perturbation is given by

E® = (), Vy9@),

where V = Vo for —a <z < a. Thus

¢ Y T 1 V3
E(l):/—o 2(—).:1/ A I
30 ) N gt on

Hence the energy of ground state given by first order perturbation is

2p2 1 V3
E=EQ+EO - T2 Ly (4 Y0
+ 72ma? Y 3 + 27
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5008

A one-dimensional simple harmonic oscillator is subjected to a small
perturbing potential 6V (x), producing a “dimple” at the center of the mo-
tion. Thus

P o1, A P2 X
= %-I- Emwzmz—l_"x2+a2 = om +V +4V.
Calculate the correction to the ground state encrgy of the oscillator to first
order in A in the event that
(a) a < /h/mw,

(b} a > /h/mw.

Hints: the normalized ground state wave function of a simple harmontc
oscillator is

mwy /4 ;
Yo(r) = (ﬂ_h> exp(—mwz?/2h),

/OO dx T
1.2 2 T
oo Xt a a

and

(Columbia)

Solution:

The energy correction for the ground state given by first order pertur-
bation is

Mo 1/2 +o00 8——7nwa:2/h

—co
(a) a < /Ii/mw,

s /2 [0 g—muwaty?/h
WL S

/\('mw>1/2 /+°° dy A fmw

(b)Y a>» h/muw,

A smwy1/2 +00 e—muazyz/ﬁ
ae=2 (5 [ S

a \wh oo
+
a \7h oo

a3 Sepen
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5009

A perfectly elastic ball is bouncing between two parallel walls.

(a) Using classical mechanics, calculate the change in energy per unit
time of the ball as the walls are slowly and uniformly moved closer together.

(b) Show that this change in energy is the same as the quantum me-
chanical result if the ball’s quantum number does not change.

(c) If the ball is in the quanturn state with » = 1, under what conditions
of wall motion will it remain in that state?

(Chicago)
"

[

S s

L

m vy g
OH L. X

0 L

Fig. 5.5

Solution:

(a) In classical mechanics, the energy of the ball is

2
p

E=L2

2m

a2 p dp
S0 ((lf, T omodee

At a certain instant ¢, the walls are separated by L and the ball moves
to the right with speed v}. Because the collision is perfectly elastic, the
speed of the ball relative to the right wall before and after bouncing from
it remains the same:

vy +vp = vg + (—vy),

where vy is the speed of the ball after bouncing. Thus,

W= -2,
Ap = m(vy — v2) = —2muy,
d A ) o
(1E/dt:££~ [ S vy puivp

mdt m At m o T T
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where At = % is the time interval between two successive collisions. As
the right wall moves very slowly,

pra _ p P %
dB/dt LT mdt

2 p®dL  2EdL

L 2mdt L dt’

which is the rate of change of the energy of the ball according to classical
mechanics.

(b) As the motion of the right wall is very slow, the problem can be
treated as onc of perturbation. If the wall motion can be neglected, we

have ,
B nr?h?
"oomL?
If n does not change,
n*mw2h? 1 dL 2K,
E, [dt = ——— (-2) — — = ——— dL/dt,
A /dt 2m, ( )L3 dt AL/«

saume as the classical result.

(c) If the encrgy change during one collision is much smaller than E, —
E\, the ball can remain in the state n = 1 (analogous to adiabatic processes
in thermodynamics). More precisely, as

E-

we have

[2F

AE = — Ap=—/— - 2mvy = =2V2mFEwv, .
m m

The condition

Ey — By > |AE|

then gives

or

A ——
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This means that the speed of the right wall should be much smaller than
3nh
4amlL-

5010

Consider an electron in a “one-dimensional box” of length 1 A.

(a) Find the first 4 wave functions (normalize the wave functions) and
sketch them).

(b) Compute the correspouding 4 energy levels aud sketch an energy
level diagram.

(¢) At £ =0, the particle is known to be iu the state for which n = 1.
At t == 0, a rectangular potential well Vo = —10" eV, centered at a/2 and
of width 1072 ¢, is suddenly introdnced into the well and kept there for
5x 107 sec, at which time it is removed. After removal of the perturbation,
what is the probability that the system will be found in cach of the states
n=2,,n =3, and n =47 (The height and width of the potential well is
characteristic of a neutron interacting with an clectron).

Note: you can use your sketch to help you estimate the relevant matrix
elements.

(Berkeley)
Solution:
(a) The potential box can be represented by
0, 0<z<aq,
Vi) =
oo, otherwise,

where @ = 1 A is the length of the box. The schrodinger equation for the
electron is

2milr
k2

" (x) +

subject to the condition

P(x) =0, =z€]l0,dq,

P(x) =0, z€[0,q].

As E =T+ V is positive, the solutions must be sinusoidal with nodes at
x =0 and © = a. Hence the normalized solutions are

2 . nrx
hy =4/—sin— , ze€0,a], n=12,....
a a
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The first 4 wave functions in [0, a] are as shown in Fig. 5.6:

or

¢ ix)
A

N N
\/

by

E3
‘l’z\/
EZ
¢,
£,
0 a

Fig. 5.6

2 . mx
Wi(x) = \/;Lsm —

2 27T
o) = \/tsin il ,

a a

2 3mx
Pa(z) = [sin kil ,

a a

2 4y
Pa(x) = \/tsin iy

a a

(b) Substitution of ¢, in the Schréodinger equation gives

(mr)z _2mFE

a TR
B2a2n?

En:z—mz_’ 77,:1,2,...

Perturbation Theory

The first four energy levels are

E, = h*7%/2ma® = 0.602 x 107 erg = 37.4 eV.

Ey, = 4F) = 2.408 x 10 Yerg = 149.6 eV
Ey = 9E, = 5418 x 10" erg = 336.6 eV
E; = 16F, = 9.632 x 10" %erg = 598.4 eV.

These are shown in Fig. 5.7.

E[. n= lv
£, n=3
EZ n= 5
E~| n=z
0 a
Fig. 5.7

(¢) The probability for finding the systemn in state n after the perturba-

tion is , ,
1 — etwmto 2H] to\ 1]~
P, = H,'11 € = nl gin “nito ,
fw}n,l h“}nl 2
where 1
Wnl = ﬁ (En - E1)7

, ztb . 2Vh gtb . nrr .
i = Yo Vohrde = — sin ——sin — - dzx .
%*b a %*b a

As b < a, the mean value theorem can be applied to the above integral

with z >~ 2, dz = 2b and we have

Thus Hyy = 0, Hyy = 0, Hyy = 2X10°2x10° _ 9 o/ Therefore,

10—
Py=P =0,
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6 . ,/1 s
R} = 2—25le —wagity ] = 1.45 x 10 1,
hws, 2

with

hwsy = 336.6 — 37.4 = 299.2 oV,

to=5x10"8s.

5011

A charged particle is bound in a harmouic oscillator potential Vo =

% ka2, The system is placed in an external electric ficld E that is constant

in space and time. Calculate the shift of the energy of the ground state to
order E?.

(Columbia)

Solution:
Take the direction of clectric feld as the z-direction. The Hamiltonian

of the systew is

- B2 2 1. . - -
H=——— 4 ki’ —qEx =y + '
2m. da? * 9 ! L o

where H' = —qFEx is to be treated as a perturbation.

The wave function of the ground state of a harmonic oscillator is

. [_¢ L
) = (2]0) = 17 exp <_§ a’x ) ,
[1nw \/T
o = _, W = .
h m

As g is an even function, the first order correction (O|H’[0) = 0 and we

where

have to go to the second order. For the harmonic oscillator we have

1 i fn"+1
<77,/|IL“TL> = a l\/‘i 571‘11’—1 + T 6n,n’+lj| s
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and hence

H = ~qE(0lz|n) = —(¢E/V2e) 8u1 -

Thus the energy correction for the ground state to order E? is

; 2 02
AE(Z) _ E/ II—I(,),n‘Z o Z’ % 571,1
’ n E(()O) - E7(70) N n —nhw
o (IZ E’Z B quz
o 2hwa? 2mw?’

. o/
where the partial sum Y~ excludes o= 0.

5012

For a one-dimensional harmonic oscillator, introduction of the dimen-
sionless coordinate and energy variables y = x(mwe/h)Y? and g, =
2E,,{,/llw() gives a Schrodinger equation with kinetic energy operator T =
f%; and potential cnergy Vo= 2.

(a) Using the fact that the only non-vanishing dipole matrix clement is
(n -+ 1yln) = /™2 (and its Hermitcan conjugate), find values for all the
non-vanishing matrix clements of y* that connect to the ground state |0).

(b) The oscillator is perturbed by an harmonic potential V' = ay®.
Find the correction to the ground state energy in the lowest non-vanishing
order. (If you did not get complete answers in part(a), leave your result in
terms of clearly defined matrix clements, cte.)

(Berkeley)

Solution:

(a) As

m T
<77L|?j'TL> =1/ 3 571,771—1 + A/ 5 5171,,71—1 )

the non-vanishing matrix clements connected to |0),

(miy®0) = > (mlylk) (klyll) (1y0),

kL
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are those withm =3,k =2,/ =1, and withm =1, and k =0,{ =1, or

k =2, =1, namely

V3 .
T 5171 . an l = Sm, .
9 3 1IC 2\/E( 1
(L) Because g is an cven function, (0]%0) = 0, or the first order

energy corrcction (0]ay?|0) is zero, and we have to calculate the second
Y s

order energy correction:

A&EZWW“WZ:mwGWVWvawww.

oy 1— En 1 - €1 | — £q
As
2F
Eq = =" =dn+1,
,Iw()
. Oly*|)]? 0]y3]3)12 1
AE = [ (RO 1O DY 1L
—2 —0 16

5013

Consider a one-dimensional harmouic oscillator of [requency wy. Denote
the energy cigenstates by n, starting with n = 0 for the lowest. To the
original harmonic oscillator potential a time-independent perturbation H ==
V() is added. Iustead of giving the form of the perturbation V (), we shall
give explicitly its matrix clements, caleulated i the representation of the
unperturbed cigenstates. The matrix clewents Hoare zero unless o and
n are even. A portion of the matrix is given below, where € 1s a small
dimensionless constaut. [Note that the indices on this matrix run from
n =0 to 4]

1 0 —J/1/2 0 /3/8
0

0 0 0 0
chwy | —/1/2 0 1/2 0 —/3/16

0 0 0 0 0

3/8 0 —/3/16 0  3/8

s O A g s 8,
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(a) Find the new energies for the first five energy levels to first order in
perturbation theory.
(b) Find the new energies for n = 0 and 1 to second order in perturbation
theory.
(Berkeley)
Solution:
(a) The energy levels to first order in perturbation theory are

E’:L = En + H,

nn -

where B, = (n+ $)hwy, H},, = (n|H|n). Thus the encrgy for the first five
energy levels are

A O 1
Yo = 5 Twy + ehwg = 3 + &) hwo,

3
EIZE’IL«)O,
5 1
Eg: (—2-*‘}—55) ’ILU(),
7
El&:-?jhw())
9
E:tz <§+€) /IL«)()

{(b) The energics for n = 0 and 1 to the second order in perturbation
theory are

2
E{ =Eo+Hpy+ Y

1 1
= Z hw o 12
5 o+ ¢ o+ké0 *kﬁwolHkO'

= hw 1+s =2 1+3+
P “\la T3 :
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H/ 2
=B+ H{ +) | “'
k50

:~7m0+0+z |H“|2
k;él

3 3
= hwy (54—04—0) :;f}wo.

&

5014

A mass m is attached by a massless rod of length I to a pivot P and
swings in a vertical plane under the influence of gravity (sce Fig. 5.8).

P

Fig. 5.8

(a) In the sinall angle approximation find the energy levels of the system.

(b) Find the lowest order correction to the ground state energy resulting
from inaccuracy of the small angle approximation.

(Columbia)

Solution:

(a) Take the equilibrium position of the point mass as the zero point
of potential energy. For small angle approximation, the potential energy of
the system is

1 .
V = mgl(l — cosf) ~ 5 mgl6?

and the Hamiltonian is
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1 o, 1 ,
H:§7n/1292+§mg192.

By comparing it with the one-dimensional harmonic oscillator, we obtain
the energy levels of the system

where w = \/g/L.
(b) The perturbation Hamiltonian is

1 .
H' = mgl(1 — cos ) — 2 mglg?

1 1 L omg 4
o4 mygll” = TR x,

Q

with = == [0. The ground state wave function for a harmonic oscillator is

« 1 5 .
Py = YD) oxXp < 5 (y‘za:‘2>
e

with « = /"#. The lowest order correction to the ground state energy
resulting from inaccuracy of the sinall angle approximation is

1 myg
24 I3

E = (0|H'|0) = — (0]2)0) .

3
Olz*|0) = \/, / o exp(—ala?)de = ol
R s
32mi?

5015

A quantum mechanical rigid rotor constrained to rotate in one plane has
moment of inertia I about its axis of rotation and electric dipole moment
p (in the plane).
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This rotor is placed in a weak uniform electric field €, which is in the
plane of rotation. Treating the electric field as a perturbation, find the first
non-vanishing corrections to the energy levels of the rotor.

(Wisconsin)

Fig. 5.9

Solution:

Take the plane of rotation of the rotor as the xy plane with the z-axis

parallel to € as shown in Fig. 5.9. In the abscnce of external clectric ficld
the Hamiltonian of rotor is

aud the eigencquation is

which has solutions
™m0 = 0,41, 42, ..,

corresponding to encrgy levels

h2m?
21
When the external electric field acts on the system and may be treated as
perturbation, the Hamiltonian of perturbation is

H = —p-e= —peccosh .
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The first order energy correction is
2m
EWM = (m|H'|m) = R / cos0df =0
2w Jo

The second order energy correction is

! l 2
2 Y [ [ H m)|
P2 B9 D

m’'#m m
As
2m
(m/|H ) = ke eHm=m0 456 df
2m Jq
pe [T , : ,
- [61(1n-—m +1)0 + e'z(mfm ——1)0] do
AT Jy
JE
= ”7 (57n’,7n+1 + 5771,’,m~ l) )
we have
gy et 2 ! !
4 2 lm2—=(m—-1)2  m2—(m+1)?
B il 1
TORZ 4m?2 -1

5016

The polarization of a diatomic molecule in weak electric fields may be
treated by cousidering a rigid rotator with moment of inertia I and clectric
dipole moment d in a weak electric field E.

(a) Ignoring the motion of the center of mass write down the Hamilto-
nian H of the rigid rotator in the form of Hy + H'.

(b) Solve the unperturbed problem exactly. How are the levels degen-
erate?

(c) Calculate the lowest order correction to all the energy levels by non-
degenerate perturbation method.

(d) Explain why is nondegenerate perturbation method applicable here
and how are the levels degenerate.
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The following relation may be useful:

(+1=-—m){+1+m) (I +m)(l —m)
cos0Yy,, = Y o Yi-1m .
esvH \/ @[+ )2+ 1) s P G @ )

( Buffalo)
Solution:

(a) Take the z-axis in the direction of the ficld. The Hamiltonian of the
rotator is
J? J?
H=—-d E=_——~dFcos#.
i o dE cos0

Considering —d F cos# as a perturbation, we have
]‘3
Hy = 27 H' = —dFEcos0.

(b) The cigenfunctions of the unperturbed systemn are

'Q/)jm - Y_yjm(()y 99) 3

where m = —j, (=5 + 1),...,(F — 1), 4, aud the energy cigenvalues are
0 (5 h* . - -
E](nz = L(% The levels are (25 + 1)-fold degenerate since Ef(,)yz does not

depend on m at all.
(c¢) The first order energy correction is

(gin| — dE cos8|jm) = —dIE{(jm| cos]jm)
=—dFE / / cos@sm Bdfdp = 0.
Jo Jo

For the sccond order correction we calculate

1o\ 2
@ _ Z’ |{n|H'[i)|
L (0) 0y’
i no — B )
where n, i denote pairs of j,m and the prime signifies exclusion of ¢ = n in
the summation. As the non-vanishing matrix elements arc only

UG+1-m(@+1+m)
(2j+1D)27i+3)

(j+ 1, m| —dF cos8ljm) = dE\/

U+mi —m)

(7 —1, m}| —dFEcos8|jm) = —dE| -,
| (27 1)@~ )
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the lowest order energy correction is

o 20d°E?
E® — —
{ (j+1—-m)G+1-+m)
25+ D2 +3)HG+ ) -G+ D +2)

G+m)(G—m)
i@ DG -0 - 1>1}

 IZPER[(G + 1) — 3m7

SR (25 - 1)(25 +3)

(1) Because H' is alrcady diagonal i the j subspace, the nondegencrate
perturbation theory is still applicable. However even with the perturbation,
degeneracy does not completely disappear. In fact states with same j but
opposite m are still degenerate.

5017

A rigid rotator with clectric dipole moment P is confined to rotate in
a planc. Tle rotator has moment of inertia I about the (fixed) rotation
axis. A weak uniform electric field E lies in the rotation plane. What are

the cuergies of the three lowest quantum states to order E27
(MIT)

Solution:

The Hamiltonian for the free rotator is

Fig. 5.10




318 Problems and Solutions on Quantum Mechanics

T

T 20T oI g

A Schrodinger equation then gives the eigenvalues and eigenfunctions

Hy

BO _ h2m?

1 .
i .1,(0) - Limng
O =" g0 = o,

V2w
(m=0,%1,%2,...)

When a weak uniform clectric field E is applied, the perturbation Hamil-
tonian 1s
H = -E-P=X\cos¢,

where A = — E P, The matrix clemneuts of the perturbation Hamiltonian is

/\ 2w . N }
<TI,]f{/(TH,) - 27 / GL(7'177L)(A‘ Cos (/) d(fb = (An,m-hl + ()'n,,mf l) .
JO

N>

Define E,(,?) and E by

Holmy = EQhny, (He + H'))) = E),

Tm

and expand |) in |m) = 1/;,(,(,)) (¢):

Y= > Culm).

m=—00

Then
(Ho+ H') Y Clm) =" CpnElm),

m m

or
D Con(E = EN)im) =Y CouH'[m) = 0.

Multiplying both sides by (n| we have, on account of the orthonormality of
|m) and the property of (n|H'|m) given above,

A
g Cmv(E - Efr?))(sm.n - 5 ; C'm.((sm,'n.~1 + 6‘m,n+1) — 0 )

or
A A
(B~ EP)Cn— 5 Cnt = 5 G = 0.

T, T R 2

R S B e 0
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Expanding E and C,, as power series in A:

E— Z E(p))\p’ C, = ZO va(lp))\p7
p=0 p=

and substituting in the above, we obtain perturbation equations of different

orders:

/\0 : (E(O) - E7(1.0)) 01(10) = 01

1

A (BOQ - B0y e+ EOCP - Do - Lew o,

:_2: n+l —
A2 (B — BOYC® 4 OO pACE

Loy 1w
- 5 C,,171 - 5 Cn+1 =0,

To find the energy level EY, we first see that the zeroth order equation
(E,(CO) — E,(lo)) ,(LO) = 0 requires C,(LO) = 0 if k # n. Heuce we write

CO = a6,k + a_kn, k- (1)
Substitution in the first order equation gives
(B — EOYCD + ED (g6 k + a—kbn k)
- % (akbn-1.k + ok Opt1,~k + apdni1,k + a_kdn“,_k) =0.

When n = +k, we have
EW =0.

When n # +k, we have

cl) — - LR (abn_ 1k + 0 kbn_1,—k + akdny 1k + @ kdni1, k)
n 2 p0) _ (0 ’
B B
1 1 {0
ST Te—T (Cv(xojl + C'r(1+)l) :

= — 5 ET(:)) B E’(CO)
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Substituting C’,(,,l) in the second order equation gives for n = k
(B~ BO)CP + B0 -

ie.

v (0
EDcY (Ck 1 +C]£+)1)

1{ 1 1

A OO

2120 )
1 1

cO 4 c© )}
(0) o (Ch k+2
2 Ek+l - E( )

1 { 1
T 1) =0 -0
4 B2 — By )

1

(2, +c)

+ s (e e )} (2)
(0) k+2
N Lk
For the ground state k = 0, Eq. (1) gives C’(()O) £ 0, CE(B
50 Eq. (2) becomes

= C:g()) =0, and

. 1 1 1
E(Z)Céo) - _ { 4 }C(O)
0 0 0 0 o -
LLEY) - B B - EY

Hence
1 1 I
ED = - L
0 0 2"
2EE)_E(()) 13

For the first exited state k = +1, Eq. (1) gives C’iol) # 0, and Eq. (2)

becomes
pcl? - 3w € el”)
4 E(()O) _ E%O) -
1 0) |, ~(0) }
= (C 4 )y
0 0 1 3
Jo Sy i

e o e e

Perturbation Theory 321

and

1 1 1 o 1 1 0

_p@| eyl L oco

0 0 0 1 0 -1 ’

il ) £
and

11 o 1 1 1 @ | ~0

— C —= - ) C 0
1P [ [ <Eg°>E;°> E;“>> R

These are homogencous equations in C{ and C? . Solving the secular
equation, we obtain for the first excited state two encrgics

1 1 1 1 - 51
L+ 4 EEO) T4 E(o) E(o) o Efo) T 6R2

B 1 1 B I
- 4 EEO) 4 Ego) . EEO) EEO) 6h? "

For the sccond exited state k = £2, Eq. (1) gives Ciog # 0 and Eq. (2)
becoines

@e® - ! 1 1 (0)
B Cn = (E(m O OB O Caz-

Thus
1 I

1 1
— -+ = .
. <E5°> O O E5°>> o

Therefore, the energy correction to the second order perturbation for the

EY = -

ground state is
_1(Ep)?

Eo = NES =
0 T




- - L:ll ‘r'”' Tue .. _';," * e 'i:!
ELSA / | ‘i L 5' -."1:, T EN
WW W.BELLADONNAREALMIEOM &~/ -4 [ 8

T R 3 g
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for the first exited state is

K5 I(Ep)2
E = 57 P ) — o »
Eort s YT er 6 m2
and for the second exited state is

2h2 1 I(Ep)?
5, 2 (Ep)

B (),

I 15 h?

5018

A rod of length d and uniformm mass distribution is pivoted at its center
and constraiued to rotate in a plane. The rod has mass M and charge +Q
and — @ fixed at cither end.

(a) Describe this system quantuin mechanically, finding its Hamiltonian,
cigenfunctions aund their eigenvalucs.

(b) If a constant weak electric field E lying in the plane of rotation is
applied to this system, what are the new cigenfunctions and energies to
first. order in BE?

(¢) If the applied clectric field is very strong, find an approximate wave
function and encrgy for the ground state.

(CUs)

Solution:

(a) Take the plane of rotation as the zy plane as shown in Fig. 5.11.
The Hamiltonian of the system is
. h? 92

2l 9%’

e o e,

Perturbation Theory
where I = T1§ Md?, and the ecigenequation is

R 0?2

57 992 Pm(0) = Emthm(8) .

The solutions of the eigenequation are

/l/)m,(9> = Ceikm()1

323

where k2, = l{j—“ For single-valuedness, i.e. 9, (8 + 27) = ¥, (0), we
require

kp =0, 41,42, ...

The normalization of the cigenfunctions requires
2 _ o
¢ 2n =1, orc—=

Thus the cigenfunctions are

1
Yrn, (9) =

g

and the corresponding eigenvalues are

B :szzﬁhz N

2] m Md2 ‘m'

(b) Take the direction of the constant field E as the  direction

E = Fe,, and the Hamiltonian of the system is

- n: 92
=2 2 4V
H==57 52 TV
where
V(@) =—-P-E=-QdFEcos@.
Let ) 2 52
0= a7 opt

and consider V(6) as perturbation, i.e., H = —QdE cos?.

1
Vo

e*ml ko =0,41,42,...,

. Then
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The unperturbed eigenfunctions and eigenvalues have been given in (a)
and are respectively

1 0 R2m?  6h%n?
e, By = Y0 = 0,
21 Md?

Wi (9> =

5

m=0,+1,+2,....

As E,, is determined by m?, 4,,(8) and 4 _,,.(8) arc degencrate. However
as

27 -
(—m|V(6)|m) = / (—QdE)cosf- — c*™Pdg =0
Jo 27
we can still use the results of nondegenerate perturbation theory:
27

- 1
E,(,P = (m|H{|lm) = o (—=QdE)cos0dd =0,
Jo

L N ()
I’Z)T(” _Z F() 760 ¢

R 1 2 )
(n|Hy|\m) =— / (—QdE) cosf - cHm=mo 4o
27 Jy

1 1
:g (*QdE) 5 ’ 2”(5mfn+1,o + 5mfn~1,o)

1
— —2; QdE (57,,,_7,,4_1,() + 5771.77!,—1,0) )

l/(l) MdB(\?E 1 1 (,i(m+l)0
™ 1262 2m+1 /2xr
3 I

; Md QE ) 1 . 1 6i(7n.~—l)()
12h2 1-2m 2rn
3 v

— Md (‘2E ) ]- (.m+1)() + 1 ei('m,~1)0
12h2/ 271 2m + 1 1 —2m

Hence in first order perturbation, the energies and wave functions as are as
follows:
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@8] im@ Md'; (QE
(/)m = ‘pm ll/"m - e+ .
' V2 12R2y/ 27

1 (,i(m+l)() -+ 1 e'i(m—l)() )
2m+1 1—2m

(¢) If the clectric field is very strong, the probability that 6 is in the
small-angle region is very large. Thus cost ~ 1 - lz 8% and the Hamiltonian

. K2 92 1.
= — + (-QdE — —9?
== g T )<1 2 >

is

h? o2 1 N
= — — + ~QdEf#” - QdE.
T o 2 ’
This has the form of the Hamiltonian of a harmonic oscillator (Prob-

lem 5008) with wy = 4/ Q‘f” and a perturbation H' = —QdE. Then

for the ground state we liave

Ey = —hwoJr(()\[[’l() ,/QF - QdE =[5 QE ~ QdE,

r (n|H' ‘0) 6% Lap?
go =g+ Y Oy (@) g
0 %;0 ET(LO) B E(O T

where o = 4/ %#, as (n|H'|0) = ~QdE(n|0) =0

5019

(a) State all the energy levels of a symmetric top with principal moments
of inertia I, = Ip = I # I5.

(1) A slightly asyrnmetric top has no two I's exactly equal, but Iy — I, =
A#0, 1, + 1, =2, (A/2]) < 1. Compute the J =0 and J =1 energies
through 0(A).

(Berkeley)

Solution:

(a) Let (z,y, z) denote the rotating coordinates fixed in the top. The
Hamiltonian of the system is
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1 (J2 J g2
H=-|"=,¥Y_ "z
5 (11 T, +13>

Hence a state with quantum numbers J, m has cuergy

h? B /11 4
E=—JJ+1)+— -+ —=)m?
2] (J+ 1)+ 5 <]3 ]) me,

which gives the energy levels of the symmetric top.
(b) For the slightly asymmetric top the Hamiltonian is

A
41

Defining Jy = J, & 4.J,, we have

where H' =

JI-Jl=S (4.

B | =

Noting that

Jilim) =/ (G +m+ (G —m)lg,m+ 1),
J_|jm) = \/(J —m+1)(7+ 'm,)r|j,'m, — 1),
Jilgm) = Ju(Jeljm)),

we have

J2100) = J2|00) =0,

J310) = J210) = 0,

JiL,1) =0, JIL,-1) = 2K311),
JEIL,—1) =0, JZ11) = 2R%|1, —1).

(J; — J3), to be considered as a perturbation.

o

a5
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Hence for the perturbed states:
(i) J =0, m = 0, (nondegenerate):
E) = ES + (001H'|00) = ES” = 0.
(i) J =1, m = 0, (nondegenerate):
ﬁ,Z
E| = B 4 (qojH'110) = B = =,
(iii) J =1, m = +1, (two-fold degenerate):

As degeneracy occurs, we first calculate

(1, -1|H'|1,—1) = (1, 1{H'|11) = 0,

AR?
(1, 1 H'|11) = (11|H|1, ~1) = .
472
We then forin the sccular equation
Ah?
0 P
AL arr |l _o
AR? 0 ’
4]?
ie., )
AK
A ——
412 | _ 0
AR? e
472
This equation has two solutions
AR?
Ay =t—
i 412 b

which means that the energy of the states J = 1, m = £1, E; 41, splits
into two levels: )
B B h? N h? AR?
LEL T or oy T oare

5020

(a) Using a simple hydrogenic wave function for each electron, calculate
by perturbation theory the energy in the ground state of the He atom as-
sociated with the electron-electron Coulomb interaction (neglect exchange
effects). Use this result to estimate the ionization energy of helium.
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(b) Calculate the ionization cnergy by using the variational method,
with the effective charge Z in the hydrogenic wave function as the varia-
tional parameter. Compare the results of (a) and (b) with the experimental
ionization cnergy of 1.807Ey, where Ey = o®*me? /2.

Note:
1.(r) = \/Wza;cxp(—Zr/a,o), ag = "flL; 7
// dgrld:’rge““(”+”)/|r1 -1y = 2072 /o .
. (Columbia)
Solution:

(a} The unperturbed Haniiltonian of the system is

K2 Zc? Z(f2
Hy = ———(V}
0 2m (V2 Ty

The wave functions have the forin

$ = (/)(1"1,1"2) X()(Slza Szz) .

For the ground state,

H(ri,r2) = Yroo(r)Yioo(ra),

73
Yoolr) = 3 exp{—Zr/ag}
0

. L - . . . 2
with ag = h?/me?. Treating the electron-clectron interaction ﬁ as a
1—12
perturbation, the energy correction to first order in perturbation theory is

d3r dPra
AE = // ner |¢’100(T1)1 [¥100(r2)|?

dsI‘leIﬁ 27
= exp | —— (ri +12)
71'00 II‘l — I‘> ag

_ 2 A 2072 B 5Z¢?
B 71'0,8 (Lz)S B Sagp
aop

where
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The energy levels of a liydrogen-like atomn are given by

e? Z?

Ey=- 2 2
" 2a¢ n2

and so the encrgy of the ground state of the system excluding the electron-
electron Coulomb interaction is

c? 7% 277
2a0 ag

Ep= 2

Hence the corrected energy of the ground state of helium is

. ANV A 1le?
E/ - — -+ = — N
Ly 8ag 4exg

with Z = 2 for helium nucleus.
The ionization energy is the encrgy required to remove the two electrons
of heliwin atomn to infinity. Thus for the ground state

VA < e?7? N 5Z62> B 3e?

2LI,0 ag 8(1,0 4(10

with Z = 2 for helium nucleus, i.c.,

with

21 /e, 1 ,
Ey — L dme?,
20,() 2 hC 2

a being the fine structure coustant.
(b) The Hamiltonian of He with electron-electron interaction is

r'Z
H = — 2 (VZ”FVZ)-ZCZ/TI—ZCz/TZ'{"C /712
m

with Z =2, r12 = |{r; —r2|. For the ground state use a trial wave function

)\3
¢(r1, T2, A) = — e~ Alritre)
T
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Let u(r) = e~*". Then

r
e,
R% ., AR? A2h*
(% - ) wr) = = uln)
Setting
,  AR?
Z(Z‘Z — —I =0,
m

we have, using the above results,

_ h? . h? A A 2
H://(13r1(13r2<1>* _r Vi )—Vj _ 7_( . Ze T Vo
2m 2m 1 Ty "2
A2Zp2 2
://(izrl(i‘zrz(b* <— W _ 7 + _P_> o
. m e Ty Tin

/\2 sz 20/\3 e AT 3 (‘.2/\6 3 3 (’,"‘2>‘("‘1 +72)
- - d ry -+ 77 oA [‘1([ ry ——— .
. r12

™m i r
As .
e AL 00 (i~‘2>\'m ) ‘
/ dPry = / 4rridry = w /A2,
T1 0 T
- A2 p? A% 207
H= 20 ooyt 201
m 2 (2X)5
/\'zhz [
= - <2 — 3) e’\
m 8
Letting ‘3—’1 =0, we get

me? 5
A= oY) <2Z — §> .

Therefore, the energy of the gronnd state is
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2 . . . .
as Z =2 ag = %7, and the ground state ionization energy 1s

722 5\2 2 27\ 2 2
T=_2 (z-2) £ 1(25) Z2) &£ = 1695E,
2ag 16 ap 16 ap

Thus the result from the variational method is in better agreement with

experiment.

5021

A particle of mass m moves in one dimension in the periodic potential

2 .
V(z) = Vpcos <7m) .
«

We know that the energy cigenstates can be divided into classes character-
ized by an angle # with wave functions ¢(x) that obey ¢(x + a) = e*¢(z)
for all . For the class 8 = m, this becomes ¢(x + a) = —¢(x) (antiperiodic
over length a).

(a) Even when Vy = 0, we can still classify eigenstates by 6. For which
values of k does the planc wave ¢(x) = e** satisfy the antiperiodic con-
dition over length a? What is the energy spectrum of the class § = 7 for
Vo =07

(b) When Vp is small (ie. Vj « h?/ma?), calculate the lowest two
energy eigenvalues by first order perturbation theory.

(MIT)

Solution:

(a) For the plane wave ¥(z) = ¢***, we have

’(/)(’IJ + a) _ eik(a;+a) — eika,‘/)(l_)_

If k satisfies
ka = (2n+Lrm, (n=0,%1,42,...)

the plane wave satisfies the antiperiodic condition

Wz +a) = —().
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The corresponding energy spectrum is
2,2

2ma?

E, = (2n+1)%. (n=0,+1,42,...)

b) If Vo « %, one can treat
2nx
H' = Vycos <£>
a

as a perturbation imposed on the free motion of a particle. For the ground
state, the eigenvalue and cigenfunction of the free particle are respectively
(n=0,-1;1e., ka=m,—m)

E(O) _ h’27r2
(%) 2ma?
1 .
1/)(()0)(1.) — \/_E (,/177:5/(; ,
1/)(0)(;1:) — i C~i7-r.c/a .
Let 22 = 8 and cousider {m|H'|n). We have
Vo [“ 2w
(=1|H'| - 1) = (O|H'|0) = 4’/ (:0s<m> dw =0,
Qa 0 a
/ / Vo [* tipes ipe | —ip
(~1|H'|0) = (0|H'| - 1) = — e (eP* 4+ 7Y du
2a J,
W
=5
Hence for ground state,
Vi
° 5
H = ,
L
2
and the secular equation for first order perturbation is
gy Y
=0
Vo ’
0 (1)
5 E

57 il e A e et i e o
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giving
EW = %0
2

Thus the ground state encrgy level splits into two levels

h27r2 ‘/() N }),27r2 V()

1= 57— — = 9 = . .
2ma? 27 2mma? 2

These arc the lowest energy cigenvalues of the system.

5022

An clectron is moviug in one dimension (z) subject to the periodic
boundary condition that the wave function reproduces itself after a length
L (L is large).

(a) What is the Hamiltonian for the free particle, and what are the
stationary states of the systemn”? What is the degencracy of these states?
(b} Now add a perturbation

V() =ecosqur,

where gL = 27N (N is a large integer), recalcunlate the energy levels and
stationary states to first order in ¢ for an electron momentum of ¢/2.

(¢) Calenlate the correction to the energy of order €2 to your answer in
part (b).

(d) Repeat part (b) for electron momentum near, but not equal to, ¢/2.
(Omit the calculation for stationary states.)

(Berkeley)

Solution:

(a) The Hamiltonian of a free particle of mass m is
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where (c) The energy corrections accuracte to order €? are given by non-
k= 27 n (n=tl,+2 ) ; degenerate perturbation theory as
L T @ _ N~ Vi
2y ABT =D o
All the energy states E' = 27 n? have two-fold degencracy. L#1 ! t
(b) Because N is a large integer, we can treat 4 = ”[{V as the middle , 1 9 L gz 2
int illouin zone ¢ ake = e — in kjz cos qu cos — dz
point of the Brillouin zone and take ‘ ZI BB { < I /0 sin k; qr 5 )
. 2
2 qT 2 . qr 2 L .
P (x) = HZ €08 -, o(x) = \/% sin - + (f/o cos k; cos qx cos q_;_ dz ]
as the state vectors. On introducing the perturbation H = E cos gz, where " _ 52/4 )
o y . B ‘
q= %, we first caleulate (m|H'|n): : 12 ((I>2 B2 /3q\°
¢ 2m \2 2m \ 2
i
(1|H/|2> :(2|H/|1> ; me?
; =———, (ki1 >0
2 [T qx i 4h2q? (k1 )
= — sin — cos — cos qrdr = 0, s
Do A =5 WVISE
/ « / 3 ’, pted e ——
(LH'[1) = — (2[H"|2) ; P B K
iy -
9% L 2 (qg;) d £ 9
=— cos” { — ) cosqudr = —. i , 1 9 [ "
L Jy 2 2 § zz 5 E [(f/ sinkla;cosqrsin%du:
2 — 0
k) l
Hence the perturbation matrix is 5 9
N 2e /L k 0 9T
i — co$ ki cos qr sin — dx
£ 0 : L J, : ! 2
5 :
0 £ £%/4
2 h? (q)~’ B2 (3q\°
- . . . . 2m \2 2m \ 2
As it is already diagonalized the energy corrcctions to first order perturba- !
tion are £5. Thus the energy levels and wave functions of the system are, d __ mne?
respectively, 4h?q?
Hence the corrected energy levels are
B2 /g\2 e 2 gz R? (q>z e me?
r—_ - (1 Z 'y = 2 coc 12 - Ei=—{=) +—-— ,
Ev=om (2) +5 i@ L " om \2 2 4Rg?
B2 /g\? = 2 . qu h? (q>2 e me?
= =) - =, = 4/ sin — Ey=— {2} — - - ——.
B = o (2) g0 Valm)=ypsincy *Tam \2 2 4R*q®
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(d) Let the momentum be £ + A, where A is a small number of either
sign, and take for the wave functions

/2 2 x ;
Pi(z) = 7 cos <(—21 + A) A (cos % — Azsin %) , ‘

Q

2 2 : x
Ya(x) = 4/ Esin(g + A) Y 7 (sin %1 + Ax cos %) .

Following the procedure in (b), we find that the elements of the first-

order perturbation matrix are the same as in (b) if small quantitics of order
eA are neglected. Thus the first order encrgy corrections arc equal to those
given in (b).

5023
Consider the one-dimensional motion of an clectron confined to a po-

tential well V(x) = %lm:2 and subjected also to a perturbing clectric field
F=Fx

(a) Determine the shift in the encrgy levels of this system due to the
electric field.

(b) The dipole moment of this system in state n is defined as P, =
—e(x),, where (1), is the expectation value of z in the state n. Find the
dipole moment of the system in the presence of the electric field.

( Wisconsin)
Solution:

(a) The Hamiltonian of the system is

o, 1.,
H:fﬁv +§k$ —qFx
:,hiv‘ZJrlk T*E ZMQQFQ
2m 2 Tk 2k
K2 1 g*F?
Z——V/2 _kIZ__
om g 2%

where ¢/ =z — ng
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Hence the energy shift due to the perturbing electric field F'x is

- q‘ZFZ B eZFZ

E 2k 2k

(b) The expectation value of « in state n is

Therctore the dipole moment of the system is

F 4 F
(:(1—:(2

Pu=— k 5?’

(g =—c).

5024

If a very small uniform-density sphere of charge is in an electrostatic
poteutial V(r), its potential encrgy is U(r) = V(r) -+ %T’SVZV(r) + -
where r is the position of the center of the charge and rg is its very small
radius. The “Lamb shift” can be thought of as the small correction to the
energy levels of the hydrogen atom because the physical electron does have
this property. If the r2 term of U is treated as a very small perturbation
comparcd to the Coulomb interaction V(r) = —c¢?/r., what arc the Lamb
shifts for the 1s and 2p levels of the hydrogen atom? Express your result
in terms of rg and fundamental constants.

The unperturbed wave functions are

-5

-3/2 0. 1 e a— ,
P15(r) = 2ay, 2. ¢ T/“”YO  apm(r) = ——=agz" e v/ eEym,

V24

N <>
where ag = h?/m.e”.

(CUS)
Solution:

The state 1s is nondegenerate, so the energy correction is

AE = (1s5|H'|1s).
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As
T . r2 5 1
H = 2VV(r) = 2 (-e)V* =
6 6 7
2
U (—e?)(—am)b(r) = - r2e5(r)
6 3
1\2
0 — -
yO - (47’[’) y
we have
AE = /—760 ) |11 (x)|% dx
9 2 27
3 ’o‘ Wls( )| T3 ();}

The perturbation H’, being a d-function, has an effect ouly if 1(0) # 0. As
P2pm (0) = 0, H' has no effect on the energy, i.c., AEy,, = 0.

5025
Positroniuin is a hydrogen atom but with a positron as “nucleus”, in-

stead of a proton. In the nonrelativistic limit, the energy levels and wave
functions arc the same as for hydrogen, except for scale.

(a) From your knowledge of the hiydrogen atom, write down the normal-
ized wave function for the 1s ground state of positronium. Use spherical
coordinates and the hydrogenic Bohr radius ag as a scale parameter.

(b) Evaluate the root-mean-square radius for the 1s state in units of ay.
Is this an estimate of the physical diameter or the radius of positronium?

(c) In the s states of positronium there is a contact hyperfine interaction

&
Hiy = 3 He Hpd(r),

where p. and p, are the electron and positron magnetic moments

(4= 5 %)
B=9 ome )

o
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For electrons and positrons, |g| = 2. Using first order perturbation theory
compute the energy difference between the singlet and triplet ground states.
Determine which state lies lowest. Express the energy splitting in GHz (i.e.,
energy divided by Planck’s constant). Get a number!

(Berkeley)

Solution:

(a) By analogy with the hydrogen atom the normalized wave function
for the 1s ground state of positronium is

1 /1N
Proo(r) = — <—> e/ 200

i 2(1()

with ag = #, m. being the electron rest mass. Note that the factor 2 in
front of ag is to account for the fact that the reduced mass is p = %m.

(b) The mean-square radius for the 1s state is

1 "0
r*y = — / e T/a0 2 2y
0

8may |
2 Ne o} . 2
a o Ja
=29 e atdy = 0
3T Jo T

and the root-mean-square radius is

This can be considered a physical estimate of the radius of positroniuin.

(¢) Taking the spin into account a state of the system is to be described
by |n,l,m,S,S,), where S aud S, are respectively the total spin and the
z-component of the spin. Thus

(1005 S| Hiy|100S5S.)

= [ #riion @) (5 ) a0l x5 (SL e (52

=5 (S Wana )P (5 s

3 \me

1 [(e2\’ 62 3
S (L)) S(S+1)— 2| 6s56s.s
3 <hc) ag [ S+ 1) 4} §51085:8%

’ SPXS(SZ)

I
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where we have used
S=s.+s,

and so
[S* — (2 +5,)]

e +(2) (149

For the singlet state, § =0, S, =0,

1 [e? 2 ¢?
AEy=—- | — < 0.
0 4 <hc>

Se " Sp =

I3

M= N

For the triplet state, S =1, 5, =0, &1,

1 e? 2 c?
AE,| = — >0.
! 12 ( > o)

Thus the singlet ground state has the lowest energy and the energy splitting
of the ground state is

1 1 AN 1 /e2\" ;
AE o AE — Y E J— —_— = = — ’ ,12
1 0 ( 12 F 4) (f},(:) g 3 <]N7> e

L r [l-()51><1()(;:483><10"'4<\V
3 \137 A ’ o

corresponding to

v=AE/h=117x 10"Hz = 117 GHz.

5026

Consider the proton to be a spherical shell of charge of radius R. Using
first order perturbation theory calculate the change in the binding cnergy
of hydrogen due to the non-point-like nature of the proton. Does the sign
of your answer make sense physically? Explain.

Note: You may use the approximation R < ag throughout this problerm,
where ag is the Bohr radius.

(MIT)

v it
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Solution:

If we consider the proton to be a spherical shell of radius R and charge
e, the potential energy of the electron, of charge —e, is

o2
757 OS"SR,

V(r) = )
—i, R<r<oo.

T

- . 2
Take the difference between the above V() and the potential energy —<-
due to a poiut-charge proton as perturbation:

e 2
- — D<r<R
H={r R -"=
0 R<r <.

The ecnergy correction given by first order perturbation is

R (32 ("2 g o
AFE = /0 <7- — ﬁ) ‘I'HRIO dr

6 Ry 2
4 ¢ ; o
= — - rle /e gy
r

%9 Jo

4 (et e\ 2¢? R?
~N— — — — | rdr = —. (R<a
ag /0 < r R) 3a3 ( o)

As AE > 0, the ground state energy level of the hydrogen atomn would

increase due to the non-point-like nature of the proton, i.e.; the binding
energy of the hydrogen atom would decrease. Physically, comparing the
point-like and shell-shape models of the proton nucleus, we see that in the
latter model there is an additional repulsive action. As the hydrogen atom
is held together by attractive force, any non-point-like nature of the proton
would weaken the attractive interaction in the system, thus reducing the
binding cnergy.

5027

Assume that the proton has a nonzero radius r, = 10~ % cm and that its
charge is distributed uniformly over this size. Find the shift in the energy
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of the 1s and 2p states of hydrogen due to the difference between a point
charge distribution and this extended charge.
(Columbia)

Solution:

The Coulomb force an clectron inside the sphere of the protou experi-

3 ;

o [T 1 ¢?
F=-c | — — e, = ——Te,.

r r2 7

P P

The electrical potential cnergy of the electron is

ences is

2
C B .
Vi=_ 371 +C for r<m,,
2r,
e?
Vy, = - for r >y,

2

‘— . Thus

T

[T

Continuity at v, requires that Vi(r,) = Va(ry), giving C = —

o2 r\° 3 <
— — 1 =3, r<r,.
2r, Tp v

The Hamiltonian of the system is
H = HQ + H’ s

where

H = &2 r 2 2,,,1)
=) v 223, r<ny,
27y Tp T

e Ty
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Hence
2! = (ndm|H'|nlm) = (nl|H'|nl)
:/ }-{:’anlHl("')'erT
0
[ B Ra)
Jo
2 ~ N2 9.
><‘C— ,-) +ﬁ73 rzdr,
2ry Tp r
where

¢

r —r/2a

9 1
- L=r/a 5y T ——————
Ry = —5e At 2/6a3/2 . a ‘

(1’.5/2

A 2
with a = 77’%; .

As r, € a we can take ¢ "% ~ 1. Integrating the above gives the
energy shifts of 1s and 2p states:

, , 2(:27';“1
El, = (10| H'|10) =~ e

, ) . (127';1,
ooy = (211 H'|21) ~ 112005 -

5028

An atom has a nucleus of charge Z and one electron. The nucleus has
a radius R, inside which the charge (protons) is uniformly distributed. We
want to study the effect of the finite size of the nucleus on the electron
energy levels:

(a) Calculate the poteutial taking into account the finite size of the
nucleus.

(b) Caleulate the level shift due to the finite size of the nucleus for the
1s state of PH2°® using perturbation theory.

(Assume that R is much smaller than the Bohr radius and approximate
the wave function accordingly)

1

(c) Give a nunerical answer to (b} in e ™ assuning R = roAY/3 where

ro = 1.2 fermi,

(Columbia)
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Solution:

(a) The electric field E of a uniform sphere of radius R and charge () is
given by Gauss’ theorem

47Q, r> R,
4t E = A7 a3
ar (rtp) =an (1) Q <.
™ ( 37 p) T I 2, T<R
to be 0
R T 2 R,
E={T
r
F (2, r<RR.
Then the electrical potential energy of an clectron in the Coulomb ficld of
the finite-sized nucleus of charge Ze is
o0
V=- / cEdr
Ze?
T r> IR,

Sl @A) e

{(b) Rewrite the potential energy as

V=V+V,
where
0, r>R,
V=< Ze2  Zze2 ) T2
R {3“(3) } TR

and treat V"’ as a perturbation. The energy correction for the 1s state to
first order is

AF;, = (1s|V'|1s) :/ [y 12V dmrdr

0
ZB R 2 2 2
%4#—3/ V’r2drs—Z—€ (R> ,
ma’ Jg 5 a a
&
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R
me Ze?? as

: . 1
7\ 2 -z 1 2 Z-'5 2

Y15 = Rio(r)Yoo (8, ) = 2 (_) e« - <) ~ <J>
a 47 ma

for r < R < a.
(¢) Pb298 has Z — 82, A = 208, thus

where a =

[N

2

e\ N A
mel) - Z4
(h(:) (me) </zc>

)
| 4 | —13 4
2 i\ 1.2 x 10713 x 208:
L LI (0.51 x 109)* x | - R x 82
5 \ 137 6.58 x 10716 x 3 x 1010

=8.83 V.

AEL\' -

[

The corresponding wavenunber is

v AFE 8.83

L
A ¢ he 4135 x 10715 x 3 x 1010

=7.12x 10%emt.

5029

Consider the hydrogen-like atom resulting when an aluminum atom
(Z = 13, A = 27) has been stripped of all but one of its electrons. Com-
pute the effect of the finite size of the nucleus (assumed to be a uniformly
charged sphere) on the electronic ground state, i.e., compute the difference
between the ground state energy when the nucleus has a physically realistic
size and the ground state energy for a point-nucleus. Express the result: a)
in electron volts, b) as a fraction of the ionization energy of this atom.

{Berkeley)

Solution:

If we treat the nucleus as a uniformly charged sphere, the clectrical
potential energy of the electron is

Vlz—ZCQ/’I' for r>p,
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p being the radius of the nucleus. Inside the nuclues the electron suffers a

1

3
Coulomb force F = —Ze? (ﬁ) & = —Ze%r/p®, the corresponding poten-

ial encre ine _ ze?
tial encrgy being V' = o

2
C=—3%= Thus
3 p s

Zc?

r

Ze? r\? 3 e
2p P Sl e

The Hamiltonian of the clectron can be written as

) rZp,

Vir) =

H = i + Vo(r) + H'
2m ’
where o
Vol(r) = - A: , (oo >r>0),
and
0, r>p,

H' =4 Z¢2 r\° 2p 5 <
2p p b TS rse

is to be treated as a perturbation.
The tirst order energy correction is then

(100|H'|100) :/ Rio(r)Rio(r)H' (r)ridr
JO

P Ze? M\ 2 .
0 2p i) T

A 1 3 72
_ : (3*247‘/(1 -2 S 4 2.7,
/0 a3 r 2p + 207 ridr,

where a = i*/mee? = 5.3 x 1079 cm (Bohr radius).
As

1/3
P = TOAI/S, 7o =1.2x 1073 cm @ — roA "2

: ———— =088 x 1073 « 1,

Q a

+72 4+ C, where C is a constant. The continuity
of the potential at the surface of the nucleus, Vi(p) = Va(p), requires that

Perturbation Theory

we can take e~ 247/¢ x~ 1 and

AE = (100]H'|100)

VAL 32t
~— T —— -+ |dr
ar (] 2/) 2/)'

R (N

3

a
2% 2t ()
5a3 9 a a

(a) As €2/2a = 13.6eV,

4 2 4 . .
AE = - 136 2* (9) = 2136 x 132 x (0.88x 107%)? = 1.4x 10~
I J

a
(b) In terms of the lonization cnergy of the atom E, = Lzaz,
2 722 (Zp\° 2 (Zp 2
AE = = “pP — “p Ey=31x 10~7E1.
5 a a ) a
5030

347

eV,

A proposal has been made to study the properties of an atom composed
of a mt(myr = 237.2mm,) and a g~ (1, - = 206.77m,) in order to measure
the charge radius of the pion. Assume that all of the pion charge is spread
uniformly on a spherical shell at Ry = 107 ¢m and that the g is a point
charge. Express the potential as a Coulomb potential for a point charge
plus a perturbation and use perturbation theory to calculate a numerical
value for the percentage shift in the ls -2p energy difference A. Neglect spin

orbit effects and Lamb shift. Given

3 3
k2 11\12 1 \2 p e 7/oo
=~ Rp@={(—) 27 R ==} —-——.
Qo e’ 10(7) <ao> e ) 21(7) <2a0> a0 V3

( Wisconsin)

Solution:

The Coulomb potential energy of the muon is

—— forr> R,
V:
o2
7 forr< R.
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It can be written in the form

2
V=W+V =-"+V,
”
where
0 forr > R,
V’: 1 1 5 t <
F TR e orr < R,

1s to be treated as a perturbation.

The encrgy levels and wave functions of the unperturbed system are

2
En = ¢ 1/),(L0) = Rn.l ('I‘)}/[m((), (,0) -

2agn?’

As spin orbit and Lamb effects are to be neglected, we need only consider
%, 1 perturbation calculations. Thus

5 [ . 42 1t a0 .
AE,, = ¢? / .RfOV"r‘Zd’r = (—; (3*72‘3 £ - i 7'“’(17',
Jo ay Jo r 2

. _h® - :
where ag = ~, m being the reduced mass of the system:
MTn m
o= e P
Ma + 1y, p+1
with
My v
p=—=115.
my,
Hence

, 2
ao="" (Y o L 510 — a8 x 101 e
m \ mge? 110.5 ’ o

Thus ag > R and the factor exp(—2r/ag) in the integrand above may be
neglected. Hence

e o1y, 2 [ e? 2
AEIS ~ ig/ (— — —) r“dr —_ — (i B ,
ay Jo r R 3 \ag g
2 R : 2
1 2
AEy, ~ 65/ 1 r4dr:L ‘. r .
24a3 Jo r R 480 \ ag g
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Therefore
2¢2 [ R\’
AEZp - AElS - 3 agp agp N _1_6 R 2
Ey—FE, ¢/ 1 1\ 9 \ao
ao 8 2
=—7.7x107% = —7.7 x 107'%.
5031

Muonic atoms counsist of mu mesous (mass m, = 2006rm,.) bound to

atomic nuclei in hydrogenic orbits. The cuergics of the mu mesic levels
are shifted relative to their values for a point nucleus because the nuclear
charge is distributed over a region with radius R. The effective Coulomb
potential can be approximated as

—Zc?

Vir) =

(a) State qualitatively how the energies of the 1s,2s,2p,3s,3p,3d
muonic levels will be shifted absolutely and relative to cach other, and
explain phystcally any differences in the shifts. Sketch the unperturbed
and perturbed cuergy level diagrams for these states.

(b) Give an expression for the first order change in cnergy of the 1s state
associated with the fact that the nucleus is not point-like.

(c) Estimate the 2s-2p energy shift under the assumption that R/a, <
1, where a,, is the “Bohr radius” for the muon and show that this shift
gives a measure of R.

(d) When is the method of part (b) likely to fail? Does this method
underestimate or overestimate the energy shift? Explain your answer in
physical terms. Useful information:

s = 2Noe ™/ Yoo(0, 6),

1 T iy
Pos = NG No <2 - a—) e "2 Yoo (0, ¢)
7

1 T /0
1/}21) - \/72—4N0a_e /2au Ylm(gv (b)a
IL
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( Wisconsin)
Solution:

(a) If the nucleus were a point particle of charge Ze, the Coulomb
. . o2
potential energy of the muon would be Vo = 2 Lot H = V — Vi

and cousider it as perturbation. Then the perturbation Hamiltonian of the
system is

0, r >R,

=g, v 13 1\
s rR\2 2mz)|

When r < R, IF > 0 and the energy levels shift up on account of the

IA

R

perturbation. The shifts of energy levels of s states are larger than those of
p and d states becuase a muon in s state has a greater probability of staying
m the 7 ~ 0 region than a muon in p and d states. Besides, the larger
the quantuim munber 7, the greater is the corresponding orbital angular
momentum and the farther is the spread of 4 cloud from the center, leading
to less energy correction. In Fig. 5.12, the solid lines represent unperturbed
cuergy levels, while the dotted lines represent perturbed energy levels. Tt
15 seen that the unperturbed energy level of d state alinost overlaps the
perturbed energy level.

(b) The encrgy shift of 1s state to first order perturbation is given by

AE, = (1.5'|H’|13>.

£
‘‘‘‘ 3s ====<= 3p====2 3d
_____ 25 =====2p
1s
Fig. 5.12

;
3
3
il
}
&
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As R < a,,, we can take e”"/% ~ 1. Thus

4NZZer (R 71 1 (/3 102 )
a0 2E S (R N
BB A /0 r R\2 2R T

2 (R’ ze?
5 ay a“'

{¢) By the same procedure,

1 Ze? ?
AEy ~ = == <R> ,

20 a, ay,

AE‘Z;} =0 )

and so

1 Z32 R 2
ABEy — ABy = AByy = — = <,>

20 a, ay

. : 3
1 Zer [ R\? my
20 ag \ao Mg '
where ag 1s the Bohr radius. Thus by measuring the energy shift, we can
deduce the value of R. Or, if we assume R = 107 B em, Z = 5, we get

AEy, — AEy, =2 x 107%eV.
(d) In the calculation in (b) the approximation R < a,, is used. If R

is not much smaller than a,, the calculation is not correct. In such a case,
the actual energy shifts of p and d states are larger than what we obtain in
(b) while the actual energy shifts of s statcs are smaller than those given
in (b). In fact the calculation iu (b) overestimates the probability that the
muon is located inside the nucleus (probability density oc [115(0)]?).

5032

(a) Using an energy-level diagram give the complete set of electronic
quantum numbers (total angular momentum, spin, parity) for the ground
state and the first two excited states of a helium atom.

(b) Explain qualitatively the role of the Pauli principle in determining
the level order of these states.
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(¢) Assuming Coulomb forces only and a knowledge of Z = 2 hydrogenic
wave functions, denoted by |1s), |2s), |2p), etc., together with associated
Z = 2 hydrogenic energy eigenvalues 1, Eag, Fap, ..., give perturbation
formulas for the energies of these helium states. Do not evaluate integrals,
but carefully cxplain the notation in which you express your result.

(Berkeley)

Solution:

(a) Figure 5.13 shows the ground and first two excited states of a helium
atom in para (left) and ortho states with the quantum numbers (J, S, P).

(b) Pauli’s exclusion principle requires that a system of clectrons must
be described by an antisynunetric total wave funetion. For the two clectrons
of a helium atom, as the triplet states have symmetric spin wave functions
the space wave functions must be antisymmetry. Likewise, the singlet states
must have symmetric space wave functions. In the latter case, the overlap
of the clectron clouds is large and as the repulsive cnergy between the

clectrons is greater (because |rp — ry| is smaller). So the corresponding

encrgy levels are higher.

E
1s 2s '51(0,0,+)
Is2s 3501,1,4)

ls

'510,0,+)

Fig. 5.13
(c) The Hamiltonian of a helium atom is

i R _, R _, 2% 2% e?
= 1 - -

2m om 2 r |ty — 13|

Treating the last term as perturbation, the energy correction of [1s1s) state

1S
2

AFE; = (1sls 1sls).

vy — 12
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The perturbation energy correction of spin triplet states is
: 1 e?
AE® == {((Ls‘n” —{nlls|]) ——

nl |I‘1 _ 1‘2!

(I1snl) — 171113))}

2

1 e’
lsnl ) — = (nlls | —
’ > 2 < It — r2f
1 2
nlls> + 5 <nlls

2

e
1571,l> — <1:ml _—

Ir; — 12}

[\

02

= — <1.s‘nl L
2

|ty — 12
’2

_l <1snl _c
2

1 — 1y
’2

= <lsnl ¢

|I‘1 )1‘2]

—

1snl>
nlls>

]

Ir) — ra

'n,lls> .

The perturbation energy correction of spin singlet states is

1snl >
nl 15> .

The first term of the above result is called direct integral and the second

2

AE,,(,P = <lsnl

It — 2

2

+ <lsnl _¢

lr; — 12

term, exchange integral.

5033

A particle of mass m is confined to a circle of radius a, but is otherwise
free. A perturbing potential H = Asinf cosé is applied, where § is the
angular position on the circle. Find the correct zero-order wave functions for
the two lowest states of this system and calculate their perturbed energies

to sccond order.
(Berkeley)
Solution:

The unperturbed wave functions and energy levels of the system are

respectively

1 .
,ne :76”107
n‘th
nzm, n:il,iZ,
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The two lowest states are given by n = £1, which correspond to the same
cnergy. To first order perturbation, we calculate for the two degenerate
states n = x1

A 2
(£1|H| % 1) = / sinf cos9df = 0,
2m 0
A 2 N
(+11H| - 1) = / e 5in @ cos 0dY
21 Jo
A 27
=— {cos 26 — 7 sin 20) sin 2640
4T Jo
A
==
1A
(—11H|+ 1) = 'IA

The perturbation matrix is thus

1A
0 ——

4
i
4

Diagonalizing, we obtain AE() = i%. Heuce the two non-vanishing wave
functions and the correspouding energy corrections are

Y= rive, AR =2

Wy = (1) +i) —1)/v2, ABS = -

S

To second order perturbation, the energy correction is given by

b~ )
ntk Ex — En

As
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[ai(n+ 2y ci(n—‘z)()]

4 \2r

<

A A
:E|n+2)fa|nf2),

we have

r1, aht |y : 2
AEEZ) _ Z’ |<’9/)1|”':L 2) — (djlt’l AZK « <4>

2 ‘ 4
nAtl (1-n%)+ n

2rna?

21mna?
L )
+ ; 2 X (é>
l: _ 2) + 14, 4
2ma’
N ma?A?
T G4h2
and similarly AEEZ) = f"g)’fh’z‘—z .
Therefore
h? A maA?
~2ma? ' 4 64R%
K2 A ma?A?

5034
An electron at a distance = from a liquid helium surface feels a potential
V(z) = - 5, r >0, K = constant,
T
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(a) Find the ground state energy level. Neglect spin.
(b) Compute the Stark shift in the ground state using first order per-
turbation theory.

(Berkeley)
Solution:

(a) At 2 <0, the wave function is ¥(x) = 0. At = > 0, the Schrédinger
equation is

In the casc of the hydrogen aton, the radial wave function R(r) satisfics
the equation

W21 d ) Il + 1)h?
L ()

2 r? dr dr 2rnr?

Let R{ry = x(r)/r. For I =0, the equation becontes

(< gz~ ) ) = Bt

2m dr?

This is mathematically identical with the Schradinger equation above and

both satisfy the same boundary condition, so the solutions must also be
the same (with 7 > z, €? > K).

As the wave function and encrgy of the ground state of the hydrogen

atom are respectively

4

Eio= — o

2027

2r . ;
X1o{r) = 37z e”"/%  with  ag = h?/me?,
a

0

the required wave function and energy are
mK?
22

z/a

() = ze % a=h’/mK.
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(b) Suppose an clectric field ., is applied in the x direction. Then the
perturbation potential is V' = eg.x and the energy correction to the ground
state to first order in perturbation theory is

AE = (V' [4n)

2 X 2 .
= / C ge e e —— we” dx
a

2372 372
3  3h’ee,
T2 oamK
5035

Discuss and compute the Stark effect for the ground state of the hydro-

gen atou

(Berkeley)

Solution:

Suppose the externat clectric field is along the z-axis, and consider its
potential as a perturbation. The perturbation Hamiltonan of the system
is

H' =ce-r=ecez.
As the ground state of the hydrogen atom is nondegenerate, we can employ
the stationary perturbation theory. To first order perturbation, the energy

correction is
EW = (n=1,1=0,m=0leezln=1,1=0,m = 0).

For the hydrogen atom the parity is (—1)%, so the ground state (I = 0) has
even parity. Then as z is an odd parity operator, EW =0.
To second order perturbation, the energy correction is given by

1oo| |nlm>|2
222|

nl bn,

[

2

As E, = Ey/n? where By = —§_, a = ', we have £y — E, <0, (n #
1). Thus the energy correction E® is negative and has a magnitude
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proportional to £2. Hence increasing the clectric field strength would lower
the energy level of the ground state. We can easily perform the above
suntmation, noting that only matrix elements with [ = +1, m = 0 arc
non-vanishing.

5036
Describe and calculate the Zeeman effect of the hydrogen 2p state.
(Berkeley)
Solution:

The change in the energy levels of an atomn caused by an external uni-
form magnetic ficld is called the Zeeman effect. We shall consider such
change for a hydrogen atom to first order in the ficld strength H. We
shall first neglect any interaction between the magnetic moment associated
with the electron spin and the wagnetic ficld. The effect of electron spin
will be discussed later. A charge ¢ in an external magnetie field H has
Harmiltonian

- 1 e 2
Bt (et e,
21 c
whicli gives the Schrodinger equation
oY 1 _y  ich ieh 2
ih-—=(-——V*+ " —A.V+ V-A+r——A%vchp) .
"ot ( 21 F me 2rne I 21me )y

As H is uniforin it can be represented by the vector potential
1
A=-Hxr
2
since H=V x A. Then V-A =L (r-VxH-H-V xr) =0 and so the

only terms involving A that appear m the Hamiltonian for an electron of
charge —e and reduced mass p are

eh, 2 > 2
A v oA S Hxr) P+ S (Hxr) (Hxr)
e 2pc? 2uc 8uc?
2
c € 5o .
=—H-L H?r?sin” 0
e +8H02 resim” g,

where L = r x P and 8 is the angle between r and H.

R e
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To first order in H, we can take the perturbation Hamiltonian as

a--"HuL.
2uc
Taking the dircction of the magnetic field as the z direction we can choose
for the encrgy cigenfunctions of the unperturbed hydrogen atom the eigen-
states of L, with eigenvalues rnh, where m is the magnetic quantum num-
ber. Then the energy correction from first order perturbation is

W, = (m|H'lin) = iz Hrmh.

Thus the degeneracy of the 21 + 1 states of given n and [ is removed in
the first order. In particular, for the 2p state, where [ = 1, the three-fold
degencracy is removed.

We shall now consider the effect of electron spin. The electron has
an intrinsic magnetic moment in the direction of its spin, giving rise to a
maguetic moment operator —(e/mc)S.

For a weak ficld, we shall consider only the first order effects of H. The
Hamiltonian is

. h

H - 72’ V2L V() + ()L - S + e(l, + 25,)  with e
m

eH

2me’

where the ficld is taken to be along the z-axis.
We choose the following cigenfunctions of J* and J, as the wave func-

tions: 3
o, — +)Y:
m=; (H)Y1,
1 o—Llral
5 37222 (+)Y1,0 + (—)Y11],
-3 37223 (—)Ya0 + (+) Y11,
3
= )Y, _
9 ( ) 1,—-1
1 oL 1
m=g 37 (H)Yie+ 2 ()Nl
2p,
2 1 o1 1
- 5 372 [(‘)Yl,() + 22 (+)Y1,—l]7
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1
m = E (+)Yb,0a

1

‘25’

[

(=)Yo0,

where Yy, Y10, Y11 and Y | are spherical harmonic functions, (+) and
(=) are spin wave functions. It can be shown that the magnetic energy
€(ls +2s,) = ¢(J, + s,) has non-vanishing matrix elements between states
of different j, but not between states of the same 7 and different m. We can
neglect the former because of the relatively large energy separation between
states of different 7. Thus the magnetic energy is diagoual with respect to
m for each j and shifts the energy of each state above by its expectation
value for the state. In cach casc, J, is diagonal, aud so its expectation value
is mh. The expectation value of s, for the Py s state with m = 1/2, for
example, is

gLyt . el
//3 Z[22(‘F)Jr)/l,oJF(*)TYM] 55023 2[Z‘E(Jr)yl,() + (=)Y) ] stufdfdg

i

h 1 . I
5 //[22(+)TY1,0 + (“)TYITL] 22(+)Y1,0 — (—)Y1,1] sin 0d0dgp

h h
= — (2 — _ —
Z2-1)=¢

Hence the magnetic cuergy of this state is eh (% + (i) = %5)1,.
. . . ? )
This and similar results for the other states can be expressed in terins
of the Laudé g-factor as embig, with

¢

4 N 2 ” \
g:§ for P3/2, g:q for Pl/'z, g=2 for “Syz-

5037

Explain why excited states of atomic hydrogen can show a linear Stark
effect in an electric field, but the cxcited states of atomic sodium show only
a quadratic one.

(MIT)
Solution:

The potential energy of the electron of the atom in an external electric

field E is
H =¢eE . r.
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If we make the replacement r — —r in (I'|H'|l), as the value of the integral
does not change we have

UIH'1) (x) = (| H'|I)(~r)
= (1) H ) ()

This means that if the I’ and ! states have the same parity (i.e. I and I are
1) =0.
If the electric field is not too small, we need not consider the fine struc-

both even or both odd) we must have (I'|H’

ture of the cnergy spectrum caused by electron spin. Iu such cases, an ex-
ited state of the hydrogen atom is a superposition of different parity states,
i.e. there is degeneracy with respect to [ and the perturbation theory for
degenerate states is to be used. Because of the existence of non-vanishing
perturbation Hamiltonian matrix elements, exited states of the hydrogen
atown can show a linear Stark etfect.

For exited states of atomic sodium, each energy level corresponds to a
definite parity, i.c., there is no degencracy in /. When we treat it by non-
degencrate perturbation theory, the first order energy correction (| H|D)
vanishes. We then have to go to sccond order energy correction. Thus the
exited states of atomic sodinm show only quadratic Stark effect.

5038

The Stark cffect. The energy levels of the n = 2 states of atomic hydro-
gen are illustrated in Fig. 5.14.

Ep* D P3/2

)

Fig. 5.14

The Sy, and P/, levels are degenerate at an cnergy £o and the Pj/9
level is degenerate at an energy o + A.

A uniform static electric field E applied to the atom shifts the states to
energies €|, €2 and 3. Assuming that all states other than these three are
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far enough away to be neglected, determine the energics €1, £, and £3 to
second order in the electric ficld E.

(Princeton)
Solution:
Suppose the matrix elements of the perturbation Hamiltonian H' =
—eE - r are
Py Py Sige
]).‘(/2 0 0 b
P 0 0 a ’
Sz b a* 0

since (I'|H'|l) = 0 for I, [ states of the same parity (Problem 5037). Then
for energy level Py/5, we have

. Py H'|S) /2) ]2
Epgys — B+ (P2 H'|S) )]

/2 (©) (©)
EI’:;/'z o Em/z
|bf*

= A4 2

g0+ A+ A

For energy levels P,/ and Sy 2, we diagonalize the Hamiltonian in the
corresponding subspace, i.e, solve

The roots are A = +|a|, which give the new wave functions

_ (e _allyy) + allS))0)
1) NG (|a! [P1y2) + |51/2>> = Ta'”,

_ RS _a 4 . —a|Pys) + lallSy j2)
2) NG < Ia| [Pi/2) + S1/z>) = V2l )

with energies
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LI H!| P3|
EI:E1(0)+|a|+<] | P3/2)]

(0) (0)
o _EP3/2
=¢g + |al + o
2(-4)
B ]
=¢€o + la| — A
2|H'| Py 2)|?
By =B —|a] + k“(lo) | 3{5)”
Ey 'EP3/2
_ |a MQ
—=£&on a IA
5039

The Stark effect in atoins (shift of energy levels by a uniform electric
field) is usually observed to be quadratic in the field strength. Explain
why. But for some states of the hydrogen atom the Start effect is observed
to be lincar in the field strength. Explain why. ustrate by making a
perturbation calculation of the Stark effect to lowest non-vanishing order
for the ground and first excited states of the hydrogen atom.

To within an uninteresting overall constaut, the wave functions are

’1/)100 = 4\/5(10(3#7'/“0 )
Po00 = (2a0 — 1) e~ T/?a0 ,
Worpr =+ re~ /2% gin Oeiw/\@,

=7/280 ¢55 .

Ya10 =re
(Wisconsin)

Solution:

The electric dipole moment of an atomic system with several electrons

d=— Zeiri
7

In general, the energy levels do not have degeneracy other than with respect

is

to I,. The energy depends on the quantum numbers n and [. As the
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perturbation Hamiltonian H' = —d - & is an odd parity operator, only
matrix clements between opposite parity states do not vanish. Thus its

expectation valuc for any one given state is zero, i.c.,
(nim| — d - Elnlm'y = 0.

This means that first order cnergy corrections arc always zero and one
needs to consider energy corrections of second order perturbation. Hence
the energy corrections are proportional to EZ.

As regards the hydrogen atom, degencracy occurs for the same n but
different . And so not all the matrix clements (nl’|H’|nd) between such
states are zero. So shifts of energy levels under first order (degencrate)
perturbation may be nonzero, and the Stark effect is a linear function of
the electric field £. Write the perturbation Hamiltonian in spherical coor-
dinates, taking the z-axis in the direction of E. As H' = ¢Ez = ¢Er cos 8,
the ground state, which is not degencrate, has wave function

Pro0 = 4V 2a0e /",
and so (Problem 5037)
VY = (100 H'|100) = 0.

The second order energy correction is
’ H,|?
V(2) — Z , n0
0 0
n#l EE ) - EV(*)
| 11/’()[2]10()>{‘Z

(1 B §> 2a

=2aE?. 3 2)4 a®E? .

i
('L\
HM&Z

Note that for H/, # 0 we require Al = 41
The first exited state n = 2 is four-fold degenerate, the wave functions
being
1200, %210, Y21, +1 -

e
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As -
[(—m+1)(+m-+1) 3an 57
n,l+1,m|z =—cEy /- . ——y/n? =
eE{n,l +1,m|z|n,1,m) ¢ @ 1 )2+ 3) 5
= — 3€E(l()
are the only non-vanishing elements of H' for n = 2, we have the secular
equation
~EW  _3cEaq 0 0
—3¢Eay —EW 0 0
3 (1) — _ 0,
= B 0 o  -EL 0
0 0 0o -EM

which gives the energy corrections
EW = 13¢E,,0,0.

Therefore, the energy level for n = 2 splits into
’ L ek
— = e
2(L0 2‘2 o
c?
—— —3eFay,
8(l()

where ag is the Bohr radius #— The splitting of the first excited state n =

2 is shown in Fig. 5.15. Note that the two other states are still degenerate.
Ez_e -
~
\\—_

Fig. 5.15

5040

Consider an ionized atom (Z, A) with only a single electron remaining.
Calculate the Zeeman splitting in the n = 2 state in a “weak” magnetic
field

(a) for an electron
(b) for a hypothetical spin= 0 particle with electron mass.
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(¢c) Calculate the first-order Stark effect (energy levels and wave func-
tions) for an electron in the n = 2 state.

(After you define the radial integrals you can express the term by a pa-
rameter; you need not evaluate them. The same holds for nonzero angular
integrals.)

(Berkeley)
Solution:

(a) Take the direction of the external magnetic field as the z direction.
For an electron and a weak external magnetic field, in comparison with
its effect the spin-orbit coupling cannot be neglected, which gives rise to
anomalous Zeeman cffect. The Hamiltonian of the systemn

24 2
N P’ Ze* eB . R s
H= — - — I, +25,)+&@0)S5-1
2, r + 2mec (e +25:) -+ £(1)s
can be written as
N e3 . el3
H = H, — 5
o+ 21 Jz 2m,.c Tz
with s R
P Ze” s - R )
Hy = — —— +£&(r)s-1 : =1+ 5,
7 2, r §r)s-1 g 2o

Before applying thic magnetic ficld, we have

] . 1
H()d)nljwlj = E'nlj?,/)nljmj : (j =1k —2—>

,z:nB( 52, (L2,J2)3,) are still conserved quantities.

Jmy) = my;h and the energy of the system is

If we neglect the term

Then {(jm;lj.
By +mihwy,,
where
el3
wp = .
2m.c
When the weak magnetic ficld is applied, the contribution of the term

58 5, is (Problem 5057)

2mee ©F

wrS,

hwr .
5 (gmglo:lims)

N
o LT
bo—

[\

o

+ |
[\
[NIE

e o s
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Hence

W=

1 .
(1+> m]th, ]:l+
27

Enlj'rn; - Enl_’i + 1
1-— | mjhwg, j=1-5.
( 27+ 2) b ’

=

For n = 2, we have

1
By ton; = Ey 1 + 2mihwy,  mj=*t3,
4 ) m. = +3 +1
Eyigm, = Eay + gmihor, my=+5,%3,
2 1
EZl%m_, :Egl% +§mjhw[” un :ig.
(b) When spin=0, there is no spin-related effect so that
-2
: P eB -
1= Vi) + I,
! 2me (r) 2m.c

The cigenfunction is
Wnlm (ra 0, (10) = Ruim ("')Ylm(()a (P) y

and the energy cigeuvalue is

eB )
En‘hn = E‘nl -+ 277],{,_6 mh.
For n =2,
Esp0 = Eao,
EZIO - EQ] )
E Fy + 55
21,+1 = £21 e

(¢) Sce the solution of Problem 5042.

5041

Stark showed experimentally that, by applying an external weak uni-
form electric field, the 4-fold degeneracy in the n = 2 level of atomic hy-
drogen could be removed. Investigate this effect by applying perturbation

theory, neglecting spin and relativistic effects.
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Specifically:

(a) What are the expressious for the first order corrections to the encrgy
level? (Do not atteinpt to evaluate the radial integrals).

(b) Are there any remaining degeneracies?

(¢) Draw an energy level diagram for n = 2 which shows the levels hefore
and after application of the electric field. Describe the spectral lines that
originate from these levels which can be observed.

(Chicago)
Solution:

Write the Hamiltonian of the system as H = Hy + H’, where

9 D
, ¢ L~
Hy = —— - -
0 7 2rnr2
H' =cEz,

taking the direction of the clectric ficld E as the z direction. For a weak
field, H" < Hp and we can treat [’ as perturbation.

Let (0,0), (1,0), (1,1} and (1,-1) represent the four degenerate cigenfunc-
tions (I,7n) of the state n = 2 of the hydrogen atomn.

The matrix representation of H' in the subspace is

0 (0,0|H'|1,0) 0 0

- (1,0/H’|0,0) 0 0 0
0 0 0o o[’
0 0 0 0

where
(1,0/1H'|0,0) = (0,0|H'[1,0)*
= eE/uEIO(r)'r c0s Buggo (T)d>r

h‘z

=-—3eLao, ap=—3;
me

being the Bohr radius. Note that (I/|H')l) = 0 unless the I',] states have
opposite parties.
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Solving the secular equation

—w1 (0,0|H"|1,0) 0 0
(1,0|H"|0,0) -1y 0 0 0
0 0 —w 0 ’
0 0 0 —wy

we get four roots
wgl) =3eFay,

() _y® _ g

wy =Wy
4 .
wg — 3eFay .

(a) The first order energy corrections are thus
3ceEayg,

0,
AE = w| =

1

—3eEag .

(b) As w(lz) = wgg) =0, there is still a two-fold degeneracy.

(¢) Figure 5.16 shows the n = 2 energy levels. The selection rules for
electric dipole transitions are Al = £1, Am = 0, £1, which give rise to two
spectral lines:

hvy, = 3caoE, vy = 3eagE/h;
huy =2 x 3eapE, vo = 6eapE/h.

n=2 1
— J7 Luzge+Uz10)
7/
7/ 3eaoE
n=2 7
H z & ———+ U211, U29,-1
h 3 E
. N ea
without £ N 0 3
\ 77 Y200 - U210)

with applied £

Fig. 5.16

il
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5042

Consider the n = 2 levels of a hydrogen-like atom. Suppose the spins of
the orbiting particle and nucleus to be zero. Neglect all relativistic cffects.

(a) Calculate to lowest order the energy splittings in the presence of a
uniform magnetic field.

(b) Do the same for the case of a uniform clectric ficld.

(c) Do the same for both fields present simultancously and at right
angles to each other.

{Any integral over radial wave functions need not be evaluated; it can
be replaced by a parameter for the rest of the calenlation. The same may be
done for any integral over angular wave function, once you have ascertained
that it does not vamsh.)

(Berkeley)
Solution:

(a) Take the direction of the magnetic field as the z direction. Then the
Hamiltonian of the system is

1 e -
H = CHV() + .,
21, b ( ) 2mge
where V(7)) = 7‘72 Considering H' = 2;””7 I, as perturbation, the cigen-

functions for the unperturbed states are
Yuim (1,0, 0) = Rou(r)Yin (0, ¢)
, (=0,1,2,...,n—1.
m=—l,—-l+1,...0-11.

with n=1,2,3,...

As (H,I? 1) are still conserved quantitics, (nlrnl.
energy splittings to first order for n = 2 are given by

nlin) = nh and the

e3
Eopm =Fy + T mh
( E‘).Ov [= 07
el
_ 2myc h m=1,
Ey +< 0, =1 m=0,
—eB h, m= —1

e b o W
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(b) The energy level for n = 2 without considering spin is four-fold
degenerate. The corresponding energy and states are respectively
Z%? 1

Br= ey 2

200, P10, Yo11, Ya1-1-

Suppose a uniform electric field is applied along the z-axis. Take as
perturbation H' = ecz = EqV’, where Eg = ceag, V' = 2/ag = rcos 8/aq,

2 .
ap = -5 . Since

Mmee

L+ 1)2—m?
(20 + 1) (20 + 3)

\’—‘fyf m o
+¢;H1HH~D =
H/

vt wam 7 O for only Al = %1, Am = 0. Hence the non-vanishing
neim,nim

elements of the perturbation matrix are

e

cos8Yy,, = l+1,m

(HI)ZOO,'ZIO = /1/1;00['1/’(/)210433( = /'I/JzooHl'l/Jmodsxy

(H')210 200 = /'¢510H'1/J200d3)€ = /¢210H'¢200d3X‘

Let (HI)Q()07210 = (Hl)glo)goo = E/, i.e., HO] = Hl() = E’, and solve the
secular cquation
det |H, — EWM 6,0 =0.
The roots are E(V) = +E' 0,0. Hence the energy state n = 2 splits into
three levels:

E,2+ FE Ey (two-fold degeneracy for Ez).

(c) Assuming that the magnetic field is along the z-axis and the electric
field is along the z-axis, the perturbation Hamiltonian of the system is

eB

2mec

uH’ I, +esx = Bl /h+ V2vyz/3a,

where

G =eBh/2m.c, v= 3esa/V?2, o =ao/Z.
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The non-vanishing matrix elements of x are

-1, 1,
(@) 01 =)0}

-1

Solutions on Quantum Mechanics

,m

3
=-n
4
Y2 -1,
('L‘)I—T’;,m—l - (:I;)l'-m

3 \/(n2 2l +m-—1)(1+m)

3

4
Thus, for n = 2,

L1

Log — —

.00
ry_1

and the perturbation matrix is

The secular equation

4 — EW
det 0
-
has roots
W — g,

(n2 =)y (I —=m+ 1)1 —m)
i+ 12 -1)

a,

m—1

20+ D)2 - 1) @
3
ﬁ a —= .’17(1)(1) ,
3
- \/Q a = .1,00 y 1
5
g 0 0 —v h
0 0 0 0 '
0 0 -8 ~
-y 0 v 0
0 -
-f-EW 4 | =
¥ *E‘(l)

B = /1 292
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Hence the cnergy state n = 2 splits into three levels, of energies

EQ,Ezi 52+272.

5043

A nonrelativistic hydrogen atom, with a spinless clectron, is placed in an
electric field € in the 2z direction and a magnetic ficld ‘H in the z direction.
The effect of the two ficlds on the energy levels are comparable.

(a) If the atom is in a state with n, the principal quantum numnber,
equal to two, state which matrix clements in the first-order perturbation
calculation of the encrgy shifts are zero.

(b) Now obtain an equation for the energy shifts; once you have the
determinantal cquation you need not go through the algebra of evaluating
the determinant. Do not insert the precise forms of the radial wave fune-
tions; express your results in terms of matrix elements of 7™ (where n is an

appropriate power) between radial wave functions.

(b, £l ),y = J{{{Fm)y(tm+1)}]6,m+E1).
(Berkeley)

Solution:

(a) The perturbation Hamiltoman is

H' = Iy +ecs.

2me

Let the state vectors for n = 2 be |200), |210), |211), |21, —1). As

(e il )e,m) = VJ{(EFm)(tm+ D} E,mE1),
we have

V2

[10,0) =0, []1,1) =I.]1, 1) = o

V2

2

K|1,0),

[1"1:0>: h’{|1a1>+|1741>}'




374 Problems and Solutions on Quantum Mechanics

As z = rcos 8, we have
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Solution:

Both particles can stay in the ground state because they are not iden-
tical. The energy and wave function are respectively

(210fr cos 0]200) = (200|7 cos 0]210) = \/§<r>

with (r) = fo 3 Rap Ro1dr, other matrix elements of z being zero. Hence

By

K2n?
T mlL?’

Py =

2 . wxy . TTy
—8ln — sin —— .
L L L

the perturbation matrix is

ol

If oue particle is in the ground state, the other in the first exited state,
the encrgics and corresponding wave functions are

0 0
\/I(’E("') 0 V2eBh  V2eBh
H = 37 ’ dme 4me
2eBh
0 {fp ! 0 0
Ame
0 V2eBh 0
4

(b) The secular cquation |F - M| = 0, i.c.,

-X o« 0 0
a  =A g g

=0,
0 8 A 0

where «« = ﬁ(fe(r), G = %, has roots A = 0,0, -£/23% + %, which

are the energy shifts. Note that a two-fold degeneracy still remains.

5044

Two non-identical particles, each of mass m, are coufined in one di-
mension to an impenctrable box of length L. What arc the wave functions
and energies of the three lowest-energy states of the system (ic., in which
at most one particle is excited out of its ground state)? If an interaction
potential of the form Vi, = Ad(x; — x2) is added, caleutate to first order
in A the energies of these three lowest states and their wave functions to
zeroth order in A.

(Wisconsin)

B 5h2m? y 2 . mxp " 2mae
5 = — 4y = —sin —— si ,
2= o2 "R L L L
5h2m? 2 . 2mxy . TXy
Ey = ———, o1 = —sm 311
2 omL2 Pt L L L

When both particles are in the single-particle ground state, ic., the

systewn is in the ground state, we have the energy correction

) 4 Loy 3A
B = (i, Viau) = 15 A/0 st (7)1 = 5

and the wave function to zeroth order m A

b1 = Y11 -

When one particles is in the ground state and the other in the first
excited state, the energy level is two-fold degenerate and we have to use the
perturbation theory for degenerate states. We first calculate the elements
of the perturbation Hamiltonian matrix:

//’l/)IQVIZ’l/)l'Zd.’L'ldﬁlf‘z = //'(/);lVlgz/dea;ldmg

4 L 5 MY . o 2WE A
=— sin” ——s dry = —,
72 /\/O sin” — sin” ——dwr = 7

A
//'wnguwzldmde = //1/1;1‘/121/112(11'1(1152 =

We then sotve secular equation
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and obtain the roots
2

BV ==, Y=o

1

which are the energy corrections. The corresponding zeroth order wave

functions are
1
P12 = 7 (12 £ 121) .

5045

Consider a three-level system described by the Hermitian Hamiltonian
H = Hyo+ \H,,

where A is a real number. The eigenstates of Hy are |1), (2) and |3), and

Ho[1) =0,
Ho|2) = Aj2),
Hol3) = Al3) .

(a) Write down the most general 3 x 3 matrix representation of H, in
the {|1), 2), |3)} basis.

(b) When the spectrum of H is computed using perturbation theory,
it is found that the eigenstates of H to lowest order tn A are [1),]4) =
% (12) £ |3)) and that the corresponding cigenvalues are

)\2
E) - —Z’ + O(}\S),

2
E+:A+A+1\A—+O(A3),

E_=A—-X+0(\%).

Determine as many of the matrix elements of H; from part (a) as you
can.

(Buffalo)

R -
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Solution:

(a) Since X is a real number, the Hermition perturbation Hamiltonian
matrix has the form

e d e
Hl = d/* b f )
et fr e

wherce a, b, ¢ arc real numbers.
(b) To first order approximation, energy cigenvalue is the expectation
value of the Hamiltonian with respect to the sclected state vectors. Thus

Ey = (+|Ho + M, |+)
= (+]Ho|+) -+ A+ H|+)

A,
=A+ A+ —+O0).
A
Comparing the coetficients of A gives
(HH+) = 1.
Snnilarly
(—[Hy|-) = ~1.
As the energy levels correspouding to |2) and [3) are degencrate, we

transform to the following state vectors in whose representation the degen-
cracy disappears,

) = jfi(m 1))

Thus H, is trausformed to a representation in baste vectors |1), |+), |—):

1 0 0 L 0 0
1 1 a d e 1 1
0 — - 0 -
NV & bf V22
A AR I
V2 V2 VZoV2
d+e d—e
a
V22
d*+€*
V2
d* —e 0 1
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In the above we have used

CHEA) = (04 74 f o) =1,

U= 56 f = f v )= -1
and chosen the solution
b=c=0, f=f"=1.
Perturbation theory for nondegenerate states gives
H |2

p— .
Em:ﬂp+Mﬁm+V>J2%ﬂ%7+OuW
ngm m = n

Thus
Nld 4|2 N2d —e)?
200 — A) 2(0 — A)

o (ld-+e|? |d—el? .
= Aa — )\2 (T + T + ()(}\‘) y

Ey =0+ Xa+ + O\

N|d +ef? 3
Eg:A+/\+T+()(/\ ),

A2|d — e]? .

Es=A- )4 ——— 3
3 A + O(X%).

Identifying E\, E», E5 with the given cnergies E1, By, F_ and compar-
ing the coeflicients of A and A? give a = 0 and

[d+el* +|d—el? =2,

|d+ e =2,

ld —e* =0,

or'd +e=+/2e¢® d—e=0, where § is an arbitrary constant.

Hencea =0,d=¢= ‘7; and
1 . 1
0 - 615 - ()l()

V2 V2

1 )
Hy=| —e® 0 1

1 72

1 .

T 1 0

V2

is the representation in state vectors |1), |2), [3).
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5046

Two identical spin—% fermions are bound in a three-dimensional
isotropic harmonic oscillator potential with classical frequency w. There
is, in addition, a weak short-range spin-independent interaction between
the fermious.

(a) Give the spectroscopic notation for the energy eigenstates up
through energy 5hw (measured from the bottom of the well).

(b) Write the appropriate approximate (i.e., to lowest order in the inter-
action) wave functions of the system, expressed in terms of single-particle
harmonic oscillator wave functions, for all states up through energy 4hw.

(c) For a specific interparticle interaction Vi» = —A§3(ry — r3), find the
energics of the states of (b) correct to first order in A. You may leave your
result in the form of integrals.

( Wisconsin)

Solution:

(a) For a threc-dimensional harmonic oscillator,
3N
E,={n+ 3 hw, n=2n.+1,

where n, and [ are integers not smaller than zero. For the system of two
identical fermions in harmonic oscillator potential, we have, from the Harnil-
tonian,

3 3
En = <711 + 3) Fuv + <n2+ §> fw = (N + 3)hw, N=n;+n;.
Cousequently, for

EO — 37:“‘-},([1712) - (070)1

there is only one state *Sp; for
11
E1:4fl(.d, (llaIQ):(ovo) or (Ov1)1 (51152): <()1 5) ]

there are two states *P; and 3 Pyyq; for
E, = Shw, and
(1) (n1,n2) = (2,0) or (0,2),




380 Problems and Solutions on Quantum Mechanics

{ (l1>l2) - (070)7
(L1,12) = (2,0) or (0,2), there are two states 1Dy, 3 D3y

(2) (ny,n2) = (1,1), (Ii,l) = (1,1), there are three states 'Sy, 1 D,,
*Pa1o.

(b) Let %9 be the ground state and 1y,, the first exited state of a single-
particle system, where m = 0,41, and x, and X1m be spin singlet and

triplet states. With the states labeled as {NLL,SS,), the wave functions
required are

[00000) = xotho(1)90(2), state 'Sy

there are two states 15y, 35 ;

1 .
11m00) = o 72 (O + Pia) tho(L)yr1n(2),  state ' Py ;

1 . .
I1ImIM) = x1m ﬁ (1 — Pr2)po(D)him(2), state *Pyg;
where i, M =0,41 (L, =m, §, = M).

(¢) For the ground state 1Sy, the encrgy correction to first ordoer in ) is

So) ~ — /\/ dridryd(ry — ra) [yo(ry) ¢o(r2))?

= A/dm/)é(r) =-A (m)i

with a = /mw/A. Hence the ground state encrgy is

(1 So|Via|!

E('So)) = 3hw — A (ﬂ‘i’)‘w .
2xh
The first exited state consists of 12 degenerate states (but as there is
no spin in Viy, (! |V 2P = 0).
As the spatial wave function is antisymmetric when § = 1, the expec-
tation value of —A8*(r; - ry) equals to zero, i.c., A1/ 1MV 11mIM) =
darrar (1 {Vialim) = 0. As

E(]° P210)) =4hw ,

<11m’00]V12]11m00> =— A / % drwg(r)wrm/(r)'(/}lm(l')

= —2A /dr]z/;o(r)zplm(r)(2()7,,,‘,,”

3
o
=A== S,
<\/2w> "
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we have 1 . \ i 32
E(|' Pim)) = - (ﬁ) ,

where m is the cigenvalue of L.

5047

The Hamiltonian for an isotropic harmonic oscillator in two dimensions

H=wn; +nz+1),
where n; = afa;, with [a;, a;'] = 6;; and [a;,a;) = 0.
(a) Work out the commutation relations of the set of operators
VI Jy, Ja, J3 ) where

1 )
Ji = 3 (afai +afaz), Jo= 5 (afar — afay),

1
Jg; — E ((1?—(1,1 - (13_(12) .
(b) Show that J2 = J7 + J5 + JZ and Jz form a complete commuting
-t and write down their orthonormalized cigenvectors and cigenvalues .
(c) Discuss the degenceracy of the spectrum and its splitting due to a

~mall perturbation V - J where V is a constant three-component vector.
(Buffalo)

Solution:

(a) The system can be considered a system of bosons, which has two
single-particle states. The operators af and a; are respectively creation
and destruction operators. As among their commulators only [a;, af] is not

sero, we can use the relation
[ab, cd] = a[b, c]d + ac[b, d] + [a, c]bd + cla, d]b

Lo obtain
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Hence
(H, | =H,Jp) =[H, J3] =0,
(J1,Ja] = iJs, [Jo, J3| = iJy, [T, Jy] = i .

(b) The above commutation relations shiow that Ji, J», J3 have the same
properties as the components of the angular momentum L. Hence J2 and
J3 commute and forin a complete set of dynamical variables of the two-
dimensional system.

The commutation relations of a, o™,
+ -
[ai,af] = by, [as,a5] =0,
can be satisfied if we define
arlng, ma) = Vngng — 1,n.), aslny, ne) = Vnglng,ne — 1)
- N _
afng, na) = Vg + Ly + Ling), ay|ng,ne) = Vg + Uny,ng + 1)
and thus
1
. {. — 5 4N +\ 12
i, gy = (n1nat) 2 (al)™ (ad)™2)0,0)
These can be taken as the common normalized cigenvectors of the complete
set of dynamical variables J? and J3. As

. 1 . . .
J? = Z{(a;al +atay)?® — (afay, —alay)? + (afa; — afay)?}

1

_ +, o+ +. 4+ + o+

= :1{2% aray ay +2a) ayay a) +afaiafa,
+ayazalay — ajaray ay — aj(Lg(I,iral}

I +. o+ + +

= Z{a2 aiayaz +aj azayay + aj azlar, af]

+ + v+ + 4+

+ajailaz,ay ] +af aia) a1 + af azafay}
1

= Z{afagafag -+ agala;al + a;ag + G,T(],l + (L?—(],l(l?_al + (LBL(LQG,;(IQ} ,

where use has been made of

a;alaf’ag = ajalagaf = a;agalaf, ete.,
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.lll(l

afaslni, na) =/(n1 + Dnaln, na),

afaylng,ny) = y/maf|ng — 1,ny) = nyny, na), ete,
wir ﬁnd

J2|ng, ng) = i [(n1+ Dng + (n2 + ng + n3 4+ ni +ny + ngllng, na)
1 1
= 5 (nl -+ TLQ) -2~ (Tll =+ 712) +1 \711,7’L2>

and

N 1
o, ne) = 3 (afLa,L — ajag)]nl,ng)

1
== (ny — na)|ni,ng) .
2
Thus the eigenvalues of j‘z’ J, are respectively

. 1
J? = % (n1 + TLQ) [5 (’II,I -+ ’flz) + 1]
1
J, = 3 (n1 —ng).
Furthermore with
nl:jikmv TLQZj*m,

the above give

325, m) =3(G + Vlg,m),

J217, m> :m|jam> :

(¢c) Energy levels with the same value of J are degenerate. The situation
15 exactly analogous to that of the general angular momemtum. Adding the
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perturbation V - J will remove the degeneracy because the different energy
levels have different value of JV in the direction of the vector V.

5048

Cousider a two-dimensional oscillator

1, . . 1, . ,
H= 3 (P +p2) + 5 (= + 7).

¢

(a) What are the wave functions and encrgies of the 3 lowest states?
(b) Next consider a perturbation to the Hamiltonian

V:

0o | =

exy(x? + %), exl).

Compute to first order in perturbation theory the effect of V' on the
cuergies of the states calculated in part (a).
(Wisconsin)
Solution:

The Hamiltonian is given in units for which /i = m = w = 1.

(a) The wave function and energy of the two-dimensional hartnonic os-
cillator are respectivety

w24y2) )
ll/)’”'lnz - N"rl'"‘z 6*(’ ty )/2H1L1 (517)}[11,2 (l/) 3
Enlnz =ny+mny+1=N+ 1,

where H; are Hermite polynomials. For the lowest three states, we have

1 1 .
Yoo(x,y) = 777 GXP{*E (2? +'ZIZ)} , B =1,

2 1
‘lf’m(-’hy)—\/;IQXP{—5(12+y2)}, Ep=2,
2 Lo, 2
Yor(z,y) = o yexp "2—(36 +y7)e, Eopn=2,

as Hy =1, H, (&) = 2¢.
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(b) The first order energy correction for the ground state is
Voo = (thao|V|hoo) = 0,

as the integral in either 2 of y is an odd function.
When N = 1, there is a two-fold degeneracy, and

Vi = Vi = 0,

o0
Vi = Vo = = 2 mg/e*(lz*’yz) ay(x? + y?) dady
12 20 =5 -
oo

o

g s Y o o 3e
o i // n'(-""h+'.'/ ) (.’L'“ + ,/2)_1/"‘:(/2dg-dy == K .
7r .

- 00

The sccular equation for the perturbation Hamiltonian matrix is

‘Vll - EWM Via 0

Vo Vay — EQ |

giving the corrected cucrgies as

3
E/LO‘:Ele:Vh!:ZiZE-

5049

A particle of mass m moves (nonrelativistically) in the three-dimensional
potential

V= b 2 Ay

(a) Consider A as a small parameter and calculate the ground state
energy through second order perturbation theory.

(b) Consider A as a small parameter and calculate the first excited
energy levels to first order in perturbation theory.
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Formulas from the standard solution of the one-dimensional harmonic
oscillator:

S
fl

1 1
(k‘/m);, E, = (n+ 5) hw, n=0,1,2..
1

T = < h ) ’ ((l + (L+), ayy, = \m'(/)n—l )

2w

a1, = \/m'¢n+1 .

[a,at] =1,

(Berkeley)
Solution:

(a) The ground state has wave function

Yooo(w, ¥, 2) = o (x)tho (y)tho(2)

3 h, % PRU S PR 4 :
and energy 3 hw. Consider § Azry as perturbation, the first order clergy
correction is

kA
BN = (0001 == xy000) = 0,

as the integral is an odd function with respect to z or y. The sccond order
energy correction is

. kA .
E®) = Z [(000] . aylninang) |2/ (—ny — ny)hw

T ,T

=~
32

as

kA A
{0,0,0] > Tyninong) = 1 hwdyn, 810,00n, .

Therefore, the ground state energy corrected to second order is

2
EM —po (32
2 32

(b) The first excited energy level F; = 2 hw is three-fold degenerate,
the three states being

[1,0,0),0,1,0), ]0,0,1) .

e R e R

Perturbation Theory

The matrix of the perturbation % xy is
A 0 1 0
A0 o,
4
0 00
and the scecular equation
5
M A o |
4
Ahw

has roots

Thus the first excited cnergy level splits into three levels
5 A 5 5 A
(g + Z) fuw, 5 hw, (5 — Z) how .

5050

Cousider the following model for the Van der Waals force between two

atoms. Each atom consists of one electron bound to a very massive nucleus

L h

by a potential V(r;) = 5 mw?r?. Assume that the two nuclei are d > 4/ ;.-

apart along the z-axis, as shown in Fig. 5.17, and that there is an interaction
Vieo=20 5&3"—2 Ignore the fact that the particles are indistinguishable.

/" 7
l——d——-—, —_—

Fig. 5.17

(a) Consider the ground state of the entire system when 3 = 0. Give
its energy and wave function in terms of r; and rj.
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(b) Calculate the lowest nonzero correction to the energy, AE, and to
the wave function due to Vi,.

(c) Calculate the r.m.s. separation along the z direction of the two
electrons to lowest order in £.

1 1/2 o

2m 1/2 2
() = (1) = (3% —}”f) o S
(nlzlm) =0, for jn —m| # 1,
(n — 1a|n) = (nh/2mw)'/?

(n+ ajn) = ((n+ 1)1L/2'mw)1/2 ,

(Wisconsin)
Solution:

(a) The Sclirddinger equation of the systemn is

2

h? : p 1 20 ; ryaye

When G — 0 the systein is equal to twa independent three-dimensional

harmonic oscillators and the energy and wave function of the ground state
are

3

O 2
0 2

thrgfuu:Bﬁw,

087 (11, 12) = () oy )bolz1 o (22) o2 o (22)

1 3

maw 2 2
= (ﬁ) e in (ri+ry) ,
2

where 7f = 27 + y2 ¢ 22, etc.
(b) Treating
/B 2

POkt

LR, ap B, e

e

P e A
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as perturbation we have the first order energy correction

2
ABY = %% (00]12:2|00)

= ool ) ) el () 0

as (n|z|k) =0for k#nx1 _
For the sccond order energy correction, we have
3 /2
(00| H'\ro ) = % (0)z1|ny) (O]z2|n2)
Bet b

= 3 A . 61).1,1‘571,2,1 )
&> 2mw

and hence

- 00| H' |nyma)|?
@ N~ WO nam2) P
AEO N L#O EO - E'nln«z

‘ . 2
JoOlH'LL2 1 ge* h > 7
Ly — Eyy 2hw \ &3 2mw

as E (ny + %)hw 1 (ng | %)hw Thus the energy corrected to lowest
gy d G

1 [e2\° & 9
oo L (2)

order is

&3 m2w?
and the corrected wave function is
M']/ll_) i)
Eo— Fn !

682 1 \I’(O)
4d® mw? 17

Ty = T+
a
N

where () = vy (1'1)1/)0(:'/1)1/)0(21)1/11(12)1/’0(92)1/10(22); -
(c) Let S1p = x2 — 1. Then (Sy2) = (x2) — (1) =0 as ¥ : d
same when 1 and 2 are interchanged showing that (z1) = (xz). Consider

(8%2,) = (% + T3 — 2x30) = 2(zx]) ~ 2{z122) -
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We have

(i) = (U5 = A |20, | T — AT (?)

= — )\{(\Il(()o)lrl;lle\llgo)) + complex conjugate}

= —2X((0]x]1))% = = N ,
mw
where
2
a=Pe b
4d? mw?’
and

(:z:f) = (\I/(()O) — /\\I/(lo)la:ﬂ‘ll(()o) — ¥ (10))
= (0]22]0) + A2(1]2?[1)
= (0]2%(0) + O(N?).

Also according to the virial theorem

1 . .
5 mw?(0|22]0) = i hw,

or
. I
2(2%) = — 1+ O(A?).
mw
Hence

(Sty) = 2(a7) — 2(wiu2)

h 2h . I
= AL O~ — (14 2)).

mw W MW

Thus the root-mean-square distance between the two electrons in  direc-
tion is

((d+ S12)?) = \/d2 +2d(S12) + (S%,)

. h h Be?
/A2 — (1+2)) =d,/1 ¢
\/ mw ( ) + mwd? L+ 2mw2d3 |
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5051

The first excited state of three-dimensional isotropic harmonic oscillator
(of natural angular frequency wo and mass m) is three-dold degenerate,
Use the perturbation method to calculate the splitting (to the first order)
of this three-fold degenerate state due to a small perturbation of the form
H’ = bzy, where b is a constant. Give the first-order wave functions of
the three split levels in terms of the wave functions of the unperturbed
three-dimensional harmonic oscillator, given that, for a onc-dimensional
Liarmonic oscillator,

(n+ 1)k

cln + 1) = .
(nfzln + ) 2mwg

(Wisconsin)
Solution:

Write the unperturbed cnergy eigenstate as

|nenyng) = |na)|ng)n.),

where |n) is the nth cigenstate of a one-dimensional harmonic oscillator.
The first excited state of the 3-dimensional isotropic harmonic oscillator is
degencrate in the states

1) = 1100), [h2) = |010), [3s) =[001) .
Calculating the matrix elements
Hfj = b('¢il$y|'¢j) )
we find
H{, = b(100|zy|100) = b(1|z|1) (0ly]0) = 0 = Hj, = Hy,

hb
— H,/
2muw, 20

H}, = b(100]2:9]010) = b(1]]0) (0][1) = b(0z|1)" (Oly|1) =

H], = b{100jy]001) = b{1]]0) (0]y]0) = 0 = H},,
Hy = b(010]2]001) = b{0[]0) (1]y|0) = 0 = Hjs .
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Thus

g hb

2muwy

<o = O
o O =
o o O

The secular equation

det |H' — EMW| =0

has roots E() =0, () = £ 5% The unperturbed oscillator has energy

2muwy
E,(LO) = (n+ %)ﬁw. The first excited state, n = 1, now splits into three levels
with the wave functions indicated:

5 =4
By = S hw+0 = Zho, |95 = |gs) = 001).
5 hb
ED = 2 h 2y = L (1100)  Jo1
+ 9 2rmuwg’ e’) \/—(| ) +1010)).
5052

A quantum mechanical system is described by the Hamiltonian H =
Ho+ H', where H' = 1A[A, Hp] is a perturbation on the unperturbed Hamil-
tonian Hy, A is a Hermitian operator and A is a rcal number. Let B be a
second Hermitian operator and let C = ([, A].

(a) You are given the expectation values of the operators A, B and C in
the unperturbed (and nondegenerate) ground states; call these (A)o, (B)o
and (Cp). With perturbation switched on, evaluate the expectation value
of B in the perturbed ground state to first order in A.

(b) Test this result on the following three-dimensional problem.

3 2
: 1 .
HO: E <2PT;L—|—§7TLUJZ:E$> R H/:/\.’I,‘g,

=1

by computing the ground state expectation value (z;), (i = 1,2, 3) to lowest
order in A. Compare this result with an exact evaluation of (x;).
(Princeton)
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Solution:

(a) Assume that the eigenstates and the corresponding energies of an
unperturbed system are respectively

0
O, B,

then
Holk)© = B k)
The matrix clements of the perturbation Hamiltonian arc
H' = O (n|E(0)© =O) (njixAHy — iAHA]0)©

=iMEY — EOYO (] Aj0)©)

Then, the ground state wave function with first order perturbation cor-

rection is

0)® + 3~ ixO(n] A]0) D)
n#0

= (1 = iA(A)0)[0)(@ + > ix®(n| A]0)|r) ).
n=0

Heucee

(0|B)0) = | ©(0](1 + A (A)g) + (—iX)
i © (n)Aj0))* )(n|] B [(1—1'/\(A)0)|0)(°)

+ix >y © (m|A\o)<°>|m><°>]

m=0
~(B)o — A9(0[iAB — iBA|0)©
=(B)o + A00jC|0)®) = (B + A\C)o,

(to first order in A).
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Note that the completness of |k)(©),
2RO =1,
k

has been assumed in the above calculation.
(b) The given Hamiltonians

3 2
D 1 5
Hy = Z <2m + §7nwzrl;f> , H' = \z3

i=1

satisfy H' = 4A[A, Hy] = Axa if we set A = P55 Using the results of (a)

mw<h
we have the following: For B = xy, as

Cr=1[B, A] = o?h [x1,p3] =0,

we have
(1:1) = (B> ~ (B>0 + /\(Cl>() = <4151)() -+ /\<Cl>0 = ().

Note that (x1) = 0 as the integral is an odd function of 2;. For B = 2,
a similar calculation gives (x3) = 0. For B = 13, as

C:;:i[B,A]:i{,;LL]4 1

mw?h mw?’

and so

we have

mw?

For an accurate solution for H = Hy + H’, write

3 2
2 D 1
A=y <% " gmw%g> A

. . . A2
= Hoi(z1) + Hoa(x2) + Hos |23+ —= ) — —,
mw 2mw?
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- 2 2 . . .
where Hy;(x;) = —2'17 %7 + %mwa? is the Hamiltonian of a one-

dimensional harmonic oscillator. As the constant term —A?/2mw? docs
not affect the dynamics of the system, the accurate wave function of the
ground state is just that for an isotropic harmonic oscillator:

mw\ 3/4 mw o mw o
0= (T5) e (- o) e (-5 5)

mw A 2
xexp|—— | x3 + —= .
oxp 2h 3 mw?

(1) =0, (z2) =0, (x3) = fﬁ.

It follows that
These results are exactly the same as those obtained in a)

5053

A particle of mass m is moving in the three-dimensional harmonic os-
cillator potential V(x,y,2) = %mwz(a:2 +y? + 2?%). A weak perturbation is

applied in the form of the function AV = kzxyz + g—z x%y?2?, where k is a

W
small constant. Note the same constant k appears in both terms.

(a) Calculate the shift in the ground state energy to second order in k.

(b) Using an argument that does not depend on perturbation theory,
what is the expectation value of x in the ground state of this system?

Note: You may wish to know the first few wave functions of the one-
dimensional harmonic oscillator:

o) = (7)o ()

ground state

first excited state

bt () B e (-322).

second excited state

Wo(x) = (%)1/4 % <2mTw z? — 1) exp (77;—;_:} :1:2) .

(Princeton)
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Solution:

The ground state of a particle in the potential well of three-dimensional
harmonic oscillator is

é()(:l;: Y, Z) - 1/)0(1‘)1/}0(.1/)11)0(2:)
mmuw 3/4 mw? o, . ,
= (Tﬁ) exp [— T (x® + y? +zz)] .
The first order energy correction is

' k2 o )
(AE), = / Do(x,y,2) (ka:yz+ Ew2y222> <I>0(:1:,y,z)d“x
muw 3/2 k2 oo o
= (ﬂ‘h) o [/ x? CXD (—m,—;d :1:2) dw]

ho\? k2
2mw hw

While the perturbation AV’ = kxyz does not give rise to first order
correction, it is to be considered for sccond order perturbation in order to

calculate the energy shift accurate to k2. Its perturbation Hamiltonian has
matrix elements

3

Il

I

{n|AV'}0) / P (x,y, 2) keyz Po(z,y, 2)d>x

400 -+o00
k / Py ()P () da / Pna (W) b0 (y)dy

—00 —00

00
x / Py (2) 2000 ()2

2mw

hoO\3/?
=k ( > 5(77,1 - 1)5(”2 - 1)5(”3 — 1) s
where n = n; + ny + ng, and so the second order energy correction is

n|AV’ O 2
n#0 0_

<_—><)

Ey — E5 2mw ) 3hw’
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Therefore the energy shift of the ground state accurate to k2 is

282/ R\
= (A A == — { — .
B =(AE): + (AE) 3 hw <2mw>

(b) V + AV is not changed by the inversion z — —2,y — —y, ie.,
H(z,y,z) = H(—z,—y,2).

Furthermore the wave function of the ground state is not degenerate,
so Y(—z, —y, z) = ¥(x,y, z) and, consequently,

(x) = (¢, xv))

400 —+00 +00
/ dz' / / (! y, 2 (e, 2 e dy'
-0 J—oo J-—o0
+o00 400 400
e [ e o ey

where we have applied the transformation 2’ = —z,y’ = —y, 2’ = 2. Hence
(z) = 0. In the same way we find (y) = 0, (z) = 0. Thus (x) = 0.

I

i

A spln—— particle of mass m moves in spherical harmonic oscillator po-
tential V = mw‘zr'Z and is subject to an interaction Ao -r (spin orbit forces
are to be 1gnored). The net Hamiltonian is therefore

H=Hy+ H,
where P2
1
Ho= -+ -mw?r? H =Xo-r.
2m 2

Compute the shift of the ground state energy through second order in the
perturbation H'.
(Princeton)

Solution:

The unperturbed ground state is two-fold degenerate with spin up and
spin down along the z-axis.
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Using the perturbation method for degenerate states, if the degeneracy
does not disappear after diagonalizing the perturbation Hamiltonian, one
has to diagonalize the following matrix to fiud the energy positions:

(| V|m) (m|V|n") o
77\V}7} + E W = <'II,IW}’H, > .
m

Let [ngnyn, 1) and |ngnyn, 1) be the wnperturbation quantum states,
where 7, n, and n, are the oscillation quantum munbers in the x,y and z
direction, 1 (]) represents the spin up (down) state. As

3

the matrix has elements

2
(000 1 [¥]000 1) = A%(000 1 |o - r{]j()()l 1)) (r()()l 1o - r]000 1)
= hw — 3 huw

2
A%(000 1 |o - £|100 L) (100 | |o - £]000 1)
5 ho — 3 fuw
A%(000 1 |o - £[010 1) (010 | |o - £[000 1)
3 iy
5 W) — 5 W
Y [{(000 1 |0, 2[001 1)|? N [{000 1 |o, 2100 })|?
—Hw —hw
N [{000 1 |0, y|010 |)}?
~hw
LS
T 2mw?’
2
(000 4 (W00 §) = — 22
mw

(000 1 |W]000 }) =
In the above calculation we have used the fact that

(ni +1)R

(nilmin; + 1) = S

) a:'i:l‘ayaz
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all other elements being zero. It is seen that a two fold degeneracy still

2
exists for the eigenvalue % This means that the degeneracy will not
disappear until at least the second order approximation is used. The ground

state, which is still degenerate, has energy 5 3 hw — *j

21w

5055

Consider a spinless particle of mass m and charge e confined in a spher-
ical cavity of radius R: that is, the potential energy is zero for {x| < R and
infinite for [x| > R.

(a) What is the ground state energy of this system?

(b) Supposc that a weak uniform magnetic field of strength [B] is
switched on. Caleulate the shift in the ground state energy.

(¢) Suppose that, instead, a weak uniform clectric field of strength |E|
is switched on. Will the ground state energy increasc or decrease? Write
down, but do not attempt to evaluate, a formula for the shift in the ground
state energy duc to the electric field.

(d) If, instead, a very strong magnetic ficld of strength |B| is turned on,
approximately wlat would be the ground state energy?

(Princeton)

Solution:
The radial part of the Schrodinger equation for the particle in the po-
tential well is

(1)
,,“2

2 .
R”+—R’+[k2 ]R:o, (r <R),

r
where k = /2mE/h?, the boundary condition being R(r)|,=r, = 0. In-
troducing a dimensionless variable p = kr, we can rewrite the equation

as

—_— + _
dp* ~ p dp p

This equation has solutions 5(p) that are finite for p — 0, j;(p) being
related to Besscl’'s funetion by

jilp) = (%) Ty ().

2R 2 dR I+ 1
= +[1—(t)]R‘O.
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Thus the radial wave function is
Riy(r) = Cugi(kr),

where Cy; is the normalization constant.
The boundary condition requires

Ji(kRg) =0
which has solutious
kRy = ayn;, n=12,3--.
Hence the bound state of the particle has cnergy levels

W,

Eg=—a«a
2mRE

n=12273....

“'—:ﬁ, so that ;9 = 7 and the

il

For the ground state, p = 0 and jo(p)
energy of the ground state is

Erp = h*n?/2mR2.

(b) Take the direction of the iagnetic ficld as the z direction. Then the
vector potential A has components

B B
Az:*E'.‘/a A:,/:E.’L', A, =0,

and the Hamiltonian of the system is

- -l eB \? eB \?
H = - ) . 2 .
2m (p * 2¢ y) * (py 2¢ l) Tz V)

10 5 €B e?B? .

= [P )+ S ] v
1 [, eB e? B2

- _ = lz 2 2 e
2m -p C + 4c? (@ +y )} tvi-

As the magnetic field is weak we can treat -%3 l.+ ezgz (22 +y?) as a

perturbation. When the system is in the ground state ] = 0, [, = 0 we only
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need to consider the effect of the term £2; (z? + y?). The wave function

8mce

of the ground state is

2k2
P, 0,9) = \ Ry Jo(kr) Y00y (0, ©)

k2 sin(kr)
=1/ =—= jolkr) = 4( ,
27TR() v 27TRO T
and the tirst order energy correction is
232

¢

Smet

2 32 1 Bo 0 ‘
= = / 74 sin® (kr)dr / 27 sin® 0d6
8me? 2nRy Sy Jo

(1 1 *B2RE
T\3 22/ 12me?

Note that in the above calculation we have used

(@ + y?%)

.y

E = <'w(7', 6,¢)

a4 % =r?sin? 0, sin(kRg) =0 or kRy = 7.

(¢} Suppose a weak uniforin electric field E is applied in the z direction,
instead of the magnetic field. The corresponding potential energy of the
particle is V' = —¢Ez, which is to be taken as the perturbation. The shift

of the ground state energy is then
E, = (ih(r,0,0)| — eErcosy(r, 6, 0)) .

As E! is negative, the energy of the ground state decreases as a result.
(d) If a strong magnetic field, instead of the weak one, is applied then
) p? B2

H=—+ — (2% + oyt
2m  8mc? ( v)

and the B ternn can no longer be considered as a perturbation. The particle
is now to be treated as a two-dimensional hannonic oscillator with

, e’B? el
mw’ = —5, of w=_—.
8me 2me

1
2
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Hence the ground state energy is approximately

5056

A particle of mass m and electric charge (Q noves in a three-dimensional
i1sotropic harmonic-oscillator potential V' = % kr2,

(a) What arc the cnergy levels and their degeneracies?
(b) If a uniform electric field is applied, what are the new cucrgy levels
and tleir degencracics?
(c) If, instead, a uniform maguetic ficld is applied, what are the energics
of the four lowest states?
(Columbia)
Solution:

(a) The Hamiltonian of the system is

11 B }L2 2 1 k 2 H 1:1 H
T 2m + 2 e
where
R 9% 1
H;, = + = ka? (i=uxv,2).

“om o 2
The energy levels are given by

Enx = (N +3/2)hwy,

where wg = \/k/m, N =nz +n, + n,.
The degeneracy of state N is

N
f= Z(N—nzﬂ):%(zvﬂ)(zvm).

Ng=
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(b) Take the direction of the uniform electric field as the z direction.

Then the Hamiltonian is

N . 1 .
H =p*/2m + 3 kr* - QEz

, 1
= (1” + ;kﬁ) + [131‘3/2m+ 3 k'yz}

2m 2
. 1 .
+ [{»f_/zm +5 k(z — QE/k)Z} — Q*E?%/2k.
Comparing this with the Hamiltonian in (a), we get
En = (N + 3/2)hwo — Q*E*[2k,
1
f=3 (N +1)(N +2).

(c) Consider the casc where a magnetic field, instead of the clectric field,
is applicd. In eylindrical coordinates, the vector potential has comnponents

1
szin, Ap:AZZO.

Thus the Hamiltouian is

2
=t (f))QA> +V

2m

¢
1 ., Q. Q o b, a1
— — T p-A A%+ —k + —kz )
2. p me p + 2mc? 2 p 2

where we have used 72 = p® + 2%, and V- A = 0 which means p- A = A-p.

Write
D) ~2 1
= [0 vrs | ¢ [ﬂa R
m

= Ht + Hz + wiz )
where

V= V24 V2, w=Q|B/2me, W =w’ twi, La=pep,
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and the symbols ¥ correspond to positive and negative values of Q. Of the
partial Hamiltonians, H, corresponds to a two-dimensional harmonic oscil-
lator normal to the z-axis, [:IZ corresponds to a one-dimensional harinonic
oscillator along the z-axis. Therefore, the cuergy levels of the system are
given by

3

1
Enpnzm = (27Lp +1+ ’7TLD}W, + (’Hl + E) hu)() F mhw

Il

1
<hw’ + 5 fuu()) + 2n,hw’ + injhw’ T mnbw 4+ 0, hwg
where

n,=0,1,2,...,
n,=0,1,2,.._,
m=0,+1,+2....

The four lowest energy levels arc thus
, 1
FEopo = ' + E hwyg |
’ 1 . ’ ’ 1
EUOI = fw + 5 ,LUJ() + ,I/((U — w) = 2hw’ — hw + i fu.d(),
.1 , 3
Foro = ' + 5 hwy + hwy = bw' + i hwg

1
Eop2 = hw' + 3 hwg + 2h(w — w) = 3w’ — 2hw + 17 hwy .

5057

(a) Describe the splitting of atomic energy levels by a weak magnetic
field. Include in your discussion a calculation of the Landé g-factor (assume
LS couplings).

(b) Describe the splitting in a strong magnetic ficld (Paschen-Back ef-
fect).

(Colwmbia)
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Solution:
In LS coupling the magnetic moment of an atomic system is the sum of
contributions of the orbital and spin angular momenta:
[14 = Ho(!]zl + (]‘;é)
= polgud + (g5 — 908},

where j is the Bohr magneton. Taking the direction of the magnetic field
as the z direction, the change of the Hamiltonian caused by the magnetic
tield 1s

H = —p B=—qu.Bj. — (9 — gi)poBs: -

(a) The Hamiltonian of systein is
B o= Hy+ Hy = p2/2m+ V() +£()8 -1+ Hy .

Considering —(gs — gi)poBs; as perturbation aud operating (Ho —
Jipo Bj,) ou the common state of 1%, j% and j, we have

([:IU - glllr()sz)((/Jn.ljmj - (Enlj - f][/‘LUB’”I'j)'(/Jnljmj -

If B is very weak, then

m for =1+ %7
I 2]
.= 5 (4m;\o,gmy) = s
— 7 for j=1— % ,
2(7 +1)
where we have used the relations
L+m;+3 11 IFm;+ 3 11
} R — - by — —, — _ L+ -, — =
l9m) A1 |22 2iv1 |72 T2
for j =1+ %, and
1 1 1 1
Uzmj:F§7Zt§ Zim]qii,ii .

Hence the energy level of the system becomes

Enljmj ~ Lplj — glﬂOBTnj
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m; . 1
TR g=1l+3,
—(9s —g)moB
'J s 1
(25 +2)

As g = —1, g5 = —2 we can write
Entjm; = Eniy — gpoBmy
where

JE+D)+s(s+1)-1(1+1)
2j(G+1)

g=—|1+
is the Landé g-factor. Thus an cnergy level of the atom splits into (25 + 1)

levels.

(b) Tf the maguetic field is very strong, we can neglect the term £(r)s -1
and the Hamiltonian of the system is

H = pZ/2m + V(r) + Hy=Hy+ I, .
Opcrating on the conmon cigenstate of (H(), 12,1,,82 $2), we get

LR 1

IIT/)"l"H"LS - fnlmzms'l/"nl'm,zm,-: y

where
Entmims = B — gipoBmy — gspoBmg
= E. + poB(my + 2mg),

as g1 = —1, g, = —2. For an electron, mg = i%. Then, due to the
selection rule Amg = 0, transitions can only occur within energy lovels
of mg = +% and within energy levels of mg = —%. The split levels for
a given [ are shown in Fig. 5.18. For the two sets of energy levels with
my+2ms = —I{+1tol—1 (one set with mg = %, the other with mg = )%,

i.e., 2{ — 1 levels for each set), there is still a two-fold degeneracy. So the
total number of energy levels is 2(2] + 1) — (21 — 1) = 21 + 3 as shown.
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mye2m
{ s
‘:;’ {s1 ml’zms
] ! (-1
R b —-
o R -
© 1 1
= g '
T -1e2 ! ————t a2
‘; -1‘1—————-—-—1;1
- =14
Mg =+
{mg 0/2) (mS:_1/z)
Fig. 5.18
5058

Consider an atom with a single valence clectron.  Its fine-structure

Hamiltonian is given by €L - S.

(a) Determine the difference in the energies of the levels characterized
by J = L+ 1/2 and J = L — 1/2 (finc structure interval) in terms of &

(b) This atom is placed in a weak external magnetic field of magnitude
[{. Use perturbation theory to determine the energy splitting between
adjacent magnetic (Zeeman) sublevels of the atom.

(c) Describe qualitatively how things change in a very strong magnetic

lield.
(Columbia)

Solution:

(a) In the representation of (J2,L2%,4,),

S-IZ:%(J?-I?—S‘Z)
G ) 1) st )
3 (LRGSR

As (I +5)(L+ 3y~ (- 1)+ 3) =2l + 1, the energy difference is

2
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(b) It the atom is placed in a weak magnetic field of magnitude H whose
direction is taken to be the z direction, the Hamiltonran of the system is

A=Y yvey s (0, 128) re(n81L
m 2m
-2
p c eH
— A V 7 z S IJ — Sz
2m Vi) + 2m J £r) 2me
H .
=Ho+— 8.,
2me

where jz =L, + 5’2.
Let 4m15m, be a common cigenstate of (J2,1L%,4,) for the unperturbed
Hamiltonian H,. Then

- eldh
PIO"/HLUm_,- = <Enlj +m; m) 'l/}nlj'mj .

To consider the effect of the perturbation terin z‘,fl’{ 8, use spherical

coordinates and write ¥nijm, = R (r)oiim; (0, ¢), where the angular wave
functions are

J+my
(pljmj = 2} (1)/?1-_ % ,m 7%
J—my o ‘ 1
+ 2% ﬁyj—%,m,_,» 1l for j =1+ 5
J—m;+1
Plym; = = W NY]'Jré,mj—%

J4+m;+1 o 1
Tz Pirtmey fori=l-g,

a, B being eigenstates of S, of eigenvalues % and ~§ respectively. Thus for
: 1
J]= l + 921

& &1 j+m; h
Sziym, = S:lims) =4/ "5 Y5 gm,
J—my
- 23 ~ﬁYj_%’7”1+% ’
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and . o j+mijh j-myh _hmy
(J'm’j|Sl|],’nj> - 7 2j 5 - 25 97 2 ] ’

. . 1
and for j =1 -3

. . h  mj
(GmglSelims) = =5 3y
Hence
. 1
oH cHh m; /7, J *:l+§,
(S =~
2me dmec . 1
2me mce /G, 5= l— 3
Jl.nd SO
1 1
<1+;,) my, J:]+~)—7
§ eHl 2j 4
Entjin; = Butj + 2me 1 1 l 1
- my, =1
2r2) "

Thercfore,
1 . 1
;LI;H<1+Z>, jil+§,
Ak = 1 ) 1
NBH<12].+2>7 j=l-5,
where g = —2‘"% is the Bohr magneton.

(c) If the magnetic field is very strong, £(r)S-L < ppB and the Hamil-
tonian of the system is
2

~ P CH i -~
- = — (I, +25;).
H 2m + V(T> + 2me ( )

Since (Ho, 1.2,1,,82 5,) form a complete set of dynamical variables,

eH :
Enhn'mS = Ly + % h(?IL + 27”3)

= Ey +ppH(m £1),
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as mg = i%. Hence
5059

Positronium is a hydrogen-like system consisting of a positron and an
electron. Cousider positronium in its ground state (I = 0). The Hamil-
tonian H can be written: H = Hy + Hg + Hpg, where Hy is the usual
spin-independent part due to the Coulomb forces, Hg = Asy -5, is the part
due to the interaction of the spins of the positron and the clectron, and
Hp = —(pup + pe) - B is the part due to the interaction with an externally
applied magunetic field B.

(a) In the absence of an externally applied field what choice of spin
and angular momentum ecigenfunctions is most convenient? Calculate the
energy shifts for each of these states due to Hg.

(b) A very weak magnetic field is applied (H;; < Hg). What arc the
allowed energies for this system in this case?

(¢) Now suppose the applied magnetic field is increased such that Hpg >
Hg. What kind of eigenfunctions arc now most appropriate? What arc the
cnergy shifts for cach of these states due to Hp?

() Indicate how you would solve this problem for the encrgies and the
corresponding cigenfunctions in the gencral case; however, do not try to
carry out the algebra unless you have nothing better to do. No long essays,
please.

(Berkeley)

Solution:

(a) In the absense of the external field B take H, as perturbation. The
total spin of the system is S = s, + s, and so

1, .. . 1
SpSe = 5 (8? - sh—sl) = 5 [S(S+1) —sp(sp + 1) — 5.(5¢ +1)] .

&

It is most convenient to choose the eigenfunctions in the form [/mS$.5S,).
The ground state [ = 0 consists of four states S = 1,5, = 0,+1: S =
0,5,=0. Forl=0,5=1, as

Asp - s.[lmlS,) =

SIS

[1(1 +1) - %} B?|Im1S.,),
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we have
Ah?
E, = (Im1S,|H|lm1S,) = 0 (5, =0,%1),

which is the energy shift for the triplet state. For i =0, § =0, as

Hg

A 3
1m00) = 5 (o — 5) 12|lm00) ,

the energy shifts is —3 AR?.

(b) The external field B is switched on, but as Hp < Hs we can consider
the effect of the external field as a perturbation (H = (Ho + Hs) + Hp).
Iaking |/mm.SS,) as the state vector and the direction of B as the z direction,

1.c., we have B = Be,,

!

B

H[izf(“p_}"l"(;)'B: (‘5

ez 5{12) ’
mc

and (cf. Problem 5066 (b))

-Bh

Hy/0000) =52~ 0010), Hy|0011) =0,
mc
.BR

Hpl0010) =27 10000), Hp|001, 1) = 0.
mc

Hence (ImSS,|Hp|lmSS,) = 0 and the energy levels do not change
rther for first order perturbation, in addition to the splitting into singlet

and triplet states described in (a).

ehee |(n| H|i)|?
' lin|i1p|t
E,=EP+>° ,
' ™ (0) (0)
izn En’ — By
As only the following matrix elements are nonzero:

eBh
(0010{H p|0000) = —
me

eBh
(0000|Hp|0010) = —
me

(e energy levels from second order perturbation are, for [0000) :

2

3 .9 eBh 3 ..o 1 ..,
=— - - —— Ah® — = Ah
Ei - 4Ah+<mc> /( 4 P

2
3 .., 1 [eB
:‘ZAh A <mc> ’
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for |0011) and 001, —1):

for [0010):

1 ) CRBEN 2 .
By == AR® + ("Bh) / (1 AR? + fAIB)
4 me 4 4
1 . .. 1 /eB\?
=~ ARt 4+ = { 22
4 v A <mc> '

(c) As now Hg > Hg, we can neglect the H, terin and consider only

a perturbation cousisti = 8 (3 § i i
1 2 ousisting of Hyg = s (8ez — Spz). It is then convenicut to

choose |lms,.sp.) as the cigenfunctions. Then for states {frny 4 £1) ) we
have el

(8ez = 3p2)

1 1
* = k=) =5

and the corres -
a he correspouding cnergy shifts are zero. For states |ln, :h%, e

have §>’ we
1 1 eBh 1 1
+ -, F- )=+ 4+ - xZ
2 2> me ’ 2’¥2>’

and hence the energy shifts -+ <82

mc ~

(d) In the general case, take [ImSS,) as the state vector and H' = Hg +
Hpg as the perturbation Hamiltonian. Then treat the problemn usiug the
perturbation method for degenerate states, i.e., solve the sccular equation

Hy

/
det [H,,,, — Edmn| = 0 to find the energy corrections and the corresponding
wave functions.

5060

An atom is in a state of total electron spin S, total orbital angular
momentum L, and total angular momentum J. (The nuclear spin can be
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irnored for this problem). The z compouent of the atomic total angular
momentum is J,. By how much does the energy of this atomic state change
il a weak magnetic field of strength B is applied in the z direction? Assume
(Liat the interaction with the field is small compared with the fine structure
literaction.
The answer should be given as an explicit expression in terms of the
(quantiumn numbers J, L, S, J, and natural constants.
(Princeton)

Sclution:
The Hamiltonian and cigenfunctions before the introduction of maguetic

lield are as follows:

H = Hy,
’l/)n,LJ]WJ - RnLJ<7'17 ce )T'n,) (PSLJMJ )
where the subscripts of 7, 1,2,... ,n, represent the different electrons in

the atom, and ¢y, 7ar, is the common cigenstate of (L2,82,32,J,), ie,

Gsrane, = O (LMLS, My — Mp|JM) Yin, Os.mm-me s
My,

(LMpS,M; — M}.JM;) being Clebsch-Gordan coefficients. The corre-
sponding unperturbed energy is E,sp0.
After switching on the weak magnetic field, the Hamiltonian becomes

eB . eB -

HZH()—{- S

z + =
2mec 2mec

As B is very small, we can still consider (L?,82,3%,J.) as conserved
quantitics and take the wave function of the system as approximately
Ymrint,- The encrgy change caused by the term zerfc J,is AEy = M;h ;fc
as J, has cigenvalue Myh. The matrix of ;fc S, is diagonal in the sub-

space of the 2.J + 1 state vectors for the encrgy Enr, and hence the energy

change caused by it is

N B ~
AE, = 22 () = = (IM|5,|TMy),

2mce
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where

(JM1S.1TM5) = S R(My = My)[(LMLS, My — My,
My,

JM 2.

The total energy change is then

AE = M jhiw; — hwy + Z(ﬂ/[‘/ ~ M) [(LMS, M, - AJ”JNI.])V ’
My

where .
el3

2me

wp =

5061

The deuteron is a bound state of a proton and a neutron. The Hamil-
tonian in the center of mass system has the form

2
P X X 1
H=_—+Vi(r)+o,-0,Va(r)+ [(0,- =) (00 - =)~ S(0,-0.)| Vs (r).
21 r r 3
Here x = x,, — x,,, 7 = [x], o, and o, arc the Pauli matrices for the
spins of the proton aud neutron, g is the reduced mass, and p is conjugate
to x.

(a) The total angular momentum J? = J(J -+ 1) and parity are good
quantum numbers. Show that if Vi = 0, the total orbital angular momen-
tum L2 = L(L+ 1), total spin 82 = S{(S+1)and S = % o, % o, arc good
quantum nunbers. Show that If V3 £ 0, S is still a good quantum number.
(It may help to consider interchange of proton and neutron spius.)

(b) The deuteron has J = 1 and positive parity. What are the possible
values of L7 What is the value of S?

(c) Assume that V3 can be treated as a small perturbation. Show that in
zeroth order (i.e. V3 = 0) the wave function of the state with J; = +11s of
the form o(r)|e, @) where |, @) is the spin state with Spz = Sny = +1/2.
What is the differential equation satisfied by o (r)?

(d) What is the first order shift in energy duc to the term in V4? Suppose
that to first order the wave function is

1/10(7)101301) + 1/)1(X)|0470<) + '(»/‘]2()()(‘0)5) + \ﬁ’ a)) + ?/)3()()]/57}*5) ;
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where |4) is a state with §; = —1/2 and 1o is as defined in part (c)‘. By
sclecting out the part of the Schrodinger equation that is first order in V3
and proportional to |, @) find the differential equation statisfied F)y 1/)1()?).
Separate out the angular dependence of ¢4 (x) and write down a differential

cquation for its radial dependence.

(MIT)

Solution:
(a) Use units such that b = 1. First consider the case where V53 = 0. As

. 1 0% 1, 2 o
pl = —; m?" — ﬁvO,w’ L = —VOVW
we have
L%, p°] =0,
[L27 Vit (op- o,)Va] = {sz Vil +(op - a',”)[Lz, Vo]
=0+ (op-0n)-0=0,
and so

L%, Hy,—g] = 0.

Thus L? is a good quantum number. Now consider the total spin S¢. As

3N 1 /., 3
L 2 oy Lfg 13 13N 1 /g 53y
Sposn =g (8 s e =5 (85 27) T 5

1 1
Sp*i P Sniéanv
we have )
{SQ,(TP cop) = 5 [0p On, 0p-0n] =0,

I'nrthermore,

[$2,p%] =0, [S%Vi(n]=0.

Hence [S2, Hy,—o] = 0 and S is also a good quantum number.
If V3 # 0, we have to consider also

(70 3) (oo 5 =2 {2 (o2 (00}

r
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As op + op = 2(sp +5,) = 2S and

x\2 X X X X x\2
(72 3) = (e 3) (o) =T T =12 (e 2)

using the formula

and so

oy - Onla, @) = (28 - 3)|a, @) = (2 x 2 = 3|, ) = |a, ),
we have
B2 10 4,0
(0-A)(0-B)=A-B+io (AxB), Hupo(r)l v, ) = [_ﬁ 2 Or (' E) * Vl(r)}

the above becomes x o ()], @) + Va(r)wo(r)]a, o) .

Hence the differential equation satisfied by o 1s

La (2 ”’*’°> + {% B~ V() - Vz(r)l} Yo = 0.

Then as

[S)’ <S f)] - Z[Sz’sl] (J_') =0, dr dr 2
T - T

we have For L # 0, the wave functious of states with J, = 1 do not have the

2 X : f)] — above form. _ _ ‘
[S , (UP 7') (U" r/Jl . (d) In first order approximation, write the Hamiltonian of the system

and so s

[S*,H] =0, (S H]=0. H=Hy+ H',
Hence S s still a good quantum number if Vi 5 0. where

(b) The parity of the deuteron nucleus is

X X 1 . — r
HI = {(U'p . ;) (U'n ) 7) - 50'[1 . Un} V3(’)7 }10 - HVJ:O’

P=DP(p) - P(n)- P, = (+1) - (+1) - (-1)F = (=1)".
Since the parity is positive, L =even. Then as S can only be 0 or 1 and aud the wave function as
J =1, we must have S equal to 1 and L equal to 0 or 2.

(c) In zeroth order perturbation V3 = 0, L, S are good quantuin num-
bers.

For the lowest state, L = 0 and so L, = 0. Then for the state J, =
L,+ S, =1,5, =1 and hence S = 1, Spz = +%, Snz = +%. Because
L = 0, the spatial wave function is spherically symmnetric i.e., 9y = o (r).
Thus the wave function of state J, =1 is Yo(r), and

W = ola, ).
The energy correction is given by
AE = lH'|Y) -

As
cos @ sinfe** )
)

sinfe’*  —cosf

cosf  sinfe™* Iy
<a|g-§{a):(1 0) ( > <0> = cosl,

X . . _
.2 = g, sinBcosp + g, sinfsing + g, cosd = (
Hipo(r)|a, ) = Evo(r)]a, a) - T v

As

2 2 2 2 ) .
op- 0, =4S,-5, =25° — 25p —2s;, =28° - 3, sin fe'? cosd
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we have

)

bd X 1 1
J— Loy - = . — yal
(o, (o',, r) (o’n r) 3 Op - Opla, @) = cos® 6§ — 3

and hence

AE = (y|H'ly)

; . 1
= /|z/10]2\/3(7') <(:()529 — ;) dx
o0 o kg 27 ) 1
= / Va(r)|o | 2r2dr / / (cosz 0 — 7> sin 0dfdy
Jo Jo Jo 3

=0.

Note that as S is conserved and L is not, the wave function is a super-
posttion of the spin-triplet states (S = 1):

(%) =vo(r)ler, @) + b1 () ]er, @) + P2 () (Jex, )
+ 16, ) + 93(x)18, ),
and
Hyp = (Hy+ H')p = (E+ED 1+ .. )y
Thercfore, iu first order approximation, making use of
EMN =AE =0
and
Hotpo|, @) = Efo|ex, )
we obtain
Holrler, @) + (|, B) + 16, o)) + 938, B)] + H'to| v, cx)
= Elrfe, o) + ¢a(lon ) + 18, 0)) + 318, 8)] -
To calculate the perturbation term H')p|a, )

X 1

H'vola, o) = Va(r) 1o [(Up . —) (o’n . E) 3 (op o',,,)} |, @)

T T

cosf cosf 1
=V3(r) ) ) .z
3(r)vo {(sin@e“")ln <sin9€lv’>n 3 ]aa)} ’
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cos 1 ] . 0
) = cos 6 + sin @¢*?
sin fe*? 0 1

=acosf + Fsinfe’?

As

H'vo| v, @) = Vi(r)to [cos2 0 — ﬂ |, @) + Vs (r)4ho sin® 0e™?|8, ) .

By considering the terms in the above equation that are proportional
to |a, ), we can obtain the equation for the wave function ) (x):

hr (10 0 L’
7 (’ o (7o) f—) V1) + Vi)

+ Vo (r)ipy + Va(r)yo(r) <c0s2 6 — %) = FEy.

Writing ¢ (x) = Ri(r)®,(8, ), we can obtaiu from the above

. 1 1 /167
D(8,0) = cos? 0 — 3= 5\/ = Yoo(8, ),

and thus f/2<I’1 =2(2+ 1)fi2(1>1. The equation for Ry 1s

LA (e 2 v e - 5] w

r2 dr dr r2

= VAo

Here, it should be noted, even though the normalization factor of @,
will affect the normalization factor of R;, their product will remain the
same. It is noted also that ¢ (x) corresponds to L = 2, L, = 0. By
0, 3), we see that
3(x) corresponds to L = 2, L, = 2. Then from the given J, = 1, we can
sce that 1 (x) corresponds to L = 2, L, = 1 (note that J; is also conserved
i V3 #£ 0). In other words, the existence of V3 requires the ground state of

considering the term in H'¢|aa) that is proportional to
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deuteron to be a combination of the L = 0 and L = 2 states, so that J = 1,
S =1, J, =1 and parity = positive.

5062

Consider the bound states of a system of two non-identical, nonrela-
tivistic, spin one-half particles iuteracting via a spin-independent central
potential. Focus in particular on the 3Py and ! P| levels (3P, spin-triplet,
L =1,J =2 'P: spin-singlet, L = 1, J = 1). A tensor force term
H' = A30(1) -to(2) - £ — o(1) - 0(2)] is added to the Hamiltonian as a
perturbation, where A is a constant, © is a nnit vector along the line joining
the two particles, o(1) and o(2) are the Pauli spin operators for particles
1 and 2.

(a) Using the fact that H’ commutes with all components of the total
angular momentum, show that the perturbed energics arc independent of
m, the eigenvalues of J,.

(b) The energy is most easily evaluated for the triplet state when the
eigenvalue of J. takes on its maximum value m = j = 2. Find the pertur-
bation energy AE(*P).

(¢) Find AE(! ).

{(Princcton)
Solution:

(a) Use units for which h = 1. As S = L {a(1) + a(2)], the perturbation
Hamiltonian H’ can be written as

[ §]
~——
L)
[

H = A{g (28 £)2 — (o (1) - £)2 - (a(2) -

2
=A[6(S - )% — 287,

~ 5 [t o o) |

where we have also used the relation

(0-8) =(00+ 0y +0.) (00 + 0y + 72)

2 2 2 2
=0y +0,+o; =0",
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on account of
gi0; +oj0; = 2(5,,;_7' .

To prove that H' commutes with all components of the total angular

2]

momentum J, we show for example [J,, H'] = 0. As [S,,8?] = O,B[Lz, S4] =
0, we have [J,, S?] = 0. Also, as [Ss, Sy] = thS:, etc, L, = —zh%, we have

[J.,8 %] ={S.,8 -t} + [L.,S -1}
=[9,,sin 8 cos pS; + sinfsin S, + cos 6S,]
+ [L,,sinfcos pS; + sin sin S, + cos88S,]
=ihsinf cos S, — ihsinfsin pSy

—1ih )3 (sin@ cos S, + sinfsin @S, + cos6S,)
e

=0,
and hence
[J.,(S ) =(S-t)[J:, S- ]+ [J,,S-F](S-%) =0.

Combining the above results, we have [J;, H'] = 0.

Similarly we can show
(Jo, H') = {J,, H] = 0.
It follows that Jy = J, +1iJ, also commutes with H'. Jy has the property
Jilg,m)y = alj,m+1).
where @ is a constant. Suppose there are two unperturbed states
|7,m1) and |f,m2), where my=m +1,

which are degenerate and whose energies to first order perturbation are iy

and Ey respectively. Then
(4yma|[Jy, Ho + H'l|7,m1)
= (j,ma|J+(Ho + H')j,m1) — (4, ma|(Ho + H')J 1|7, ma)
= (Er — E2)(j, ma|J¢|J,m1)
=a(F1—Fy) =0
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as

(Ho + H')|j,m1) = E\[j,ma),
(Ho + H"YJ\j5,m1) = (Ho + H')a|j,ms)
= Eyalj,ma) = ExJy|g,my) .
Since the matrix clement a # 0, E| = Fy, i.c., the perturbation cnergies

are independent of .,

(b) The perturbation cnergy is
AECP) = (j=2,m=2H'lj=2m=2).
Since

|J — 2, m = 2) = ’l = 1777” = 1)|S' — 1)7”,5 = 1)7

AE(PPy) = /(152}/1*l (0, @)(S =1, my = 1H'|S = 1,mg = 1)Y11(8,¢)
=3 [ 0(3 cos® 0 — 1) 2x sin 0d
el 3 cos 27 sin 0d

3 T 9
=3 /\/ sin’ (3 cos®§ — 1) do

0

2
:*F/\

b

{c) For the state 'P;, as S = 0, m, = 0 and so H' = 0, we have
AE(IP) =0.

5063

A hydrogen atom is initially in its absolute ground state, the F = 0
state of the hyperfine structure. (F' is the sum of the proton spin I, the
electron spin s and the orbital angular momentum L.) The F = 0 state is
split from the F' = 1 state by a small energy difference AE.
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A weak, time-dependent magnetic field is applied. It is oriented in the
7 direction and has the form B, = 0, t < 0, B, = Bpexp(—~t), t > 0. Here
Bp and +y are constants.

(a) Calculate the probability that in the far future when the field dies
away, the atom will be left in the F' = 1 state of the hyperfine structure.
(b) Explain why, in solving this problem, you may neglect the interaction
of the proton with the magnetic field.
(Princeton)

Solution:

(a) When considering the hyperfine structure of the hydrogen atom, we
write the Hauniltonian of the system as

H:H0+f(r)0-p'0'e,

where Hj is the Hamiltonian used for considering the fine structure of the
hydrogen atom, f(r)o, - 0. is the cnergy correction due to the hyperfine
structure, o, and o, being the Pauli spin matrices for the proton and
clectron respectively.

When the atom is in its absolute ground state with L = 0, j = s = %, the
hyperfine structure states with £ = 0 and F' = 1 respectively correspond
Lo spin parallel and spin antiparallel states of the proton and electron.

The initial wave function of the system is

P(r, F) = Ri10Yoo(8,¢)O0n0 -

Letting «, 3 represent the spinors ((1)), ((1)), we have the spin wave function

Bpo = % (_ap/@e + Qeﬁp) 5

which makes 1) antisymmetric. When t > 0, a weak magnetic field B, =
I3pe~7* acts on the system and the Hamiltonian becomes

heB,

H=H, O,
o+ f(r)op-oe+ S

Oez

neglecting any interaction between the magnetic field and the proton.
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Suppose the wave function of the system at ¢t > 0 is
¥(r, F, 1) = Rlo(r)Yoo [C1 (t)@oo + Cz(t)(“)ll + Cg(l)@lo + C4(t)@1ﬁ1] ,
where
G)ll - apae )

91.71 = /8p5€7

1
O = 7 (pBe + . fp) -

Then the probability that the system is at hyperfine structure state
F =1 at time ¢ is
Alt) =1-(Ci(t)P,

and the initial conditions are
C1(0) =1, C3(0) = C3(0) = C4(0) = 0.
As
oz = [, o8 =a,
oy =108, o,0= i,
o.x =, 0,3=-03,
we have

1
Op - 0.0 :(Jpzael + OpyTey + O'pzo'ez)“ﬁ (‘”pﬂc + ”(:ﬁp)

= — 3000,
and similarly
Tp - chlm - @lm .

Finally, from the Schrodinger equation zh% ¥ = Hi) we obtain

. dC dC dC J
ZthO(T‘)Yoo (—dt—l Ogp + th O + d—tg O + % (—)1,_1>

= Rio(r)Yoo{[E10 — 3f(a0)]C1(t)O00
+ [Ero + f(a0)] [C2(t)O11 + C3(t)O10 + Cu(t)O1,-1]}
+ R10(r) Yoo pro B [C3(t)O00 + Ca(t)0y,
+ C1(t)O10 — Ca(t)O4,_1] .
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Comparing the coefficient of ©g and of G19 on the two sides of the
«ation, we get
t

1

Yfli Cl(t) = {El() - ?)f(U.())] C] (f) + Cg(t)ugBo(’,_’y 5
1

th i C;;(t) = [Em -+ f((l())] Cg(t) + Cy (t),LLoB()C—’Yt .

As the energy of the hyperfine structure, f(aq), is much smaller than
110, energy of the fine structure, it can be neglected when calculating C1(t).

I'hen the above equations give

1 7'1_“u ¢ {(3 ing By (1/e>'”) ‘e iuofo (1~e*“’t)} .

Cit) = = e ;

. . 10 B
|C1(#)]2 = cos® (l:/h,()) .

, 5 (o .o f oD
A()|tre0 =1~ cos? (/l 2’1‘()) = sin® (—07}1)0> )

which is the probability that the hydrogen atom stays in state F=1
(b) The interaction between the magnetic moment of the proton and
(he magnetic feld can be neglected because the magnetic mowent of the

proton 15 ouly ﬁ of the maguetic mowent of the electron.

Hence

5064

A spinless nonrelativistic particle in a central field is prepared in an
s state, which is degenerate in energy with a p-level (mg = 0,£1). At time
¢ : 0 an clectric field B = Fg sinwt? is turned on. Ignoring the possibility of
Lransitions to other than the above-mentioned states but making no further
approximations, calculate the occupation probability for each of the four

states at time 7, in terms of the nonzero matrix elements of z.
( Wisconsin)

Solution:
Choose the four given states as the state vectors and the level of energy
such that the degenerate energy E = 0. The Hamiltonian of the system is

H = Hy+ H, H = —gE.-r= —gEpzsinwt.
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To find the perturbation energy matrix one notes that only elements
(I +1,my|z|l, m;) are non-vanishing. Thus we have

[00) [10) [1,-1) |[11)

(00| 0 1 0 0
= 1ol L 0 By (0012]10) sinwr) .
(a,-1/| o o 0 0
(11] 0 0 0 0
Suppose the wave function is ¢ = (1,29, 23, 24), and initially P(t =
0) = (1,0,0,0), where 1,2y, x3, 24 are the four state vectors.  The

Schrodinger equation th [g-)z 1 = Htp can then be written as

L4 [fm . 01 )
Lhd_t (:1:2) —Asmwt(l O) <:1:2) ; (1)

. d I3
h <) =0, )

where A = gFEy(00|z]10) is a real number.
Equation (2) and the iuitial condition give

o)== ()

which means that the probability that the system occuplces the states my =

1 of the p-level is zero. To solve Eq. (1), we first diagonalize the matrix
by solving the secular equation

‘/\ 1
:0)
I A

which gives A = 1. Hence the first two components of ¥ are to be trans-

formed to
T <I1+x2> (a)
_\/—2~ Ty — X2 b/

Then Eq. (1) becomes

'fd ay A sin w 1 0 a
ll% p) = sinw 0 1 e

il
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.bject to the initial condition

(). v ()

Solving the equation we find

<a>‘ 1 exp{%(l—coswt)}

b V2 exp{—%(l—coswt)}

To get back to the original state vectors,
2 1 (a + b)
V= <.’L’2 B \/§ a—>b

A

08 | — (1 — coswi

cos [hw ( )}

isin [i (1 - coswt)]
hw

Therefore, the occupation probability for each of the four states at time
I s
gE0{00)2|10)
hw

s [9Ee(00l2]10)
Pp(m,=0) (f) = I.I'gl = SN T

Py(t) = |z1|* = cos? [ (1 — coswt)

(1 - cosar)|

Pp(m;z:tl)(t) =0,

where (00|z]10) is to be calculated using wave functions RyiYim(8,) for a
particle in a central field and is a real number.

5065

An ion of a certain atom has L = 1 and S = 0 when it is in free space.
I'he ion is implanted in a crystalline solid (at = = y = z = 0) and sees
.« local environment of 4 point charges as shown in the Fig. 5.19. One
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can show by applying the Wigner-Eckart theorem (DON’T TRY) that the
effective perturbation to the Hamiltonian caused by this environment can

be written as

@,

H = — (L
L=

2
=Ly,

where L, and L, are the z and y components of the orbital angular mo-
mentum operator, and « is a constant. In addition, a magnetic field is
applied in the z direction and causes a further perturbation H, = % L,,
where L, is the 2 component of the angular momentum operator and g is

a constant.

z
Y
+Q
-Q
- e x
-Q
+Q
Fig. 5.19
(a) Express the perturbation Hamiltionian H' = H, -+ H, in terms

of Ly and L_, the “raising” and ”lowering” operators for orbital angular
momentumn.

(b) Find the matrix of the perturbation Hamiltonian in the basis set
using the three states |1,0),]1,1) and |1, —1).

(c) Find the energy levels of the ion as a function of B. Make a careful
sketch of your result.

(d) When B = 0, what are the eigenfunctions describing the ion?

(MIT)

Solution:

(a) From the definitions L+ = L, +iL,,, we get

[Ly,L_] = ~2[L,, L) = 2hL,

1 . .
L} — L= (L++L_)2+Z(L+—L,)Z: (L3 +L%).

1
2

el B
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"Chus the perturbation Hamiltonian is

o BB
H' = w2 (L2 - L))+ - L,
. ‘ BB
= ’2(;;2 (Li + Li) + onZ (L+L— —~L_Ly).

(b) Using the formula
Ly|L M) = h/I(L+ 1) = M(Mp £ 1) | L, M £1),

we lind the following non-vanishing elements
L2[1,1) = V2hL _{1,0)

= 2h%|1, 1),

L2, —1) = 2h%)1, 1),

LoL_|1,1) = 2h%|1,1),

L.L_|1,0) = 2h%1,0),

L_L.|1,0) = 2h%|1,0),

L_L.|1,—1) = 2k%*1,—1)
. hence the matrix ((L/, M} |H'|L, Mp)) as follows:
L1 (1,00 [1,-1)

(i (BB 0 o
H' = (1,0] 0 0 0
{1,—1 @ 0 -8B

(c) The perturbation energy E is determined by the matrix equation

8B —-FE O «@ a
0 -E 0 bl =0,
@ 0 -pBB-F c
whose secular cquation
BB—E 0 o
0 —-F 0
Q 0 -BB-E
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gives the corrections
Ey=—/(8B)? + 2,
Ey =0,
Es =/ (BB)? + o?.

The perturbation energy levels are shown in Fig. 5.20 as functions of B,
where the dashed lines are the asymptotes.

E
E;

lod] ,/

-laul \

£,
Fig. 5.20

(d) If B =0, the energy levels are

E1 = —, EQ = 0, Eg =

)

and the eigenstates are given, respectively, by
a=—c#0,b=0;
a=c=0,b+#£0;
a=c#0, b=0.
Thus the corresponding energy eigenstates are

-1

o

f

(2)

5 By S oG }
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1
V2
c 1
3
In terins of the state vectors |1,1),]1,0),]1, —1) the wave functions are
1 1
Ei = a)=——|1,1) + — |1, —1),
B = o) = =L 1) + = L)

|Ey = 0) =1,0),
1

|E3 = (1> - \/j

1,1) +

2o
s

5066

The spin-depeudent part of the effective Hamiltonian for a positronium
thound state of clectron aud positron) in a magnetic field B may be written
AL

Hspin = AU(’ cTp + /LHB((TCZ - Upz) ;

where 0, and o, arc the Pauli spin matrices for the electron and the
positron, and pp is the Bohr magneton.

(a) At zero magnetic field the singlet state lies 8 x 1071 eV below the
triplet state. What is the value of A?

(b) Nlustrate by a sketch the dependence of the energy of each of the
(or spin states on the magnetic field B, including both the weak and strong
licld cases.

(c) If the positronium atom is in its lowest energy state in a strong
magnetic field and the field is instantaneously switched off, what is the
robability of finding the atom in the singlet state?

(d) How would the result of (¢) be changed if the field is switched off
very slowly?

(Wisconsin)

Solution:
(a) When B = 0, the effective Hamiltonian has the expectation value
<Hspin> = A<Flmlp|0'e . UP‘F’ITLF> s

where B = s, + 5.
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As
2 . .
o0, = ,—iE(F‘Z—SZ—Sé),

E - (Hspin> = QA[F(F + 1) - 83(56 + 1) - Sp(b‘p + 1)} . (SF’F - (sijmF .
For the triplet state, F = 1, s0 Ep_, = 24 (1 -2 — % - % — % - 3) = A.
For the singlet state, F =0, so Ep_y = —3A.

Hence, Fr_) — Fp—g = 4A = 8 x 107%eV, giving A = 2 x 10~4eV.
(b) We first transform from representation in coupling state vectors to
that in non-coupling state vectors:

IF=1,mp=1)—

Il

1 1 1 1
Se 57 Mse = E y Sp = 5 y Msp = =),

5
|F~1,mp—0)\;§{se %,msc— y Sp = =,
msp—%>+ Se = =, Mge = 1,5,,—2,77L3,,—%>},
fF*lymF—1)*6(—%,77}“—%,sp—~,ms,,:é>,
[F—O,TIL]0):%{5(%,')‘7L5F-—,81,%,

e 2up B
Then as upB(o,, — Opz) = EEZ (Sez — 8pz) and

‘ 1 111 1
(Sez — 8p2)|F =0, mp = 0) = — Sez — S - =, =, =
r ) \/E( ‘SIJZ) 272727 9
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(Sex — $p)|F =1, mp =0) =h|F =0,mp =0),

Sez = $p)|F =1, mp = 1) = (sez — 8p.)|F =1L,mp = —1) =0,
P P

and using the results of (a), we have in the order of [1,1), |1, —1), |1,0),
[0, 0),

A 0 0 0
0 A 0 0
Hom=1\0 0 4 2usB
0 0 2ugB -34
The sccular cquation
A-F 0 0 0
0 A-F 0 0 0
0 0 A—FE 2ugpB
0 0 2upB —-3A-F
then gives the spin-energy eigenvalues
E,=F,=A4,

By =—A+2\/A? + p}, B2,

Ba= - A-2/a2 4 B2,
The variation of E with B is shown in Fig. 5.21. If the magnctic field
It is weak we can consider the term pgB(0., — 0p.) as perturbation. The
cnergy correction is zero in first order perturbation and is proportional to
3% in second order perturbation. When the magnetic field B is very strong,
ihe energy correction is linear in B.
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(c) When the positronium is placed in a strong magnetic field (upB -
A), the lowest energy state, i.e., the eigenstate whose energy is approxi
mately —A — 2upB, is

1

1
5> = 5 (L0 10,0},

where we have considered Ao, - o, as perturbation. If the magnetic field
is switched off suddenly, the probability that the atomn is in state |F -
O7 mipg = O> lh

P:‘(o,of 11 1>

2 223

1
Mse — 5 Msp =

2 1 1
(d) If the magnctic field is switched off very slowly, no transition occurs

and the atom will remain in the state |3, -1, 11}, and the cuergy of the

2020272
system is £ = —A.

5067

Positronium consists of an electron and a positron bound by their
Coulomb attraction.

(a) What is the radius of the ground state? The binding energy of the
ground state?

(b) The singlet and triplet ground states are split by their Spin-spin
interaction such that the singlet state lics about 1073 volts below the triplet
state. Explain the behavior of positronium in a magnetic ficld. Draw an
energy level diagram to illustrate any dependence on the magnetic field.

(Berkeley)

Solution:

(a) The hydrogen atom has ground state radius and binding cnergy
ao = h*/pe? ~ 0534,
E1 = pet/2h? =~ 13.6 eV,

where p = mem,, /(m. + my), the Coulomb potential V(r) = —¢?/|r; —ry
having been used.
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I'he results may be applied to any hydrogen-like atom of nuclear charge
« with the replacements

Viry > V'(r) = —~Ze*/ir) — 13,
p— ' =myma/(my + ms),

w1y iy being the mass of the nucleus and that of the orbiting electron. For

poabronium, ' = ¢, Z = 1, and so
r_ 12 r 2 I 2 ~1 A
ap = h?/i'c® = aop/ 1 ag ,
. 1
Bl = 2h? = By /p = §E1 ~6.8 eV.

{h) Choose 10,0, S, 5;) as the cigenstate and take as the perturbation

Ianiltonian

eB
I—II - Asc *8p + — (S(IZ - Sp:) 3
me
chere A = L’L;(‘_V Using the results of Problem 5066 we have the
v clurbation energy matrix
Ah*/4 0 0 0 (1,1)
0 Ah?/4 0 0 (1,-1)
, eB
H:nn - 0 0 Ah2/4 *ﬁ_ (130) ’
me
3
0 0 fheﬁ ~ZAR? | (0,0)
mc 4

(LY (L,-1) (1,0) (0,0)
li.an which we find the perturbation energies

E, = B, = Ah?/4,

AR2\? . [eB 2
2 _ 2 .
E; = —Ah /44—“(—2 > + R <mc> )

AR\ ? eB\*
2 AR VI i N
—AR"/4 — < 5 ) +h <mc>

'I'he dependence of the energy levels on B is shown in Fig. 5.22.

1

E4
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The result shows that the energy levels of the hyperfine structure iy
further split in the presence of a weak magnetic field, whereas the hyperfino

structure is destroyed in the presence of a strong magunetic ficld. Theso §

limiting situations have been discussed in Problem 5059.

E
\
.
2 -~
AhY, 4&‘, 26,

-APYLIE
-346%, ~ .

Fig. 5.22

5068

Estimate the magnetic susceptibility of a He atom in its ground state,
Is it paramagnetic or diamagnetic?

(Chicago)

Solution:

Suppose the He atom is in an external uniforin magnetic field H = Hé,

(H being a constant). The vector potential A, defined by H = V x A, can {

be taken to be A = éH(wyéI + zéy). The Hamiltonian of the system iy
then

H:

|~

2 e 9
(Pr zA) oy H.
=1

[N~}

‘ m
4-

As the helium atom is in the ground state, p1; = 0. Thus
. 1 e 2
H=Y" — (P,,-——A) ,
; 2m S c

where m and e are respectively the mass and charge of an electron.
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e e - 8E :
‘T'he magnetic susceptibility is given by x = —47 7z |H=0. For helium

«omin its ground state,

2 2
. ‘o1 . I € ¢ 2
A - 4<Pf_zA.pi—zPi~A+czA)y

2in
=1
2 2 2

o*H ¢ 3 9 € 22 4 o2
= = v,
OH? Z 4me? (@ +v7) 2mc? ( )

1

el 50
A O*E
X = = &7 51y
OH* =0
o2 N
— — 47 —— (He ground state |H|He ground state)
™ oz (e
2 " .

— ar (He ground state l2* 4+ y*|He ground state)

2me?

2 —— [U—

= — (12 +y?).

2rne? ( )

v here 7% is the mean-square distance of each electron from the He
- eqg.s.

ancleus in the ground state, which gives

52,2
4w CTH,,
X ¢z 3m

i i at as i : in its ground state is
m Claussian units. Note that as x < 0, helium atom in its g €

Junagnetic.

5069

An atom with no permanent magnetic moment is said to be diamagnetic.
in Lhis problem the object is to calculate the induced diamagnetic moment
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for a hydrogen atom in a weak magnetic field B ignoring the spins of the
electron and proton.

(a) Write down the nonrelativistic Hamiltonian for a particle of mass m
and charge ¢ in a combiued vector and scalar electromagnetic ficld.

(b) Using the fact that a satisfactory vector potential A for a uniform
maguetic field is A = f%r x B, write down the steady-state Schrédinger
equation for the hydrogen atom. Assume the proton to be infinitely massive
so center of mass motion can be ignored.

(¢) Treat the terms arising froin the magnetic field as a perturbation
and calculate the shift in the ground state energy due to the existence of
the magnetic ficld.

(d) Calculate the induced diamagucetic moment per atoni.

(MIT)

Solution:

(a) A particle of mass m and charge ¢ in an clectromagnetic field of
potentials (¢, A) has Hamiltonian

1 2
H = (p 4 A) +qe.
2m c

(b) If the motion of the proton is ueglected, the Schrédinger equation
for a hydrogen atom in a uniforin magnetic field B is

2 2

o o 2mxe) =] v = e,

r

where ¢ = —e¢ for an clectron, or

Pp-Bxr—-Bxr-p=—iiV-(B xr)
=—ii(VxB) - r+ihB-Vxr =0

oA

Y
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lecause B is uniform and V x r = 0, we have
p-Bxr=Bxr-p=B.rxp=B-L.

I''king the direction of the uniform magnetic field B as the z direction, we
hwe B = Beé,, B-L = BL, =ihB % and

(B x r)? = (-Byé, + Bré,)? = B%(z? +y%) = B%r?sin 0

m spherical coordinates.

The Schrodinger equation can then be written as

2 2 ; ( 2p? o
<7 h v2 e 1eBh O e B . ’I‘ZSin~ 0) '11/)(7"07 (p)

21 T 2mec Op  8mec

= Ey(r,0,¢)

o spherical coordinates.
(c) Treat ,
e et L, .,
H = 5 77 sl 0

= —L; +
2mec 8rm..c

v a perturbation. The energy shift of the ground state is

AE = (100|H'|100)

wilh 1
|100) = Rio(r)Yoo(0,0) =4/ —5 €=,
h2
where a = progo Thus
3 2n2
T o , 1 1 . Lo € B
. 21 L —Zv/a,?s 36 . —
AFE = 27T/0 sm@d()/o r dl‘7T (a) € s ] 812
2112 2,202
;i 00 lr/le,zr/ad,r.i: M_
RPER A 3m,.c? dmc?

Note that for the ground state, [ = 0, m; = 0, and the first term of H'
makes no contribution to AE.
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(d) The above energy shift is equal to the encrgy of a magnetic dipole
in a magnetic field B,

AE=—-p-B,
if the dipole moment is
2 2
e
i dmec?

This can be considered as the dipole moment induced by the field. The
atom is diamgnetic as p is antiparallel to B.

5070

The magnetic polarizability of an atomn is defined by o =
, g p Yy Yy (g
%2112 |Fr=0, where E(H) is the energy of the atom in a constaut external

magnetic field.

(a) Estimate the magnetic polarizability of the £ = 0, 1s hyperfine
ground state of a hydrogen atom.
(b) Estimate the magnetic polarizability of the ground state 1s2 of
helium.
{CUSPEA)

Solution:

(a) If the magnetic field H is very weak, the perturbation Hamiltonian
isH = —p-H.

Taking the direction of H as that of the z-axis and letting the spins of
the clectron and proton be S and I respectively we have

p-H=h" geusS; + gpupl.)H

(1 ) 1
=h"! [5 (getrn + Gpitp) (S: + 1)+ 5 (gerrn — Gptp) (S2 — IZ> H.

The first order perturbation makes no contribution to ayr as (cf. Prob-
lem 5066). (F = 0,mp = 0[S, + I,|F = 0,mp = 0) = 0. We then
consider the energy correction of second order perturbation for the ground
state F' =0, 1s:

1 .
EC)(H) = z:<F~;L;CgiloW

m=—]
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« here mn is the quantum number of the projection on z axis of F.

1 |

FONH) = Y WF =1, m| - - HIF =0,0)*/(Ereo — Br-1) JJ
m=—1 1

2t S ! L)|F = 0,02 )

= H?*p~? Zl [(F =1, 'm|§ (9enB — gpitp) (S: — I)IF = 0,0)| |

J(Er=0 — Er=1),

v (S, + 1.)100) = 0. Then as (S; — I,)[0,0) = A[1,0), the matrix elements
ne all zero except for m = 0. Thus

1
E(H) = |(F = 1. m =0 5 (gettn = gphty) (5= ~ L)

\F = 0,002 H*h™2)(Epao — Er=1).

AS pip, < fipg, 9. = 1, and the spectral line =1 — F' = 0 has frequency
o -6
140 MHz, corresponding to Ep—y — Ep_o = 0.58 x 107" ¢V,

2 . _7
13 _(x -9 WV GS)Z/(:Z x 5.8 x 107" ¢V)
W(H)=—— T8 = (58 x 1077 eV/
{(H) 2By — Epey) (

=29 % 107" eV/Gs?.

(b) Consider a helium atom in a uniform magngtic ﬁeid H. The vector
potential is A = §H x r and it contributes e2A? /2mc? per elec.tror.l 'to
(he perturbation Hamiltonian that gives rise to the magnetic polarlzablhgy
A(IT) (Problem 5068). If the helium atom is in the gFoun'd state 1s,
ien L =S = J = 0. Taking the direction of H as the z direction, we have
e?A?  eH?

2 2
“ome2 | amc? (" +v7),

H =2

the factor of 2 being added to account for the two electrons of heliun atom.

I'lie energy correction is thus

(32H2
E(H') = <’l//o e (z® +y*) o
e : 22 4yt = eQHQ, . 57,‘(2)1
 dmc? 4mce? 3
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where rg is the root- -nean-square radius of helium atom in the ground state,

2
asrd = a2 4+ y2 + 22 and 22 — y? = 22, Since rg = 2 — %, ag beiny,

Zme?
the Bohr radius of hydrogen atom,

(H) — 0’E B e 2 (ao>27 1 [ eh \?* 2a4
“ OOH?* |, 2me 3 \2/ 6 \ 2me e?

2
_ _ Hp
6E;’
where g = 2% is the Bohr magneton, F 5— is the lonization potential
2me I =

of hydrogen. Thus

(0.6 x 1078)2

o) = =135

= 4.4 x 107" ¢V/Gs?

5071

A particle of mass m moves in a three-dimensional harmonic oscillator
well. The Hamiltonian is

2

p 1 2
H=— + —kr

2m+2

(a) Find the energy and orbital angular momentum of the ground state
and the first three excited states.

(b) If eight identical non-interacting (spiu—%) particles are placed in such
a harmonic potential, find the ground state energy for the cight-particle
system.

(c) Assume that these particles have magnetic moment of magnitude g,
If a magnetic field B is applied, what is the approximate g ground state energy
of the eight-particle system as a function of B. Plot the magnetization
(—2£) for the ground state as a function of B.

(Columbia)

Solution:

(a) A three-dimensional harmonic oscillator has encrgy levels

EN<N+2> hw |
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vhiere w = m G

N=2n 40 N=01,2...,n.=01,2,..., i
‘r‘
[ =N —-2n,. i

tn the ground state, N = 0 and the energy is Ep = %hw, the orbit angular
momentum is L =0

Vor the first exited state, N =1, E; = gﬁw, L =~h Asl =1 the level
~onlains three degencrate states.

(b) For spin-3 particles, two can fill up a state. Thus when f-ully filled.
I ground state contains two particles and the first three excited sta'tes
.ulain six particles. Thus the ground state energy of the eight-particle
e is By =2 x 3 hw + 6 x §hw = 18hw.

(¢) The Hamiltonian of the system is

8 LA
>_ZI“":.B_; 2mcLé.B

1 dV(r)
2 L"Si,
+ Z 2m(’2 Al + Z 2m2c?rs z Cdry

whiere V() = %kr%, A is the vector potential EB X r giving rise to B.
As the eight particles occupy two shells, all the shells are full and we
||‘|\’(!S:O,L:0,j:0A '
‘The wave functions of the system are the products of the following
functions (excluding the radial parts):

Yoo(e1)Yoo(e2) J5 {a(1)B(2) — «(2)A(1)},
Yi1(e3)Yii(es) o5 {a(3)B(4) — a(4)5(3)},
Yio(es)Yio(es) 5 {a(5)B(6) — (6)5(5)}
Yi-1(e7)Yi-1(es) 75 {a(7)B(8) — a(8)B(7)} , !

where €; = r;/r;. Note that the two space sub-wave functions in each are a
ame. Then as the total space wave function is symmetric, the total spin
«.ave function must be antisymmetric. As

opa=f, oa=if, o.a=a,

OI/@ =, Uyﬁ = _ia’ UZ'H = _’B’
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we have
1
710 5 (a(1A) - a(2)5(1)} = % {BBE) - a@)a(V)},

1
720 75 {0(DB(2) ~ @B} = = {BIFER) - al2)a(),

1
Ulyﬁ{ﬂ(l)ﬁ@%a@)ﬁ )} = f{ﬂ DBE) + o(Da(1)},

1
T2y ﬁ {a(1)B(2) — a(2)B(1)} = 77 B(1)B(2) + «(2)a(1)},

1
71 = (a(1)B(2) — a(2)B(1)} = ﬁ {(1)B(2) + a(2)81)},

1
722 75 (18(2) — B} =~ (D) + al2)(1))

Their inner products with the bra \lf {e(1)B(2) — (2)B(1)}+ will result in
(012}, (022), (01y), (02y), as well as (01, + 72,) being zero. Hence

0 o
<Ullez +022L z 2’l<l‘ 2zt — -
2 ) ()(PI a1 ()(Pz T2z

— —ih K Dzl> (T12) + <()i> (@;)J
= zh<()(i> (T1s +02,) = 0.

Thus the ground state cnergy is

2

mczz er)>

i=1

FE —=18hw +

8
=18hw + e2B*/8mc® > " (r?sin? 0;)
i=1

and the magnetization is
OE —e®B

3B " T (r?sin®6,) = B,
=1

giving x = — 4mcz 21 L (r? sin® 6, ;) as the diamagnctic susceptibility. gé as
a function of B is shown in Fig. 5.23.

—onlsaliad.
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3E
a8
B

$p=-arc tanX

Fig. 5.23

5072

Suppose onc has an clectron in an S state of a hydrogen atom which
i a magnetic field along the z direction of strength H,. At time t = 0
« magnetic field along the x direction is turned on; its strength increases
uniformly from zero to H, at time ¢ = T (H, < H,) and then remains
constant after ¢ = T. Assume the nucleus has no spin and that

Consider only the intcraction between the electron spin and the mag-
netic field. Neglect all terms of order (—T) or higher. If the electron has
il spin in the z direction at ¢ = 0, find the state of the electron when
! T. Show that the state is an eigenstate of the Hamiltonian due to the
combined magnetic fields H = (H,,0, H,) provided that T is sufficiently
long. Explain what sufficiently long means in this case.

( Berkeley)

Solution:

Treat the potential energy H' = —t};ec) s-eH, =

s, as a perturbation. Before H, is turned on, the electron in the S

: N
—tu-He, =
te

Imr‘

~late of a hydrogen has two spin states, l%) with energy E,. = _ﬁ;_il .
"hH, = ;2 H,, and | — §) with energy E_ = —h H,.

Use time-dependent perturbation theory, taking the wave function as

1
2 ;

’l,[)(t) - CfiEth/FL

1 .
- +a—e—zE7t/ﬁ
:)
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where a_ is given by

1 /T 1)1 ,
0 = - 2| AN —iE L —E_ e
ady (- alffg) e e
1 (TeH, t 1] |1 eH,
th fg me T 2 5z 2 X me t) dt
e, (T tosen (i CHe
2imeT Jo P\ e P dt
1 (H_,;) z
= - exp | — y
2 \H, ! Im( )
vncH, z
T ez ||t T> - 1:| ,
where we have used Sel3) = % | -1y

Thus the spin state of the electron at time T is

eH, 1 1 /H, :
T = oxp [ _i8 1 1 o\ Lol
w( ) p( ZZmCT>‘2>+{2 (Hz>(xl) <—L1rz,(: r
B 7?mcH,i ox . cH, T
2TH? |~ P e a VL] }
X CXp (cﬂ’!) ( 1—>
2me 2

If the time T is sufficiently long so that w<H
. ¢ -
second term of a_ and obtain

$(T) = exp (’ e T) <E> '

The Hamiltonian due to the combined magnetic field H = (H,,0, H,)

«, We can neglected the

is

eH, eH,
Sz +
me me

}?{:—/J,-B:

Sy .

ﬁLetloz = . and consider Hy(T). As s,| + 1= s ENE: )=
+5[ % 5) we have for T — 00,

s
o p—.
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iaH, T
11p(T) =aexp <4m -

2

o H,
:@exp ("m T) <H;z

) (Hysz + Hys,) (

Ny
2

ro| =
\/
+
N | —
=&

2

1\ 1 1
Hz x| T
+ 2> 5 1 2>>
B ahH, —iaH,T 14 1 /FH N\ |1
Ty %P 2 2 \H, 2
LLH | 1
2H,| 2
«hH, toH, T 1 1 H, 1 ehH,
~ xp | - N E | —2)) = T).
2 P ( 2 2/ o, |2 ame (1)

The result shows that when T is sufficiently large ¢(T) is an eigenstate

ol the Hamiltonian due to the combined magnetic field with eigenvalue
Sh,

it C

5073
An electron is in the n = 1 eigenstate of a one-dimensional infinite
«piare-well potential which extends from z = —a/2toz =a/2. At t=0a

muiform electric field E is applied in the 2 direction. It is left on for a time
+ »ud then removed. Use time-dependent perturbation theory to calculate
the probabilities P, and P5 that the electron will be, respectively, in the
-2 and n = 3 eigenstates at t > 7. Assume that 7 is short in the sense
that 7 < ﬁ, where FE,, is the energy of the eigenstate n. Specify any
requirements on the parameters of the problem necessary for the validity of
i e approximations made in the application of time-dependent perturbation
theory.

(Columbia)

Solution:
The electron in the n = 1 eigenstate of the potential well

V*{O lz| <a/f2,

oo otherwise
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< . v . .
has wave functions and corresponding energies

o e (2 2]

. h
SR o
For the trausition 1 — 3,

T =
E, = I*1%n?/2ma?, n=12.... = @1 =0
The uniform electric field Eé, has potential ¢ — ~ [Edzx = —E : el so
e 1 vl s
The potential encrgy of the electron (charge —e) due to E, H' = ~ eEz, iv IR 3 e O (D% = 0
considered as a perturbation. We have = s = HCn(F =
n?,” = (no|H'ny) - 11 ‘The validity of the time-depeudent perturbation theory requires the
9 % ] tune 7 during which the perturbation acts should be small. The perturba-
=- / sin [M (:1: + g)J sin [M (:r, + E)] cExdr = Hen potential itself should also be small.
aj s a 2 @ 5 )| e x
_ ek d (n1 —n2) a ; )
== /_% {(.os [—a 7T(LI,'+ 2)} 1 5074
(n1 +no) a ; For a particle of mass sn in a one-dhmensional box of length {, the
T eos [_—a— & (1" + 5)} } wdx s cipenfunctions and energies are
el (),2 .
=" _ 7 q{_1\ni-na & | 2 . nwr
a {(Tll — ng)2x2 ((=pm —1] 5 o) = \/7511) T 0<ax<l,
a? 3 9
—  [(—1)tm2 1 nnh
(nl + :”2)27[-2 [( 1) ]‘]} , : E” = % (T) 5 7 = :tl, :t2, e
_ 4c¢Fa niny 1 — »
T (n} —n)? [(=1) — 11 ' Suppose the particle is originally in a state |n) and the box length is
1 hor? s mereased to a length of 21 (0 < z < 2) in a time ¢t < h/E,. After-
Whony = % (Enz —En)= ﬁ ('n,2 — nf) , 1 wards what is the probability that the particle will be found in an energy
m
4 : cipenstate with energy E,,7
Cirlt) = / H', Wit gy — H}u 1- (,wk/n) 1 _ f (MIT)
Witk 1 , .
For the transition 1 — 2, . Holution:
o — (21H1) — 16eFa T First consider the process in which the box length is increased fromn [
2 T T g2 0 W= 3fim” [2ma*, g o2l Ast < EL—‘, it is reasonable to assume that the state of the particle
and so the probability of ﬁnding the electron in the n = 2 state at ¢ > = iy & m lhe box is unable to respond to the change during such a short time.
. H I'herefore the wave function of the particle after the change is completed is
P2 = (Cgl(t)‘g = fZ 2 Hézl (1 szﬂ') (1 _ ef'iwzﬂ') : p
2 3 2 . nwx eyl
_ (16& ) {eEm sir 3h7r2 2 16 ¢Ea 2 ’l/)(g") _ 7 S111 T, 0 A A S A
= . | ——— ~ ’ ,
o’ hm dma? T 97> A T) 0 | <ax<2l.
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The wave function for the ground state of the system after the box has

. panded is
1 TL
—sin—, z€[0,2L],
sr(zy =3¢ VI™ar 10.21]

0 otherwise.

On the other hand, the eigenstates and eigenvalucs of the same particle iu
the one-dimensional box of length 2! would be, respectively,

1 )
by (z) = \/[jsin ”2721 . (0<x<2,

B, 1 n'wh\? o 4142 )
M o o ) e ELE2 ),

‘The probability required is then

2
The encrgy E,, of the particle corresponds to the cnergy level E,. in the
n

2l box, where % = %, e, n' = 2n. The corresponding cigenstate is then
do,. Thus the probability amplitude is

32

2 L ; T
= Q/ sinﬁsin——dac 5 -
L 0 97T

2L L

P~ \ [ siterst

(b) The probability that the particle is found in the first exited state of

ihe expanded box is

e 2 (Y nmx
A= ‘/‘OO bon(2)P(x) dx = Tf /0 sin? ”# dn = \%Z— ,

and the probability of finding the particle in an cigenstate with cnergy E, o 2 N 2 T 2
. P, = ¢y (x)Pp(wyde) = |+ sin® —dx| = =,
is ] o L Jy L
P=A?=2.
2
where
! sin E, x € [0,2L],
- by = VI T
5075 0 otherwise .
A particle is initially in its ground state in a box with infinite walls at >3 th obability is
PN > 1 r
0 and L. The wall of the box at 2 = L is suddenly moved to 2 = 2L. For the particle to be found in a state n > 3, the p )
(a) Caleulate the probability that the particle will be found in the V2 (Y nrz | omx 2
ground state of the expanded box. P, = T / sin —= sin = dx
. . . 0
(b) Find the state of the expanded box most likely to be occupied by n 2
the particle. 5 |sin (72_1 _ 1) 7 sin (.2_ 4 1) T
(c) Suppose the walls of the original box [0, L] are suddenly dissolved =— (n—2) T T+ 2) :
. . . b -
and that the particle was in the ground state. Construct the probability
distribution for the momentum of the freed particle. WAL + 1) .
(Berkeley) 32 “‘_ng(z___
‘ -2 2 _ 4)2
Solution: ' T (n )
‘ 32 1
(a) The wave function of the particle before the box expands is < 5.2 <3
5
2 7z ) . fth
Y(z) = T FE (0. L, Hence the particle is most likely to occupy the first excited state of the

0 otherwise expanded box.
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(¢) The wave function of the freed particle with a momentum p s
—%ﬁ eP=/h The probability amplitude is then

L
1 . 2 L
O(p) = —— el v/ 5 sin — dx
2 Jo V2rh L L

1 : L/r
— 1 /—LpL/h '
VL [1+e | 1~ (pL/hw)?

The probability distribution for the momentum is therefore

. 2h3 L pL
(I) y 2 = — 1+¢ S .
L (o S TEIE < P eos r)

2

5076

A particle of mass M is in a one-dimensional harmonic oscillator poten-
tial Vi = £ kz?.

(a) It is initially in its ground state. The spring constant is suddenly
doubled (k — 2k) so that the new potential is Vi = kx2. The particle’s
energy is then measured. What is the probability for finding that particle
in the ground state of the new potential V,?

(b) The spring constant is suddeuly doubled as in part (a), so that V|
suddenly becomes V5, but the energy of the particle in the new potential
V3 is not measured. Instead, after a time T has clapsed since the doubling
of the spring constant, the spring constant is suddenly restored back to the
original value. For what values of T' would the initial ground state in V1 be
restored with 100% certainty?

(CUSPEA)

Solution:
(a) The wave function of the system before k change is
1/4
W)= o (HR) T o gtuortn,
T R
Suppose that the particle is also in the ground state of the new potential
well after £ change. Then the new wave function is

LMo\
‘l/)/(:l?) —- e 2 Muiz / )
VT h
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The transition matrix element is

1 /MNP 1 (wo + w1) T?
<¢/|¢>:/ <E) (WOW1)1/4CXI) _;Mi;h“_ dr

™

1/2
1 /M T
=— = (wowl)lM e
7r h 1M w[f)i‘f-wl)
V2
(w{wo)l//}

N \/u};(wo +w1).

When k changes into 2k, wo changes into w = V2w, thus

K(/j It/j)' - %(u}() + OJI) %(ﬁ+ 1)(-’J()
21/4

9.9l /5
:m;zz (V2-1).

Hence the probability that the particle is in the state ' (x) is
21(V2 - 1).

(b) The quantum state is not destroyed as the energy is not measured.
At = 0, 9(x,0) = yo(x),n(x) being the eigenstates of V1. We expand

#(,0) in the set of cigenstates of Va:
¥(2,0) = (Yo ¥ (2)) -

Here and below we shall use the convention that a repeated index implies

snnmation over that index. Then
Bl ) = o (2,0) = (Bl ol ())e P,
where Hy is the Hamiltonian corresponding to V5. Since ¢o(z) has even
parity, parity conscrvation gives
m=2n+1,

H

W (2)lo () = { #0, m=12n,
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and so

[Y(z, 7)) = Wzm(z))(z/)gmW@gilfzmr/n_

Hence [¢(, 7)) = [¥o(x)) can be cxpected only if Es,,7/h = 2N7 + ¢,
where NV is a natural number and ¢ is a constant, for any m. As

1
Eap, = (2m + E) liw

we require

‘ Ly
2m + 3 jeT = 2N7 +c.

Setting
1 I3
C = EQJIT s
we require
2mwiT = 2N,
or
2wyt =2N'7
ie.,
n N’
T=—,
Wi

where N =0,1,2,....

Thus ouly if 7 = N’ %, will the state change into ¢o(x) with 100%
certainty.

5077

A particle which moves only in the 2 direction is confined between ver-
tical walls at = 0 and = = a. If the particle is in the ground state, whal
is the energy? Suppose the walls are suddenly scparated to infinity; what
is the probability that the particle has momentum of magnitude between p
and p + dp? What is the energy of such a particle? If this does not agree
with the ground state energy, how do you account for energy conservation?

( Chicago)
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Solution:

When the particle is confined between 2 = 0 and = = a in the ground
Late, its wave function is

2 . T
—sin—, 0<z <a,
1/)0: a a

0 otherwise,

and its energy is
w2 h?

T 2ma?’

When the walls are suddenly removed to infinity, the wave function of
(he particle cannot follow the change in such a short time but will remain in
the original form. However, the Hamiltonian of the system is now changed
anl the original wave function is not an eigenstate of the new Hamiltonian.
1'he original wave function is to be taken as the initial condition i solving
(he Schrodinger equation for the freed particle. The wave packet of the
round state in the original potential well will expand and become uniformly
Jistributed in the whole space when t — oo.

Transforming the original wave packet to one in momentum (p = hk),

1-presentation, we have

P(p) = \/—;ﬂ——h /oa \/gsin (%) e dy

ar 1+ etka
h (ka)? — 72’

During the short time period of separating the walls the probability that
the momentum is in the range p — p + dp is given by

fp)dp = { [ (p)|* + [ (~p)|*}dp
o cos? (2—(1) dp ‘
=8 W if p#0;

F(0)dp = 1% (0)*dp — 4 —= dp ifp=0.
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Because the new Hamiltonian is not time-dependent, we can calculate
the average value of the energy using the original wave function:

d(hk)

o [ ka
_ o 2 o0 h2k2 cos 7
EZ/ Lf(p)dzo:/ gt NS
o 2m o 2m R {(ka)? — m2)?
. 2 2 (TY o
B 4h2 oo YT CoS 7 o thz
- ma? J, (y2 — 1)? Y 2ma?’

where y = ’”\: This means that the energy of the system is not changed

during the short time period of separating walls, which is to be expected ax

(Yol Hvetore|tho) = / o ZL dodz |
0 T

(90 Haner 0 = (ol exp(6 et /1) 5 Hugosp (524 ) 1

a "2
- <1/)0“Hafterlw0> = /(; "//’S ;7 Podx
= <w0‘libet'orch/}(}> .

If the walls arc separating to an infinite distance slowly or if the wally
arc not infinite high, there would be energy exchange between the particle
and the walls. Conscquently, the energy of the particle would change during,
the time of wall separation.

5078

A nucleus of charge Z has its atomic number suddenly changed to Z + |
by B-decay as shown in Fig. 5.24. What is the probability that a K-electron
before the decay remains a K-electron around the new nucleus after the (-
decay? Ignore all electron-electron interactions.

(CUSPEA)

Solution:

The wave function of a K-electron in an atom of nuclear charge 7 is

11[}(7‘) _ NZ3/2€—T‘Z/G. )
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v [:o r2drNZ2e¢~2r/@ — 1, the probability that the K-electron remains in

the original orbit is

(1 +3)°
: Z
P =z (pz()] = —Z5.
(1+3%)
>
e” e
Fig. 5.24
5079

A tritimmn atom (*H) can undergo spontancous radioactive decay into

« helium-3 ion (*HeT) by cmission of a beta particle. The departure of

he electron is so fast that to the orbital clectron the process appears as

wnply an instantaneous change in the nuclear charge from Z =1 to Z = 2.
t"alculate the probability that the He ion will be left in its ground state.

(Berkeley)

Solution:

The wave function of the ground state of Het is

1 9 3/2
ol = (—) exp{~2r/a},

where a is the Bohr radius. Let the wave function of ®*H be ¢(r).

As the process of 4 decay takes place very fast, during the time period
m which the 3H becomes 3Het the wave function does not have time to
change. Hence the probability that the *He* is in the ground state is

(i 1)

Rk

[nitially, the *H is in the ground state so that

p(r) = % G)m er/a,
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Therefore,

27

9 3/2
P:‘4 ((ﬂ) r oxp{
99
3_

5080

Tritium (hydrogen of mass 3 ie. *H) is beta-radioactive and decays
into a helium nucleus of mass 3 (*He) with the emission of an electron
and a neutrino. Assume that the clectron, originally bound to the tritium
atom, was in its ground state and remains associated with the 3 He nucleus
resulting from the decay, forming a SHe™ ion.

(a) Calculate the probability that the *He™ jon is found in its Ls state,
(b) What is the probability that it is found in a 2p state?
(MIT)
Solution:

Neglect the small difference in redneed mass between the hydrogen atom
aud the helium atom systems. The radius of the ion ¥ Het

is ag/2, wheroe
ag 1s tlhie Bohr radius, so the wave functions are

l/)la ;/2 77‘/(107
Qy
Het 2 —2r/a
i YOOW@ it
2)
,(/}He _ 1 QT 71'/(10

2\/_((10/2 3/2 ag ¢
(m=1,0,-1).

(a) The amplitude of the probability that the ion He™t is in the state 1x

27/2 0o
A= /( He't ) ﬁdsw: e T2€_3r/a°dr: 16\/54

Lo at Jo 27
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Hence the probability is |A]% = 2 (32)? = 0.702.
(b) On account of the orthonormality of spherical harmonics, the prob-
Ahility that the ion *He™ is in a state 2p is zero ({Yim | Yoo) = 0).

5081

A beaw of excited hydrogen atoms in the 2s state passes between the
plates of a capacitor in which a uniform electric field E exists over a distance
i The hydrogen atoms have velocity v along the z-axis and the E field is
Jdirected along the z-axis, as shown in Fig. 5.25.

z
A

——  ——

A te

25

A

Fig.

All the n = 2 states of hydrogen are degenerate in the absence of the E
field, but certain of them mix when the field is present.

(a) Which of the n = 2 states are connected in first order via the
perturbation?

(b) Find the linear combination of n = 2 states which removes the
vepeneracy as much as possible.

(¢) For a system which starts out in the 2s state at t = 0, express the
wave function at time t < %

(d) Find the probability that the emergent beam contains hydrogen in
ihe various n = 2 states.

(MIT)

Solution:

Consider the potential energy eFEz of the electron (charge —e) of a
hydrogen atom in the external electric field Eé, as a perturbation. As the
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n = 2 states arc degencrate, we calculate (2¢7m/ | H'|2¢m), where H' = eEz,
and £ =0, m = 0. It is known that only the following matrix elements are
non-vanishing:

(—m+1){l+m+1)
2,0+ 1,miz|2, 6, m) = — 2,6+ 1r2, ¢
< 1 } a,nlzl 1 ,TTI> \/ (2€+1)(2€+3) < 1 + ‘I‘ ’ >’

with

3 —
(2, ¢ +1]r]2, ¢) = gn n? — ¢2.

Thus all the matrix clements are zero except
(210|H'|200) = ~3cEa.
(a) The 25 and 2p states are conneccted via the perturbation in first

order since for the H' matrix only elements with A¢ = +1 are nonzero.
(b) The perturbation Hamiltonian is

2 0 —3cka
 \ -3eEa 0 ’

whose secular equation

—A —3eFa
~3cba —A

gives eigenvalues +3eFa, the corresponding cigenstate vectors being
ﬁ( 4:11 ). The degeneracy of the state n = 2 is now removed.

(c) As t = 0, just before the atoms enter the electric ficld,

(0) = \/%(IH e,

where

are the state vectors obtained in (b).

b
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At time 0 < t < i— when the atoms are subject to the electric field,

) = —

- (e‘i.'ieh‘at/h.|+> + 6—1‘.3(‘.17}01‘/[1‘_>)
2
os(3eLat/l 3eFat .. {3eEat
= < cos(3eEat/ I))> = €08 ((Sera ) [25) + 1 sin < 3 > 12p)
2 2

7
isin(3eEat/h
where
1 (1
Sty = (o)
1

)= (4 1) = (%)

(d) For ¢ > —’l’)—, we fiud from (c) the probabilities

|25) =

. 3eEat

200 (N2 = cos? 251
12

, » 3eFal

|(2U0Rp(E) [ = sin? =5

5082

(a) Consider a particle of mass m movinug in a time-dependent potcntie'xl
\ (z,t) in one dimension. Write down the Schrodinger equations appropri-
e for two reference systems (z,t) and (2, t) moving with respect to each
other with velocity v (e, z = 2 + vt).

Vix)
A t<0
> X
Fig. 5.26
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(b) Imaging that a particle sits in a one-dimensional well (Fig. 5.26)
such that the well generates a potential of the form mw?x?/2. At t = 0 the
well is instantly given a kick and woves to the right with velocity v (see
Fig. 5.27). In other words, assume that V(i ) has the form

1 5

5 mw?a? fort <0 ,
Ve, t)=<{ ~

1 9 o .

5 mw?e? fort>0.

If for ¢ < 0O the particle is in the ground state as viewed from the (z, t)
coordinate system, what is the probability that for £ > 0 it will be in the
ground state as viewed from the (¢, t) system?

(Columbin)

Vix)
/1 t>0

[}
-3

Fig. 5.

Solution:
(a) Both (=, t) and (2, t) are inertial systems, and so the Schrodinger
equations are: for the (z, t) system,

KR d2 0
o da? + V{(x, t)} Wlx, t) =ik B Wiz, t),

e

for the (2’, t) system,

K2 42
" 2m de”

+ V(2 t)] W, ) —in 2

& ‘(,ﬁ(.’l;/, t) )

where V/(z', ¢) = V'(z — v, t) = V(a, t).
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(b) This problem is the same as Problem 6052 for the following reason.

Consider an observer at rest in the (z’, {) system. At ¢ < 0 he sees the
particle as sitting in the ground state of the potential well V. At t = 0,
(the potential well V instantly requires a velocity » to the right along the z
drection. The situation is the same as if V remains stationary while the
article acquires a velocity —v along the —x direction. It is required to find
(he probability that the particle remains in the ground state. Problem
G052 deals with an Al nucleus which by emitting a v to the right acquires
. uniform velocity to the left. The physics involved is exactly the same as
the present problem and we can just make use of the results there.

5083

If the baryon numnber is conserved, the transition n <+ 7 known as
neutron oscillation” is forbidden. The experimental limit on the time scale
A such oscillations in free space and zero magnetic field is 7, _z > 3 % 108
. Sinece neutrous oceur abundantly in stable nuclet, one would naively
think it possible to obtain a much better limit on 7,,—». The object of
this problem is to understand why the limit is so poor. Let Hp be the
amiltonian of the world in the absence of any interaction which mixes n
and .. Then
Holn) = mpc?n) and  HolR) = mpc?|n)
lor states at rest. Let H' be the interaction which turns n into 72 and vice
versa:

H'|n) =¢ln) and H'|7) = eln),

wlere £ is real and H' does not flip spin.

(a) Start with a neutron at ¢ = 0 and calculate the probability that it
will be observed to be an antineutron at time ¢. When the probability is
lirst equal to 50%, call that time 7,,_7. In this way convert the experimental
fhuit on 7,5 into a limit on . Note mac? = 940 MeV.

(b) Now reconsider the problem in the presence of the earth’s magnetic
field (Bo > % gauss). The magnetic moment of the neutron is p, ~ —6 X
(018 MeV/gauss. The magnetic moment of the antineutron is opposite.
lBegin with a neutron at ¢ = 0 and calculate the probability it will be
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observed to be an antineutron at time ¢. (Hint: work to lowest order in
small quantities.) Ignore possible radiative transitions.

(c) Nuclei with spin have non-vanishing magnetic fields. Explain briefly
and qualitatively, in sight of part (b), how neutrous in such nuclei can be
so stable while 7,,_; is only bounded by 7,_z > 3 x 10% scc.

{d) Nuclei with zero spin have vanishing average magnetic ficld. Explain
briefly why neutron oscillation in such nuclel is also suppressed.
(MIT)
Solution:

(a) To find the eigenstates of the Hamiltonian H = Hy+ H' we iutroduce
in the ncutron-antineutron representation the state vectors

() ()

(n|Ho + H'|n) =m,¢*,
(n|Ho + H'|n) =¢

we have energy eigenvalue equation

myct — E £ Q
. =0.
€ mpc? — E )

Solving the cquation, we get

Ey =muc*+¢ <a,) i<1)
+ n 3 l) . \,/E 1 ?

o omee (1) = ()

At t =0, the system is in the neutron state and so
1 1

/2 \Ey) + ﬁ [E_),

s ()00 5 ()

jn) =

where
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At tiime ¢, the state of the system becomes

|Ilp7t> = \/§

In the neutroun-antineutron representation, we thus have

o 1 )
—iE t/h |E —1E_t/h
—e )+ —=e |\E_).
V2

COs
, _ —’L'm,nc2t R 1
‘l/}7 l‘> =€ /

and hence

L et i o2 .o«et
[, t) = emimactt/h o 2 |n) — g tmne /" sin 7 7).
)
The probability that at time ¢ the particle is observed as an antineutron

is thercfore )

i o2pn . €T .
= lieT et Py 2l = sin®(et/h) .
i

P(1)

mm—n 18 defined as the tine at which PP = %, ic.,

) . 7h
Ty = — arcsin — = — .
n - e < \/§ 4e
Then as T, _n > 3x10% s, the experimental limit on € is € < m =
1.7 x 1072% McV.

(b) Noting that H’ does not change the spin, after introducing the
magnetic ficld one can take the neutron-antineutron representation

1 0 0 0
, 0 ~ 1 0 _
n T ol T~ ol n l~ e 7|~ 0
0 0 0 1

and calculate the matrix clements of H + puBp. Thus one obtains the
perturbation Hamiltonian

— 1 By £ 0 0
£ — i Bo 0 0
0 0 L Bo €
0 0 5 wi Bo

with g, = —6 x 10718 MeV/Gs, un =~ 6 x 107 MeV/Gs.
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This gives rise to two eigenequations:

<_M7LB0E(1) € > G,T —0
€ N’?LBO - E(l) b T -

lj’nBO - E(l) = a ~L -0
£ —pin By — EM by}

where we have used the relation p,; = —p,,.
Solving the two equations, we obtain

EY = X = /22 % (1. Bo)?,
and hence

<GT> o1 (\//\M7;,BO> (aT> 1 <\//\+u"BO>
b T + B \/Z\ vV /\ + [LnBO b T _ 2 —V /\ - /L()BO ’

(ai) 1 <\/A+unBo> (ai) 1 <ﬂ~unBo>
bl/), V2x \vAX—DBo/) \bl/_ 22 \—VAFpoBy/

As t = 0, the system is in the neutron state

"TNW at\ | [AdpBo (et |
2X bt/ 2X bt/ _
o B (a1 Ay (aby

2 b/, 2X bl /)

At time £, the states of the systein are

>

~ 7'im,,c2t/hi
(1) ~e o

y (A= tin Bo)e~M/M 4 A+ i Bo)etre/h
(A2 — (HnBO)Q (e—i/\t/h. i ei/\t/li) )

N —imac?t/h L
(1) ~e o

( (A + pn B)e MR (X — 11, Bo)e/h >
V7 = (i Bo)? (e~ /1 — ¢/
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Therefore the probability of n t— n 1 is

€2 LAt
PnT—}ﬁT(t) = ﬁ SlI‘l2 g

g2 .o V€2 + (1 Bo)?t

h bl

and that of n > 7 ] is

Ppysal(t) =

_ e? sin2 vV €2 + (pnBo)?t
g2 + (un Bo)? h )

Finally, if the ncutron is not polarized the probability of n — 7 is
1 1
5 Prtoar(t) + 5 Pupoal(t)

2
e,V (Bl
52 + (MHBO)2 ) h ’

which means that the polarization of the ncutron las no cffect on the

P(t) =

transition probability.
As .u'nBO > g,

1.65 x 10728 \?
Piy<|{—22" ) ~03x1072,
6 x 1018 x 1/2
which shows that the transition probability is extremely small.
(c¢) ¥ nuclear spin is not zero, the magnetic field inside a nucleus is
strong, much larger than 0.5 Gs. Then the result of (b) shows that

Pyn < 10720

which explains why the neutron is stable inside a nucleus.

(d) If nuclear spin is zero, then the average magnetic field in the nucleus
15 zero. Generally this means that the magnetic field outside the nucleus
iz zero while that inside the nucleus may not be zero, but may even be
very large, with the result that P,z is very small. Besides, even if the
magnetic field inside the nucleus averaged over a long period of time is
sero, it may not be zero at every instant. So long as magnetic field exists
inside the nucleus, P, ,5 becomes very small. Neutron oscillation is again
snppressed.
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6001

Derive the quantum mechanical expression for the s-wave cross section
for scattering from a hard sphere of radius R.

(MIT)
Solution:

The effect of the rigid sphere is equal to that of the potential

{ oo (r<R),

vin = 0 (r>R).

Let the radial wave function of the s-wave be Ro(r) = xo(r)/r. Then
the Schrodinger equation can be written as

Xo(r) +k’xo(r) =0 (r>R),

with

Xo(r) =0 (r <R), k= % V2mkE .

'
The solution for 7 > R is xo(r) = siu(kr + dg). The continuity of the
wave function at 7 = R gives

sin(kR + 8p) =0,

which requires 8 = nm — kR, or sin g = (—1)" T  sinkR (n =0, 1, 2,...).
Therefore the total cross-section of the s-wave is
am . am .
= 2 sin? &y = = sin? kR.
For low energies, k — 0, sin kR ~ kR, and so oy = 47 R?. For high energies,
k — oo and o ~ 0.

6002

The range of the potential between two hydrogen atoms is approxi-
mately 4 A. For a gas in thermal equilibrium, obtain a numerical estimate
of the temperature below which the atom-atom scattering is essentially
s-wave.

(MIT)

468

- A i
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Solution:

The problem concerns atom-atom scatterings inside a gas. If mainly
« partial waves are involved, the uncertainty principle requires pv.a < h,
where p = %mp is the reduced mass of the two atoms, v, = vi — vy 1
the relative velocity between the two atoms, of velocities vy, vy, a = 4A.
When thermal equilibrium is reached,

i being Boltzmann’s constant and T the absolute temperature. The mean-
square value of the relative speed v, is

. , ‘ 4 6kT
WD) = ((vi = v2)®) = (v] + v} = 2vi-va) =200%) = ——,
Myp
siuce on average vy - ve = 0, (v3) = (v3) = (v*). Thus
6kT
Jav, ~ My @ <h,
2 My
e,
2 ((:)2 1 2x(658x10716)2 /31007 1
~ 3mpe? \a/ kK 3x938x 108 4x10-8 ) 8.62x 105
=2°K

Hence under normal temperatures the scattering of other partial waves
must also be taken into account.

6003

A nonrclativistic particle of mass m and energy F scatters quantumn-
mechanically in a central potential V(r) given by

Vi = v, U<r>=—2( A )

cosh Ar
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where A is a parameter. This particle potential has the property that the
cross section o(E) grows larger and larger as E — 0, diverging for E = (.
Clearly, for F very smnall the cross section is dominated by the s-wave
(I = 0) contribution. Thus for small E one nceds to compute only the { = 0
partial wave amplitude. In counection with this, to save you mathematical
efforts, you are told mathematically that the cquation

d*¢

dr?

+AP=U(r) ¢,
where A is a positive coustant, has a general solution

¢ = a(Atanh M — k) e* + g(Atanh Ar + ik) e~

)

where & = /A and « and g are integration constants. Recall tanh z

% and compute o(F) for E — 0.
(CUS)
Solution:
The s partial wave function is spherically synnuetric, its equation being
h? 1 d 9 B2
—_— = . — U . ) — E Y.
2 2 dr ( dr d)( )> 2m (r) 6(r) ()
With R(r) = ¢(r) r, the above becomes
R+ 2 - " o) rey—o
(Q*‘ﬁ ~om (r)| R(r) =0,
ie.,
2 E
R'(r) + Z5= R(r) = U(r) R(r)..
The solution is
R(r) = a(Atanh A\r — ik) €™ + g(\tanh Ar + ik) e 7
where
2mE
k= 72

Scattering Theory and Quantum Transitions 471

Consider r — 0. As ¢(0) is finite, R — 0. Then as tanh Ar — Ar,

kT 5 1 we have for 7 — 0

R(r) = a(X%r —ik) + p(\*r + ik) = a(—ik) + B(ik) =

riving o = 3. Consider r — 0o. As tanh Ar — 1, we have for r — oo

R(r) — a(X —ik) e + B\ + ik) e 7
= af(A — k) e + O\ + k) e—ikr]
= \/m (eikr—ica 4 e—ikr+m1)
— a2 4k 2 cos(kr — ai)

o V22 4 k2 sin (kr + g - O‘l) ~ sin(kr + &) ,

)
k)

where -
(5() = 5 — X s

and ap 1s defined by
tannay = k/A, or ap = tan"* k/X.

Thus the total cross section for scattering is

47 2
o = — sin’ 280 = — cos? ay .

k? k2

For low cnergics, E — 0, k — 0, a; — 0, and so

47 2k
o= k2 mE
6004

A particle of mass m is interacting in three dimensions with a spherically
vinmetric potential of the form V(r) = —Cé(|r| — a).

In other words, the potential is a delta function that vanishes unless the
particle is precisely a distance “a” from the center of the potential. Here
¢ is a positive constant.

(a) Find the minimum value of C for which there is bound state.
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(b) Consider a scattering experiment in which the particle is incident on
the potential with a low velocity. In the limit of small incident velocitics,
what is the scattering cross section? What is the angular distribution?

(Princeton)
Solution:

(a) Suppose the eigenfunction of a bound state of the single-particle
systemn has the form

P(r) = R(r) Yin (0, ) .

Then the radial function R(r) satisfies

5 2 I+ 1
R”+ —Q-R/+ (7k)2+ e l( ‘t )
T T

o7 (It —a) - ] R=0, (1)

where k = /—2mE/h? Note E < 0 for a bound state. If r # a, the

equation is an imaginary-variable spherical Bessel equation. For r < a il
has the solution that is finite at r =0

R(r) = Aji(ikr)

where 7, is spherical Bessel function of the first kind of order . For r > a
it has the solution that is fiuite for r — oo

R(r) = Bph{M (ikr),

where hfl) is spherical Bessel function of the third kind. (spherical Hankel
function) of order . The wave function is continuous at r = a. Thus

Axje(ika) = Beh$V (ika) |

Integrating Eq. (1) from a — € to a + ¢, where £ is a small positive
number, and then letting € — 0, we have

R'(a+0) - R'(a - 0) = ~C'R(a), (2)
where -
m
C’ = 7 .
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Suppose there is at least a bound state. Consider the ground state [ = 0, ‘L
- M |
[t \Vthh 4 l‘ A Sm(ikr) .
R < .70(1 '7) - 7:k7‘ 7 ’
r) —
" I G Lo
Bhg ' (ikr) = . : .

Differentiating R(r) and letting r — a, we have

D ,—ka 1
Ra+0)=— " <k+a>,

k a
A [k cosh(ka) sinh(ka)
-0 - PR T
Substituting thesc in Eq. (2) gives
, 2ka
aC’ = 1 FAzk({

As for £ > 0, 2 > 1 — ¢7*, we have aC’ > 1 and

h‘z

! = 1/(1, or Cinin = 2ma

min
This is the mininum value of C for which there is a bound state.
(b) We nse the method of partial waves. When the particle is incident on
ihe potential with a low velocity, only the £ =10 partial wave is important,
tor which the radial wave equation

2mC
h?

R”+3R’+[k2+ 5(r—a)} R=0.
.

On setting R(r) = xo(r)/r it becones

Xo + {k‘z + 27;20 a(r - a)} Xo =0, ()

which has solutions finite at 7 — 0 and r — oo

Asinkr, r<a,
) =
xolr) sin(kr + dp), 7> a.
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As xo(r) is continuous at r = a, we require
Asinka = sin(ka + 4g) .
Integrating Eq. (3) from a — € to a + ¢ gives

2mC
B2

Xola +¢) — xpla —g) = — xo(a) .

Substituting in the expressions for xo(r), it becomes

ka ka 2mCa

tan(ka + dg)  tan ka h?

For k — 0, the above becomes

ka ) 2mCa

tandy = Kz
or By
ca
t - =
an o 2maC’
1o e
h?
ie.,
. k k
sindg = a ~ a

: 2maC\
5 2maC\” 1 -
\/;Z(lz + <1 — T) ( h'Z )

Hence the total scattering cross section is

4 2

.2
o = — sin“dgr0 —m8 —
k2 ] 2maC )\ *
h2

Note that for low velocities only s-waves (I = 0) need be considered and
the differential cross section is simply

drra

2

1 ) . I -2
a(f) = =) sin 8 = a? (1 - 2’2‘?0> ,

which is independent of the angles. Thus the angular distribution is
isotropic.

Scattering Theory and Quantum Transitions 475

6005

(a) Find the s-wave phase shift, as a function of wave number k, for
. spherically symmetric potential which is infinitely repulsive inside of a
1addius rg, and vanishes outside of rg.
(b) For k — 0 discuss the behavior of the phase shifts in the higher
partial waves.
(Wisconsin)

Solution:

(a) This is a typical scattering problem that can be readily solved by
the method of partial waves. The potential can be expressed as

00, T <Tg,
V(r) =
0, T>To.

The radial wave function for the £ partial wave is

0, T <7,
Re(kr) =< ) (2)
Je(kr) cos 8 — ng(kr)sinde, v >ro.

Here j¢ and ng arc spherical Bessel function and spherical Neumann
tunction of order £. These functions have the asymptotic forms

o) 222 i sin(z — £r/2),
ne(x) T % cos(z — € /2).
Hence for r > ry we have
Ry(kr) k2% gin <kr — %r + 5@) .

The phase shift §, can be determined by the continuity of the wave
luuction at r = rg. Writing krg = z, the continuity condition

Ry(x) = je(x) cos &g — ne(x) sinde = 0

rives

tand, = J
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In the low-energy limit © — 0, the functions have the asymptotic forms

. ( ) 0 xt
T s
Je 20+ 11"
2—0 2¢ -1
ne(z) —5 — ( SR
so that -
]E(T) z—0 =
tan dp = —_ =
o (@) [(2¢ D220 + 1)
Thus the s-wave (£ = Q) phase shift is
tandy = —x = —kry.

It gives a finite contribution to the scattering and the corresponding
total cross section is

4
T k2

4 . .
in2 ~ 2 2
sin” &g =~ }TZ(SO ~s dmrg

Ot

The scattering is spherically symmnetric, and the total cross section is
four times the classical value mrf.
(b) Consider the low-cnergy tit k& — 0.
As
p20+1
[(2¢ — M2 (24 + 1)

d¢ falls off very rapidly as £ increases. All the phase shifts vanish as k — 0,
except for the [ = 0 partial wave. Hence s-waves predominate in low-energy

tan d, &~ —

scattering. Physically, particles with higher partial waves are farther away
from the force center so the effect of the force on such particles is smaller,
causing {d¢] to be smaller.

6006
A particle of mass m is scattered by the central potential

k2 1

v = ~ ma? cosh®(r/a)’
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where a is a constant. Given that the equation

dz—y+k2

2
Ix2 y+ 5 y=0

cosh? I

has the solutions y = gFke (tanh x F ik}, calculate the s-wave contribution

(o the total scattering cross section at energy E.

(MIT)

Solution:

Letting xo(r) = rR(r) we have for the radial part of the Schrodinger
~quation for s-waves (£ = 0)

20 (o 9, 2
d ,m‘(7) L 2m h : 21 ] olr) = 0.
dr? h? ma* cosh”(r/a)
With « = r/a, y(x) = xo(r) and k = 'ZT&E, the above becomes
d?y(x) 2

— kK a?y(x) +

dx? y(z) = 0.

cosh? ()

This equation has solutions y = e*ikT (tanh g F iak). For R finite at
r = 0 we require y(0) = 0. The solution that satisfies this condition has

the form
y(z) = e (tanh z — iak) + e ““**(tanh = + iak)
= 2cos(akz) tanh z + 2ak sin{akx),
or r
xo{r) = 2 cos(kr) tanh (E) + 2ak sin(kr) .
Thus | ;‘
2 i ™ 1+ L cos(hrysecn® [ |
1 dxo ak? cos(kr) — k sin(kr) tanh (Z) + - cos(kr) sec " |
- 20 -
Xo dr ak sin(kr) + cos(kr) tanh (a)

rooo  ak?cos(kr) — k sin(kr) . akcot (kr) —1
ak sin(kr) + cos(kr) cot (kr) + ak
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On the other hand if we write xg in the form
Xo(r) = sin(kr + &),
then as

1 dxo
Xo dr

cot(kr) cot 6 — 1
cot(kr) -+ cot &g

=k cot (kr +d) = k

we have to put
cot dg = ak,
or
1
1+ a2k2’

Hence the s-wave contribution to the total scattering cross section is
g

sin? 8 =

47 25 4r 1 27h? 1
g —5 SIin = — — = . .
tT k2 8 07 52 17 a2k2 mE  2a*mE
14+ ——
2
6007

A spinless particle of mass m, energy E scatters through angle € in an
attractive squarc-well potential V(r):

Vo, 0<r<a, V>0,
Vir) =
0, r>a.

(a) Establish a relation among the parameters Vy, a, m and universal
constants which guarantees that the cross section vanishes at zero energy
£ = 0. This will involve a definite but transcendental cquation, which you
must derive but need not solve numerically. For parameters meeting the
above condition, the differential cross section, as £ — 0, will behave like

do A
’8_6 E-%> E F(COb()).

(b) What is the numerical value of the exponent A\?
(¢} The angular distribution function F(cos ) is a polynomial in cos¢.
What is the highest power of cosé in this polynomial?

(Princeton)
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Solution:

(a) When the energy is near zero, only the partial wave with [ = 0 1s
wnportant. Writing the radial wave function as R(r) = x(r)/r, then x(7)
must satisfy the equations

2mkE

X'+ 2 x =0, r>a,

2m
X”+§(E+V0)X:0, O<r<a

with k = 1/2'—',';;_1%;, K = Zﬂ%;—v"z The above has solutions
x(r) = sin(kr + do), r>a,
x(r) = Asin(Kr), 0<r<a.
As both x(r) and x/(r) are continuous at r = a, we require

sin(ka + do) = A sin(Ka),
k cos(ka + dg) = K A cos(Ka),

K tan(ka + 6p) = k tan(Ka),

and hence

8o = tan~* [ﬁ tan(Ka)} —ka.

K
For E— 0
. 2mVy
k — 0, K — ko = T 3
aud so tan(k a)
b0 > k [_0_ - ] .
ko

For the total cross section to be zero at E = 0, we require

tan(koa) 1}2 0

dm 2 2
— sin” dp — 4ma [ koa

kz

tan(koa) = koa,
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ie.

V2mVy V2mVy
tan f a) = h a,
)

which is the transcendental equation that the paramecters Vg, a, m and

universal constant A must satisfy.

(b) & (c) When k — 0, the partial wave with ¢ = 0 is still very important
for the differential cross-section, althougl its coutribution also goes to zero.

Expanding tan(Ka) as a Taylor series in k, we have

. N ak?
tan(Ka) = tan(a /k? + k&) = tan(koa) + m +

Neglecting terms of orders higher than k2, we have

— tan(Ka } — ka

k (koa) + k%a ;
T - ta B e — -k
ko Hroa 2ko cos? (koa) @

k K k3a
~z tan” {k— tan(koa) — o7 tan(koa) + —_} — ka

0 5 2kZ cos? (koa)
2= tan ka — & + kgfl } — ka
2k 2k2 cos?(koa)
k3a ka k3’

~ 2k% cos(koa) ﬁ:g 3

Hence

Thus the differential cross section per unit solid angle is approximately
isotropic and proportional to E? for E — 0. To find the contribution of
partial wave with £ = 1, consider its radial wave equations

1d/,4d o 2
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1 d d 9 2)
- — — R - =] R=0 (r>a).
2 dr (T dr ) ( 72 (

The solutions have the form of the first-order spherical Bessel function

S\ _ sinp  cosp
1 (P) = p or
sin(Kr)  cos(Kr)

— , 0<r<a,
(Kr)? Kr
b sin(kr +61) (:os(kr+51)] .
(kr)? kr
The continuity of Ry and the first derivative of r’R at r = a gives
sin Ka cos Ka sin(ka +61)  cos(ka + 51)}
(Ka)? - Ka (ka)? ka ’

sin Ka = A sin{ka + 61) .
Taking the ratios we have k*{1—Ka cot(Ka)| = K?[1—ka cot(ka+d1)],

ar

k2 k%a cot(Ka) 4
tan (ka + 81) = ka [1 + R S e + O(k%)
= ka + O(K?),
AN 1 I“Z
K = k2 + kié ~ ko l:l 2 k:2 + O(kll)j\

Hence
8, = tan"'[ka + O(k*)] — ka = _g (ka)® + O(K®) = O(K®) .

Thus its contribution to g—g,

9
2 sin® &; cos> 4,

i also proportional to k%, Similarly, for I = 2,

3 1 . 3 cos(Kr)
[W—Ei\ SID(K’I‘)——(KT)Q—, O<r<a,
5 =
3 1] . 3 cos(kr + 02)
[ng;} Sln(kT+62)——(—k:r, r>a.

"\‘l\
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The continuity of R and (r*Ry)" at r = a then gives

k? [tan(ka + 62) — ka] [3 ~£L:(z)2] tan(ka + §2) — 3ka

K?  [tan(Ka) — Ka]) - [3-(Ka)? tan(Ka) — 3Ka

Let y = tan(ka + d2) — ka. The above becomes

[i L I R ()
(ka)®  ka bK2(1 + O(k?))’
where
b= a
 2cos?(koa) — ko
Therefore
_ 1
T _3‘ — ! ! Ok
(ha)® ko "z O
_ 1
3 (ka)?  (ka)® ol
(ka)? {1 Ty e TOU )]
(ka)3 [ (ka)?  (ka)?
= 1+ — 1
3 3 ez O )}
~ (ka)® | (ka)® 6
= + 5 + O(k®),
and

8, = tan Yy + ka) — ka
ry = O(k3) .

Thus the contribution of partial waves with { = 2 to [‘i% 18 also propor-
tional to k&% This is true for all £ for E — 0. Hence

© 2

8 ib
(21 + 1) ™ sin 8, (cos )

=1f(6)

=0

oo’ E*F (cosﬁ) E?F(cos?),
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.md the exponent of E is A = 2. The highest power of cosé in the angular
JAwstribution function is also 2 since the waves consist mainly of £ = 0 and

( :1 partial waves.

6008

1. The shell potential for the three-dimensional Schrédinger equation is
V(r) = ad(r —rg).

(a) Find the s-state (I = 0) wave function for E > 0. Include an
xpression that determines the phase shift §. With hk = v2mE show that
m the limit & — 0, & — Ak, where A is a constant (called the scattering
teugth). Solve for A in terms of o and rg.

(b) How many bound states can exist for [ = 0 and how does their
~xistence depend on «? (Graphical proof is acceptable)

(c) What is the scattering length A when a bound state appears at
J2 = 07 Describe the behavior of A as « changes front repulsive (o > 0) to
Altractive, and then when o becomes sufficiently negative to bind. Is the
1ange of A distinctive for cach range of a? Sketch A as a function of a.

(MIT)
Solution:
(a) The radial part of the Schrédinger equation for £=0is
= = — VvV = .
2m r2 Or <T or 7’[)) VY =EY
With ¢ = u/r, V(r) = ad(r — rg) it becomes
2
—— ¢ +ad(r —ro)p=Ep,
2m
[
p'— B8(r —ro) p = —k*u, (1)
where
= 2ma k= 2mE
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The equation has solution for which ¢t = 0 at » = 0 and ;2 = finite for
r— 00

sin kr, T < 19,
asin(kr +6), r>rg.

Integrating Eq. (1) from rg — € to rg + € and letting £ — 0 give
g (ro+) = 1/ (ro—) = Bulro) -
The continuity of 4 at r =y and this condition give
sin krg = a sin(kro + 6)
% sin krg = a cos(kro + §) — cos kry.

Hence

20 . 32 .
a®[sin®(kro + &) + cos?(krg + 8)] =a? =1 + g sin 2krg + i‘z sin? krg

tan(kro n 5) _ tan kro

) (2)

1+ T tan krg

which determine a and the phase shift §. In the limiting casc of & — 0, the
above cquation becomes

kro +tan § . kry

1—krgtand 1+ Ory

or )
pri
1+ PBrg '

neglecting O(k?). Then, as k — 0, we have tan § — 0 and so

tan § ~ —

k
5~ To = Ak,
14+ —
Bro
where
—7
A=
h?
1+

2marg

is the scattering length.
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(b) For bound states, E < 0 and Eq. (1) can be written as
i — B8 —ro) =k

itk
wikh B 2mex 9 2mE

I T R
The solution in which ¢ = 0 at 7 = 0 and p = finite for r — oo is
sinh kr, r <1y,
M -

ae”" ", r>T1g.-

The coutinuity conditions, as in (a), give
sinh krg = ac ko
e { Bae™k0 = —ake *m — k cosh krg.
Eliminating a we have

(8 + k) sinh krg = —k cosh kro,

or
Zk’l'o

Bro

(1721\',7"0 =1

< © 2kr,
ol -Br 0
Fig. 6.1
For bound states E < 0. Between E = —oc and E = 0, or betwecen

thrg = 0o and 2kry = 0, there is one intersection between the curves (I)

y=e ko and (I y =1+ ‘fé‘;: if -1 < B_io < 0, as shown in Fig. 6.1.

Thus if this condition is satisfied there will be one bound state with £ = 0.

'T'his condition requires
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=R —h?
-1 < — or a < = g
2m|alrg 2mirg

(¢) In (a) it is found that

A= _ To - — To ‘

1+ — h
Bro 2Zmrga

The behavior of 4 ls sh()wn in Fig. 6.2, wherce it is secu that for o = 0,

A=0;fora=ay = me A= too; = +00, A = —r. With £ — 40,

a bound state appears at £ = 0. At this energy « = (g, 6 = +7/2 and

A= co.

A

1 A

1

|

|

|

]

} .y

%y 0 >«

_____ 4+ — | _

1 "o

!

|

|

}

I

«— bound

6009

The nucleus 8Be is unstable with respect to dissociation into two «
particles, but experiments on nuclear reactions characterize the two lowest,
unstable levels as J = 0, even parity, ~ 95 keV above the dissociation level,
and J = 2, even parity, ~ 3MeV above the dissociation level.,

Consider how the existence of these levels influences the scattering of «
particles from helium gas, specifically:

(a) Write the wave function for elastic scattering, in its partial wave
expansion, for r — oo.
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(b) Describe qualitatively how the relevant phase shifts vary as functions
ol cnergy in the proximity of cach level.

(¢) Describe how this variation affects the angular distribution of «
particles.

(Chicago)
Solution:

(a) The spin of o particle is zero, so the two-a-particle (identical par-
ticles) systemn obeys Bose-Einstein statistics and the quantum number £ of
the relative angular momentum must be an even number. There are two
additive phase shifts: 5? caused by Coulomb interaction and 6?’ caused by
nuclear force. Thus as r — oo, the wave function is

p= > (2+1)itexpli(6f + 6] (kr) 7t

1=0,2,4,...
] Im
X sin | k -
2

where k is the wave number in the c.m. frame, v = (2¢)?/hv,..

Y+ 6 —yIn 2kr> Py(cos 0),

(b) As the encrgy increases to a certain value, 5?’ also increases from
scro because of the action of the nuclear force. Particularly, when the
cnergy is near an unstable energy level of the compound nucleus with a
definite I, every 6lN near m changes very rapidly. For ®Be, this happens
when ! = 0 and the energy is near 95 keV, and when { = 2 and the energy
1 near 3 MeV.

Generally, if the energy is lower than the Coulomb potential, nuclear
force can be neglected. In such a situation &) is near 0 or nr.

(c) To see the effect of nuclear force on the angular distribution, we
rewrite the partial wave expansion as

0 l
Z (21 + 1) exp(i6C) (kr)~2 {sin (kr - g
1=0,2,4,..
o exp(2i6]") — 1 ) In
—yln2kr+47 } + — 5 ) &P kr — o)

— v In 2kr + 510)] } Pi(cos b)),
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where the first term inside the large brackets is the Coulomb scattering

wave function, which is not affected by nuclear force. We sum it over £ to
get

exp i{kr cos@ — 7 In[kr(1 — cos8)] + 6} — y(kr) ™!
x exp i{kr cos@ —y In(kr) + 65}

o 1 [exp[—iy In(1 — cos @) N exp[—iy In(1 + cos )]

2 1— cos@ 1+ cosé '
The two terms in the last large brackets above arise fromn the identity

of the two He* . These in general do not occur in Rutherford scattering,.
The second term in the large brackets in the expansion of ¥ is caused

by the nuclear force which interferes with the Coulomb scattering. But this
effect is quite trivial when 6lN is near n.

6010

Consider the quantum-mechanical scattering problem in the presence of
inelastic scattering. Suppose one can write the partial wave expansion of
the scattering amplitude for the elastic channecl in the form

fh8) =3 1) M L b eog )
:, 0) = , cos 0),
— 2tk Lieoe

where d;(k) and (k) are real quantities with 0 <1, < 1, the wave number
is denoted by k, and 8 is the scattering angle. For a given partial wave,
obtain the lower and upper bounds for the clastic cross section Py i

: elastic 111
terms of Ui(n?elastic'
(Chicago)
Solution:
As
Ugiz)istic = WX2(2I + 1) | 1-— n162‘i51 l2 ,
Ui(rll)ezlastic = WX2(2Z -+ 1) (1 — ‘7][6%51 |2> ,
where

X2 =

1
=

A
2T
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we have
219 |2
o L= me g
acl;\stic - 1— 1’1716215“2 inelastic *

As n, & are real numbers and 0 <7 <1, we have

(L =m)? _ L—me®?  (1+m)”
L—nf = L=Ime?™P = 1-nf

bl

or

2 2
(L—m)* o o o 0Em)®

. a. P
E p inelastic = “elastic — 2 inelastic
1 — ,,hz inclastic 1-— h
q d o tivel
Therefore the upper and lower bounds of o), ;. are respectively

1-m? o

(1-+ 7[()2 0 ‘
1— 7727 Tinclastic and 1— an inelastic *
i

6011

A slow electron of wave number k is scattered by a neutral atom of
cffective (maximum) radius R, such that kR < 1.

(a) Assuming that the electron-atom potential is known, explain how the
relevant phase shift § is related to the solution of a Schrodinger equation.

(b) Give a formula for the differential scattering cross section in terms
of § and k. (If you do not remember the formula, try to guess it using
dimensional reasoning.)

(c) Explain, with a diagram of the Schrédinger-equation solution, how
2 non-vanishing purcly attractive potential might, at a particular k, give
no scattering.

(d) Explain, again with a diagram, how a potential that is attractive
at short distances but repulsive at large distances might give resonance
scattering near a particular k.

(¢) What is the maximum value of the total cross section at the center
of the resonance?

(Berkeley)
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Solution:

(a) We need only consider the s partial wave as kR < 1. The solution
of the Schrédinger equation has for r — oo the asymptotic form

sin (kr + 4)

Vi) = kr

The phase shift § is thus related to the solution of the Schrodinger
equation.

(b) The differential scattering cross section is given by

sin® &

o(0) = "

(c) The phase shift § in general is a function of the wave number k.
When § = nm, 0(f) = 0, & = 0 and no scattering takes place. The

asymptotic solution of the Schridinger equation with ¢ = 0 is shown in
Fig. 6.3(a)

sinkr sinlkr+m)

Fig. 6.3(b)

(d) Consider a potential well as that given in Fig. 6.3(b). If the energy
of the incident particle is near an eigenvalue of the well (a bound state), its
wave function inside the well will be strongly coupled with its wave function
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outside and the wave function in the well will have a large amplitude,
resulting in resonance scattering.

() The maximum value of the total cross section at the center of the
resonance peak is 4w R%, where R is the range of the force of interaction.

6012

For an attractive square-well potential (V = ~Vo, 7 < a; V = 0,7 > a)
lind the “matching equation” at a positive energy, which determines the
cnergy dependence of the £ = 0 phase shift do. From this show that at high
cnergies, 8(k) — 7%";1‘{2, and obtain this result from the Born approximation.

( Wisconsin)
Solution:

Let x = rR. For the £ = 0 partial wave, the Schrodinger equation
becomes

X' +k?x =0, k*=k* <1+%>, r<a,
X" +k*x =0, k2:27;;E, r>a.
The solutions are
sin(k'r) r<a,
X { Asin(kr + d), r>a.
The continuity condition
(In X)'lr=a- = (0 X)"lr=a+
pives an equation for determining dq:
k' tan (ka + 8o) = k tan (k'a) .
" k2 = k2 (1 + %) and k%= 2’:2’3 :

when k — oo, k' — k. Hence

dp = arctan [% tan(k’a)} —ka— (kK —k)a as k—oc.
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Thus, letting £ — oo we obtain

o (KPR Ve  maVa
—— o —a= ———.
0 1k °F h2k

The Born approximation expression for the phase shift for [ =0 is
2 ‘k o0

o / V(r) i (kr) r dr =

g 0

mV() 1 .
= 1252 {ka —5 sm(2ka)] ,

(50%7

2mkVj /“ sin? kr
= —dr
12 0 k?

whence
mVpa

h?k
as k — oo, in agreement with the partial-wave calculation.

504)

6013

Calculate the scattering cross section for a low cnergy particle from a
potential given by V = —Vg for r < a, V = 0 for » > a. Compare this with
the Born approximation result.

(Columbia)

Solution:

The radial Schrodinger equation can be written in the form

ﬁl_ti)] xi(r) =0, r>a,

, ‘ {l+1
Xf(ﬂ*[kz%]m(”:(), r<a,

r

o)+ k-

where x = rR(r),

2 2mE 2 2m(E + Vo)
hz ’ h? )

Scattering at low energies is dominated by the s partial wave, for which
£ =0, and the above become

X} (r) + k2xu(r) =0

, T>a,
Xy (r) + k?xi(r) =0, r<a,
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whose solutions are
A sin(k'r), r<a,
XL(T = .
sin(kr +00), T>a.
The continuity condition (Inx:)’[r=a- = (In X1)'|r=a+ glves

k tan(k'a) = k' tan(ka + &),

k
o = arctan [? tan (k'a)} —ka.

For low energics

’ 2mV0
k——)(),k’ 4)](3(): —ﬁT,
aud the above becomes
tan(koa
do ~ ka [L(O—) - 1] .
koa
'T'he total scattering cross section is then
2
A, 4wy y [tan(koa)
o~ — sin do ~ o 4y = 4ma ——koa 1| .
If kga < 1,
o [koa  (koa)® 17 16mam2Vy
odna’ |—+ - 1| =—51 -
koa 3k‘()a 9h

In the Born approximation,
£(0) = _2";2 / e TV (r) e T dir,
™

where k', k are respectively the wave vectors of the incident and scattered
waves. Let q = k — k', with |k'| = |k| = k for elastic scattering. Then
q =2k sin 2. where 0 is the scattering angle. Thus

29
£O) = — o / T Vi) dr / " gmiar o o gin 0 dof
2kh? Jy o
S V(r) sin(r) r?dr = 272‘/0 / 7 sin(qr)dr
W2 qr R2q  Jo
2mVq ¢

- Tq?’o [sin(qa) — qa cos (qa)] .
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Hence

Am2V2

a@) = |f(9)* = h4q60 [sin(qa) — qa cos(qa)]? .

For low energies k — 0, ¢ — 0,

sin (ga) =~ qa — j (¢ )3, cos(qa) ~ 1 — — (qa)
and hence o
_ 4m?VZab
o(0) = ot

The total cross section for scattering at low energies is then

167m 2V2 6
9H1

o= / o(0) d2 =

Therefore at low energies for which k¥ — 0, ka < 1, the two methods
give the same result.

6014

In scattering from a potential V(7), the wave function may be written
as an incident plane wave plus an outgoing scattered wave: ¢ = ¢*** +u(r).
Derive a differential equation for v(r) in the first Born approximation.

( Wisconsin)
Solution:
Two methods may be used for this problem.
Method 1:

For a particle of mass m in a central field V(r), the Schrédinger cquation
can be written as

(V2+E)y =Uy,
where

2m 2mE
V=gV kv

Define Green’s function G(r —r') by

(V2 + KD G(r —t') = —4nd(r - 1').
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This is satisfied by the function

G(r—r’)z M

r—r]

and the Schrodinger equation is satisfied by
1 4 / ’ /
$(x) = olr) - — / Glr — 1)U () (r') &’

As the incident wave is a plane wave e***' | we replace U(r') ¢ (1) by
1/(r')e*** in the first Born approximation:

1/)(1‘) _ e'ikz . —1_ / S)M [](r') eikl/ d3r, R

47 |r — /|

Hence the scattered wave is

1 exp (ik|r — 1’ N ikz' '
o) =g [ SR I e et e

A Ir — 1’|

Applying the operator (V2 + Kk?) to the two sides of the equation, we
ot

(VZ+ K v(r)

b /(v_ exp( k( )) U( ) Lkz’d3,r/

Cor-r]
/ Sr—rYU (") e* & r' = Ulr) et**
Hence the differential equation for v(r) is

(V2 + k2)v(r) = U(r) etk

Method 2:
Writing the radial Schrodinger equation as

(V2 4 K2y = Uy,

where
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and substituting in v = e*** 4 v(r), we get
(V2 + kY e*2 1 (V2 4 k%) (r) = Ule'* +o(r)],

or
. 2mn ik
(V2 + EHu(r) = = Vie*® +u(r)],
as (V2 4 k) e*** = 0. In the first Born approximation, ¢*** + v(r) =~ ¢
and so the differential equation for v(r) is

. 2
(V2 1 k%) v (r) & % Veiks

6015

1

In the quantum theory of scattering fromn a fixed potential, we get the

following expression for the asymptotic form of the wave function

et kr

P(r) ——— ¢+ f(0, ) —.
T =00 T
(a) If the entirc Hamiltonian is rotationally invariant, give the argument
that the scattering amplitude f should be independent of the angle .
(b) Why cannot this argument be extended (considering rotation about
any axis) to conclude that f should be independent of € as well?
(¢) Reconsider part(b) in the case wherc the incident cnergy approaches
Zero.
(d) What is the formula for the scattering cross section in terms of f7?
(e) What is the formula for the first Born approximation for f? (Be
sure to define all quantities introduced. You need not worry about simple
dimensionless factors like 2 or 7).
(f) Under what conditions is the Born approximation valid?
(Berkeley)

Solution:
(a) The incident wave e** = e7<0s ¢ is the eigenstate of ,, third

component of the angular momentum L, with eigenvaluc m = 0. If the
Hamiltonian is rotationally invariant, the angular momentum is conserved
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.nd the outgoing wave is still the cigenstate of [, with eigenvalue m = 0,
that is,

Lf(0, 0) =mf(0, ¢)=0.

Since [, = ’;’ (';?p’ this means that 9f(0,¢)/0¢ = 0.

(b) As the asymptotic form of the wave function ¥(r) is not an eigen-
function of L2, we cannot extend the above argument to conclude that f is
mdependent of 8.

(c) When the energy E — 0, ie., K — 0, the incident wave consists
mainly ouly of the [ = 0 partial wave; other partial waves have very small
anplitudes and can be neglected. Under such conditions, the rotational
mwariance of H results in the conservation of L2. Then the outgoing wave
must also be the cigenstate of L2 with eigenvalue [ = 0 (approximately).

. 1 4 0 IO }
2 = — ,2 _— f. 9 - + T S 5 5
L h Lin 6 09 (sm 09) sin? 9 D2

1 d [siu df(F))"[:O.

sin 0 df do )

As

we have

As f(0) must be a wave function with all the appropriate properties,
this means

df(8)/do = 0.
(d) The differential scattering cross section is given by

do

T lfe )P

(e) In the first Born approximation, for scattering from a central ficld
V(r'), f is given by

m

f(8,¢) = “onh? / V(') exp(—iq-1') d*r

= _2m r'V(r'") sin(gqr') dr',
R*q Jo

where q = k — ko, k and ko being respectively the momenta of the particle
before and after scattering.




498 Problems and Solutions on Quantum Mechanics

(f) The validity of Born approximation requires that the interaction
potential is small compared with the energy of the incident particle.

6016

Consider a particle of mass m which scatters off a potential V(z) in onc
dimension.

(a) Show that

1 o0 e-i,k:x
Grlr) = — df ——
14(1) 27T [Oo thle ] 1)
B, T

with & positive infinitesimal, is the free-particle Green’s function for the
time-independent Schrodinger equation with cuergy E and outgoing-wave
boundary conditions.

(b) Write down an integral equation for the encrgy cigenfunction cor-
responding to an incident wave traveling in the positive x direction. Using
this equation find the reflection probability in the first Boru approximation

for the potential
Vo, |z <a/2,
Viz) =
0, |z|>a/2.
For what valucs of E do you expect this to be a good approximation?
( Buffalo)

Solution:

(a) To solve the one-dimensional time-independent Schrodinger equation

(h‘z & +E>¢—vw,

2m du?

we define a Green’s function Gg(z) by

hZ 42
<2m e E) Gg(z) = o(x).
Expressing Gg(z) and 6(z) as Fourier integrals

Crle) = 5 / TRk e dk,

5(1.) ! / eika; dk

:ﬁl-oo

iyt
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el substituting these into the equation for Gg(z), we obtain

(—h2k2 +E> fk)y=1,
2m
o )
fk) =z -
 2m

As the singularity of f(k) is ou the path of integration and the Fourier
mtegral can be understood as an integral in the complex k-plane, we can
« Il g, where ¢ is a sinall positive number, to the denominator of f(k). We
.an then let € —» 0 after the integration. Consider

Gulk) = - /Oo ak—
(k) =5 e
2m o E—F;k + e

m

The intergral is singular where

h'zk.'z
(E + i) — o =0,
e at
k= tky,
where -
f /2m(E + i€)
="
h

When z > 0, the integral becomes a contour integral on the upper
fialf-plane with a singularity at ky with residue

meiklz

M= R

Cauchy’s integral formula then gives

m k.
Gg(z) =2miay = —i 557~ etkie

z>0).
2k, (z>0)

V2mE

e — 0, ki — P
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This is the value of &1 to be used in the expression for Gg(x). Similarly,
when = < 0, we can carry out the integration along a contour on the lower
half-plane and get

m

(3 ’hl?kl

Gpz)=— etk (x < 0).

Here ky = ¥ z;nE also. Thus the frec-particle Green’s function Gg()

represents the outgoing wave whether = > 0 or = < 0.

(b) The solution of the stationary Schrédinger equation satisfies the
integral equation

i) = ¥O(x) + GE(x) (V(x) pp(x)]
=)+ [ Gute - VO v e,

where 9°(z) is a solution of the equation

w d?
<27n a2 + E> Plx) =0.

In the first-order Born approximation we replace ¢y and ¢ on the righi
side of the integral equation by the incident wave function and get

o0

Pr(z) = ™" + / Gr(z — &) V() e de = ¢tk

—00

" I ik
+/ (=8 35 ¢ e v (&) e de

+ /m (i) o O Y (g) kS g |
. h2k

For reflection we require ¥ g(z) for x — —oco. For z — —o0,

/ (=) % e T y(g) e de = 0,

— o

/oo (i) T gmike G2KE v (c) gg — . (—i) L ke ) Gike g
- h2k —a/2 I’k
.mVy

_ N ik
~irna sin(ka) e
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Hence the reflection probability is

m2V2

hAk*

sin® ka.

R = [¢pg(—00)|?/Ithel” =

When the energy is high,

Um Gz — & V(€ e*de| < e,

and replacing ¢ (z) by e is a good approximation.

6017

Calculate the Born approximation to the differential and total cross

sections for scattering a particle of mass m off the é-function potential

V(r) = gd*(r).
( Wisconsin)

Solution:

In Born approximation,

m B ikr’ 3t
() = 5 /e V({r')e dr’ |

where k and k’ are respectively the wave vectors of the incident and scat-
lered waves. Let @ = k' — k. Then

f(0) = *# g / exp(—iq - ') 8(r') dr’ = exp(—10g) = 9.

mg
2mh? 2rh?’

and the differential cross section is

o(0) = 1F O = 2oL

As the distribution is isotropic, the total cross section is
m2g?
wh

gy = 4dno =
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6018

Consider a particle of mass m, energy E scattering from the spherically
symmetric potential Bi(r — a), where B and a are constants.

(a) In the case of very high encrgy (but nonrelativistic) scattering, use
the Born approximation to calculate the differential scattering cross section.

(b) In the case of very low cnergy scattering (A > a), what is the
differential scattering cross section?

Note: In part (b) you may find the algebra soinewhat lengthy. In this
case, work the problemn far cuough that the remainder of the solution in-
volves only straightforward algebra.

(Princeton)
Solution:

(a) As shown in Problem 6013,

2m [, singr

f= TR T TB5(7'~(1)(17'
_ 2msin qa
h h2q @

Hence the differential cross section for scattering is

. 2

do . 2m sin qa

—_ = |f|2 == —_— 1 Ba
h2q

(b) At low cnergies only the partial wave with I = 0 is inportant. If we
set the radial wave function R(z) = x(r)/r, then x(r) will satisfy

2«
X”Jr%[EfBé(rfa)]sz.

The solutions are

x = A sin(kr), r<a,
x =sin(kr +8&), r>a,

2mE
k=4 .
B2

where
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The continuity of x(r) at » = a requires
x{a + 0) = x(a —0).
Integrating the wave equation for x from a — ¢ to a +¢, where € 1s a

~mall positive number, and then letting ¢ — 0, we get

2m
x'(a+0)~x'(a—0) - ﬁBX(G) =0.

These two conditions give

k 2m

— = —> B+ —.
tan(ka + &)  R? tan(ka)
As E— 0,k — 0and

tan(ka) + tan do ka + dp
- -

tan(ka) — ka, tan(ka + &) = lm m .

Substituting the above gives

- k
=~ 2m 1°

h? a

do

Hence

2
do 1 6 . 2 < 1 )
—_— = 5 9 gsin 4, ~ e a— .
a0 k2l oCE L

As there is no angular dependence the scattering is isotropic.

6019

A nucleon is scattered elastically from a heavy nucleus. The effect of
ithe heavy nucleus can be represented by a fixed potential

Vo r<R,
Vir)=
0, r> R,

where Vj is a positive constant. Calculate the deferential cross section to

Lhe lowest order in Vj.

(Berkeley)
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Solution:

Let 4 be the reduced moves of the nucleon and the nucleus, q = k — k'
where k', k are respectively the wave vectors of the nucleon before and after
the scattering. In the Born approximation, as in Problem 6013, we have

Y 4‘LL2 o0 2
a(0) ={f(O)" = . 'V {(r') sin gr’ dr’
hAg2
a1 Jo
4V ,
= ;;4(]60 (sin qR — qR cos qR)?,

where ¢ = 2k sin(0/2), k = |k| = [K'|.

6020

A particle of mass m, charge e, momentum p scatters in the electrostatic
potential produced by a spherically symmetric distribution of charge. Yon
are given the quantity [ r*pd®z = A, p(r)d®s being the charge in a vol-
ume element d>z. Supposing that p vanishes rapidly as r — oo and that
f pd®z = 0; working in the first Born approximation, compute the differ-
ential cross section for forward scattering. (That is {% lo—o, where 6 is the
scattering angle.)

(Princeton)
Solution:

In the first Born approximation, we have

do  m2e?

2
ORI / U(r) exp(iq - t) d®z| |

where

e 2 6
a=k—-k,qg=2ksin - = L gn —, k" and k
2 h 2

being the wave vectors of the particle before and after the scattering, U(r)
is the electrostatic Coulomb potential and satisfies the Poission equation

ViU = —dmp(r).

Let
F(g) = / p(r) exp(iq - r)d®z,
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where F(q) is the Fouricr transform of p(r). Using the Poisson equation we 1

have o |
/ U(r) explia - ryd' = 5 F(q).

Hence ‘
do m?e?  (4m)? . dm2e? . |
_— . — F - F 2
dan 4r2h? q* [F(q)] hig [F(q)]

For forward scattering, 8 is small and so g is small also. Then |

Flo) = [ o(r) exvlia ) d ;‘:

1.
:/P(T) [1+iQ'r+a(lq~r)2+~- >z

- / plr) d’x - % / p(r) (q-t)’d®z + -

1 . 5 Aqg?
e~ —é q* / p(r) rid*s = ——61— ,

since as [ pdix = 0, foﬂ cos?*1 @ . sin @ df = 0, the lowest order term for

= 01s

1 o(r) (iq - r)* &Pz =~ —ﬁ . p(ryr dx.
a1 ) P T 6
Hence "
do ~ A’m?e?
dQ |,y 9Rt
6021

Use Born approximation to find, up to a multiplicative constant, the
Jdifferential scattering cross section for a particle of mass m moving in a
Irepulsive potential .,
| V= Ae T /%

(Berkeley)

»
Solution:
In Born approximation we have (Problem 6013}

2m [

f(6) = “R ), rV(r) sin(gr)dr,
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Solution:

Let p be the reduced moves of the nucleon and the nucleus, q = k — k’
where k', k are respectively the wave vectors of the nucleon before and after
the scattering. In the Born approximation, as in Problem 6013, we have

(0) |f(9)|2 4/1'2 /OO /V( /) . /d ' 2
o) = = - "V {r") sin qr' dr
ﬁzxqz o qr
42V
= ;:4 160 (sin gR — qR cos qR)2 ,
144

where ¢ = 2k sin(6/2), k = |k| = |k'|.

6020

A particle of mass m, charge e, momentuin p scatters in the electrostatic
potential produced by a spherically syminetrie distribution of charge. You
are given the quantity [ r’pd®z = A, p(r) d®z being the charge in a vol-
ume element d*z. Supposing that p vanishes rapidly as r — oo and that
[ pd3z = 0; working in the first Born approximation, compute the differ-

ential cross section for forward scattering. (That is 42

o0 lo=0, where 6 is the

scattering angle.)
(Princeton)
Solution:

In the first Born approximation, we have

do m2e? U (G P 2
0 anin r) exp(iq - r)d’z| ,
where 0 9 9
a=k-X, g=2ksin 5~ Ep sin §’k/ and k

being the wave vectors of the particle before and after the scattering, U(r)
is the electrostatic Coulomb potential and satisfies the Poission equation

Vi = —Amp(r).

Let
F(a) = [ olr) explia - 1),
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where F(q) is the Fourier transform of p(r). Using the Poisson equation we

have o

/ U(r) exp(iq - 1) d’x = e F(q).
Hence -
do  m?e*  (4m)? F()? = 4m?e? ().
A 4r2il qt hiqd

For forward scattering, 0 is small and so ¢ is small also. Then

Flq) = / p(r) expliq )’z

1, -
:/p(r) [1+1ﬁq-r+§(1q~r)2+~~ d*x

= / p(r) Px — % . o(r) (q - r)2(13:1: .

2
1. 5 Aq
~ 5 ¢ / p(ryrid*e = —
ince as [ pde =0, [(;r cos?™ Ll @ . sin 6 d# = 0, the lowest order term for
h >01s L )
: ‘ q N2 g8
o1 o(r) (iq - 1) =~ 5 / p(ryred’x.
Henee do B A*mn?e?
s 9—0 gpt
6021

Use Born approximation to find, up to a multiplicative constant, the
iflerential scattering cross section for a particle of mass ym moving m a

1epulsive potential .
V=AY

(Berkeley)

Solution:
(11 Born approximation we have (Problem 6013)

fo) = ‘% /OO rV(r) sin(gr)dr,
0
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where q = 2k sin(0/2), hk being the momentum of incident particle. As

2mA mA

re= /e sin{qr) dr

— 0

mAa? [ 2,2 mAa® [ 2, 2
_ —r*/at\ N —-1r%/a
=g [m (e ) sin(qr)dr = - / e cos(qr) dr

2h oo
_ mAa /m
OO0

o () (7)
a a
mAa3 0
- Top2
— 0

e cos (qar) dr
mAa? /OQ { [ ( iqa)zJ
=— exp r— =
] 2
o[

mAa® 2
— -q’a /4
== g Ve
242 6
- 2 mA<a )_'2”2/2
a(0) = | ()] T ' .
6022

A nonrelativistic particle is scattered by a squarc-well potential

-V r« R, (Vo > 0)
Vir) =
0, r>R.

(a) Assuming the bombarding energy is sufficiently high, calculate the
scattering cross section in the first Born approximation (normalization is
not essential), and sketch the shape of the angular distribution, indicating
angular units.

(b) How can this result be used to measure R?

(¢) Assuming the validity of the Born approximation, if the particle is
a proton and R = 5 x 107" c¢m, roughly how high must the energy be in
order for the scattering to be sensitive to R?

( Wisconsin)
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Solution:

(a) Using Born approximation we have (Problem 6013)
71 0
f(O) x — / rV(r) sin(qr)dr

= ﬁ/ r sin{qr) d

. 2
do Sin T — I Cos T

Jo X\ T3 )
dQ? T

where 1+ = qR = 2kR sin % .

Ve
—2 (sin gR — qR cos qR).

Hence

The angular distribution is shown in Fig. 6.4

do.
dn

t

AAX

0 T 27

Fig. 6.4

(b) The first zero of 42 occurs at z for which z = tan x, whose solution
1s z = 1.43%. This gives

- 1.43#

2k sin —
Sll'l2

By measuring the minimum angle §, for which j—g = 0, R can be deter-
mined.

(c) In order that R may be determined from the zero points of &
require that the maximum value of z, 2k R, is larger than 1.43x, or

dﬂ’ we

{l

i
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2 2 2 2 2
B> h (1.437r> :(1.437r) h (E)

= 2m, \ 2R 8  myc® \R

(143m)° (658 x 10-%)2 3% 1010 \?
= X
8 938 5x 1013
= 4.2MeV .

6023

Elastic scattering from some central potential V may be adequately cal-
culated using the first Born approximation. Experimental results give the
following general behavior of the cross section as a function of momentum
transfer ¢ = [k — k/|.

0 % —> @
Fig. 6.6

In terms of the parameters shown in Fig. 6.6:

(a) What is the approximate size (extension in space) of the potential
V? (Hint: Expand the Born approximation for the scattering amplitude
for small q.)

(b) What is the behavior of the potential V at very small distances?
(Berkeley)

Solution:

(a) The Born approximation gives (Problem 6013)

HOES

2m

. V{r) si
g /r (r) sin(gr) dr,

where gh is the magnitude of the momentum transfer and ¢ = 2k sin %. For
q — 0,
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om R 2m —
0) = —— rV(r)dr ~ - — RV,
so)~ = [ rveyar~ -2
replacing V by V', some average value of the potential in the effective force
range R. For a small momentum transfer gy, we have

flq) = 2m / rV{r) <qor — %qgr3) dr

~ h2qq

2
mgg
~ f(0) + =

f( ) 15h2

Thus an approximate value of R is given by

RSV = f(0) — %sz(o).

10
R¢%U@ﬁumnxﬂ%m.

Note that |f(go)|? is the measured value of zii—g|qa for some small qq,
[£(0}]? is the valuc of :11—5 for a set of sinall gy extrapolated to ¢ = 0. From
these values the effective range of the potential can be estimated.

(b) In view of the behavior of the scattering cross section for large q,
we can say that the Born iutegral consists mainly of contributions from the
region qr < w, outside which, on account of the oscillation between the
limits +1 of the sine function, the contributions of the integrand are nearly
zero. Thus we need ouly consider the integral from ¢gr = 0 to 7. Assuming
V(r) ~ r™ for small r, where n is to be determined, we have

floy = —2m / P2y () S0

7}3_2 qr

12

2m [T sin(qr) _(zin
——/ (gr)?V (gr) “2U7) =647 ggr)
0

h? qr
1 2m [, sin x
=— | —— Vv dr | .
q3+n ( h2 /0 z (X) T I)
A comparison with the given data gives %J- = 3 +n. Hence V behaves
like r(%—3).
6024

A convenient model for the potential energy V of a particle of charge
@ scattering on an atom of nuclear charge Q is V = QTQ e~ %" where a~!
represents the screening length of the atomic electrons.
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(a) Use the Born approximation

1 —iAkr 2M 3
f«**élﬂ/e h—QV(r)dr

to calculate the scattering cross section o.

(b) How should « depend on the nuclear charge Z?
(Columbia)
Solution:

For the clastic scattering, |k| = |ko| = k, and |Ak| = |k—ko| = 2k sin &

2
# being the scattering angle. Thus

1 —iaker 210 3
f ”‘E [ ﬁ V(l) d r
m o 9 2 g Akr cos 0 ’ 1
=5 /0 T dr/o dga/o e STV () sin O do
2 oG
=— An;(;g ; e sin(Akr) dr
2mqQ) 1

2 (a2 + Ak?) )

Therefore

) am2q2Q*
= |f(8))? = ' '
o =116 R a? + 4k2 sin” (0/2)]2

(b) In the Thomas-Fermi approximation, when Z is large, the atomic
electrons can be regarded as a Fermi gas. As such an clectron is in a bound

state in the atom; its energy is lower than E(oc) = 0. Then its maximum
possible momentum py,,x at r must satisfy

o Pons(7) = 6(0) = 0, )

where ¢(r) is the potential at distance 7 from the nucleus, since its energy
is negative. Thus the Fermi momentum at r is

pr(r) = Prmax(T) = [2m6¢(r)]1/2 .

Scattering Theory and Quantum Transilions 511

For a Fermi gas,
Py = h(ngn)l/s )

where n is the number density. Comparing the above expressions we have

n(r) = ;Tha [277”Leqﬁ(r)]3/2

3
1 Ze _or )’
= m (277167—6 )

where Ze is the nuclear charge. As the atom is neutral,

oQ
Z = / nd’r = 47 / n(r)r®dr
. 0

= . ! 3 (2m.Ze?)3/? / e 2o 12 g
3k 0

2 amZe> 3/2
3 /mh3 3w ’

) p 1/3
Cdmet (4N, 4 eV
o = 352 97 3 9 Qg

where ag = h*/me? is the Bolr radius.

Hence

6025
A particle of mass m is scattered by a potential V(r) = Vg exp(—r/a).

(a) Find the differential scattering cross section in the first Born ap-
proximation. Sketch the angular dependence for small and large k, where
k is the wave number of the particle being scattered. At what k value does
the scattering begin to be significantly non-isotropic? Compare this value
with the one given by elementary arguments based on angular momentum.

(b) The criterion for the validity of the Born approximation is

1Ay (0)/p@0) <« 1,

e
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where AV is the first order correction to the incident plane wave (.
Evaluate this criterion explicitly for the present potential. What is the low-
k limit of your result? Relate it to the strength of the attractive potential
required for the existence of bound states (see the statement of problem).
Is the high-k limit of the criterion less or more restrictive on the strength
of the potential?

(Berkeley)

Solution:

{a) The first Born approximation gives

) 0
f(6) = ‘2,’)1 / r'V(r') sin{qr’) dr’
h2q Jo

2mVy [
=— ;;qo / r’sin(qr’) exp(—r'/a) dr’
0

amVya®
R2(1 + ¢2a?)?’

where g = 2k sin (6/2), gh being the magnitude of the momentum transfer
in the scattering. Hence

16rn?V;2a

.
h4 (1 + 4k2g? sin® g)

The angutar distribution a(8)/a(0) is plotted in Fig. 6.5 for ka = 0 and
ka = 1.
It can be seen that for ka 2 1, the scattering is siguificantly non-

isotropic. The angular momentumn at which only s-wave scattering, which
is isotropic, is important must satisfy

a(f) = 110 =

a-kh<h ie., ka<1l.

When ka ~ 1, the scattering begins to be significantly non-isotropic.
This is in agreement with the result given by the first Born approximation.
(b) The wave function to the first order is

e 1 /eik'f—f" 2m
P(r)=e i =] R V(r') e dv”.

R

P .
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a(e)
{0}
A
ka=0
- > 8
0 7
Fig. 6.5
Hence )
Ay | | Vo / ek ST = Jadtiks! (zv’\
$(0(0) Ar ' k2

"”12/0 - ezik1"~r’ [a+ikr’ cos 0’ sin @ de’dr’
I}

2m|Vola® V1 +4k%a2  2m|Vpla’
T R2(4k2a2+1)  R2V/1 + 4k%a?

The criterion for the validity of the first Born approximation is then

leVOi a2
R Y1+ akZa?

In the low-k limit, ka < 1, the above becomes

<1.

: 2
2m|Vy| a®
_— % = .
h? <l or ol < 2ma?
In the high-k limit, ka > 1, the criterion becomes
2
m|Wola v h2k
oy < 1, or Vol « el
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Since in this casc k£ > L the restriction on |V}
limit.

6026

For an interaction V(r) = Br~! exp(—ar) find the differential scattering
cross section in Born approximation. What are the conditions for validity?
Suggest one or more physical applications of this model.

(Berkeley)
Solution:

In Born approximation, we first calculate (Problem 6013)

2 o0
F(6) = _h%”(; 'V (') sin qr' dr’
- 0
2mf3 /DO e i ar d —2mp
= —— SN qr AT = —5 55+
2q Jo ! h2(q* + )’

where ¢ = 2k sin % and m is the mass of the particle, and then the differ-

ential cross scction

, 423
o(f) = 6 2= T 5 oy -

The derivation is based on the agsumption that the interaction potential
can be treated as a perturbation, so that the wave function of the scattered
particle can be written as

() =ho(r) +¢1(r),  where |th| < |dho],

wo(r) _ eikz ’
~ m eiklr~r’| , "
P1(r) ~ ~5r3 F— V(') o(r') d’r.

Specifically, we shall consider two cases, taking a as the extent of space
where the potential is appreciable.

1s less than for the low-k
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(i) The potential is sufficiently weak or the potential is sufficiently lo-
calized. As

m [ V)l

’ 3,/
< r)|d’r
|1/j1‘ = onh? |1‘ _ I‘Il }¢0( )l
a 2 g
m A= dr
~ 1% —
sVl [
~m|V|a? o] /B2,
for |31 | < o] we require
vV 2
™m| Qla <1,
le.,
h? h
Wl < — or a4 K ———

ma? \/Tnm '

This means that where the potential is weak enough or where the field
is sufficiently localized, the Born approximatiou is valid. Note that the con-
dition does not involve the velocity of the incident particle, so that as long
as the interaction potential satisfies this condition the Born approximation
is valid for an incident particle of any energy. .

(ii) High cnergy scattering with ka > 1. The Born approximation
assumes o = ¢'*# and a ¢ that satisfies

2m . ik
Vi + K = Sy Ve

Let ¢, = €** f(6, ¢). The above becomes

af _ wm
8z Rk
and so . im
’l/]l:Csz:_mez/de'
Then as

sl ~ 5 V10 ol
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for |11| < |¥o| = 1 we require

\
V| < Pk _hy
ma a

)

where v is the speed of the incident particle, v = £ = ?T Thus as long as

the energy of the incident particle is large onough7 thc Born approximation
is valid.

From the above results we see that if a potential ficld can be treated
as a small perturbation for incident particles of low cnergy, it can always
be so treated for incident particles of high energy. The reverse, however, 1s
not true. In the present problem, the range of interaction can be taken to
be a ~ 1, so that V(a) ~ g The conditions then becomne

(i) 16] < o
(i) |8] < hv = 2E where k = (/20

m’ h2

The given potential was used by Yukawa to represeut the interaction
between two nuclei and explain the short range of the strong nuclear force.

6027

Consider the scattering of a 1 keV proton by a hydrogen atomn.

(a) What do you expeet the angular distribution to look like? (Sketch
a graph and comment on its shape).

(b) Estimate the total cross section. Give a numerical answer in cm?,
m? or barns = 10~2*¢mm?, and a reason for you answer.

(Wisconsin)

Solution:

The problem is equivalent to the scattering of a particle of reduced mass
T %mp = 470 MeV, energy F, = 0.5keV by a potential which, on account

of electron shielding, can be roughly represented by 81'2 e~7/% where a is the
range of interaction given by the Bohr radius 0.53 A. As

ka = hi vV 2uclE,
c

~0.53x 1078 x /2 x 470 x 105 x 0.5 x 10°
B 6.58 x 1016 x 3 x 10'°

=184x10° > 1,

¥
13
%
L4
z
3
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for Born approximation to be valid we require (Problem 6026)

e2 ko . e? v
|V| ~— L, 1.e., — .
Q a he c

Since

LHSfL_7$><10‘3

2 x 0.5 x 103 _3
= =1.5x10""7,
RHS = \ ;LCQ \/ 470 x 108

the condition is not strictly satisfied. But in view of the roughness of the
estimates, we still make use of the Born approximation.

(a) When the proton collides with the hydrogen atom, it experiences
a repulsive Coulomb interaction with the nucleus, as well as an attractive
one with thie orbital electron having the appearance of a cloud of charge
density ep(r). The potential energy is then

Vir) = —

Ir*r’l

Using Born approxinmtion and the formula

elar 47
/ =g
q

pe? iqr | L p(r') o | dr
f(g):’%h?/e [?_/ e }d

. f;ji - FO)),

we obtain

where

F(H)ZQ//Mdr’dr
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For the ground state of the hydrogen atom, we have

, 1
p(r) = [¥100|* = —e€ ar/
el

1

and so
1 2
F(@)=— [ 9"« dr
ma
- (14 —12)
4
Hence
2
ue 1 1

f0) = - 272 .2 1- 012 2 -
2h2k*  sin®(0/2) (1 + a?k? sin” 0/2)2

Taking into account the identical nature of the two colliding particles
(two protons), we have for the singlet state: o, = [f(8) + f(m — 6)|%, the
triplet state: o4 = [f(8) — f(m — 0)]°.

Hence the scattering cross section (1ot considering polarization) is

1
0= —0s+—-04.
475 4"4

Some special cases are considered below.

(i) 0 = 0:

Lo [L-F@) 1-F(r0) :
° T 4hYkt [ sin® 0/2 cos? 0/2
2.4

2
©e 2,2 1
~ 20%k% 4 ——
4hkA (a Jrcos2 0/2)
2 2
Nf4a4<mp> a?
) 2m,

use having been made of the approximation for 2 ~ 0

Q

/1 +2)*=1- 2z,
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as well as the expression

h? h? ( m, )
4T mee?  pe? \2me/

m z

p 2
gA — a .
<2me>

(ii) @ ~ m: A similar calculation gives

m 2
2
O3 =0 — P a” .
2me
0

(iii) a%k? sin? ¢ = 10 or 6 ~ 0.07m: For 0.077 < 6 < 0.937, we have

2
1 pce 1 1
o(8) = 4 4ptkA <Sin2 0/2 * cos? 0/2)

Similarly we obtain

N 3 plet I 1 )2
4 4h'KY \sin” 6/2  cost 8/2
_ plet (3 cos? 6+ 1
T htke sin* 0

3 cos? 0+1>
=0y | ——— 1,
0 sin* 6

2 ’4 . . - . - .
where 09 = {5z. The angular distribution is shown in Fig. 6.7.

aigl
A
00 1 1 1 i~ e
an i
0 % % m
Fig. 6.7

(b) As f(@) — oo for § — 0,  — m, to estimate the total scattering
cross section, consider the total cross section for large scattering angles
(007 <0 < 0.937) and for small scattering angles:
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0.937 2
Jcost A+ 1 .
Ttlarge = 270 / (—4> sin 8 d6
0.07% 0

0.93r 4 g 2
;27”70/ 4 3sm£d8
0

07 Sin3 9

= 270y {~ In (tan Q) -2 C_Ot 9]
2 sin §

= 15510y,

sin

0.937

0.077r

0.07m
Tt small > 2m / 0'(0077[') sin 0df x 2
J0

=27 x 170300 [1 — ¢0s(0.077)] x 2
= 1647[’0’0 .

6028

The study of the scattering of high-cnergy clectrons from nuclei has
yicelded much interesting information about the charge distributions in nu-
clei and mucleons. We shall here consider a simple version of the theory,
i which the “electron” is assumed to have zero spin. We also assume
that the nucleus, of charge Ze, remains fixed in space (i.e., its mass is as-
sumed infinite). Let p(x) denote the charge density in the nucleus. The
charge distribution is assunied to be spherically symmnictric, but otherwise
arbitrary.

Let fe(p:, Ps), where p; is the initial, and p; is the final momentum, be
the scattering amplitude in the first Born approximation for the scattering
of an electron from a point nucleus of charge Ze. Let f(p;, p;) be the
scattering amplitude, also in the first Born approximation, for the scattering
of an electron from a real nucleus of the same charge. Let q = p; — p;
denote the momentum transfer. The quantity F defined by f(p:, ps) =
F(q*) fe(pi, Pr) is called the form factor: it is easily scen that F in fact
depends on p; and py only through the quantity 2.

(a) The form factor F(q?) and the Fourier transform of the charge
density p(x) are related in a very simple manner: state and derive this

&
!
b4

%,

o AR T
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relationship within the framework of the nonrelativistic Schrodinger theory.
"The assuinption that the electrons are “nonrelativistic” is here made so that
the problem will appear as simple as possible, but if you think about the
matter it will probably be clear that the assumption is irrelevant: the same
result applies in the “relativistic” case of the actual experiments. It is also
the case that the neglect of the clectron spin does not affect the essence of
what we are here concerned with.

(b) The graph in Fig. 6.8 shows some experimental results pertaining to
the forin factor for the proton, and we shall regard our theory as applicable
to these data. Ou the basis of the data shown, compute the root-mean-
square (charge) radius of the proton. Hint: Note that there 1s a simple
relationship between the root-mean-square radius and derivative of F(q?)
with respect to g2 at q* = 0. Find this relationship, and then compute.

(Berkeley)

12 <
10 .
b gl 4 : S
b 06

04

0.2(

= o
o

1

lrfI'f;

[ I
N T O
oo

Ll Y
&~

0 6 8 10 12 14 16 18

q? x 10%%cm2
Fig. 6.8

Solution:

(a) In the nonrelativistic Schrédinger theory the first Born approxima-
tion gives the scattering amplitude of an electron (charge —e) due to a
central force field as

2m

f(pi, ps) = TR /U r'V(r') sin(qr’) dr’,

where ¢ is the magnitude of the momentum transfer in the scattering.

M
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For a point nucleus, the scattering potential energy is

Ze?
Vel(r) = ——.
r
For a real nucleus of charge density p(r), the scattering potential energy

/ ! 00 N 2 gt
V(r) = —e / [—)(r Jar' _ —dme / »‘p(r )7 (—i,—
. 0

r—1r/| Ir —r'|

18
)

which satisfies Poisson’s equation

. 1 d?
V2V (r) = = =
-

w0 (rV) = +4mep(r). 1)

Consider the integral in the expression for f:

20 5 1] 1 it
/ rV e dr = — {e“" (7'V - = ('I'V)/):l ’
0 q tq 0
1 (o 6] .
- = / (rVY' e dr
= Jo

By a method due to Wentzel, the first terin can be made to vanish and
0

o0

2m
m rV{(r) sin(qr) dr

f(pi, py) = g ),

2m 1 >
= _A};—Y <~2> / (rVY' sin gr dr
q q Jo

2m 4me [ .
= I2q % / rp(r) siu (qr) dr, (2)
: 0

use having been made of Eq. (1).

In the case of a point-charge nucleus, only the region near r = 0 makes
appreciable contribution to the integral and so

o0 o0
4w / rp(r) sin(gr) dr =~ 4dnq / r2p(r)ydr = qZe.
0 0
Hence for a point nucleus,

2mZe?

fe(pi, Py) = g
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For an extended nucleus we can then write

ar [ sin (gr)
f(pi, ps) = fe(Pi, Pr) - Z/0 r2p(r) in(gr)

By definition the form factor is

Fla) = % /OOO rp(r) Sil?f” dr, )

or 1
F@) = - [ o) ar.

This is the required relation with the Fourier transform of the charge
density.
(b) Differentiating Eq. (3) with respect to g we have

ar 4w / 2 p(r) [T cos(qr) smgqr)} dr
dq Ze 0 qr q°r

and hence

dF _dF dg 1 4n [% rp(r) ['mq (gr)  sinlg )] dr.

dq?)  da d(@) 20 Ze Jo

qr q3r

To find ﬁ?rj |20 we first calculate

. [1‘ cos(qr) sin (qr)}
Iim > —
a0 q2r gr
2 1 3
ro gt g — = (an)
- l}% q27‘ - q37‘
L,y 7
= by <_§T > -3
Then
o0
aFr — _}_ . L rzp(r) . 47r7‘2 dr = —— <7‘2)
d(q2) q2=0 6 Ze 0
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From Fig. 6.8 can be found the slope of the curve F(¢?) at ¢ = 0,
whence the root-mean-square charge radius of the nucleus:

1/2
N i
<7' > - < Gd(qg) q2:0> .

6029

In the early 1920’s, Ramsauer (and independently Townsend) discovered
that the scattering cross-section for electrons with an energy of ~ 0.4eV
was very much smaller than geometrical (ra?, with a the radius of the atom)
for scattering by argon atoms in gaseous form. It was also found that the
cross section for 6-volt electrons was 3.5 times as great as the geometrical
cross section and that the scattering was approximately isotropic. What is
the origin of the “anomalous” cross sections? (What is the maxinmm pos-
sible cross section for scattering of low-cnergy clectrons (with wavelength
A a)?

(Princeton)
Solution:

If the attractive potential is strong cnough, at a certain cuergy the
partial wave with £ = 0 has exactly a half-cycle more of oscillation inside
the atomic potential. Then it has a phase shift of § = 7 and so contributes
nothing to f(#) and hence the cross section. At low energics, the wavelength
of the clectron is large compared with a so the higher-£ partial waves’
contribution is also negligible. This accounts for the Ramsauer-Townsend
effect that the scattering cross section is very small at a certain low energy.
For low-energy electrons, the maximum possible cross section for scattering
is four times the geometrical cross section. It should be noted that a rare-
gas atomn, which consists entirely of closed shells, is relatively small, and
the combined force of nucleus and orbital electrons exerted on an incident
electron is strong and sharply defined as to range.

6030

Let f(w) be the scattering amplitude for forward scattering of light at
an individual scattering center in an optical medium. If the amplitude
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for incoming and outgoing light waves are denoted by Aj,(w) and Ague(w)
respectively, one has A,y (w) = f(w) Ain(w). Suppose the Fourier transform

~+oo
Ainlz —t) = / e A (w) dw

oo

3~
3

vanishes for x —t > 0.

(a) Use the causality condition (no propagation faster than the speed
of light ¢ = 1) to show that f(w) is an analytic function in the half-plane
Imw > 0. ) .

(b) Use the analyticity of f(w) and the reality of Aj(w) and Ague(w),
and assume that f(w) is bounded at infinity to derive the dispersion relation

, 2w? e Im f(w +ig)
Re| f(w +te) — f(0)] = - P /0 dw m )
with & arbitrarily small and positive.
(Chicago)

Solution:
(a) Am(;l,’ —t}) =0 for t < z means Aout(w —t) =0 for t <. Then

1 0 —iwT A
A(:::t (w) = E / e " Ao;:L (r)dr

is a regular function when Imw > 0, since when 7 < 0 the factor exp (Imw)
of the integrand converges. As Aoy (w) = f(w) Ain(w), f(w) is also analytic
when Imw > 0.

(b) For w — o0, 0< argw < 7, we have |f(w)] < M, some positive
number.

Assume that f(0) is finite (if not we can choose another point at which
f is finite). Then x{(w) = f—E;MQZ is sufficiently small at infinity, and so
L /‘+°° —X(w,+i0) dw', Imw > 0.
27 . w —w

x(w) =

-0

When w is a rcal number, using

1
!

_ = +ind(w —w),
w —w-—-10 W —w




526 Problems and Solutions on Quantum Mechanics

we get
P /+°° Im x(w’ +140) |,
— D du’.

fex(w) = T oo w —w

A (w) being a real nuinber means that A%, (—w*) = A w (w). Hence
out

out

fr{w*) = f(~w), and so Im f(w + i0) = ~Imfzﬁw +140), and

* Im f(w' +1i0)
—— 2 dJ’,
w/(w/z _ w?)

Re[f(w +10) — f(0)} = 2%}7 /0

where P denotes the principal value of the integral.

6031

n? k2
2m
an infinitely heavy spin-one-half target. The interaction Hamiltonian is

A spin-one-half projectile of mass m and energy E = scatters off

e K

Hip, = Aoy - o2

(> 0),

where o1 and o2 are the Pauli spin operators of the projectile and target
respectively. Compute the differential scattering cross section "% in lowest
order Born approximation, averaging over initial and summing over final
states of spin polarization. Express j—g as a function of k and the scattering
angle 6.

(Princeton)
Solution:

Suppose that the projectile is incident on the target along the z-axis, i.e.,
ko = ke,. In lowest order Born approximation, the scattering amplitude is

’

_ . m i(ko—k)-r e H g,
f(8) = o e'o Aoy - o2 p d°r
—-m iq e r 3
=53 'Yt Aoy - oo 7 d°r
—m oo ’ T 7
= — Ao, -0 / e M dr’ / e 038 ¢in 9 do
k 0 0
2m 1
— _ﬁ AO’l a 2 I q2 y

T

i

¢ s

R e T

e S i g
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where q = kg — k, ¢ = 2k sin % . Denote the total spin of the system by S.
Then S = 3 (01 + 02) and

1, 2 2 w?
oy 02=- (0 -0y —03) = [4S(S+1)_3'3]

2 T2
B
=5 [45(S +1) — 6].
For $ =0, o1 - oy = —3h? and
o) — 6Am  doo _ (6Am)?
fo0)= 27 a0 T G2 v o

For S =1, oy - o9 = h? and

-

2Am  doy (24m)?

h{0) = 24 g? A (u? 22

If the initial states of spin of the projectile and target are (é)p = ap,
((1) )1 = «r respectively, then the iuitial state :)f spin of the system is 0, =
apap, the scattered wave function is f1(6) % 0,1, and the corresponding
differential scattering cross section is given by

do 1111 . 2

do (11 1 1\ _do (11 11
ar\222 2) 42 \22" 22
_do (111 1\ _,
Tdo \22° 2’ 2
Noting that the triplet state vectors are

Oy = (apPr + Prar),

1
©11 = apar, ©1 1= Ppfr, 7
the singlet state vector is
1
B0 = 7 (apfr — Bpar)

and that
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apfr = ! (O +6
rOr /3 10 00) , etc.,
we can obtain the remaining differential cross sections:
do [1 1 1 1 1 .
@ (355 “3) - 190 - 4o
do (1 111 1 a
n\z' 2 Tz32) 7O - RO

d_(f 1 1 11\ do (1 1 1 1
a2 \2° 222/ 4q 5’—5757—5)—0;

do (11 1 1\ 1 ,
@\ 23 3 ~y) = O = fO)F,
do (11 11\ 1 )
a \ "33 75 3)=1Hh@+H@)F,
do (mll 11\  do 11 1 1
aQ \ 22’22/ 40 Eé’ﬁﬁ"§>‘0;
do 1 1 1 1 Y
a\"2 "2 2 ‘2>:|f1(9)| ’
dff<1_£.11__drf 1 1 11
dQ\ 27 272 2) 7 40 “’5’“55)

2
_do (1 1 1 1
M\ 2 T2y )70

Averaging over the initial states (i) and summing over the final states
(f) of spin polarization, we obtain

-z _Z 2 e® o). olf) ol
=1 2 2 i L8t sif) s
e, 850 s{) 54

12A%m2

W | =

= = [3f7(0) + f3(8)] =
12 + 4k2? sin®

N D
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6032

Calculate in the Boru approximation the differential scattering cross sec-
tion for neutron-neutron scattering, assuming that the interaction potential
responsible for scattering vanshes for the triplet spin state and is equal to
V(ir)=W L; for the singlet spin state. [Evaluate the cross section for an
unpolarized (random spin orientation) initial state.]

(Berkeley)

Solution:

The Born approximation gives (Problem 6013)

2m [
fs(0) = 2 /U rV(r) sin ¢qr dr
2mn ™ .
= —ﬂ Vo ¢ 7H sin grdr
g fo

2mVy q
h2q ¢* + p?’

q =2k sin(0/2),

where k is the wave vector of the relative motion of the neutrons, m = m;, /2

is the reduced mass.
As the spin wave function of the spin singlet state is antisymmetric, its
spatial wave function must be symmetric. Thus

oy = | F(0) + F(m — 0))?

Am2* Vg 1 N 1
Jit p® +4k? sin® £ 42 + 4k? cos? &
16m2V@ (u? + 2k2)?
At (p? + 4k? sin” %)2 (12 + 4k2 cos? %)2 .

Because the neutrons are initially unpolarized, the scattering cross sec-

tion is
1 3 1
9 = — 0y + - = —
o(8) 1 o i o i o

Am2VE (u? + 2k2)?

, 2 0\’ . 0\
R4 <p2 + 4k2 sin® 5) <u2 + 4k? cos® 5)
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6033

The scattering of low-energy neutrons on protons is spin dependent.
When the neutron-proton system is in the singlet spin state the cross section
isop =78 x 10~ cmz, whereas in the triplet spin state the cross section
is 03 = 2 x 107% cm?. Let f; and fs be the corresponding scattering
amplitudes. Express your answers below i terms of fiand f3.

(a) What is the total scattering cross section for unpolarized neutrons
on unpolarized protons?

(b} Suppose a neutron which initially has its spin up scatters from a
proton which initially las its spin down. What is the probability that the
neutron and proton flip their spins? (Assuine s-wave scattering only.)

(¢) The Hy molecule exists in two forins: ortho-lydrogen for which the
total spin of the protous is 1 and para-hydrogen for which the total spin of
the protons is 0. Suppose now a very low cuergy neatron (A, >> (d}, the
average separation between the protons in the molecule) scatters from such
molecules. What is the ratio of the cross section for scattering unpolarized
neutromns from unpolarized ortho-ydrogen to that for scattering them from
para-hydrogen?

(Berkeley)

Solution:

(a) The triplet and singlet spin states of a ncutrou-proton system can
respectively be expressed as

X? = ntxy, Xg = ((lnﬁp + ('71ﬁn)a X:}_l = ﬁnﬂp »

Sl

1 1
X_l:ﬁ

with a = (}), 8= (). It we define an operator f by

(anﬁp - apﬁn) 1

N 3 1 1
=—fat- i+ — On-0y),
f 4f3 4f1 4(f3 H)(on o)
then as
On-O0p = OnzgOpg + OnyOpy + Onz0pz,
oz = 3, oy = i3, o=,

0 = a, 0,08 = —ia, a.3 =1,
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we have
; : ; 3 Fo3 3
fX%:fsx'}, fx%:fax() fxly = faxt.,
le,J - lel_l B
i.e., the cigenvalues of f for the triplet and singlet spin states are f3 and

f1 respectively.
Similarly, if we define

f2=S e gt g B f) (on )

then f2 has cigenvalucs f3 and f7 for the triplet and singlet states, and we
> . : 1t states

can exproess the total cross section for the scattering as oy = 47 f*.
Assume the spin state of the incident neutron is

e cos B
¢ sin g3 '

Note liere (23, 2¢) are the polar angles of the spin direction of the neutron.
If the state of the polarized proton is ((1)), then the cross section 1s

e cos B\ 1>+ E (1) (e"m cos ﬂ) .
oy = 4m ¢ sin 8 0/, 0/, \ € sin 8/,

n

(0 o0,
= (1o, {” (1), o (1), <é”

= Onz;
e=i® cos B\ e~ cos [3)
ﬁia sin ,8 n n eia sin IB n
. i s 1 0 e’ cos ﬁ)
= (" cos f e " sinf)q 0 1 e*sinf )

e~ cos 3 )
n

—e~ i gin 3

As

= (e cos B e " sin B)y (

cos? B —sin® B = cos 283,

1
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we have

or = m{3f5 + fi = (ff — f7) cos 26}

3 1 s 203
{—(73+f(71—(03(71) COS4 f }

4 4

Since the incident neutrons are unpolarized, cos 283 = 0 and so
3 1

Ulzz(fg-i-z(fl.

Because the dircetion of the z-axis is arbitrary, the total scattering cross
section of unpolarized protons is as the same as that of polarized protouns.
(b) The state vector before interaction is

(o), (1),

We can expand this in terms of the wave functions of the singlet and
triplet states:

o) (=5 {0, (0 (). ()
0.0 -0, O

The scattered wave is then

T 0. 0,400, )
s [0, 6.0, ()}
SRR, (0,552 (). ()

Hence the probability that the neutron and proton both flip their spins

(fa— H)?
(fs+ f1)2+(fs — fr)?

Sl

|

is ‘
_ 1 (fa = f1)?
2 fi+fE

we have

and hence

For para-hydrogen, S = 0 and so

In this case, as there is no preferred direction the cross section is inde-
pendent of the polarization of the incident neutrons.
For ortho-hydrogen, S% = 1(1 + 1) = 2. Taking the proton states as

((1))111 (é Vs> USIDE

and following the calculation in (a) we have

Hence
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|

o
. . 3fs+ A1
F=fitfo=""0—+5(fs fi)ou-S 4
b
1 ‘\i .

S= (Upl + Upz) = (Sm + sz) .

2

= % {(3fF5+ f0° + (53 =2f1fs — 3fD) o - S

+ (fs— f1)*S°}.

op :7r(3f3+f1)2-

1
O’H'S:§(Un‘gp1+o'n‘o'p2)
o-S =cos20.

oo =7 {(3fs+ f1)? + (5f% — 2f1fs — 3f}) cos 20
+2(fs - f1)?},
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where 20 is the angle between S and o,. If the neutrons are unpolarized,
cos 23 = 0 and so

oo = [(3fs + F)2 + 2(fs — f1)?].

This result is independent of the polarization of the hydrogen. The ratio

we require 1s:
a0

=14 2(f3— f1)2/(fL + 3f4)%.

ap

6034

Cousider a hypothetical neutron-ncutron scattering at zero energy. The

interaction potential is

V() o1-o0Vy, r<a,
T) =
0, r>a,

where o and g7 are the Pauli spin mmatrices of the two neutrons. Compute
the total scattering cross scction. Both the ncident and target neutrons
are unpolarized.

(CUS)
Solution:

Cousider the problem in the coupling representation. Let

1 1
8251+52:§U]+§U‘2.

Then

1 . . .
01~02:§(4Sz—af—of)

1
5[4S(S+1)73~3}
=25(5+1)-3,

where S = 1 or 0. It is noted that an eigenstate of S is also an eigenstate
of V(r). For zero-energy scattering we need to cousider only the s partial

Scattering Theory and Quantum Transitions 535

wave, which is symmetrical. The Pauli principle then requires the spin wave
function to be antisymmetric. Thus we have S = 0 and

0 rT>a.

bl

_3V07 r<a,
V:

For s-waves, the wave equation for r < a is

d*u 9

oy +kju=0,
where u(r) = i, ¥ being the radial wave function, kZ = 6mVy/h?, and the
solution is u(r) = A sin(kor). For r > a, the wave equation is

d*u .
m + k’f?l. = 0,

2 2mop o, A 3 ta — G -
where kf = 2% E, and the solution is u(r) = sin(kyr + do).
The continuity of u aud u’ at r = a gives

ki tan(koa) = ko tan(kia + do) -

For E =0, k; — 0 and

BU an (kga) = o0 (k1) T tan o
ko 1 — tan (k1a) tan g

%k1a+tan 50,

00 ~ kla |: koa

For collisions of identical particles,

a(8) = 1f(0) + f(m —O)

B

Z 2(21 + 1) €' sin & P, (cos 6)
1=0,2,4

Considering only the s partial wave, we have the differential cross section

4

G

4 9 -
a(f) = = sin? dg ~
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and the total cross section

2
or = 4o = 16mwa’ [M — IJ

oa

As the incident and target neutrons are unpolarized the probability that
S =0 (i.e., opposite spins) is % Hence

) 2
o, = 4ma* [Ln(koa) — 1}
k‘oa

6035

A beam of Spin-% particles of mass m is scattered from a target con-
sisting of heavy nuclei, also of spin 1/2. Tle intcraction of a test particle
with a nucleus is ¢s; - 59 8° (31 — x2), where ¢ is a small constant, s; and s
are the test particle and nuclear spins respectively, and x| and x, are their
respective positions.

(a) Calculate the differential scattering cross section, averaging over the
initial spin states. What is the total cross section?

(b) If the incident test particles all have spin up along the z-axis but
the nuclear spius are oriented at randoni, what is the probability that after
scattering the test particles still have spin up along the z-axis?

(Princcton)
Solution:

(a) As the nuclear target, being heavy, acts as a fixed scattering center,
the center-of-mass and laboratory frames coincide. Then the cquation of
relative motion is

R 2 (3) _
{% Vi+csp sad (r)} P(r) = Ey(r).

As c is a small constant, we can employ the Born approximation

f(0) = _277;12 ei(kvkl)'r/csl 550 (") d*r'
™ 2

cm
——>s1-5;
2mh? !
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using the property of §G)(r"). The differential scattering cross section is

Y c2m? )
o(0) = [f(O)° = @nh2)? s1-s2]7,
where
1 .
S1°82 = 5 [Szfsf;sg]
1 1 3 1 3],
- - y ) Y
2[5(5+1> 2 2 2 2]
S=s|+s2.
For the state of total spin S =0,
Am? o1 3) 2 2 (3me)?
A SR R I S ‘
() (2wh?)? | 2 2 (8m)?2
For § = 1,
c2m? |1 2 2 (me)?
(28] (9) = 5% | & = h = 5
(2rh®)? |2 2 (8m)

Averaging over the initial spin states, the differential scattering cross

section is 1 3 3(mc)?
m
o (8) = ZUO(Q)+4—101(9) = )

(8)*

Alternative solution:

Let |ay,) denote the initial spin state of the incident particle. The spin
of the target is unpolarized, so its state is a “mixture” of |a) and |B) states
(not “superposition”), ex(t) lan) + c2(t) |Bx). Here ci(t) and c2(t) have no
fixed phase difference, and so the mean-square values arc cach 1/2. In the
coupling representation, the initial spin state is a mixture of the states

(B ), j;) () + 1x2))

where  [x) = lap) [an),
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1
x0) = 7 (lop) 1BN) + 1Bp)len))
0 1
[xo) = 7 (lap) 1Bn) = 1Bp)lan)) -

After scattering, the spin state of the system, with part of the asymp-
totic spatial states, becomes

B(S))y = enlt) F1(6) ) + ;; F1(6) 1xd)

+ fo(0) 1x0)] -

Taking the dot product of the different |x) states with [1) 5, we obtain
the corresponding probability amplitudes, which are then added together

to give the total cross section

a:(0) = jex

—~

O 1(60) + 3 lea (0 01 (0)

|(,’2(t)!2 (7'0(0) .

N —

+

1

As ¢(t), ca(t) each has the mcan-square value 7> we have

a:(9)

Il

1 1 1
5 71 0) + 1 1(8) + L 00(0)
3 1
Z ()'1(9) + Z 0()(9) y
same as that obtained before.
(b) After scattering the two irrelevant spin states of the systemn are
b and () + ).
V2
Taking the dot product of the two states with [¥;), we obtain the cor-

responding scattering amplitudes. Hence the scattering cross section is
w

o® = ey (8))? 01(6) + i le2a(O* | [£2(6) + fo(8)] I
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Averaging over the ensemble, we have

o = L0r(0) + £ 112(0) + (6 =

The probability that the test particles still have spin up is

B (f(t) _ 1
= p = 3 .
6036

(a) Two identical particles of spin % and mass m interact through
a screened Coulomb potential V(r) = e* exp(—Ar)/r, where 1/X is the
screening length. Consider a scattering experiment in which each particle
has kinetic energy E in the center-of-mass frame. Assume that F is large.
The incoming spins are oriented at random. Calculate (in the center-of-
mass frame) the scattering cross section % for observation of a particle
emerging at an angle @ relative to the axis of the incoming particles as
shown in Fig. 6.9.

outgoing

incoming

outgoing

Fig. 6.9

(b) Assuming that the outgoing particles are observed at an angle 8
relative to the beam axis, what is the probability that after the scattering
event the two particles are in a state of total spin one? What is the prob-
ability that, if one particle has spin up along the z-axis, the other particle
also has spin up along the z-axis?
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(c) How large must the energy be for your approximations to be valid?
Suppose that, instead, the energy is much less than this. In the limit of low
energics, what is the probability that after being scattered the two particles
are left in a state of S =17

(Princeton)

Solution:

In the CM frame, the motions of the two particles are synunctric. The
interaction is equivalent to a potential centered at the midpoint of the line
Jjoining the particles.

V(p) = e exp(—2Xp)/2p,
where p = 7, r being the scparation of the two particles. As the cnergy E
is large, we can use the first Born approximation

m o ‘
)= -5 / e PV (p)dip
2m [ e? l
= — F2g 5 exp(—2Ap) sin(qp) dp
Jo

' i
771,(3‘2 b

where q is the momentum transfer during the scattering, g = 2k sin(f/2).
Considering the syminetry of the wave function of the two-identical-particle
system, we have

for S =0,  a,(0) = |f(8) + f(x —6)}?,
for S=1,  0,(0) = |f(6) — f(x — )2
Thus
1 (me2\? | 1 i
Us(9)23<?> 220 2+ '1 .
| k2 sin® 3 + A2 k2 cos? % + A2
_ 1 (m_62>2 _ K2+ 202 ’
4 2 | (k% sin® § + A2} (K2 cos? £+ A2) |
O’(G):l <m€2)2 [ k? cos 6 ’
4 h2 ~(k2 sin? %ﬁ' /\2) (kz cos? % + /\z) .
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Hence the total cross section is

_L

gy = 4 o5 + AI Tq
1 (me? 2 (k% +22%)2 1 3(k? cos 0)?
16\ A2

5 -
Kk sin? g + A2> <k2 cos? g + A‘Zﬂ

(b) Tf the incident particle is unpolarized, then the probability that after
the scattering the two particles are in a state of total spin one is
3
37 _ 3(k? cos )2
o (k? +2X2)2 4+ 3(k? cos )2~

The probability that after the scattering both particles have spin up

along the z-axis is

1
1 Ta B (k2 cos 0)2

T (k2 + 222)2 + 3(k? cos 6)2

(¢) The £ = 0 partial wave has the symmetry f(0) = f(m —0). It makes
1o contribution to the S = 1 state, while it is the main contributor to the
S == ) state. Therefore the ratio of the scattering cross section of the S =1
state to that of the S = 0 state is equal to the ratio of the scattering cross
section of the £ = 1 partial wave to that of the £ = 0 partial wave. It tends
to zero in the low cuergy limit.

6037

An electron (mass m) of momentum p scatters through angle 6 in a
spin-dependent (and parity-violating) potential V' = e hr” (A+ Bo - 1),
where ;1(> 0), A, B are constants and oy, gy, o, are the usual Pauli spin
matrices. Let ?)(s’z be the differential scattering cross section, summed over
final spin states but for definite initial spin state, labeled by the index i, of
the incident electron. In particular, quantizing spin aloug the line of flight
of the incident electron, we may consider alternatively: incident spin “up”

(i =*1) or “down” (i =l).
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a d . .
Compute Z5- and G+ as functions of p and # in lowest order Born

approximation.
(Princeton)
Solution:
Let the incident direction of the clectron be along the z-axis. In a

diagonal representation of o, the spin wave function of the incident clectron
1nay be expressed as

() e ()

Let n be the unit vector along the r direction, i.e., n = (sin 6 cos @, sin 0
sin @, cos 8). Then

01y (O Y
g -n= Sin COS - S S11
1 0 PG g ) mUsmy

1 0 cos 0 sin @ ¢~
+ cosf = . .
0 -1 sin 6 ' ~cos @

First consider v, :

( )y 1 cos 0 -+ sin fe W
o-n)Y, = — .
! V2 \ sin 8e* —cos 6

1 . 1 .
= —=(cos 8 +siu e ) v + — (sin 0™ — cos 6) 3,
V2 V2

where o = (é), 0= ((1)) arc the cigenstates of o, in Pauli’s representation.

In first Born approximation the scattering amplitude (including spin) is
given by
m

O)=—5-3 / e V() gy da

-,

where q = % (py ~ p), |al = ¢ = ZﬁE sin(f/2). This can be written as

f(9) - 2’:;2 / e—iqr' cos §’ e—pr'2

X (A +7'B (o -n) ¢y ]d* e = L(0)a+ L(6) 3,
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where
m —igr’ cos 0’ —‘ur'Q
x [A+ 7 B{cos 0 +sin 0 e ) " sin 0 dr' d6' dy'
m B —igr’ cos 6’ —ur’? (gt i 9/) !
20)= ——5 —F4= | ¢ € (sin ' e cos 8')r
L2(9) 2wh? /2
x sin @' dr' d6' dy' .
As o
| e a0,
0
we have

i o0 12 1
m —iqr’ cos 8 —pur
= — € (4 I
L(9) 27h? A /0 V2
x (A+71" B cos )1’ sin §'d6’ dr’,

: : ’
or, integrating over ',

2m
h2q

3 * 12 _ur'? ’ ’
x - " e H cos(gr’) dr
V2 Jo

L(9) =

. o0
q 0

we have

2\ (-2
af o —ur'? . ! /_l E 7—q —q
o = */o e * sin(gr')dr’ = 2\ exp 4 4

or

3
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{i
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as well as

of /°° 2

/ R
= - — e cos(qr ) dr’ = | X
Op 0 ) H

1) (12 (2 2
« (L exp<_ LT 1
< 4yt 4u) 812 \ P Cdu )

or
o _
/ e cos g dr’ = L \/E xp | - o
0 dp Vo 4 8p?
= 2
X 4= exp <»—(L .
M i
Thus
2m A 2
L) =2 4 \/f .4 q
e ViV 4 7P\ Ty,
2mi B \/? q? 2
_2mi B ] I g
5 - —exp { —— T T
h2q v2 Vo < 4/t> (4/1- 81173)
2mi ¥E] T q?
1 q
Ze 4 4
Bt P < 4//) A4
_ [T m ( 4y By 7S
i— ] exp [ -1
2 202 2 P ( 4;5)
Hence
Ja 2 :
1 . T 2 2p?
S0 = L0 = —— exp [ L 2 0B
o0 st TP\ 7o ) (AT 42 )

Similarly we obtain

and hence

801 2 2 p
9oL 2 _ _pm” q °B?

The same results are found for 4_.
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6038

A spinless charged particle P is bound in a spherically symmetric
state whose wave function is ¢1(r) = (Tra)“g/ze"'g/%‘z. It a spinless,
nonrclativistic projectile /% interacts with P, via the coutact potential
V(r -t') = Wb*83(r = r'), calculate, in first Born approximation, the
amplitude for the elastic scattering of P» from the above bound state of P
(without worrying about the overall normalization). Assuming Py is suffi-
ciently massive that its recoil energy is negligible, sketch the shape of the
angular distribution ((IITUZ of the scattered projectiles. How does this shape
change with bombarding encrgy, and how can it be used to determine the
siz¢ of the P, bound state? What determines the minimum energy of Py
necessary to measure this size?

( Wisconsin)

Solution:

Because Py is very heavy and so can be considered as fixed, the Schrod-

inger equation of 1% is

2 _. .

[ ZIA \VAJE / dr’ py (v') Vy b6 (r — r’)} W(r) = E(r),

™ .

or ,
R s 3
o VO Vb i (x) ) (x) = Bu(r),

wlere p1(r) = J41(r)|? is the probability density of the particle P at r and
m 1s the mass of P;. Then Born approximation gives

2m [, . /
FO) =~ [ Vb i) sinar'y '
0
Thus
1 b 3 oo 72
f(e) oC 5 (g) /(; Tl €xXp (”_,’a_z> Sin(qr,) dT/
3 1 2
o« b’ exp [—Z(qa) :l )
and hence

do 9 1 2
ol ()" = 00 exp [—g(qa) }

5 0
= 0 exp [—Z(ka)2 sin” EJ )
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gy(8)
Ey>E,>E,
Ey
£3 33 N
0 v > 8

£ increasing
Fig. 6.10

where k = £, 0y = o(¢ = 0). 4=
the Fig. 6.10.

a vs. 0 for different cnergies are shown in
When the incident energy is increased, (% will more rapidly decrcase
with increasing 0. As

do .y
In — = —2k%a2 sin?

an +C,

SV IS

where ¢ is a constant, a plot of In % against sin®(0/2) will give a straight

line with slope —2k2%a? = —2(2)242. which can be used to determine the
p L »

size a of the P} bound state. The expression for (Lilxlz does not appear to

impose any restriction on the incident energy, except where the validity of
Born approximation, en the basis of which the expression was derived, is
concerned. In fact (Problem 6026), the validity of Born approximation

requires
h%k Y\
~Z > V)~V (_’) ,
ma a
ie.,
ko mb3V0
min ™ W
6039

(a) State the electric-dipole selection rules for atomic states connected
by emission or absorption of a photon.

(b) Interpret the selection rule in terms of photon orbital angular mo-
mentum, spin, helicity and parity.
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(c) Make a semi-classical estimate of the lifetime of the 2p state of
hydrogen, using the Bohr model and the classical formula

¢

P=_-=9 (c.g.s. units)
o3

[SCRN N

for the power radiated by a particle of charge ¢ and acceleration 'i).. Express
your result in terms of ¢, A, ¢, a and w, where a is the Bohr radius and w
is the angular velocity in the circular orbit. . '
(d) Using the answer from (c), what is the width of the 2p state in
nC Its?
electron vo (Berkeley

Solution:

(a) The sclection rules are
Al = 41, Am==+1,0.

(b) A photon has orbital angular momentum 0, spin 1, helicity +1, and
1 i onservati C anguls nentun requires
negative parity. The conservation of angular mor q

Al =0, +1, Am = +1,0,
while the conservation of parity requires

(—1) = —(=1)",  ie, I#I.

Therefore,
Al = +1, Am = =+1,0.

(c) Classically, the power radiated by an electron of acceleration v is

2 e? <12

An electron in a circular orbit of radius a has acceleration
. 2
V| =w*a,

2

where w®a is given by
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. For the 2p state, n = 2, [ = 1, so the average radius of the electron orbit
is
Loia 2
a= 5[.3n ~ (I + 1)} = 5ay,
where ag is the Bohr radius. This can also be obtained by a direct integra-
tion ‘ e
B f R r-r2dr
J R -ridr

o P, i , .
where Rop o r Cxp(—%). Thus the power radiated is

a = 5(L0 s

2 b
P = o T o o -
3 (bag)im?2c3
[u a transition to the ground state, the crergy difference is
2 2,2
AE=FE,—F --¢ (1 1)y 3
2 \ 22 1 8ag
Hence the lifetime of the 2p state is
e\ 2 3
T =AE/P = <%> Zom

et

_ 7j 2 me\ ad
4 e? o

(TSN L N (053 x 1078 .
4 282 10-13) % T RVET 22x107°%s.

(d) The width of the 2p state is

2 ¢ 3

I'=h/T=30x10"%V.

6040

The neutral K-meson states |[K°) and |K°) can be expressed in terms
of states |K), |Ks):

w1
K = = (K1) + Ks)).
R%) = (1K) = |Ks)),

S

2
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where | K1) and |Ks) are states with definite lifetimes 77, = 7% and 75 = ,%S

and distinct rest energies my,c? # mgc®. At time t = 0, a meson is produced
in the state [¢(t = 0)) = |[K°). Let the probability of finding the system
in state |K°) at time t be Po(t) and that of finding the system in state
|K®) at time t be Po(t). Find an expression for Po(t) — Po(t) in terms of
Yy VS mpc? and mgc?. Neglect CP violation.
(Columbia)

Solution:

Supposc the K meson is a metastable state of width T' at energy £9. In
the region of energy

E:EO—%F,

its wave function may be expressed as

o) =5 (sm esxp [ (TTLL(:Z/;; i) t}
Ks) oxp [A i (’msc2 Ih— %73) t]

_ L
V2

. 1
(:\KL) exp (-imchf,/h) exp ( 3 th>

The probability of its being in the |K°) state at time t is
Po(t) = (K ()
_ % 'c—imcht/h e TEt/2 4 e—imsc2t/h e—'yst/2’2
= }—1 {evt pem st 4 26~ (L) /2 o5 ((my, ~ mg) ¢*t/A]},
and the probability of its being in the K° state is

Po(t) =IK® ()
= % {e—’mt 4+ e~ vst 26*(’1L+’15)t/2 cos [(mL —ng) Czt/h]} .

Thus

Po(t) — Po(t) = e~ (LH715)/2 coslmy — ms) /R
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6041

The energy levels of the four lowest states of an atom are

E,=—-140¢eV,

E, = -90¢V,

Ez =-T7.0 OV,
£

Fig. 6.11

and the transition rates A;; (Einstein’s A cocfficients) for the 7 — § transi-
tions are

Al =3.0x10%s7", Ap =1.2x10%s7' Ay =45 x 107571,

Ao =80x 10757, A3 =0, Ay —=10x107s71.

Imagine a vessel containing a substantial number of atoms in the level
Es.

(a) Find the ratio of the encrgy cmitted per unit time for the Ey — Ej
transition to that for the £, — E transition.

(b) Calculate the radiative lifetime of the E, level.
{ Wisconsin)

Solution:

(a) The energy emitted per unit time is given by (E; — E;) Ay, and so
the ratio is 5 5 4 712
e el e L R
Ey—FE, An 2 3
(b) An atom at level E; can transit to £y or E) through spontaneous

transition. So the decrease in the number of such atoms in the time period
dt is
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dNo = — (A2 + An) Nadt.
ie.,
dNy

N —(Ag0 + Az1)dt,

or, by integration,
Ny = Nyg exp [—(Az0 + A21) 1],

where Ny is the number of atoms at energy level E3 at time t = 0. The

mean lifetime is then

o0 o0
S A / t(—dNo) = (Ag + A21) / t exp [—(Aa0 + A1) t] dt
Noo Ji—o 0
Y s0x1070s.
Aog + An

6042

A hydrogen atom in its first excited (2p) state is placed in a cavity. At
what temperature of the cavity are the transition probabilities for sponta-

neous and induced emissions equal?

(Berkeley)

Solution:

The probability of induced transition per unit time in a cavity is

7T2€2 2
Wiy = ’Rh—ﬁ |r12| P(W21)7

and that of spontaneous transition is

482(4.)%1

2
Az = 3het |r12]”-

If they are equal, then we have

2 3
W

s
T plwz1) = Pk
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As for black body radiation

Fuod 1
[)(L«)) = 2.3 R}
nct exp(hw/kT) - 1
we have
! 1
oxp (Bgp) —1
and
hw»l
T = -
kln 2
With

o — met 1 1
5=\ )

T me <e2>2 3 051 x10° /1 \* 3
k \hc) 8In2 862x10 (1—5—7) sTng _ TIXL0TE

6043

A A hydrogen atom (with spinless clectron and proton) in its ground state
1s placed between the plates of a condeuser and subjected to a uniform weak
electric ficld

E=Eje "to(t),

where 6(t) is the step function: (1) = 0 for t < 0 and 6(t) =1 for t > 0.
Find the first order probability for the aton: to be in any of the n = 2 states
after a long time. Some hydrogenic wave functious in splierical coordinates
are

1 1

Y100 = 5 e "/, VY210 = ——— eTrI2 2 oy g,
wag v/ 32mag ag
1
b= (12 L) e
\/87rag 2aqg ’
1/} . 1 T —7/2a . +1
21:!:1‘3!:—_3—_8 % sin fe 7,¢'
Vbdray ao
A useful integral is [(* 2" e79% dp = 2L

( Wisconsin)
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Solution:

Take the direction of the electric field as the z direction. Then the
perturbation Hamiltonian is

H' =er-E(t) = ezE(t).
The non-vanishing matrix clements of H' are those between states of
opposite parities. Thus P(1s — 2s) = 0. Consider P(1s — 2p).
The 2p state is three-fold degenerate, i.e.,
|2p, M), with m=1,0,-1.
For (m/|z|m”) not to vauish, the rule is Am = 0. Thus
(2p, 1|H'|1s, 0) = (2p, —~1}H'|15,0) = 0,

and finding the probability of the transition 1s — 2p is reduced to finding
that of |15, 0) — {2p, 0). As

2p, 01H'|1s, 0) = eE(t 3167 cos 8 1h1pg dr
! 1

S 4L (o)

% r* cos? § sin 8 dr df dp

t 2 4! 272
_eB) , 2 - X/;“"eE(t),
4 \/Eﬂag 3 3 3
2(10

the probability amplitude is
1 o / gy b
Cpo1s0 = = (2p, O|H'|1s, 0) " 22" dt
ih J_

7
12 V2 age E, /Oo o~ Ttgiwatt gy
0

BRTEE
- 272 aoeFo 1
- RET) [ — w2y’
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where wq; = %, (E; — E;). Hence the probability of the transition |1s, 0) —
12p, 0) is

. 2150262 F2
P(1s — 2p) = |Cupo.150]* = 310712(F0—2+3)2) :
21

Note that

1 e? 11 3e?
(B —E)= (- —2)= .
wa h,( 2 2 2agh <22 1) Bagh

6044

A diatomic molecule with equally massive atoms, cach with mass M,
separated by D is electrically polarized, rotating about an axis perpendic-
ular to D and running through the center of mass of the molecule.

(a) Express the energy of the rotational state of the molecule with an-
gular momentum quantum number J i terms of its mechanical properties.

(b) What is the selection rule for electric dipole radiation emission from
the molecule in one of its rotational states? (DERIVE ANSWER)

(¢) Determine the frequency of the electric dipole radiation emitted from
the rotating molecule as a function of J. (Express answer as a function of
J, M, D and any universal constants that may enter).

(Buffalo)

Solution:

(a) As H = 21—1 J?, where J is the total angular momentumn operator,
I = %MD'2 i1s the moment of inertia of the molecule about the rotating
axis, the energy of the rotating state of quantum number J is

1 2
E; —M—DZJ(J+1)h .

(b) The eigenfunctions of the rotational states are the spherical har-
monic functions Y7,,. Take the z-axis along the electric field and consider
the requirements for (57m”| cos @ |7'm’) #£ 0. As
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(J"m"| cos @ J'm')

_ (J’+1—m’)(J’+l+m’)6” e S
= (2]'+1)(2J’+3) JJ'+19m'm

(‘],'f‘m'l) (J'—m’)é , Ky ,
+ \/(2J’+1)(2J’—1) JU I —108m/

we require
AT =3" -5 =41,
Am=m"-m' =0.

(¢) For the transition from cnergy level J to J — 1, we have

1 1 1 ,  2JR?
1vin
giving - o Tk
“= MD?
6045

(a) Find the energies above the bottom of the potential well of the
ground state and first two excited states of a particle of mass m bound in a
deep one-dimensional square-well potential of width £ as shown in Fig. 6.12.
Sketch the corresponding wave functions.

4 A
2 0 7
y
/ 4
-
/7 4
Fig. 6.12

(b) Calculate the matrix elements for electric dipole transitions from
the first two excited states to the ground state, and explain any qualitative
differences. [You need not carry out all the integration|
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(¢) Give the general selection rule for electric dipole transition between
any two states in the system.
(Wisconsin)
Solution:
(a) The energy levels of the system are
w2 hPn?
:Tm/,T’ wheren — 1,2, ... .

The wave functious of even parity are given by

2 x

The wave functions of odd parity are

2 )
v = [ 0E

The ground state and the first two excited states are respectively

h2n? 2 w
_ _ o _ e "
n=1, E = PR Py (%) = \/; cos (T) ,
2 2w
4F, Wy (x) = \/; sin ( 7]”> ,
. _ 4 2 3nx
n = -3, Eg = 9E1 y 'l/)3 (X) = 7 COs T .

These wave functions are sketched in Fig. 6.13.

where 1 = an odd integer .

where n = an cven integer.

i

TL=2, Ez

Yoy,

r
/

-/,q»’; an
Fig. 6.13

(b) The Einstein coefficient for electric dipole transition is

4e?w3,,
Aggr = ——5 ppp

3hes >
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The matrix element for the transition of an electric dipole from the first
excited state to the ground state is

2

(£)2, = / Py (x) 2 (x) do

—1/2

2 /[/2 wxr . 27x
- T cos — sin — dx .
U i I ]

The matrix clement for the transition of an electric dipole from the

second excited state to the ground state is

1/2
(x)y) = / Py (x) xep3(x) dx

—1/2

9 ri? T 3
= - T cos — 08 —— dx .

{ —-1/2 2 ]

The sccond matrix clement {(x)s; is zero because the integrand is an
odd function. Thus the second excited state cannot transit to the ground
state by clectric dipole transition. There is however no such restriction on
clectric dipole transition from the first excited state.

(¢} The watrix clement for electric dipole transition from a state ktoa

state &' of the system is

1/2
@ = [ 4 (00 - e
—1/2
If the initial and final states have the same parity, the integrand is
an odd function and () vanishes. Thus the general selection rule for
electric dipole transition is that any such transition between states of the
sawe parity is forbidden.

6046

Consider a particle in a one-dimensional infinite potential well. Let the

origin be at the center as shown in Fig. 6.14.
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x

-a 0
Fig. 6.14

(a) What are the allowed cnergies?
(b) What are the allowed wave functions?

(¢) For what class of solutions will a perturbing potential AV(z) = kx
have no first order cffect on the energy?

(d) If transitious between states can occur by dipole radiation, what are
the selection rules?

(Wisconsin)
Solution:

(a) The allowed energies are

h27r%n?
E,=——+. (n=1,2...)

8Sma?

b) There a lasses of ¢ > i i 1
(b) re two classes of allowed wave functions, one of even parity,

Y/ 1 nne
T(x) = \/j s ——,
Q a

where n is an odd integer, and one of odd parity,

_ 1
Yo (z) = \/jsin m,
a 2a

where n is an even integer.

(c) First order perturbation gives the energy as
En =E® + (AV)pn = EO + (ki)nn

As AY = kz is an odd function, the diagonal matrix elements are all
zero. This means that, as long as the wave function has a definite parity
(whatever it is), there is no energy correction of the first order. Only for

T
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states of mixed parities will there be energy correction arising from first
order perturbation.
(d) Electric dipole transitions are determined by {zY ki - Since

(x)prr = (K'|zlk) o< (K[a® + alk)
~ vV + 10k g1 + VEOk ko1,

the selection rule is Ak = +1.

6047

A particle of charge ¢ moviug in one dimension is initially bound to a
delta function potential at the origin. From timet = 0 tot = 7 it is exposed
to a coustant electric fietd o in the x direction as shown in Fig. 6.15. The
object of this problem is to find the probability that for ¢ > 7 the particle
will be found in an unbound state with energy between Ey and Ey + dEk.

Exlt)
A
€y
0 - > ¢

Fig. 6.15

(a) Find the normalized bound-state energy eigenfunction corresponding
to the delta function potential V(z) = —Aé(z).

(b) Assume that the unbound states may be approximated by free parti-
cle states with periodic boundary conditions in a box of length L. Find the
normalized wave function of wave vector k, ¥ (x), the density of states as a
function of k, D(k), and the density of states as a function of free-particle
energy, D(Ek).

(c) Assume that the electric field may be treated as a perturbation.
Write down the perturbatlon term in the Hamiltonian, H,, and find the ma-
trix element of H, between the initial state and the final state, (0] H | k).

(d) The probability of a transition between an initially occupied state
|I) and a final state |F) due to a weak perturbation Hamiltonian Hi(1) is
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given by b I
1 . ) : The energy level for the bound state is il
P =4z / (FIE() | 1) e™ ! at! ‘ bl
2 1 e di . i
L R ) ’ . Rk mA? “/““(‘;
gger:hwf ]h: (Ep — E7)/h. Find an expression for the probability P(E) 2 e i‘:”“‘
r that the particle wi e in ¢ . : o
, b ¢ will be in an unbound state with encrgy between By and the corresponding normalized eigenfunction is “\'ﬁ\
and Ep +dEx for t > 7. e St  ege ‘ ¥
"
(MIT) mA mA f
Solution: W(x) =57 exp (a7l
(a) The energy eigenfunction satisfi Sl
/ 1ge , satisfies the Schrodinger equati .
odinger equation 7 (b) If the unbound states can be approximately represented by a plane
_ﬁ_,z d?*y A . wave ¢%% in a one-dimensional box of length L with periodic boundary
2m dx? (x)¢ = Eyp, : conditions, we have
where £ < 0, or
d?w ) ik ~ L - - L
9 cxXp [t — =oxp (k= 1|,
Ej*killeAgﬁ(x)w:(), f 2 I 2
with
which gives ekl =1 or
L — 2m | E| 2mA
N he 0= B
Interatine thi o ! kL = 2nw. (n=0, 1, £2,...)
Integrating this equation from —e to +¢, € being an arbitrary smalt
positive nuber and then letting ¢ — 0, we get - Hence
o 2nm
k= T k., say.

W(+0) — ' (—0) = — Agy(0) .

We also have from the confinnity of the wave function at 2 — 0 Thus the normalized plane wave function for wave vector k is

P(+0) = (=0) = 1(0). rlx) = % ekr = % exp [z (z—rLLf x)] .

Thus
Note that the state of energy Ex is two-fold degenerate when k # 0, s0

Y'(+0)  ¢'(-0)

== —Ay.
p(+0) $(-0) ¢ the mumber of states with momenta between p and p + dp is
Solving the Schrodinger equati ’
Then as i{z) = Ce™k ffr x >qO 10(1; N Okr“e et i) — Cefisl Ldp _ D(k)dk = ! D(Ey)dE
and ¢(x) = Ce* for x < 0 we have ok (k) T2 (Bi) dBs -
¢'(+0)  9'(—0)
30) — 5(0) = 9. As k, p and Ej are related by
Hence ’ Wk
p p g
k= -, E = —— =
RF T am 2m

k:ﬂE:Té
2 he -
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we have
L m

D) = L D(E) = — [
7r k

(¢) Treating ¢¢ as a perturbation, the perturbation Hainiltonian is H, =
—g¢or. Its matrix element between the initial and final states is

110~ [ i gzom) i da

+oo

mA
2

T VL 1 _
qso mA d +oo
/ exp(—ikx — ko |2|) dx
qgeo [mA d 0
VAN i / exp(—ikz + kox) dix

o0
+ / exp (—ikx — kox) d:::]
0

x exp(~ikx — ko |z|) da

950 mA 1
VT VT kR (k2 4+ k3]

_ diqeg [mA 3/2 k
VL B2
2+

0, (—o0 < t < 0)
H1: —{g&oT, (O§t<7‘)
0. (T <t < 400)

The transition probability at ¢ > 7 is

2

Piop(t) = % (k[ H1]0)|?

/ dt’ exp(iwpy t')
0

K1 [0) 2 sin® (wprT/2)

1
=l (wr1/2)?
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PR A
2m 2h2

h A\?
sin® o k2 + (m—Z)
Sin2(wF17/2) B 4m h

(wr1/2)? {% [k2+<mh—;4>2

Hence the probability required is
P(Ek) dE; = P1_+F(t) D(Ek) dE,

16 2 3k3 R
_ (16gep) m’ky G\/2mEk

y . 2mE
nh? <k5+ 7:2'°>
12

, ﬁT B 2TTlEk
2 2
X sin [—47” <k0 + 2 )l dE,

4 (mA
(16q<¢)?m? (7;;

mA\ 2 2mE)
w (%) }
}dEk.

L [ ((mAY 2B

sin®{ — || —

im h? h?
6048

Consider a two-level atom with internal states [1) and [2) of energy

separation Ey — E; = hwgy. It is initially in its ground state 1) and is

exposed to electromagnetic radiation described by E = E,, (™ 4+ e~™*).

EF:

1
FI:E(EF - Er),

(a) If w = wi2, calculate the probability that the atom will be in the
state |2) at a later time ¢.

(b) If w is only approximately equal to wy2, what qualitative difference
will this make? Calculate the same probability for this case as you did in
part (a).

(Buffalo)
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ihey = ey (1 H'|1) + cpe™ @290t (11H'|2)
ihég = ¢ @270 OV H|1) + ¢ (21H'|2) .

Solution:

Let

HO |1) - E1 '1) = hwl '1> ) e <l| ex |“]> 'd
= — € 'E'm g
Hy ‘2) =FE, |2> = hw, ]2> :

or

. . . . . ; —iwt
The Hainiltonian can be written as G H'\j) = (" + e ™) haj
H=H,+H', the above equations become
: N —i —1 t o 1wt —wt
where ihiy = ey (¢ 4 e hay + cp e (e + T ) haya,
H = —ex-E,, (¢ 4 ¢! : : : . ] ot it
m( ) ’ifi,(-iz — ¢ Cuum!, (ezwt o+ (,‘_‘lu') f)agl + ¢ (euu +e 1 )ﬁagg ,
is the perturbation arising from the presence of the clectromagnetic radia-
tion. The time-dependent Schrédinger equation where wyy = wy — wp. If B, is swall, the fast-oscillation terms can be

[ neglected and the equations written as
h o |t} = H |t)
¥ — ) == 1] A

ot

. . {w—wa )t
] = —ia9C ew—wa)t

is to be solved with the juitial condition |t = 0) = |1). Suppose the solution . . i{wa1 —w) ¢
i Cy = —ilapicy € .
is

£y = () e T L) o ep(t) et |2 i .
] > (l( )( | > 4 (2( )( 1 > Eliminating ¢; from the above we find

with ¢;(0) = 1, ¢2(0) = 0. Substitution in the Schrédinger equation gives

v l Co — i(w21 — w) Co + a12a21C2 — 0.
ih(éeT ML) —icywr ¢ (L)

+ e T2 (2) — depuwpe T2 |2)) As [t = 0) = |1), we have the initial conditions

=c1eT M oy [1) + ¢y e oy [2) ca1(0) =1, c2(0) =0,
+ Clewiult H/ ‘1> + ey c*'[,wzt, H/ |2> ] |

(,‘2(0) = —iaglcl (0) = —1a21 -
As 5
iha‘ (7™ (1)) = huwy e ™ |1) ete. (a) For w = wy, the above becomes
¢ ) »
the above simplifies to byt D2y =0,

ihép e 1) 4 ihég e 2t |2) where Q2 = argag; = |az|*
=cpe M H L) 4 cpeT 2 H'|2) The solution 1s _
g = AeiQt + Be”m.
Multiplying the above equation by (1} and by (2|, we obtain
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The boundary conditions for ¢y give

A— _p=_%21
20}

Hence

¢S
co(t) = —1 -5 ,
2( ) 1 Q sin QT,

and the probability that the atom will be in the state

2) at time ¢ is
lea(t)]? = sin” Qt .
(b) For w =5 wy,, try a solution ¢y ~ €. Substitution gives
ey = Ae™Mt 4 Beir-t

where
1
Ay = 5 [(war —w) 4 A]

. - 2 9 . .
with A = [(wa1 — w)? + 40°]Y/2. The boundary conditions for ¢y thus give

co(t) ——Ai exp [% {way — w)f} sit (% t) .

Heuce the probability is

()2 = dlag]* (A
lea ()] = sin® (5 f,) )

A2

6049

In HCl a number of absorption lines with wave numbers (in cm™1!) 83.03
193.73, 124.30, 145.03, 165.51 and 185.86 have been observed. Are tho.sej
vibrational or rotational transition? If the former, what is the characteristic
frequency? If the latter, what J values do they correspond to, and what is
the moment of inertia of HC1?

In that case, estimate the separation between the nuclei.

(Chicago)
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Solution:

Diatomic molecular energy levels are given to a first approximation by
J(J +1)h?

2MR?
where n is an integer, M and R are the reduced mass and separation of

the two atoms. On the right-hand side, the terms are energies associated
with, respectively, the electronic structure, nuclear vibrational motion, and

1
Why = -Us + (n+ 5) Fw +

rotation of the molecule. As
W11+1,J - Wn,J = FILU,

the vibrational lines have only one frequency, and so the lines are not due
to vibrational transitions. The rotational energy levels

K2

Ej=—
J 27

J(J +1),

where T = MR2, and the sclection rule |AJ| = 1 give the wave number for
the line arising from J +1 — .J as

.1 1 he(J + 1)
=—=—AF;=
EX e hel
Hence 2
2
I=- .
he Ap
For J — .J — 1, the cnergy of the spectral line is
RJ
hev = —
cv 7

which is proportional to J. The spacing of the neighboring lines Ay =

2 2 - - .
hT AJ = ﬁT is a constant. For the given lines we have

7= % (cm™') TrapsitionJ > J-1 A (3) (cm™h)

83.03 43 20.70
103.73 54 20.57
124.30 6 5 20.73
145.03 7—6 20.48
165.51 8 —7 20.35
185.86 98
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The moment of inertia of the HCI molecule is therefore

h2

he A <l>
A

6.63 x 1031
(2m)2 x 3.0 x 108 x 20.57 x 102
=272 x 10" kg - m?.

\

Y S S | —1 -
As M7 =m' + mg), the nuclear separation is

R [(mn + 7”(:1) [} 1/2
myg mql
_ (1 +35) v
[1 35 % 1,67 1027 X 272> 1077

1.20x 107 % m =1.294.

6050

An arbitrary quantum mechanical system is mitially in the ground state
0). At t = 0, a perturbation of the form H’(t) = Hye /7 is applied. Show
that at large times the probability that the systewn is in state
by

1) is given
01 1)
AN 2

() ooy

where A< is the difference in energy of states [0) and [1). Be specific about
what assumption, if any, were made arriving at your conclusion.

(Columbia)

)

Solution:

In the first order perturbation method the transition probability ampli-
tude is given by

1 ¢ ) ,
Ck'k(t) = 3 /0 H;c/ke“"’k’kt dt/,

1
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where Hj,; = (K'|H'|k). Then

1 <
Clo(t) = E ; ghwrot e T <1‘H0)0> dt
1 1
= — ———— < 1|Hg|0

Lot Hol0)

— — W

T 10

1

<1|H0|O>a

" i(h/T) + Ae

where Ae = wiph is the energy difference between the [0) and [1) states.
Hence the probability that the system is in state 1) at large times is

2
Iy = I“l”(f’)l2 - Mﬂ%z‘)ﬁ:)l .

It has been assmned in the above that [ly is very small so that first

order perturbation wethod is applicable.

6051

A particle of charge ¢ is confined to a three-dimensional cubical box of
side 2b. An clectric field E given by

0, t <0,
E = (o = a positive constant),
Eoc°t, t>0,

is applied to the system. The vector Eg is perpendicular to one of the
surfaces of the box. Calculate to lowest order in Ey the probability that
the charged particle, in the ground state at ¢ = 0, is excited to the first
excited state by the time t = oo. (If you wish, you can leave your result in

terms of properly defined dimensionless definite integrals.)
(Berkeley)

Solution:
Replace the cubical box by the potential
0, 0<z<2b 0<y<2h 0<z <2,
Ve, y, 2) =

00, otherwise.
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The zero order wave function of the particle in the box is

N B L lmz  mmy | nnz
Yimn (2, ¥, 2) = 4/ p3 Sin - sin o M = Lmn).

Then the ground state is |11 1), the first excited states are [2 1 1),]121),
[112). Let E be in the direction, ie., Eg = Eye,.. Then H' = —eFgge ot
Calculate the matrix elements for the transitions botween the ground and
the first excited states:

(T1lz211) = ; /Qb T sin o sin T dy — J2b
b Jo 2b b T Tom
(IT1z[121)=(111]z]112)=0.
Hence the transition probability is
1 . AT 2
P=— / (211|H'|111) exp A dt
h/ 0 h, ’
where
AE R 2 2 2 2 3 h?
= = (2 +1%2 1212 1y - 2
8mb?2 (7417 1P =17 - ! Brnb?
Thus
(320eEp\* | [ AFEt :
OB /0 exp [ —ot + 1 n > dt
hz

( 32bcEp \
9hn? a’h? + (AE)Z-

6052

An ?7Al nucleus is bound in a one-dimensional harmonic oscillator po-
tential with natural frequency w. Label the states as Yma = Ym(x) da,
where ¥, (z),m=0,1,2, ...  an eigenstate of the harmonic oscillator po-
tential, describes center-of-mass motion and ba(z), « =0,1,2,..., is the
wave function specifying the intrinsic nuclear state. Suppose the nucleus
1s initially in the state 9o(z) ¢ and then decays to the ground state ¢y by
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emitting a photon in the —z direction. Assume that the nuclear excita-
tion energy is much greater than the harmonic oscillator excitation energy:
E* = (E(x:1 - Ea:O) > huw.

(a) What 1s the wave function for the nucleus after the photon has been
emitted?
(b) Write an expression for the relative probability P, /Py, where P, is
the probability for the nucleus to be left in the state Yo = 1, (z) Po-
(¢) Estimate numerically Py /Py with E* = 840 keV and hw = 1 keV.
(MIT)

Solution:

(a) The Galilean transformation

Il
o

' =x —vt, t

transforms a wave function y(z, t) by

2 M
Y(x, t) = exp <7 A;[Z '+ TU ;L") (o', 1},

where v is the velocity of frame L’ with respect to frame L and is taken to
be in the « direction, and M is the mass of the particle.

By emitting a photon of energy E* in the —x direction the nucleus
acquires a velocity v = f\'}c in the z direction. At the same time it decays
to the ground state ¢o. Thus initially (¢’ = ¢ = 0) the nucleus has a velocity
v and is, in its own frame of reference L’, in the ground state ¢y. Hence
after emitting the photon the nucleus is initially in the state ¥ given by

(t=0,z=21)

Av
w0 =exp (170 oli) oo

in the observer’s frame L.
(b) The probability that the nucleus is in the state ¥,, = ¥ () @ 1is

Py = [{$noli(z, 0))]?

2

= Wn(x) b0 | exp G%z) | $otbo())

(n] exp (i%%)]@

2

2
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where |n) = |1, (x)). Using the creation and destructron operators at, g
we can express o
I
. +
T = a
2hfw )

and as eA+8 = pA4pB—[4,B]/2 ({A, B

commutes with A, I3) we have

2

P, =

Muy h
n i — +
(n| exp (l RS (a™ + (L)) 10)

My [ My [T
nl e HEnah AN SERL IS S B LM )
(i exp (' noVomw® > exp (" hVomw®

%)

{(nj(a™y™at |0)

m {

. i ZRIN ;M

( [V[U“’) > (" zm) (" \H )
=cxp { - Z NS NS

2hw !
rre, d=0 e I

TL 2
,“ L
= oxp ( 2o ) TR
:l %A’I'uz " ot _%[V['U2
7 ho X hew ’
Then
P My B 0.84%
Py 2w T 2McEhw 2 X 27 x 9315 x 10-3
~1.4x 1072,
6053

Consider the situation which arises when a negative muon is captured
by an aluminum atom (atomic number Z — 13). After the muon gets
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inside the “electron cloud” it forms a hydrogen-like muonic atom with the
aluminum nucleus. The mass of the muon is 105.7 MeV.

(a) Compute the wavelength (in A) of the photon emitted when this
muonic atom decays from the 3d state. (Slide rule accuracy; neglect nuclear
motion)

(b) Compute the mean life of the above muonic atom in the 3d state,
taking into account the fact that the mean life of a hydrogen atom in the

3d state is 1.6 x 10 ®sec.
( Berkeley)

Solution:

(a) For spontancous transitions from the 3d state, the largest probability
is for 3d — 2p. In nonrelativistic approximation, the photon energy is given

by
. m#Z"J(:4 1 ) i
2h? 22 32

Mm“(:ZZz e2\* 5
T2 he 36

05.7x13% (1 \* (5
:u( > <i>:6,61x10“2MeV.

2 137 36
The corresponding wavelength is
¢ he 4135 1075 x 3 x 10%°

A== = T oA =188 x 10~ cm.
(b) The transition probability per unit time is
Ao w? |r;ck/]2 .
For hydrogen-like atoms, as
[Thi | o A wx mZ?, and so Axm*zZ*,

the mean life of the muonic atom in the 3d state is
A mo\> T
T, =2} T = o _‘i
A my A

3
0.51 1
= = — x16x108=63x10"%s.

(105.7) AET TR s

[
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6054

A particle of mass M, charge e, and spin zero moves in an attractive
potential k(z? + y% + 22). Neglect relativistic effects.

(a) Find the three lowest cnergy levels Ey, E), Ey; in cach casc state
the degeneracy.

(b) Suppose the particle is perturbed by a small constant magnetic field
of magnitude B in the z direction. Considering only states with uuper-
turbed encrgy E, find the perturbations to the cuergy.

(c) Suppose a small perturbing potential Az cos wt causes transitions
among the various states in (a). Using a conveuient basis for degencrate
states, specify in detail the allowed transitions, neglectiug cffects propor-
tional to A% or higher powers of A.

(d) In (c), suppose the particle is in the ground state at time ¢ = 0.
Find the probability the energy is Ey at tine ¢.

(e) For the unperturbed Hamiltonian, what are the coustants of the
motion?

(Berkeley)

Solution:

(a) The Schrédinger equation for the particle in a rectangular coordinate
system,

2 o2 o? o2 9 o
[*27” (F + Iy + p) +kh(x® +y 4+ 2°)| Y(x, y, 2)

= Ep(x, y, z),

can be reduced to three equations of the harmonic oscillator type and the
energy of the particle can be written as a sum

3
En=E+E, +F :éhw+(l+m+n)fuu,

where

w=+/2k/M, N=Il+m+n=0,1,2,....
Therefore,

Eozgﬁw:gh\/%/M,
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no degeneracy;

six-fold degeneracy (1200, %020, P02, Y110, Y101, Yo11)-
In spherical coordinates the wave function is

'll)nlm,(ri 93 ‘P) = Rnrl(r) Yim (9’ (P) 3

where

. 1/2
3/ ol+2-n, (21 + 2n, + 1)!! (CMT)[ 6_Q2r2/2
foni(r) = JEnel (20 + DI

x F(-n., [ +3/2, a’r?),

0,2,... N, (N =even),
l:N—Qn,: 1’37N, (N:Odd),

N being related to the energy by

3
En = <N+§> hw, N=0,1,2,...,

and the degeneracy is fiy = 5 (N +1) (N +2). .
(b) For a weak magnetic field B in the z direction, the perturbation
Hamiltonian is
amilto B

I:'f——L .
H 2Mc *

Then in spherical coordinates we have

eB
2Mc

Enlm = E'n.l — Tnh,
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where mh is the eigenvalue of L,. Thus the differont degenerate st

ates of
E» have perturbed energies:

Eoge = Exg
c3
Eoyy = Fyy — “_}
2722 22 Mo Ly
el
By = Eyp — Mo k.,
Erag = Fay,

\ el
B = Eo + mh,

eD
EQQ_ = Ef)) + m h.
It is seen that the degencracy is partially destroyed.
(c) At time ¢ = 0, H' = Az cos (wt). Consider the three-dime
harmonic oscillator in the rectangular coordinate system. The first order

perturbation gives, with / being the quantum wunber for the component
oscillator along the w-axis,

nsional

{m'v | H (2, ) Imn) = 81 (' H'(x, |1
=A cos(wt) &

m/ 771 n'n i l]>

)
=Ao ! cos(wt) [\/ +1 01/1+1+\/>51'1—1J

X 5m’7n (5'71.’71, ’

where o = 4/ A‘[@ = (2kM/I)Y% Thus the allowed transitions are

those between statcs for which
Am — An — 0, Al =

(d) Between the states By and E, the selection rles allow only the
transition 100 — 1190. The probability is

AQ
jw't
P‘“* wehd') =

¢ 2
/ cos(wt'y e di'| |
0
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where ;
W e 2E 1, = (100H'|000) ,
M

¢ P Y
/.‘ ('()%(wt') e'Lw/t’ dtl — l / (elwt' 4 e—'Lwt )etwt dt/
"¢ .)€ 2 o
Jo .

T2 w' +w + w- W

1 e'i(w'+w)t —1 ei(w’—w)t ~1
i

In the microscope world, w and w' are usually very large. Only W.hen W~
W' will the above integral make a significant contribution to the integral

Hence

AL sin? (W - w)t/2)
8a2h? (W' —w)/2)?

Py =~

bl

or, when t is large enough,

Note that when ¢ s large,
. 2
sin{z’ — .’L‘)t/?] ~ oty — ).
(2’ —z)/2

(¢) The cnergy, angular momentum, third component of the angular
momentuin, and parity are constants of the motion.

6055

(a) Suppose the state of a certain harmonic oscillator with angular fre-

quency w is given by the wave function

t : N = (,7((1‘2/2
—n,w — e —e i
pNY e @ = a0y 0,
n=0
Calculate the average position of the oscillator, (), in thi::? state anil
show that the time dependence of (z) is that of a classical oscillator with
amplitude xg and phasc ¢.
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(b) The Hamiltonian for a one-dimensional harmonic oscillator in a laser
electromagnuetic field is given by

2
H:p“q_

2m  2mw

1 1
Ey sin wt — 5 eEyx cos wt + 5 mwé:z

where wy, m and e are the angular frequency, mass and charge of the
oscillator, and w is the angular frequency of the radiation.

Assume the laser is turned on at ¢ = 0 with the oscillator in its ground
state 9. Treat the electromagnetic interaction as a perturbation in first

order, and find the probability for any time t > 0 that the oscillator will be
found in one of its excited states ,,.

Useful information: The normalized oscillator wave functions Yn(x)
have the property that

h d 2hn
(ZE + __> wn - (/71. 1,
mw

(Wisconsin)
Solution:

(a) Adding up the two equations for ¢, given in the question, we have

2y, = Uh (\/ﬁwn 1+ \/ET ‘/’n+l)
rin) = Vh/2mw (Vin - 1)+ Vn+ 1]n+1)).

Hence

k

(@) = Wlaly) = N* 3-S5 % R (nlalk)
n=0 " k=0 :

el *n X k
— N2 @ X iln—kwt ko1
nX:(:) vn! kgo V! 2mw (] [\/—l )
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Z O ikt (e §pmsr + VEF LOkno1)

oo *1 n+l .
Ny h [“ .__O‘__j\/nJrle‘““t

2n

N (@ b ate)

i rwt
—iwt + are™ )

¥e
2mw (c

- g [ g )]
=4 cos (¢ — wt) .

Thus (z) is the same as that for a classical oscillator of amplitude xg
and initial phase ¢. N ‘
(b) Initially the oscillator is in the state ¢ = |0). Writing wg for w, the

given equations for ¥, give

cln) = VA2mwe (Vrin — 1) +vVn+1|n+ 1),
pln) :i\/hmwo/Q(\/n—Flln—l—l)—\/ﬁ|n—l)),

where p = —ih%. It follows that

z|0) = /R/2mwe 1),
P10) =i/ hmuwe/2(1).
The perturbation Hamiltonian is

..

1
Ej sin wt — - eEpz cos wt.
2mw 2

As (n|1) = 8,1, Hly = 0 for n # 1. Hence P, = 0 for n > 1. Consider
H1,. We have
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21w

ekl 7 hmwg . R
= — | — sin wt — 4/ - cos wt
2 mw 2 2wy .

GE() h L Wo o .
t— s wt — cos wt ),
w

P 1
Hi, = <1 ‘ b Eq sin wt — 9 eFyx cos wt ‘0>

2 2wy

and hence the probability that the oscillator transits to state 1) at tlme ¢

. - 2
1 L eF, h w I
Py =— Rl i i 0 sin wt’ — cos wt' | etwot’ gy’
2 Jo 2V 2muws w
22 J02 -t 9
— € EO ﬂ (eiut' - 6~iwt') _ 1 (,-llw[,’ + (:~'L'w(,t,’ (,'lﬁwl./ (”/
3mwoh | fo | 2w 2

o
12 1 8uw? 1
) [ “o — COS8 thJ

 8mwgh | 2w? (wg — w?)? w2

e*EZ [cos(wo +w)t  cos(wo —w) f}

dmwh | (wo+w)?  (wp— w)?

6056

Suppose that, because of a small parity-violating force, the 2 251/2 level
of the hydrogen atom has a small P-wave adinixture

5 . 1 o1
) ('n. =2,7= 5) =1, (11, =2,j= 3 l = 0)
. 1
+51/)p (n:27]§7[:1)

What first-order radiative decay will de-excite this state? What is the

form of the decay matrix element? What does it become if & —» 0, and
why?

(Wisconsin)
Solution:

The first-order radiative decay is related to electric dipole transition. It
causes the state to decay to ¢(n =1, j = %), which is two-fold degenecrate,

Y | GO
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ing L= : i e uch an electric
corresponding to my; = %3, { = 0. The matrix element for s

dipole trausition is given by

o1
H;r<w (nzl,j: %) | —er|y <n2,J§>>
1
:5<’l/1 (,-,,:1,]'*%) [ —er|dyp <n:2,j§,[1)>

hecause of the selection rule Al = =1 for the transition. Using non-coupling
representation basic vectors to denote the relevant coupling representation
basic vectors we have the following final and initial states:

P (n =1, 7= %,'m_, = %) =100) <(1)> )
" (7,, =1,j= % , My = %) = |100) <(1)> )
% 211) (?) ,
Py (n =2,7= %, I=1,m; = _%> = \/g 21, =1) <(1)>
" ,@;210) (?) :

o . )
Hence the non-vanishing matrix elements of Hi, are

= \/g(’,g (100| r |210) = \/gea (100] z|210) e,

ecA
(100[[200) e, = - e

Sk
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where A = (100| r |200), e, is a unit vector along the z direction,

A 1
(v (r=ri=gmi=2) 1oy, (m-3))
2
= —\/;05 (100] r)211)
—\/28)-”(10(”1‘8 + ye, |211) = ced :
3 z T YCy )”_T(f3m+zey),

- I 1
- <1/ (Tl - 1’ =My = 5) l" (fl‘"l//p <"".’i = ﬁ§>>

ec A

(ez - iey) )

j:lm,~_l) 1
2 T | —er|y, (771,_,'a._5>>

= ez (100] r [210) = %el__

m
N
<
l TN
| 3
Il
Wl -

In the above we have used the relations
1o 1 0
(10 0 =1, (10) (1> =0, etc.,

=ze; +ye,+ ze,

r sin 8 cos ¢ e, + r sin § sin wey, +1r cos e,

(100[2]210) = (100[r|200) (¢ =0, m = 0|cos 0l¢=1,m=0), etc

ooy

and the selection rules

Am =10 for the z-component of er,
Am = %1 for the a-, y-components of er.
Thus if the parity of the 225, /2 state is destroyed by the inclusion of

ghe € term the electric dipole radiation would cause transition from the 2
S| /2 state to the ground state 1 251/2, the probability of such de-excitation
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being o £2. If ¢ = 0 electric dipole radiation does not allow de-excitation
from the state

1 1
P (n: 2,5 = 7 l= O) to the state o (n:: 1,7 = 2 = 0)

because the perturbation H' is a polar vector whose the matrix elements
are nonzero only when Al = +1.

6057

(a) The part of the Hamiltonian describing the hyperfine interaction
between the electron and proton in atomic hydrogen is given by
8

H,:—?ﬂ'e'”’pég(r)7

where p; = %ﬁ—c S; is the magnetic moment and §; = %cri is the spin of
particle i (the ¢’s are Pauli matrices). Calculate the hyperfine splitting
between the 1s 25, and 1s 1S, states of atomic hydrogen. Which state has
the lower energy? Explain why physically.

(b) The vector potential of the radiation field emitted in a transition
between the states in part (a) has the general form that, as r — oo,

A= ~i%(x)+i%ﬁx (L) +i 62ﬁ><(ae)+...]

2mec 2mec

o .
T2 r—wwt

€
X ——,
r

where fi is a unit vector along the direction of propagation of the radiation
and (-) denotes the matrix element for this transition. Show explicitly for
each of the three terms whether or not {-) is nonzero. What is the character

of the radiation emitted in the transition?
{ Wisconsin)

Solution:
Let the spatial wave function of 1s state be 1y(r), the spin singlet state

be xo0, and the spin triplet state be x1m (M =0, £1).

(a) The perturbation method for degenerate states is to be used, the
perturbation Hamiltonian being
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21 €29, B )
H == —228 .8,8@) = =[S.+8,)?
3 memy,c? pd(r) 2 \ )
. 5 b 3 ..
2 27 3 _ P lq2 242 3
—Se*Sp}é(r)*2 {S zh}(s(r),
v y2 . . o
where B = ZTT ——J’—:L ?r“‘q zoand 8 = S, + 8, with S2 = Sf = 1. 35 1If
b elpC 3 ) 2 2

Po(r) xoo and p(r) x1am are chosen to be the basis vectors, then H is a
diagonal matrix. For the 1s 1Sy cnergy level, S = 0 and we have

AE,

(Yo xoo 1H 1Poxo00)

Il

3 . .
~3 BE? | ho(r = 0) |*.
For the 1s S energy level, S? = 1(1 + 1) h2 and we have

AEQ = (wOXIMlHII 1[10X1M> = %I}]lz | '1/10(1' == ()) Jz .

As 12 1
ho(r) = Az a¥/? b e (e =0)F = —

ma

Hence the hyperfine splitting is

AE = AE, - AE| = —lT Bh?.
ma

The above caleulation shows that the singlet state ('Sy) has lower en-
ergy. Lhe reason is as follows. The intensity of the field produced by
a magnetic dipole decreases rapidly with increasing distance. So for the
magnetic dipole interaction between the clectron and proton we have to
cousider the case when they are very close. When g, is parattel to 1y, the
energy of the magnetic interaction is lower (as E = —pu - B) than when
they are antiparallel. Since when g, and pyp arc parallel, S, and S, are
antiparallel. The gap in singlet state has the lower eucrgy.

(b) For the transition from the triplet state to the singlet state, due

to the vector potential A, as the terms for x and L do not contain spin
operators, we have

(x) = (Yo xo0 IX[ Yox1ar) = (WolX(Po) (xoo | x10) =0,
(L) = (Woxoo L |Yoxiar) =0,

)
(0e) = (Yoxoo | oeloxim) = (xooloe|xinr) .
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w00, 0,0
(o), (0),
w5 10.0,-6), 0]
wa (1), (),

and if we take the z-axis parallel to n the z component of {(oe) will con-
tribute nothing to n x (o), thus we have cffectively

1 1 1 1 o
(X,()()ldttlxll) - *E (0 1) Te <0> = *ﬁ €, — ﬁ ¥
Lo <O)/a1_e_-Le/
(X!)()]O'r:le,---l> = E(L )UC 1 - ﬂ x \/i 8]
1 1 1 oy
{xooleelxio) = 5 (1 0)oe (O) -5 o (1> =e,,

wlere e, €, e; arc unit vectors along the -, y-, z-axis respecti.vel‘?f. ﬁence
(g.) # 0. Note that the direction of A is parallel tonx (o). 'It is smnl.r;\r to
the vector potential of magnetic dipole radiation, so the r_ad@txon emitted
in the transition bas the character of magnetic dipole radiation.

6058
Protons (magnetic moment ) are in a magnetic field of the form
B, = By cos wt, B, = By sin wt,
B, = constant, By & B, .
At £ = 0 all the protons are polarized in the +z dircction.

(a) What value of w gives resonant transitions?
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(b) What is the probability for a proton at time ¢ to have spin in the
—z direction? (Assume By < B,)

(Princeton)
Solution:

(a) As By <« B,, B’ = B.x+ B,y may be considered as a perturbation.
Then the unperturbed Hamiltonian (spin part) Hy = —uB,0, gives the
energy difference of the two states ((1)) and ((1)) with spins along +2 and —z
directions as 2uB,. Hence resonant transition occurs at angular frequency
w=2uB,/h

(b) As

H= -y -B
= —p (0 Bz + 0yB, + o.B3;)

_ < B,  B,-iB,
B +iB, —B, > ’

the Schrddinger equation can be written as

Zhg ((1) = —f Bz‘ Bo(,’\iwt ((I«)
ot \b By e™t -1, b/’

wl.l(‘,re a and b are the probability amplitudes of the electron with its spin
oriented along +2 and -z directions respectively. Letting

-t =
4= lfv b:elzt‘(]!

one obtains the equations for f and g:

w L Of
.. Og w
B B 22 _pla —
uBof +iRh 5 hzg pB.g=10. (2)

Q'Eakziang the time derivative of Eq. (2) and substituting in the expressions
of 57, 3% from (1) and (2), we obtain

2

0% 2
ﬁ*’Qg:O, (3)

where
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) fiw ’
/L“Bg + (*2— + P»Bz) } .

Initially the protons are polarized in the 4z direction. Hence [fl =1,
g = 0 at t = 0. Then the solution of (3) is g = A sin Qf, where A is a
constant. Assume f = B sin 2t 4+ C cos Q¢ and substitute these in (1).
Supposing f =1 at t =0, we have

1
2 _
=7

1 huw ,LLB()
C=i B=—— | — B, |, A=-——.
b ) ( 3 TH ) s
Hence
FE—— (ﬁ“’+ B) sin Q4 + i cos it
=g (B3 uB,) si i co ,
— B3
g = ;;no sin .
Thus the probability for the protons to have spin in the —z direction at
tiine ¢ 1s .
‘ B
P=10" =g|* = <~/;m0) sin® QU
with
1, [hw 21 (hw
gl:z\/ﬂng‘f'(?'FﬂBz) zFL <7+}LBZ) as Bz >>B0.

6059

A piece of paraffin is placed in a uniform magnetic field Ho. The sample
contains many hydrogen nuclei. The spins of these nuclei are relatively
free from interaction with their environment and, to first approximation,
interact only with the applied magnetic field.

(a) Give an expression for the numbers of protons in the various mag-
netic substates at a temperature 7.

(b) A radio-frequency coil is to be introduced in order to observe reso-
nance absorption produced by an oscillating magnetic field. What should
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be the direction of the oscillating field relative to the steady magnetic field
Hy and why?

(c) At what frequency will resonance absorption be observed? Give the
units of all quantitics appearing in your expression so that the frequency
will be given in megacycles per second.

(d) In terms of the transition mechanism of the protou spins, explain
why the absorption of encrgy from the radio-frequency ficld does not dis-
appear after an initial pulse, but in fact continues at a steady rate. What
happens to the absorption rate as the strength of the oscillating field is
increased to very large values? Explain.

(CUS)

Solution:

(a) As the spins of the hydrogen nuclei are assumed to interact only
with the external field, the interaction Hamiltonian is

I:I = —I1m:- H() = *{]/LNI;’Z H() s
taking the z-axis in the direction of Hy. Theu there are two statos |$z = é)
and [s, = —1) with respective energics
1 1
By = ~3 g Hy, E_\pp= E.UI/JNHU,

where g = 5.6 is a constant and jy the nuclear magucton py = eh/2mye.
The condition for statistical cquilibrinm at temperature T gives the
probabilities for a nucleus to be ju the two states as

for |s. = 3):

1 1
P =exp <§guNH()/kT) /[exp <E{1,U,NH()/]€T>

1
+ exp (—E guNHo/kT)] ,

1 1
= exp <—§ gpNHO/kT) /[exp <§ guNHo/kT)

1
+ exp (—5 guNHo/kT)] ,

for |s, = —

RO
~

g

which are also the proportions of protons in the two states.
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(b) The oscillating magnetic field H, must be perpendicular to Hp,
say along the z direction. This is because only if the spin part of the
Hamiltonian has the form

H=-m-H=—guns,Hy — gunssHi

|~
~

. . 1 > _ l . . l ] -
will the natrix elements (s, = 3| H s, = —3) and (s, = —3 | H|s;
be non-vanishing and transitions between the spin states occur, since

Glf-B - () ()=
B3 -ben () ()

(¢) Resounance absorption occurs only when the oscillating frequency

Sz

Sy

safisfies the condition
hw=FE_\;y— E\/p,
or
w = _(jp,NH()//),.
With ¢ = 5.6, h = 1.054 x 1073* Js,
ch eh me 9274 x 107

= —— = -] Gs™ ',
2mye 2mec My, 1836

1N

and w it wegacycles per second is given by
56  9.274x 10728
“7 7836 " 1.054 x 1034

where Hy is in gauss.
(d) Spin interactions between the protons tend to maintain a thermal

< 1070 Hy =2.7x 1072 Hy..

cquilibrium, so that even if the external field vanishes the magnetic interac-
tion between a proton and the magnetic field caused by other protons still
exists and the transitions take place. When the external magnetic field is
very strong, the absorption rate saturates.

6060
An clectron is bound in the ground state by a potential
—é, x>0,
V= T

oo, z<0,
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which is independent of y and z. Find the cross section for absorption of

plane-wave light of energy wh, direction k, polarization . Specify the final
state of the electron. Take

3%m

2 < hw < me?.

{ Wisconsin)

Solution:

As initially the electron moves freely in the ¥, z directious, its initial
state is given by

hi(r) = p(x) exp <‘i(pyy;pzz)> ,

with
R d?p B
omder ¥ Ee, >0,

p=0, x<0.

The equation for y is the same as the radial equation of a hydrogen
atom with £ = 0. Hence the cnergy states are

mia? 1

E, - — —_
2h% n’

n=1,2,....

Thus the ground (initial) state for  motion has energy and wave func-
tion

B =12
2h2 7
25
¢1(X):m8 /e x50,
where
h?
a=—.
mfj3

oy 2
‘ The condition hw > Tﬁéa— 22 | E1| means that the photon encrgy is much
higher than the mean binding energy of the electron and can therefore
liberate it from the potential well. However, as hw < mc2, this energy is
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much lower than the electron rest mass and cannot produce electron pairs.
So the electron initial state 1s

i(x) = {rli) = Cpr () expli(k{Iy + ki),

where kéc) = py/h, kL = p./h are the wave numbers of the electron in
the 3, z directions respectively, C = (—\/1—3)2 = % if the initial-state wave
function is normalized to one electron in a 2-dimensional box of sides L in
the y — z plane. The final state of the electron is that of a free electron

moving in direction kgf) (direction of observation):

3/2
b= = (1) exed? ),

where L? is the 3-dimensional box used for normalization. The perturbation

Hamiltonian is

. \2 1
H' =H — Hy = L(p+5A) svbol S pryv
2m c 2m

~ S Ap.
me
where A is the vector potential of the photon field and the charge of the
electron is —e. In the above we have chosen the gauge V-A = 0 and omitted
terms of orders higher than A%. Let the corresponding initial electric field
be
E = Ee sin (wt — k; - r + d9) ,

where k; is the wave vector of the incident photon and € = {4, €, €, } Is
a unit vector in the direction of E. The vector potential can be taken to be

B
A = ¢ cos(wt — k; - T+ &)

w
as E = —% 68’?, and the perturbation Hamiltonian is then
e —ihe
H ~— A .p= {exp [i{wt ~ k; - T + &p)]

+ exp [—i(wt —k; T+ 3g)|} EeV.
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In photon absorption, Ef > E; and we need to consider only the second
term (the first term is for photo-emission); so the perturbation Hamiltonian
—ihe )
"= — exp|-i(wt — ki -t +8))] EeV .

2mw

For a plane electromagnetic wave,

1
H=-kxE,
k
and so the Poynting vector is
c ¢ ,
S=—(ExH)= E%*k.
4 (B > H) ark

Averaging over time we have

8

Hence the number of incident photons crossing unit arca per unit time
1S _
S eE?
o= — = ———
hw  8mhw
The differential absorption cross section for photoelectric effoet is given
by
do Wi f
dQy 7

where w;_, ¢ is the number of electrons in solid angle A€ which transit from
the initial state to final states f ncar encrgy Ey in unit time. First order
perturbation theory gives the transition probability per unit time as

2w .
wi_,f dﬂf = ? p(Ef) foilzdﬂf y

where p(E7) is the density of the final states per unit encrgy rauge.
For nonrelativistic electrons,

(e)r3
mkf L

p= 8n3h2
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where k}c) is the wave number of the electrons in the final states of energies

)

near Ep,

Wy = (fIH'li) = <f) ;nff exp|—i(—k; -r+d)] eV

+o00
i . +o0 -
_ ﬂe—ioo / dr // dydz - I,-3/2
2muw 0 .

X exp [—ik(;) .1 +ik; -] (Be - V) Cypi(x)

x exp [i(k{? y + k(9 2))

i h o —id0 a7 1 1
_ M; I3/ / dedydz {6.’12 (‘ - _>
2w roa

+ 'i,E_,,A:?(;’) + iezkg(”)} p1(x) exp [f'ik(f“) -1+ ki - 1]

X exp [i(ls:ff) g+ kL 2)

42 \Ja heEe %
I+ a6 — KD)
ek O A+

Y

; {en (K — KDy

+ kN8 (kD + kD 4 kL)
Hence the differential absorption cross section is

do 87rakfe2 © o2
AsYy - mwe(l + a2A2)2 e — Eyky £,k

s 8 (kD + kSO — k(D) 8 (k) 1+ kL — kD)

In above calculation, we have made the change of symbols

k(fc) S = {k&f), kéf)v kif)}7 k; — Kk = {kgi), L0 kgi)},

y
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and used

i e 1 L/ P €
R L3 I )

X exp [z’y(ky) + 1,':1(/“) - kéf))] dy
L i €
= Sk + KD — kY

and L
B b gl k(D2 = 2 510 4 ple) _ p(h) )
[(5( z + z z )] 27r (kz + z z )

Nate that the two d-functions express momentum conservation in the
directions of y and 2. Also, energy conservation requires

h2k2 R2(pO7 | p(e)*
I ey AT
2m 2m

hQ(k‘;(f)Q + kgﬂ)z)
2m

i

—|E |+ + hw .

The § functions mean that the y and z components of ky arc fixed,
and so is the 2 component of k;. The physical reason why the -functions
appear in the expression for the differential absorption cross section is that
when an electron which has definite momenta in the y and z dircctions
collide with an incident photon which also has a definite momentul, cnergy
and momentwin conservation laws require the scattering direction of the
clectron in the final state to be fixed.

To find the total absorption cross section, we note that

5(az) — éé(z)

and so

)y L 3 k)
6(k3(,f)—kz(,')‘kg(,)):a5 (siansingpf—kJ :f Y ;

) (A 4 ple)
5(k£f) _ kgz) . kﬁe)) _ L5 (COS 0; w) ]
ky kg
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Then the total absorption cross section is ‘
do ;

Tg — — dﬂf ; “
sy :

(i) (e) ©7° Ll
_ 8mae’ks / 1 |€Z(kf sin 87 cos ¢y — kg’ ) — eyky — €2k j) i

k_? 1+ a? (ks sin 85 cos (p;-k:(zi))z

20 +k§e) kii) + kﬁe)
x 8 (sin 0 sin @y ,,J_T_ 4 | cos O — ky

x sin 85 dfy dyy

mwe

S - By o ple) o ]2
_ 8mae / [sz(kf sin 05 cos o5 — ks’ ) ~eyky’ —€kz
0

 rmwceky L+ a? (kg sin 05 cos @5 — kD)2
s (s 3 kff) + kg(,‘:) d(sin ¢y)
Smes ky sin Oy Cos Yf
X -
sin O

2 ; s OO ON b
~ 8mae (:E:[(kf sin 07 cos @5 — ka ') — £4ky 2Kz .

 rwcks 1+a?{kys sin 8y cos pj — k;(nl))z
1
% sin @y - cos @y’
where :
RONNAC) , k% -~ (kﬁ’) + ki‘f))2
v _ oz v sin = ;
cos B k; ) f kg
K2 sin? 05 — (k) + k)2
coser= ky sin Of ’
) B kg,i) + kg(,e)
S @Y =

kf sin Hf )
Finally we get

8mae? 1

g — : —
@ ] i (e) (1) (e)y:
mwce \/}C? — (K + kN2 — (k) 4+ kL)

x e TykE (6 + kD) — (KD k)2 k)
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5.1//".1(/0) + ekl
ka2 (yk7 — 6 kST — 0 k) k)

x

6061

A syste istinguishable spin- 3 i i i
. ys.tem of two distinguishable spin-3 particles is deseribed by the
Hamiltonian
2
2 2
I 2 I3 s 1 mime

H = — -V - etz 2 2
2y T By V2T i g Y B T2 g o
with g << fuw.

(a) Wbat are the energy levels of the system? Give thie explicit form of
the wave functions for the two lowest encrgy levels (you need not specify
the normalization).

. (b) The system is in its ground statc af time £ > —no. An external
time-dependent potential is applied which has the form

Zl — 2o

7 —} fHog %

7

v(t) = {vl v,

with f(t) = 0 as [t] = oo. Derive a set of coupled equations for the
probability amplitudes G, (1) = (nly(t)), where |n) denotes an eigenstate
of Hy and ¢(t) is the time-dependent wave funetion.

(¢) Calculate Cy,(00) for the case

0, t<0 and (>
f(,) _ { T,

1, O<t<r

— ) o .
V\i'lth 7 < 1and Vy very small. Work through first order in Vi and specify
clearly the quantum numbers for the states.

(MIT)
Solution:
(a) Let
r=r;—1,
I -+ 19Ty
T mitma

1
S:Sl+52:§(0'1+0’2).

Rl
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Then the Hamiltonian of the system can be reduced to

R T 3
HA*‘Z—A/—IVR'Q‘HVT—FECUT +2f] [S(S“}’l)—“i 5

where M — my +ma, = mL"l—‘fTi,f;, S is the total spin.

Note that in the expression for H, the first term is due to the motion
of the system as a whole, the second and third terms together are the
Hamiltonian of a spinless isotropic harmonic oscillator, and the last term

is due to the spins of the particles. Hence the energy of the system Is
P? 3 3

— 4+~ ) R 2g |S(S+1)— =1,

2]\/1+<n+2> o + g[( ) 2}

n=20,1,2,....

En.‘}' =

For cnergy levels of the internal motion, we shall omit the first term
on the right-hand side of the above. For the ground state of the internal

wotion, 7 = 0, § = 0 and
3
Fyy = 5 fuw — 3g.

Write the wave function as 9y = |0) age. For the first excited state, we
similarly have

‘

3
Ey = 5 fw + g, 1P1 = |0) 1o, Q1,11 -

Note that [0) is the wave function of the harmonic oscillator ground
state and gy is the coupled spin wave function.

(b) Let
R 3
H()r*z—ﬂvr’Fng +2g S(S—)—l)*/z‘ ,
Ho IT'L):EH ln),
o
o + VOV = im0

Expanding (1):
[p(t)) = Calt) exp (—iEnt/h) {n),

n




598 Problems and Solutions on Quantum Mechanics

and substituting it in the last equation we obtain

=ih Y Che”
+ ik Z C, (7’?"

[Ho + V(¢ ZC("

Eant

Multiplying both sides by (] ¢t™%" and sununing over m we got

Z ChnE,, + Z L C'”P,/"(E"r"-”")C (m|V (t)|n)

m n

= ih Z Con + ik Z Com ( ’E> ,

or

thCu(t) = (n[V(t)im) exp|—i(Ern — En)t/h] Cou (1),

m

which is the required set of coupled equations.

(¢) Denote the initial state by [000cxgg), the final state by [nimagar).

As
o X =sin f cos goy, + sin 8 sin Yoy, +cos 8oy, ;
1 ) )
agy = —= (s — Braa),
V2
p) = e, @y, 1 = B0,
1 )
ago = 7 (0182 + aaBr);
o101 = Pr, oo =16, oo = 010 = o,
af = —iay,  ab = -
we have
. 1 i . i
o1 - Xagy = 7 (sin Be*¥ay _y —sin Be P + V2 cos fayg) .

) i Ent
et n) .
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. i _ 3 o —ip — At
Therefore, as Y11 = ,/% sin fe'?, Y1y = y/g. sinfe™*?, Yio = 1

\/'41 cos 0, we have I
T B
[4m 1
5 Yiior, J*{
! !H
\/—Yl —1011 + \/_\YIOQIO |000) ; ”‘
]

:\/;5 0611851 (0mo da10 — Gm1 dar,—1 n

- Jml(SMl) EO)

since ¢ = 0 for n = 0. Thus to first order perturbation the first term
Vi f(t) o1-% in V (t) makes no coutribution to the transition. Consider next

(nlmasp o1 - X | @p000) = <nlmaSM

(nlmasp |7 cos By - X | ago 000)

[am 47
= <nl7nugM T (— R Yoro 1 — \/:Yz (g
/ 1
% 16w — Y10+ = 3 (110> 000>

2 1
MO8t | = S Sato — —= O Oat,—
A1812051 [3\/5 modnmo — = 16,1

1
- 5m,~151v11:| t3 1610051 Smodato

V15
where

S5 &)
)\1 = / Rnl . R(]() . 7‘3 dr = / Rng Roo ’I‘3 dr.
0 0

For the three-dimensional harmonic oscillator, n = [ + 2n, = 2(1 + nr)

— even. We have

oQ
Cn(c0) = 1} et (nlmasa |V (t) |000ago) dt
ih
L[ e ‘ Vs 2 oy - X000
== e™ " di <nlmaSM‘ (V1 + V2 L) o1 X| 00)
= 1 (e”‘“” - 1) <nlma5M 2 cos 00y - £ |app000)
nwh
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and
Cog—y(0) =0,
Oap(00) — ﬁ ¢2hor _ 1) % A
X ds) [% dmo dpro — \/—11‘5 Om,1 Or, 1
1

V15

where k= l, 2, e, = 2, )\1 = fooo 7‘3 R(gk)QR()() dr.

- T = 5171,—1 6A7[J )

7. MANY-PARTICLE SYSTEMS

7001

In one dimmension, a particle of mass m is atiracted to the origin by a

linear force —ka. Its Schrodinger equation has eigenfunctions

¥,(6) = Ha@exp (<56

mk 1/
EC?) @

where

and H,, is the Heriite polynomial of order n. The eigenvalues are

1 g2
F, = (’IL + —) huw where w = (*> )
2 ™m

Consider two non-interacting distinguishable particles (1 = 1,2), cach of
mass rn, cach attracted to the origin by a force —kx,;. Write down ox-

pressions for the eigenfunctions, eigenvalues, aud degencracies for the two-

particle systemn using cach of the following coordinate systeins:

(a) single-particle coordinates xy and s,

y) relative (& = oy — 1y) and center-of-mass = 21722 coordinates.
b) relaty 1 f X = nfez d

Solution:

(n) For the single-particle systemn, the Hamiltonian is

i
H= -2
2m dz? +

2

1
—kx
2

with o* = % The Schrodinger equation can be written as

d?
%+(Af52)w:(),

where
m

—E.
k

5

2
= ar P -
(= azx, 5

601
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The eigenfunctions are

40l6) = Hul)ex (16

with eigenvalucs

where
w = — .
m

Using the single-particle coordinates z; and x4, we can write the Hamilto-
nian for the two-particle system as

B 02 B2 9% 1

P 1 P

2 2 2,2

— 5T ag T smwir] + —rmwtx
2m 61‘% 2m z% 2 1y 2

=H1+H2.

The energy eigenfunctions can be obtained as the common eigenfunctions

of {H1, Ha}, ie., 9(x1, 72) = ¥(z1) ¥(22), the corresponding energy being
E = B+ E2. Thus

1, . .
Yo (21, 22) = Hy (a1 )Hyp, (cery) exp [i(xz(mf + :1;5)} ,

EQD) = (ntm+ 1) hw = (N + Dhw,

g\ /4 g\ V2
= (ﬁ};) , w = (-) , N=n+m.
m

The degeneracy of the energy level E'I(L{V\TJI) is equal to the number of non-
negative integer pairs (n,m) which satisfy the condition n +m = N, Le.,

where

fM =N p1.

(b) Using the relative and center-of-mass coordinates = = w9 — 24 and

X = ﬂ%‘ﬂ, we can write the Hamiltonian for the system as

Ik h? 92

1o, 1
L A L LN V3 < ST
5m 0X?  opdar g MW AT+ gt

3
Many-Particle Systems 60

2 .
where M =2m, p= tm, w = (%)l/ . Asin (a) we have

1 ,
Y (X, 7) = Hn(aX ) Hin (0) exp [‘g(oﬁX2 + ﬁsz)] :

EWY) —(n+m+ Daw = (N + 1)Aw,
fN) =N +1,

()T e

where

7002

Consider two identical lincar oscillators with spring constant k..uTthe
interaction potential is given by H = exyxy, where 11 and x5 are oscliator
variables.

(a) Find the exact encrgy levels. . R

38 k. Give the energy levels to first order n &/%.

(b) Assume € K Bagiolo
Solution:

(a) The Hamiltonian of the system is

R 8> m? 9* 1

1 .
. “mw?z? + amw%é +ET1T2,
2m 8x? 2m Oz; 2

L ) 22 = —= (41— y2).
T = —2 (y1 +y2), V2
we can write H as
2 2 2 62
H = — _’LB_ _ _h___2 + —(mw2 +e)y]
2m 0y? 2mdys 2
+ = (mw® — €)y;
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Hence the system can be regarded as consisting two independent harmonic
oscillations of coordinates 1, y2. Thus, the exact total energy levels are

1 . & 1 ' =
En’n: 7L,+— h w2+—+ n+—1h wl_i.’
2 m 2 m

where n”/, n=20,1,2,3,....
(b) For £ < k, the encrgy levels to first order in £/k are

;LY s en\1/2 1 e\ 1/2
n'n — {1 =11 ( - 7) n =} ( — _)
D <zz+2 i lTLk: + n+2 o {1 B

(0 +n+ Dhw+ (10— n)hw EFI ,

&

7003

(a) Write down the Hamiltonian and Schrédinger equation for a one-
dimensional harmonic oscillator.

(b) If ze **" is a solution find v and then give the energy Er and the
expectation values for (), (z2), (p?), (px).

(¢) Show that for two equal particles in a single one-dimensional har-
monic oscillator well the ground state may be written either as ¢o(mn, ;)
X ¢g(m, x2) or

o (‘.Zm, il ;”:2) hg (%, (1 — ;1:2)> ,

where dg(1n, ) is the ground state solution for a single particle of mass m.
( Wisconsin)
Solution:

(a) The Hamiltonian for a one-dimensional harmonic oscillator is

2

P 5

= — 4 = mwle.
2m 2

The stationary Schirddinger equation is

AR T
<%L i imwz;z:l> Y(x) = Ey(x).
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(b) Substitution of ¥ = re~¥*" in the Schrodinger equation gives

2

2 . 1 : —vx
[_5_(—2u)(3 ~2we?) + imwzﬂcz} 7o
m

2 2.,2 E
- [&u—t— (%mwz 2y ) xQ} ze®

m

1 ,  2R%7
Zmw? — =0,
m
352
El - v,
m
whose solution 1s e
2R
3
El = 5 hw .

From the symmetry we know (z) = 0. The Virial theorem gives

1o a0 1 g, 2y 1 3,

‘%<p>f2mw<f>—22 :
Therefore 2 i -

(p*) = mmhw, (z >:§—w

To find (pz) we first normalize the wave function:

o0 2
A2/ e dr =1,

— 00

giving
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Then consider

<p:1;> _ — — / (/)‘(.Ew (1(1

h 2 d

= ?Az/:oo:u, v o (T')‘f"wz) dx
h o0 . . 2

ST [y

—00
ik
T2

(¢) The Schrédinger equation for the two-particle system is
. f_z v2 v 1 20,2 2
( 1+ Vi) + W (@1 +23) | Py, @) = By, x).
Suppose ¥(z1, T2) = ¢(x1)$(x2). The variables can be scparated:

R _, 1
7%v2 + 57)1&) fean > ( ) = i(/)(:l.‘,;), 1= 1,2,

Hence the system can be considered as consisting of two identical har-
monic oscillators without coupling. The ground state is then

Po(x1, x2) = do(rn, 1 )do(m, x2) .

On the other hand, introducing the Jacobi coordinates
1
R= 5(1‘1 +x2), r=x) -y,
the Schrédinger equation becomes
’I v 1 2 D] 1 2
27 —+ ZV + Emw <2R -+ 57' >] ’(/}(R,T) = E(/)(R,I‘) .
Writing (R, 7) = ¢(R)¢(r), it can also be separated in the variables to

1i? -
<—4—VR + msz“) #(R) = Egd(R),
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where Eg + E, = E, with Eg, E, respectively describing the motion of the

center of mass and the relative motion.
Therefore the wave function of the ground state can be written as

o(zy,T2) = ¢o(2m, R)do (— r)

(o P s ()

7004

Consider two particles of masses my # ma interacting via the Hamilto-
nian
2 2
] P 1 .y 1 5 1 9
LT R Emgw‘l;vﬁ + = K(xy —x2)°.

H=—
2m,  2mg 2 2

(a) Find the exact solutions.
(b) Sketch the spectrum in the weak coupling limit K < pw?, where p

is the reduced mass.

(Berkeley)
Solution:
(a) Let
R = (mi21 + maz2)/(m + ma), r=2x —I3.
We have
d OR d _BLEI_
dry Oz, dR Oz dr
. my d ii_
my +mg dR  dr’
and so
ﬁ_: my :Zd2+2 my d? -l—iii,,
dxz? my+ma ) dR? my + my drdR  dr?

and similarly

42 ™mo L o M2 d? N d?
EE T \my +me dR2 my +me dRdr  dr®’
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We also have

2

P 4 m :
af=R*+2—"2  p 2 r?
my + meo (m1 +my)?2
2 2 m m?
wy=R*—2—"1  ppy  MP r?
my 4+ 1y (rny +my)?
Hence
-2 . K .
_ A d* B2y 4oy d2
2(my -+ my) dR? 2 gy dr?
n l(" 252 L myrng 5 1
5y + molw RS 4 - T2 2.0 + = Kr?
2 2 my 4+ mey 2 '
Let
B My,
]Maml —|~m2, i 172

My + ey
The equation of motion becomes

hz d2 h d2
+ Mo 2p2 ,LL K 5o
LMMQ B g v (M oos ) & vk
:E1/)(R,r).

It can be reduced to two independent oscill
and wave functions

. . 1 3
E= Elm - El + Em = <l + E) IILU + (’H’L + l) hw 1 + A
5 ;

Jiw?’

ator equations with encrgy states

i (1,7 =R (r)y = N|N,, exp {——a R J Hi(o, R)

X ﬁl 2,2
exp 5 s o, ((127‘) ,

_ ay 1z Muw 172
() e (M)

1/2
Ny — (%2 (w12 K\
" (\/772’”771..’> ’ 2 = (7) 1+ m) ;

and H,, are Hermite polynomials.

where

N,

o~
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(b) For K < pw?, if we can take
KO\ L2
(1 + —) ~1,
Jiw?

Ep~{(+m+1)hw=(N+1)hw, N=l+m=0,1,2,....

we have

This means that the degeneracy of the Nth energy level is N + 1:

N---

N=3 1-3m=0 =2 m=1; =1, m=2;, =0, m=3.
N-=2 {=2m=0; I=1,m=1 [1=0,m=2.

N=1 I=1m=0 I=0m=1.

N=0 [l=m=0.

If K is not so small and we have to take

K N K
pew? 2 pw?

then the energy levels with the same m will move upward by

1 K
<m+§>fw <2uw2+~~> )

and so the degeneracy is destroyed.

7005

A potential has the form shown in Fig. 7.1, where V is very large but

[inite.

(i) If a particle is originally in one of the wells, give a formula for the
order of magnitude of the rate at which it tunnels into the other. Do not
attempt to calculate numerical factors of order unity.

(it} Sketch the wave functions for the lowest two states.
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i i i : i be taken as infinite and | \
(iii) If two identical bosons with a small repulsive force between them are For V' very large, 1t can be |
placed in the wells, write down approximate wave functions for the lowest r2h2n? ‘
two states for each of the two cases where the effect of the inter-particle ~ amL? L
force is much less and much greater than the effect of the fact that V is not \\\ !
infinite. Thus P2R2 3r2R2
. —~ R = A 22 — 1) = —. ‘\ |
(Berkeley) AE = FEz - By 2mL2( ) 2mL? ‘\‘ ‘T
® w Hence the rate of tunneling per unit time is of the order “ \l\
“ [
Bro—=——. 1}
to 2mL2 ) ‘l‘
4 . .
l (ii) The wave functions of the two lowest states are sketched in Fig. 7.2.

!‘ﬁl N a | ¢ Gix)

L -1 = Bilx)
Fig. 7.1

\/ -~
Solution: l

2ix)

(i) Denote the ground state by v and the first cxcited state by a. 1y
Is symmetric about the axis of symmetry of the potential well, ¢y is auti-
symmetric. Assume the particle is initially in the loft scini-well and write
the initial wave function as

Fig. 7.2

(iii) If the repulsive potential between the bosons is much smaller than
V. the wave functions of the two lowest states are approximately

\Il(.’lf, 0) = ('l/)1 + 1/}2)/\/§
¥y = YL (2),

(We can see that this is a good approximation from the diagram given in

(ii)) Then Ty = \lf (1 ()wa(2) + 2 (1)1 (2)].

\I/(I,t) _ [wle—zlylt/h,+,(/}2(37—'11H2L/h]/\/§_ 2
At time g for which e_iE‘“"’/FL/C_/"E”"/'i = —1, we have If the repulsive potential is much larger than V, transmiS§10n through th.e

’ central potential barrier is very small, and the wave functions are approxi- ‘

Uz, to) = Clr ~ 2)/VE, 1O = 1. mately

At this moment the particle is in the other semi-well (i.e., with a large Ve =i (D)$r(2),
i 1 — i p - I 1

probability). As —1 = ¢'", this happens at time Ty = % (1 (L)ha(2) — P (Ver(2)] - i

7h mh |

to= ——e = —
" E,—E, ME




SU Oenes

WWW.BELLADONNAREALM.COM | SPORTS ILLUSTRATE



612 Problems anid Solutions on Quantum Mechanics

7006

Cousider a system defined by the Schrodinger cigenvalue equation

2

k2 ) k ‘ ‘
{‘% Vi+ Vﬁ) + 5 Ity — rz}z} P(ry,r2) = E(ry, ry) .

(a) List all symmetries of this Sclhirédinger equation.
(b) Indicate all constants of motion.
(c) Indicate the form of the ground-state wave finction.
You may assumc that the ground-state wave function of one-dimensional
harmonic oscillator is a Gaussian.
{Berkeley)

Solution:

(a) The Schrédinger equation has symmetries with respect to tire trans-
lation, space inversion, translation of the whole syster, aud the exchauge of
r; and rz, as well as symmetry with respect to the Galilean transforimation.

(b) Let r = r; —ry, R = 2 (ry +1y). The Schrédinger equation can
then be written as

-2 2 :
{~%V§ - %vi + %rz} Y(R,r) = Ey(R, ).
This equation can be separated into two, one for the motion of a particle
of mass 2m at the center of mass and one for the motion of a harinouic
oscillator of mass /2 relative to the second particle. The motion of the
center of mass is a frec motion, so that Pf;,, Dy, Py, Py By, L'f,{, L., L, L,
are all constants of the motion. Of the relative motion, E,., L% L, as well
as the parity of the wave functioun, are constants of the motion.

(¢) The ground-state wave function lias the form (R, 1) = ¢{R)p(r).

#(r} is the wave function of a harmonic oscillator of mass 2

2
1 2.2
p(r) ~ exp #Ea -

mk

#(R) is the wave function of a free particle of mass 2m:

with

P(R) ~ exp(—ip - R/h)

T

Many- Particle Systems

with

lh 2k
p| = V4mER, ER:E‘§/ .

T

7007

. dimensional
Two idcutical bosons, each of mass m, move In the one-dimensiona

i i = Lmw?y? interact with cach
harmouic oscillator potential V' = smw<z”. They also

other via the potential
2
‘/int(‘l:hI'Z) = ae—ﬁ(zl ®a) 3
where 3 is a positive parameter. Compnte the ground state energy of the

system to first order in the interaction strength parameter a.

( Berkeley)

Solution: i
i i ancously stay i the (
Being bosons the two particles can simultancously stay iu the groun

1 bur : unctl C the
state. Taking Viy as perturbatlon, the unperturbed wave function of tl
state. V

ground state for the systein 1s
mw

1, . .
; (644] ot 2y 2 . =
’l/)()(,’l,'l,il,’g) = ¢()(LE1)Q)0(1172) = ﬁ exp [ 2(10(.1/1 + 1'2)} ) 0 7

The perturbation energy to first order in « is then

AE = // dﬁ(wl,xz)Vint(m,xz)qjjo(xl,xz)dzldzz

P o0 )
=002 [ epiad(ad + o) ~ o - 22 dn
™ — o
[8 43104
= (a%+26)1/27 |
where the integration has been facilitated by the transformation

ry+T2 Zlﬁxgzy‘).
_’_2“-*917 _2_‘ 2

The ground state energy of the system is therefore
/2
g . (T
= — 0 with ay= (— .
E=hot oaopyir B
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7008

A one-dimensional square well of infinite depth and 1 A width contains
3 electrons. The potential well is described by V = 0for 0 < ¢ < 1 A
and V = +ocoforz < 0Oand z > 1 A. For a temperature of T = 0 K,
the average energy of the 3 electrons is £ = 12.4 ¢V in the approximation
that one neglects the Coulomb interaction between electrons. In the same

approximation and for T' = 0 K, what is the average cuergy for 4 electrons
in this potential well?

( Wisconsin)
Solution:

For a one-dimensional potential well the cnergy levels are given by
2
En. = Elnua

where E is the ground state energy and n = 1,2,... . Pauli’s exclusion
principle and the lowest energy principle require that two of the three elec-
trons are in the energy level E) and the third one is in the energy level E,.
Thus 12 -4 x 3 = 2E; + 4F,, giving E, = 6 -2 ¢V. For the case of four

electrons, two are in £ and the other two in E,, and so the average energy
is

1
E=7(2B +2B) = F1=155cV.

oA

(Note: the correct value of E| is

w2h2 1 mhe 2 B 1 T X 6.58 x 1071% % 3 x 1010 2
2ma?  2mc2 \ T 1.02 % 106 10-8

= 37.7eV))

7009

Consider two electrons moving in a central potential well in which there
are only three single-particle states 1, 12 and 3.

(a) Write down all of the wave functions (ry, rp) for the two-electron
system.

(b) If now the electrons interact with a Hamiltonian § H — V'(ry,py) =

V'(rg,r1), show that the following expression for the matrix element is
correct:

Many- Particle Systems 615

(13|16 H1hr2) = (h3(r1) 1 (£2)IV (x1,72) P2 (11 )1 (r2))
— (a1 (01 )t (r2) [V (r1, o) (o (ry )¢ (r2)) -
( Buffalo)

Solution:

(a) The wave functions for a fermion system are antisymmetric for in-
terchange of particles, so the possible wave functions for the system are

1
V2
P13 = 2 (1 ()3 (r2) — P1(r2)bs(r1))

Pra = —= (1 (£1)P2(r2) — Y1 (r2)Pa(r1))

°

) :L (g )3 (re) — Y2(r2 Pa(r1)) -
a3 \/ﬁ(d"( Y3 (rz) ~ p2(r2)

(b) We can write

(1 ()3 (r) V' (1, T2) |1 (F1) 2 (r2))

1
(‘1/11:4]5HW12> = 35

5 W)V (e (e Y (12))

- %Wl(rz)%f/s(rl)ivl(rhT2)|¢1(T1)1/’2(r2))

b2 IV e, ) ae1) $ r2))

. . ) . h
Since the particles are identical, ry and ro may be mterchan.ged hln eac

i same
term. Do this and as V'(ry,rg) = V'(rz,11), we again obtain the sam
expression, showing its correctness.

7010

Two identical nonrelativistic fermions of mass m, spin 1/2 arein a or'xe-
dimensional square well of length L, with V infinitely lar'ge z?nd repuls'n;e
outside the well. The fermions are subject to a repu151‘ve mter—p.a%rtlch e
potential V (z1 — £2), which may be treated as a perturl?am.on-. Classi y' tl e
three lowest-energy states in terms of the states of the individual particles
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and state the spin of cach. Calculate (in first-order perturbation theory)
the energies of second- and third-lowest states; leave your result in the forw
of an integral. Neglect spin-dependent forces throughout.

( Berkeley)
Sotution:

For the unperturbed potential

0, =zel0, L],
V() = {

oo, otherwise,

the single-particle spatial wave functions are

2 . nmx
P (z) = \/;““ I vel i

0, otherwise,

where n is an integer.
The spin wave function of a single particle lias the form (3)-
As we do not consider spin-dependent forces, the wave function of the
two particles can be written as the product of a space part and a spin part.
The spin part x;(M) = xsar is chosen as the cigenstate of S = s + s, and
S, = s1, + 82,4, 1.0,

Il

J+ Dxan,

Srxan =My .

SzXJM

J = 0 gives the spin singlet state, which is antisymmetric for interchange
of the two particles. J = 1 gives the spin triplet state, which is syminetric
for interchange of the two particles. Symmetrizing and antisymimetrizing
the space wave functious of the two-particle system we have

i (X1, 29) = % [ (1) (22) — 9 (22) 8 (21)]

1
Zm(wl, Tg) = \/5

wﬂ(xl)¢11($2) ) n=m.

[Un (21)Pm (22) + Yo (22) 8 (21)], 1 £ m,
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The corresponding energies are

w2h?

2 2 =12 .-
:2'mL2(n +m), n,m=1,2, .

The total wave functions, which are antisymmetric, can be written as

v (@1, 22) XM s

A
o (Z1; T2) XM -

The three lowest energy states are the following. o '
(i) Grouud state, n = m = 1. The space wave function is symmetric, so

the spin state must be singlet. Thus
o = P11 (&1, 22) Xo0 -

1,m=2.

il

(i) First excited states, n

{ (e, ae) o, M =0,%£1,

'l/)l =z ,
i (g, 2) xoo -

The degencracy 1s 4. o
‘ tion s
(iii) Secoud excited state, n = 2, m = 2. The space wave functio
syuunetrie, the spin state is singlet:

W2 = Pia(x1, 22) Xo0 ,

which is nondegenerate. Because the perturbation Hamiltonicfm is indepen-
dent of spin, the calculation of perturbation of the first exc1t.ed state caul
be treated as a nondegenerate case. The perturbation energies of seconc

and third lowest energy states are given by
AED = / dayday | Pz, )V zy — z2),
AE; = / daevdazy |05y (m, )|V (2 — z2),

AEy = / dayday |98 (xy, 22)| PV (21 — 22) -




618 Problems and Solutions on Quantum Mechanics

7011

A one-dimensional box of width L contains two spinless particles each of
mass m. The interaction between the particles is described by a potential

energy V(z1,z2) = ad(x; — x2). Calculate the ground state energy to first
order in a.

(Columbia)

Solution:

Neglecting the §-potential, we have

07 OS:’;111:2SL7
Vi(zy,x2) =

o0, otherwise,

R d? R? d?
Hy=——— - ——5 +V(x, x2).
0 2mdz?  2m dx? Vi, w2)

Using the results for an infinitely deep potential well, we have

Yni(T1, T2) = Y (21)1(22)

_ 2 (mr> b
= L Sin L €y} sil L.I,;g y

B2
2mL?
For the ground state, n = [ =1,

Enl -

(n* +1%), nl=12---.

E\, = 7127r2/mL2,
Now consider the d-potential as a perturbation
H = ad(xy — z3).
The correction to the ground state energy due to the perturbation is

H' = (11|H)11)
L L .92 T .o fT 2 2
:/0 /0 ad(xy — x)sin (Ezl) sin (—El‘g) (L) dxidz,
2 ,L
B 2 L4 (T _ 3a
—a<L> /0 sin (Exl)dzl—ﬁ,
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and the ground state energy is
K 3a

E'H:El1+H'=mL2+2‘L-

7012

Two electrons at fixed positions on the z-axis have a magnetic dipole-
dipole interaction (energy) E = A(s1-s2 — 351,82,), where s; = %m, o;
being Pauli’s spin matrix, A = constant.

(a) Express E/A in terms of the total spin operator S = s; + sa.

(b) State the eigenvalues of E/A and their degeneracy (statistical
weights).

{ Berkeley)

Solution:

(a) As

we have

3
S2:(sl+52)2*5+251'52,

1
SZ = (Slz + 522)2 = 5 + 25125‘22 ’

and hence

EJA = (s1- sy — 3s1,52.) = (S* - 35%)/2.
(b) For the common eigenstate |S, M) of S and S;, we have

E 1 2
218, M) = 51S(S + 1) = 3M7 |5, M)
Thus 1S,M) EJA D(E/A)
0,00 0 1
! 2
JIESIRNESS
1,00 1 1

Note that for states with M # 0, the energy levels are two-fold degenerate,
ie, D=2
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7013

(a) A 2-fermion system has a wave function 1(1,2). What condition
must it satisfy if the particles are identical?

(b) How does this imply the elementary statement of the Pauli exclusion
principle that no two electrons in an atom can have identical quantum
numbers?

(¢) The first excited state of Mg has the configuration (3s,3p) for the
valence electrons. In the LS-coupling limit, which valucs of I and § are
possible? What is the form of the spatial part of their wave functions using
the single-particle functions 1,(r) and ¢,(r)? Which will have the lowest
energy, and Why?

(Berkeley)
Solution:
(a) ¥(1,2) must satisfy the condition of antisymmetry for interchange

of the two particles:

Prowp(1,2) = (2,1) = —4(1,2).

(b) In an atom, if there are two clectrous having identical quantun
numbers then 9(1,2) = 4(2,1). The antisymmetry condition above then
gives ¢(1,2) = 0, implying that such a state does not exist.

(¢) The clectron configuration (3s, 3p) correspond to

=0, I=1

’

51 — 89 = 1/2

Hence
L=1, S§=0,1.
YE(1,2) = ¢5(1,2) xs(1,2)
where
([ 64(1,2) = 7<¢>s<r1>¢p<rz> + s (r2)dp(r1))
%(1 + Pro) (1) (r)
! ~Lla-p r r
#31(1,2) = \/i(l Pra)ps(r1)gp(ra) .
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The lowest energy state is ¥1(1,2), i.e. the state of S = 1. Because the
spatial part of the state S = 1 is antisymmetric for the interchange 1 ¢ 2,
the probability that the two electrons get close together is small, and so
the Coulomb repulsive energy is small, resulting in a lower total energy.

7014

Two particles, each of mass M, are bound in a one-dimensional har-
monic oscillator potential V' = %kzz and interact with each other through
an attractive harmonic force Fio = —K(x; — x2). You may take K to be

small.

(a) What are the energics of the three lowest states of this system?
(L) If the particles are identical and spinless, which of the states of (a)
arc allowed?
(¢) If the particles arc identical and have spin 1/2, what is the total spin
of cach of the states of (a)?
(Wisconsin)
Solution:

The Hamiltonian of the system is

L ki .. K \
+ —k(z] + +—(z1—=z
(az1+ax2> @ 3+ o (o)

Let £ = ﬁ(:m +x2), N = %(xl — x) and write H as

- h [ 82
H=——
2M (052

B h2 32
= 5 ==+

The system can be considered as consisting of two independent harmonic

62
>+ k(&2 +n*) + Kn?

62
>+ k& + = (k+2K)

oscillators of angular frequencies w; and wy given by

k kE+2K

wi=A e wy = M
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The total energy is therefore

1 1
En.m = (’I‘L + §> hwl + <m+ ‘5) hw27

and the corresponding eigenstate is

[nm) = 4y = (PI(Lk) ) ‘p(k+2K)<") >

k113

where n,m = 0,1,2,--- and @gl.k) is the nth eigenstate of a harmonic

oscillator of spring constant k.

(a) The cnergies of the three lowest states of the system are
1
Ego = Eh(wl + w2},
1
Eig = 5 h(wl + wg) + Ay,

1
Ey = 3 Plwn + wy) + hws .

(b) If the particles are identical and spinless, the wave function must, be
symmetric with respect to the interchange of the two particles. Thus the
states [00), [10) are allowed, while the state |01) is not allowed.

(c) If the particles are identical with spin 1/2, the total wave function,
including both spatial and spin, must be antisymmetric with respect to an
interchange of the two particles. As the spin function for total spin S = 0
is antisymmetric and that for S = 1 is symmietric, we have

S =0 for|00),

S=0 for|10),

S=1 for[01).
7015

A particular one-dimensional potential well has the following bound-
state single-particle energy eigenfunctions:

wa(-'”): 1/)1,(113), T/Jc(r) y  where F, < E,<E. ...
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Two non-interacting particles are placed in the well. For each of the cases
is w write down:
© ’tgzz) ’t\ili)) :éi:isdt t;il:)al energies available to the two-particle system, the
degeneracy of each of the two energy levels, the possible two-particle wave
functions associated with each of the levels. .
(Use 9 to express the spatial part and a ket |5, ms) to cxpress the spin
part. S is the total spin.)

(a) Two distinguishable spin-% particles.
(b) Two identical spin-3 particles.

(¢) Two identical spin-0 particles. )

Solution:

As the two particles, each of mass M, have no mutual interaction, their
spatial wave functions separatcly satisfy the Schrodinger equation:

—— T3 Viz Wi\ :Ei"pi(‘l‘l)y
{ aaf o2 TV @] i)
DZ BQ 3] g . — .9 . v,
[ o7 g+ V)| o) = By (o)
(i, 7=a,bc...)
The equations may also be combined to give

2 a2 2 52
V() + V(e i) e
2M Oz}  2M Oz;
= (B + Ejy () j(z2) .
Consider the two lowest energy levels (i) and (ii).

(a) Two distinguishable spin-3 particles. o
(i) Total cnergy = Eo + FE,, degeneracy = 4. The wave functions are

Ya(z1) Ya(22) |0,0),
{ Va(z1) Ya(z2) [Lm) . (m=0,%1)
(ii) Total energy = E, + Eb, degeneracy = 8. The wave functions are
Ya(21)¥a(22)10,0), Ya(z1)¥p(22) [0,0),
{ ba(21)va(22) |1, ), { Yalz1)p(z2) 11, m) . (m =0,%1)
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(b) Two identical spin-1/2 particles.
(i) total energy = E, + E,, degeneracy = 1.
Ya(T1)Ya(x2)[0,0).
(i) total energy = Ey, + Fj,, degeneracy = 4. The wave functions are
s Wale ) e) + (1) (52)]0,0)
1
7 [Wa(@)¥e(@2) — o(21)¢a(22)] 1, m) . (m =0, 21)

The wave function is

S

(c) Two identical spin-0 particles.
(i) Total encrgy = E, + E,, degeneracy = 1.
Va(21) tha(22)(0,0).

(ii) Total energy = E, + E, degeneracy = 1. The wave function is

The wave function is
1
E [Yalws)hp(z2) + Pu(21)1ha (22)]0,0) .

7016

[ WO ele( lI()nb move 1n a (,Olllr(ll flCld. C SICr 1€ vl(}(. Istatic Cr-
X ()Ilﬁld tl e e trc st 1bie mit °X
ac thn € /‘rl I Zl b(’,t ween l}l(? Cl(,( tr()llb as a I)CI t “rl)dt 1011.

f(ia) Fm.d the first order energy shifts for the states (terms) of the (1s)(2s)
con guraf,lon. (Express your answers in terms of unperturbed quantities
and matrix elements of the interaction e?/|r, — ral)

( ) 1SCUSS the Sylmn(‘tl‘y O i t wWO- b [
b D S S f hP alilc](“ wav t N &
( ) p C tun( 101 f()r th( st at >S

2s i 2s _,I?
I |
s 1s
rlo tlll?
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(c) Suppose that, at time t = 0, one clectron is found to be in the 1s
unperturbed state with spin up and the other electron in the 2s unper-
turbod state with spin down as shown in Fig. 7.3. At what time ¢ will the
occupation of the states be reversed?

( Berkeley)

Solution:

(a) The zero order wave function of the two electrons has the forms

d1(r1,T2) X00(S12: 522)

$_(ry,r2) X1m, (512, 822)

where

! (s (1)v26(2) + curs(2)ves(l)], €= %1,

be =

& \/Q
being the normalized symmetric (+) and antisynunetric (—) wave functions,
Yo aud y denote the singlet and triplet spin states respectively. Denoting
wrs(1)v24(2) by 11, 2) and wis(2) vas (1) by [2,1), we can write the above as

6e) = (11,2) +€f2,1))/V2.

Because the perturbation Hamiltonian is independent of spin, we need

not cousider x. Thus

2
AE. = /d3r1d3r2¢;

] be
1 e?
r 2]

- %((1,2(,4(1,2) +(2,1]412,1)

+e(1,2]1A12,1) + (2, 1]A[L,2)] = K +eJ,

where A = ¢?/jr; — 2}, K = (1,2]AlL,2) = (2,1]A2,1) is the direct inte-
eral, J = (1,2]4]2,1) = (2,1]A]1,2) is the exchange integral.

(b) The singlet state Xo 1s antisymmetric for interchange of spins. The
triplet state x; is symmetric for interchange of spins. Similarly, ¢ is
symmetric for the interchange of r; and ry, and ¢_ is antisymmetric for
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the interchange. Hence the total wave function is always antisymmetric for

interchange of the electrons.

(¢) The initial state of the system is
1
¥l = 0) = =[11525) | 1) ~ [2519) | 41)

1
= o [(11,2) +12, 1)) ( 1) = | 41)
+{1,2) =2, 1)) (| 1) + | 41))
1
= 7 (4 x00 + ¥_x10),

and so the wave function at ¢ is
Y(t) = 1 —iELt/h -
=7 (%4 x00e™ FrHIP oy ige= B 1/BY

When e—iB-t/h/,~iEt/h _ :
/e = ~1, the wave function becomes

) — Bty 1
P(tn) = e HErin/R 7 (Y+x00 — ¥_X10)

— e*EV}—tn/h .

1
2011 - 1L2) 1),

V\;hl(‘.h shows th.at at this time the 1s clectron has spin down and the 2s
electron has spin up ie., the spins are reversed. As —1 = i@n+)m
0,1,2---, this happens at times o

h _ {2n+ )=k

t=2n+1)r —n—— =
E, - F_ 2J

7017

(a) ShOW that t he pal 1t y ()pel ator COHlIDUteS W lth ‘ he Orbltal dllg Uldr
mn uy p t I. ha h p Y B
t W t t ant f the t .
omen . no (eIa )() 1S € arit qll ntum nU]leer O h(r %p ]er](/dl

(b) Show for a one-dimensional harmoni i i
s monic oscillato st =
) s that (A (A TS tin state B, = (n +
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(c) Consider the rotation of a hydrogen molecule Hp. What are its
rotational energy levels? How does the identity of the two nuclei affect this
spectrum? What type of radiative transition occurs between these levels?
Remember that the proton is a fermion.

(d) Show that (n-o)® = 1, where nis a unit vector in an arbitrary

direction and o are the Pauli spin matrices.
(Berkeley)

Solution:
(a) Applying the parity operator P and the orbital angular momentum
operator
L=rxp

to an arbitrary wave function f(r), we have
PLf(r) = P(x x p)f(r) = (-1) x (-p) f(- 1)
—rx pf(-1) = LPf(r).
Hence P and L conunute, i.e.,
[P,L]=0.

As

PYin(0,8) = Yim(m — 8,7 + ¢) = (=1)"Yim (0, 8,
the parity quantum number of Yim(0,¢) is (1)
(b) For a one-dimensional harmonic oscillator, we can use the Fock

representation

] huw
I:\/T(a+a+), p=iF(a+-a),
2w 2

where a, a* are annihilation and creation operators having the properties
aln) = Viiln = 1),
atin) = vn+1n+1).

Using these operators we have

(nlafn) = 1 5 (nla +a*In)

e (laln = 1) + VA Ll 1) =0,
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(nle®ln) = 2,,;; (nl(a +a*)(a +a™*)n)
h
- 27:;4) (Vr(nla +ain - 1) + Vvt 1{nja + a¥ln+1)

h
= 2mw [m<n’|” =2) +n(nln)
+(n+ 1) {nfn) + /(n+ 1)(n + 2)(nln + 2)]
h

= 21 -
2711/44)( nek 1),

and siinilarly

(nlpln) = 0,

. I
(nlp?In) = T 0 4 1),

As

(Ax?), = (2= (@) = (&), — (a)? = ;L(Z'n, +1),

21w
, anh

<Ap2>n = <p2>lz - < 72, == I”( et (2’!1,+ l),

we find

2
(Ax?),, - (Ap?), = h? (n - é) .
(¢) The rotational energy levels of a hydrogen molecule are given by
E. = RPK(K + 1)/21,,

where Io = M Rj is the mowment of inertia of the molecule about the rotating
axis, which is perpendicular to the line connecting the two nuclei, K is the
“angular momentum quantum number, K = 0,1, 2,---. Since the spin of a
proton is h/2, the total wave function of the molecule is antisymmetric for
interchange of the two protons. When the two protons are mterchanged, the
wave function for the motion of the center of mass and the wave function for

.the atomic vibration are not changed; only the wave function for rotation
1s altered:

YKA{KU):QO) - YKA/IK (ﬂ- ~0,7+ W) - (71)[\’YKMK(0)W)‘
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If K is even, (—1) XYk, (8,9) = Yicag (0, ) and the spin wave function
xo must be antisymmetric, i.e., xo is a spin singlet state; If K is odd,
(=) XYgnt, (0, 9) = =Yk (0, ) and the spin wave function x; must be
symmetric, i.c., x1 is a spin triplet state. The hydrogen molecule in the
former case is called a para-hydrogen, and iun the latter case is called an
ortho-hydrogen. There is no inter-conversion between para-hydrogen and
ortho-hydrogen. Transitions can take place between rotational energy levels
with AK = 2,4, 6,--- within each type. Electric quadruple transitions may
also occur between these levels.

(d)
(n-o)= (Z nim) = Z’TL»L"I’L]'O'iO'j

ij

% Z"i"b_;‘{(fn o} = Zninjdij = ani =1.
i

2y 2%}

Il

In the above 4, j refer to @, y, z, and {0y, 05} = oi0j + 050, = 2445,

7018

Two particles of inass m are placed in a rectangular box of sides a > b
> ¢ in the lowest cuergy state of the system compatible with the conditions
below. The particles interact with each other according to the potential
V = Aé(r; —ry). Using first order perturbation theory to calculate the
energy of the system under the following conditions:

(a) Particles not identical.
(b) Identical particles of spin zero.
(¢) Identical particles of spin one-half with spins parallel.
(Berkeley)

Solution:

(a) The unperturbed system can be treated as cousisting of two separate
single-particle systems and the wave function as a product of two single-
particle wave functions:

P(r1,r2) = P(r)y(ra) .

The lowest energy state wave function is thus
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8 TT] Ty Y] 7*?/2 7rz1 . 7rzz

tho(r1,r2) = for0<:r,i<a, O0<y<b, 0<z<e, (1=1,2)

0, otherwise,

corresponding to an energy

hm? /1 1 1
Ey = — 4 — L
0 m <a2 Tt (:2> '

First order perturbation theory gives au cuergy correction

Al = /¢6(r1’r2)A6(r1 = r2) Po(ry, ro)d’r d'ry

/A!% (ry,x1)Pdr = / /b/ ((11)()

-~ 2MA

Sabe’

"X TYy . w2y
X (51n——51n—51 —) dady,d
a b c 1Ay az) =

and hence

h2x? (/1 1 1 :
E = : (j+_‘2;7>+ﬂ_
T a? b ¢ Babe

(b) For a system of spin-0 particles, the total wave function must be

symmetric for interchange of a pair of partictes. Hence the lowest cnergy
state 1s

¢s(r1,12) = Yo(ry,ry),
which is the same as that in (a). The encrpy to first order perturbation is

also
h,27r2 1 1 i .
By = (—,+2+— LA
m b Rabe

. {c) For a system of spin—% particles the total wave function must be an-
tisymmetric. As the spins are parallel, the spin wave function is symmotrlc
and so the spatial wave function must be antisymmetric. As z < ﬁ; < =
the lowest energy state is i

4.)

Yalry,ry) = —[1/)311(1‘1)4]}111(r2) — o (r2)i11(r1)],

S
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where 1) (r) and ;1 (r) arc the ground and first excited single-particle
states respectively. The unperturbed energy is

5 k2 [ 5 +1+1
A0 T \2a2 T B2 2

First order perturbation theory gives

AFE = /U)Z(rl,rg)Aé"(rl — r2)’lf)A (I‘l,rg)dBTldSTQ =0.
B2 5 1 1
I _ i —
Ea= m (2(12 t * c2> )

7019

Therefore

A porphyrin ring is a molecule which is present n chlorophyll, hemno-
globin, and other important compounds. Some aspects of the physics
of its molecular properties can be described by representing it as a one-
ditnensional circular path of radius r = 4 A along which 18 clectrons are

coustrained to move.

(a) Write down the normalized oue-particle energy eigenfunctions of the
systein, assuming that the electrons do not interact with each other.
(b) How many electrons are there in each level in the ground state of

the molecule?

(¢) What is the lowest electronic excitation energy of the molecule?
What is the corresponding wavelength (give a numerical value) at which
the molecule can absorb radiation?

{ Berkeley)

Solution:
(a) Denote the angular coordinate of an electron by 6. The Schrodinger
equation of an electron
h2
—————(0) = Ey(0
(0 = B (0)

has solution
PO) = ™.
V2T
The single-valuedness of (), 1¥(0) = (0 +2), requires k = 0, %1, +2- .
The energy levels are given by
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R,
E= 22 -
(b) Let 0,1,2,... denote the encrgy levels Eg, Ey, E,, . .. respectively.
In accordance with Pauli’s exclusion principle, Eg can accommodate two
clectrons of opposite spins, while Ey, k # 0, which is 2-fold degencrate
with respect to +|k[, can accommodate four clectrons. Thus the clectron
configuration of the ground state of the system is

0'2 14243444
(¢) The electron configuration of the first excited state is
0%112134%5! .

The encrgy difference between E4 and Es is

2 . . (‘2
AE=FE5 - B, = L (5% —4%) = on

2mr? 2rna2

and the corresponding absorption wavelength is

ch 872 /me 82 4* ;
A:_:_<_) 22w _5300A
AE - o \n )" T 9 " Gozaz ’

where % = 0.0242 A is the Compton wavelength of clectron.

7020

A large number N of spinless fermions of mass . are placed in a one-

dimensional oscillator well, with a repulsive d-function potential between
cach pair:

N
Vz%wa%—%Z(S(wi—zj), k,A>0.
1=1 1]

(a) In terms of normalized single-particle harmonic oscillator functions
Yn (), obtain the normalized wave functions and encrgics for the three
lowest encrgies. What are the degeneracies of these levels?

(b) Compute the expectation value of Zf\il z? for cach of these states.

For partial credit, you may do parts (a) and (b) with A = 0.

(Berkeley)

i
> 33
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Solution: f
i ati 5 for em o
(a) Treat the §-function potential as perturbation. As for a system
( / ‘ ion i i metric "TO- > ve
ferutons, the total wave function 1s antisymmetric, the zcro-order wa
> s, the .
function for the system can be written as the determinant

U, (21) U, (@2) Y, (ZN)
1 ’lf/)nz (:Ll) wnz (J:Q) co '?,L'nz (IL‘N)

’L/)'H‘l”'TLN(:l"l."IN) = W :
} wnN('Tl) 'l/’nN (1'2) s ’l/)nN (QJN)

- 7% S 6p Pl (1) - ban (2))

g ? denotes ation of z;
where 1; label the states from ground state up, P denotes permuta ;
and 8p = +1, =1 for even and odd permutations respectively. On accoun
( 5-funct i ‘hati : iltonian are
of the d-function, the matrix clements of the perturbation Hamiltonian ar

he tion,

Al zero. Thus the energy levels are

N N
E(m.nz,... ,'fN) - (7“ . -”N!H“”l N ‘”N> - (E N Z”i\) 7

=1
whore w = \/]T/IT

. 1 P N - 17 t’he
(i) For the ground state: ny---ny are respectively 0,1,

cuergy is N NN - 1)~| B h_w

S N?,
Eg,. n-1 = hw [5 + 2 | 2

and the wave function 1s

Yo, N-tl@1TN) = —]\% ;6[)13[1/)0(931) e na(en)]

creet N —
(i) For the first excited state: my---ny are respectively 0,1,...,

2, N, the cnergy is
1 2 |«
Eo, . N-2N) = Eﬁw(N +2),
and the wave function is

1 1 rn_1)Y 4 .
o1 Nozn(rr o un) = VN ;(SPPWJO(‘M) pn—z(ry )N ()]
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(iii) For the second excited state: n, ---np are respectively either 0, 1
) )

.‘.N—2,N+1,orO,l,...N—B,N)l,N. The energy is

\ ho
Eo,..nv-2ni1y = Eo1, no3N_1n) = T(NZ +4},

and the corresponding wave functions are

1
Yo, .N-2N+1(T] - TN) = TN E dpPig(xy)- -
"

Y2y )N ()],

Yo, N 3N _(N{TL- - 2N) = % Z SpPlg(zy)---
s

Yn-s(@nv_2)¥Nn_1(zn_1)¥n(zn)].

It can be seen that the ground and first excited states are nondege

where the second excited state is two-fold degenerate.
(b) For stationary states,

AT = <Z z;0;V (2 ---.’L‘N)> .

we have

The virial theorem

or

then gives

%

<Z $k(9k
k

Z %(5(.’1&5

i

<Z§ §Z > :k<Zw?

‘:l:j)> :O’

i

N
2T = k <Zl~§> )
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).

nerate,

Hence
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N
1 [
2
zi )= E
<Z l> mw? ‘
1=1

N ) B h 9 ;h
<0 ‘LE”I x§ 0> = 2——1\4 s ;
ZN h
<1 i—lI% 1> - me(Nz +2),

N
2 sz 2> = <2'
i=1

where [0),]1),]2), and |2’) are the ground state, the first excited state and
the two secoud excited states respectively.

7021

What is the cnergy difference in eV between the two lowest rotational

levels of the HD molecule? The HD (D is a deuteron) distance is 0.75 A.
(Berkeley)

Solution:
The rotational energy levels are given by
ﬁ2
Ey= —2—IJ(J + 1) .
Thus for the two lowest levels,

2 A2 ’
AElozﬂJ(‘]+1) —Q‘TJ<J+1) ST

J=1 J=0

As the mass mp of the deuteron is approximately twice that of the hydrogen

nucleus my, we have

and hence
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h? 3 (he)? 1 1.5
AEIO:ﬁ:ﬂﬁ),)_Q:“(
smpr 2mpuetr 938 x 10°

9 <6.582 x 10716 x 3 x 1010

2
075 < 10-8 ) =111 x 107 %eV.
A0

7022

Consider the (homomclear) molecule N&*. Use the fact that a nitro-
gen nucleus has spin I = 1 in order to derive the result that the ratio of
mtensitics of adjacent rotational lies in the molecule’s spectinun is 2:1.

(Chicago)
Solution:

In the adiabatic approximation, the wave function of Ny molecule whose
center of mass is at rest can be expressed as the product of the clectron wave
function 4., the total nuclear spin wave function 1), the vibrational wave
function 19, and the rotational wave fuiction Y that s, ¥ = Y por.
For the molecular rotational spectrum, the wave functions of the encrgy
states involved in the transition have the smne P, o, but differeat 4, ;.
For interchange of the nitrogen nuclei, we have .4y — ,4p0 or —1p. .

The N nucleus is a boson as its spiu is 1, so the total nuclear spin of
the Ny molecule can ouly be 0, 1 or 2, making it a boson also. For the
exchange operator I between the N muclei, we have

. +1p,  for §=0,2, . W for I = even integer |
Py = Py =
{ —-ty for §=1, { —1pr  for I = odd integer.
As N3 obeys the Bose-Einstein statistics, the total wave function does not
change on interchange of the two nitrogen nuclei. So for adjacent rotational
energy levels with AT = 1, one must have S = 0 or 2, the other S = 1, and
the ratio of their degeneracies is [2 X 2+ 1 +2 x 04 :@2x1+1)=2:1.
For the molecular rotational spectrum, the transition rule is AJ = 9.
As S usually remains unchanged in optical transitions, two adjacent lines
are formed by transitions from [ = even to even and I = odd to odd. Since
the energy difference between two adjacent. rotational energy levels is very
small compared with kT at room temperature, we can neglect the effect of

37
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any heat distribution. Therefore, the ratio of intensities of adja(‘:ent spectral
lilios is equal to the ratio of the degencracy of I = even rotatlonal.ene;gy
loval to that of the adjacent I = odd rotational encrgy level, which has

been given above as 2:1.

7023

(a) Assuming that two protons of H;" molecnle are fixed at theirlnorn?ul
separation of 1.06 A, sketch the potential energy of the electron along an
axis passi ough the protons. .
dmh(ll)))dh;lkzgtc?rtheg electrin wave functions for the two‘ lowest fsta‘t:s n1Sn
H, indicating roughly how they are related to hydrogenic wave? unctions.
Which wave function corresponds to the ground state, and W+hy —_—

(c) What happens to the two lowest enerpy levels of H, in the hmi

) |
that the protous are moved far apart?

(Wisconsin)

Solution:

(a) As the protons are fixed, the potential energy of the system 1s' that
of the clectron, apart from the potential energy due to the Coulomb inter-
he elee , m ¢
action between the nuclei . Thus

e? e?

V=-———
|t |r2]
where 1,12 are as shown in Fig. 7.4. When the electron is on the line
connecting the two protons, the potential energy is
2 o2
Y -
VST T R
H M M | =
where = is the distance from the proton on the left. V' is shown }n Fig. 7.L.) clbl
a function of x. The wave function must be symmetrical or antlsymm‘etn(,af
with respect to the interchange of the protons. Thus the wave functions o

the two lowest states are
1
Yy = %W(rl) + ¢(ra)]

where ¢(r) has the forin of the wave function of the ground state hydrogen

atom:
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SANASN
\Vg

Fig. 7.6

3/2
o= 2= (3) e

a

where.z a 15 the Bohr radius and A is a constant. The shape of the two wave
functions along the z-axis are sketched in Fig. 7.6. It can be scen that
the probability that the electron is near the two nuclei is larger /f/or 11/;

Hence 1, corresponds to a lower V and is therefore the ground st ve

‘ ate wave
function. The fact that £, < E_ can also be seen from

Ey = (Yx|Hlyy)
= (o) H|p(r1)) £ (¢(r1)| H|d(r2)),
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(@(r)|Hig(r1)) = (¢(r2)|H|$(r2)} ,
(@(r)|H|¢(r2)) = (¢(r2)|H|S(r1)) -

and all the integrals are negative.

(¢) As the protons are being moved apart, the overlap of the two bound
states ¢(ry) and ¢(ry) becomes less and less, and so (¢(r1)|H|¢(r2)) and
((r2)|H[$(r1)) — 0. In other words, the two lowest energy levels will
beconte the same, same as the ground state energy of a hydrogen atom.

7024

Write the Schrodinger cquation for atomic helium, treating the nucleus
as an infinitcly heavy point charge.
( Berkeley)

Solution:

Treating the nucleus as an infinitely heavy point charge, we can neglect
its motion, as well as the interaction between the nucleons inside the nucleus
and the distribution of the nuclear charge.

The Schrodinger equation is then

( p? p3 2e?  2¢? e?

2m. 2m., Ry Ry + IRy — Ra|

where R, Ro are as shown in Fig. 7.7.

) $(Ry,Ry) = E6(Ry, Ra),

+2e
Fig. 7.7

On the left side of the equation, the first and second terms are the
kinetic energies of the electrons, the third and fourth terms correspond to
the attractive potentials between the nucleus and the electrons, and the
last term is the repulsive potential between the two electrons.
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7025

The excited electronic configuration (15)4(25)! of the heliumn atom can
exist as either a singlet or a triplet state. Tell which state has the lower
energy and explain why. Give an expression which represents the energy
separation between the singlet and triplet states in terms of the one-clectron
orbitals +4(r) and s, (r).

(MIT)

Solution:

Electrons being fermions, the total wave function of a systemn of elec-
trons wmust be antisymmetric for the interchange of any tW(). clectrons. As
the spin triplet state of helium atom is syminetric, its spatial wave func-
tion must be antisymmetric. Iu this state the clectrons have parallel spins
so the probability for them to get close is small (Pauli’s principle), and
consequently the repulsive energy, which is positive, is small, Wh(*,r(‘.zll,s for
the spin singlet statc the reverse is true, i.c., the probability for the two
electrons to get close is larger, so is the repulsive cuergy. Hmi(:(: the triplet
state has the lower energy. .

Consider the interaction between the clectrons as perturbation. The
perturbation Hamiltonian is

2

C

- -

T2
whcr(.r r1iz = |rp — 13| For the singlet state, using the one-clectron wave
functions 1)1,, ¥4,, we have

1
1'11[} = —

ﬂ[d)l.s(rl)'d/‘z.s' (r2) + Y15 (ra)Pas (r1)]xo0 »

and for the triplet state

1

31P = ﬂ[wls(rl)wZS(r'Z) - wls(r2)w25(rl)]X1m

with m = 1,0, —1. The energy separation between the states is
AE = ("IH ') - (y|H'Py) .
With ¥ = 4., we have

62
AE = 2/ Eh‘/)ls(rlﬁpzs (rl)d)ls(r2>¢25 (I‘z)}drldrg .
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7026

(a) Suppose you have solved the Schrivdinger equation for the singly-
ionized helinm atom and found a set of eigenfunctions ¢y (r).

(1) How do the ¢ (r) compare with the hydrogen atoin wave functions?

(2) If we include a spin part ot (or o) for spin up (or spin down), how
do you combine the ¢’s and o's to form an eigenfunction of definitc spin?

(b) Now consider the helium atom to have two electrons, but ignore the
clectromagnetic interactions between them.

(1) Write down a typical two-electron wave function, in terms of the ¢’s
and o's, of definite spin. Do not choose the gronnd state.

(2) What is the total spin in your example?

(3) Demonstrate that your example is consistent with the Pauli exclu-
sion priuciple.

(4) Demonstrate that your example is antisymmnietric with respect to
clectron interchange.

( Buffalo)

Solution:

(a) (1) The Schradinger equation for singly-charged He atom is the samne
as that for H atom with €2 — Ze?, where Z is the charge of the He nucleus.
Honce the wave functions for hydrogen-like ion are the same as those for H
atom with the Bohr radius replaced:

h‘z h’Z
o= —5 28 -=—5,
07 Le? 17 e?
p being the reduced mass of the system. For helium Z = 2.
(2) As ¢y and 0T belong to different spaces we can simply multiply
them to form an eigenfunction of a definite spin.
(b) (1), (2) A He atom, which has two electrons, may be represented by
a wave function
1
V2

if the total spin is zero, and by

%le(l)(ﬁm(?) = pra(Lbwa (2ot (1ot (2)

on(Dpn (2ot (o™ (2) — o~ (1)a™ (2)]

if the total spinis 1. (3)If o™ =07, ¢n1 = dna, the wave functions vanish,
in agreement with the Pauli exclusion principle.
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(4) Denote the wave functions by 4(1,2). Interchanging particles 1 and
2 we have

P(2,1) = —(1,2) .

7027

Ignoring electron spin, the Hamiltonian for the two clectrons of helium
atom, whose positions relative to the nucleus are r; (i = 1,2), can be written

as )
2 2 2
p; 2e ¢
H:Z(_,‘ 41>+V, v
i=1

N

(a) Show that there are 8 orbital wave functions that arc cigenfunctions
of H — V with one electron in the hydrogenic ground state and the others
in the first excited state.

(b) Using symmetry arguments show that all the matrix clements of V
among these 8 states can be expressed in terms of four of them. [Hint:
It may be helpful to use linear combinations of { = L splicrical haronics
proportional to

Ty z
—, = and — ]
x|’ I} Jrf
(¢) Show that the variational principle leads to a deternminantal cquation
for the cnergics of the 8 excited states if a lincar combination of the 8
eigenfunctions of H — V is used as a trial function. Expross the cnergy
splitting in terms of the four independent matrix clements of V.
(d) Discuss the degeneracies of the levels due to the Pauli principle.

(Buffalo)
Solution:
Treating V' as perturbation, the zero-order wave function is a product

of two eigenfunctions |n,l,m) of a hydrogen-like atom. Thus the 8 eigen-
functions for Hy = H — V with one electron in the hydrogen ground state

can be written as

1
imet) = ZS[1(100): (2im)a) & | (20m)1 (100)2)

with I = 0,1,m = —[,...l, where the subscripts 1 and 2 refer to the two
electrons. The corresponding energies are
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232 =P
1(2e?) 1\  Spue
Eb:El—FEQ:——éh?— 1+§ = ’2h2

To take account of the perturbation we have to calculate the matrix ele-

ments
(I'm' £|V|lm=).

As V is rotation-invariant and symmetric in the two electrons and [lrnt)
are spatial rotation eigenstates, we have
((100),(22'm)|V|(100)1(21m)2)
= ((20'm)1(100)2|V |(21m)1(100)2)
= S dmm Al
((100),(2U'm")2|V'|(26m)1(100)2)
= ((20'm")1(100)2|V|(100) 1 (2lm)2)
= bu dmm Br,

and hence

(U'm’ + [Vlim+) = 8w bmm (A1 + B1),
'm’ +|Viim—) =0,
U'm’ — |V|im+) =0,
{'m’ — [Viim—) = 6 Smm (A — B1).

Because the wave functions were formed taking into account the symmetr.y
with respect to the interchange of the two electrons, the perturbation matrix
is diagonal, whence the four discrete energy levels follow:

The first levels |1m+) have energy Ep + A1 + By, second levels {1m—)
have cnergy Fy + Ay — By, the third level |00+) has energy Ep + Ag + Bo,
the fourth level |00—) has energy Ej+ Ao — Bo. Note that the levels 1m+)
and |1m—) are each three-fold degenerate (m = +£1,0). .

According to Pauli’s principle, we must also consider the splAn wave
functions. Neglecting spin-orbit coupling, the total spin wave functions are
Yo, antisymmetric, a singlet state; X1s,, syminetric, a triplet stAate. .
Since the total electron wave function must be antisymmetric for inter-
change of the electrons, we must take combinations as follows,




644 Problems and Solutions on Quantum Mechanics

‘lm’+>X0 ?

{m—)x1s, -

Hence the degencracies of the cuergy levels are
Ey+Ay—-DBy: 1x3=3
Ey+Ag+DBy: 1x1=1
E,z+A —-By: 3x3=9
Eyv+A +By: 3x1=3.

7028

Describe approximate wave functions and cuergy levels of the lowest sot
of P-states (L = 1) of the neutral helium atom, using as a starting basis
the known wave functions for the hydrogen atom of nuclear charge Z:

Pis = W_I/Qafg/ze_"/“, a=ay/Z,
Yopmi—o = (327) V207520020 0650 ote

(a) There are a total of 12 states (2 spin components x 2 spin com-
ponents x 3 orbital components) which you should classify according to
the Russcll-Saunders coupling scheme, giving all the appropriate quantum
numbers. Be sure that the states are properly antisyminetrized.

(b) Give an estimate (to the nearest integer) for the values of “Z” to use
for each of the two orbital wave functions. What energy above the ground
state results? What mathematical process could be wsed to caleulate the
optimum Z values?

(¢) Write down an integral which gives the separation between two sub-
sets of these 12 states due to the Coulomb repulsion between the two elec-
trons. Which states are lower in energy?

(d) Which of these P-states, if any, can decay to the atomic ground
state by the emission of a single photon. (Electric dipole only)

(e) Do there exist any other excited states with L — 1 which can decay
to any one of the P-states discussed above by emission of a single photon

by electric dipole interaction? If so, give an example of such a state in the
usual scheme of spectroscopic notation.

(Berkeley)
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Solution: |

(a) Since L =11 + Ip, L, = li, + lo;, L = 1 means that 1),z = 0,1 or
1. 0. i.c. one clectron is in 1s state, the other in 2p state. For C()nveme?lce,
])’irzic’s bra-ket notation is used to represent the states. The synimetrized
and antisymmetrized spatial wave functions are

) = — (L8 [2p, = 1) + [2p,mu = D)I18)),

) = —=(I1s)(2p,mi = 1) ~ [2p,7u = D)|1s))

Sl

) = (L) 12p. 0 = 0 + {2y r = 0115,

[1a) = %(‘15)\2]}, my = 0y — |2p,my = 0)

Ls))

[Ls)(2p, == —1) + [2p, 1m0 = —1)|1%)),

1
) = —
) = 5
ey = \/L__(Hs)\‘Zp,m,z = —1) — [2p,my = —1)|1s)).

2
For the total wave functions fo be antisyminetric, we must choosc the pr'()(l—
ucts of the spin singlet state xoo and the symmnetric sPace wave func(?o;is
[1), 1hs), ), forming three singlet states [1;)xo00 (i = 1,?»,5), and the
products of the spin triplet states xi1 and the antisymmetric spaceowa\ée
functions [¢n), |44, |46), forming nine triplet states |¢i)x11 (i = _,4.1, ,
m = 0,+1). To denote the twelve states in the coupling representation,
we nmust combine the above antisymmetrized wave functions: The wave

functions of the three singlet states are
Py Jmy = 1) = [¥1)xo0,
0) = l¥a)xo00

lmy = —1) = |¥s)Xo00 -

imy

The wave functions of the nine triplet states arc

3Py tmy =2) = |¢2)xii,

iy = 1) — %wmm Flabxan)
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. )
|ty = 0) = \[gf%))(l,q + \/?WM)XM) + \/gh//ﬁ))(ll ;

1
lms =~1) = E(Wd)Xl,q + 1¥6) x10)

Imy = ~2) = le)x1, -1 -

P fma =1 = —(Ja)xae — [ha)x11),

S

1
my = 0) = 75((1&2))(1.71 - l"/)(3>X11>7

1
|y = -1) = ﬁ "J')4>X1,~1 - !’W{;)Xluf
3P Ly L
Byijmy =0) = ﬁ(WﬂXl.—l — e xio + [We)x11) .

1 (b) As the elect.ron cloud of the 2p orbits is mainly outside the electron
cloud of the 1s orbit, the value of Z of the |1s) wave function is 2 aud that

of the |2p) wave function is 1. The encrgy levels of a liydrogen-like atom is
given by A ‘

mZ%el
2hn2 -
Hence the cnergy of the 2p states above the ground state is

AE:~1U62 ﬁ ¢ i‘fZ:
2 he 22 1

0.51 x 10° 1\* 15
2 137) 4

=51 eV.

The . ) . . .
e (_)ptlmum Z can be obtained from shielding effoct calenlations using
the given wave functions.

((,.) Deno.te the two subsets of symmetric and antisymmetric spatial wave
functions with a parameter £ = +1 and write

1
e) = ﬁ(lb‘)l?ﬁ) +el2p)[ls)).
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The repulsive interaction between the electrons,

H= &
vy — rp|

results in a splitting of the energy levels of the two sets of wave functions.

“As

W H'|9he) = %((18|(2P| +=(2p|(1s) H'(|15)[2p) + £[2p)|15))
= (1s2p| H'[152p) + e(1s2p|H'[2p1s),

the splitting is equal to twice the exchange integral in the second term of

the right-hand side, 1.e.,

2

K= /"flfs(rl)‘lﬂls(rz)’¢§p(f2)'¢2p(f1)Ijlejadfldfz~
As K > 0, the cnergy of the triplet state (¢ = —1) is lower than that of the
singlet state. (This is to be expected since when the space wave function is
antisymmetric, the two electrons having parallel spins tend to avoid each
other.)

(d) The selection rules for electric dipole radiation transition are AL =
0,+1; AS = 0;AJ = 0,+1 and a change of parity. Hence the state that
can trausit to the ground state *So is the ' Py state.

(¢) Such excited states do exist. For example, the 3Py state of the
electronic configuration 2p3p can transit to any of the above 3172'1,0 states
through electric dipole interaction.

7029

Justify, as well as you can, the following statement: “In the system of
two ground state H atoms, there are three repulsive states and one attrac-
tive (bound) state.”

( Wisconsin)

Solution:

In the adiabatic approximation, when discussing the motion of the two
electrons in the two H atoms we can treat the distance between the nuclei
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as fixed and consider only the wave functions of the notion of the two
clectrons. For total spin S = 1, the total spin wave function is syrimetric
for interchange of the two clectrons and so the total space wave function is
antisymmetric. Pauli’s priuciple requires the clectrons, which in this case
have parallel spins, to get away from each other as far as possible. This
means that the probability for the two electrons to come near cach other
is small and the states are repulsive states. As S = 1 there are three such
states. For total spin S = 0, the space wave function is symetric. The
probability of the electrons being close together is rather large and so the
state is an attractive one. As S = 0, there is ouly one such state.

7030

In a simplified model for a deuteron the potential cucrgy part of the
Hamiltonian is V' = V,(r) + W (r)s, - sp- The spin operators for the two
spin-1/2 particles are s, and Sp; the masses are m,, and my,; V, aud V), are
functions of the particle separation .

(a) The energy eigenvalue problem can be reduced to a one-dimensional
problem in the one variable r. Write out this once-diniensional cquation.

(b) Given that V, and V4 both arc negative or zero, state (and explain)
whether the ground state is singlet or triplet.

(P 7‘i7),(:(lt()n)
Solution:

(a) In units where & = 1, we have for the singlet state (S = 0) of the
deutcron,

1 . . 1. 1. 171 3 3
Sp - Sp = §(S" +Sp)2 — *2*5721 - 55;) = *-—2‘ (—* X =X 2> = —

and the potential encrgy

3
Vsinglet = ‘/;L(T‘) - Z‘/IJ(T) .
The Hamiltonian is then
1 1 3
H=-—"—V2_ _— V2iv,(r) ZV(r
2mn, "t 2m, ¥ (r) 4 o).

whence the Hamiltonian describing the retative motion

> 649
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1 _, 3,
— Y — =V(r
HT:gIZmVTjLV"(T) 4 o)
‘ i ith respec ative position coordinate
where V2 is the Laplacian with respect to the r(‘,ldt}lV(‘ pos p oo
— MaTp i¢the reduced mass of the two particles.
7=ty - ral, m = ey 18 the

After separating out the angular variables from the Schrodinger eql'la-
tion, the cnergy eigenvalues are obtained from the one-dimensional equation
satisfied by the radial wave function R(r):

wr)—lrdizj rR) + [K‘%i—) + Va(r) - z—Vb(r)] (rR) = E(TR) .
2mnr dr 2mr

Sirilarly, for the triplet state (S = 1) we have
1
{/triplcl. = ‘/(7. (T‘) + E‘/b(r) >

and the corresponding one-dimensional equation

L i'z_(«,-R)+ [l(l+1)

2 dr?

1 G 2d
=+ Vo(r) + ~V,,('r)} (rR) = E(Rr).
2rnr? 4
(h) We shall make use of the lemma: For a one-dimensional problem
of energy cigenvatues, if the conditions are all the same except that two

potential energics satisty the inequality
Vi(z) > V(z), (-o0<az<00),

i 1 i ; . For
then the corresponding energy levels satisfy the inequality E; > En
the ground state, { = 0. As V;, < 0 for a stable deuteron, Viinglet = Viriplet
and so the triplet state is the ground state.

7031

(a) The ground state of the hydrogen atom is split by .thc. hypmih'xi
interaction. Indicate the level diagram and show from first principles whic
state licg higher in encrgy. . - |

(b) The ground state of the hydrogen molecule is split into T,Otdl nuclle:a,r
spin triplet and singlet states. Show from first principles which state hes
higher in energy.

(Chicago)

!
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Solution:

(a) The hyperfine interaction is one between the intrinsic magnetic mo-
ment g, of the proton nucleus and the magnetic field B, arising from
the external electron structure, and is represented by the Hamiltonian
Hpy = “hp B.. For the ground state, the probability density for the
electron is spherically symmetric and so B, can be considered to be in the

same direction as p., the intrinsic magnetic moment of the electron. Then
as
B e eg,
He = — —Sg, Hp = =7
MeC 2Zmye

Sp, (.(JP > O)

B. is antiparallel to s, and — (g, - B..) has the same sign as {Se - Sp)-
Let S = s. + s, and consider the cigenstates of 8% and S,. We have

1 .
(sc-5y) = 5 (8% =52~ 2)

1 3., 3
— - |S(s+1)p2 - SRz Sp2
2[( W= h

1 .
= Z[25(5 +1) ~ 3Jh%.
As the spins of electron and proton are both %h&, we can have

o 0, singlet state,
1, triplet state,

and correspondingly

3.
< _th < 0, singlet state,
Se - Sp) =

1.
th >0, triplet state.

The hyperfine interaction causecs the ground state to split into two states
S =0and S =1 (respectively the singlet and triplet total spin states) As,
Hyy h.as the same sign as (s - sp,), the energy of the triplet states is hig.her
The dlagraln of the energy levels of the ground state is shown in Fig. 7.8 '

Phylsma.lly, hyperfine splitting is caused by the interaction of the intrin.si'c
fnag.ne.nc moments of the electron and the proton. For the electron the
intrinsic magnetic moment is antiparallel to its spin; while for the proton

Many-Particle Systems 651

R Emm— S =1 {triplet}

~

*———e 5z 0 (singlet)

without th with th

Fig. 7.8

the magnetic moment is parallel to its spin. For the spin triplet, the spins
of the electron and the proton are parallel, and so their magnetic moments
arc antiparallel. For the spin singlet, the reverse is true. If the spatial wave
functions are same, the Coulomb energy between the election and proton
is higher for the triplet state.

(b) For the hydrogen molecule Hy, as protons are fermions, the total
wave function must be antisymmetric for interchange of the two protons.
Then for the nuclear spin singlet, the rotation guantum number can only
be L =0,2,4..., where L = 0 has the lowest energy; for the spin triplet,
the rotation quantum number can onty be L = 1,3,5,..., where L = 1
has the lowest cnergy. As the energy difference caused by difference of L
is larger than that caused by difference of nuclear spins, the energy of the
state [ = 1 (total nuclear spin S = 1) is higher than that of the state
L = 0 (total nuclear spin S = 0). So for the ground state splitting of Ha,
the nuclear spin triplet (S = 1) has the higher energy.

Because the spatial wave functions of I = 1 and L = 0 states are an-
tisymmetric and symmetric respectively, the probability for the protons to
come close is larger in the latter case than in the former, and so the Coulomb
interaction energy is higher (for the same principal quantum number 7).
However, the difference between the energies of L =1 and L = 0 is larger
for the rotational energy levels than for the Coulomb energy levels. So for
the ground state splitting of hydrogen atom, the nuclear spin triplet (S = 1)
has the higher energy.

7032

The wave function for a system of two hydrogen atoms can be described
approximately in terms of hydrogenic wave functions.
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(a) Give the complete wave functions for the lowest states of the system
for singlet and triplet spin configurations. Sketch the spatial part of each
wave function along a line through the two atoms.

(b) Sketch the effective potential energy for the atoms in the two cases as
functions of the internuclear separation. (Neglect rotation of the system.)

Explain the physical origin of the main features of the curves, and of any
differences between them.

(Wisconsin)
Solution:

The Hamiltonian of the system of two hiydrogen atoms can be written
as H = H, + H,, and correspondingly the total wave function is W=,
consisting of a nuclear part 4,, and an clectron part ¢, with

R, (r)Yrm (0, ¢)xo, for I = even, (para-hydrogen),
R.(r)Y1m(6,0)x1, for I =odd, (ortho-hydrogen),

where v denotes vibration, I denotes rotation quantum numbers, and yg,

X1
are nuclear spin singlet and triplet wave functions.

Fig. 7.9

(a) The configuration of the system is shown in Fig. 7.9. The wave
function of a single electron is taken to be approximately

1N
@(T):ﬁ<g> e /e

Note that when A = 1, ¢(r) is the wave function of an electron in the

ground state of a hydrogen atom. For two clectrons, thie lowest singlet state
wave function is

¢s = %[w(m)v(rbz) +@(raz)elr)xoe
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and the lowest triplet state wave function is

by = —lp(rar)e () — w(raz)e(ran)lxac

2

where yoe and xie are electron spin singlet and triplet wave fllllcthI'lS.
Taking the z-axis along ab with the origin at a, we can express the spatial
parts of ¢s and ¢; by

b = bleHmlg KAzl | p—Hizal = HA=ml)

¢ = be HmrlgmkIR=Tal _ g klzalgmklR=aly

Keeping one variable (say x2) fixed, we sketch the variation of the s.p‘atlal
wave functions with the other variable in Fig. 7.10. It is seen that if one
clectron gets close to a nucleus, the probability is large for the other electron

to be close to the other nucleus.

¢

Ly = R/2

ds

x

Fig. 7.10

The effective potential energy, V. = (¢|V]¢), for the ground s_tate as a
function of R/a is shown in Fig. 7.11. Tt is secn that the potential energy
vanishes when the neutral atoms are infinitcly far apart: R — o0, \% —>
0. When R — 0, the potential energy between the two hydrogen nuclle.n
becomes infinitely large while that between the electrons and the nuclei is
finite, similar to the electron potential energy of a He atom. Hence R — 0,
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<l

Fig. 7.11

V — +4oo. As R decrcases from a large value, the repulsive potential
between the nuclei increases, at the same time the attractive potential be-
tween the electrons and the nuclei increases also, competing against cach
other. For the singlet state, the probability that the clectrons are close to
the adjacent nuclei is large, and so the potential has a minimmun value. For
the triplet state, the probability that the electrons arc close to the nuclei is
small, and so the decrease of the potential energy due to thic attractive force
between the electrons and nuclei, which is negative, has a small value, and
the repulsive potential between the nuclei, which is positive, is the main
part of the total potential. Therefore V > 0 and no winimunn oceurs.

7033

(a) Using hydrogen atom ground state wave functions (including the
electron spin), write wave functions for the hydrogen molecule which satisfy
the Pauli exclusion principle. Omwit termns which place both electrons on
the same nucleus. Classify the wave functions in terius of their total spin.

(b) Asswning that the only potential cnergy terms in the Hamiltonian
arise from Coulomb forces, discuss qualitatively the cuergies of the above
states at the normal interuuclear separation in the molecule and in the linit
of very large internuclear separation.

(c) What is meant by an “exchange force™?

{ Wisconsin)
Solution:

(a) The configuration of a hydrogen molecule is as shown in Fig. 7.9.
Denote the ground state wave function of hydrogen atom by |100) and let
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@(r) = (|100))*, where A is a parameter to be determined. Then the singlet
state (S = 0) wave function of hydrogen molecule is

[o(ra1)@(rb2) + @(raz)p(Ts1)iXo0

1
’11)1:%

and the triplet state (S = 1) wave functions are

= L ro(ran)elrne) — @(ra)e(ms)an

Py = 7—5

with M = —-1,0,1. .
(b) The energy of a hydrogen atom 1s

me* 1 me? i 1
Ere, = TOoR2n2 2 c) n?
1\2

0.511><106X 1 ‘i
- 2 137/ n?

13.6

2
e

eV.

I

Thus the sum of the energies of two separate ground-state hydroger} atoms
s -2 x 13.6 — —27.2 eV. On the other hand, for the He atom which also
contains two protons and two electrons, the ground state energy 1s

2
mzl264 ~3
Epe = -2 % o T -2 x13.6 x (2 6
= —T775eV.

r _ 5
where the factor 2 is for the two electrons of He atom and 2/ =2— {5 Is

the effective charge number of the He nucleus. )
(i) For the singlet state, the probability for the tw.o e?ect..rons t(;. E
close to each other is rather large (on account of the Pauli principle), whic
enhances the repulsive exchange potential energy betwe?ril them. The pr?b};
ability that the two electrons are near to the two nuclei 1s also larg.e whic
tendsv to increase the attractive exchange potential. Taking k?oth linto ac-
count the exchange interaction potential lowers the energy. It is 'easﬂy seen
that for the singlet state, —77.5eV < Ey < —27.2 eV. For the triplet state,
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the spins are parallel and so the spatial wave function is antisymmetric. In
this case the potential energy is increased by the exchange interaction and
so B3 > —27.2 eV, which makes it difficult to form a bound state.

(ii) When the distance between the nuclei — oo, Hy reduces to two
separate hydrogen atoms. Hence the encrgy — —27.2 ¢V.

(c) The symmetrization or antisymmetrization of the wave function
causes a mean shift of the potential energy by

AV = // p(ra1)e(re2)Ve(rar)o(rp )dridr, .

This is said to be caused by an “exchange force”.

7034

Describe the low-lying states of the H, molecule. Give a rough value
for their excitation energies. Characterize the radiative transitions of the
first two excited states to the ground state.

(Wisconsin)
Solution:

In an approximate treatment of hydrogen atom, the zero order wave

function is taken to be the product of two ground state hydrogen-like wave
functions, which have the form

. - 1 )\ 7/\7./110
(p(I’) - \/7_1' ((L()) € 3

where ag is thie Bohr radius, X is a parameter to be determined. The spin
part of the clectron wave function of the H, molecule ground state (S=0)
is antisymmetric which requires the spatial part to be symuletric. As the
spins of the two electrons are antiparallel, they can get quite close to cach
other (Pauli’s principle). This means that the density of “clectron cloud”
is rather large in the region of space between the two nuclei. Tn this region,
the attractive potential between the two electrons and the two nuclei is
quite large and thus can form a bound state, with wave function

P = %[Lp(ral)go(rbg) + @(raz)e(re1)]xo0,

where the variables are as shown in Fig. 7.9.
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If the spins of the electrons are parallel (S = 1), then the spatial wave
function must be antisymmetric, the probability that the two electrons
getting close is small, and no bound state oceurs. .

Of the energy levels related to the electronic, vibrational and rotational
motions of He, the rotational levels have the smallest spacing -between two
adjacent levels. For simplicity, we shall only consider r()t,-anoual (@0rgy
levels with the electrons in the ground state initially and in the absence
of vibration between the nuclei. With no loss of generality, we ca‘nAmke
the molecule’s energy to be zero when there is no rotation. The rotational

levels are given by

h‘Z
G = —J(J+1),
E 2I( )

where I is the moment of iertia and J is the total angular momentum of
the two-nnelei system. When J = even, the total spin of the two profcons
i I, is S = 0 and para-hydrogen results; when J = odd, the total :spm of
the two protons is S = 1 and ortho-hydrogen rosu]&. Suppose the distance
between the two protons is B = 1.5 % 0.53 = 0.80 A (Fig. 7.11). As

EE LA (h_c)Q
2l pR* pct \ R

2 6.582 x 10716 x 3 x 10“’)2
938 x 10 ( 0.8 x 10-8

=13x1072eV,

the cnergies of the low-lying states are as follows.

J 0 2 4
Para-hiydrogen : E(1072 eV) 0 7.8 260
J 13 5

()rth()—hy(lrogml:E(lo_,z V) 2.6 156 49.0

As the interactions between two atoms are spin-independent, para-
hydrogen and ortho-hydrogen cannot transform to cach other, hence the
selection rule AJ = even. In nature the ratio of the number of molecules
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of ortho-hydrogen to that of para-hydrogen is 3:1. This means that the
spectral line for J =2 — J = 0 is weaker than for J =3 —» J = 1.

7035

The density matrix for a collection of atoms of spin J is p. If these spins
are subject to a randomly fluctuating magnetic field, it is found that the
density matrix relaxes according to the following equation:

dp 1
L ey pTey = (T4 1)),
Prove that the relaxation equation implies the following:
@ d 1o} 1
&(Jﬂ = aTr(JOPP) = *f<*]z}1
) d d 3 I(J )
Y2y 9 2y _ S, JUAH1

[Hint: Raising and lowering operators are useful here)

(Columbia)
Solution:

From definition,(J,) = Tr(pJ,). Thus the following:
2] dp 1
E<JZ> =Tr (aJZ) = ?Tr(.]o,, cpJopd, — J(J + 1)pJ,)
1
= TTr[JIpJIJZ + JypdyJ. + Jopd? — J(J + 1)pJ,).
As
TrAB = TrBA,

Jody — JyJe =1J,,
JyJ, — I Jy = 1),
Jodo — Jedy = 1Jy,

32, = J(J + 1),

Many-Particle Systerns

(using units in which h = 1) we have

0

a<J2>

= %Tr[pJIJZJI + pJyJoJy + pJ2 — pJ(J +1)J.]

= %Tr{p[ug v J2 I+ idedy =iy s = J( ISNAN
1 1

== = —=(J).

= TTr(sz) 7 {J2)

2 1 op 12

since

= %Tr[JIp.IIJZ + JypdyJ2 + Jopdy = J(J + 1)pJ?]

Yz

- %Tr[pJIJZJI - pdy T2, pdt — pJ(J + 1)T2)

= %Tr[p(JIJZJIJZ t JyJoJy o + 1JeJo Ty = idyJode + I

~ J(J +1)pJ]

= %Tr{p[JﬁJf F IR+ T T dy s — iy ey +ida Ty
—iJ, T e = J(J + 1) 71}

= %Tr{p[i(iJZ)Jz tidy(JyJy) +ide(—ide) — iy (JsJ2)
— iJy(iJy)]}

%Tr{p[—]f +J2 4 T2 +i(id:) R0}

:%ﬁ@kwﬁwﬁ+ﬁ+ﬁm

J(J+1)

3 2
_;71_1<Jz>+ T ’

%Tr[pJ(J )= (JU 1)) = (T +1).

659
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7036

A molecule is made up of three identical atoms at the corners of an
equilateral triangle as shown in Fig. 7.12. We consider its ion to be made
by adding one clectron with some amplitude on cach site. Suppose the
matrix element of the Hamiltonian for the electron on two acdjacent sites 1,
Jis G|H|j) = —a for 1 £ 7.

1

O
2 3
Oo° O
Fig. 7.12

(a) Calculate the energy splittings.

(b) Suppose an electric field in the z direction is applicd, so that the
potential energy for the electron on top is lowered by b witli [ < |af. Now
calculate the levels.

(c) Suppose the electron is in the ground state. Suddenly the ficld is
rotated by 120° and points toward site 2. Calculate the probability for the
electron to remain in the ground state.

(Princeton)
Solution:

(a) Denote the basis vectors by [1), [2), [3) and let (i|H|i) = Ey, i =

1,2,3. Then

Ey —~a —a
H= —a E[) —a
—a —a Ey
To diagonalize H, solve
Ey— A —a —a
—a Ey — A —a =0.
—a —a Ey— A

The solution gives energy levels E;» = Eg + a (two-fold degeucrate) and
E3 = Eo — 2a.
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(b) The H matrix is now
Eo—b —a -—a
H = —a Ey -—a
—a —a Iy

Its diagonalization gives energy levels

E,=FE +a,
a+b+/(a—b)?+8a2

Ey = Eg — (2 ;
a+b— /{a—b)?+8a?

By = Eo — (2 ) .

E., has the lowest energy and thus corresponds to the ground state, with

wave function
1

Vo= V(B — B —a)? + 2a2
Fal2) + al3)].

(Eo — B2 — a)|1)

(¢) After the rotation of the field the system has the same configuration

as before but the sites are renamed:
1—-52,2—33—1.
Hence the new ground state is
1
- \/(E() — FEy — a)2 + 2aq2

Hence the probability for the electron to remain in the ground state is

Py [a]1) + (Eo — Ez — a){2) + al3)].

) . 2a(Eg — By — a) + a?
(ol |* = (2(0 j E, _Z a)? + 202

7037
Consider three particles, each of mass m, moving 1n one dimension and

bound to each other by harmonic forces, i.e.,

V= %Kll - 732)2 + (w2 — x3)? + (23 — 21)%].
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(a) Write the Schrodinger equation for the system.
(b) Transform to a center-of-mass coordinate system in which it is ap-
parent that the wave functions and eigenenergics may be solved for exactly.

) (¢) Using (b) find the ground state energy if the particles are identical
0S0mS.

(d) What is the ground state encrgy if the particles are identical spin
—1/2 fermions?

( Wisconsin)
Solution:

(a) As

The Schridinger equation is

81,() K2 52 52 52
"o T am ( > v

_ LA
ox? Oz2 + (9:1;%

o~

—[(xl —22)? + (g — 24)% + (w3 — o) e .
(b) Using the Jacobi coordinates

Y=y —uy,

€Ty + &y
Y2 = — @
2 3,
Xy -+ @& T
y;,:%,
or
Y Y.
ﬂfliy:;+%+§,
] 1
12*7/z~§+/-;,
,L: U 2
LT3 = Y3 — Y2,
3Jz
we have

V=3 <§:UI + 2?/5) ,
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LA ’12 LSRN i
N 35y3 Oy 20y3

i
and hence the stationary eigenequatlon
h? 9%y 9%  3.0°
Erp=———5— 77— 25+t -5
™Y = G a3 { a2 2 é‘yé’} i

k(3
+3 {5y5+2y§}¢.

P = Y{y3)d(y1,v2) -

The equation is separated into two equations:

Try

2 52
W oY =EY,
T 6m 81/3
K2 (97 3 0? 3, )
— —1 =F
27,(20?11 2()'U3>¢+ <2U1+2U2>¢ ([j,

where E, = E — Er is the energy due to the motion of the center of mass.
The first equation gives
v - L givEmnboys/n

With
¢ = d1(y1)b2(y2)

the second equation is separated into two equations

FL2 92

8¢21 + kqubl = Ei1é1,
3k2 0%
~am gyt T =Bata

where £ = Ey + Eb».
These are cquations for harmonic oscillators of masses %, 21” and force
constants 2k and 3k respectively, both having the same angular frequency

w = \/% Hence the total energy is

1 3k 1 3k
E:E1+E2: n+ =iy —+ 1+ haf—-,
2 m 2

with n,{ =0,1,2,3,....
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(c) Let a? = 722, The ground state wave functions of ¢,, ¢, are and the euergy is

3k

1\ 1 E=(n+ 14D/

o) = (5) - Vae (<) | .
Since ¢ro(y1)d20(y2) = Gr0(yi)d20(yh), the spatial wave function is sym-

2\ Loy metrie for the interchange of two particles. However, for three sPin—l/?
Prolie) = 3 Veexp IR formions it is not possible to construct a spin wave function which is anti-

synunctric. Heuce this state cannot be formed for three spin-1/2 feriions

and so and higher states are to be considered.
1\ —? Looking at the wave functions of a harmonic oscillator, we see that the
Polin,v2) = Aroly1)gan(yz) = <37r2) > OXp [ 12 (3y7 + 4:'/3)] ’ expoitential part of @1, (y1)d2i(y2) is the same as that of B10(y1) P20 (y2) and

is synunetric. Let
where

¢y = pri(y1)da0(y2)
Py = P11 (y)) a0 (ya) -

3y? + 41/% = 3(1'1 — 1'2)2 + (1131 + xp — 2.’1}3)2
=42} + 2% + 22 — 2120 — 2pw5 — 2y1)).

1 o ; . . and construct the total wave function
As y3 = g(xl + z3 + z3) it is obvious that the spatial wave function thy 1S

symmetric for the interchange of any two of the particles, whicl is required b— o 1 I O> o, (O> <1 ) (1 )
P = p
as the bosons are identical. The ground state encrgy of the three bosons, ! . o N1/, 1/,\0/32\0/3

0 0
excluding the translational energy of the center of mass, is

— ()2+ 1 } .
1, [3k 1. [3k  [3k ( 0/, \1/3\0/3
Eo= =R/ — + =fin/ — = /=,
2 m 2 m ™m

As @y = Clx) — z2), P2 = Czz — w3), P1 + P2 = C(zy — z3), where C is
syuuuetric for interchange of the particles, & is antisymmetric as required
for a system of identical fermions. Hence the ground state energy of the

(d) If the particles are identical spin-1/2 fermions, as spin is not involved
in the expression for the Hamiltonian, the eigenfunction is a product of the
spatial wave function and the spin wave function, and must be antisym-

system, excluding the translational energy of the center of mass, is
metric for interchange of particles.

For the coordinate transformation in (b), we could have used Ey = 2h\/§£.
Yy =22 — 73,
, T2+ 23
Vo= =% T,
; ) + xo + z3
Y3 = 3

and still obtain the same result. In this case the spatial eigenfunction is
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8001

(%5)
s ~a0) ... ; ; i
Express e as a 2 x 2 matrix; a is a positive constant.

Solution 1:
Let

with

AQ:(O 1>(01~ 10
-1 0/ \-1 0/ \o i
I being the unit matrix, we have

d

= 5(a) = AS(a),

d'z

daZ S(a) = A*S(a) = —S(a),

and thus
$"(a) + S(a) = 0.

The general solution is
S(a) = cie™ + czee

subject to boundary conditions S(0) =1, 5(0) = A.

Hence
{ caatey=1,
c1—cy=—1A,
giving
I—iA
C1 = R

2

I+iA
Cy = .
2

666

_ cuA

)--1.

(Berkeley)
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Therefore
I-iA ,, IT+iA _;,
e + 5 e

S(a)

If

2
(eia +e~ia) 4 1_24 (e—z‘a _ ez‘a) — Jcosa + Asina

I
2
cosa sina
B (—sina cosa) '

Solution 2:
1 0
LetA:(o 1>.AsA2:~( 1)————I,A32—A,A“:I,....
-1 0

oo » 0 ok k 20 2kt1/_ 1V\k
aA __ a™A — M I+ L—_ﬂ—
=D (2k)! Lo 2k +1)!

) cosa  sina
= cosal +snaA = .

—sina cosa

8002

(a) Sum the series y = 1+ 2z + 32z? + 423 +--- ,[2| < L.
(b) If f(x) = ze=*/* over the interval 0 < < oo, find the mean and

most probable values of z. f(z) is the probability density of x.

(c) Evaluate I = [;° 413;4-

(d) Find the eigenvalues and normalized eigenvectors of the matrix

1 2 4

2 3 0

5 0 3
Are the eigenvectors orthogonal? Comment on this.

(Chicago)
Solution:
(a) As |2] < 1,
Cay-lterd b= ——
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or

(b) The mean value of z is

z = /00 zf(x) d;l:/ /00 flz)dx
0 0
= ./000 z-xe A da:/ /000 xe M

L EG)
Ay =

The probability density is an extremumn when
1
f/(iE) _ e—:c//\ _ X Ie—z//\ =0,

i.e.at z = Aor x — oo. Note that A > 0if f(z) is to be finite in 0 < 22 < 00.
As .
' = DY e <0, f(A) = Ae”! > ILm fl@) =0,

the probability density is maximum at = A. Hence the most probable
value of z is A.

(¢) Consider the complex integral

/ dz _/ dzi+/ dz
c4+z4~ (:144'*2“1 .(:244—2‘1

along the contour ¢ = ¢; + ¢2 as shown in Fig. 8.1.

Fig. 8.1

The integrand has singular points —1+4, 1 +1 inside the closed contour
c. Hence the residue theorem gives
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44 24

f 1+i 14y ™
AN T TRV A

Now let R — 00, we have
/ dz 5 0.
. 4+ z
Then as

0 oo *  dx
dz :/ ,@_4_/ dI4:2/ 1rah’
Atz o dtat Jo 4tT o 4tT

we have © o
/0 4+a* 8

(d) Let the eigenvalue be E and the eigenvector be

f dz = 2mi [Res(1 + 1) + Res(—1 +1)]

T

X =\ z2

3
Then L2 4 . .
2 30 z9 | = E | z2
5 0 3 T3 3

For non-vanishing X, we require
E-1 -2 —4
-2 FE-3 0 =0.

_5 0 E-3

The solution is
Ey=3, E— 3, B3=T.

Substitution in the matrix cquation gives the eigenvectors, which, after

normalization, are
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for E = E; and
-6
L 2
5
V65 . ’

Xy= —
13\/5

for £ = E. 2. N ¢ ¢ elg
1E £y, 3. Note that these cigenvectors are not orthogonal. Geuerally
- 143 . H o 1 ’
o.n y for a Hermition matrix are the eigenvectors corresponding to different
elgenvalues orthogonal.

8003

Please': indicate briefly (in one sentence) what contributions to physics
are assoclated with the following pairs of names. (Where applicable write
an appropriate equation.)

(a) Franck-Hertz

(b) Davisson-Germer

(¢) Breit-Wigner

(d) Hartree-Fock

(e) Lee--Yang

(f) duLong—-Petit,

(g) Cockroft-Walton

(k) Hahu- Strassmanu

(i} Ramsauer-Towusend

(j) Thomas—Fermi

( Berkeley)

Solution:
(a) Franck and Hertz verified experimentally the existence of discrete
energy levels of an atom. /

(b) Dav.isson and Germer verified the wave propertics of clectrons by
demonstrating their diffraction in a crystal.

(c) Breit and Wigner discovered the Breit~Wigner resonance formula in
nuclear physics.
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(d) Hartree and Fock developed a self-consistent field method for ob-
taining approximate many-electron wave functions.

(e) Lee and Yang proposed the non-conservation of parity in weak in-
teractions.

(f) dulong and Petit discovered that atomic heat is the same for all solids
at high temperatures, being equal to 3R, R being the ideal gas constant.

(g) Cockroft and Walton effected the first artificial disintegration of an
atomic nucleus.

(h) Hahn and Strassmann first demonstrated the fission of uranium by
neutrons.

(i) Ramsaucr and Townsend first observed the resonant transmission of
low energy electrons through rare-gas atoms.

(j) Thomas and Fermi proposed an approximate statistical model for

the structure of metals.

8004

Give estimates of magnitude order for the following quantities.

(a) The kinetic energy of a nucleon in a typical nucleus.

(b) The magnetic field in gauss required to give a Zeeman splitting in
atomic hydrogen comparable to the Coulomb binding energy of the ground
state.

(¢) The occupation number n of the harmonic oscillator energy eigen-
state that contributcs most to the wave function of a classical one-
dimensional oscillator with mass m = 1 gram, period T = 1 sec,
amplitude z¢g = 1 cm.

(d) The ratio of the hyperfine structure splitting to the binding energy
in the 1s state of atomic hydrogen, expressed in terms of the fine structure

constant «, the electron mass m., and the proton mass n,.
(Berkeley)

Solution:

2
(a) The kinetic energy T = £ of a nucleon in a nucleus can be estimated
using the approximation p ~ Ap and the uncertainty principle AzAp ~ h.
As Az ~10"2em, Ap ~ 1,
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s 2 1 he \ 2
2m \Az ) = 2me2 <E)

_ 1 4.1 x 107% x 3 x 1010 2
2 % 938 x 106 10-12 )
150 5 ,

~ 5o00 % 10° ~ 107eV.

(b) The Zeeman splitting is given by AE ~ 1r - B, ji3 being the Bohr
magneton, and the Coulomb binding energy of a hydrogen atom is 13.6 ¢V
For the two to be comparable we require .

B BOx16x107 136 x1.6 13 .
93510~ g3 — X 107 whm™ ~ 10°Gs.

(¢) The energy of a classical one-dimensional oscillator Is

m
_ 2
E = 5 (wxp)? = 20°mal /T? = 27% erg .

For
nhw = FE,
we require
_F 272 T T X1
L s e S ST L
" ww h 1.054 x 1027

(d)- The cnergy shift due to hyperfine-structure splitting of a hydrogen
atom in the ground state (in units where ¢ = f = 1) is

o2
AE ~mZa'/m,

T)Vhé‘,l‘e « is the fine-structure constant. The binding energy of the electron
in the ground state is E, = 'mea2/2. Hence

AE/E = 24° (1”—)

my

3005

Some short questions to warm you up.
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(a) What can be said about the Hamiltonian operator if L, is a constant
in time?

(b) State the optical theorem in scattering theory.

(¢) Why is the optical theorem not satisfied in first Born approximation?

(d) Explain why the proton cannot have an electric quadrupole moment.

(e) What is the sign of the phase shift when a particle scatters from a
weak short range attractive potential? Justify your answer.

(Berkeley)
Solution:

(a) If L, does not vary with time, [H, [..,] = 0. What this means is that
in a spherical coordinate system H does not contain ¢ explicity, ie., H is
invariant in respect of rotation about the z-axis. (However, H may still
contain % explicitly).

(b) The optical theorem states that the total cross section for elastic

scattering o, is given by

o~ S Imi(0),

where k is the wave number of the incident particle and f(0) is the ampli-
tude of the scattered wave in the forward direction.

(¢) In first Born approximation when V(r) is real, which is usually the
case, f(6) is also real and gives a nonzero total cross section, the imaginary
part of f() appearing only in Born approximation of higher orders. Hence
the optical theorem does not apply to Born approximation in the first order.

(d) From the definition of electric quadrupole and the form of spherical
harmouic functions, we know that particles of spin s < 1 cannot have
electric quadripole. This includes proton which has a spin of %

() When V(r) falls off more rapidly than %, i.e. when the potential
is short-ranged, the phase shift & of the /th partial wave is given by the
asymptotic form

8§~ _k/ V(r)jf(kr)rzdr,
0

where 7, is the spherical Bessel function. Hence for attractive forces, Vir) <
0 and so &; > O.
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8006

Answer each of the following questions with a brief and, where possible,
quantitative statement. Give your reasoning.

(a) A beam of neutral atoms passes through a Stern--Gerlach appara-
tus. Five equally-spaced lines arc observed. What is the total angular
momentum of the atom?

(b) What is the magnetic noment of an atom in the state 3P? (Disre-
gard nuclear cffects)

(c) Why are the noble gases chemically inert?

(d) Estimate the energy density of black body radiation in this room in
erg cm™>. Assume the walls are black.

(e) In a hydrogen gas discharge both the spectral lines corresponding
to the transitions 22P1/2 — 1251/2 and 22P3/2 - 1251/2 are obscrved.
Estimate the ratios of their intensities.

(f) What is the cause for the existence of two independent term level
schemes, the singlet and triplet systems, in atomic helium?

(Chicago)
Solution:

(a) When unpolarized neutral atoms of total angular mowmentum J pass
through the Stern-Gerlach apparatus, the incident beam will split into
2J + 1 lines. Thus 2J + 1 = 5, giving J = 2.

(b) An atom in the state * Py has total angular motentum J = 0. Hence
its magnetic momeut is equal to zero, if nuclear spin is neglected.

(¢) The molecules of noble gases consist of atoms with full-shell struc-
tures, which makes it very diflicult for the atoms to gain or lose clectrons.
Hence noble gascs are chemically inert.

(d) The cnergy density of black body radiation at roomn temperature
T ~ 300 K is

4

C

oT?

p=

4
T3 x 1010

=6x 107" erg/cm® .

X 5.7 x 1075 x 3001

] 75
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()
1(22P1/2 — 1251/2) - 2J, +1
I(Z?‘Pg/g — 1251/2) 2J, +1
2x1/2+1 1

Toxs/2+1 27

(f) The helium atom contains two spin-1/2 electrons, whose tot,.al spin
S — s; + s can have two values 5 =1 (triplet) and § = O (singlet).

Transition between the two states is forbidden by the selection rule AS = 0.

As a result we have two independent term level schemes in atomic helium.

8007

(a) Derive the conditions for the validity of the WKB approximation for

odi ati : hat
i i ime-indepe hrodineer equation, and show t
the one-dimensional time-independent Schr ger eq ,

LI TOXI1I1 Wlon mus t 11 1 ¢ unme te el } ( (,1 S551C
}lo )l) 1111201011 1L tdll h > unn O(hd ¢ 11 /lgh )()l'h()()d )t a [
3 155 Z)l

turning pomt. N .
(b) Explain, using perturbation theory, why the ground state encrgy of

i i 1 electric
an atom always decrcases when the atom 1s placed in an externa

e ( Berkeley)
Solution: | ‘
(a) The WKB method starts from the Schrodinger equation
h? d? ]
224 Vi(z)| w(z) = Ey(x),
[ 2m dx? ()| ¥
where it is assumed o
p(x) = @,
Qubstitution in the Schrodinger equation gives
2 2
2m \ dz i 2m dx?

Expanding s as a series in powers of h/i,

2
h h
S:So+—,51+(;> S+ -0,
1
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and substituting it in Eq. (1), we obtain

k , B\’
2m %0t g (0 20050) + (-) (57 + 250 + o)
+o=FE-V{(g). (2)

If we impose the conditions

lhsg| < |s57] (3)
[2hsist] < |52, (1)
Eq. (2) can be approximated by
g2 o
2m So = B V(‘I) ’ (5)

which is equivalent to setting
25057 + 85 = 0,

gt g2
2&052 + .51 + S,l/ = 0)

(3) and (4) are the conditions for the validity of the WK method

gration of Eq. (5) gives e
so(z) = i/ V2m(E - V(z))de = + / pda
so that (3) can be written as
h dp
) Ex— <1, (6)
l.e.,
d /1
)l
z \p
or
e
dx ’

Miscellaneous Topics ('

where A 3
A - - = L

p  2m(E—-V(z))
Near a turning point V(z) ~ E, p — 0 and (6) is not satisficd. Henee the
WKB method cannot be used ncar classical turning points.
(b) Consider an atom in an external electric field & in the z direction

The perturbation Hamiltonian is
H' = —ecez,

where z = Zi 2; is the sum of the z coordinates of the electrons of the
atom, and the energy correction is
AEy = Hyy + Z |H,, 1%/ (Bo — B
n#0

As z is an odd operator and the parity of the ground state is definite,
H{, = 0. Futherimore Ey — E, < 0. Hence AFEy < 0. This means that the
encrgy of the ground state decreases when the atom is placed in an electric
field.

8008

A particle of mass m moves with zero angular momentum in a spheri-
cally symmetric attractive potential V (r).

(a) Write down the differential equation of radial mnotion, defining your
radial wave function carefully and specifying the bouudary conditions on
it for bound states. What is the WKB eigenvalue condition for s-states
such a potential? (Be careful to incorporate in your one-dimensional WKD
analysis the constraints of radial motion (0 < r < 00).

(b) For V(r) = —Vpexp(~7/a), use the WKB relation to estimate the
minimum value of V4 such that there will be one and only one bound state,
just barely bound. Compare your value to the exact result for the expo
nential potential, 2mVya?/h? = 1.44.

(Berkeley)

Solution:

(a) The wave function of the particle can be written as the product ol .
radial part and an angular part, ¥(r) = R(r)Yim(8,¢). Here F(r) natidies
the equation
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R 1 d /,d
o2 dr \7 dT) + V(r)] R(r) = ER(r),
in which { = 0 for zero angular momentum has been incorporated. The

boundary conditions for a bound state are R(r) finite for r — 0 R(r)y =0
forr » oo. ,

Let x(r) = R(r)/r, the above becomes

“am I +V(rx =Ex, (0<r <o)

subject to the condition
X(") =0 as 7 0.

Thus 5 that of 1 i
the problem becomes that of the one-dimensional motion of a particle

in a potential V(r) defined for r > 0 ouly. The WKB cigenvalue condition
for s-state is

}[ V2m(E —V)dr = (71 + %) hy, n=012.....
(b) Substituting V = —Vj, exp(—r/a) in the loop integral we have

/\/EL[E+ Voexp(—r/a)] dr = % (n ! 2) I

For a bound state, £ = —|E

and the above becomes

\/W]El /O‘”“% ’{ I‘;Ol cxp( ~£) —1dr = <'r1,+ %) h/2.

Wxtk;;n the requircments that V4 is finite and that there is one and only
one bound state which is just barely bound, we can consider the limit-

g case Whe]e | E;l ~ V - Ih("ll ’[hf' U[l(‘gldl on t “—h(l. (1 a e
I as g > 2 ]l(’, l O
) (] C Ild s1de can b

~aln 22
TEI
V2mVy / exp(—r/2a)dr.
0
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Hence
V2mVs - 2a 1—\/@ z(n+%> g
giving

(nt ) r]
AU PR i Vi B 7
B [1 2ay/2mVy ‘

If there is to be one and only one bound state, we require —F = IE| < Vo
for n = 0 but not for n = 1, or equivalently

3 T
$7mh i7h

S e ty———
2a+2mVy 2a+/2mVy

The minimum Ve that satisties this condition is given by

amVoa? 92
o -~ 1.39
K2 64 ’

which is very close to the exact result of 1.44.

8009
Set up the relevant equations with estimates of all missing parameters.
The molecular bond (spring constant) of HCl is about 470 N/m. The
moment of incrtia is 2.3 x 10717 kg-m>.

(a) At 300 K what is the probability that the molecule is in its lowest
excited vibrational state?

(¢) Of the molecules in the vibrational ground state what is the ratio of
the number in the ground rotational state to the number in the first excited
rotational state?

(Wisconsin)
Solution:

(a) The Hamiltonian for the vibrational motion of the system is
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and the vibrational states are
1
EM — <n+ 5) hw, n=012,...,

with w = \/K/u, K being the force constant and g the reduced mass of
the oscillating atoms.

Statistically, the number of molecules in state E(M is proportional to
— oo D 1
exp(—nz), where z = wr: Kk being Boltzmann’s constant and T is the

absolute temperature. Thus the probability that the molecule is in the first
excited state is

—x

e
S lde e 4.

Py =e "(1—-¢7)

?

As

_ (x5 —27
K= 1+35 mp = myp = 1.67 % 107“"kg |
_ fw _ 1054 x 10734 x (470/1.67 x 1027)1/2

kT 1.38 % 10-23 % 300 = 13.5,
we have Py &~ e7135 = 1.37 x 1076,

r

(b) The Hamiltonian for rotation is

. 1 ..
H, = —J*
r 2] ’

and the energy states are

EW B2
Ve I, =012,

Since the e i 1 1 i
e n}lir)lbcr of molecules in rotational state J is proportional to (2J +

1) exp <"W) as the J state is (2J +1)-times degenerate (my = —J, —J +

1,---.J), we have
N(I=0) 1 5
NJ=1 3%P (1kT> '
As
R (1054 x 10732
IET 23 %1077 x 1.38 x 10~2% x 300 0.117,
N(T=0) _ our
NU=1) ¢ /3=037.
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8010

The potential curves for the ground electronic state (A) and an excited
electronic state (B) of a diatomic molecule are shown in Fig. 8.2. Each
clectronic state has a series of vibrational levels which are labelled by the
quantum number v.

(a) The energy differences between the two lowest vibrational levels are
designated as A4 and Ap for the electronic states A and B respectively. Is
A 4 larger or smaller than Ap? Why?

(b) Sone molecules were initially at the lowest vibrational level of the
olectronic state B, followed by subsequent transitions to the various vi-
brational levels of the electronic state A through spontaneous emission of
radiation. Which vibrational level of the electronic state A would be most
favorably populated by these transitions? Explain your reasoning.

(Wisconsin)

Solution:

9%v

(a) The force constant is K = (ar2 ) ',r:r
position. It can be seen from Fig. 8.2 that K4 > KpB. The vibrational
energy levels are given by

, where 7p is the equilibrium
0

1 K
EM™ = (n + ~> P, w=4[—.
2 1
Hence
KA KB

Aax by ==, Ap=hf—,
7

and so Ay > Ap.
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(b) Electrons move much faster than nuclei in vibration. When an elec-
trou 'transits to another state, the distance between the vibrating nu'clei
remains practically unchanged. Hence the probability of an clectron to
tran'SIt to the various levels is determined by the electrons’ initial distri-
bvutlon probability. As the molecules are initially on the ground state of
vibrational levels, the probability that the clectrons are at the equilibrinm

position 7 = rog is largest. Then from Fig. 8.2 we see that the vibrational
level v = 5 of A is most favorably occupied.

8011

&nglct positronium decays by emitting two phiotons which are polarized
at right angles with respect to each other. An experiment 1s perforimed wiéh
photon detectors behind polarization analyzers, as shown in Fig. 8.3) Each
analyzer has a preferred axis such that light polarized in that ’(lirm:vtiou is
‘transmitted perfectly, while light polarized in the perpendicular direction
is absorbed completely. The analyzer axes are at right angles with 1'o$i)cct
to each other. When many events are observed, what is the ratio of tile
‘number of events in which both detectors record a photou to the
in which only one detector records a photon? ‘

fe*e”),
D el R
~T \Anuly

- zers
Photon detectors

uumber

(MIT)

Fig. 8.3
Solution:

Sllppos;e the positronium is initially at rest. Then the two photous will
move.m opposite directions to conserve momentum, and wilt rcach the re-
spectl'jre analyzers at the same time. Assume further that the detector solid
angle is very smaller. Then the directions of those photons that reach the
analyzers must be almost perpendicular to the latter. Hence the directions
of polarization of these photons are parallel to the analyzers. ,
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Denote by 8 the angle between one photon’s direction of polarizationn
and the direction of transmission of the analyzer reached by it. The prob-
ability that it can pass through the analyzer is cos? . Consider the second
photon produced in the same decay. As it is polarized at right angles with
respect to the first one, the angle between its direction of polarization and
the direction of transmission of the second analyzer, which is oriented at
right angles to that of the first analyzer, is also 6. Hence the probability
that, of the two detectors, only one records the passage of a photon is

1 27 1 2
P xQ [~ / cos20(1 — cos? 0) df + — (1 — cos? ) cos? Gdﬂ]
27 0 2m 0

Q
4 1

where € is the solid angle subtended by the detector, and the probability
that both detectors record the passage of photons is

27w
. . 3Q
Py, x Q [i/ cos® Hcoszﬁdﬂ] = —.
27 Jo 3

Hence the ratio of the number of events of both detectors recording to that
of only one detector recording in a given time is

P _3.1_3
P8 4 27
8012

A point source @ emits coherent light isotropically at two frequencies w
and w + Aw with equal power I joules/sec at each frequency. Two detectors
A and B each with a (small) sensitive area s, capable of responding to
individual photons are located at distances {4 and {p from @ as shown in
Fig. 8.4. In the following take Aw/w <« 1 and assume the cxperiment is
carried out in vacuum.

(a) Calculate the individual photon counting rates (photons/sec) at A
and B as functions of time. Consider time scales >> 1/w.

(b) If now the output pulses from A and B are put into a coincidence
circuit of Tesolving time 7, what is the time-averaged coincidence counting
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rate? Assume that 7 < 1/Aw and recall that a coincidence circuit will

produce an output pulse if the two input pulses arrive within a time 7 of
each other.

(CUS)

Fig. 8.4

Solution:

(a) The wave function of a photon at A is

1

wA(lA, t) = Cl I:(jiw(l_‘cit) + (31‘(W+Aw)(l—:ji;t>j|

where C} is real and, hence, the probability of finding a proton at A in unit
time is

Pa =i

=C} {2 + 2cos {Aw <%’* — t)]}
= 4C% cos? {% (Iafc — t)] :

If there is only a single frequency, P4 = C%?. As cach photon has encrgy
hw, the number of photons arriving at A per second is

s 1
47rl% hw
Hence
2 Is
N 47rl%hw ’
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and

685

Py = 1 cos? [%“i (lA/c~t)j\ .

——=C
ﬂliﬁw

Similarly we have

A
PB = 403 COS2 [70) (lA/C——t):‘ ,

where
9 Is

C= —5—.
2 47rl25ﬁw

inci ing ti ime-averaged coincidence
(b) In a coincidence of resolving time 7, the time-averag

counting rate

T T
P = lim = / dt/ Pa(t)Pp(t + x)dx
2T =T -7

T—o0

T T
= lim L / dt/ 4C*Y1 4 cos Aw(la/c — t)]
2T -T —T

T'—00

[
X [1+cosAw (—]CZ —t—m)] dzx

= lim 1 /T 4C4-{1+cos[(lA/c-t)Aw]}

T—o0 4 _T

l
X {27’ + 27 cos [Aw <—CBi —t

e
wher 2y

4 _
R TSI NN EE

e

= C{C3

T 1 .. B
/‘ cos[Aw(lg/c—t — z)|dz = A 2 sin(TAw) cos [(—c— - t) Aw]

~ 27 cos|Aw(lp/c — 1))
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Hence

1 [T
P =87C* lim —
8rC Th_rgo Vi /_T{1+COS[(lA/ct)Aw]}

l
X {1 + cos {(2 ~t) Aw}}dt
c
T 1+ cos [ (12
T 2T J_¢ cos ? —t) Aw
N [a la I
cos . —t| Aw| +cos |[{ £ Aw| cos {(— - t> Aw}} dt
: c
. 4 .
=8rC Th_l)r;()—/ {11‘--(’08’:\([,4—[3]
la+1p —1
n _ ly—Ip
1 l [
+§cos [( AtLB —2t> AwJ} dt
c
. 1 2T la—1
-8 C,4 L ~4 . A B
T Tlgr;o 5T {2T+ 5 cos [<‘{ > Aw}}

— 811 {1 n %COS [M”

C

B 71242 1 Aw
R R [T(l*‘“’)” :

8013

A charged oscillating (nearly) classical system is losing energy by radi-
ation. At energy F it is radiating (and oscillating) at frequency v(E) =
a(E/Ey) P, where a, 8 and Ey are positive constants. Compute the quan-
tum energy levels (of the system) FE,, for large n.

’ (Berkeley)

Solution:

According to the Bohr correspondence principle: the quantum frequency
approaches the classical frequency for n > 1,1e vy = vy asn — 00. As

Mascellaneous Topics 687
oH
Yo =Ty

where J =nh, 7 =n —m, and m, n > 1. We have, with 7 = 1,

dE

hv = — = ha(E/FEy)~?
v dn a( / 0) )
or
EPdE = haEjdn.
Integrating
En n
/ EﬁdE:haEé’/ dn,
0 0
we have

1

{ha([}’ + 1)71Eﬁ] e

8014

A spinless particle of mass mm and charge q is constrained to move in a
circle of radius R as shown in Fig. 8.5. Find its allowed energy levels (up
to a cominon additive constant) for each of the following cases:

(a) The motion of the particle is nonrelativistic.

(b) There is a uniform magnetic field B perpendicular to the plane of
the circle.

(¢c) The same magnetic flux which passed through the circle is now
contained into a solenoid of radius b(b < R).

(d) There is a very strong electric field F in the plane of the circle
(q|F| > R?/mR?).

(e) F and B are zero, but the electron’s motion around the circle is

extremely relativistic.
(f) The circle is replaced by an ellipse with the same perimeter but half

the area.

(CUS)

Solution:

(a) Let the momentum of the particle be p. The quantization condition

p-2rR=nh
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gives
B nh
P=7g
and hence
2 2 2
-F _ L (nh\T_ R 2
2m  2m \ R 2mR2
where
n=0+1,+2,....

o

AT

Fig. 8.5

(b) Take coordinates with origin at the center of the circle and the z-

axis along the direction of B. Then the vector potential at a point on the
circle is

1
A= BRe,.

The Schrddinger equation
Hy=Ey,
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where

can be written as

Tts solution is ¥(ip) = Ce™®, The single-valuedness condition ¥{yp) = (¢ +

27) demands n = 0,+1,+2,... . Substituting the solution in the equation
gives
1 nh g 2
=—|——-—BR]j .
2m ( R 2c )

(¢) When the magnetic flux is confined to the inside of a solonoid of
radius b enclosed by the circle, magnetic field is zero on the circular path.
As V x A = B = 0, 4 can be taken to be a constant which is equal to
% BR when b — R. Then

A,,lBﬂRQ, b
92 ®R  2rR’

As ¢ remains the same, the energy levels are the same as in (b).
(d) Take the z-axis parallel to F. Then
F = F(cosy, —sing), dr = (0, Rdy),
and hence

V:~/qF~dr:qFR/singod<p:—qFRcosw.

Thus the Hamiltonian is

. —h? 1 d?
=— — — —qgFRcos g.
2m R2 dy? q i
Because the electric field F is very strong, the probability that the particle
moves near @ ~ 0 is large. Hence we can make the approximation
o2

1
cos<,9:1—§<p2+()(<,04)zln7
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and obtain

. K d? 1

H=——0 ~S¥°

2mR? dp? R (1 2 ¥ ) ’
or
A 2 2
Hagrr- -1 & 1
2mR? dp? 2
which has the form of the Haiiltonian of a harmonic oscillator of mass M =
2 . :

mR*® and angular frequency w given by Mw? = gF R, whose cigenvalues are

gF Re*

En +(1FR: <”+%> h/.d,

or
1

by = <n+ 5) hw — qF R,
with

[qFR | qF

W = _— _ —
M R’ n=2012 ...

Therefore

E,=-qFR+ (n+ 1) h ﬂ
2 mR

(e) The quantization condition gives

p-2rR =mnh,

orp=nh/R.
If the particle is highly relativistic,

(f) The quantization condition gives

p =nh/R,
and hence
nhc
E =pc=—

same as for a circular orbit.

Miscellaneous Topics 691

8015

Consider the scattering of a particle by a regular lattice of basis a, b,

c. The interaction with the lattice can be written as V = 5. V([r — r;).
where V(|r —r;|) is the potential of each atom and is spherically symmetric
about the atom’s lattice point. Show using the Born approximation that
the condition for non-vanishing scattering is that the Bragg law be satisfied.
(Berkeley)

Solution:

The Born approximation gives

50) == s > [ TV (e

47

m , ; ,

_ 1<k-k0)»r1/ ik—ko) = 7 (1 Y’

5 e e (Ir')dr’,
Amch 7

where r =r; +r’. Consider the sum } eille—ko)ry,

As we are to sum over all the lattice points, for the sum to be nonzero
we require (k — ko) - r; = 2nm.

Thus the condition for non-vanishing scattering is

r; - (k — ko) = 2nmw
for all the lattice vectors r;, whence
a-(k — ko) =27,
b-(k — ko) =27y,
c-(k —ko) =2nl3.

l1, 12,13 being integers. This is the Bragg law.

8016

To find approximate eigenfunctions of the Hamiltonian H we can use
trial functions of the form v = Y . _, ax@x in the variational method (where
the ¢ are given functions, and the a, are parameters to be varied}. Show
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that one gets n solutions 1, with energies €, = (Yol H|o )/ {alts), where
H is the Hamiltonian. We will order them so that £, < g5 < g£4---
Show from the Hermitian properties of the Hamiltonian that the 1), either
automatically have or can be chosen to have the properties (Yo |tg) = dug,
(WalH|Yg) = £46ap. From the fact that one can certainly find a linear
combination of t; and 1o which is orthogonal to 3, the exact ground
state of H with eigenvalue |, prove that £y > Ey, where Es is the exact
energy of the first excited state.

(Wisconsin)
Solution:

Suppose {¢x} is the set of linearly independent functions. We may

assume that {¢;|¢;) = d;;, first using Schmidt’s orthogoualization process
if necessary. Then

>, ajajAi;
_ W H o~ .
H= %” o _ C = wijm = XTAX,
¢|1’b> Z a;‘ajé.ij 1,7
6L
where o
T = —m———, iy = (hil Hg;) = N}, .

Z]’ la;|?

Note that

k23
Z s |* =
i=1

As A is Hermitian, we can choose a rotational transtormation X = pY,
such that A = p*Ap = p~!Ap is a diagonal matrix with diagoual eleinents

A £ Az < Ayz. Then
H=>Y" Auly:l?,
i1

where y; satisfy >0 |yil? = 1.
Applying the variational principle

0_5[ O‘(Zim -1>]6[Z(Aiia)|yi|2+a 7

i
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where « is the Lagrange multiplier, we get
S (A — @)iwildlyil =0,
or

(i =il =0, (1=1,2,)

i.(‘,., a = A“ or “/i' = 0. .
Hence the solutions of the variational equations are

a:Aiiyyji):(S;:&ij? (i:1121"'an)'

Thus we get n solutions ¥,, the ath solution y,fa) = 51(&) corresponding to

cluergy

<wa\H|¢a A ()2 _
= e 2

7

with 6, <eq9 < g3
For 1o = Yq [X( )], we have

(altbg) = Za(a )* (ﬁ)

: \/ PDICHD I o
i g :

\[Zta“‘)t Sl Sl = [ S| e

(Wa|HlWpg) = Zaga)*/\ij aj

/Zla(u)‘QZm(ﬂ)lz Z L(a) A $

()™ (8)
: \/Z\a§“>|2§ a2 30w A
j 7 4,3

310l 2] cadap-
J
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Then, by setting Yo = Ya/4/>; |a§-a)|2, we have
(Ual¥p) = dap, (ValH[¥p) = cadag -

Let the exact wave functions of the ground state and the first excited state
of H be ®; and &,, their exact energics be E) and £y respectively. Then
there must exist two numbers g, and ps such that ®; = p ¥y + pa ¥y,
[#1]2 + g2 = 1. From the orthogouality of ®; and ®,, we have &, =
p3¥ — pi¥s, and hence

Er=ceilml’ +e2lpual?,

By = e1|pal’ + e2m® = (21 — e2)|pa]® +ex < ey

8017

Find the value of the parameter X in the trial function ¢(x) = Ae~A"s"
where A is a normalization constant, which would lead to the best approx-
imation for the energy of the ground state of the one-particle Hamiltonian
H= —%i— é + bz, where b is a constant. The following integrals may be

useful:
(o @} 00
—ax? us 5 ap? 1 /n
/ e ¥ dr = \/—:,/ e g — 2 -,
oo a PN 2 a
o0 .
—aa? 3 |/
™ e = S, ) — .
o0 4\ a>
(Wisconsin)
Solution:

Using the trial function ¢ = A(’,_’\Q”’Q, consider the integrals

— 272/\1 2 _
/ ¢ (x)p(x)dx = /-OOA da—A1/2/\271,

o0 o0 2. 2 i2 2 2.2
[ wemsa= 7 sz (,’L & +bac4> N g

— 00
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oo 2
A2 / [_h_ (2)\4:1:2 — /\2) + bx4] 6~z,\212 dx
ool M
K2 4
[_E (2’\ 2V ¢( 2A2 2A2>
b2
4 (2/\2)
5 |1 R T
_ A2 —
‘A[zm\/R 216)\5}’

[orHods 1 (B, _)
() = ¢ gdz 2 m i)

As 1; (a+b+c)> (abc)'/® for positive numbers a, b, ¢, we have

L /RIA R2AZ b\ _ 3 [ B 3h\?
N S AR A I B Rl B
() = 2 ( om " 2m Taxi) T2 \am? 8

Hence the best approximation for the energy of the ground state is
1 1
3 /3\3 /bht\?
<H>min = ‘_1 :1 W

8018

Il

il

and obtain

Consider the energy levels of the potential V' = g|x|.

(a) By dimensional analysis, reason the dependence of a general eigen-
value on the parameters m =mass, h, g.
(b) With the simple trial function

x
V = ch(z + a)f(a — x) (1 - lal>
compute (to the bitter end) a variational estimate of the ground state en-
ergy. Here c,a are variable parameters, 6(z) = 0 for z <0, f(x) = 1 for
x> 0.
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(c) Why is the trial function ¢ = ¢f(z + a)8(a — «) not a good onc?
(d) Describe briefly (no equations) how you would go about a variational
estimate of the energy of the first excited state.

(Berkeley)
Solution:

(a) The Schrodinger equation

(-3 s +oiel) ¥1o) = Bt

can be written as

o2 2m
[@WLﬁ(E—QM)} Y(z) =0.
As 5
m =2 [™Mg1 _ ;-3
{F} L2 =
we have
mE 8 B my)2
h2 - (T ’
or

Hence the eigenvalue has the form

B2 1/3
En = <E (2> f(”) p

where f(n) is a function of a positive integer n.
(b) First normalize the trial wave function. As

1= / W* (@)h(x)dz = |c|2/ [e(x +a)f(a — x) (1 - %)]2 dx

2
2 [* ] \" 2a 1o
= _—_— d‘:—/
o [ (1= ) ae =T,
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we have 5
2
clm = —.
el = o

Then calculate the average value of the Hamiltonian:
H= / W* Hpdz
I S d? * . p
- [ v e v [ v @iatvieis,

As

f: 4" (@)l (@)dz =cf? {— / e(1+2) da +/0

:(],2|Cl2/6 = 0./4,

a

e(1-2) ac

4 p(2) = cblz +a)0(a - ) (1 . @)

dz a

— bz + a)b(z — a) <1 _ %)

).

+cO(z + a)b(z — a) (—m 2

xT

we have
* g d o0 *© dl/) 2

fee) 2

()
—eo \ dZT

a 2
= _|C‘2/_ (-%) dz
= —2|¢|*/a = —3/a2 ,

and hence
Ry

2ma?

H=

+-9.

N
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For its minimum value, let

SH ~ 3R?

éa ma3

1252\ /3
a = .
<gm)

Hence an estimate of the ground state energy is

H = 3—’12 ( gm )2/3 + g 12h2 1/3 — 3 3h292 1/3
2m \12k? 4 \ gm "4\ om ) :

g
+5=0
4 ¥

which gives

(c) If we had used a trial function ¢ = cf(z + a)8(a — z) and repeat the
above calculation, we would have obtained

/ Y*(x)|z|pdz = a?c?
oo d2
/;OQ ’l,b W ’l,[)d:l? = 0,

1= / Y2idr = 2ac?,

and hence
o ga’c?  ga
T 2ac2 2
As
8H 9
da 2 70,

H obviously has no extreme point. Therefore this trial function is not a
good one.

(d) We first choose a trial wave function for the first excited state. It
must be orthogonal to that of the ground state. Then use the above method
to find a variational estimate of the first excited state energy.

8019

(Use nonrelativistic methods to solve this problem.)
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Most mesons can be described as bound quark-antiquark states (qg).
Consider the case of a meson made of a (g¢) pair in an s-state. Let mgq be
the quark mass.

Assume the potential binding the g to the § can be written as V' =
é + Br with A < 0 and B > 0. You are asked to find a reasonable approx-
imation to the ground state energy of this system in terms of A, B,mq and
h. Unfortunately, for a class of trial functions appropriate to this problem,
a cubic equation has to be solved. If this happens to you, and you do not
want to spend your limited time trying to solve such a cubic equation, you
may complete your solution for the case A = 0 (without loss of credit).
Please express your final answer in terms of a numerical constant, which
you should explicitly evaluate, multiplying a function of B, iy and h.

(Berkeley)

Solution:

Method I
Use for the trial function the wave function of a ground state hydrogen
atom.

d’(r) — e—~r/a

and calculate

H = (IHY) /(1)
oo K1 0 5]
— 2,~rfa | _* = 2 2
v/o drre [ 2u T2 Or (T 8r>
+ Art o+ Br] e”"/“/ /00 drrie= /e
0

3Ba A1 A

__+ ,
2 +2,ua2 a

where y = %1 is the reduced mass of the g7 system. Vary a to minimize H
by letting ‘fs—’: = 0, which gives

3
2

h2
Ba® - Aa— — =0.
I

1/3
When A = 0, the solution is a = <%) . Hence the estimated ground

state energy is
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_ 3 /36B2R2\/° 22\ 173
Eg:H:—< ) = 2.48 Bk .
2\ ™My my
Method IT

Another estimate of the energy of the ground state can be obtained
from the uncertainty principle. Consider
2 A
H=24+2 B
2u T
As the principle requires

h
:PzzZE,

we take the equal sign for the ground state and obtain

h
2T > = >
Pz 2> 3 DyY =2 )
h? 2 K2
= +
8ua? " Sy? | 8z’

A
+— + Br.
r

To minimize H, let

SH
FrEA
1.e.
—k* Az Bz
duz? 3

As H is symmetric with respect to z, v, z, when it reaches the optimal value
we have £ = y = 2z, or 7 = v/3z, and the above equation becomes

h? A B

. _— + JE—

uzrd 3352 /3

s

=0.

Lettlng A= 0 we get
L/ RSB gp2 \ /3
x = 3% —> , oor r={-—
4uB 4uB ’

_ 352 202\ § 22y 1/3
A= pr=a( 20 50) _ g (BB
z 2 my .

Hence
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8020
An attractive potential well in one dimension satisfies
+0o0

V(zx)dz finite, / x? V(z)dz finite.

— 00

o0

V(z) < 0,/
— 00
(a) Using trial wave functions of the form e~P2°/2 prove that the po-

tential has at least one bound state.
(b) Assuming further that the potential is quite weak (fj;o V(z)dz,

g j:: 22V (z) dz are both “small”), find the best upper bound (for the en-

ergy) for this class of trial functions.
(c) In a dimensionless statement, state precisely what is meant by

“small” in part (b).
(Berkeley)
Solution:

(a) The given trial function is the ground state wave function of a one-
dimensional harmonic oscillator. We shall use the normalized function

1/4
() = (9) e/,

s

where 3 = "p?. The Hamiltonian can be written as

H= —% dd—; -+ %mwgaf +V(z) - %mszQ =Ho+ V(z) ~ %mw'zxz_
As 1
(I HolY) = 5 hw,
we have
= (IHW) = 5 o+ (V&) = 5 maa i)

— L 1% _ J&; V(z)ly

=7 hw+ @IV (@)) = 7= 6+ WIV(@)[P),
and

3, 2
%%{ _ %n- . 2173 WV @)) — WPV (2)]).
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Since when 8 — 0,

(1/’( 2/3 \/v / Vdr - —oo
(WlV ) = @ / " wvar 50,

we have 55_1; - —oo as # — 0. When 8 — oo, ‘3{31 4m > 0. Therefore
5H

5 = 0 at least for a certain positive 3, say 8y. Thus the trial function is
suitable and the energy for the corresponding state is

2 2

2
22 26 V@ <0

as V' is negative,

|

Therefore the system has at least one bound state. Note that we have used
the fact (55 )ﬁ = 0, which gives, for § = 3y,

GIVE)®) = 280 (= 1+ (V)]

(b) (¢) Let ffooo Viz)dz = A, ffooo z?V(2)dx = B. The requirement
that A and B are small means that the potential V(z) can have large
values only in the region of small |z|. Furthermore, for large |z}, V(z) must
attenuate rapidly. This means that we can expand the integrals

A, :/ e PV (2)dz ~ / (1-B22)V(z)dz = A @B,

— 00
[ee] 2 (o ¢}
B, = / 226 7PV () dr ~ / 22V (z)dz = B,
Then the minimization condition % = 0 gives

9B -0
K

1
am T omg
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or
12 A3 \/E B0
J— + — — —_ e R
dm  2ywB 2V«
i.e. 2 — "
i VT A
12mB 144m2?B% 3B

Hence the bound state energy is estimated to be

2
P i 4AB
N e A SN T A
12mB 144m2B? 3B 12m 36m 37

As A and B are both negative, E < 0. Hence

2 .
_ R2 wht A h?
pe (L ) (-5
12mB 144m=*B 3B m
Since for two arbitrary real numbers a and b, (a + b)2 > 4ab, the upper
bound of E is given by

\/—hz h# —7h8 ) 48m24B
b< 4( m 12mB 144sz2 3B = 144m3B?

8021

2/,3/2
A particle moves in an attractive central potential V(r) = —g°/7
Use the variational principle to find an upper bound to the lowest s-state
energy. Use a hydrogenic wave function as your trial function.

( Chicago)
Solution:

As the trial function we use the normalized ground state wave function
of the hydrogen atom,
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to calculate the energy. For an s-state, [ = 0 and

= / * Hepdr

“ o [ (7 a_) )] v

k3 2 —kr/2 1 0 5 0 92 k
.4 T el - —kr/2
~ 8r 7r/0 2mror \\ or) 2] ¢ dr

kS h2 k2h2
= — e"’c [ g2r1/2 + —kr — 7"2} dr
0

2 2m 8m
_ k3 h? ﬁg2
T2 |4mk  2k3/2

,-12

:_k2 o ﬁg2 k3/2

8m

For H to be a minimum, %IZ =0, le. mk —£ g%k1/? = 0, giving two

solutions k; = 0,
k1/2 _ 3ﬁg2m
Co2m2
The first solution implies ¢ = 0 and is to be discarded. On the other hand,
if k1/2 h%ﬂ H reaches a minium — %gﬁe— This is the upper bound
to the lowest s-state energy.

8022

A system of spin-1 particles consists of an incoherent mixture of the
following 3 pure spin states, each state being equally probable, i.e. one
third of the particles are in state (1), etc.

1 0 0 0
1 1
W=1o @D —114+—10 (YR
’(,[} ) ’(,[} ﬂ 0 \/§ b 1/}

(a) Find the polarization vector for each of these 3 pure states.

(b) Find the polarization vector per particle P for the above mixed
state.

Miscellaneous Topics 705

(c) Calculate the density matrix p for the system and verify that Trp=1
(d) Using p, find the polarization vector P and check against (b).
Reminder: for J =1,

01 0 0 —i O 1 0 0
‘].L:_l_ 1 01 1']?/:% 1 0 —q 7]7,: 0 0 0
v2 0 1 0 0 0 0 0 -1
(Chicago)
Solution:
(a) The polarization vector for a state ¢ is given by
PO = (p@13p").
Thus
01 0 1
n<1>-—1—(100) 1 01 0ol =0,
T2
01 0 0
0 —i 0 1
1 - .
PO — —(1,0,0) | i« 0 —i 0l =0,
Y \/§ ( )
0 1 0 0
1 0 0 1
pPW =(1,0,0) | 0 0 0]=1.
0 0 -1 0

and so P = (0,0,1).
Similarly we have

1 1
P(Z) - <— 707—_—> 3

V2 2
P® =(0,0,-1).

(b) For the incoherent mixture, P is the sum of the polarization vectors:

P:éPW+Pm+P”] L (v2,0,-1).
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(¢) In terms of the orthonormal vectors

0 0
M=(0],120=1]1 y13y=1]0
0 1

we have
. . 1
W) =10 1) = 225 13,

) = 13).

Generally a state can be expressed as

) = i@:,
where i = 1,2 3. The density matrix —is defined as
p =2 D)),
where w( is the probability that the system is in the pure st

o Lovi v 1 T*
Pinn. = Zwlc-y,z Cr]n - 3 ZC Cm ,

i

< (L/ — 1 e ..
as w 3 for all i in the present case. The matrix of the cocfficients is
1 0 0
1 1
C=10 — —
V2 V2|
0 0 1
and so
! 0 o
3
p== C*ro = 0 1 l
6 6
1
g L1
6 2

state [, or
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and L1 1

Trp=+ >+ 7=1.

PR 2

(d) As P = (J) = Tr(pJ), we have

R
3
1 1 1 1 1 1
Po=Triph) =Trd—={ =~ = = lp=— V2 /6
e vl 2(6 ) /
11 1
6 2 6
o =L 0
3
1 z 7 —1 1 1 3
P,:T" 2 = —_ — _ . —_ —_—— =0
y=Tried)=Try Z 1 G § 6 \/§<6 6)
) i —1
6 2 6
1
- 0 0
3
1 1 1
Py:T" J = T —_— - - - - = — =
2= Tr(p) =Tr) 00 =1 =37 57 T
1
0 0 ——
2
sawne as in (b)
8023

The deuteron is a bound state of a neutron and a proton in which the
two spins are coupled with a resultant total angular momentum S = 1. By
absorbing a gamma ray of more than 2.2 MeV the deuteron may disintegrate
into a free neutron and a free proton.

(a) Write a wave function for the final state in the reaction y+D — n-+p
using plane waves and being sure to include properly the spin coordinates
for the two particles. Assume that the interaction with the gamma ray is
via electric dipole coupling.

(b) Suppose the neuntron and the proton are to be detected far apart from
cach other after the disintegration of the deuteron. Looking at this in the
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center-of-mass system, what correlations will be found in time and space,
and in spin? Assume that the target consists of unpolarized deuterons.
(You may use the following definition of spin correlation: If a protou is
detected with spin “up”, what is the probability that the corresponding
deuteron will also be detected with spin “up”?)

(Berkeley)

Solution:

(a) The ground state deuteron 3S) has positive parity. The clectric
dipole transition requires a change of parity between tlie initinl and fi-
nal states. Hence the parity of the free (m,p) system must have parity
—1. Assume that the wave function of (r, p) can be written as W(n, p) ~
P(rn, rp)x(n, p). For x = x3, after the nucleons are interchanged the wave
function becomes W(p,n) = (—1)'W(n,p). For x — x}, after the wucle-
ons are interchanged, the wave function becomes W (p,n) = (—=1)*' ' ¥ (n, p).

A fermion system must be antisymmetric with respect to interchange of

any two parficles, which means that for the former case, [ = 1,3, ..., and
for the latter case, I = 0,2,4,..., and so the paritics arc —{({ = odd)
and +1(l = even) respectively. Considering the requirement we see that
only states with x = x§, ie. spin triplet states, are possible.  Further,
S=1L=13,...,andso J =0,1,2,.... As the deuterons arc unpo-
larized, its spin wave function has the sasue probability of being x11, x10
or x1-1. Thercfore, after the transition (n,p) can be represented by the
product of a plane wave and the average spin wave function:

\I/(n,p) ~ (iv,(kn»r,.Jrkp-rp) . ({\i(w,,l‘,erpI,) (1/\/5)(/\(” + Y10 + lel) A

(b) The correlation of time and space is manifested in conservation of
encrgy and conservation of momentum. In the center-of-mass coordinates,
if the energy of the proton is measured to be E,,, the energy of the nevtron
is En = Eem — Ep; if the momentunt of the proton is p, the momentum
of the neutron is —p. Let o be the spin function for “up” spin, and g
be that for “down” spin. Then x11 = a(n)a(p), x1-, = B)B(p), xio0 =
% la(n)B(p) + a(p)B(n)], and the spin wave function is

ﬂmmwﬁg{wm\f(M]MM+§§k%Mm+ﬁmﬂmm.

Thus, if the spin of p is detected to be up, we have

x:famwm+f»mwm
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Hence the probability that the spin state of n is also up is
L2
() o

8024

(a) You are given a system of two identical particles which may occupy
any of three energy levels £, = ne, n = 0,1,2. The lowest er{e?g}{ state,
g0 — 0, is doubly degenerate. The system is in thermelﬂ equﬂlbrlul'n.at
temperature 7. For each of the following cases, determine thfe partition
function and the energy and carcfully cnnierate the configurations.

(1) The particles obey Fermi statistics.
(2) The particles obey Bose statistics. o
(3) The (now distinguishable) particles obey Boltzimann statistics.

() Discuss the conditions mder which fermions or bosons might be

treated as Boltzmann particles.
o ( Buffalo)

Solution:
Denote the two states with g = 0 by A and B and the states with <

and 2¢ by 1 and 2 respectively. - ‘ .
(1) The system can have the following configurations if the particles

obey fermi statistics:

Configuration: (A, B) (A, 1) (B, 1) (A, 2) (B, 2) (1 2)

Energy: 0 ¢ € 2¢ 2¢ 3¢ ] N )

Thus the partition function is Z — 1 42e7° +2e” 7 + €77,

and the mean energy is & = (2ge™° + dee™ % + 3ee7%%)/Z

(2) 1f the particles obey Bose statistics, in addition to the above states,
the following configurations are also possible:

Configuration: (A, A) (B, B) (1, 1) (2, 2)

Energy: 00 2¢ 4¢

Hence the partition function and average encrgy are
Z =342 43 +e ¥ e,

= (2ce7° + Gee 2 + 3z 3 + 45¢7) /7.
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(3) for destinguisable particles obeying Boltzmann statistics, wmore con-
figurations are possible. These are (B, A), (1, A), (1, B), (2, A), (2, B) and
(2, 1). Thus we have

Z =444c7 45075 19073 Lot

)

£ = (4ec™° + 10ec % + bec ™ + dee 1) /7 .

(b) Fermions and bosons can be treated as Boltzimaun particles when
the number of particles is inuch less than the number of cnergy levels, for
then the exchange cffect can be neglected.

8025

Consider a free electron near a boundary surface.

(a) If ¢x()’s are the electron eigenfunctions, show that the fuuction

u(x,t) = Xk: D (x) o (0) exp (%}"f)

satisfies a diffusion-type equation. Identify the corresponding diffusion co-
efficient.

(b) From the theory of diffusion how would you expect u(0,1) to be
influenced by the presence of a boundary at a distance I from the origin?
Would the boundary be felt immediately or only after an elapse of time?

(¢) Examine the expression for u(0,t) as a sum over k as given in (a).
What is the range of e which contribute significantly to (0, 1) at the time
when the influence of the boundary is felt by the electron?

(Buffalo)

Solution:

(a) The wave function ¢ (x) satisfies the Schrédinger equation of a free
particle

hZ

om

Viu(x,t) = hZ Z ex i (X) i (0) exp (_i;;) .

Vi (x) = xdi(x) .
Thus
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Since

d 1 N
2 i) = —ﬁ;cm(xwk()eu( ).

u(x, t) satisfies the following diffusion-type equation:

5
5 u(x, t)——V u(x,t).

The corresponding diffusion coefficient is h/2m. .

(b) Initially u(z,0) = 6(x). When ¢ > 0, the function u starts diffusing
to both sides. The boundary will not be felt by the electron before a lapse
of time. -

(¢) Suppose the boundary is at x = {. The solution of the diffusion
cquation is

) m
u(x,t) =coexp [ Sht “(y* +z )]

; LATNC ) . _ﬂf;-)ll’}}_
X{(’Xp [*sz"l’} (‘XP[ o (&)

When there is no boundary (i.c., I — 00), the solution is
7 mo oo
u(x,t) = cexp [—ﬁ (> + 2 )] exp (-z—faz ) .

. 2 .
From the above two expressions, we see that only when 525 (0-20)° ~ 1, 1ie.,
at t ~ 2mi%/h, will the electron start to feel the existence of the boundary.

Consider >y
)= 5 lono) e (-5)

Only states ¢, for which the energy e is such that E“t <1 will contrlbute

significantly to u(0,t). At the time t ~ ﬂ we requlre £ < oo l)_ for ¢k

to make a significant contribution.

8026

Symmetrizing Maxwell’s equations by postulating a magnetic monopole
charge of strength g, Dirac derived a quantization condition
cg
2 —n,
he
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where n = an integer, e is the electronic charge, and ¢ is the magnetic
charge.

In the spirit of the Bohr-Sommerfeld quantization procedure, derive
semi-classically a similar quantization condition by quantizing the angular
momentum of the field in the “mixed dipole” systemn shown in Fig. 8.6.
Hint: How is the angular momentumn of the field related to the Poynting
vector?

(Columbia)

Fig. 8.6

Solution:
The electromagnctic field consists of two compouents

oo elx-5)

R

_yx+5)
x+ 517
In cylindrical coordinates (p, 8, z), we can write T = 2qes, where g =
[r[/2, and

X = pcosfe; + psinfe, + zes

The angular momentum of the electromagnetic field is

1 :
Lem = — [ xx(Ex B)d’z.

:47rc.
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As
(x—5) < (x+5)
B=e¢ o ”
BB = T T 5P
CgX X T
- 2 213/27
[~ 5)" (x+5)’]
egl(x - t)x — 27r]
x x (ExB) = (2 7 22 +a? — 202)(p% + 22 + a? + 2az))*/2
2acq(zp cosfe, + zpsin ey — pey)
= [(p® + 2% +a?) - 4a272)3/2 ;
29 2m
/ cos 8dl) = / sinfdd =0,
Jo Jo
we have

+0o0 2 fe'e] /73(1/)
aeg .
Lem = \57; €3 /_Oo dZ/O d9/0 [(/’2 22y a2)fz _ 4a2z2]3/2

eg +oo > s3ds
c —0o 0 [(" +1 +)

wlere s = p/a, t = z/a. It can be shown that
oo e s3ds .,
-/—oo dt/o [(s2 + 2 4+ 1)% — 4¢2]3/2

Lﬂm = ——€3.

Hence

The quantization condition is therefore
ey
|Lemz‘ = 7 - Tlh,,

or

g:n’ n:O,il,:tZ,‘...
he
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8027

In a crude picture, a metal is viewed as a system of free electrons en-
closed in a well of potential difference V4. Duc to thermal agitations, elec-
trons with sufficiently high energics will escape from the well. Find and
discuss the emission current density for this model.

(Buffalo)

current density

Fig. 8.7

Solution:

The system of free electrons can be considered as an electron gas of
volume V' which obeys the Fermi statistics. At absolute teinperature T the
number density of electrons with momenta between P and P+ dP, where

P = (P,. P, P.), is

AN 1 dP.dP,dr, 2V

vV v (i(df;t)/k'l'le ’ h3
where the factor 2 is the degeneracy due to the clectrons having two spin
directions.

Counsider the number of clectrons, j,,, leaving V in the 2 direction per

unit cross scctional arca per unit time. Such clectrons must have a speed

P, 1
v, = — > —+/2mVy.
™ o)

Hence

' AN 2 ™
i N2 / P,dP,
|7 mh3 VIV,

2m

y /m /m AP, dP,
~ooJoo exp {[ 5, (P2 + P4+ P2) — ] KT} + 17
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or, by setting P2 + Py2 = P? dP,dP, = 2wP,dP,, and neglecting the
number 1 in the denominator,

L

Ar o] oo 1 1 5 N jI }
P P,dP, , - | — (P +P) P.dP,
I 3 JEVe /o exp{ kT { ( )

T [ 1 (P,
[ i e
4 2mVy

_ 4Armk?T? o (Vomu) /KT
h3 ’

The clectric current density is then

Armek T okt

Je = —€jn = — h3

Note that in the above, to simplify the integration, we have assumed
1
kT < — - 2mVy —n=Vo — 1.
2m
At T = 0 the electron number density is

3/2
© 3n2h3 ( ’

n=-—-— F 2mypip)
where Py, o, are the limiting momentum and energy. At ordinary temper-
atures we have
h? 2, \2/3
=g = — (3 n) .
H 2mn ( )

The quantity Vo — i is the work function of the metal and the emission of
clectrons from incandescent cathodes is known as Richardson’s effect.

8028

It is generally recognized that there are at least three different kinds
of neutrinos. They can be distinguished by the reactions in which the
neutrinos are created or absorbed. Let us call these three types of neutrino
Ve,V and v;. It has been speculated that each of the neutrinos has a small
but finite rest mass, possibly different for each type. Let us suppose, for
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this exam question, that there is a small perturbing interaction between
these neutrino types, in the absence of which all three types have the same
nonzero rest mass My. Let the matrix element of this perturbation have
the same real value fw; between each pair of neutino types. Let it have
zero expectation value in each of thie states v, vy and v,

(a) A neutrino of type v, is produced at rest at time zero. What is the
probability, as a function of time, that the neutrino will be in each of the
other two states?

(b) [Can be answered independently of (a)] Au experiment to detect
these “neutrino oscillations” is being performed. The Hight path of the
neutrinos is 2000 meters. Their energy is 100 GeV. The scnsitivity is such
that the presence of 1% of neutrinos of one type different from that pro-
duced at the start of the flight path can be measured with confidence. Take
Mo to be 20 electron volts. What is the smallest value of fw, that can be
detected? How does this depend on M?

(Berkeley)
Solution:

(a) In the representation of |v,), |v,) and |v,|, the matrix of the Hamil-
tonian of the system is

My hwy  Fw
H= hwy My hwy

fiwl fuul M()
The Schrédinger equation
h O¥
T L HE =0,
i Ot
aj
where W = | ay |, a; being the wave function for state vi, has the matrix
as
form
dl M() hw1 fl/u)l a)
ihl ax | = hwy My hw as
a3 hw; hwy My ag
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with the initial condition
a1(0) =1, az(0) = a3(0) =0.

The solution is

( : 2, 1
al(t) _ e*LAl()L/h (g e wit + E))_e 12w1t> 7
1 . B i
as(t) = 3 o~ iMot/h (e 2u1t _ wlt),
ag(t) _ %C¥iMn£/ﬁ (e—let - eiwlt) '
\

Hence the probabilities of the neutrino being in states v, and v, arc

P(v,) = |aa(t))* = g(l — cos 3w t),
P(v.) = las(t)]* = —g— (1 — cos 3wit) .

(b) The time of flight of v, is At = % in the laboratory time, or A7 =

At/T= (£~ L MEﬂ, where E is the total energy, in the rest frame of ve.
’ c c

For P(v,) = 1%, l.e.,
2 .
) [1 ~ cos(3wAT)] 2 0.01,

we TCquire

cos™10.955 0.301 0.1cE

wlz—————4

3AT 3AT 1My
or 9 —16
M)>01x3xw8xm0xm x 6.58 x 10 0.05 oV
b= 2000 x 20
8029

To a good approximation, an electron in a crystal lattice expericuces a
periodic potential as shown in Fig. 8.8.:

It is a theorem (Floquet’s), and a physical fact, that the spectrum of
any such periodic potential sparates into continuous “bands” with forbidden
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“gaps”. To construct a very crude model of (the lowest band of) this effect,
imagine that the barriers are high, so that the sct of “ground states” |n)
(—00 < n < +00) (one for each well) are approximate eigenstates. Call F
the energy of each |n). Now suppose € = |e|e'® is thie (small) amplitude for
tunneling between any two nearest-neighbor wells (probability for |n—1) «
Iny = [n+1 > is |£]?). Set up a Hermitian Hamiltouian that describes this.
Compute the energy E(8) of the state(s)

+ 00

[0) = Z e™n).

n=—uo

What is the width of your band?
(Berkeley)

Solution:

We write the Hamiltonian as a matrix, choosing [n) as basis vectors.
Supposing

Hin) = Ey(1 — e —)In) + Eogln + 1) + Eye*

n—1),
we have
(m|Hn) = /1/)*(;17 —ma)Hy(x — na)da
= F / W (x — ma)(x — na)dx
=0mnEo(l — € = €") 4+ 6 n416F0 + 616" Ey,
where we have used the assumiption that tunneling occurs only between

adjacent potential wells and the amnplitude for tunneling to the right is
€ = |e|e'®, that to the left is e* = |¢[e~%. Thus the matrix of H is
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(U ¢ Eo(1—e—¢) eEo 0
(2‘ E‘Eo Eo(l — € — E*) EE() cL
(3l e* Eo Eo(l-c—¢*)
H= " e Ce
0
|1) 12) 13y ... ... L.
and
400 +00 .
HIO)=Ey > e™n)(l—c—c)+Ey » e™(eln+1)+e|n 1))
n=-—odg 7= —00
+o00 ) .
= Eo(1 — 2|e| cos a)|0) + Ep Z [e'(" D0 4 T )
n=—0o0

= Eg[l — 2je| cos a + 2|¢| cos(6 — a)]|0).
Hence the energy eigenvalue of |8) is
Ey = Ep[l — 2le|(cos a — cos(8 — )]

.0 . /0
= FEy 1—4|£|Sln§sm 5l

From these results it can be concluded as follows:

(i) Since a continuous variation of § results in a continuous variation of
the encrgy, the energy levels become an energy band. Furthermore, when
0 =, By = Enax = Eo{l + 2|e|(1 — cosa)}, and when § = 7 + a, Ep =
Emin = Eo{1 —2|e|(1 +cosa)}. So the width of the band is Enax — Emin =
4|6|E0.

(ii) When «, which depends on the shape of the periodic potential well,
is sufficintly small, tunneling between neighboring wells always results in o
lowering of the ground state energy.

8030

Consider an idealized (point charge) Al atom (Z = 13, A 27). Hf a
negative lepton or meson is captured by this atom it rapidly cascacles down
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to the lower n states which are inside the electron shells. In the case of
p-capture:

(a) Compute the energy F; for the p in the n = 1 orbit; estimate also
a mean radius. Neglect relativistic effects and nuclear motion.

(b) Now compute a correction to E; to take into account the nuclear
motion.

(c¢) Find a perturbation term to the Hamiltonian due to relativistic
kinematics, ignoring spin. Estimate the resulting correction to F|.

(d) Define a nuclear radius. How docs this radius for Al compare to
the mean radius for the n = 1 orbit from (a)? Discuss qualitatively what
happens to the = when the g~ atomic wave function overlaps the nucleus
substantially. What happens to a #™ under the circumstances? Information
that may be relevant:

M, =105MeV/c?  SPIN(u) =1/2,

M, = 140MeV/c2, SPIN(x) = 0.

(Berkeley)
Solution:

(a) We shall neglect the effects of the clectrons outside the nucleus and
consider only the motion of the g in the Coulomb ficld of the Al nucleus.
The energy levels of p in a hydrogen-like atom of nuclear charge Z (in the
noarelativistic approximation) are given by

met 72
En:‘_._A.
2h% n?
Thus
m mee? 105
By = 0 7= - — 13%eV
1 T 051><136>< e
~ —0.4732MeV,
R e B2 0.5
a= = e = x 0.53 A

Zme?2  Zm mee? 13 x 105
1L9x107%A.

Miscellaneous Topics 721

(b) To take into account the motion of the nucleus, we simply have Lo
: : Afn
replace the mass m of the meson with its reduced mass p = 7/, . M
being the nuclear mass. Thus !

, i 1 —0.4732
El - T—n- B, = 1 + m 1=

105
L+ 572938
= —0.471 MeV .

(¢) Taking into account the relativistic effects the muou kinetic energy

is ‘
2 1

2 _ PP
2m  8m3c?

The relativistic correction introduces a perturbation Hamiltonian

T = +/p?c? + m?et —mc

p4

s G
k 8m3c?

The energy correction AE for E) is then

pt
AE = (100 = 25 [100)
1 p2 p2
= 2 100
2me? (100] 2m  2m |100)

2 YA
<H + Z—‘) <H + 7‘) 1100)
-

Ze*\
- L _ (100| (El +T> |100) .

2me?

For a rongh cstimate, take r =~ a. Then

2 2 2 _ 2
<E1 + Z,"> _ B 20T 6« 102 MeV

AFE ~ —

2mc? a 2me?2 2 x 105

(d) Tn the scattering of neutrons by a nucleus, an attractive \Ilull)'
nuclear force sets in when the distance becomes smaller than 7 ~ rq. {
where g ~ 1.2 X 10~ em and A is the atomic mass number of the nucheue,
7 is generally taken to be the radius of the nuclues, which for Al is

F=12x10"5 %2739 =3.6x107° A.
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The difference between the radius of the nucleus of Al and that of the
first orbit of the p-mesic atom is not very large, so that there is a consider-
able overlap of the wave functions of the nucleus and the muon. This effect,
due to the finite volume of the nucleus, will give rise to a positive energy
correction. At the same time there is also a large interaction between the
muon and the magnetic mowment of the nucleus.

Under similar circumstances, for the m-inesic atom there is also the
volume effect, but no interaction with the magnetic moment of the nucleus
as pions have zero spiu.

8031

Low energy neutrons from a nuclear reactor have been used to test
gravitationally induced quantum interference. In Fig. 8.9, neutrons incident
from A can follow two paths of equal lengths, ABCEF and ABDEF, and
interfere after they recombine at E. The three parallel slabs which diffract
the neutrons are cut from one single crystal. To change the effects of the
gravitational potential energy, the system can be rotated about the lne

ABD. Suppose ¢ is the angle of this rotation (¢ == 0 for the path ABCEF
horizontal).

Fig. 8.9

(a) Show that the phase difference at point E due to the effect of gravity
can be expressed as 8 = gsin ¢, where ¢ = KAS?sin 28, A being the neutron
wavelength and K an appropriate constant which depends on neutron mass
m, gravitational acceleration g, Planck’s constant A, and numerical factors.
Determine the constant K. Assume here that the gravitational potential

energy differencs are very small compared to the neutron kinetic energies.
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(b) The neutron wavelength used in the experiment is 1.45 A. What is |
the corresponding kinetic energy in electron volts?
() If S =4cm, § =225 and A =1.45 A, how many maxima should |
be seen by a neutron counter at F' as ¢ goes from —90° to +90°7 ‘
Mass of neutron = 939 MeV/c?, fic = 1.97 x 107! MeV - cm. |
(CUs)
Solution: |

(a) The wave function of the incident neutrons can be taken as ‘
’lp(l‘ t) — ce(ip-r~iEt)/h7

where ¢ is a constant. When they move along a certain orbit fromn z = 0 to

x = [ it becomes

. l .
; s
Y(r,t) = cexp [ﬁ /0 om(E — V)da — 7 Et

Thus the phase is

1 1
== —V)dx — - Et.
Lp—h/o 2m(E Ydx 5

The neutrons are separated at point B into two beams 1 and 2, for which

¥B, = ¥B;-
The situations on lines BC and DE are same and so for the two neutron

beams, Apcg = Apgp. Online BD, we can set the gravitational potential
V =0,F = Ey, and so

1/ 1 S
A‘PDB:E/ \/szOdI‘ﬁEO'
0

o
1 S
= % (\/QmE()S - 5 AV 2mE0 S) = ﬁ \/QmEo,

where v is the neutron velocity 7—; v2mkEy.
On line CE, the gravitational potential is

V =mgh =mg - BEsindsin¢, with BE =28 cost),
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V = mgSsin20sin ¢,

and

A L 1
vEC = % 2m(Ey — V)dx — 7 Eot
. (]
S \/QTIEO\/‘
\/ﬁ

g V2mE, 2\/1 v 1

L0

Thus the phase difference of the two beams of neutrons at poiut F is

s
S Jambe [1-2 1= L4

2h Ey v

S 174 1%

2 SomBy 121 v

oh 0{ < 2Eo>+<1+250>J
3V'S

= "= \/2mE,

8=Appp — Appc =

%

4’LEO
as V <« Fy. Thus
B =qgsing,
where
3 m2g .
~ - ———2 S
q 2 h/ImE sin 260
= K'A\S%sin 26
with
)\ @ B 27h
p V2mEy’
2
K- § m g
4 wh?
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(b) The neutron has momentum

p? 2 [7he\’
Ek = — = JEE—
2m  mc? A

9 <7r % 1.97 % 10-5>3

T 939 x 106\ 1.45x 1078
=0.039eV
(¢) In the range —1 < sin¢ < 1, the number of maxima scen by a
neutron counter at F'is
2
2g 3 (Smc? .
n=5-=7 <7rh02 gAsin 20
2
: 3
_3 4 < 939 « 980 x 1.45 x 10~8 x sin 45°
4 \mx1.97 x 10~ x 3 x 1010
=30.

8032

Consider the Dirac equation in one dimension
oY

= ih—
Hy ot

where

%,
H = cap, + fmc?® + V(z) = ca <;ih $> + Bme* + V(z),

_ (O o3 (1 0 [3;10
=\ 0) P70 -1) "7 \o ~1)°

I being the 2 x 2 unit matrix.

(a) Show that o = <UO3 ;) ) commutes with H.
3
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(b) Use the results of (a) to show that the one-dimensional Dirac equa-
tion can be written as two coupled first order differential equations.

(Buffalo)
Solution:
(a) As
__ a3 0 0 g3
o= |(% 0) (o ¥)]-o
- oy 0 I 0 B
[0, 0] KO 03>’<0 _y =0,
we have

[‘77 H} = [Uy cap, + ﬁmcz + V] = C[(T, a]pZ + [a, ﬂ}mcz =0.

(b) As [0, H] = 0,0 and H have common eigenfunctions. ¢ is a diagonal

i
matrix. Let its eigenfunction be ij . Asg
3
Pa
th n Py 0
o ol \
” I _ 2 N U I
W3 3 3 0 [’
q —¥u 0 (N
Py 0
o has eigenfunctions 0 1 V2 i i
. ] s an 0 with eigenvalues +1 and —1 re-
0 Wy

spectively.

Substituting these in the Dirac equation, we obtain

V3 (1 L1
L, 0 0 0 ;
("Lﬁca— -+ V> +7TL62 — ’Lﬁi 0
z U —Y3 ot 3 ’
0 0 0
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0 0 0
) —y P2 9 | ¥2
—~ihe = +V 2 =ih =
<1caz+ ) 0 + mc 0 “(915 0
—%2 4 L

Each of these represents two coupled differential equations. However, the
two sets of equations become identical if we let 3 — —¢4, ¥1 — 2. Thus
the one-dimensional Dirac equation can be written as two coupled first
order differential equations.

8033

(a) Write down the Dirac equation in Hamiltonian form for a free par-
ticle, and give explicit forms for the Dirac matrices.

(b) Show that the Hamiltonian H commutes with the operator o - P
where P is the momentum operator and & is the Pauli spin operator in the
spacce of four component spinors.

(¢) Find plane wave solutions of the Dirac equation in the representation
in which o - P is diagonal. Here P is the eigenvalue of the momentum
operator.

{Buffalo)
Solution:

(a)

H =ca P+ fmc? = ca- (—ihV) + fmc?

a:<g g) ’ g:<; 01)

are the Dirac matrices.

(b) Write

where
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(a-p,H]:K"(’JP U?P),C(U?P ”(‘)P)+7n62<; fl)}
:c{<gép a?P)’ (a?P UQP)}
+ mc? Kabp U?P>’<(1) _01)] =0+4+0=0.

(¢) Let P be along the z direction. Then as o, = ((1) ﬁ()l ), we have

where the unspecfied elements are all zeros, which is diagonal. Then as

shown in Problem 8032 the plane wave solutions of the Dirac cquation in
o] 0

. . 0 : Jo]
. iP,z/h i
this representation are N etf=2/ ynd 0 =2/ where o and v, 0

0 ]
and § take two sets of different values. Substituting the cigentfunctions in
the Schrédinger equation

- oY
Hvy = th - = Ei
¥ =1ih pn W
we have
P,y + me?a = Fa,
cPya — me?y = By,
giving

Ey = \/m2cf | P22,
1

0
Y= | E.—me? ei(PzZ_Eit)/r";
cP,
0
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and

—cP,5 +mc*8 = EF,
—cP,3 —me?5 = ES,
giving
El:t = i\/m264+P22527
0
1
Pyz—-Bit)/h

'd): 0 Ei( -

me? — By

cP,

8034

Consider a free real scalar field ¢(x,), where z, = x,y,z for p =1,2,3
and x4 = ict, satisfying the Klein-Gordon equation.

(a) Write down the Lagrangian density for the system.

(b) Using Buler’s equations of motion, verify that ¢ does satisty the
Klein-Gordon equation.

(c) Derive the Hamiltonian density for the system. Write down Hamil-
ton’s equations and show that they are consistent with the equation derived
in (b)

(Buffalo)
Solution:

(a) The Lagrangian density is

1 . m?2
£(z) = ~5 0ub(x)0,0(0) — - 9()9(x).
(b) Using the above expression for £ in Euler’s equations of motion

[85(1‘) ] | 9L(x)
oL ] 99(x)

we obtain

8,0, 9(x) — 7T7,2¢(X) =0,

which is just the Klein-Gordon equation.



730 Problems and Solutions on Quantwmn Mechanics

(¢) The Hamiltonian density of the system is

ar 1 ) m?
) 0. — L = ~3 3,0, P + —2—(/>“.

M = 5.9

Hamilton’s canonical equations

OH ‘ oH
Td) = 7()11,1311,7 CE - “‘0;19/):
where 5
oL
P, = = —(
" o)
then give
“‘a;t Pp. = m2¢7
ie.,
0,0, — mip = )

same as obtained in (b).

8035

It can be shown that the probability for an on-shell charged particle
with initial momentum P to emit a virtual photon with momentumn g is
proportional to the covariant tensor

Wpu - Ag;u/ + BI)ILI)V -+ C(]“([u + D((]/L R/ + P;L(IV) s

where A, B, C and D are real Lorentz-invariant scalar functions of @’ q-P
and P? = n?.

(a) Use current conservation to show that W, has the form

Quly -P qg-P
o o) e (107 (o).

Le., only two of A, B,C and D are independent,.
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(b) Compute W7 and W» for a Dirac particle of mass m for which \
|
Woaw = Tr(P~ f+ )P+ m).
( Buffalo)

Solution:

(a) Current conservation requires ¢*W,, =0, i.e.,
Ag, + B(q- P)P, + Cq%q, + DIg°P, + (g P)a,] =0,

where q-P = q*P,, ¢ = " gy, etc. As P,, g, are independent and ¢* # 0,

this gives
A+Cg*+D(qg-P)=0,
B(q-P)+Dg*=0.

Solving for C and D and writing A = Wi, B = W3, we have

P W1 W2(qp)2
D:—Wz(q2)v C=-gt—7F"
q q q

Hence
.p qg-P
quqv _ q__ . - g, —— -
WW:W1 (g‘“,— 22 >+W2(PM qp q2 ) (Py q qz )

(b) We are given

W =Tr[(P— i+ m)vu(P+ m)yy
:TI'“D’Y#P’)’U + P')’u"n’yu - g')'uP’)’u
— dvamy + oy P + moyumond

where P = Pa7y®, fi = qov*. The Dirac matrices satisfy the anticonmnuta-

tion relation .
(A" = = 20

and so
TI‘(’Y“’)’U) = 49‘“/ )
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Tr(y#y#2 .. 4k ) =0 for n = odd,
Tr(79 7)) = 4(g™ g™ — g g"® + g gy .
Hence in W, the terms involving an odd number of « vanish. Consider
Tr(Prub ) = Te(Par” gy Py 90077
= PagunPguo Te(y" v 4747)
= 4Pagur Paguo (4" 9" = g™ + ™7 ™)
= Y Ladi D8] — PP 3o gug + Pagl Psdlh)
= 4(P,P, - P%g,, +D,D,),
Te(hvuPr) = 4gul - a- Py + 9. 1),
Te(m*yu70) = m° Gua g Tr(v77)

2
= 4m g‘uaguggaﬁ = 477?’29}1063 = 477129“‘/ .

Then, as for an on-shell particle P? ~ m?, we have
Wy =4aq-Py,, +8F,P, —4(q.D, + q,P,) .
A comparison with the given expression for W we find
Wi=4q-P, W,=38.

Note that for an on-shell (hcxrge emitting a virtual photon, initially P? =

m2. : 2 _
, and finally (P—q)? = —2q-P+¢” = m?, and so the two expressions
for W, are consistent.

8036

In order to account for the anomalous magnetic moments of particles,
the Dirac equation given below can be used:

(iY—ed+ Km o ¥ — my(z) =
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Here ¢ and m are the charge and mass of the particle, K is a dimensionless
parameter, A*(z) is the four-dimensional potential and F* is the elcctro-

magnctic field tensor, i.e.
OA*  QAY

1
Fre = - 3 Tur = % s vl
or, Oz, i 2[%7]

where 7, is a Dirac matrix, yo = W =0, v =—y=pai=123.

(a) It is well known that the above equation is covariant if K =0. We

have

¥'(2') = Sy (x),

where z'* = alz” and aly” —= S714#S. Show that if K # 0, the cquation
is still covariant.

(b) Write the equation in the Hamiltonian form and show that the ad-
ditional interaction does not destroy the Hermiticity of the original Hamil-

tonian.

{Buffalo)

Solution:
(a) As
S 1y,8 = ay Yo

and aj, commutes with S and -y, we have
-1 v v .
S y.Sah = ajabv = 007 = Ya -
Consider

1 Yo 1t
= (Va8 — 7ﬁ7a)aza€Fu Sy (z)

G:lﬁFI“ﬁ'(/}’(:L'/) — :

= (557985 My — S5 4SS ) el SY
=S % (S 'yaSalS VygSal — ST ypSalS T yaSa) Iy

i 1%
= 55 (Y ve = V) FH7Y

= S0, F*1p.
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Hence
S—lagﬁplaﬁw/(l_/) = O F”VQ[)(:II)

\ _ o1, : :
Then as W(z) = S71Y(2") and Yand Aare invariant, under transformation
the Dirac equation becomes

1 Ke
S <1V* ed+ I Tos 0 + m> Y(x) =0,
Le. the equation is covariant.

(b) As

9] 7]
V"Yaa—“—,@

To ot Y )

A= Vad™ = BA° + 1A = BA° 4 79, A°
= 6‘40 -7 _‘A7

the Dirac equation can be written as

iﬁﬁw:<*i‘)"v+eﬂA°~(’ -AﬂKi Jal
ot i T O + m) P

Note that we have used units such that b = ¢ — 1.
Mutiplying both sides by 4 from the left, as 42 = 1 Oy = B2a; = a
: ) Y 3 [ Ty
we have the equation in the Hamiltonian form:

O
LF{[ *H!//:
where
Hziia‘v—*-exqofea'A—Ki,HU F“U—O—mﬁ
dm 7 ’
with

a_(O o I 0
e 0>’ ﬂ:(o 41)’

91, 02,03 being Pauli’s matrices and I the unit matrix. By definition

{Ul‘, 0’_7‘} =0i0; + 00, = 2](51-]'.
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1t follows that
{aiaaj} = 215!.]7 {ﬂvai} = 07
and so
{475} = 2945
{:37 71} =0.
Then

3,051 = |5, % (viv; — %’%‘)}

)
=3 (Byiv; — Brivi — vivi8 +v578) =0,
since vy, 0 = —vi87v; = Bvs, ete, and similarly,

{0, 00:} = % (B1B,%] + 18,%]6) = 0.

Since by definition o; and 3 are Hermitian, yo = f is Hermitian and v, =
Ba; is anti-Hermitian. It follows that o5 1is Hermitian and oy;, 040 are
anti-Hermitian. Then

of, Bt =afBt +oiBT + od:.Bt =08 — 0108 — 008

= Boyj + Bow + Poo; = PO

Hence the Hermitian conjugate of the additional interaction term is

(K o) =K e

4m 4m*

e
= —-K— v ¥
4m60“

noting that K,e,m and F# are real numbers. Therefore the additional
interaction is Hermitian, and it does not destroy the Hermiticity of the
original Hamiltonian.

8037

Proton and neutron may be regarded as two “isospin” states of a single
particle, the nucleon. Denote proton by |+) and neutron by | ) and define
the following operators:
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bal) = %5 1%), tl) = [4), tol7) =

The operators t; = % (ti+t_), ta= ——% (t; —t_), and t3 can be represented
by one-half times the 2 x 2 Pauli matrices. Together they form a vector t
in isospin space.

In a simple model the Hamiltonian for a system of N nucleous all in the
same spatial state is the sum of three terms:

H=NEy+C1 Y ti-t; + 207,

P>

where Ey, Cy and C; are positive constants with C| > Cy, t; is the isospin
of the i-th nucleon, and @ is the total electric charge in units of ¢. The
sum is over all pairs of nucleons.

(a) Show that >, . t;-t; = 3 L [T(T +1) — 2 N], where T is the “total
isospin” quantum number of the system.

In the rest of this problem it is essential to remember that neutrous and
protons are spin-1/2 particles obeying Fermi statistics.

(b) What are the energy eigeustates and eigenvalues of a 2-nucleon
system? What is the total spin of each state?

(c) What are the energy cigenstates and eigenvalues of a 4-nucleon sys-
tem?

(d) What are the energy cigenvalues of a 3-nuclcon system?

(MIT)

Solution:

(a) As T* = (3, t:)? has eigenvalue T(T + 1) and t? has eigenvalue
% (% + 1), we have

D ticty=

i>j

SR

N 2N
(Le) -2
i=1 =1

|

= [ﬂT+D—%N}

(b) A system of identical spin-3 particles must have an antisymmetric
total wave function. Hence a system of two nucleons has the following
possible structures:
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Configuration Isospin State Spin State
1
(pp) 01+ —= ([2)18) = 18)]e))
V2

1
(nn) =)= 7 (la)18) = 16)|e))
(pn) (|+>\v> +1=)1+) f (lo)[8) = 18)|ex))

(pm) (=) = [=)+)

S-Sl

ﬁ (1) 18) + 18)1a).
), or [5)18)

The corresponding eigenvalues are as follows.

Configuration T S Q E
(rp) 1 0 2 C, +4C,
(nn) 1 0 0 C,

( ) 1 0 1 C1+Cy
(pm) 0o 1 1 Cs

In the above, |a),|3) represent single-particle states with spin + and
spin — respectively, and E is the energy above (2Ey — %Cl).

(¢) On account of Paul’s principle, there can at most be 2 protous and
2 nentrons, each pair of opposite spins, in a given energy state. For the or-
dered combination (pnpn) the spin states have four forms (aa88), (B8xq),
(aBBa), (BaaB). For other ordered combinations similar spin states ap-
ply. However, in this case the total wave function cannot be expressed as
a simple product of the spin wave function and the isospin wave function.
For the possible isospin values T = 2, 1,0, the corresponding energy values

are

3 1
E:4EO+4CQ+’2‘01, 4E0+4CQ—§Cly
3
4E0+4Cg— ECI
But as the spatial wave functions of the four nucleons are the sune and

there are only two spin states for a nucleon, Pauli’s principle requires the
system’s total isospin to be 0 and its energy state can only be the eigenstate
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(+hon )6 [=hen -0/
0(1,2,3,4) - H)20a  [+)2f2 [=)2az |[=)2f2
[+)sas  [+)303 [=)zaz  [—)sf3
[+H)aas  [+)afs |=)aca |-)afs

(d) The configurations for a three-nucleon systemn are (ppn) or (unp),
and the isospin can be % or 1

2
For (ppn):
3
E =3Fy+4C, + ch,

for (nnp):

3
E:BEO"'CQiZCI
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A molecule in the form of an equilateral triangle can capture an extra
electron. To a good approximation, this electron can go into one of three
orthogonal states ¥4, p, ¢ localized near the corners of the triangle. To
a better approximation, the energy eigenstates of the clectron are linear
combinations of ¢4, ¥, ¥ determined by an effective Hamiltonian which
has equal expectation values for 14,4 p, ¢¢ and equal matrix clements V4,
betwecut each pair of ¥a, g, Ye.

(a) What does the symmetry under a rotation through 27 /3 imply about
the coefficients of ¥a, ¥p, 1 in the eigenstates of the effective Hamilto-
nian? There is also symmetry under interchange of 3 and C; what ad-
ditional information does this give about the eigenvalues of the cffective
Hamiltonian?

(b) At time ¢ = 0 an electron is captured into the state ¥ 4. Find the
probability that it is in 14 at time ¢.

(MIT)

Solution:

(a) Under the rotation through 27 /3, we have

Ripp = app, Rpp = atpc, Rpc = arfps .

Miscellaneous Topics 739

Then as
R*pa = aRYp = a*de,
R*Ya = a®Rypc = a*Ya,

we have a3 = 1 and hence

i2n idw

a=1,e3 and e
Suppose the eigenstate of the effective Hamiltonian is
Y =a1pa + a2y +azvc -
Symmetry under the rotation through %“ means that Ry = 9, 1.c.
arap + asac + azaha = ara +aB + ezho .
Then the orthogonality of ¥4, Y5, ¥c requires
ara = 0y, 020 = a3, 430 = a1 .

For a = 1 letting a; = 1, for a = exp (z%’r) letting.al =1, and for a =
exp (z%’r) letting a2z = 1, we have the three combinations

1 1 . e—i47r/3
1 @ _ 1 i2m /3 @) - 1
PO =— 1], P =—x]e , ) =
V3 \/§ pidm/3 3 ei4m/3

Let the equal expectation values of H for the eigenstates 1 a,v¥p,%c be
zero, then the effective Hamiltonian can be represented by the matrix

0o v Vv
H=|V 0V
vV v o

As Hyp® = 2V, Hy®@ = ~vyp®, Hyp® = —Vy® | the energies
corresponding to %), 43 are 2V, =V, —V repectively.

There is symmetry in the interchange of B and €. Denote by P the
operator for the interchange of the two atoms. As P does not. commute
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with R, it cannot be represented by a diagonal matrix on the basis of
P, @ ). However, (1 is an eigenstate of P and ¥, 4®) are de-
generate states, though not eigenstates, of P. So P imposes no condition
on the eigenvalues of H.

(b) At £t =0, we can expand the wave function 14 as

l/)A(O) — % [,(l)(l) + d)(Z) + C—iZTr/Bw(B)]A

At a later time ¢ we have

U)A(t) . % {CfllVK/h,d)(k) + e+1Vt/h,l/](2) + (17712w/36+1vt/h,¢(3)] )
Hence the probability of an electron, initially in state 1,4, being in state
P4 at time £ is

1 2

l<¢A(t)f¢_4(O))f2 )t (eﬂz2Vt/h+ eﬂ'w/h_k ei27r/36—ivt/h€42w/3)

W

<

Lo 2 1 3Vt
= §I613Vt/ﬁ+212: § <5+4COS T> X
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The energy of a molecule is the sum of the kinetic energics of the clec-
trons and of the nuclei and of the various Coulomb energies. Suppose that
for a particular many-particle normalized wave function ¥(x,,... ,xy), the
expectation value of the kinetic energy is T and of the potential energy is

—-U(U > 0).

(a) Find a variational estimate of the ground state energy using a wave
function A3N/24p(Ax;, ..., Axy) where A is a parameter.

(b) Suppose v is the true ground state wave function and that the truc
ground state energy is —B(B > 0). What are the true values of T and U?

(MIT)

Solution:

(a) The mean kinctic energy T of the system is given by the sum of
terms like

2 2
{l—m.[d)*(xl:--‘xN) 5%2’2[1()(1,... XN )dX1, ..., dXpN

S (xi,. . xn)d(x, ... XN )Xy, ... dxy
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When the trial wave function is used, the mean kinetic energy 1" is given
by the sum of terms like

B2 \3N [=(Axy, ..., Axn) %ﬂ/)(/\xl,... LX) dX Y, ., dXpy

AN f P (AX1, ... 7/\X[\/)I/J(/\Xl, . ,)\XN)dxl, ce L AXN

2[4ty A et (A, Ax)dAxa, . ddxy
fI/J*(/\Xl,... ,/\XN)IZJ()\Xl,... ,/\XN)d/\Xl,... ,dAX N

hoAT fw*(yl,..-yw)%w(yl,-.. L YN)AYL, - dY N
[ (y1, ..., yn) by, yn)dys, .., dyn

where y; = Axy, etc. Hence TV = A2T. Similarly, —U is given by the sum
of terms like

eie; [ (x1,.. . XN) ﬁw(xl,... Jxn)dxy, ..., dXN
Ja*(xq,. XN )X, - XN )X, ..., dXN
and so —U’ = —AU. Thus the mean value of the energy is

E(\) = N*T - \U .

For the ground state, d—g(f\& = 0, giving A = 7. Hence the variational

estimate of the ground state energy is

U‘Z
(b) If 4 is the true ground state wave function, then A = 1. Hence

U=2T and EFE=T-U=-T.

As E = — B, we have
T=B,U=28.

8040

In diatomic molecules, nuclear motions are generally much slower than
are those of the electrons, leading to the use of adiabatic approximation.
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This effectively means that the electron wave functions at any time are
obtained for the instantaneous positions of the protons. A highly idealized
version of a “singly-ionized hydrogen molecule” is provided by the one-
dimensional “electron” Hamiltonian
K2 d?
H=—-—— ol go(x — xo) — gd{x + x0),

where +x4 are the protou coordinates.

0 ¥
/ Bxo Yo
-1

Fig. 8.10

(a) What are the eigenfunctions and eigenvalues of all bound states for
arbitrary xp? You may specify eigenvalues in terms of a trauscendental
cquation. Give the analytic results for the limiting cases ﬂ#ﬁ > 1 and
T & 1.

(b) Assume that the protons (mass M > m) move adiabatically and
have a repulsive potential V(2xy) = ¢/2002¢ acting between them. Caleu-
late approximately the equilibrium separation of the protons.

(¢) Calculate approximately the frequency for harmonic vibratious of

the protons about the equilibrium position. Is the adiabatic approximation
justified?

(MIT)
Solution:

{(a) The Schrédinger equation can be written as

d2
T + B18(x — o) + 8z + zo)|Yp = k4, (1)
where 8 = 2—;:;-‘1, K2 = —2’;@ = Z'Z—LEI as E is negative for bound states.

2, . .

For « # +xo, the equation becomes % = k%y. Furthermore as H is
lmvariant under space inversion, its eigenstates are of two types, with odd
and even parities as:
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odd parity:

—kx

sinhkz, 0<a <z,
Y(z) =
ae ", 9 < I,

even parity:

coshkz, 0<z <z,
Tr) =
Vi) be~ k2, 0 < T,

where a, b are constants. Integrating both sides of Eq. (1) from zg — € to
zo + € and letting £ — 0, we find

¢ (o + &) — ¥ (zo — ) + Bb(x0) = 0.
The continuity of 9 across x¢ requires
W(wg + €) = P(wo — €) -

These two conditions give, for odd parity,

6—2}610 1 2k7,‘0 7
Bxo
for even parity,
6~2ku:o —— Zklo .
Bxo

As shown in Fig. 8.10, k and hence the eigenvalue E are given by the
intercept of y = e~ * with either

z

=1-—— or yg = -4+ ——,
Yo Bzo
where z = 2kxzg. When Bzp € 1, as

1

" Bro

y and yo do not intercept and there is only solution for even parity. bo
this the interception occurs at small z given by

dy

dz

dyo

~1,
dz

1 14 =2
__sz &7
Bzxg

or z ~ 20z0(1 — Bao), i.e. k= B(1 — Bzo).

ﬁ-——~
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Hence

h2ﬁ2

2m
When fGzg > 1, the interceptions occur near z ~ fJz,. Using this we

have for the odd and even parities respectively

E ~ —

(1 - ﬁ.’l}())2 .

k%§(1¥d”“%
and hence p2g2
18y 6] P RY
E ~ 1 . ,BJ/O) .
8m ( re

Note that for odd parity the energy

. h2/32

b= — 1 — ¢ Pz
8m ( ¢

decreases as zy increases, even before we consider the repulsive force be-
tween the protons. Thus the system is unstable and the state is not a bound
state. Therefore, in both the limiting cases only the even parity solutions
arc valid.

(b) The total energy of the system including the proton’s is

(Hy=E.+T,+V,,

where E, is the electron energy obtained above for even parity, T, = 0in
. . . . ]

adiabatic approximation, and V,, = m.

The equilibrium separation Zg of the protons is given by

d

dxq

<H>|lo = O:

which gives
100(870)*(1 + e77%) = ePe.
If Bz <« 1, we have
. 1
Z0)%(2 — BTy) ~ —
(650) ( ﬁLO) 100 9

or
1

10v23°

I ~
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If Bxzo > 1, we have )
100(0z¢)* = P .
Consider
d? g

_ I 33 ~BZo\ ,—BZo g )
d—:L%<H>‘iU_ 2/3 (1+2€ )6 + 100:28

h”(.’fto)

For Jzp < 1, we have

MmNy 9 _ i)~ —1 >0

and the equilibrium is stable. For Sxy > 1 we have

9
20033

R (%) = (Bzg —2) <0,

and the equilibriuin is unstable. Hence the equilibrium separation is
_ 1
o~ —— .
10v23

(¢) Consider the case of stable equilibrium Bxg < 1. The force constant
is

K = h'(%o) =~ 20v2¢83°,

and so the vibrational frequency is

K 4 x200Y4mg?
W = E = —’—F .

As the kinetic energy of protons is of the order

1 gp
T, = -Kaj~ ——
14 2 70 10\/5
while the electron has energy
h?3? .
Bl = B2 g,
2m

we have T), < | E.| and the adiabatic approximation is valid, i.e. the protons
may be taken to be stationary.
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