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Foreword to Earlier Series Editions

More than a generation of German-speaking students around the worid have
worked their way to an understanding and appreciation of the power and beauty
of modern theoretical physics — with mathematics, the most fundamental of
sciences — using Walter Greiner’s textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field
of science in a series of closely related textbooks is not a new one. Many older
physicists remember with real pleasure their sense of adventure and discovery

th
as they worked their ways through the classic series by Sommerfeld, by Planck

and by Landau and Lifshitz. From the students’ viewpoint, there are a great
many obvious advantages to be gained through use of consistent notation, logi-
cal ordering of topics and coherence of presentation; beyond this, the complete
coverage of the science provides a unique opportunity for the author to convey
his personal enthusiasm and love for his subject.

The present five volume set, Theoretical Physics, is in fact only that part of
the complete set of textbooks developed by Greiner and his students that presents
the quantum theory. I have long urged him to make the remaining volumes on
classical mechanics and dynamics, on electromagnetism, on nuclear and particle
physics, and on special topics available to an English-speaking audience as well,
and we can hope for these companion volumes covering all of theoretical physics
some time in the future.

What makes Greiner’s volumes of particular value to the student and profes-
sor alike is their completeness. Greiner avoids the all too common “it follows
that ... ” which conceals several pages of mathematical manipulation and con-
founds the student. He does not hesitate to include experimental data to illumi-
nate or illustrate a theoretical point and these data, like the theoretical content,
have been kept up to date and topical through frequent revision and expansion of
the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by includ-
ing something like one hundred completely worked examples in each volume.
Nothing is of greater importance to the student than seeing, in detaii, how the
theoretical concepts and tools under study are applied to actual problems of inter-
est to a working physicist. And, finally, Greiner adds brief biographical sketches
to each chapter covering the people responsible for the development of the the-
oretical ideas and/or the experimental data presented. It was Auguste Comte
(1798-1857) in his Positive Philosophy who noted, “To understand a science
it is necessary to know its history”. This is all too often forgotten in modern
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physics teaching and the bridges that Greiner builds to the pioneering figures of
our science upon whose work we build are welcome ones.

Greiner’s lectures, which underlie these volumes, are internationally noted
for their clarity, their completeness and for the effort that he has devoted to mak-
ing physics an integral whole; his enthusiasm for his science is contagious and
shines through almost every page.

These volumes represent only a part of a unique and Herculean effort to make
all of theoretical physics accessible to the interested student. Beyond that, they
are of enormous value to the professional physicist and to all others working with
quantum phenomena. Again and again the reader will find that, after dipping into

a particular volume to review a specific topic, he will end up browsing, caught
up by often fascinating new insights and developments with which he had not
previously been familiar.

Having used a number of Greiner’s volumes in their original German in my
teaching and research at Yale, I welcome these new and revised English trans-
lations and would recommend them enthusiastically to anyone searching for

a coherent overview of physics.

Yale University D. Allan Bromley
New Haven, CT, USA Henry Ford 11 Professor of Physics
1989



Preface to the Fourth Edition

We are pleased once again that the need has arisen to produce a new edition
of Quantum Mechanics: Introduction. We have taken this opportunity to make
several amendments and improvements to the text. A number of misprints and
minor errors have been corrected and explanatory remarks have been given at
various places. Also, several new examples and exercises have been added.

We thank several colleagues and students for helpful comments, particu-
larly Dr. Stefan Hofmann who supervised the preparation of this fourth edi-

tion of the book. Finallly, we acknowledge the agreeable collaboration with

Dr. H. J. K&lsch and his team at Springer-Verlag, Heidelberg.

Frankfurt am Main Walter Greiner
July 2000






Preface to the Third Edition

The text Quantum Mechanics — An introduction has found many friends among
physics students and researchers so that the need for a third edition has arisen.
There was no need for a major revision of the text but I have taken the oppor-
tunity to make several amendments and improvements. A number of misprints
and minor errors have been corrected and a few clarifying remarks have been
added at various places. A few figures have been added or revised, in particular
the three-dimensional density plots in Chap. 9.

T afial 1 ~nll far ha 1l m 1
1 am Blalblul to severai concagues 1or u\.dl.uul comments, it

Prof. R.A. King (Calgary) who supplied a comprehensive list of corrections.
I also thank Dr. A. Scherdin for help with the figures and Dr. R. Mattiello who
has supervised the preparation of the third edition of the book. Furthermore
1 acknowledge the agreeable collaboration with Dr. H. J. K&lsch and his team
at Springer-Verlag, Heidelberg.

n nartienlar tn
i pditvtuidl w

Frankfurt am Main Walter Greiner
July 1994






Preface to the Second Edition

Like its German companion, the English edition of our texibook series has also
found many friends, so that it has become necessary to prepare a second edi-
tion of this volume. There was no need for a major revision of the text. However,
I have taken the opportunity to make several minor changes and to correct a num-
ber of misprints. Thanks are due to those colleagues and students who made
suggestions to improve the text. I am confident that this textbook will continue

to serve as a useful introduction to the fascinating topic of quantum mechanics.

Frankfurt am Main, Walter Greiner
November 1992






Preface to the First Edition

Quantum Mechanics — An Introduction contains the lectures that form part of the
course of study in theoretical physics at the Johann Wolfgang Goethe Univer-
sity in Frankfurt. There they are given for students in physics and mathematics
in their fourth semester. They are preceded by Theoretical Mechanics I (in the
first semester). Theoretical Mechanics II (in the second semester), and Classical
Electrodynamics (in the third semester). Quantum Mechanics [ — An Introduc-
tion then concludes the foundations laid for our students of the mathematical
and physical methods of theoretical physics. Graduate work begins with the
courses Thermodynamics and Statistical Mechanics, Quantum Mechanics Il —
Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, the
Gauge Theory of Weak Interactions, Quantum Chromodynamics, and other,
more specialized lectures.

As in all the other fields mentioned, we present quantum mechanics accord-
ing to the inductive method, which comes closest to the methodology of the
research physicist: starting with some key experiments, which are idealized,
the basic ideas of the new science are introduced step by step. In this book,
for example, we present the concepts of “state of a system” and “eigenstate”,
which then straightforwardly lead to the basic equation of motion, i.e. to the
Schrédinger equation; and, by way of a number of classic, historically important
observations concerning the quantization of physical systems and the various ra-
diation laws, we infer the duality of waves and particles, which we understand
with Max Horn’s conception of a “guiding field”.

Quantum mechanics is then further developed with respect to fundamental
problems (uncertainty relations; many-body systems; quantization of classical
systems; spin within the phenomenological Pauli theory and through lineariza-
tion of wave equations; etc.), applications (harmonic oscillator; hydrogen atom;
Stern—Gerlach, Einstein—-de Haas, Frank—Hertz, and Rabi experiments), and its
mathematical structure (clements of representation theory; introduction of the
S Matrix, of Heisenberg, Schrédinger, and interaction pictures; eigendifferen-
tials and the normalization of continuum wave functions; perturbation theory;
etc.). Also, the elements of angular-momentum algebra are explained, which
are so essential in many applications of atomic and nuclear physics. These will
be presented in a much broader theoretical context in Quantum Mechanics —
Symmetries.

Obviously an introductory course on quantum theory cannot (and should not)
cover the whole field. Our selection of problems was carried out according to
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their physical importance, their pedagogical value, and their historical impact on
the development of the field.

Students profit in the fourth semester at Frankfurt from the solid mathemati-
cal education of the first two years of studies. Nevertheless, in these lectures new
mathematical tools and methods and their use have also to be discussed. Within
this category belong the solution of special differential equations (especially
of the hypergeometrical and confluent hypergeometrical differential equations),
areminder of the elements of matrix calculus, the formulation of eigenvalue
problems, and the explanation of (simple) perturbation methods. As in all the lec-
tures, this is done in close connection with the physical problems encountered.
In this way the student gets a feeling for the practical usefulness of the mathe-
matical methods. Very many worked examples and exercises illustrate and round
off the new physics and mathematics.

Furthermore, biographical and historical footnotes anchor the scientific de-
velopment to the general side of human progress and evolution. In this context
I thank the publishers Harri Deutsch and FA. Brockhaus (Brockhaus Enzy-
klopddie, F.A. Brockhaus, Wiesbaden — marked by BR) for giving permission
to extract the biographical data of physicists and mathematicians from their
publications.

The lectures are now in their 5th German edition. Over the years many
students and collaborators have helped to work out exercises and illustrative
examples. For the first English edition I enjoyed the help of Maria Berenguer,
Snjezana Butorac, Christian Derreth, Dr. Klaus Geiger, Dr. Matthias Grabiak,
Carsten Greiner, Christoph Hartnack, Dr. Richard Hermann, Raffacle Mattiello,
Dieter Neubauer, Jochen Rau, Wolfgang Renner, Dirk Rischke, Thomas Schon-
feld, and Dr. Stefan Schramm. Miss Astrid Steidl drew the graphs and pictures.
To all of them I express my sincere thanks.

I would especially like to thank Mr. Béla Waldhauser, Dipl.-Phys., for his
overall assistance. His organizational talent and his advice in technical matters
are very much appreciated.

Finally, I wish to thank Springer-Verlag; in particular. Dr. H.-U. Daniel, for
his encouragement and patience, and Mr. Mark Seymour, for his expertise in
copy-editing the English edition.

Frankfurt am Main Wulter Greiner
July 1989
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1. The Quantization of Physical Quantities

1.1 Light Quanta

In order to explain physical phenomena caused by light, two points of view have
emerged, each of which has its place in the history of physics. Almost simulta-
neously in the second half of the seventeenth century the corpuscle theory was
developed by Newton and the wave theory of light was created by Huygens.
Some basic properties like the rectilinear propagation and reflection of light can
be explained by both theories, but other phenomena, such as interference, the
fact that light plus light may cause darkness, can be explained only by the wave
theory.

The success of Maxwell’s electrodynamics in the nineteenth century, which
interprets light as electromagnetic waves, seemed finally to confirm the wave
theory. Then, with the discovery of the photoelectric effect by Heinrich Hertz
in 1887, a development began which led ultimately to the view that light has to
be described by particles or waves, depending on the specific problem or kind
of experiment considered. The “particles” of light are called quanta of light or
photons, the co-existence of waves and particles wave—particle duality.

In the following we shall discuss some experiments which can be explained
only by the existence of light quanta.

1.2 The Photoelectric Effect

The ejection of electrons from a metal surface by light is called the photoelectric
effect. An experiment by Philipp Lenard showed that the energy of the detached
electrons is given by the frequency of the irradiating light (Fig. 1.1).
Monochromatic light yields electrons of a definite energy. An increase in
light intensity leads to the emission of more electrons, but does not change their

v = Collector Light_ ~ ~ Metal
plate " e € plate
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Fig. 1.1. Measurement of the
photoelectric effect: light
(—) shines on a metal there-

by liberating electrons (e7)
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energy. This is in clear contradiction to classical wave theory, where the energy
of a wave is given by its intensity. If we carry out the experiment with monochro-
matic light of different frequencies, a linear dependence between energy and
frequency is obtained, as shown in Fig. 1.2:

E x(a+bw) . (1.1

The proportionality factor, i.e. the slope of the straight line, is found to be
Planck’s constant / divided by 27, so that

E=h@—wg)=h®—1y,) (1.2)

with 1 = 27h = 6.6 x 1073 Ws?.

Einstein interpreted this effect by postulating discrete quanta of light (pho-
tons) with energy hw. Increasing the intensity of the light beam also increases the
number of photons, which can break off correspondingly more electrons from the
metal.

In these experiments, a frequency limit @, appears, which depends on the
kind of metal. Below this frequency limit, no clectrons can lcave the metal. This
means that a definite escape energy hw, is needed to raise electrons from the
surface of the metal.

The light quantum that has to be postulated to understand the photoelectric
effect moves with the velocity of light. Hence it follows from Einstein’s Theory
of Relativity that the rest mass of the photon is equal to zero.

If we set the rest mass equal to zero in the general relation for the total energy

E? = (mgc?)? +17202 =h’w’® (1.3)

and express the frequency by the wave number k = w/c, the momentum of the
photon follows as

p=hk=ho/c, (L.4)
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1.3 The Compton Effect

When X-rays are scattered by electrons, a shift in frequency can be observed,
the amount of this shift depending on the scattering angle. This effect was dis-
covered by Compton in 1923 and explained on the basis of the photon picture
simultaneously by Compton himself and Debye.

Figure 1.3 illustrates the kinematical situation. We assume the electron is
unbound and at rest before the collision. Then the conservation of energy and
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momentum reads:

hw:fiw’%—ﬂ—moc2 . (1.6)
Ny
hk = hi + —208 1.7)

VI—g

To obtain a relation between the scattering angle ¢ and the frequency shift, we
divide (1.7) into components parallel and vertical to the direction of incidence.
This yields, with £k = w/c,

ho P st cosp and (1.8)
s a .

c c /1— B2 4

22 Gino = "% ing . (1.9)

c /1 — ‘32
From these two component equations, we can first eliminate ¢ and then, by (1.6),
the electron velocity v (8 = v/c). Hence for the frequency difference we have

w—w = ww sin” — . (1.10)

If we put @ = 27c/A, we obtain the Compton scattering formula in the usual
form with the difference in wavelength as a function of the scattering angle ¥:

Vg mdr e (1.11)

moc 2
The scattering formula shows that the change in wavelength depends only on the
scattering angle . During the collision the photon loses a part of its energy and
the wavelength increases (A’ > A).

The factor 2 h /moc is called the Compton wavelength A of a particle with
rest mass mo (here, an electron). The Compton wavelength can be used as
a measure of the size of a particle. The kinetic energy of the scattered electron
is then

11
T=ho—ho' =h27|-——] , 1.12
o ho cn’(k A,) , (1.12)
or (see Fig. 1.4)
2Xc sin® /2
T=ho—— S| 1.13
M 2o sin2 0/2 (1.13)

Thus the energy of the scattered electron is directly proportional to the energy of
the photon. Therefore the Compton effect can only be observed in the domain of
short wavelengths (X- -Tays and y-rays). To appreciate this observation fully, we
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Fig.1.4. The Compton ef-
fect energy distribution of
photons and electrons, show-
ing dependence on the scat-
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permitted in the scattering of electromagnetic waves; only light quanta with mo-
mentum Ak and energy hw make this possible. Thus the idea of light quanta has
been experlmentally confirmed by the Cornpton eftect. A relatively broad Comp-
ton line appcars in the experu“ﬂem, due to certain momentum distributions of the
electrons and because the electrons are bound in atoms.

The Compton effect is a further proof for the concept of photons and for the
validity of momentum and energy conservation in interaction processes between

light and matter.

1.4 The Ritz Combination Principle

In the course of investigations of the radiation emitted by atoms, it appeared that
characteristic spectral lines belong to each atom and that these lines can be for-
mally arranged into certain spectral series (for example, the Balmer series in the
hydrogen atom). The Rifz combination principle (1908) states that new spectral
lines can be found by additive and subtractive combination of two known spec-
tral lines. The existence of spectral lines means that transitions (of the electrons)
between discrete cnergy levels take place within the atom.

The frequency condition £ = h yields an explanation for the Ritz combi-
nation principle. Considering the transition of an atom from a state with energy
Ej to a state with energy £, (Fig. 1.5), we have

hwp,=E —E,=E —E,,+E, —E, (1.14)
or for the frequencies,
Wip = Wy + WOmn - (1.15)

In Fig. 1.5, the energy levels and the corresponding transitions are repre-
sented schematically. The spectral series result from transitions from different
higher energy levels into a common “ground state” Ej,. Thus, the spectral an-

qlumc of atoms suggests qup rlequ\r that nnlv discrete energy levels exist in

an atom and that energy can be transferred only by light quanta with a definite
energy.

1.5 The Franck—Hertz Experiment

Another experiment demonstrating the quantization of energy was performed by
Franck and Hertz in 1913, using a triode filled with mercury vapour. The tri-
ode consists of an axial cathode K in a cylindrical grid A closely surrounded
by a third electrode Z. The electrons are accelerated between K and A to
reach Z through the anode grid. A small countervoltage prevents very slow elec-
trons from reaching Z. The experiment yields a current—voltage characteristic
between K and Z as shown in Fig. 1.6.
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As long as the energy of the electron in the field does not exceed 4.9 eV, the
electrons can cross the tube without a loss of energy. The exchange of energy due
to elastic collisions between electrons and mercury atoms can be neglected. The
current increases steadily, but as soon as the energy of the electrons has reached
4.9 eV, the current drops drastically. A mercury atom obviously can take up ex-
actly this much energy from the electrons in a collision. Thereafter an electron
has insufficient kinetic energy to reach the second anode Z and the atom emits
this energy with the characteristic wavelength of A = 2537 A. On increasing the
voltage further, the electrons can regain kinetic energy and the process repeats
itself.

The Franck—Hertz experiment shows the existence of discrete energy levels
(quantization of energy) in the mercury atom.

1.6 The Stern—-Gerlach Experiment

In their experiment performed in 1921, Stern and Gerlach observed the splitting
of an atomic beam in an inhomogeneous magnetic field. If an atom possesses
amagnetic moment m, it will be affected not only by a torque, but also by
a force F when in an inhomogeneous magnetic field H. The potential energy in
the magnetic field is given by V = —m - H; the force is given by the gradient, i.e.
F=—gradV =gradm-H.

In the experiment, a beam of neutral silver atoms was sent through an inho-
mogenecous magnetic field and the distribution of the atoms after passing the field
was measured (for a detailed discussion see Chap. 12). Classically one would
expect a broadening of the beam, due to the varying strength of the magnetic
field. In practice, however, the beam is split into two distinct partial beams. The
intensity distribution on the screen is shown qualitatively in Fig. 1.7.

This doubly peaked distribution obviously means that the magnetic moment
of the silver atoms cannot orient itself arbitrarily with respect to the magnetic
field; rather, only two opposing orientations of the magnetic moment in the fieid
are possible. This cannot be understood classically. Obviously the phenomena
of quantization appearing in the atomic domain are not restricted to energy and
momentum only, but are also found in other physical quantities. This particu-
lar quantization is called directional quantization {or quantization of the angular
momentum, sce Sect. 4.8).

1.7 Biographical Notes

HERTZ, Heinrich Rudolf, German physicist, *Hamburg 22.2.1857, t Bonn 1.1.1894,
a professor of physics in Karlsruhe and Bonn, confirmed with his experiments concern-

ing the propagation of electromagnetic waves the predictions of Maxwell’s electromag-
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physical fundamentals of modern radio engineering. He proved the influence of ultravi-
olet light on electrical discharge (1887), which led to the discovery of the photoelectric
effect by W. Hallwachs. In 1892 H. observed the transmission of cathode rays. through
thin metal plates and gave P. Lenard the task of explaining their nature. H. also gave an
exact definition of hardness.

LENARD, Philipp, German physicist, *PreBburg 7.6.1862, } Messelhausen (Baden-
Wiirtt.) 20.5.1947, student of H. Hertz, was a professor in Breslau, Aachen, Kiel and
Heidelberg. Using the window tube suggested by Hertz, L. was the first to investigate
cathode rays as free electrons independent of the way they were generated and made
a major contribution to the explanation of the nature of these rays. Among other things
he showed that the rate of absorption of cathode rays is nearly proportional to the mass
of the radiated substance. Furthermore he demonstrated that the velocity of electrons
emitted due to the photoelectric effect is independent of the intensity of light, but de-
pends on its frequency. Thus he created the experimental foundation for the fundamental
photoelectric law formulated by Einstein. Of equal importance was his verification that
the active centre of an atom is concentrated in a nucleus, which is tiny in comparison
with the radial dimension of the whole atom. Later this fact was also experimentally
proved by E. Rutherford. The explanation of the mechanism of phosphorescence and the
proof that an electron must have a definite minimum energy to ionize an atom are further
achievements by L. He also introduced the “electron-volt” (¢V) as a unit of measurement.
In 1905 he received the Nobel Prize in Physics. L. was as renowned an experimental
physicist as his contemporaries J.J. Thomson and E. Rutherford, but was sceptical of
Einstein’s Special Theory of Relativity. He rejected the Weimar Republic and gradually
developed into a fanatical anti-semite and national socialist. [BR]

EINSTEIN, Albert, German physicist, *Ulm 31.4.1879, { Princeton (N.J.) 18.4.1955.
Having grown up in Munich, he moved to Switzerland at the age of 15. As a “technical
expert third class” at the patent office in Bern, he published in 1905 in Vol. 17 of Annalen
der Physik three most important papers. In his “On the theory of Brownian motion” he
published a direct and conclusive proof, based on a purely classical picture, of the atom-
istic structure of matter. In his paper, “On the electrodynamics of moving bodies”, he
set up with his profound analysis of the terms “space” and “time” the Special Theory of
Relativity. From this he concluded a few months later the general equivalence of mass
and energy, expressed by the famous formula E = mc?. In his third article, E. extended
the quantum approach of M. Planck (1900) in “On a heuristic viewpoint concerning the
production and transformation of light” and made the second decisive step towards the
development of quantum theory, directly leading to the idea of the duality of particles
and waves. The concept of light quanta was considered too radical by most physicists and
was very sceptically received. A change in the opinion of physicists did not take place
until Niels Bohr proposed his theory of atoms (1913). E., who became a professor at the
University of Ziirich in 1909, went to Prague in 1911, and returned to Ziirich a year later
where he joined the Eidgendssische Technische Hochschule. In 1913 he was called to
Berlin as a full-time member of the Preussische Akademie der Wissenschaften and di-
rector of the Kaiser-Wilhelm-Institut fiir Physik. In 1914/15 he developed the General
Theory of Relativity, starting from the strict proportionality of gravitational and inertial
mass. As a result of the successful testing of his theory by a British solar eclipse expedi-
tion, E. became well known to the general public. His political and seientific opponents
tried unsuccessfully to start a campaign against him and his theory of relativity. The No-
bel Pnzc Committee therefore considered it advisable to award E. the 1921 Nobel Prize

s not for his theory of rp]qtnnfv but f‘nr his contributions to guantum theory. Be-
$ nOUIOr NS Ingory o1 reiaiy wora riputions o quantum neory.
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ginning in 1921 E. tried to set up his unified theory of matter which aimed to incorporate
electrodynamics as well as gravitation. Even after it had been shown by H. Yukawa that
other forces exist besides gravitation and electrodynamics, he continued with his efforts
which, however, remained unsuccessful. Although he published a paper in 1917 which
was instrumental to the statistical interpretation of quantum theory, he later raised severe
objections, based on his philosophical point of view to the “Copenhagen Interpretation”
proposed by N. Bohr and W. Heisenberg. Several attacks because of his Jewish back-
ground caused E. in 1933 to relinguish all the academic positions he held in Germany;
at the Institute for Advanced Study in Princeton, in the U.S.A., he found somewhere new
to continue his studies. The final stage of E.’s life was overshadowed by the fact that al-
though a life-long pacifist, fearing German aggression he initiated the development of
the American atomic bomb by writing, together with others, to President Roosevelt on
8.2.1939. [BR]

COMPTON, Arthur Holly, American physicist, *Wooster (Ohio) 10.9.1892, { Berkeley
(CA) 15.3.1962, became a professor at Washington University, St. Louis, in 1920 and at
the University of Chicago in 1923. In 1945 he became chancellor of Washington Uni-
versity. In the course of his investigations on X-rays he discovered the Compton effect
in 1922. He and Debye simultaneously gave the quantum-theoretical explanation for
this effect. C. was also the first to prove the total reflection of X-rays. Together with
R.L. Doan, he achieved the diffraction of X-rays from a diffraction grating. Jointly with
C.T.R. Wilson he was awarded the Nobel Prize in Physics in 1927. In cooperation with
his students C. carried out extensive investigations on cosmic rays. During the Second
World War he participated in the development of the atomic bomb and radar as director
of the plutonium research project of the American Government. [BR]

DEBYE, Petrus Josephus Wilhelmus, Dutch physicist, naturalized in America in 1946,
*Maastrichi (Netheriands) 24.3.1884, fithaca (N.J.) 2.11.1960, was cailed “the Master
of the Molecule”. In 1911 he became a professor at the University of Ziirich as successor
to A. Einstein, then in Utrecht (1912-1914), Géttingen (1914-1920), at the Eidgenos-
sische Technische Hochschule in Ziirich (1920-1927), in Leipzig (1927-1935), and was
director of the Kaiser-Wilhelm-Institut fiir Physik in Berlin, 1935-1939. In 1940 he em-
igrated to the United States and became a professor of chemistry at Cornell University
(Ithaca) in 1948. There he directed the chemistry department from 1940 until his re-
tirement in 1952. D. was famous both as a theoretical and as an experimental physicist.
He formulated the 77 law for the decrease of the specific heat of solids at low tempera-
tures. He developed the Debye—Scherrer method (1917 independently of A.W. Hull) and,
jointly with E. Hiickel, formulated a theory of dissociation and conductivity of strong
electrolytes. Independently of EW. Glaugue and almost at the same time D. pointed
out the possibility of reaching low temperatures by adiabatic demagnetization of ferro-
magnetic substances. During extensive research, he determined the dipole moments of
molecules. This research together with results of the diffraction experiments of X-rays
and electron rays from gases and liquids enabled him to establish their molecular struc-
ture; for this he was awarded the Nobel Prize in Chemistry in 1936. After his retirement,
he developed methods to determine the molecular weight and the molecular expansion
of giant molecules of highly polymerized substances. [BR]

RITZ, Walter, Swiss physicist, *Sitten 22.2.1878, { Gottingen 7.7.1909, formulated the
combination principle for spectral lines in 1908.

FRANCK, James, German physicist *Hamburg 20.8.1882, TGottmgen (during
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Institut fiir Physikalische Chemie, and, beginning in 1920, a professor in Gottingen;
he left Germany in 1933. From 1935, F. was a professor of physics at Johns Hopkins
University in Baltimore; 1938-1947, professor of physical chemistry in Chicago; from
1941 on, he was also active at the University of California. Jointly with G. Hertz, at the
Physikalisches Institut in Berlin, F. investigated the energy transfer of electrons collid-
ing with gas atoms. His results sustained Planck’s quantum hypothesis as well as the
theory of spectral lines postulated by Bohr in 1913. For this work F. and Hertz were
awarded the Nobel Prize in Physics in 1926. Extending these investigations, F. meas-
ured for the first time the dissociation energy of chemical compounds by optical means
and determined the lifetime of metastable states of atoms. In addition he developed the
law for the intensity distribution within a band structure, which is known today as the
Franck—Condon principle. In the U.S.A. he devoted himself primarily to the investiga-
tion of photochemical processes within the living plant cell. During the Second World
War F. worked on a project involving the technical utilization of nuclear energy. In 1945
he warned of the political and economic consequences of the use of atomic bombs in
a petition which has become well known as the Franck Report. [BR]

HERTZ, Gustav, German physicist, nephew of Heinrich Hertz, *Hamburg 22.7.1887,
1 Berlin 30.10.1975, first was a professor in Halle and Berlin and head of the research
iaboratory of the Siemens factories. From 1945-1954, H. buiit up an institute at Suchumi
on the Black Sea together with former students and collaborators; in 1954 he directed
a university institute in Leipzig. From 1911 on, together with J. Franck, he investi-
gated the excitation of atoms by collisions with electrons; they shared the Nobel Prize
in Physics in 1926. In 1932, H. developed the technique of isotope separation with
a diffusion cascade consisting of many single steps. He applied this method to the
extraction of uranium 235 on a large technical scale in the Soviet Union. [BR]

STERN, Otto, German physicist, *Sorau (Niederlausitz) 17.2.1888, { Berkeley (CA)
17.8.1969, became a professor in Rostock in 1921, and in Hamburg in 1923, where he
also acted as director of the Physikalisch-Chemisches Institut. Beginning in 1915, S. de-
veloped the method of using molecular rays for the determination of atomic and nuclear
properties. He had particular success in discovering the quantization of the magnetic
moment (the Stern—Gerlach experiment), in his diffraction experiments with molecular
hydrogen and helium rays (1929), and in determining the magnetic moment of the proton
(begun in 1933). S. emigrated to the United States in 1933 and worked at the Carnegie In-
stitute of Technology in Pittsburgh. In 1943, he was awarded the Nobel Prize in Physics.
[BR]

GERLACH, Walther, German physicist, *Biebrich a. Rh. 1.8.1889, + Munich 1979, pro-
fessor in Frankfurt, Tiibingen and from 1929 in Munich, determined the value of the
Stefan—Boltzmann constant by precision measurements (1916). Together with Otto Stern
he showed the quantization of the magnetic moment by deflection of atomic rays in an
inhomogeneous magnetic field (1921). At that time G. was a lecturer at Physikalisches
Institut der Universitdt Frankfurt a.M.; Otto Stern was visiting lecturer at the Institute
fiir Theoretische Physik in Frankfurt, which was directed by Max Born (as successor to
Max v. Laue) at that time. Futhermore, G. worked on quantitative spectral analysis and
the coherence between atomic structure and magnetism. In extensive historical analyses
of science, G. tried to point out the “humanistic value of physics”. [BR]



2. The Radiation Laws

The energy density o(w, T) of the radiation emitied by a black body was
described by two separate, contradictory theorems in classical physics. The
Rayleigh—Jeans radiation law accounted for experiments in the region of long-
wave radiation; Wien's law for those in the region of short-wave radiation. By
introducing a new constant k, Planck was successful in finding an interpolation
between the two laws.

Planck’s radiation law covered the whole range of frequencies and contained

the two other radiation laws as specific extreme cases (Fig. 2.1). In the beginning,

Planck’s law was only an interpolation formula, but later he was able to show
that this radiation law could be deduced under the assumption that the energy
exchange between radiation and black body was discontinuous. The quanta of
energy transfer are given by the relation E = hv, v being the frequency. From
the historical point of view, this was the beginning of quantum mechanics.

In the following we will explicitly discuss the various radiation laws.

2.1 A Preview of the Radiation of Bodies

If radiation hits a body, it can enter its interior or be reflected by its surface. The
reflection is regular if the angle between the incident ray and the normal to the
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gether, i.e. incident, reflected ray and normal, are situated in the same plane. On
the other hand, if the rays are also reflected in other directions, we then speak of
diffuse reflection. If the reflected part is the same in all directions, independent
of the direction of incidence and of the colour of the light, then one calls the re-
flecting surface gray. If all the incident light is reflected without any loss in this
way, the surface is white.

A white surface element dF reflects (emits) the radiant flux

J(w, T)cos 6 dFdS2 dw

into the solid angle d$2 at an angle 6 relative to the vertical of dF. Its radi-
ance J(w, T) is the same for all directions. The radiant flux is proportional to
the cosine of the angle 6 between the direction of reflection and the normal of
the surface (Lambert’s cosine law) Ifa gray or white surface of arbitrary shape
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2. The Radiation Laws

Fig. 2.2. Radiation emitted
by surface dF at angle 6
to the normal of the surface
appearing to arise from the

projected surface dF cos6

ections. The quantity of light reflected by every surface elem-
ent dF is proportional to the projection of dF cos 8 onto a plane perpendicular
to the direction of reflection (Fig. 2.2). Therefore a white or gray surface seems
to have the same brightness, seen from any direction, but a different size.

The radiation which is not reflected at the surface of a body penetrates it, ei-
ther passing through it or being absorbed by it. A body that absorbs all radiation

that hits 1t without letting any part through or reflecting it, is called black.

2.2 What is Cavity Radiation?

Now we consider the radiation field that exists inside a cavity with walls formed
by absolute black bodies with temperature 7'. If the black walls emitted no ra-
diation, then none could exist inside the cavity since it would very quickly be
absorbed. However, it is an experimental fact that black bodies do emit light at
high temperatures. Without any exact knowledge concerning this emission by
black bodies, we can nevertheless draw various conclusions from its existence:

(1) After a short period of time, the radiation inside the cavity will reach
a thermal equilibrium caused by the emission and absorption by the walls. If this
equilibrium is reached, the radiation field will no longer vary.

(2) Everywhere in the cavity, the radiance J(w, T) is independent of the di-
rection of the light rays. The radiation field is isotropic and independent of the
shape of the cavity or of the material of its walls. If this were not true, we could
place a black body in the form of a small disc having the same temperature as
the walls into the cavity, and it would heat up if the plane of the disc were per-
pendicular to the direction in which J(w, T) is largest. This, however, would
contradict the 2nd law of thermodynamics.

(3) The radiation field has the same properties at each point of the cavity.
J(w, T) is independent of spatial coordinates. If this were not the case, little car-
bon sticks could be set at two different points that have the temperature of the
wall, a stick would absorb more of the radiation at a point where the radiation
field is stronger than at a point where it is weaker. As a result, the two sticks in the
cavity radiation would reach different temperatures. Again, this is not possible
according to the 2nd law of thermodynamics.
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(4) The cavity radiation hits all surface elements of the wall with radiance
J(w, T). The surface has to emit as much radiation as it absorbs, therefore the
radiance of a black body is J(w, T). Thus the emission of all black bodies of
the same temperature is identical and depends only on the temperature. Their
radiance is independent of direction. The unpolarized light flux

2J(w, T)cos 6 do dF dS2

is sent into a cone of aperture d$2, whose axis is inclined to the normal vector of
the black surface element dF by an angle 6 (Fig 2.3). The factor 2 is caused by
the two ‘pOSSlblc puuu izations of each r. ray. J\(.U, T) uvybudo uul_y on temperature
and frequency. For emission by black bodies, Lambert’s cosine theorem is valid,

as it is for reflection by white surfaces. A glowing black body appears bright all
over, seen from any direction.

(5) In a cavity enclosed by walls impenetrable to radiation, the same radia-
tion exists as in a cavity with black walls. If we put a little carbon stick inside, it
has to be in thermal equilibrium with the walls and the radiation. This will only
be the case if the radiation is the same as for black walls. The radiation inside
a cavity enclosed by impervious or black walls is called black body radiation.

(6) A single electromagnetic wave of polarization o causes an energy dens-
ity o which is related to the current density |S,| by

| Se|

0n = 22 2.1)
C

Here S denotes the Dnvnhnn vector of the electromagnetic wave with polariza-
, 10tes ng the electromagnetic wave with polariza

tion oc. Linearly polanzed radiation with a frequency between @ and @ + dw and
a direction of propagation within a certain solid angle £2 and $2 + d$2 yields the

following contribution to the energy density:

J(w, TYdwd$2
J@, T)dod2 - 2.2)
c
and twice as much, if we take into account the two possible directions of po-
larization. By integrating over d$2, we get for the energy density of the total
radiation
8nJ(w, T)dw
olw, Tdw = ————(—) 2.3)
c

in the interval dw, since, for cavity radiation, J(®, T) is independent of the di-
rection £2. Thus we obtain a scucxal relation between the radiance J ((x), T} and

the energy density o(w, T) of the cavity radiation, namely,

colw, T)

Jw, T)= o

(2.4)

The following exercise will help in further understanding this relation.

Fig.2.3. Cone of aperture
d$2, whose axis is inclined
to the normal vector of the
surface element dF by an

angle 0
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2. The Radiation Laws

EXERCISE I

2.1 On Cavity Radiation

Problem. Clarify once more the relation between the radiance (intensity of
emitted energy per unit solid angle) and the energy density o(w, T') of cavity
radiation.

Solution. Concerning energy and intensity:
For a plane wave we have

t=-, E=Q0V=Q0[A,

I o1~

E  o0o0lA

A At AlJo)

Jo= =cgo, where 1)

0o = energy density of radiation for a single plane wave,
Jo = intensity = radiant power per unit area for a single plane wave,
E = 0oV = radiant energy of the volume V for a single plane wave,
V =1A = volume,
P = E/t =radiant power.
Let a cavity contain an isotropic electromagnetic radiation field. We would

like to know the radiant power per area, i.e. the intensity of the radiation that
emerges from the aperture of area A.

A =area of emergence

We construct the isotropic radiation by N plane waves with k vectors pointing
equally in all directions of the space. Then we have for any wave:

Jo=cop .
n; is the number of those k that point into the solid angle df2; for which

0; <6 < 6; + d6; is valid.
Now we have
[ _ d.Q,

1.
=g = sinti o @)
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Because of the isotropy we have integrated over ¢. Through A flows
Poi =2J9A cos 6; 3)

(P = radiant power) per plane wave. The factor 2 appears because there are two
degrees of freedom of polarization. Hence

Pt = Z n; Py = Z N% sin@; d6; 2JoA cos 6; 4)
i i

Pt = ANJy Z sin 6; cos 6; do; ; (5)

i

6; runs from O to 5. The sum can be replaced by an integral.

/2
Ptot .
Jtot = 7 = NJ() sinfcos O df
0
2
T 1 1 72
=~NJ0/sin29 d0 =~-NJy|—=cos260
2 2 2 0
0
1 1 1 1
= =NJ —+=-|==NJy . 6
> 0|:+2+2] > NJo (6)

Again, the factor 2 is due to the two possible polarizations per plane wave.
Together with Jy = cpg we get

1 i c
Jiot = ENJO = ENCQO = ZQ .

Therefore the total intensity is

c
Jior = ZQ . (7)
It is emitted into a half-space with the solid angle 2y = 2. The intensity per
unit solid angle (the radiance) is therefore
1 c
J = _Jt t— =T . (8)
277" 8x €

Exercise 2.1
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Fig. 2.4. Radiation field as-
sumed to be enclosed in
a box

2.3 The Rayleigh—Jeans Radiation Law:
The Electromagnetic Eigenmodes of a Cavity

First of all we calculate the radiation density of a radiation field in thermo-
dynamic equilibrium. The average energy per degree of freedom is then given
by %kB T. To determine the number of degrees of freedom of the radiation field
given by the vector potential A, we consider a cubical volume of edge length a.
We now assume that the volume contains neither charges nor currents and has
perfectly reflecting (mirrored) inner surfaces (hence the often-used name, cavity
radiation). The vector potential obeys d’Alembert’s equation:

1 92
DA, 1) = (A— ——) A=0. (2.5)
p

By separating off the time dependence, i.e. A(r, f) = A(r) exp(iwt), we get for
the space-dependent part of the function the Helmholtz equation:

(A +— | A = (A+KDHAF) =0 . (2.6)
)

Here,
A(r,t) = A(r)sin(wt) or A(r, ) = A(r) cos(wt) 2.7)

and k = w/c is the wave number. We do net want to solve the two wave equa-
tions explicitly, but use the boundary conditions of the problem to determine the
number of degrees of freedom.

The vector potential is free of sources (Coulomb gauge); therefore

divA=0.

This condition is equivalent to the transversality of the plane waves in the box.
For every wave vector k, there exist two independent amplitudes A (polariza-
tions) of the vector potential, each of them of the form:

A(r)=Asin(k-r) or A(r)=Acostk-r) with (2.8)
Ak=0 or Ack,+ Ayky+ Ak, =0, and (2.9)
A+ k2 =k = w?/* . (2.10)

For the components of the wave vector ky, ky, k;, we deduce conditions by
demanding that the tangential components of A vanish on the reflecting inner
surfaces (mirrors) of the cube. These conditions exclude the second solution
(2.8) and yield for the first type

sin(kya) = sin(kya) = sin(k,a) =0 ,

from which the wave numbers
NyT nyT NI
== k= k=

. g, ny, n=1,2,3, ... (211
a )
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follow. The numbers ny, ny, n; are restricted to positive integer values only,
because we are looking for stationary waves in the volume. The number of lin-
early independent functions A(#, ¢) in the (dn,, dny, dn;) of number space is
the volume element in number space itself, i.e.

dnydnydn, . 2.12)

Together with n% = n% + n% + ng, we adopt spherical coordinates and get for the
number of lattice points in the first octant of the spherical shell (see Fig. 2.5)

g4mn?dn = Jrn?da . (2.13)

With (2.9) and (2.10) we get the number dN’(w) of independent solutions for
the A field, situated in the frequency interval between w and w + dw such that

1 3
Santdn =" (%) K2 dk = @ dw = dN' (@) (2.14)

2 2 2123

where V = @3 is the volume of the cube. Now, if we also take into account the
two directions of polarization for every electromagnetic normal mode, we finally
get the density dN/dw of the possible electromagnetic states in a cavity,

dN(w) V
=—Fw
dw w23
According to statistical thermodynamics, the average kinetic energy per degree

of freedom is given by %kB T.' The energy per volume and frequency interval
dw is given by taking into account the two possible directions of polarization:

2.15)

dE 1 dN w*
— = )= ——kpT =kpT — . 2.16
Vie = e D=y g kel =kl 55 (2-16)
The spectral energy density is therefore
o Ty =BT 2 @2.17)
' a3

Using the relation between the emittance and the energy density of the radiation
already deduced in (2.4), we can immediately write down the emittance:

ksT
gn%zw dow . (2.18)

c
J(w, TYdw = —¢o(w, T)dw =
8

Rayleigh—Jeans radiation law.

The equations deduced here coincide with experiment only for low frequen-
cies w. We can already see from (2.15) and (2.17) that they cannot be valid for
high frequencies, since the energy density becomes infinite as w — co.

! The average kinetic energy for an oscillator is also %kB T, but its mean potential energy
is of the same magnitude (virial theorem). Therefore the average energy per frequency

ie b T
iSKBL.

O /. =
s
a

Fig.2.5. Two-dimensional
illustration of the count-
ing method. Every eigen-
frequency is represented by
a point with the coordinates
nym/a, nymw/a. The distance
between the origin and this
point is the wave number of
the eigenmode. The two cir-
cles have radii k and k + dk,
respectively
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hw Em

En

Fig. 2.6. Photon of frequency
 being emitted in the tran-
sition from a state of energy
E,, to a state of energy E,

2.4 Planck’s Radiation Law

In contrast with the classical derivation of the radiation density according to
Rayleigh—Jeans, we now want to determine the density of photons. Photons are
emitted or absorbed by the transition of an atom from one energy state to another.
The main problem here is the quantum mechanical calculation of the transition
probabilities. However, it is possible to determine the proportions of the tran-
sition probabilities and to ascertain the energy density of the photon field by
comparison with the Rayleigh—Jeans law, without explicit calculation of the tran-
sition rates. This derivation of Planck’s radiation law originates from Albert
Einstein.

Two of the energy eigenstates (energy levels) of an atom are represented in
Fig. 2.6. The atom jumps spontaneously from the energy level E,, to the state of
lower energy E, and emits a photon of frequency w = (E,,, — E,)/h.

The photon has two different polarizations as a transverse electromagnetic
wave. We identify them by the index o (¢ = 1, 2). The probability for the sponta-
neous transition is denoted by a;, . The probability for the emission of a photon
into a solid-angle element d&2 is

dW! =a" ds2 . (2.19)

The presence of photons in the radiation field in the vicinity of an atom in the
state E,, stimulates it to an induced emission with the probability dW.. This
has to be added to the spontaneous emission probability. The total probability
is therefore

dW, = dW. + dW/ .

The probability that an atom in the state E,, is able to absorb a photon of energy w
and move to a state E,, is denoted by dW,.

Einstein, who first made these considerations, set the probability of absorp-
tion and induced emission proportional to the number of photons contained in the
radiation field. The energy per element of solid angle and intervai of frequency
for photons of polarization « is again denoted by the spectral energy density
oa(w, T, §2).

The number of photons in the frequency range between » and @ + dw and in
the direction between the solid angle £2 and £2 4+ d$2 is given by

oo, T, 2)dwd$2

hw

For the probabilities of absorption and induced emission, we write analogously
to (2.19)

AW/ =B 0@, T, 2)d2 , dW, =b" ou(w, T, 2)dS2 . (2.20)

The coefficients b are the transition probabilities per unit spectral energy density.
Therefore they have a different dimension from the transition probability a’,,,.
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Now we denote by N,(N,) the number of atoms in the state of energy
E,(Ep). Then radiative equilibrium is characterized by

Np (AW, 4+ dW)) = N, dW, , (2.21)

that is, the number of emission and absorption processes is equal.

We insert (2.19) and (2.20) and get

N (B 0a(@, T, 2) +alk,) = Npbllty 00, T, £2) . (2.22)
The coefficients a,,, b7, bj,, characterize properties of the atom and are re-
lated to each other. It is permissible, however, to choose special conditions (like
radiative equilibrium) to determine the relations between the coefficients, since
the latter are not changed by doing so.

The number of atoms in the state E,, is given by the Boltzmann distribution,
i.e. we have the relation

Ny : Ny =exp(—E,/kgT) : exp(—E,, /kgT) .

Here, as before in Sect. 2.3, we have added the index B that distinguishes the
Boltzmann constant kg from the wave number, so that (2.22) becomes

exp(—Em /kBT) (b} 0w, T, 2) +ap,,)
= exp(—E, /ks T)O™, 0u(®, T, £2) . (2.23)

For very high temperatures 7' — o0, the exponential function

a s 1an
the spectral energy density also becomes very large. Then we can neglect the
term a,,, and obtain the relation

n __m
bma_bna .

We rearrange (2.23) and get for the spectral energy density, by making use of
hwpn = E, — E,:
A 1

LT, 82) = .
Qule ) b, exp(hw/kgT) — 1

A comparison with the Rayleigh-Jeans law for the spectral energy density,
which is valid for low frequencies, gives the proportion of the transition coef-
ficients. By expanding the denominator for hw/kgT < 1, we find

ay, ksT
b how

mao

oe(@, T, §2) = (2.24)

Comparing now (2.24) and (2.17), we have to pay attention to the fact that
oua(w, T, £2) is the spectral energy density per polarization and solid angle:

1
olw, T) .

Qrr
[s ¥

ou(@, T, £2) =
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Hence we obtain

A . 1 hao’
br, 8w 3
mo
and therefore
ha? 1
Qu(w, T, §2) = L (2.25)

8m3c3 exp(hw/kgT)—1

By integrating over the solid angle and adding the two directions of polarization,

it fallawe that
AL IULIU WO ular

(0.1 =1 : (2.26)
ol =3 exp(w/kgT)—1 ’
Corresponding to the derivation of (2.18), we get for the radiance:
hao? 1
J(w, T)dw = dow . (2.27)

8m3c? exp(Rw/kpT) — 1
For high frequencies Aw > kT, Planck’s radiation formula turns into Wien'’s
radiation law. Indeed, (2.27) yields

ha?
o, T)= —— exp(—hw/kgT) (2.28)
T2

for hw > kgT.

Let us consider the number density of the photons in the two limits of the
Rayleigh—Jeans and the Wien radiation laws. With the frequencies @ and w2,
where @) 3> w1, we obtain from (2.17)

ori(wi, T)do  kgT

dNry = = dw , 2.29
RY Fooor a0 de (2.29)
and from (2.28)
, T)d w3
ANy = @2 Ddo @) o ks T) de | (2.30)
han m2c3

The relation between the photon number densities follows as

dNw  exp(—han/ksT)h (t)%
dNRrJ - kpTw|

(2.31)

Since hwy/kpT 3> 1, the exponential function makes the ratio of the number
densities small. We can conclude from this that the wave character of light always
becomes evident when many photons of low energy are present. The particulate
character of light becomes noticeable in the case of photons of high energy and
low number density.
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It is not only of historical but also of physical interest to see on which arguments
Planck based his radiation law. This derivation is different from Einstein’s (done
some years later) about which we have just learned.

The radiation in a cavity whose walls are kept at a temperature T is ho-
mogeneous, isotropic and unpolarized. Its energy density E/V and frequency
distribution of the energy density

E/szg(a), T)dw M

are determined by the temperature alone. This is clear, but can also be verified
in detail (Kirchhoff’s theorem); we will not do so here.
The energy of the radiation in a cavity can be interpreted as the energy of

AT e

(resonances) of this field. Let V be the volume of the cavity and

dN(w)
dw

dw (2)

be the number of eigenoscillations of the field in the frequency range dew; fur-
thermore, let (w, T) be the mean energy of an eigenoscillation of frequency @
at temperature 7. Then the energy content of the cavity in the frequency interval
dw is

dN
Vo(w, T)dw = ———a@E(w, T)dw ; thus
w

1 dN
0@ 7= & e, T) 3)

The number of eigenoscillations is given [see (2.15)] by

dN@w@) V.

RO 4
dw wie3 @)

and therefore

.
"~
e
N
.
[Ne)
[
o~
N
>
"~
N’
e
N
S’

Because the eigenoscillations of the electromagnetic field are harmonic, each
eigenoscillation has two degrees of freedom, corresponding to the two polariza-
tion states of the radiation. Applying the theorem of equipartition of energy from
statistical thermodynamics, the mean energy £ of each eigenoscillation is

c=knT . (6)

19
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Example 2.2

Hence the Rayleigh—Jeans radiation formula follows:

olw, )= 2L 2 | )
nec

For small values of hw/kpT, this is in agreement with experience, but it fails
completely for higher frequencies. In particular, it does not show the charac-
teristic decrease in energy density towards higher frequencies (see Fig. 2.1).
That reality is at variance with the theoretical radiation formula (7) means
that eigenoscillations with larger values of fico/kpT contain less energy than is
expected from the law of equipartition.

Planck replaced this rule (6) with a completely different one: The energy of
a harmonic oscillation is an integer multiple of an energy step proportional to the
frequency:

en=nhow; n=0,1,2,.... (8)

Every energy state defined here is to be treated as distinct from every other one.
Evaluating the mean energy in thermal equilibrium gives

Z &, e*En/kBT
n

g= el &)
n

Introducing the equipartition sum

Z=Y et p=1/kgT , (10)
n

as an abbreviation, (9) becomes

d
e=——MmZ. (11)
dp
From the evaluation of
1
7= exp(—ph = — 12
;[ Xp(=phoin] = 1o s (12)
we get
F= ho (13)

exp(hw/kpT)—1 "
and with (5) we have Planck’s radiation law:

ha?

w2c3 exp(hw/kpT) —1

0w, T) = (14

This is (of course) identical to (2.27) given before.
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The figure besides illustrates the dependence of the functions (13) and (14)
on temperature (abscissa kg7/hw, ordinate /% w). Function (13) [or (14)] can
be approximated for small iw/kgT by a power series of the exponential. Then
the mean energy becomes

c=kpT .

For small Aw/kgT it makes no difference whether the energies of the
eigenoscillations have the discrete values given by (8) or have continuously
distributed values, as in classical theory.

The approximation in the limit of large Aw/kg T

€ =hwexp(—hw/kgT)

leads to Wien’s radiation formula:

ha?
olw, T)= m exp(—hw/ksT) .

The factor [exp(hw/kpT) — 117! in the mean energy (13) can be interpreted as
the number of photons in a state characterized by the photon energy Fic. This is
important in Exercise 2.3.

Planck’s hypothesis, that for harmonic oscillations only the energies
£'=nhw are legitimate, is in contradiction with the intuitive idea of an os-
cillation. His ingenious guess of the correct quantized states of the harmonic
oscillator led to the breakthrough; that the introduction of the quantum of ac-
tion /2 coincides in general with the nonclassical description of microsystems
became clear only in the course of later developments.

EXERCISE I

2.3 Black Body Radiation

From the foregoing, we know the density per frequency interval dN(w)/dw of
the electromagnetic field in a cavity resonator with volume V (2.15), i.e.

dN(w) V. 4
do — 723

Here, the two directions of polarization are included.

Problem. (a) Consider the cavity as a container of photons and calculate the
spectral distribution %( dE(w)/ dw) of the black body radiation that escapes from
a tiny hole in the cavity. Consider that photons are spin-1 particles (bosons) and
that the number of photons in a state of energy E at temperature 7 is given by

foe = (e£/%87 — 1)~ (the Bose—Einstein distribution) .

O thia e orile it D oo 2100 1o
Lompare tine resuit with rlanck’s 1aw.

£
hw
1
/ T
0 1
dE
kydT
1 P
A
/
0 1 kT
hw

Mean energy and specific
heat of an oscillator
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Exercise 2.3 (b) Show that the total electromagnetic energy in the cavity with walls kept
at temperature 7" is proportional to T4, and evaluate the factor of proportionality.

Hint:

T 3
/exx_ dx = /dxxexl_e fdxxe Ze_’”‘
0

0

e.¢)

1
-—Zfd.xx e ("""I)X:Z( +l)4fdyy3e—y
n

n—-O
00 1 4

T
g(n+l)4 15

Solution. (a) In a state with energy E at temperature 7', we find

fag = lexp(hiw/kT) —1]7! (1)

photons with the energy E = fiw. The density of states is dN/ dw; therefore, the
density of photons with energy fw in the resonator is given by

dn _ AN _ Vo 1
—_—= _— = )
do  PFw 723" exp(Rw/ksT) —1

2

and the energy density for the volume V and frequency interval dw is

1 dE@) _ 1 dn(@), he’ 1
V do V do T w23 exp(how/kgT) =1

€)

This is exactly Planck’s radiation formula [see (2.26)].
(b) The total energy in the cavity is given by

b [ dE(w) doo VR [ w® dw
N dw T a2l j exp(hw/kgT) — 1
0

o,

Vg L f g3dg

T Rl ed — 1
0

k4 2

= lbi’f 3 T*  (the Stefan-Boltzmann law) . 4

Then the energy density dE/dV in the cavity is

dE_E_
—_— = )
av v

2k4

= W =7.56 x 10_15 erg C[Il_3 K—4 . (5)
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This gives rise to homogeneous, isotropic radiation of density K, where K is
given by

¢ aE _9
K=-——ergcm
4 dV

The emittance is then

c E(T
e(T)= - L =

4V
where o = 5.42 x 107 (erg em2s 1 K™%). Indeed, the total energy emitted
from a surface element df in the time intervai dz in the forward direction (see
Figure) turns out to be

oT? , (6)

/22w

dE=ffsin9d9dg0K(cos@df)dt

0 0
w/22m
=Kdfdt f jr dédpcos@sind =wKdfde .
0 0
The total power per surface area, the intensity, therefore is given by

dE __ch

e=— =K =—— . (7
dfdt 44V

The radiation of stars is approximately described by black-body radiation.
Therefore the Stefan—Boltzmann law can be used to estimate the stellar surface
temperature if we measure the radiation energy per cm? perpendicular to the
direction of emission.

For example, consider the Sun. Its radius R is 0.7 x 10!! cm. Therefore the
total emitted radiation energy is given by

47(0.7 x 10'1H)2(5.42 x 107°) T7#3.34 x 10" T*ergs™ , T in Kelvin . (8)

The radiation energy hitting 1 cm? of the Earth’s surface in one second, taking
the mean Sun—Earth distance to be 1.5 x 10'3 ¢m, is calculated thus:

3.34x 101874 erg
47(1.5 x 1013)2 cm? sec

This quantity is called the solar constant and is determined experimentally. Its
measured value is 1.94 cal cm—2 min~!. Transformation of units

cal  1.94x4.2x 107 erg
cm?min 60 cm?s

—=0.96x 10~° T%% . 9)

1.94 =1.36x10%ergem™2s~!  (10)

easily gives

T4 =1.52x 10" (K)* or T ~6000K . an

Exercise 2.3

df2 = sin 8 dodp

Emittance in time interval dt
from a surface element d f
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EXERCISE I
2.4 Wien’s Displacement Law
Problem. Derive Wien’s displacement law, i.e.
)hmaxT = const.
from Planck $ spectral energy density v 4E/dw. Here Amax is that wavelength
where | v 8£/dw achieves its maximum. Interpret the results.
Solution. We are looking for the maximum of Planck’s spectral distribution:
d [1dE] d | ke hw -
— | s—|=—|—==lexp|— ) -1
do |V dw dw | w23 ksT
_ 3he? (e ( ho ) 1]—‘
T2 | Pk J
hw’ h exp(hw/kgT)
723 kgT [exp(how/kgT) —1)2
L5 Je ho ho\ - 0 @
——ex exp| — ) — =0.
kel P \keT ) | 7P \ kT
20} l With the shorthand notation x = fiw/kpT, we get the transcendental equation
1
! =(1-3) ", 2)
10 - (1 _z ': which must be solved graphically or numerically. Besides the trivial solution
3 : x = 0 (minimum), a positive solution exists (see Figure). Therefore
: hwmax
I s 1 ! i Xmax = 3)
0 1 2 3 ksT
The crossing points of the  and because wmax = 2 Vmax = 27¢/Amax We have
two curves yield the solution
to (2) Amax] =const. =0.29cmK . 4

This means the wavelength emitted most intensely by a black body is inversely
proportional to the temperature of the body. Anyax shifts (“displaces”) with the
temperature, this is why it is called a “displacement law”. This law may be used
to determine the temperature of bodies (stars), too.

Inserting the solar surface temperature 7 = 6000 K (see Exercise 2.3) into
Wien’s displacement law, we find

0.29
A m=4.8x10"2cm=4800 A , 5
™ 6000 ©)

where 1 A =108 cm. This is approximately the wavelength of yellow light.
These estimates are within 20% of the exact values.
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EXERCISE I

Problem. Calculate the proportion of energy emitted by a black body radiator
at T =2000Kintwo bapds of width 100 A, one centred at 5000 A (visible light)
and the other at 50 000 A (infrared).

Solution. We define A; = 5000 A, A, = 50000 A, Ax = 50 A, and calculate

AE;
=5 )
AE;,
Aa+AA A+AX
1 dE 1 dE dE dE
= — —|dr [ = —|dam — — .
v da % di iy, /0 di oy,
A —AX Al—AA
Because w = 2me/A, we get
dE  dE |dw| kQme/r)? R2me 17! 2me
_ = | — | = exp —_ JR—
dr  de micd kgTX A2
8thc he -
= exp —— — 1 , 2
PE [ P isTh ] @
and with ic = 12400 eV A, k =8.62 x 1073 eV K, it follows that W = 5.50.

Thus, only a small fraction of energy is emitted as visible light.

EXAMPLE I

2.6 Cosmic Black Body Radiation

During the last decade, black body radiation has gained special importance. In
the late 1940s, George Gamov, first by himself, but later with R. Alpher and
H. Bethe, investigated some consequences of the “Big Bang Model” of the cre-
ation of the Universe. One of those consequences was that the remnants of the
intense radiation field created in the beginning should be present as a black body
radiation field. Calculations predicting such a radiation field at a temperature
of 25 K proved unreliable. Until 1964, no attempts had been made to measure
this radiation. Then A.A. Penzias and R.W. Wilson discovered strong thermal
noise with their radio-astronomical detector, and renewed interest in this prob-
lem arose. A group under the leadership of R.H. Dicke, consisting of P.J. Peebles,
P.G. Roll and D.T. Wilkinson, performed measurements of cosmic background
radiation and understood at once the meaning of the thermal noise. It corres-
ponds to black body radiation which today we believe to be of 2.65 +0.09 K. The

P, b xxravea ot macwy b ol hasaiios anc amdmning to daliioad o ol o1
measurcments were not easy to make, because any antennais deluged by signals
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Example 2.6
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a
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1

10 1)u‘ 1}1" 13’ 102 Alem)
Measurements of the back-
ground radiation in ergs™?
cm~ 'steradian~'Hz™!  as
a function of wavelength in
cm. The drawn curve is the
predicted spectrum for T =
2.7K

from the Earth’s surface, from the atmosphere, from several cosmic point sources
and also by the noise generated by the electrical circuits in the measuring appa-
ratus. In 1945, Dicke had constructed an instrument to measure radiation that
could be used for these experiments. His idea was to construct a radio receiver
that switches back and forth between the sky and a bath of liquid helium, 100
times a second. The receiver’s output signal is filtered: only signals varying with
a frequency of 100 Hz are measured. These represent the difference between ra-
diation from space and liquid helium. By varying the measuring apparatus, the
atmospheric component could be separated out.

The experimental verification of radiation at a temperature corresponding to
arguments in support of the “Big Bang Model” (see Figure). More precise
measurements will determine how fast we (Earth, solar system, local group of
galaxies) move relative to the background radiation. Currently, our velocity rela-
tive to the radiation field is less than 300 kms~!, roughly corresponding to the
velocity of the solar system with respect to the local group of galaxies, caused
by the rotation of our own galaxy.

2.5 Biographical Notes

RAYLEIGH, John Williams Strutt, 3rd baron R., English physicist, *Langford Grove
(Essex) 12.11.1842, §Terling Place (Chelmsford) 30.6.1919, was a professor at the
Cavendish Laboratory in Cambridge from 1879-84, at the Royal Society in London
from 1884 to 1905. R. investigated, among other things, the intensity of sound by meas-
uring sound pressure exerted on an easily movable plate (Rayleigh disc), deduced the
blue colour of the sky was caused by the scattering of light by the molecules of the air
(Rayleigh scattering) and postulated a radiation law in 1900, known as the R.—Jeans law,
representing a special case of Planck’s law. Discrepancies in the measurements of the
sound velocity of nitrogen led him and W. Ramsay to the discovery of argon in 1894,
which was rewarded with the Nobel Prize in Physics and Chemistry in 1904 [BR].

JEANS, James Hopwood, Sir, English mathematician, physicist and astronomer,
*Southport 11.9.1877, 1 Dorking 16.9.1946, was a professor of astronomy at the Royal
Society from 1912-1946. J. did pioneering work mainly in the fields of thermodynam-
ics, stellar dynamics and cosmogony. He wrote natural philosophical works and also
fascinating popular astronomical books [BR].

PLANCK, Max, German physicist, *Kiel 23.4.1858, 1 Gottingen 4.10.1947, received
his doctor’s degree at the age of 21 after submitting a thesis on thermodynamics. In 1885
he became a professor in Kiel; in 1889 he was a professor of theoretical physics and con-
tinued to work long after his retirement. During his studies on entropy in 1894 P. devoted
himself to thermal radiation. In doing so, he discovered (not later than May, 1899), while
still of the opinion that Wien’s radiation formula was correct, a new constant of nature,
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Planck’s quantum of action. Tn mid-October, 1900, he deduced his radiation formula by
an ingenious interpolation, which turned out to be the correct law of black-body radi-
ation. The 14th of December, 1900, when P. reported on the derivation of this formula
from the principies of physics at the meeting of the Deuische Physikalische Geselischaft
in Berlin, is considered as the “birthday of quantum theory”. While P. remained sceptical
concerning Einstein’s light quantum hypothesis, he immediately recognized the impor-
tance of the theory of special relativity established by Einstein in 1905; it is due mainly
to P. that it was so quickly accepted in Germany. In 1918 he was awarded the Nobel
Prize in Physics. Because of his scientific works and straightforward and uncompromis-
ing character, and because of his gentlemanly behaviour, he occupied a unique position
among German physicists. As one of the four permanent secretaries, he directed the
Preuflische Akademie der Wissenschaften for more than twenty-five years. For many
years he was president of the Deutsche Physikalische Gesellschaft and copublisher of
the “Annalen der Physik”. The Deutsche Physikalische Gesellschaft founded the Max
Planck medal on his 70th birthday; P. was the first to win this award. After the end
of the Second World War, the Kaiser Wilhelm Gesellschaft zur Forderung der Wis-
senschaften, of which P. had been president for seven years, was renamed the Max
Planck Gesellschaft zur Férderung der Wissenschaften e.V. [BR].

WIEN, Wilhelm, German physicist, *Gaffken (Ostpreuflen) 13.1.1864, {Miinchen
30.8.1928, was a professor in Aachen, Giefien, Wiirzburg, Miinchen; in 1893, still as-
sistant of H.v. Helmholtz, he discovered his displacement law; in 1896 he published
his important (though only approximately valid) radiation law which had already been
found. For these works (papers) W. was awarded the Nobel Prize (1911); their continu-
ation by M. Planck led to quantum theory. In 1896, W. turned to writing about particle
beams: among other things, he identified the cathode rays as negatively charged particles;
he noticed that the channel rays consist of a mixture of predominantly positive ions and
determined their specific charge and velocity. He worked on charge transfer and glow
processes, determined the mean free path of the particles and the glow time of atoms
glowing unperturbed in high vacuum. As editor of “Annalen der Physik” (beginning in
1906) he greatly influenced the development of science [BR].






3. Wave Aspects of Matter

3.1 De Brogiie Waves

Investigations on the nature of light showed that, depending on the kind of ex-
periment performed, light must be described by electromagnetic waves or by
particles (photons). Thus the wave aspect appears in the context of diffrac-
tion and interference phenomena, whereas the particulate aspect shows up most
distinctly in the photoelectric effect. So for light, the relations describing wave—
particle duality are already known. But what about material particles? Their
particulate nature is rather obvious; do they also possess a wave aspect?

In addition to their corpuscular properties, de Broglie assigned wave prop-
erties to particles, thus transferring the relations known from light to matter.
What is true for photons should be valid for any type of particle. Hence, accord-
ing to the particulate picture, we assign to a particle, for example an electron
with mass m, propagating uniformly with velocity v through field-free space,
an energy £ and a momentum p. In the wave picture, the particle is described
by a frequency v and a wave vector k. Following de Broglie, we now speculate:
since these descriptions should only designate two different aspects of the same
object, the following relations between the characteristic quantities should be
valid:

E=hv=ho and 3.1
h ok

=hk=—-—. 3.2

p A ] (3.2)

We have seen in the preceding chapters that these equations are true for the
photon (electromagnetic field); now they are postulated to be valid for all par-
ticles. Then to every free particle, understood in the above sense, a plane wave
determined up to an amplitude factor A is assigned:

w(r,t) = Aexplitk-r—owbt)] , (3.3)
or, using the above relations,

W(r,t) = Aexpli(p-r—Ef/h] . (3.3a)
Following de Broglie, the plane wave connected to the particle has a wavelength

L _h_h a4

kK p mv’
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where the second relation is valid only for particles with nonvanishing rest mass.
Because of the small value of the quantum of action, the particle mass must be
sufficiently small to generate a measurable wavelength For this reason, the wave

PN PP LU
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a=k-r—ot (3.5

of the wave ¥(r, ¢) (3.3) propagates with velocity # = F according to the relation

d
=2 ki—o=ku—w=0. (3.6)
dt
Hence, we get for the magnitude of the phase velocity # (k and # have the same
direction):

w
lu| = 7 (3.7)

In the following, we will show that matter waves — in contrast with electromag-

natic waves — even chaw rhnnnrcn\n in a vacnnm Wa mugt fhnrnfnrﬁn calenlata
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(k). The relativistic energy theorem for free particles
2 :m%C4+p2C2

can, for v <« ¢, be put into the form
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With (3.1) and (3.2) we can give the frequency as a function of the wave number:

moc2 hk?

w(k) = 5 2 o

—+... . 3.9

Therefore, the phase velocity u = w/k is a function of &k in a vacuum, i.e.

m()C2 + hk 4
hk  2my

u =

- (3.10)

so that the matter waves show dispersion even there, i.e. waves with a different
wave number (wavelength) have different phase velocities. On the other hand,
for the phase velocity u, the following relation holds:

w ho E mct
k hk p mv v

Because ¢ > v, the phase velocity of matter waves is always larger than the ve-
locity of light in a vacuum. Hence, it cannot be identified with the velocity of

the assigned particles. Because these are massive, they can only propagate more
slowly than light does.
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The group velocity is calculated using

do _ dhe) _ dE
dk ~ d(hk) dp’

v (3.12)

(we shall prove this below). The variation of energy dE of the particle moving
under the influence of a force F along a path ds is d£ = F - ds and because F =
dp/ dt we therefore have

d
dE=L ds=dp.v . (3.13)
dt
Since v and p = mu are parallel, the following equations hoid:
dE
dE=|v| |dp|=vdp or d—:v. 3.14)
p

Hence, the group velocity of a matter wave is identical with the particle velocity,
Le.

Vg =1 . (3.15)

We can also deduce this result in a different way. If we want to describe a particle
as a spatially limited entity, we cannot describe it by a plane wave (3.3). Instead,
we try to describe the particle by a finite wave packet, which, with the help of
a Fourier integral, is written as a superposition of harmonic waves, differing in
wavelength and phase velocity. For simplicity we investigate a group of waves

propagating in the x direction
ko+Ak
Yix, = / c(k) exp{ilkx — w(k)t]} dk . (3.16)
ko—Ak

Here, ko = 2m/A¢ is the mean wave number of the group and Ak is the meas-
ure of the extension (frequency spread) of the wave packet, assumed to be small
(Ak < ky). Therefore, we can expand the frequency w, which according to (3.9)
is a function of &, in a Taylor series in the interval Ak about k¢, and neglect terms
of the order (Ak)" = (k—ko)"*,n >2,ie.

do 1 (d*w 5
w(k)—w(ko)+(a->k=ko (k—ko)+‘2'(W>k_ko (k—ko) +... .
(3.17)

We take & = k — kg as new integration variable & and assume the amplitude c (k)
to be a slowly varying function of k in the integration interval 2Ak. The term
(dw/ dk)r—k, = vy is the group velocity. Thus, (3.16) becomes

Y(x, ) = explilkox — w(ko)t]}

exp [i(x - vgt)é] clko+&déE . (3.18)

b~
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Fig.3.1. A wave packet:
several rapidly oscillating
waves superpose, thus gen-
erating a group with finite
extent

Integration, transformation and the approximation c¢(ko + &) ~ c(kp) lead to the
result

\

Yix, 1) = CCx, 1 explilkox —wlko)]} wit
sin[ Ak(x — vg)]

£ 100\
(5.15a)

——
j=3

C(x,t) =2c(kp) (3.19b)

gt

Since the argument of the sine contains the small quantity Ak, C(x, z) varies only
slowly depending on time ¢ and coordinate x. Therefore, we can regard C(x, t)
as the amplitude of an approximately monochromatic wave and kox — w(ko)t as
its phase. Multiplying numerator and denominator of the amplitude by Ak and
abbreviating the term

Ak(x —vgt) =2z ,

we see that variation in amplitude is determined by the factor

Qll’\ Z

Z
This has the properties
un%ﬂ“—zzl for z=0. M2_0 for z=cr, 427 . (3.20)
= Z Z

If we further increase the absolute value of z, the function (sin z)/z runs al-

SULILT Vaa LU0 AVIICIONE e

ternately through maxima and minima, the functlon values of Wthh are small
compared with the principal maximum at z = 0, and quickly converges to zero.
Therefore, we can conclude that superposition generates a wave packet whose
amplitude is nonzero only in a finite region, and is described by (sinz)/z.
Figure 3.1 illustrates the form of such a wave packet at a certain time.

The modulating factor (sinz)/z of the amplitude assumes for z — 0 the
maximal value 1. Therefore, for z =0

vet —x =0,

which means that the maximum of the amplitude is a plane, propagating with
velocity

dx

” =, . (3.21)
The propagation velocity of the plane of maximal amplitude has to be identified
with the group velocity vy, which, as we determined earlier, is the velocity of
energy transport. The group velocity is the velocity of the whole wave packet
(“matter-wave” group).

We can understand this in another, shorter way: if we demand |y(x, N|?
in (3.18) to be constant, i.e. |¥(x, 1% = const., we conclude from (3.18) that
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Vgt — x = const., and, hence, by differentiation, ¥ = v,. Thus, the fixed con-
stant value of | (x, £)|*> moves with the group velocity vg. Differentiating the
dispersion relation (3.9) of w(k), we get for vg:

d hk hk
dk k=kg mo/k=k, MO mo

From this, we must not in general conclude that the group velocity of a matter-
wave group coincides with the classical particle velocity. All results derived up to
now were gained under the simplification that all terms in the expansion (3.17)
of w(k) higher than first order can be negiected. This is aliowed so long as the
medium is free of dispersion. Since de Broglie waves show dispersion even in
a vacuum, the derivative d2w/dk? # 0, i.e. it is nonzero. This implies that the
wave packet does not retain its form, but gradually spreads (each of the many
monochromatic waves forming the packet has a slightly different frequency and
therefore a different propagation velocity). If the dispersion is small, i.e.

d’w N

7ol ~0, (3.23)

for a certain time, we can assign a particular form to the wave packet. Then
we can consider the matter-wave group as moving as a whole with the group
velocity vg.

Following de Broglie, we assign to each uniformly moving particle a plane
wave with wavelength A. To determine this wavelength, we start with de
Broglie’s basic equations, (3.1) and (3.2). For the wavelength, the following
holds:

A=—=—— = — . (3.24)

If we assume the velocity of the particle to be small v << ¢, and use the equation

2

P

E= ,
2m0

we get the wavelength
A= ——, (3.25)

meaning that we must know the rest mass of the particle in motion to deter-
mine its wavelength. If we consider, for example, an electron with kinetic energy
£ =10keV and rest mass mg =9.1 x 10—28 g, then its matter wavelength is
he =0.122A =0.122 x 10~# cm.

As we know, the resolution of a small object under a microscope depends
upon the wavelength of the light used to illuminate the object (see Examples 3.7
and 3.8 later on). The shorter the wavelength, the shorter the distance is between
two points that can be seen distinctly through the microscope. The wavelength of

33
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Fig.3.2. The principle of

scattering matter waves at
crystals

Fig. 3.3. Scattering of a matter
wave at a crystal

visible light can typically be chosen as Ap, ~ 5000 A, permitting a magnification
of about 2000 times. If electrons are used instead of visible light to “scan” an ob-
ject, magnification of up to 500 000 times and a resolution of about 510 A can
be achieved. Finally, protons and mesons in the GeV region (10° V) have wave-
lengths so small that it is possible to use them to investigate the inner structure
of elementary particles.

3.2 The Diffraction of Matter Waves

Interference and diffraction phenomena are unique proofs of the occurrence of
waves. In particular, destructive interference cannot be explained using the cor-
puscular picture. While the photoelectric effect and the Compton effect show the
corpuscular nature of light, the diffraction of electron rays proves the existence
of matter waves.

Since the wavelength of electrons is too small for diffraction by an artificial
grid, crystal lattices are used for scattering. These experiments are in gen-
eral arepetition of the corresponding structural investigations performed with
X-rays.

Davisson and Germer applied Laue’s method for X-ray diffraction. Here, the
surface of a monocrystal is used as a plane diffraction grid. The electrons are
scattered at the surface of the crystal, but do not penetrate it. Figure 3.2 shows
the experimental setup and the path of the electron rays.

As can be seen in the figure, diffraction maxima appear if the condition

nA =dsiné (3.26)

is fulfilled. If the electron passes through an accelerating voltage U, its energy is
given by eU, and from (3.25) it follows that

nh
d\/ 2m0e

which, indeed, is confirmed by experiment.

Tartakowski and Thomson correspondingly used the Debye-~Scherrer
method of X-ray scattering (Exercise 3.1). Here, monochromatic X-radiation is
diffracted by a body consisting of compressed crystal powder. The crystal pow-
der represents a spatial diffraction grid. Because of the disordered arrangement,
there are always crystals that comply with the bending condition. In Fig. 3.3 we
can see the path of the rays.

=+Usiné , 3.27)
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The diffraction maxima appear under the condition (the Wulf—-Bragg relation)
2dsinf =nk . (3.28)

Owing to the statistical distribution of the minicrystals in the crystal powder,
the apparatus — and correspondingly the diffraction figures — are symmetrical
with respect to the SO axis. Because of this radial symmetry of the interfer-
ence patterns, circles appear around O on the screen. Obviously, the relation
tan(260) = D/2L is valid, where L is the distance between scatterer and screen.
The experimental setup is chosen in such a way that all angles are small, thus
permitiing ihe approximation tan{26) 2= 26. From the Wulf-Bragg equation we
get

Dd =2nL) . (3.29)

If electron rays are used, we insert the de Broglie wavelength (3.25) into the
above relation and find that

ZnLh
DVU=——, 3.30
d/2mgye ( )

i.e. the square root of the accelerating voltage times the radius of the diffraction
circles has to be constant for any order of diffraction.

The experimental results were in perfect agreement with this formula. Nowa-
days, electron rays and, in particular, neutron rays are an important tool used in

1id qtat hoat ta datarmin tal ceriatar
SG11G Stat€ pnysics G GEerMine Crysid: struClures.

EXERCISE I
3.1 Diffraction Patterns Generated by Monochromatic X-rays

Problem. (a) What are (schematically) the diffraction patterns generated by
a monochromatic X-ray on an ideal crystal?

(b) The Debye—Scherrer method uses crystal powder rather than a crystal.
What do these interference patterns look like?

Solution. (a) Anideal crystal consists of completely regularly arranged atoms.
Incoming radiation of wavelength A is reflected a little by each of these many
grid planes. Macroscopic reflection occurs only it the reflected rays of several
parallel net planes interfere constructively. Let d be the distance of any two
parallel planes; then reflection occurs only if Bragg’s condition 24 sin@ = ni
(n integer) is satisfied. Here 6 is the angle between the ray and the grid plane.
Since we assume that we have an ideal crystal, the angle 6 is determined by the
orientation of the crystal with regard to the ray direction. In the Bragg condition,
d, 0 and A are already determined. Hence there is in general no » that fulfils the
condition. Normally, no reflection occurs!
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Exercise 3.1

Scattering by silicon: pho-
tography and diffractometer
plot generated by the Debye-
Scherrer powder method
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To overcome this drawback, one avoids monochromatic X-rays for struc-
ture analysis, but uses a continuous spectrum (Laue method) instead. In this
case the diffraction patterns consist of single points which are regularly ar-
ranged. Another possibility is to change @ by turning the crystal (rotating crystal
method).

(b) Here, monochromatic radiation is scattered by crystal powder. Therefore
(see above) for most crystals no reflection occurs. Only for those crystals ori-
ented accidentally in one of the scattering angles 6 does constructive interference
occur, and the ray is deflected through 26. Because the crystals are uniformly
distributed with respect to the azimuth, a cone of reflection results (see next

fioure).
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EXERCISE N
3.2 Scattering of Electrons and Neutrons

Problem. (a) Calculate the wavelengths of the (electromagnetic, probability,
matter) waves of 10-keV X-rays, 1-keV electrons and 5-€V neutrons.
(b) Do the interference patterns change if X-radiation is replaced by neutrons

of the same wavelength?
(c) Additional question: How can “monochromatic” neutrons be created?
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Solution. (a) The wavelength A = 27/k of a particle of mass m is related to its
momentum p; the latter is determined by the total energy E using

p=+/(E/c)? —m%c2 .
From the de Broglie relation k = p/F, we therefore have
A =2mhl(E/c)* —m3ct~Y?

For photons ng = 0 and therefore Aph = 27hic/ Epp. In the nonrelativistic limit,
we get for electrons and neutrons

P=+v2moEkn , andthus A=2mh.2moEy .

Inserting this and using

me=0911x10""7g  mn=1675x10" g,
1eV=1.602x10"%erg, 27k =6.62x10"% ergs ,
lpm= 107 2m=10""cm=102A

we have
Aph(10keV) =120pm , Ae(1keV) =39pm , AN(5eV)=13pm .

(b) Replacing the X-radiation by neutrons of the same wavelength leaves the
scattering angles unaltered at first. But because the gamma rays interact with the
electron distribution, whereas the neutrons interact with the atomic nuclei and,
when ultimately coming into being, magnetic dipole moments, the relation of the
intensities is different.

(c) To create monochromatic neutrons, Bragg reflection is again used.
A polychromatic neutron ray strikes a monochromator crystal. At a certain
angle 20, only a few wavelengths (nX = 2d sin€) are emitted (see Figure). In
general one reflection (n = 1 and one fixed d) is much stronger than the others.

Wavelength as function of
particle energy for photons
(keV), neutrons (0.01eV)
and electrons (100eV)

Incident
-~ b PR
A Tradravion

Crystal

20

Principle of the creation of
monochromatic neutrons by
reflection
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3.3 The Statistical Interpretation of Matter Waves

The question of how to interpret a wave describing a particle, and whether this
wave should be assigned physical reality, was subject to discussion in the first
years of quantum mechanics. A single electron acts as a particle, but interference
patterns only arise if many electrons are scattered.

Max Born paved the way for the statistical interpretation of the wave function
describing a particle. He created the term guiding field (in German: “Fithrungs-
feld”) as an interpretation of wave functions. The idea actually originated with
Einstein, who called it a Ghostfield (“Gespensterfeld”). The guiding field is
a scalar function v of the coordinates of all particles and of time. According to
the basic idea, the motion of a particle is determined only by the laws of energy
and momentum conservation and by the boundary conditions which depend on
the particular experiment (apparatus). The particle is kept within these set limits
by the guiding field. The probability that the particle will follow a particular path
is given by the intensity, i.e. the absolute square of the guiding field. In the case
of electron scattering, this means that the intensity of the matter wave (guiding
field) determines at every point the probability of finding an electron there. We
shall now further investigate this interpretation of matter waves as probability
fields.

The square of the amplitude of the wave function v is the intensity. It ought
to determine the probability of finding a particle at a certain place. Since ¥ may
be complex, whereas the probability is always real, we do not define 2 as
a measure of intensity, but instead

where " is the complex conjugate of . In addition, the probability of find-

ing a particle is proportional to the size of the volume under consideration. Let

dW(x, y, z, f) be the probability of finding a particle in a certain volume elem-

ent dV = dx dy dz at time 7. According to the statistical interpretation of matter
adontad

wavae tha fallawino hunathecic ig tad-
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2
dW(x, y,z,0) = |¥(x, y, 2z, )| “dV .

In order to get a quantity independent of volume, we introduce the spatial
probability density

dw
wx, y, 2,0 = —— = |y(x, v, 2, 0| . (3.32)
dv

It is normalized to one, i.e. the amplitude of v is chosen so that

f yytdv =1 (3.33)
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This means that the particle must be somewhere in space. The normalization
integral is time independent:

d [ d
— *dV=—1=0;
ds f 44 dr
—0o0
otherwise, we could not compare probabilities referring to different times. The
wave function i can only be normalized if it is square-integrable, i.e. if the
improper integral

f || 2dV converges, i.e. f yrdv< M,
—00 —00

M being a real constant. The probability interpretation for the y field expressed
in (3.32) is a small step, but nevertheless it is only a hypothesis. Its validity must
be proved — and will be proved, as we shall see — by the success of the results
it predicts. A state is bound, if the motion of the system is restricted; if it is not
restricted, we have free states. In the course of this book we shall establish the fol-
lowing facts: the wave function v for bound states (E < 0) is square-integrable,
whereas |1/|? is not integrable for free states. This is intuitively understood from
Fig. 3.4; bound states are localized within the potential well and can propagate
only within its interior; thus, they are confined. Free states are located above the
potential well and are not bound.

A normalized wave function v is determined only up to a phase factor of
modulus one, i.e. up to afactor ¢“ with an arbitrarily real number «. This
lack of uniqueness stems from the fact that only the quantity yy* = |2, the
probability density, has physical relevance.

An example of wave functions that cannot be normalized according to the
requirement (3.33) is the wave function

Y(r, 1) = Nelkr—en (3.34)

where N is a real constant. This plane wave describes the motion of a free par-
ticle with momentum p = hk and undefined locality. But we can normalize the

V(r)

E>0 Continuum

bound | states
E;
E<0
E,
E,

Fig.3.4. Bound and con-
tinuum states of a particle in

o vt asmatial woall
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function (3.34) if we define all functions within a large, finite volume considered
to be a cube with an edge length L (box normalization):

[ Nei®kr—on  for pwithin V = L3

V= iO for routside V=1L3 (3.35)

Another method for normalizing such “continuum wave functions” will be
presented in Chap. 5.

On the surface of this volume, the wave functions must satisfy certain
boundary conditions. We assume L to be large by microscopic standards (L >
108 m). Then the influence of the boundary conditions on the motion of
a particle in the volume V = L3 is very small. Therefore, we can choose the
boundary conditions in quite a simple, arbitrary form. Very often a periodicity
with period L is selected as boundary condition; we require that

Vi(x,y,2) =¥(x+L,x,z) =¢(x,y+ L,z) =¢(x, y, 2+ L) . (3.36)

Now we determine the normalization factor N in (3.34), keeping in mind the
definition (3.35):

o020

o0
1= f Yyr*dv = N? / dv =N2L3 .
—oC v=L3
Hence, it follows that
o 1
N=——=—=.
Vi3 JV

Thus, we get the normalized wave function

1 . . . 1 .
Kl’k(r, t) — Welkf—lm(k)l — Wk(") e—l(l)(k)l : Wk(r) — ___elk.r . (3_37a)

NG

The boundary conditions of our problem restrict the possible values of the
vector k:

2
k:%n o k={keky k). = {ngnyong) (3.38a)

Written as components, we have, respectively,

2 2 2
=Ty ky=Zny, ki=—n,, (3.38b)

ky . Kz
L - L

where ny, ny, and n, take on all integer values. Hence, the momentum p = hk =
(2mh/L)n is quantized. The same is valid for the energy E = hw(k), and so for
the frequency of the wave

E_ p? _hk* (271)2 ki

_e_pr _ _ R I N
w(k) = Py el e ) o (g +ny +nz) . (3.39)
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Inserting the values for k into the normalized wave function (3.16), we get

1
Yi(r, 1) = —=exp{i[2r/L)n -r — w(k)t]}
vV

exp{i[@n/L)n-r— ()]} = y(r)e @®" (3.37b)

1
VI3
For these wave functions, we can explicitly check that the periodicity conditions
(3.36) are fulfilled. Owing to the boundary conditions (3.36), the vector k (and
therefore the momentum p = hk) takes on discrete values, given by the condi-
tions (3.38). In the limit L — o0, the difference between neighbouring values
of k [and of the energy (3.39)] converges to zero, and finally we return to the
motion of a free particle in infinite space.
Now we shall prove that these normalized wave functions Y (r, f) of (3.37)
constitute an orthonormal function system, so that

/ Y (DY (N dV =8 (3.40)

\%4

Here, only the spatial part of the wave functions ¥ (plane waves) from (3.37a)
is considered. The factor containing the time dependence exp[+iw(k)t] does
not change anything in the orthonormality relation (3.40). We insert the wave
functions and calculate:

| Vg (D Yr(rydVv
v=13
L2 L/2 L2
:% ei(k;*kx)xdx / ei(k;fky)y / ei(k/z—kz)z
L
—L2 ~L/2 ~Ly2
L2 L2
1 f [. r2:ﬂ$ ’ 1 I8 r2,, Bh
= ] i T e eXPil |7 | by
—L/2 ~Ly2
L2

2
X f exp{i[%(n’z—nz)z”dz,
L/2

__sinfr(n), —ny)| sinlz (2}, —ny)] sinf(n], —n,)]

w(n), —ny) n(n), —ny) w(n, —ny)

= an;nxan"ynyan’znz =0r -

Obviously sin[m(n, —ny)] =0 for n/, # ny. Therefore, only the cases where
n', =ny, n',=n, and n}, = n, contribute. Thus, the wave functions y(r, 1) of
(3 37) indeed conqtltute an orthonormal function system. In addition, the Vg

ara a camnlata system it 1q 1imnaoccihle ta find an additional fiinection 4 tha
alv a Uulllyl\/l\t \)'y Wil 1 \./ JL 1D 1111PUDD1U1b LU 1lllu a‘.l “uuluullﬂl LUlIviLIVvVIR lf} ul(.l,l.
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is orthogonal to all v in the sense of the relation (3.40). Then the following
completeness relation is valid:

drale¥ AV — W12dv — A 12 1
[owrav=[witav =3 1a®. (34D
v v o

where the ai are the expansion coefficients of the arbitrary wave function  in
terms of a complete set of the v,

V=Y air) . (3.42)
k

If completeness (3.41) is proved (the proof is omitted here), we can always ex-
pand according to (3.42), i.e. the 1 constitute an orthonormal basis of a Hilbert
space. A Hilbert space is a finite or infinite complete vector space on the basic
field of complex numbers. In this space a scalar product is defined such that it
assigns a complex number to each pair of functions ¥(x) and ¢(x) out of a set of
linear functions. This scalar product meets four requirements:

r /P \ ¥
OB = j Y odV = ( j ¢*vde) = ((gly))* |
Q) (Ylagi+bdy)  =a(Ylr)+b(Yld2) or
/w*(aqﬁl+¢2)dV=a/w*¢ldV+bf1//*¢2dV . (linearity)
3 (Wl _ /w*x//deo,
@ fom (Wly) = f prydv =0,
follows ¥(x) =0. (3.43)

The state vectors (= wave functions) of a quantum-mechanical system constitute
a Hilbert space (hence, the Hilbert space is a function space). In the following we
show that (3.42) leads to the completeness relation (3.41). We multiply (3.42) on
both sides by its complex conjugate, integrate over the total space and use the
orthonormality condition (3.40). Then we get

f Yyt dV = f > aai g dV =" aa / Vi AV = aga Sy
v v kK kK v kK

i.e. we have the completeness relation (3.41).

To determine the coefficients ai of the expansion (3.42) we multiply this
equation by v and integrate over the volume V:

/wwz/dvz E akakW;/dVZ E ardyy = ag' (3.44a)

v kv k

ie. ak:fww;;dV.
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With the help of the normalization integral, we obtain

o0

l= j YyyrdV = Laka;:/ j llfkl/f;:/ dVv = 2 akaZ,(SW = 2 aka,"; .
—00 ki v k& k

Hence
D lal?=1.
k

Now we interpret the quantity |ax|” as the probability of finding a particle with
momentum

p=hk

in the state y. This interpretation is very reasonable in view of (3.42) and the fact
that the ¥ (r, 7) in (3.37) are wave functions with definite momentum p = hk.

3.4 Mean (Expectation) Values in Quantum Mechanics

In the following we will calculate the mean values of position, momentum and
other physical quantities in a certain state if the normalized wave function 1 is
known.

1. The Mean Value of Position Coordinates. Let a quantum mechanical sys-
tem be in the state 1. The position probability density is then given by the term
Yr*. The function of state v is normalized to unity. Thus the mean value of the
position vector is given by

\4 \%4

Accordingly, we have for the mean (expectation) value of a function f(r), which
depends on r only,

{(f(n) =ff(r)ll’*(r)W(r)dV=/W*(r)f(r)xlf(r)dV -
v v

2. The Mean Value of Linear Momentum. It has already been shown that an
arbitrary wave function ¢ can be expanded in terms of an orthonormal basis of
the Hilbert space {1}. Then the absolute square of the expansion coefficients
represents the momentum probability (3.44) and the relation

(p) =) aj(hk)ax

K
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holds. By insertion of expression (3.44a) for g into this relation for the expec-
tation value of the momentum, it follows that

{ \ [ \
P =) L j w(r’w*(r’)dV’) hkk / w(r)w;:(r)dV) ; or (3.452)
k V! \%

(p) = Z / / V) (P Rk (0 y(rydvdy’ . (3.45b)
kiy v
It is easy to verify the relation
ki (r) = 1RV YL (r) (3.46)
by using the wave function
—ikr

v

which has already been introduced together with the corresponding boundary

Vi (r) =

0 =X [vwmerav [irvpowma .
k3 v

Now, according to the condition of periodicity (3.36), the values of ¥ and ¥
are equal at opposite planes (x =0, L or y=0, L or z =0, L) of the cube with
a volume V = L3. Thus we get by partial integration of the x component, for
example,

][] () su]o

. d ) d
= ih f/ Ve _OdLy dz—ih | Yiv (%) dV:—lh/W; (%) dv

The expectation value of the momentum p is then given by

(p) = /[ [w*(r’)(—ithlf(r)) Ewk(r’)ljf,f(r)] dvdv’ . 3.47)
vV k
Now we make use of the relation

> ) =8( —r) (3.48)
k

which can easily be proved by expanding the delta function' 8(# — r) in terms
of the complete set of functions Y (r) = V~1/2eikr

8 —r = bi(r) () . (3.49)
k

! The definition and properties of the delta function §(x) are discussed in Chap. 5.
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and by calculating the expansion coefficients bg(r'). Multiplying both sides of
(3.49) by v (r) and integrating over r gives

[ v s =nav =Y ncr) [ werwimav
v k v

so that with the help of the orthonormality relation (3.40),

Ve =) bidwe =be , ie. be(r) =y ()
k

results, which, in turn, immediately yields (3.48).

Applying (3.48) and (3.49) to (3.47), we obtain the final form, whose
structure is similar to the formula for the mean value of the position vector,
namely

w= [ VO (3.50)
v=L3

This relation directly expresses the mean value of the momentum with the help
of the wave function v(r) for the corresponding state. The structure of (3.50) re-
mains valid even in the limit L. — oc. Thus, in the general case of an unlimited
space, this formula is also valid for calculating the mean values of the momen-
tum. In a similar way we can deduce that the mean value for an arbitrary power
of the momentum can be calculated as

(p")= f V() (=i V)" (r)dV . (3.51)
\'%

We can immediately generalize this result for an arbitrary integral rational
function F(p) with F(p) =" a,p" of momentum

p—g
<~
o~
~
p—a
u
<
-~
"
Ln

Here, F is an operator. The momentum p is related to the differential operator
by

p=—ihV and F(p)= }:avﬁ" . (3.53)

The importance of this relation lies in the fact that if we want to calculate the
expectation value of the quantity F(p), we need not go through a Fourier decom-
position of the wave function yr(r) and then calculate (F(p)) = } _, F(hk)a az,
as was done in (3.45a) for the momentum p = hik. Instead, the entire calcula-
tion can be abbreviated by introducing the operator /() instead of the function
F(p), and performing the integral (3.52) directly. In the following we shall apply
these relations and calculate three operators which are of particular importance
in quantum mechanics.
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3.5 Three Quantum-Mechanical Operators

1. The Kinetic Energy Operator. In the nonrelativistic case we have for the
kinetic energy T = p?/2m. With V2 = A, we obtain the operator T as

a2 s 2 2
f*=p_=ﬂ:_h A -

2m 2m 2m

this is a special case of (3.51) or (3.52).

(3.54)

2. The Angular Momentum Operator. With the classical angular momentum
of a particle L = r x p, we obtain the quantum-mechanical angular momentum
operator

A

L=rx(-ihV)=—ihrxv . (3.55a)

|

The individual components of this operator are

A 9 9 A a ad

Ly ik (yaz Z'By) . Ly ik (Zax xaz) ,

- a

L,=—ik (x— - y—) (3.55b)
29

(A detailed discussion of the angular momentum operator will be given in
Chap. 4.)

3. The Hamiltonian Operator. The total energy of time-independent physical
systems is described classically by the Hamiltonian function,

H=T+V(r) .
Here T denotes the Kinetic energy and V(r) the potential energy. This yields the
Hamiltonian operator (Hamiltonian),

2

H=—"A+V() . (3.56)
2m

In quantum mechanics, an operator is assigned to any observable quantity (in
signs: A — fl). Let A(r, p) be a function of r and p. We construct the corre-
sponding operator by replacing the quantities r and p in the expression for A by
the assigned operators # = rand j = —ih V. Here the position operator is identi-
cal with the position vector. (But we must be careful: this is not generally valid;
it is only true in the Cartesian coordinate representation chosen here! See our
discussion of quantization in curvilinear coordinates in Chap. 8).
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EXERCISE I
3.3 The Expeciation Value of Kinetic Energy

Problem. Calculate the expectation value (mean value) of the kinetic energy
T = p2/2m with P = —ih'V and of the potential V=—¢ /¥ for the 1s electron
in the ground state of hydrogen with the wave function

Il
Q
Il

als
Yis

Solution. The expectation value is defined by
1) = [ @t T |
7 = [ Erot @i .

Using spherical coordinates we get

() = f S P L -

oo

I R219 ,0
=_— 4 dre ~rfa - V.2 —r/a
a3 n/r (2m Zor 8r> ©

W2 T 1 r?
=—-— dre /4 (—— |:2r——]) e’/
ma a a
0

0
Y3 2
(Vy = —34nfr2dre rfa (1> e r/a
na r
0
—4¢? T me*
— d 2r/a —_ "
a3 j rre h2
0

The total energy is E = (T + V) = —%(me4 /h?); this is the binding energy of
the electron in the ground state of the hydrogen atom.
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3.6 The Superposition Principle in Quantum Mechanics

One of the most fundamental nqng!p]Ps of quantum mechanics is the nrmm~

ple of linear superposition of states or, for short, the superposition prmczple It
states that a quantum-mechanical system which can take on the discrete states
¥ (n € N) is also able to occupy the state

Y= an¥n - (3.57)

The probability density is then given by

w= 1/”;”* = Zana;q‘pnl/f;, .

These physical circumstances correspond to the mathematical fact that every
possible wave function ¢ can be expanded in terms of an orthogonal complete
set of functions r,. We have made use of this fact in (3.42).

If a quantum mechanical system can be in a sequence of states ¢ ¢, character-
ized by an arbitrary physical quantity f, the state

Y= / crprdf (3.58)
alg
is also realized. Thus the wave equation for ¥ must be a linear differential equa-

tion (Chap. 6). The superposition principle can only be satisfied as follows: if
the v, are solutions of the linear fundamental equation, a linear combination of
type (3.57) will also be a solution because of the linearity of the equation.

EXAMPLE I

3.4 Superposition of Plane Waves, Momentum Probability

The representation of a wave field ¥(r, 1) by superposition of de Broglie waves,

1 1
Up(r, ) = Wexp[#p-r—lst)] (1

is an example of such a superposition. The normalization factor in (1) results
from

o0 4 )

* 3 2 1 , 3

/V’p'/fp’d r—gll)l’gloN /exp[—ﬁ(p—p).r]dr
50 g
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sin[g(px — pi)/h]

= lim N?2
g0 (Px —PY)/R
qinl o = AN N AT
5 ZMULSU{V — Py)iivl _siig(p; — p;)/nj
(py—P))/h (pz—PL)/h
a2 3 p—r
= N*Qn/h)*s(p—p') .
with
| .
0=~ tim S8 d e = a'50) .
T g0

The & functions play an important role in various mathematical treatments en-
countered in quantum mechanics; they will be discussed in greater detail in
Chap. 5 (Exercises 5.1, 5.2 and 5.4).

Since we are considering the dynamics of a free particle (no discrete mo-

menta) we do not normalize to unity, but to the delta function, i.e.
o0
* 13 ’
[ vwvsdr=s0-p) . @
-0

With this normalization we get
N = (2mh) .

The wave function for an arbitrary state ¥(r, 7) can be expanded into de Broglie
waves (1) according to

o0

Y1) = / e DU (r D dp | 3)

—00
where ¢(p, t) are the expansion coefficients of the wave field ¥(r, ?) in terms of
the plane waves [the expansion coefficients correspond to the amplitudes with
which the particular states, represented by de Broglie waves, are contained in
the state ¥(r, 7); cf. (3.58)].
Now we are able to show that (3) is simply a factorization of ¥r(r, t) in
a threefold Fourier integral. The Fourier formula reads:

oo
1 .
Y =—— [ olpnet®rdk )
@m? J
—0o0

@(p, 1) is the Fourier transform of the wave function ¥(z, ). We insertk = p/h
in (4):

T 7 pory &
Y(r, 1) = 3 f(p(p, ryexp (l%)h—f

Example 3.4
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Example 3.4 In a similar way we get for the Fourier transform

) 1) exp {_ip-r\
FU R

o
P _ f.m.. a3,
\Pw»u—j YAF, ar.
—00

Comparing (3) and (4), we find

o(p, ) = Q2rh)3c(p, D) exp (#jgfi) .

h

Now using (2), it can easily be proved that

+00 +00
/ c(p. 02 p = (2h) > f (. ] 2d%p

+00
=Q2rh)™ [l &S pdird’r
JJJ

—00

X exp [—i% (r— r’)] v, HY(r, b

+00
:// Srdrs(r -y, Oy, 1)

+00
- f (r, 0] 2dr = 1

is valid. The probability of finding a momentum in the interval py, px + dpy; py,
py+dpy; pz, p; + dp; is given by the expansion coefficients c(p, t). We obtain

tha fallawina aynraccinn for tha nrohahility:
UiV L1V YY llls \f[\t)] WOOLIVEL 1V Udwv ylvuuuxlu,) .

dW(p, 1) =|c(p, 1 *dp ,

and for the probability density in momentum space:

w(p, 1) = lc(p, | ? .
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3.7 The Heisenberg Uncertainty Principle

Among other things, the wave character of matter [i.e. that in quantum mechan-
ics particles are guided by the field ¥(x, #)] manifests itself in the fact that there
is a direct connection between position and momentum determination in mi-
croscopic physics, namely, we are not able to measure the exact position and
momentum of a particle simultaneously. The amount of the uncertainty is given
by the Heisenberg uncertainty principle.

Let us first demonstrate the existence of the uncertainty principle. To do this

1 ket (2.19a. b). illustrated
connection we consider the one- -dimensional wave packet {5.1%a, 0, luustrated

in Fig. 3.5,

Sln[Ak(vgt - x)] ei(wohkox)

Y(x, 1) = 2c(ko)

(3.19¢)

at time = 0. The extension of the wave group can be characterized by the quan-
tity Ax, i.e. the distance of the first minimum from the maximum. The condition
for minima is

)
sin“ Akx
= 4¢? —

ly)? = =0.

Thus we get for the first minimum
AkAx=m

Inserting the momentum according to de Broglie, we get as an estimate for the
Heisenberg uncertainty principle between position and momentum,

ApAx=~gh . (3.59)

This equation means that the simultaneous determination of position and mo-
mentum in microscopic physics is not arbitrarily exactly possible; both quantities
are always related by the above relation.

Heisenberg’s uncertainty principle is a consequence of the wave character
of the particles (more exactly: of the guiding field of the particles). Using the
superposition principle, the probability field is a wave packet superposed of
waves with a definite momentum (plane waves). The particle guided by this
wave packet can be found with a high probability within Ax. It is said to be lo-
calized in Ax. For such a localization Ax, a great number of plane waves with
momenta near hky, i.e. a momentum packet of width / Ak, is required. In classi-
cal physics, uncertainty relations of a similar form appear in processes involving
waves. The transmission of a spatially limited electromagnetic signal by a sender
occurs in the form of a wave packet containing waves of all frequencies (mo-
menta). To get a wave with a single frequency, the sender must transmit for as
long as possible (indefinitely), because the process of switching on and oft con-
tributes other frequencies. Therefore the wave spreads throughout space and no

Aatowainatinm AF 140 mAagitian 10 naocihla
uLivliiiuauuvlil Ul v PUblLlUll 1n PUDDIUIC.

 dipx(z, 0)

VAN AN~

—A Az b—

Fig.3.5. The probability
density of the wave packet
(3.19¢c) attime t =0

z
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After this rather illustrative consideration, we will now derive the Heisenberg
uncertainty principle in an exact way. Our starting point is an arbitrary particle
state which is described by the wave function ¥(x). Furthermore, we assume that
¥ is normalized to unity, and we restrict the calculation at first to one dimension
only.

In deriving the uncertainty principle, we first have to determine a measure for
the uncertainty, i.e. we have to define a measure for the deviation of p,, or x,
from their respective mean values

Pr= f @) (—ih%) Ydx and T= f V@ dx .

Here, we use the mean-square deviations (dispersions) A p2 and Ax2, which are
defined by

Apr=(px—p)2=p2—p>, Axl=(x—0)l=x2—%. (3.60)

For the following calculation we choose a suitable coordinate system: we as-
sume the origin to be fixed in the point x and let it move with the centre of the
distribution x so that at any time X = 0 is valid. Then we have

Xx=0 and p,=0.

From the relation for the dispersions (mean-square deviations) (3.60) we get

x2=x2 and Ap2=p?. (3.61)

}Z:fa//*( R2 BZ)IJ/dx——f’LZ/w (3.62)

To establish a connection between the quantities x> and p2, we consider the
integral

o) = 7

—00

axy(x) + —

o aelR . (3.63)

The integrand is an absolute square. Therefore /(«) is always greater than, or
equal to, zero. We multiply out and get

I(a)=a2/x2|t//|2dx+a/x(dw*1/f :/f*d'/’)
dy* dl//
+f e (3.64)

—0o0
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It is helpful to introduce the following abbreviations:

OO
j x| dx = Ax? ;
—00
T /dyt dyr rod
B=-— Ll dy=— —(Y*Y)dx
[ (FrvrvE) =[x
—00 —00
00 o
— —valr¥alr € f arFale Ay — 1 (2 A5a)
AY ‘f" i ./ ¥oyaR > \3.828)
—00
—00
because ¥ vanishes at the boundaries of the integration
i dy* dy dy dzl/f
C= —dx = ¢*
dx dx v ‘;oo _/ Vi
17 2 N
d 11—
* 2
— 00

With the abbreviations (3.65), the integral (3.64) can be written
I(@) = Aa®> —Ba+C >0 .

As this polynomial of second order in « is positive definite according to (3.63),
the discriminant must necessarily be negative or vanish. /(«) must be positive for
all . Therefore the roots of the quadratic equation /() = 0 must be complex.
Thus the relation

B2 —4CA <0

is necessarily fulfilled. Inserting in this inequality the values for A, B and C de-
noted in (3.65), we obtain the uncertainty relation for momentum and position
in the form

- 2
(Apx)? (Ax)? = % : (3.66)

The experimentally proved wave nature of particles (meaning the existence of
a guiding field) alone obviously implies that the momentum and coordinates of
a particle cannot be simultaneously determined; these observables can never be
measured simultaneously with arbitrary precision. We will see in the following
that this principle is also valid for other pairs of physical quantities, provided
that the product of their dimensions has the dimension of action (see, however,
Sect. 4.7).

Using a number of typical examples for simultaneous measurements of par—

311

s obmata
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Localization of a particle by
a slit

The geometry of the diffrac-
tion at aslit. In the first
diffraction minimum, a ray
from the middle of the slit
differs from aray from the
cdges by /2

The wave length of the en-
closed particle is A ~/

3.5 Position Measurement with a Slit

We observe a de Broglie wave moving in the x direction through a slit perpen-
dicular to it with a width d = Ay (see Figure). The corresponding interference
pattern is visible on a screen standing parallel to, and behind, the slit. Since the
momentum in the y direction is given by p, = 0, we would expect that once the
particle has passed the slit, a simultaneous determination of its momentum and
position in the y direction is possible. However, the diffraction of the wave at
the slit causes an additional component of momentum in the y direction. As the
diffraction is symmetric, we normally have p, = 0. Atdiffraction angle w, corre-
sponding to the first diffraction minimum, the path a light beam travels is longer
by X/2 than a nondiffracted beam (see Figure below). Then the greatest inten-
sity is to be expected between —« and +«, and we make use of this angle as
a measure of the momentum uncertainty. The relation for « reads:

>—x
Il
£
z
o
<
~~
J—
~

The projection of the momentum on the y axis is given by

2wk
psina = Ap, = Tsma .

Inserting sina = AA py/2h 7 in (1) yields

AApy
d .
2hn

The uncertainty principle Ap,Ay = 2nh follows from this, i.e. the more pre-
cisely the particle position d is determined, the less exact the determination of
its momentum will be. In other words: the smaller the slit, the more the particle
will be diffracted.

EXERCISE N

3.6 Position Measurement by Enclosing a Particle in a Box

We will try to determine the position of a particle exactly by enclosing it in a box
and lettmg the side / = Ax of the box shnn k (I = Ax — 0). The uncertainty of
the particle’s momentum is given by Ap ~ /i /I because standing waves fitting
into the box have a wavelength of the order of / (see Figure).

It then follows for the kinetic energy that

APZ hZ
Eiin= 50~ .
2m 2ml
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Hence, as the box becomes smaller, the kinetic energy and momentum will
grow according to the uncertainty principle. The result of this “Gedankenex-
periment” has been experimentally confirmed. Electrons in atoms have energies
of 10-100 eV, their atomic diameter being 10~°~10~" cm, while nucleons have
energies of the order of 1 MeV, the size of a nucleus being ~ 10~!? cm, which
confirms the uncertainty principle. Let us check the latter explicitly. To do so,
we need some numerical values: nuclear diameter ~ 10~ !2 ¢m, nucleon mass
Mnc? ~ 938 MeV, he ~ 197 x 10712 cm MeV. From the uncertainty principle it
follows that

. h o (Ap* R 1

SPT A T ST Ty 2m (Ax)?
Inserting the values given above, we get for the order of magnitude of the kinetic
energy of the nucleon:

AE~02MeV .

EXAMPLE I

3.7 Position Measurement with a Microscope

We consider a beam of light perpendicular to the x axis and illuminating the
object to be observed. From the theory of the microscope it is known that the
x coordinate of a particle can be measured with a precision of Ax & 1/ sing,
where ¢ is the angle illustrated in the Figure. The resolution limit, Ax, is cal-
culated with the aid of the following argument: for the lattice constant Ax
to become visible, at least the first diffraction maximum must be observable
through the lens, i.e. Ax sine = A; from this it follows that, for given angle ¢ and
given wavelength A, only quantities Ax ~2 A/ sin & can be resolved.

The particle’s image is produced by a photon which is scattered by the par-
ticle and moves through the lens into the microscope. According to the Compton
effect, the momenta change in the scattering process. The particle suffers a recoil
momentum of the order of Aw/c. The momentum is not known exactly because
of the arbitrary direction of the photons in the cone with the angle 2¢. Therefore
the momentum transfer to the particle has to lie in the range

. w .
Apy = psSing~x — sme .
C

The product of position and momentum uncertainties yields
ho
AxXAp, RA—=h,
C

which is again the uncertainty relation.

Exercise 3.6
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Principle of momentum meas-
urement with a grating

EXAMPLE I

3.8 Momentum Measurement with a Diffraction Grating

We want to make use of the arrangement sketched above of collimator slit and
diffraction grating to determine the momentum of a matter wave. A particle
beam of width [ is collimated by a slit and impinges on the grating. The grating
constant of the grating is . Thus the number of grating lines which are import-
ant for the diffraction are N =1{/d. A grating is able to separate two waves of
different wavelength if the following condition is valid (resolving power):

Ax 1

A N
This will be discussed in the next example.

For an exact determination of the position, we should fix the detector directly
at that position of the grating from which the particle is scattered. But this does
not help much because there, all waves of different wavelengths still cover the
same spatial region. The detector must be fixed at least at a distance from the
grating where the beams of different wavelength separate. Let a(a < 1) denote
the angle both beams enclose. Then this minimal distance is given by As = [/a.
Thus, with

h
p= 3 and Ap=p resolving power

L A L1
iy aan 1
= =-—,
A A AN

it follows that

h AL hl dl
ApAs=———=——= .
AAa AN« A
In order to get a diffraction, d and X must at least be of the same order of
magnitude. « is small; thus we have

ApAs>h .

A Supplementary Remark. An exact momentum measurement of a particle
could be made by scattering a monochromatic wave from this particle. Momen-
tum and energy conservation is valid, so the particle momenta are determined,
before and after scattering, by the measured frequencies, using the momentum-
frequency relation. But since a monochromatic (plane) wave stretches through-
out space, we do not get any information about the position. To determine the
position of the particle, we should scatter a wave packet which is spatially re-
stricted. On the other hand, it contains all frequency (momentum) components,
thus leading to the uncertainty relation again.



3.7 The Heisenberg Uncertainty Principle

57

EXAMPLE I

Mhc-ctnal Cizmanla o a 3
Physical Supplement: The Resolving Power of

3.9
Let us consider a grating consisting of an infinite number of slits at a distance d
(see Figure). Investigating all beams coming from corresponding positions of the
slits of the grating (for example from the left edge of each slit) and moving in
a direction defined by the angle B, we observe that the total intensity in general
vanishes. To such a beam will generally correspond a similar beam which comes
from a slit at a greater distance and has a phase difference of exactly 180° with
respect to the former one. The beams will only overlap in a constructive way if
the difference in wavelength d(sin « — sin B) between two neighbouring beams
is exactly a multiple of the wavelength. Thus, for an infinitely extended lattice,
the maxima of intensity only occur under the angle 8 with

d(sine—sinf)=mi, meNg (1)

(m is called the order of the maximum). Here we have neglected the interference
structure from the superposition of the beams coming through a single slit; how-
ever, they contribute to the diffraction pattern, too. In the following, we want to
calculate the complete structure of intensity behind the grating, which now may
have a finite number of slits instead of an infinite number.

We consider a grating of slit width a, line distance d and number of slits (line
number) N. Let us now calculate the amplitude in the direction 8 in the case of an
incident angle « (see Figure). If two beams overlap with a phase difference 7, the
resulting amplitude will be proportional to the complex number e\, Our aim is
to integrate over all phase differences, those of the rays coming through the same
slit and those of rays coming through different slits. The phase difference of two
rays is given by

n = kE(sinw — sin ) = 2w , )

where £ is the spatial separation of those positions at which the rays pass the
grating. Thus the amplitude « is given by

a a+d (N-1)d+a
roor r M &sine—sinB)]
u~j+j + o+ j exp[iZn—A—Jdé'. 3)
0 d (N=D)d

We substitute

a(sin @ — sin f8) x d(sino — sin g)

and 8=

- 4
A A

y=n

Incoming and diffracted
beams at a grating
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Example 3.9 Performing the integrals yields
nd+a
2 A
[ e,xpli —n(sina—sinﬁ)-lgl dé = —i - -
J LA 171 27 (sina — sin B)
nd
nd+a

X (exp {i?l(sina —sin ;3)&})
A nd

S U {exp [i %(sin o —sin ﬁ)nd] }

27 (sin o — sin B)
2
X {exp [i%(sina —sin ﬁ)a] -1 }
—ia - . —ia . .
— 2_1;’(612!15)(612}/ 1) = 2_“(61(2n5+2y) - elZnB) .
Therefore the wave field behind the grating reads:

1
1 . . . .
U~ _[ 14+ elly _ e216 + e21(5+y) _ e416

N-1
TRy ]= (et o1 > et
4
=0

1 . Q2iNS _
=D )
Thus the intensity is
) 02
sin” y sin“ N§
I~uu*=4———— . 6
“ y%  sin?$ ©
The second factor yields the principal maxima at § = mo, i.e. at
d(sina —sin B) =m\ (m € Ny) @)

[see (1)]. The first factor (sin® y) /% provides the interference pattern of a single
slit, which is superposed on the interference pattern (see next Figure, dashed
lines).

The condition 3//98 = 0 provides further, less intense, secondary maxima,
which are separated from the principal maxima and from each other by the dark
spots at 8 =m’(;r/N)(m’' € N) (see Figure). The greater N is, the sharper the
principal maximum will be and the closer the minima of intensity will lie to the
principal maximum. Thus, d determines the position of the principal maxima,
N their sharpness, a the intensity of the principal maxima of first, second, third,

. order.

If, for example, d = 2a, we do not have any principal maxima of even order.
If we consider gratings with a complicated slit structure, whose permeability is
not a simple box function but for example sinusoidal (sinusoidal grating), the
permeability function plays the role of the slit width.
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w Intensity distribution of the
diffraction by a grating with
N=60,d/a=17/4

AN 7 Y
"\ . Id \\ - ———-

The resolving power of a grating is defined by its ability to separate two
principal maxima. Two principal maxima (for example, belonging to different
wavelengths) lying at different positions, can still be separated if one maximum

just coincides with the dark region § = /N of the other one. Thus for both
maxima the following relation must be valid:

T
Ad)l= — . 8
[AS] N 8

A$ can be transformed into a wavelength difference AA: with (4) we have

. . A
JA(sina —sin 8)] = —

9
N ©)
and with (7)
A
miAA =— .
N
The resolving power is then given by
A
N

Put into words: resolution equals order of maximum times line number; the
greater the number of slits, the better the resolution of the grating. To separate,
for example, the two neighbouring yellow sodium vapour lines (AA =6 A at
1 =5893 A), we need a resolving power of 1000; thus we can separate lines of
first order with a grating of 1000 lines. On the other hand, if we are satisfied with
weaker maxima of second order, 500 lines will be enough.
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EXERCISE I

3.10 Properties of a Gaussian Wave Packet

Let a wave packet be described at time t = 0 by

2
W(x,0) = Aexp (—2% +ikox> (1)

(a Gaussian wave packet).

Problem. (a) Express y(x, 0) as a superposition of plane waves.

(b) What is the approximate relation between the width of the wave packet
in configuration (x) space and its width in k space?

(c) Using the dispersion relation for de Broglie waves, calculate the function
Y(x, t) for any time ¢.

(d) Discuss |¥(x, 1)]2.

(e) How must the constant A be chosen according to the probability interpre-
tation, so that ¥(x, 7) describes the motion of a particle?

Solution. (a) We obtain the frequency spectrum of a wave packet Y¥(x) by
forming the Fourier transform « (k) of the wave function:

1 x2
ak) = \/—2_; / Y(x, 0) exp(—ikx)dx

J_/exp( 2 2—|—1kox—ikx)dx.

This integral is solved by completing the square to give a complete error integral,

o0

j exp(—£)dE = v/ .

—oo
Completing the square yields

A x  iatk—ko) a®(k — ko)?
=7 J[ exp[ (\/§a+ V2 \:|| (_?)dx'

Now we replace the exponent by —£2 and obtain

® I IRY
a(k) = exp(—éz)«/ia exp (—M) d¢
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Ry
— A fraexp (_M) N

V2r 2
21 _ 2
= Aa exp (—@) . (2a)

The coefficients (k) denote the portion of the partial wave with wave number
k in the Gaussian wave packet. As a superposition of plane waves, the Gaussian
wave packet has the form

v(x, k):—le:n ] a(k)e* dk . (2b)

(b) In (1), the width of the Gaussian function is approximately Ax =~ a. The
width of the distribution function of the plane waves in (2a) is given by the
Gaussian function exp|— (k — kg)%a? /2]

Ak=~1/a .
Thus the uncertainty principle involving both quantities is AxAk ~ 1.
(c) The general form of a wave function is

o

Yix, ) = /:_ [ a(k) explitkx —wt)]dx .

AT v
-

The dispersion relation for de Broglie waves reads

Inserting « (k) from part (a) of this exercise, we get

o0
A 2(k — ko)? hk?
l/f(x,t):\/%fexp(—a——gz—())+ikx—i%t)dk.
—0Q

Now we again complete the square, use the error integral and obtain the time-
dependent wave function,

Yx, 1) =

A x? —2ia’kox +i(a*hkd /m)t
exp .
V1+i(ht/ma?) 2a2[1 +i(ht/ma?)]
(d) The following holds:

AP exp [x—(hko/m>r]2)
it Gejmady? P\ @1+ (htfma®)]

vith

ly(x, 0|2 =

/

Exercise 3.10
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obtaining Exercise 3.11
} |1/fls|2d3r=47rj Pldre 24 = 4n (f\) N=na ,
2
0
¥ 2
/|w23|2d3r:4n/r3dr(l*—r~) e 7/a
2a
0
o<
{ . i / ) r3 7‘4 \
=4 d lag s - — 4 —
nj re \r " _1—4a2}
0

1 1
_an (2163 = 2a*3 4+ a4 ) = 81a® |
a 4a?
o

* 3 2 r —3r/2
f Yl vasd r=4nfr dr(l——z—&)e r/2a
0

2a3 1 2a\*
GER TGRS

Thus the normalized wave functions are

1 1

==Vl and Yoy = ——=V2s -
wa v omas

1!’1:: =

(b) The probability of finding an electron with the (normalized) wave func-
tion ¥ in the volume element dV at the position r is simply | (r)fdV. The
normalization condition | WIZ dV = 1 expresses the fact that the probability of
finding the electron anywhere is just 1. The probability of finding the electron in
a spherical shell with radius » and thickness dr is

f W2V =dne? Yo dr

spherical
shell

if the wave function is independent of the angles  and ¢ (as in our case). This
illustrates the meaning of the second expression.

For the 1s and 2s electrons, the functions look similar to those in the figure
on the next page, where we have consciously omitted the scalc on the abscissa.
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Thus the normalized wave functions are

- i - 1
W]s = /—qwls and 1l’Zs = ?1#25 .
v ra® v 8ma’

(b) The probability of finding an electron with the (normalized) wave func-
tion ¥ in the volume element dV at the position r is simply |¥(r) PdV. The
normalization condition | [ dV = 1 expresses the fact that the probability of
finding the electron anywhere is just 1. The probability of finding the electron in
a spherical shell with radius r and thickness dr is

»
| WPy =dxr ipnitar
spherical
shell

if the wave function is independent of the angles ¢ and ¢ (as in our case). This
illustrates the meaning of the second expression.

For the 1s and 2s electrons, the functions look similar to those in the figure
on the next page, where we have consciously omitted the scale on the abscissa.

Exercise 3.11
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Probability density (above)
and probability density in
a spherical shell (below)
of the two hydrogen wave
functions
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EXERCISE R

3.12 Melons in Quantum Land

In Quantum Land, a strange land, where /i = 10* erg s, melons with a very hard
peel are grown; they have a diameter of approximately 20 cm and contain seeds
with a mass of around 0.1 g.

Problem. Why do we have to be careful when cutting open melons grown in
Quantum Land? Are such melons visible? How big is the recoil of a melon at
the reflection of a “visual” photon of 628 nm wavelength?

Solution. From the nnr‘r-lrfmnhr relation A pAx =~ h follows for the momentum
ro n clation n 1oHOoWS Tor the momentum

111 LiIC BIVUI WGa LA

uncertainty of the melon seeds A p= 104 ergs/10 cm = 108 gcms~! and there-
fore their velocity uncertainty is Av = Ap/m = 100 ms~!. The seeds leave the
melon with this (mean) velocity when it is cut open.

A photon of wavelength A = 628 nm has the momentum p = A(2n/1) =
10° gems™! and the energy E = pc = 3 x 101 erg. The mass of the melon is
m ~ (4 /3)R> x 1 gem™> ~ 4 kg, itsrest energy is mc? ~ 3.6 x 10?4 erg; hence
we can calculate nonrelativistically. Let the collision be elastic. The momentum
of the melon after the collision is approximately py =2p =2 x 10” gcms ™.
This corresponds to a velocity vy = 5 kms~! which is less than the escape ve-
locity from the Earth. By the time this photon is seen, the melon is already
situated elsewhere (AppmAxm = h!). The absorption of such a photon would
probably be rather unpleasant for a human being.
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3.8 Biographical Notes

DE BROGLIE, Prince Louis Victor, French physicisi, 1892-1987, professor of theoret-
ical physics at the Institut Henri Poincaré. He founded with his Ph.D. thesis “Recherches
sur la Théorie des Quants™ (1924) the

theory of matter waves (de Broglie waves) and was awarded the Nobel Prize in
Physics for it in 1929. Later he worked mainly on the development of the quantum theory
of elementary particles (neutrino theory of light, wave theory of elementary particles)
and proposed a new method for the treatment of wave equations with higher spin, the
so-called fusion method.

DAVISSON, Clinton Joseph, American physicist, *Bloomington (IL), 22.10.1881,
1 Charlottesville (VA), 1.2.1958. From 1917 to 1946 D. was a scientist at Bell Tele-
phone Laboratories; then, until 1954, he was a professor at the University of Virginia
in Charlottesville. In 1927 D. and L.H. Germer measured electron diffraction by crys-
tals, a decisive proof of the wave nature of matter. In 1937 he was awarded the Nobel
Prize in Physics.

LAUE, Max von, German physicist, *Pfaffendorf (near Koblenz, Germany), 9.10.1879,
i Berlin, 24.4.1960. v.L. was a student of M. Planck, a professor in Ziirich, Frankfurt,
Berlin and, from 1946, Director of the Institut fiir Physikalische Chemie und Elektro-
chemie in Berlin-Dahlem. v.L. was the first director of the Institut fiir Theoretische
Physik in Frankfurt (from 1914 until 1919), his successor being M. Born. His proposal
to irradiate crystals with X-rays was performed by Walther Friedrich and Paul Knipping
in late April 1912. L.’s immediate explanation of the X-ray interferences detected in this
experiment won him the Nobel Prize in Physics in 1914. With this, the wave nature of X-
rays as well as the spatial grating structure of crystals was established. As early as 1911,
v.L. wrote a book about the theory of relativity, which was widely read, and in which he
later included general relativity. He also worked on the applications of relativity, e.g.
on thermodynamics. Further treatises covered superconductivity, glow-electron emis-
sion and the mechanism of amplifier valves. After 1933 v.L. tried, often successfully,
to oppose the influence of national socialism on science in Germany.

BORN, Max, German physicist, *Breslau, Germany (how Wroctaw, Poland) 12.12.1882,
f Gottingen 5.1.1970. B. was a professor in Berlin (1915), Frankfurt (1919) and Got-
tingen (1921); he emigrated to Cambridge in 1933 and then became Tait Professor of
Natural Philosophy in Edinburgh in 1936. From 1954 on, B. lived in retirement in Bad
Pyrmont (Germany). B. first devoted himself to relativity and the physics of crystals.
From about 1922 on, he worked on the foundation of a new theory of atoms and suc-
ceeded in 1925, together with his students W. Heisenberg and P. Jordan, in the creation of
matrix mechanics. In Géttingen, B. founded an important school of theoretical physics.
Tn 1926 he interpreted Schrdinger’s wave functions as probability amplitudes, thus ip-

troducing the statistical point of view into modern physics. For this he was belatedly
awarded the Nobel Prize in 1954.

HILBERT, David, *Konigsberg, Germany (now Kaliningrad, Russia) 23.1.1862,
T Gottingen 14.2.1943. H., son of a lawyer, studied in Konigsberg and Heidelberg and
became a professor in Konigsberg in 1886. From 1895 on, he contributed to making
Gottingen a world centre of mathematical research. The most important living mathe-

matician, H. proved himself as a world-wide authority in his famous talk given in Paris in
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1900, where he proposed 23 mathematical problems which interest mathematicians even
today. H. contributed to many fields that have deeply influenced modern mathematical
research, e.g. on the theory of invariants, group theory and the theory of algebraic mani-
folds. His investigations on number theory culminated in 1897 in his report, “Die Theorie
der algebraischen Zahlkorper” and in his proof of Warring’s Problem. In the field of
geometry he introduced strictly axiomatic concepts in “Die Grundlagen der Geometrie”
(1899). His works on the theory of integral equations and on the calculus of variations
strongly influenced modern analysis. H. also worked successfully on problems of the-
oretical physics, especially on kinetic gas theory and relativity. As a consequence of the
development of set theory and the problems arising in the foundations of mathematics, H.
created his proof theory and thereby became one of the leaders of the axiomatic branch
of the foundation of mathematics.

HEISENBERG, Werner Karl, German physicist, *Wirzburg 5.12.1901, } Miinchen
1.2.1976. From 1927-41 he was Professor of Theoretical Physics in Leipzig and Betlin;
in 1941, professor at, and director of, the Max-Planck-Institute fiir Physik in Berlin,
Gottingen and, from 1955 on, in Miinchen. In his search for the correct description
of atomic phenomena, H. formulated his positivistic principle in July of 1925: it as-
serts that only quantities which are in principle observable are allowed to be taken into
account. Thus the more intuitive ideas of the older Bohr-Sommerfeld quantum theory
have to be rejected. At the same time H. provided the foundation for the new Gottinger
matrix mechanics in his rules for multiplication of quadratic schemata, which he de-
veloped together with M. Born and P. Jordan in Sept. of 1925. In close collaboration
with N. Bohr he was able to show the deeper physical- or philosophical-background
of the new formalism. The Heisenberg uncertainty principle of 1927 became the basis
of the Copenhagen interpretation of quantum theory. In 1932 H. was awarded the No-
bel Prize in Physics “for the Creation of Quantum Mechanics”. After the discovery of
the neutron by J. Chadwick in 1932, H. realized that this new particle together with the
proton must be considered as constituents of atomic nuclei. On this basis he developed
atheory of the structure of atomic nuclei and introduced, in particular, the concept of
isospin. From 1953 on, H. worked on a unifying theory of matter (often called a world

formula). The aim of this theory is to describe all existing particles and their conver-

sion processes using the conservation laws, which express the symmetry properties of
the laws of nature. A nonlinear spinor equation is supposed to describe all elementary
particles.

JACOBI, Carl Gustav Jakob, *10.12.1804 in Potsdam as the son of a banker, 1 18.2.1851
in Berlin. J. became an instructor in Berlin after his studies in 1824 and 1827/42 was
professor in Konigsberg (Prussia). After an extended travel to Italy, which was to cure his
impaired health, J. lived in Berlin as a university man. He became famous because of his
work “Fundamenta nova theoriae functiorum ellipticarum” (1829). In 1832, J. found out
that hyperelliptic functions can be inverted by functions of several variables. J. also made
fundamental contributions to algebra, to elimination theory, and to the theory of partial
differential equations, e.g. in his “Vorlesungen iiber Dynamik”, which were published
in 1866.
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4.1 Properties of Operators

We have already used average values of position and momentum of a particle
and seen that we can get the average value of an observable F [represented by an
operator function F (X, p)] in a state ¥ by

[

(1'3)51'3:]1[/

* 117

AI
Fyrdv

:F;

~_~

where F is the operator which is somehow related to F. In a first approach we
are now going to deal with operators from a more general point of view. After
this we shall determine a class of operators which is very important in quantum
mechanics.
Let U and W be two sets of functions. We define a continuous mapping L

U — W with L(u) =wu e lU; we W), and call L an operator. The operator L
relates a function # € U to a new function w € W. Symbolically we write this
relation as a product of the operator L with the function u:

Lu)y=Lu=w .
An operator with the property
L(aiuy +aauz) = arLuy +arlu; , 4.2)

where u |, u; are arbitrary functions and «, «z are arbitrary constants, is called
a linear operator.

We can see that the position operator X = x and the momentum operator
Px =1hd/0x are linear operators. A typical nonlinear operator is, for instance,
the square-root operator, as /o141 +a2uy 7# o1./u1 + o2 /uz obviously holds.

A o) a1 . _ e PR PR IV AR L S ry .. ‘.t L
rurtncrmorc, a nncar Opt:]"dL()l‘ 1S .\‘c’t]-auj(}tn[ Or rIermiriarn 11
%7 - *
/ YLy dV = / (Lyn)*y2dV 4.3)

where 1, ¥ are arbitrary square-integrable functions, whose derivatives vanish
at the boundaries of the region of integration.

In quantum mechanics we require that all operators be self-adjoint and linear;
in this case, the superposition principie hoids. Of course, linear operators do not
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violate the superposition principle. In order to be able to describe meaningful
and measurable quantities with our operators, we must demand that their average
values be real. This property is guaranteed by Hermitian (self-adjoint) operators.

Wa ~rnm ol #hio in tha FAll Ao taa Avmeacoi e
YYU Ldil SIIUW UL L UIC FULTOWHIEE CAPETSSIVILL.

i:/w*iwv:f(iw)*wdvz U w*(iw)dv] =L*, (4.4)

and therefore the mean value is real.

4.2 Combining Two Operators

We define the sum A + B = C of two operators,

Cy =(A+B)y = Ay + By (4.5)
and their product AB=C,

Cy = (AByy = A(BY) . (4.6)

Equation (4.6) means that B acts on V first, and then A acts on the new function
(13‘10). If A and B are Hermitian, we notice immediately that A + Bis Hermiti an,
t00. lllC pluuuu UpCldlUl \: lcquhca inoic care.

It is important to realize that the product of two operators in general does not
commute, i.c. AB— BA # 0. Hence the order of the operators is important: in
general, A(Bx//) #* B(Ax//) For instance, pyxyr # x p,yr since —ihd/ox(xyr) #
x(—ih(9y/0x)).

Two operators commute if, and only if,

AB—BA=0. 4.7
We call this expression a commutator and write it as

AB—BA=|(A, Bl . (4.8)
In analogy, we define an anticommutator as

AB+BA=[A, B, . (4.9)

Now we are going to obtain an answer to the question: under which condi-
tions is the product AB of two Hermitian operators Hermitian, too? We rewrite
the product A B as

AB=1[A Bl +1[A. Bl , (4.10)
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and we will now show that the %[A, B, part is always Hermitian, whereas the
%[fi, B|_ part never is. Let us start with the following relation:

1 a A 1 “A oA A
3 [ itd Blsvaav =5 [ wiciBs Bdyinay
1 ~ ~ 1 ~ ~
=5 [y byt [ By gy
1 PN 1 A
=5 [Bavrvaavs [dbvntyaay
1 [~ A pyEog ok
= | BA£AByyivaav

1 [ . .
= zf[B, AL ytyndV . (4.11)

=
s
I
&>
>
_+_

AB, the %[ A, B], part is always Hermitian and as
=—(BA— AB), the }|A, B|_ part is only Hermitian if it vanishes.
uct AAB‘ of commuting Hermitian operators is Hermitian. As

PP * 8 L w7 r-v..._v.

operator commutes with itself, A” is Hermitian if A is, and so is A" B™, if
nd B are Hermitian and commuting.

4.3 Bra and Ket Notation

The integral fj;o Y 2 dV can be considered a scalar product of the square-
integrable functions ; and . Usually the following shorthand notation is
used:

(Vlyn) = / YiyndV . (4.12)

This is interpreted to be a product of two elements (1| and |¢). The elem-
ent (¢] is called a “bra” and |y») is called a “ket”,' together forming the
“bra-ket” (bracket). Both are vectors (state vectors) in a linear vector space. By
using this notation, many relations in quantum mechanics can be expressed more
succinctly than by using integral representation.

The state vectors are vectors of a complex linear vector space with an or-
thonormal base. Every expression in integral representation is related to an

expression in Dirac notation. For instance, the orthonormality relation reads
* — —
[ Wi dV = i) = 8 @13

! This denotation originates from the famous physicist P. A.M. Dirac, whose contri-
bution to relativistic quantum mechanics we will learn about in another volume of
this series: W. Greiner: Relativistic Quantum Mechanics — Wave Equations, 3rd ed.
(Springer, Berlin, Heidelberg 2000)
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Obviously, |y/)* = (¢| holds. We can write the expectation value of an opera-
tor L as

Lyrdv (4.14)
and the Hermiticity of L is denoted by
(WILlv)=(Lyly) . (4.15)

4.4 Eigenvalues and Eigenfunctions

We can obtain more information about a Hermitian operator L and that which
is physically related to it if, besides the known mean value L, we can get an
expression for the mean-square deviation (AL)?. First, it is necessary to find a
quantum-mechanical operator describing (AL)?. This is straightforward; in fact,

« in the deviation from the wean valite kv
we obtain the deviation from the mean value 0y

AL=L-1, (4.16)
and hence the square of the deviation as
(AL =L -1)?. 4.17)
The mean-square deviation can be expressed by
(AL)? =/ Y (AL ydV (4.18)
and it must be nonnegative. Indeed, from
oc
(AL)? = /w*(AI:)zde (4.19)
o0

and the Hermiticity of AL, it follows that
0 X

(AL)? = [ (ALY)* (ALy)dV = f |Ai1/f|2dV >0. (4.20)
—0 -0

As the integrand is a nonnegative function, the integral is positive definite and
hence (AL)? is positive definite, too.

Now we search for those states 17, for which the quantity L has a constant
value, i.e. for which the deviation AL of L vanishes. For states of this kind,
Hz = 0 holds, and we obtain

/|AI:1//L|2dV=O. @21
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The integrand is a real function which cannot be negative (as it is the absolute
value of a complex function). Hence

ALy, =0 . (4.22)
We can write this relation using the definition of AL as

(L—Lyyr =0, (4.23)
and since we may put L = L in the state v,

Ly =Lyy (4.24)

holds.

An equation of this kind is called an eigenvalue equation. We call 17, an
eigenfunction and L an eigenvalue of the operator L.In general, an operator
L has several eigenfunctions 17, with eigenvalues L,,. The eigenvalues L, can
form a discrete spectrum L, Ly, L3, ... or a continuous spectrum. In the latter
casc, the cigenvalues L will take on any value withinan interval L, <L < L, ;.
We soon will encounter operators with discrete, continuous and mixed spectra
(see Fig. 4.1).

Now we are going to examine some general properties of eigenfunctions.
For this, let us investigate the eigenfunctions of Hermitian operators only and
restrict ourselves to the case of the discrete spectrum. We can show that eigen-
functions belonging to two different eigenvalues are orthogonal. Let ¥, and 7,
be eigenfunctions to the eigenvalues L,, and L,,, respectively, i.e.

Lypm=Ln¥m and  Lipy = Loy . (4.25)

We take the complex conjugate of the first equation and find, as the eigenvalues
are real,

Lyt = LEyt = Ly, . (4.26)

Now multiplying the second equation in (4.25) by v, and the complex conjugate
of the first equation by v, yields

YL = Loyl , YnL Wy = L ¥in - .27)
‘L Az ‘L
1 1= %}
continuous N~
1 —4— continuous
I —1 . bands
:: discrete :: %}/
@ J T @

Fig.4.1. (a) General spec-
trum; (b) totally discrete
spectrum; (c) totally contin-
uous spectrum; (d) spectrum
with continuous bands, as
occur, for example, in the
energy spectrum of a crystal
lattice
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The difference between these two equations is

W;ix\bn - Wnif* :1 = Wn 'J’:;,(Ln - Lm) . (4.28)

If we integrate over the entire volume, we obtain
o0 oc o0
[ vitvnav - [ wirvnav=a-Ln [ wviav.  @29)
—00 —00 —00

As L is a Hermitian operator, both integrals on the left-hand side are equal, and
therefore

0= (Ly— L) / YU dV . (4.30)

We required that L, # L,,; hence

0= / Yt dV | 4.31)

which is the desired result and proves that ¥, and ,, are orthogonal.
As the eigenfunctions of a discrete spectrum are square-integrable, they can
be normalized to unity:

/A Y dV =1 . 432)

Then we can combine relations (4.31) and (4.32) as

x0
/ YnYp dV =84 . (4.33)
—00

Hence the system of eigenfunctions is an orthonormal function system.

In general, there are several eigenfunctions for one eigenvalue L,; we
call them degenerate states. To be more precise, if a different eigenfunctions
Ynl, ..., ¥nq belong to the eigenvalue L,, we speak of an a-fold degeneracy.
Physically, this degeneracy describes the possibility that a certain value of the
observable L can be realized in different states.

We have proved that eigenfunctions of a discrete spectrum with different
eigenvalues are mutually orthogonal. If we have degeneracy, the functions ¥,
are related to the same eigenvalue L, : [:l/fnk = Ly, withk =1, ... , a; hence,
they are in general not orthogonal. But there is always the possibility of finding
orthogonal functions in this case, too, as we shall now show.

Let us assume that the eigenfunctions ¥, (k=1,...,a), related to the
eigenvalue L,, are linearly independent, i.e. if Zzzl ag¥nx =0, then ar =0
holds for all &. If we could not infer a; = 0 for all k, we would be able to ex-
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press at least one function by a linear combination of the others, and the number
of eigenfunctions would be smaller than a. If the set of 1/, is orthogonal, we can
use it to describe a certain state. If it is not orthogonal, we transform this set into
a new set, i.e.

a
Pra =) dotPnk » ¢=1...a. (4.34)
k=1
This transformation is linear; thus the functions ¢,, are also eigenfunctions of
the operator L of the eigenvalue L,. We now require orthogonality of the new

functions @, .
¥no-

2L LAVIAS

/ OraPnpdV =8ap

-0

The conditions that have to be fulfilled by the coefficients a,y in order to describe
a transformation to an orthogonal function system are

YD ahapesu =8ap . with (4.35)
k=1 k=1

X
o= [ UiV
—0

The coefficients aqy are determined by analogy with geometry. We consider the
functions 1,,; as vectors in an a-dimensional function space and s as scalar
products of these vectors. Then we can regard transformation (4.34) as a basis
transformation from an oblique-angled to an orthogonal coordinate system.

Hence applying this procedure to the case of a degenerate spectrum, we can
obtain an orthonormal set of eigenfunctions. A practical method is E. Schmidt’s
orthogonalization method, familiar from geometry (vector calculus). In the first
step we take one vector (state), for instance 1,1, and define the normalized wave
function ¢ny = Wit // Wl [Vn1).

In the next step we construct a vector g,2 = a@,1 + B2 and require
(@ntl@n2) = o {@n1l@n1) + B (@n1l¥n2) = 0. It follows that a/B = — (@n;|¥n2).
Apart from this condition, normalization is required, i.e. {¢,2|¢n2) = 1. From
these two conditions follow « and B. The third step is the construction of
¢Yn3 = Q' @n1 + B'Yn2 + Vi¥n3. Again, orthogonality of this vector (state) to ¢,
and ¢,2 and normalization are required. Hence there are three conditions to
detarmine oy R ~ ate
determine «, B, y etc.

The next steps are now straightforward. We note that this transformation is
defined only up to an orthogonal transformation. If the functions 1, are already
orthogonal, then s = &y and

a
D aap = 5up (4.36)
k=1

holds. This is the condition for an orthogonal transformation.
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Fig.4.2. Chopping of the
continuous spectrum by in-
tegration of the function
Yr(x, L) over intervals AL

leads to H. Weyl’s eigendif-

ferentials

In the case of continuous spectra we cannot numerate eigenvalues and eigen-
functions. Instead we parametrize the eigenfunctions and take the eigenvalues as
parameters. Then the equation

L (x) = Lnyia (%) (4.37)
becomes
Ly(x, Ly = Lys(x, L) | (4.38)

if x denotes all coordinates appearing in the wave function v (for instance x =
X, v, z). From the wave functions which are not orthogonal we can define Weyl’s
eigendifferentials:

L+AL
AY(x, L) = [ U(x, L)dL . (4.39)
L

They divide up the continuous spectrum of the eigenvalues L into discrete re-

gions of size AL (see Fig. 4.2). The eigendifferentials are orthogonal and can be

normalized. (See the mathematical addendum in the next chapter.)

EXAMPLE I

4.1 Hermiticity of the Momentum Operator

We show that the momentum operator p, = —ihd/dx is Hermitian:
oC o0
— £ A wf 20
Px= YipxyadV = (V8 —171& Y dV
—00 -
o0
o T (o) av
J T\
—o0

T a
= iRl ih / Vra-yiav (1)

As ¢y and yp are square-integrable functions,
(¥, ¥3172 =0 2)
holds, and we obtain
x 8 o0
Px=ih f 1!/25;10de = f(ﬁxl/fl)*llfzdv - (3)
—0o0 -0

This proves that p, obeys the Hermiticity relation (4.4).
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4.2 The Commutator of Position and Momentum QOperators
We compute the commutator [ py, x]. Since
9 , x Ny
pxy=—th—@xy)=—ih|Yv—+x— | =—-ih|[¥v+x—} ,
ox 0x ox 0x
and
A 1/ ;)
pxr =x| —ih = —ihx—y¢ ,
ox 0x

we easily obtain

PxX —Xpx = [Px, £] = —ih .
EXERCISE I
4.3 Computation Rules for Commutators

Problem. Let i, il, ]:2, I:3, M : H — H be linear operators in a complex lin-
ear space and a be a scalar. Let E denote the identity operator. Show (with the
help of the definition of a commutator) the following identities:

(L, M- =—[M, L] )
[L,L1-=0 )
(L,aM}_ =alL, M]_ (3)
[L,aE]l-=0 4
(L1 + Lo, M- = [Ly, M- +[L2, M] )
[LyLy, M- =[Ly, M|_Ly+ Ly[Ly, M) (6)
[M, LiLo)- =M, Ly]-Lo+ L1[M, L2]- )
(L1, [La, E3l-1=+1La, (L3, Li1-1-+[L3, [L1, L2]-1-=0 . (8)

Solution. The first five relations are trivial (they follow directly from the defini-
tions [L, M| = LM — ML). The proof of the other relations is also simple, but
it is important to pay attention to the order of the factors:

(Lilo, M= L1LoM— ML Ly

=[Ly, MLy + L1[Lo, M1 , (6)
~ A A A A A 6 A A A A
[M,LiL;]1=—[L1L2, M] © —[L1, M]Ly — L1[L2, M]
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Exercise 4.3

(L1, (L2, L3l =1Ly, L2La]1— (L1, L3Ls]
Dt 315  F 08 54 tF Par. Foar 3
PVEy, Ealba+ Eally, £3)— (L1, E3)Eo — Lalhy, La]

= —[L3, (L1, Lal1 — L2, [L3, L4]] . )

The last equation is also called the Jacobi identity.

EXAMPLE I

4.4 Momentum Eigenfunctions

The equation for the eigenvalues of the momentum operator is

ﬁxwpx (x) = le/fpx (x) or = px¥p, (x) or

dl/jpx (x) — &nh
dx RPC

We infer for every p, within —o0 < p, < 00:

. d"ﬁpx (x)
ih P

Yp,(x) = Cexp (i%x) — Celkx

C is a (at first arbitrary) constant; we will calculate its value in Example 5.1.
The spectrum of momentum is continuous: there is an eigenfunction for every
momentum p,; we recognize this eigenfunction as a part of the well-known de
Broglie wave [see Eqs. (3.3) and (3.37)].

4.5 Measurability of Different Observables at Equal Times

We know from Heisenberg’s uncertainty principle that it is impossible to meas-
ure the coordinates and momentum of a particle simultaneously and exactly [see

(2 50) ff1 The valuie of an ahcervahle 1¢ iimamhbiounncly dafined if the wave
\FJed 7] M1 1 UV VAIGY VUL dll VUBVE YAUIL 1D GHAIIVIguUUdLy UGUIHIIVU 1L Wb wdvw

function is an eigenfunction of its related operator, i.c.
Ly = Ltpn - (4.40)

Then, in state 1, the observable L is well defined, i.e. it has precisely the value
L, and its mean square deviation (A L)? is zero. In general, ¥ is not an eigen-
function of another operator M. Hence, we cannot infer information about the
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observable M from the wave function yr,,. Only if yr, is an eigenfunction of M,
too, can we measure both M and L sharply, i.e.

Ly =L, and My, = My, (4.41)
for all Yry. As both equations hold, we obtain [i M 1-¥r, =0, because M f,l//n =
L, Mg//,, = L,M,y, and LMy, = M, Ly, = M, L,vr,. By subtraction we get
(ML —LM) ¥, = 0. The set of eigenfunctions ¥, of the Hermitian operator Lis
complete. Therefore an arbitrary function y(x) can be expanded into v, (x), i.e.

Y0 = cnPnx) -

Obviously, it follows that
(ML — LM)y(x) =

Because yr(x) is arbitrary, we have the operator equation ML —LM=0.
We have thus found that two observables are measurable simultaneously if

their commutator, acting on a common eigenfunction, vanishes. In the other di-

rection we obtain the following result: if (L, M - =0, then for every 1, LM ¥ =
M Ll// Ifyrisan elgenfunctmn of L, we obtain L(M Y) = L(M ¥) and ' = M ¥
is an eigenfunction of L, too.If L is not degenerate, we can infer My = My, ie.
Y’ = My is a multiple of v (here, Mr).

In the case of degeneracy, ¥’ = M+ can be a linear combination of f

degenerate eigenfunctions yx(k=1,2, ..., f) of the eigenvalue L. Then we
have
/
V= Myt , k=1,2,...,f. (4.42)
k'=1

Thus we cannot repeat the conclusion used above. But as the choice of the ori-
ginal wave function is arbitrary (we recall that L Myr = M L+ must hold for all
possible yr), we can use a linear combination,

f
= Z ag Y (4.43)

k=1

as the initial wave function, instead of ;. Of course

Lo=Ly (4.44)
holds, too. Now we choose the coefficients ax in order to obtain

Mo = Mp . (4.45)
We can do this because inserting ¢ into this equation gives

f f

Y auMyp =M api . (4.46)

L/ _ 1 L1
K =1 k=1
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After multiplication by the bra vector (k| (corresponding to the operation
[ ¥} ... dx) and using the orthogonality condition {yrx|y') = 8 we obtain

;
> kMK ) = May. . (4.47)
k=1

Let us abbreviate the matrix elements (k| M|k’) by My, = (k|M|K'). Since we
obtained a linear homogeneous system of equations for the ay, its coefficient
determinant must vanish, i.e.

My —M M, <o Myy
My , My —M, < Moy
0. (4.48)
Mgy, My, M- M

The solution of this equation gives the eigenvalues M. We thus see that in the
case of degeneracy of the eigenfunction v of L, we can also construct the wave
functions ¢ = >, axyk, which are simultaneously eigenfunctions of L and M.

If we start with a wave function ¥ = y(r), the position operator is the space
vector itself;

F=r. (4.49)
Its components are

i=x, ¥=y, Ii=z. (4.49a)
The operator of momentum is expressed as

p=—iAV | (4.50)
and its components are

Px= —ih;; . Py= —ih% , D= —ih(% . (4.50a)

The commutators are
(X, px]l- =¥, pyl- =12, p;]- =ih ,

[X, pyl- = [X, pl- =3, px)- =3, p:1- =2, px]- =12, py]- =0 .
@.51)
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Hence there is an uncertainty relation between the coordinates and their canon-
ical conjugate momenta (x and py, y and py...). They cannot be exactly
measured simultaneously. (See the following section, where this will be dis-
cussed in detail.) On the other hand, e.g. the X operator and the p, operator
do commute. Hence these two observables can be measured simultaneously as
accurately as desired. Their common eigenstates are

J/3(x —x0) exp (% Py y) . elc. (4.52)

For the definition of the §(x) function we refer to Chap. 5.

4.7 Heisenberg’s Uncertainty Relations
for Arbitrary Observables

are now in a position to consider the uncertainty relations in a more generai
way. Let two physical quantities be described by Hermitian operators A and B
[e.g. A = £ is the position operator and B = p, = —ih (9/9x) is the momentum

operator]. The commutator of the two operators is written as

V\’e

U:b
||

o>
o8

[A, B]_ — BA=iC (4.53)

>

whara e pallad tha s A AL s I R
where { is calied the remainder of Lummmuuuu {(commutation vest). C can b

~

zero; then A and B commute. In general € is a Hermitian operator, because we
know from above that

a

[ 1A Bryaar = [ 1B - Bhygaas
= [ud i - & By
=— f[(Aé— BA)y*yndx . (4.54)
Hence
f YFiCypdx = — f(iélﬁl)*Wde or
[ vicwa= [€Eppina. (4.55)

The physical quantities corresponding to the operators A and B in an arbitrary
state ¢ have the mean values

A= fw*/iwdx and B= /w*éde . (4.56)
J J

79
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As before in (3.60) and (4.16), we introduce operators for the deviation from the
mean value,

_ .
—A and AB=

S’

A&7
’ \T.207

=T}

>
B>
=~}

A
JAY

and recognize that AAand AB obey the same commutation relations as Aand B,
namely:

[AA, AB]_=iC .

In analogy to our considerations about the uncertainty relation of p, and X [see
(3.63)], we examine the integral

() =f [(@AA—iAB)Y| dx >0, (4.58)

which depends on a real parameter «. As AA and AB are Hermitian, we can
write

(o) = f(aAA —iABY*Y* (@ AA —iAB)Y dx
= f v (@AA+1AB)(@AA —iAB)Yrdx
= f U a*(AA)? +ia(ABAA — AAAB) + (ABY g dx

= f Y e*(AA) +aC +(AB?ydx >0 . (4.59)

Now we denote by (|[(AA)?]) = (AA)2, (|C]) = C, {| AB?|) = (AB)? the mean
values of the squares of deviation, or of the commutation rest C. We can therefore
write the last equation as

r e 1P —— e
(AA? o+ —— ] +(AB2————=>0. (4.60)
2(AA)? 4(AA)?

As this holds for every real «, we have

@
4(AA)?

- 2
>0 or (AA)2 (AB)? > % . (4.61)

This is Heisenberg’s uncertainty principle in its most general form. Obviously it
holds for all physical quantities with noncommuting operators. For commuting
operators (€ = 0) we have no uncertainty relation for the corresponding physi-
cal quantities. They can be exactly measured simultaneously. From (4.51) above,
we know that [p,, ] = —ih. Hence the uncertainty relation for these quanti-

ties is (Apy)? (Ax)2 > h? /4, which coincides with the result we got earlier [see

JJJJJJJJ



4.8 Angular-Momentum Operators

In Chap. 6 we will prove that the energy operator is E= +ih(0/0t), and that
the commutation relation

[E, 1] =ih (4.62)

holds. Hence there also exists an uncertainty relation between energy and time,
ie.
2

(AE)? (An? > %— . (4.63)

We will obtain simi
section.

4.8 Angular-Momentum Operators

We want to derive an operator for angular momentum. For this we insert the op-

hd o
erators 7 and p into the classical definition of the angular momentum L = r x p,
and obtain the operator equation

A

L=Fxp=—-ih(rxV).

Expressing the cross-product in Cartesian coordinates yields with (4.50):

U L, [ 0 9\

Ly=Yp;,—Zpy =N\ Y ——21— )

oo "oz " ay)

- an oan a a

Ly=2Zpy—Xp,=—ih Za_x_xa_z ,

- d 0

L,=Xp,—Vpy=—1A|x——-v—1 . 4.64
z=Xpy— Ypx = —1 (xay yax) (4.64)

As the factors of the various products are all commuting Hermitian operators,
L is also Hermitian [see (4.10) and (4.11)]. By straightforward calculation, we
obtain the commutation relations of the angular-momentum components,

Bxly—Ly iy =ihl,, Byi,—i,0,=ihi,,

LLy—L L, =ihL, , (4.65)
which are frequently written in shorthand notation as

LxL=ihL oralso [L; L;]-=iheuly . (4.66)

Here, ¢;j 1s the totally antisymmetric tensor in three dimensions, i.e.

+1 ifi, j, kis an even permutation of 1, 2, 3
gijk = §—1 ifi, j, k is an odd permutation of 1, 2, 3
0 if two or more indices are equal .

81
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By way of example, we test the first relation (4.65) and get

A A

Lyly—LyLy=(yp.—2py)(ehx—xP:) — (2Px —XP)(yP: — 2Py)
= Y(Pe2) Px + 2P b — yxPe P — 2 Py P+ 2XPy b
*M—FZzﬁ—xﬁX—l—m —x(P22) Py — 2P Py
= —ihyp. +ihxpy =ih(xpy — ypy) =ikl . (4.67)

The terms underscored in similar fashion cancel out. Thus the components of
angular momentum are not measurable at the same time, because the relations
(4.65) are of the structure of (4.53) with a commutation rest. The square of the
angular-momentum operator is

£2__F2 72 42

L"=Ly+Ly+L; .
It commutes with all components of the angular-momentum operator, i.e.
yLy]l-=[L", L;]-=0. (4.68)
By way of example, we compute the first commutator and get

(L2, Lyl =[L24 L3+ L2, L) =[L3, L-+[L2, L,)-
=(L2Ly— Lyld) + (L2 — L L2y . (4.69)

Using (4.65), the first term becomes

=—ih(LyL, +L,L,), (4.70)

P2, — L2 =L (L L)~ LB =L, GRLy+ Lily) — LoL?
=ihLl,Ly+ (L. Lol — L. L?
=ihL Ly+GhLy+L L)L, — L L?
=ih(L,Ly+LyL;) . .71

The sum of both terms, (4.70) and (4.71), is zero. Hence, [£2,L,]=0. Similarly
one proves the second and third relation (4.68).

It is convenient to write the angular momentum in spherical coordinates. By
the transformation

x=rsinvcose , y=rsindsing, z=rcos? , 4.72)
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we obtain for the Cartesian coordinates of the angular-momentum operator:

R . ( ad 0
Ly=1ih | sing— +cot ¥ cosgp—
\ ) op )
" . . 0
L,=ih (— cosp— +cotd sm(p—) ,
~ . d
L,=—ih— . (4.73)
o

The equations

Z )3
P2=xliy2 47, cosd=2, tanp=>
r X

hold, and hence,

2 . d 0 . . oro 0% 0 dp 0
L,=—ih{x——y—}=—iA{rsindcosgp|——+——+ ——
dy ~ox dyor dy 0¥ dydep

in 9 sin 8r8+8ﬁ3+3¢)8
—rs 3 —_t——t ——
¢ Iﬁx or  ox 3%  Ox dp

. . ) . 0 costsing 0 cos¢ 0
= —ihrsin® {cos @ smﬁsm<p5+ 39 T 7sin® 90
r @

. . d cosdcosg 0 sing 0
—sing smt?cos<p5+ » ﬁ_rsinﬁa_gog

- inl 4.74
ik P 4.74)

and

L= i24i24 02

=—h {<Si“2 reost )2y ot X ol 9 4 }
a t v ¢ 992 39 ag? | 8¢? |
1 9 ] 1 92
= a9 \Sin? s 1 =—hAg, 4.75
{sin 9 09 (Sl 319) tn? o 92 } 2 (4.75)

where we denote by Ay, that part of the Laplacian acting on the variables ¢ and
¢ only. In this context we also write down the eigenfunctions of L2:

LY (9, ) = L*Yi (3, ¢) . (4.76a)

These are the spherical harmonics, as will be proved in two different ways in
Examples 4.8 (p.88) and 4.9 (p. 96). We are familiar with spherical harmonics
from electrodynamics; they are related to the Legendre polynomials by

[ —m)'2+1) :
Yim(#, ¢) = .| —————— P{"(cos 9)e"? . 4.77
im (3, @) | amarmyr (cosB)e @.77)
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mﬂ“‘ R334 1) =224 y?
3h 1=3

L.
—h

- 2h
- 3h

Fig. 4.3. The quantum num-
bers mh characterize the
quantization of the z com-
ponent of angular momen-
tum. One sometimes speaks
in this context of “quantiza-
tion of direction”

Fig.4.4. A “sharp” angular
momentum L, its z compon-
ent and the components L,
and L, which are not sharp.
The vector L precesses in
an eigenstate of L2 and L,
around the z axis on a cone

The Legendre polynomials are

_ I4+m
le(x)_( ) ( x)m/Z d

Al n A J+m
o 24 [0V Anh

x> -1, 4.78)

with!/>m > —[.
In the eigenvalue equation (4.76a), the quantity L% can be expressed in terms
of / by

=RAU+1), 1=0,1,23,..., (4.79)
so that (4.76a) becomes
L*Y1(®, @) = KA+ 1) Yim (D, ¢) - (4.76b)

By our choice of coordinate system, the z component of the angular momentum
was given preference, as the Y}, are also eigenfunctions of L ,:

LYim=bmYy, ., m=—I,—I+1,...,0,...,1. (4.80)

This can 1mmed1ately be confirmed by (4.73), (4. 77, and (4 78). Obviously the
spectrum of L% and L is always discrete. Because L? and L commute (4.68),
they can be measured s1multaneous]y The simultaneous elgenfunctlom are the
Y1 (9, @). Every eigenvalue h2[(I 4 1) of L% is (21 + 1)-fold degenerate because
to every [ there are 2/ + 1 eigenfunctions Y, (I > m > —I).

Indeed we can infer from (4.77) and (4.80) the z projection of an angular mo-
mentum L with absolute value A /I(I+ 1). Tt takes 21 + 1 different values mh.
This is illustrated in Fig. 4.3. The angle between the angular momentum and the
direction of quantization (e.g. defined by a weak magnetic field) can have only
certain values:

m
- . .81
cos ¥ e (4.81)

This is sometimes called quantization of direction and means nothing more than
the quantization of the z component of angular momentum, i.e. .. The thus
obtained results can be interpreted in a pictorial way (see Fig. 4.4); the angular-
momentum vector L precesses on a cone around the direction of quantization
(z axis). As a result, the x and y components of angular momentum are not con-
stant in time. This illustrates the uncertainty relations between L, and L, and
between L; and L, [see (4.65)].
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4.9 Kinetic Energy

We obtain the operator of kinetic energy in Cartesian coordinates by analogy
from T = p?/2m as

) 2 /a2 2 2 2
p h d d 0 h

S (AL A N 482
2m 2m (3x2 ay? + 822) (452)

It reads in polar coordinates:

L RP[10 (,0) 1 2109 (,0 h?
Pt |22 (2l oy =22 (2 2) - 2
2m [r2 ar (r 8r> T2 0’w] 2mr? or (r Br) 2mp2 =Y

N
=T+ —. 4.82
rt 2mr? ( %)

Here T, can be interpreted as the operator of kinetic energy for a motion along
the radial direction and L2 /2mr? as the operator of kinetic energy for the rota-
tional motion. From the above relation it follows immediately that (T, 12]_=0.
Therefore the kinetic energy and the square of angular momentum can be

measured simultaneously.

4.10 Total Energy

Corresponding to the Hamiltonian of classical mechanics, we define the Hamil-
tonian operator as the operator of total energy:

+ V() . (4.83)

If we take for granted that the potential energy is only a function of distance,
i.e. V= V(r) (central potential), we have [H, L?] =0; the square of angu-
lar momentum and the total energy can be measured simultaneously. Equally,
[H,L]=0. X

Since T = p?/2m and V = V(r) do not commute, no statement is possible
concerning the exact values of potential and kinetic energy, even if we know
the total energy. Solely for the mean values of these quantities do we have the
so-called virial theorem (T) = +(r-VV), the proof of which we defer for the
moment (see Example 8.2).
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EXERCISE I

4.5 Proof of an Operator Inequality
Problem. Let AA and_
=—i(AB—- BA), D ={A,
expectation values:

[(€)+(D)*] .

be Hermitian operators and ¢ = —i[A, B]_

B
B} = AB + BA. Prove the following relation for the

~An A

A’R? >

B~ -

Solution. Let¢(x, 7) be an arbitrary state; A € C, A = ¢ +1ip, a complex number.
We define

051@):] [(A+irB)g|” dx
= f<p*(A—iA*1§)(A+iu§)¢dx
J
=f<p*A2<pdx+|M2f¢*1§2<pdx +f¢*(A1§ix—éAiA*)gpdx

— A4 B3 —aC— D .

we now have

A2+ Ba— 2B + B[ — D22 B2 — C2/4B% — D*/4B% > 0.
But «, 8 can be chosen arbitrarily, i.e.

fg s L@ B

must hold, which was to be demonstrated.

EXERCISE I

4.6 The Difference Between Uncertainty Relations

Problem. Discuss the “uncertainty relation”

AEAt~T .
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What is the fundamental difference compared with

AxAp ~h?

Solution. A (free) wave packet with a width Ax in configuration space has
a distribution around a certain momentum pgy with a width A p in momentum
space, where AxAp ~ h holds. Its group velocity is v = dE/3p| p=p,. The time
at which the particle passes a point xo, is uncertain by Atz ~ Ax/v. On the other
hand, the particle has an uncertainty in energy,

L

%ltrj

AE = Ap=vAp

pP=po

because E = E(p). Therefore we obtain
h~ AxAp =~ AtvAE/v= AtAE .

This is the origin of the “energy—time uncertainty relation”. Therefore, if we
want to measure the energy of a state with satisfactory accuracy, a sufficiently
long time is needed. If this is not possible (for example, because of the finite
“lifetime” of a state), the energy of the state remains uncertain. From this point
of view, the uncertainty relations ApAx ~h and AEAt ~ h are equivalent.
But the physical interpretation is entirely different. A measuring apparatus can
measure a given observable of a physical system at different times (e.g. position,
momentum or energy). Then the time is given by the hand of a macroscopic
clock, which is connected with the apparatus. Hence this time is not an ob-
servable of the quantum-mechanical system itself, but a parameter, which is
described by a real number ¢.

EXERCISE I

4.7 Expansion of an Operator

Let f be a function f(z): C — C, which can be expanded into a Taylor series
f(2) = 3,2y anz". Then the operator f(A) can be defined by

o0
(A)=> "a,A"
n=0

for an “appropriate” operator A

Problem. (a) Why is this definition incomplete? What is actually the meaning
of

lim §, =82

n—0oo
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Exercise 4.7

(b) Prove that
T(a) =exp(ip-a/h) with p=—ikV
is the translation operator; i.e. we have for suitable functions ¥(x)

T(@¢(x) = p(x +a) .

Solution. (a) The definition is incomplete, since we have not explained under
what circumstances a sequence Sy =300 ay AV of operators, which may be
defined on the full Hilbert space H, converges to an operator S. Unfortunately
there are several nonequwalent convergence notions concerning operators. On
the one hand we can say that S, — § means that for arbitrary vectors, ¢, (x) € H
the functions (vectors) relation Sn%(x) — S<pv (x) holds in this Hilbert space.
On the other hand, we can assign a norm

0 10¢, @)
ovxed vl
to an operator O and define that S, — §,if ”S,, -S || = O holds in R. Here we
cannot go further into these problems (or others, like: What is a Hilbert space?
What actually is the momentum operator?). To us, an exhaustive study of func-
tional analysis seems to be indispensable for a mathematical comprehension of
quantum mechanics.

(b) As indicated in (a), we will not concern ourselves with mathematical
“subtieties”.

Let ¢r(x) be expandable in its Taylor series. Then we have:

F@y) =exp (i52) v

_oo_ (—ihV) - a
_,Z'a"’[_—h ]«/r(x)

o0

=yY(x+a) ,

as the penultimate expression is simply the shorthand notation for the Taylor
expansion of the function ¥(x +a) at the point x.

EXAMPLE I

4.8 Legendre Polynomials

The so-called “special functions” of mathematical physics are solutions of spec-
ified linear differential equations of second order, which frequently recur. We



4.10 Total Energy

will discuss a small selection of special functions in this and the following
examples, namely the Legendre functions, the associated Legendre functions
and the spherical harmonics. There are several possible ways to represent these
functions:

(1) as special solutions of specified differential equations (Laplace equation,
force-free Schrodinger equation);

(2) by means of recurrence formulae; or

(3) by means of a generating function (i.e. an |r —#/|~! expansion),

to mention only a few. A valuable aid to studying the Legendre functions (poly-
nomials) is the generating function; therefore we place it at the beginning of our
considerations.

The Legendre Polynomials and Their Generating Function

1

We have frequently met the term |r —#'|~" in solving potential problems:

/1—1 1
|r—r| =
VIF2+ P12 =2]r||F| cos ®

(D

Now we want to expand the root into a power series of the ratio r to r'. To

that end. we dacionat aatar ~f hath valiiag

r and r’. Then certainly r. /r~. < 1 holds and we obtain

1 1
= 2

N2 4172 =2rr cos B , o\ 2
r2 11 —-2=cos 0+<—<)
r rs

1 B 1 -\’
:_{1+r—cosz9+§(3coszz9—l)(r—) i}

rs r. >

\
|

The ¥-dependent coefficients appearing here define the Legendre polynomials:

1 1 & /rn
:—Z(i) Pi(cos D)
< r< 2 > =0 >
ro j1—2—cosv 4| —
rs rs
o ]

= %Pl(cos 9) . (3)

I—n >
=y

3y

th 1lar A th o o of
nat ena, we Gesignaie r as ine smault, ana 7~ as i greater, 61 ooin vaiues o1

Example 4.8
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All P If we write cos ¥ = x, we find for the P;(x) (see figure):
\~U>T el
AN e //; > Pi(x)=ux,
-1 1 1 )
) P P3 ‘ PZ(x) = 5(3x - 1) ’
o 4-1 R

Legendre polynomials
lowest order

of

Py(x) = %(5x3 ~3x)
Py(x) = %(35x4 —30x%2+3) , 4)

or generally according to Rodriguez’s formula, which we will prove in the next
section,

dl

2l_nEx7("‘2 -1, (5)

Pi(x) =

Mathematical Properties of Legendre Polynomials

We recognize that the Legendre polynomials can be introduced as expansion
coefficients of a power series:”

(A=2xt+AH712=Y " Pyt (6)
=0

with x = cos ¢ and |¢| < 1.

We call the function (1 —2xt+12)~1/% the generating function of the Le-
gendre polynomials. By means of the generating function, we now calculate
a recurrence formula for the Legendre polynomials. To that end we define

Flt,x)y=(—2xt+2)7172 =) " P (7
=0

. e VLSS, SR 13
The first derivative with respect to ¢ yields

d —t
o _ X7t p
a1 —=2xt+1?
[o 0] (e0]
A=2xt+1H) Y U P =(x =0 ) 1 Px) ®)
=0 1=0
Comparing now the same power of 7 on both sides of the equation, we easily
obtain
(+1)Py— QI+ DxP+IP; =0 . 9

2 The series converges for |f| < 1 and ¢ € [0, 7] and can be differentiated term by term
arbitrarily often with respect to r and ¥, whereby the series so obtained converges
uniformly with respect to (¢, ) in [—1p. fo] x [0, 7] for arbitrary |f] < 1.
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A second recurrence formula may be obtained from F(t, x) by differentiating
with respect to x,

(1 —2xt+t2)a—F =1tF (10)
ox
and by an analogous procedure,
P/(x) = 2xP]_|(x)+ P|_,(x) = P_1(x) , (11)
with ' = 3/0x. From these recurrence formulae we easily find the relations

Pll+1_xPl,—_—(l+l)Pl s

xPl,_Pl,_l =1P] N
P1,+1 —P_ =2+ DF,
(X —DP =IxP—1P_; . (12)
If we now inspect the generating function for x = 1, we find that
1 o0
Ft,)=——=1+t+0+0+...=) 1P (13)
1—1¢ =

and therefore
PH=1. (14)

Analogously, we find for x = 0 that

F(t,0) = 1:ﬂ_1—4:t —zyﬁmy (15)

and therefore

0 for [odd
P0) =3 (I— D=2 . (16)
— " for leven
202(172)!

The double factorial, characterized by two exclamation marks, is the product
over the odd numbers, e.g. 7! =1 x3 x5 x 7.
Next we derive the so-called Rodriguez recurrence formula,

Pi(x) = ~1. (17)

2111 dxl (
To do so, we use (6) and find the representation

1 d
Hm=ﬂxﬂ—uHﬁrW1. (18)
L. AL | t:O

Example 4.8
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Example 4.8 Now we expand the generating function (1 — 2x¢ + %) ~1/2 of Py into powers of ¢:

N ~1/2) —(1/2)—
. 2y-1/2 _ Y 2y—(1/2)=n
(1—=2xt+19) E ( " (=2x0)" (1 +1°)

\

= Z ( 1/2) (_(1/2) _") (—2x)" " (19)
m
Therefrom we obtain

d 1)y —1/2\ (—(1/2)~n
=2+ _Z(n)( . )

n,m
y (n+2m)!
(n—1+2m)!
Here the sum contains only those terms for which # +2m > [ holds. For t =0,

only a contribution from the terms of the sum with m = (I —n)/2 remains. Thus
we obtain

12\ ( —n—(1/2) )
=2 ( " )(um—(n/m)( )

I+n)!
=Yt (( I 20)

)y (G

If n =2m — [ is inserted, we get

I—m
(_1) 2m! 2m—I
PO =) e o G =B
m

=5 dle( )(—1)’mx2m . 21)

By means of the binomial theorem, we now can easily see that

(-2 )n tn—l+2m )

Pi(x) = -1

21 dx’(
holds, which was to be demonstrated.

From Rodriguez’s formula (17) immediately follows a symmetry of the
Legendre polynomials:

P(=x) = (=1)'Py(x) . (22)

A further important property of Legendre polynomials is their orthogonality.
Thus we consider
+1

Lan =/Pm(x)Pn(x)dx (m<n)
-1

+1
1 1 a m o, "
=2’"+”m!n!]|:dxm(x - H:@(x -b ]dx ) (23)

-1
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Partial integration yields
Coow H -
=Dt rpdttt o, 5
In = 2m+nmgn1/ [dxm+n (x —I)MJ (x"=1"dx . (24)

-1

From this we obtain £,,;, = 0 for m < n, since

(x>2=1)"=0. (25)

,,,,,,

For the case m =n we get

1 n
Ly = 2§n( )')2 /( 2 " dx2n (xz_ 1)ndx
,
— st | (62— D2 =D @i-2)...12n - @n - D] ax
T4
D 2n)!
_ (22”)( (!)r;) / G2 — 1)"dx (26)

By means of the variable transformation x = 2u — 1, we find

1
(=D"2(2n)! / 2
L,=—"——7= Tu—-—D"dy= —— . 27
" ()2 lumDde=5 7
If we combine the two results, we obtain
+1 )
/ P (x)Py(x)dx = mamn . (28)

-1

These are the orthogonality relations for Legendre polynomials.

As a further point of interest, directly demonstrable by taking the orthogonal-
ity relation as a basis, every function f(x), which is continuous and bounded in
the interval —1 < x < 1, can be expanded in a series of Legendre polynomials:

) =) cnPa(x) . (29)

Example 4.8
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The function f(x) can be expanded into P,(x) if the coefficients ¢, of the
expansion can be found uniquely. To that end we calculate

+1 +1

/ Pn(x) f(x) dx = ch ] P () Py () dx

-1

= né:) Cn ﬁamn = Cp ﬁT , (30a)
and thus
+1
Cm = 2'"2“ / P (%) () dx
- (Zmljl 2"’“ / (x d‘lm fx)dx . (30b)

In particular it can be immediately shown that

Sx—x)=3y 2”; L P ) P0) 31)

n=0

holds. Hereby, the completeness of Legendre polynomials was the requirement
for this procedure. In fact, according to Weierstrass’s approximation theorem?®,
every function f(x), which is continuous on a compact interval, can be uniformly
approximated by polynomials, i.e. the set of functions {1, x, x%, x3, ...} is com-
plete on this interval. The Legendre polynomials are obtained by application of
E. Schmidt’s orthogonalization procedure, which of course in no way affects the
completeness.

The Legendre polynomials are solutions of the so-called Legendre differen-

tial equation:
5. d? d
(1—-x )mPn(x)—ZxB;Pn(x)—l—n(n%—l)Pn(x)=0 . (32)

Now, with the aid of recurrence formulae (12) derived earlier, the above propo-
sition can easily be proved:

( 11_"1-IL\Y):nxpil(“x)_nPii—l(r) ’
21dp()+(x 1) 5 Pn(X) = nPy(x) + ]dP()nld (x) .
X— — X X— -

ntXx n n X n n{Xx n 11X

(33)

3 See E. Isaacson, H.B. Keller: Analysis of Numerical Methods (Wiley, New York 1966)
Chap. 5.
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Thus we obtain

2
(

d d
=2-nx—Py(x) —nPy(x)+n—P~P,_1(x) . (34)
dx dx
Insertion into the differential equation yields

d d
0= 2x—P (x)—nx P,(x)—nP, (x)+naPn 1

d
and finally
d d
xazﬂui—a;n400=n&u), (36)

i.e. one of the first recurrence formulae in (12), which proves the above proposi-
tion.

We do not obtain the Legendre differential equation from the Laplace equa-
tion in spherical coordinates after a separation of variables, but the associated

Legendre differential equation (for the angle #, x = cos ¥):

2

2
CPx) ) AP fxz] Px) =0 . (37)

1_2
( x)dx2 &

~I—[n(n+1)—1

For the case m =0, this differential equation transforms into the Legendre
differential equation. The general solution of (37) is the associated Legendre
polynomial P}l (x):

am

Py ) = (1 =)™ Py () (38)
5 ) dn+m 5

= 2”]1'(1 —X )m/ W(x - 1)” . (39)

The following orthogonality relation (n is replaced by / here) can easily be
derived:

+1
‘/HWnHVuNx:

-1

d+m)! 2
d—m) 2011

81 Smm’ - (40)

Usually every function of an orthogonal system is furnished with a factor so
as to yield the value one for the integral over the square of each function. We
then say that these functions are normalized. A system of normalized orthogonal
functions is termed orthonormal. We easily derive from (40) the normalization
factor

Py+nu—mnrﬂ'

21 +m)! “n

Example 4.8
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It will prove useful to define the associated Legendre polynomials for negative
values of m, too. Since the differential equation (37) transforms into itself when
m is replaced by —m,

1 2\—m/2 =
21—”(1 —x7) prpwmry

is also a solution of the general Legendre differential equation. This solution is
a polynomial in x of order [ and is continuous for x = %1, too. Therefore the
solutions P;" and P, can differ only by a factor for fixed / and m (0 <m < 1):

P (x) = (=1

PM(x)= AP™ . (42)

We now determine the constant A by setting x = 1 and dividing by (1 — x?)"/2.
With

rem 47" 5y mal—m I
A=x)™ O = Dl = (D727
—Azl—mﬂ {4+ m)!
a m! {{ —m)!
dl+m
=A (x2—1)1| —1
dxl+m =
we find
—m)!
A= (—1y" (I —m)! ,
(I+m)!
and therefore
_ (—-m)! .
P (x)=(-1)" P"(x) . 43)

(I4+m)!

In the next example we will introduce spherical harmonics. To that end, we
make a short digression to the Laplace equation. This digression will help us to
understand better the physical significance of the differential equation discussed
before. Furthermore, we will see that in order to construct the spherical har-
monics, in addition to the Legendre polynomials P, (x), the associated Legendre
polynomials P,;" (x) are needed, too.

EXAMPLE I

4.9 Mathematical Supplement: Spherical Harmonics

The Laplace Equation in Spherical Coordinates. A scalar potential U, outside
a charge distribution, satisfies the Laplace equation®

I I

+—+—)U(x,y,z)=0. (1)

suts 0= (gt gt g
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If spherical coordinates, (r, ¥, @) with

x=rsindcosp , y=rsin?sing,
z=rcos?, 2)

are introduced, we find:

2 29 18 d 1 ¥
{8r2+r8r+r2( oo 80+sin203¢2)} ©

1 a2 N 1 8 (. o 9 1 9 U—0 @
E—— — J— _— = .
ror2 T Zsmoae U B + r2 sin? ¢ dp?

This differential operator divides into a radial part and an angular part L?:

[
(a2 =z | Vo0 =0, i )
r r

B~

1 2
0 ] } ©)

2 .
= it ——
{sinﬁ 50 " 55 ¥ sin2 9 32

We now state that L2 is proportional (up to the factor i) to the square of the well-
known angular-momentum operator [see (4.73)—~(4.75)]

L=—i(rxV). (7

We have been directed automatically towards this operator in the course of this
chapter [(4.64) pp.]. Here we interpret it solely as a mathematical tool, which
allows us to formulate some operations more concisely.

The operator L acts only on the angles ¥ and ¢. It has the components

ox

A 0 ] 0

YA AT ®
dy /

41In the following we will introduce spherical coordinates as we did in (4.73)-(4.75) for
the angular-momentum operator and draw attention to the fact that we already know
the (4, g)-dependent part of the differential equation from (4.73)-(4.75) on. It will be
considered again in the discussion of the “hydrogen problem” [cf. (9.11)]. See also
chapters on potential theory in J.D. Jackson: Classical Electrodynamics, 2nd ed. (Wi-
ley, New York 1975) and W. Greiner: Classical Electrodynamics (Springer, New York

10000
1990).

Example 4.9
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We can easily verify that
72 72 . 72,712
L=L+L+1L7, ®)

holds [see (4.75)]. Earlier in this chapter we became acquainted with the angular-
momentum operators L;. The operators L; differ by a factor i from those
operators L;, i.e. L; = =hl;’

In order to solve the Laplace equation we use a separation of variables
procedure:

Ulr, 9, 9) = R(NO(, ) . (10)
Thereby we obtain

r(@*/or)(rR(r)) _ L?©
R() e

— I+, (11)

where we have chosen the factor (I + 1) as separation constant without restric-
tion of generality. We now have

2
rza—zR(r) +2r3R(r) =I(l+1)R(r) and (12)
or or
L0, ¢) =11+ 1O, ) . (13)

If now we choose

@ = PME() , (14
for the angular part, we find with the new separation constant —m?:
1 (d/d®)[sin9(d/do)] P& 2
1 (/dIsindd/ NP m
sin ¥ P(9) sin? ¥
(6°/3¢°) E(9) 2
— = —m-. (15)
E(p)
A solution of the g-dependent part is
E@=ceé™: meG, (16)

where we required that E{p) be periodic with 27, corresponding to the chosen
symmetry. For the radial equation one obtains

R(r)=ciri+epr™71 . (17)

> The algebra of angular-momentum operators is investigated in detail in W. Greiner,
B. Miiller: Quantum Mechanics — Symmetries, 2nd ed. (Springer, Berlin, Heidelberg
1994).
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We find for the ©#-dependent part with the abbreviations

cosP=x and sin®=+1—x2 .

0 0

— = ! = 1—~x

oY ax

3? N

— =(1- — — X — 18
3192 =( x) Ax?2 xax (18)

the transformed differential equation (associated Legendre differential equa-
tion),

2
(1—x2)P”—2xP’+[l(l+1)—lm 2}P:o, (19)
— X

with the associated Legendre polynomials P (cos ) as solutions (cf. Example
4.8). Thus we obtain

>im|, leN. (20)

Concerning the fact that / is an integer, we refer the reader to Example 4.8. The
functions thus characterized by two integers / and m are the spherical harmonics

O, 9) = Yim (9, @) = CJ" P/" (cos 9) €™ . (1)

In general the constant CJ" is fixed in such a way that the spherical harmonics
are normalized. To that end we recall that

2(14+m)!
dx' PPy = —— 5y, 22
f R = T 2
holds [cf. (38-40) in the preceding example] and calcu easily
21
/ dpe! "= — 2ng (23)
0

Then we have

7 (I+m)!

A Y;: (9, Crnl 2 S 24
/ Y}, (0, @Y (D, @) = |Cpnl T Ui O (24)

Customarily, in the literature, the normalization constant Cp, is fixed so that

f d$2 Y}, (3, 0)Yim (9, ) = Sy (25)

(9]

Example 4.9
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holds and thus

_[2A+1d-m)!
TV 4 (d+m)!

1
~i

241 (I —m)!

P/ (cos 9)e™¢ . 27
am (qmy 1 CosDle @7

Yim (9, @) =

We point out to the reader that for negative m,

holds. Thereupon we find a symmetry of the spherical harmonics:
Yiem(9, ) = (=1)"Y;, (3, ¢) . (29)

One of the most important properties of spherical harmonics is that every
bounded function f(¥, ¢) defined on the surface of a sphere can be expanded
in a series of the Yy, (¢, p):

oo+l

f,9) =" d"Yim(D,9) . (30)

=0 m=—I

Using the orthonormality of the ¥, (¢, ), we determine the expansion coeffi-
cients d;":

4= [ avo. %, 0.0 (31)
2

EXAMPLE HEEEE——_———m—mmmms

4.10 The Addition Theorem of Spherical Harmonics
In the following we shall prove that

1
4z
Plcosy) = Y Y, WD, ¢)
A+1 &=

o~
[
N

holds, where
cosy =cos ¥ cos ¥ +sin ¥ sin? cos(p —¢') .

This relation is termed the addition theorem of spherical harmonics. In order to
prove it, we expand a Legendre polynomial of order  for the angle y in spherical
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harmonics. Let x’ be fixed in space. Then P;(cos y) is only a function of 9, ¢ with
¥, ¢’ as parameters. Therefore P;(cos y) can be expanded:

oo I
Picos) =Y D Arn(®,¢)Yin(D,9) . )

'=0m=-I

Comparison with (1) shows that only terms with /' =/ seem to appear. [n order
to understand why this is so, we assume that x coincides with the z axis. Then
Pi(cos y) satisfies the equation [cf. Example 4.9, Egs. (5), (13), (20)]

V"2 Pi(cos y)+lU+l)P1(cos =0 3)
. )

2

(differential equation for spherical harmonics, y is the usual polar angle), which
can be checked easily if V'? is written in spherical coordinates. If we now rotate
the vector x to its old position, then V2 passes to V2, and r remains unchanged
(V -V is a scalar product and therefore rotationally invariant). Therefore P still
satisfies (3); consequently, P; is itself a spherical harmonic of order [. Thus P
can only be represented as a linear combination of Y, of the same order /, and
our separation of variables equation reduces to:

l
Picosy) = Y Am(®,¢)Yin(?, ¢), )
m=-—1
with
Am @, @) = / Yy, (0, @) Pi(cos Y)dS2 . (5)
$2

Now we want to determine the coefficients Aj,. To that end we examine the
Y}, (9, ). By expanding the Y} (9, ¢) into a linear combination of spherical
harmonics with angle y and B:

/
Y@ @)= > CimYiw (¥ B) 6)

m/'=—I

Example 4.10
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Example 4.10

with

i = [ Vi@, 95, A2 | ™
)

Here, ¥ and B are functions of ¢, ¥/, ¢, ¢’. If now we choose m’ = 0, we obtain

2A+1)172
Yfé(y,ﬂ)={?} Pi(cosy) ; (8)
then
20412 \
o =14 Pi(cos )Yy, (0, 9)dS2 . 9)
2

Comparison with (5) yields

oy [ 4m 172
mmmwﬁﬂﬂiﬂ o . (10)

We now seek an equation for the ¢ and therefore inspect (6) for y = 0O:

!
Vi 9= Y Y. p), with
@, ) = [0, B), (v, B)] - (1)

We obtain for y = 0:

A+ 1172
Y (8, 9) = —} cio , or (12)

%4

y=0
4z )/~
={— Y! (9, Bl, : 13
clo {2l+1} m Py, Bl oly, B)) o (13)
If we insert this into (10),
A ) = 2y (9, ) (14)
24 m 7

follows, since ¢ and ¢ pass to ¢’ and ¢’ for y — 0. Thus proposition (1) is proved
if we insert this result into our separation of variables equation (4). Often it turns
out to be more advantageous to express (1) in terms of the P;". If we bear in mind
that

({—m)!
(I +m)!

P = (—1)" P, then (15)
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Py(cos y) = Py(cos ) Pi(cos ¥')
4
PP Gl L
L m)t !
m=1
results. For y = 0, we find a formula concerning the squares of Y,:

!

> i@, 0)F =

m=—1

214+1

17
4 {an
Here we have used (14) from Example 4.8. The properties of the spherical
harmonics derived here are extraordinarily important. We will encounter the
spherical harmonics Y}, time and again and come to appreciate them.

4.11 Biographical Notes

HERMITE, Charles, French mathematician, *Dieuze 24.12.1822, } Paris 14.1.1902.
H. grew up in a comfortable, bourgeois family as the son of a textile merchant. At an
early age he became so involved in research that he had difficulties nassma his obliga-
tory examinations. He studied for just one year at the Ecole Polytechnique and only w1th
help of friends became qualified to teach in 1847. His scientific results, mostly on elliptic
functions, modular functions, theory of numbers and invariant theory, were recognized
only late. H. coordinated the ideas of Gaussian arithmetic, Abel’s and Jacobi’s elliptic
functions and Cayley’s and Sylvester’s algebraic invariant theory and developed them
further. Not until 1870 did he become a professor at the Sorbonne. In 1873 he proved
the transcendency of e. He was in correspondence with many famous contemporaries

T i 1 Hea
and was determined to break down national barriers in the scientific struggle. He was

a teacher and promoter of Stieltjes, Darboux, Borel, Poincaré and others.

SCHMIDT, Erhard, German mathematician, *Dorpat (Tartu), tBerlin 6.12.1959. S.
studied in Berlin and Géttingen, graduated in 1905 and became a professor in Ziirich
in 1908, 1909 in Erlangen, 1911 in Breslau (Wroctaw) and 1917 in Berlin. He worked
primarily on integral equations and isoperimetric problems.

WEYL, Claus Hugo Hermann, German mathematician, *Elmshorn 9.11.1885, | Ziirich
9.12.1955, became a professor at the ETH Ziirich in 1913, 1930 in Géttingen; went to
the Institute for Advanced Study in Princeton, USA in 1933. After working on the the-
ory of differentjal and integral equations, W. connected topological considerations with
the concept of Riemannian surfaces and made great progress in the theory of unifor-
malization. His fundamental publication, Raum, Zeit, Materie (1918, 1961, lectures),
originated from meetings with A. Einstein. He developed an integral method for the
representation of mathematical groups used in quantum mechanics, which contrasted
with the infinitesimal method used by S. Lie and E. Cartan. W. supported intuitionism

Example 4.10
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(a method for a constructive foundation of mathematics) and tried to closely combine
mathematics, physics and philosophy in his own work. He was first in considering local
gauge invariance as a general principle in theoretical physics.

LEGENDRE, Adrien Marie, French mathematician, *Paris 18.9.1752, {Paris
10.1.1833. L. greatly shared in the foundation and development of number theory and
geodesy. He also made important contributions to elliptic integrals, to the foundations
and methods of Euclidean geometry, to variation calculus and to theoretical astronomy;
for example, he first applied the method of least squares and calculated extensive ta-
bles. L. concerned himself with many problems in which Gauss was interested, too, but
never reached the latter’s perfection. From 1775 on, L. worked as a professor at various
Parisian universities and published outstanding, infiuential textbooks.

DIRAC, Paul Adrien Maurice, *Bristol 8.8.1902, 1 Bristol 1984. D. studied at Bristol,
Cambridge and at several foreign universities. He was appointed professor of mathe-
matics in 1932. D. is one of the founders of quantum mechanics. The mathematical
equivalent created by him consists essentially of a noncommutative algebra for the cal-
culation of the properties of the electron; he predicted the existence of the positron in
1928 and contributed fundamentally to quantum field theory. D. was awarded the Nobel
prize in 1933.



5. Mathematical Supplement

5.1 Eigendifferentiais and the Normalization of Eigenfunctions
for Continuous Spectra

We begin our discussion with the eigenvalue equation
Ly(x, L) = Lp(x, L) (5.1)
At hay

which is supposed to have t L
eigenfunctions y(x, L). Now we integrate (5.1) with respect to L over the small
interval AL, and obtain

L+AL

LAy(x, L) = f Ly(x, L)dL , (5.2)
L
L+AL

Ay(x, L) = / wix, LYdL (5.3)
L

is called the eigendifferential of the operator L, introduced (as mentioned ear-
lier) by the great mathematician H. Weyl. The eigendifferential is a special
lar to the previously studied wave groups; hence, it vanishes at infinity and
therefore can be seen in analogy to bound states. Now we show that indeed
the functions v¥(x, L) are not orthogonal, but the eigendifferentials Ayr(x, L)
are. Furthermore, because the Ayr(x, L) have finite spatial extension, they can
be normalized. Then in the limit AL — 0, a meaningful normalization of the
functions ¥(x, L) themselves follows: the normalization on § functions.

To begin with, we form the complex conjugate expressions of (5.1) and (5.2),

i.e.
L*y*(x,L"y=L"y*(x, L") , (5.4)

L'+AL
L*Ay*(x, L") = f L'y*(x, L"ydL' , (5.5)
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L
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Fig. 5.1a,b. Nonoverlapping
(a) and overlapping (b) in-
tervals in the eigenvalue
spectrum

where we have renamed the continuous eigenvalue in L’. Multiplication of (5.2)
by Ayr*(x, L'), and of (5.5) by Ay(x, L), and subsequent subtraction yields

r . .
/ dx[Ay*(x, LYLAY(x, L) — Ay(x, LYL*Ay*(x, L")]
L+AL L'+AL’
= / dx f dL f dL'(L — L"yy*(x, L y(x, L) .
L L
Since L is Hermitian, the left-hand side vanishes. As the intervals AL and AL’

should be small, we can place (L — L") outside of the triple integral, by using the
mean-value theorem from integral calculus, and obtain

(L—L" f dxAY*(x, L) Ay(x, L) =0 . (5.6)

In the case where the intervals AL and AL’ do not overlap (see Fig. 5.1), L # L'

holds, and from (5.6) the orthogonality of the eigendifferentials follows:
f dxAy*(x, L)Ay(x, L'y =0, for L#L" . (5.7

The situation is different when the intervals AL and AL’ overlap (see Fig. 5.1).
First we show that the integral

N= f dx Ay*(x, L) Ay(x, L) (5.8)

is small, of the order of AL. We can see this by writing for (5.8):

L+AL

N:/dxmp*(x, LYAY(x, L):/dxmp*(x, L) / Vix, L)dL
L

L
:[ dxAy*(x, L)/lﬂ(x, LydL , (5.9)
Ly

where Ly and Lj are chosen in such a way that the interval (L, L 4+ AL) is
located inside of the interval (L1, L) (see Fig. 5.1). As aresult of the orthogo-
nality (5.7) of the eigendifferentials, the contribution of the intervals (L, L) and
(L + AL, L») to the total integral vanishes in the last step of (5.9). If we let AL
tend to zero, it will become apparent that N tends to zero like Ay*(x, L); hence
it is proportional to AL. Therefore we can always achieve, by an appropriate

normalization of Ayr(x, L), that

lim N =1 (5.10)
A£—+0 AL~ ’
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ie.
/ dxAy*(x, L)AY(x, L) = AL

for AL — 0.
We now combine results (5.7) and (5.10) in the following orthogonality
condition for eigendifferentials:

AL for overlapping intervals

/ (L,L+AL)and (L', L' + AL
/ dxAY* (x, LYAy(x, L) =

0 for nonoverlapping intervals
| (L,L+AL)and (L', L'+ AL’) .

This allows a further transformation for small AL, namely:
L+AL

/ dxAy*(x, YAy (x, L) = f dxAy*(x, L) / wix, L)dL

, AL for overlapping intervals
—/dxAlﬁ*(x,L)lﬁ(x, L)AL = 0

for nonoverlapping intervals .
(5.11)

After division by AL this becomes

[1 if the point L’ = L lies within
the interval (L', L'+ AL")

if L does not lie within the interval
(L', L'+ ALY .

/ dxAY*(x, L) Y(x, L) =

This can also be written as
L’-I—’.AL’

o . [1 if L =L inthe limit AL’ — 0
J ol [asyr e v 1 =
0 if L # L inthelimit AL’ -0 .
L/
(5.12)
The expression
/ dxy*(x, L)Y(x, L) = 8(L — L") (5.13)

obviously must be Dirac’s delfa function, already familiar to us from electrody-
namics, for which, according to (5.12),

L/+AL’ . - 3 . .
1 if L lies within the interval AL’

0 if L does not lie within the interval AL’ ,
(5.14)

dL'8(L—L") = [

L/
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L r
Fig. 5.2. Two functions which
approximate the &(L —L')
function

holds. From this relation, we immediately get the familiar property
b
Jf FUANS(L — L)AL =

a

I (L) if L is located in (a, b)
[0 if L is not located in (a, b) ,

-~
(n
—
.

-

for, according to (5.14), (L — L’) has to be localized as a function of L’ around

the value L so as to always yield for the integral |’ L,’+AL’ ... dL’ over L the value
one (see Fig. 5.2).

Normalization (5.13) for the functions v(x, L) of the continuous spectrum
has grown out of normalization (5.11) for the eigendifferentials. Instead of
speaking of the orthonormalization of eigendifferentials, we can say accord-
ing to (5.13): the functions ¥(x, L) of the continuous spectrum are normalized
on 8 functions. Hence this normalization on § functions in the continuous spec-
trum corresponds exactly to the normalization on Kronecker’s 8, in the discrete
spectrum (cf. Sect. 16.4).

5.2 Expansion into Eigenfunctions

We make the mathematical assumption that all eigenfunctions of an operator L,
which we call ¥,,(x) and which belong to the eigenvalues L, constitute a com-
plete set of functions. By this we mean that each arbitrary function v(x) can be
expanded in terms of these eigenfunctions ,, (x):

Y =) ann (x) . (5.16)
n
We can easily determine the a, because of the orthogonality of the ,:
(¥n|¥m) = 8pm. Multiplying (5.16) on both sides by v, (x) and integrating over
x yields

s oN_ IR 7o N1 V\ fll\l*/\‘ \_\ o - e 2
jf YX)PuX)ax = ) dyn j Yo X))V (X)AX = D GnOpm = Ay . ©.17)
n n
We should notice the analogy between expansion (5.16) and the expansion of
a vector A = Zi a;e; in an orthonormal vector basis e;. Therefore the expan-
sion coefficients a, in (5.16) can also be interpreted as components of the vector
(state) v in the basis ¥,. If we insert (5.17) into (5.16), we obtain

r \ rf \
Y=Y ( j VO () dx’) V(%) = ] (Z U () (x)) Y(x)dr'.

(5.18)

In order for this identity to hold for each arbitrary function ¥(x), obviously

D YW (x) = 8(x —x) (5.19)
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must be valid. This is the so-called closure relation, which also follows directly
by expansion of the § function in the v, (x):

— I
§x—x)=) anyn(x), an= / Yn()8(x —x)dx = Y5 (x) ,

and therefore

3x—x) =) Yn( )W (x) - (5.20)

If a function as singular as the §(x — x’) function can be expanded in terms of the
set 1, (x), it must be complete (or closed); hence the name *‘closure relation’.

EXAMPLE S

5.1 Normalization of the Eigenfunctions of the Momentum Operator p,

We know the eigenfunctions of the momentum operator

W, (x) = Cp, exp (i%f) ,

where C,_ is a normalization constant, which here has to be determined and can,
in principle, depend on py. p, is the eigenvalue of momentum with the continu-
ous spectrum —oo < p, < 00. In order to determine C),_, we form, according to
(5.13), the integral

[ 5000

(o9}
, —_—
=C} C), / exp (—i—(‘”x ﬁ”")x) dx

—00

n
. (P — po)x ) dx
_Cp;Cpxhnli)ngo/exp( i 7 F
—n
=C* Cp i lim 2sin(py — pin .
Px 7% n>o0 Py — Px
In Example 5.2 we will show that

sin(nx)

lim
n—o00 X

= 5(x)

is valid. Therefore the above expression can now be written as follows:

[ v =cycp2mhsp - p)
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Example 5.1

In order to achieve normalization (5.13) on § functions,
1
J27h

Vo Livd

ICpP27h =1, ie. Cp =

must hold. A possible phase factor ¢!¢(Px), which does not affect anything, was
set equal to one in the last step. Consequently, the orthonormalized momentum
eigenfunctions are

1 PxX
Vp, expii 3
V2nh
1 i H ic ahviniiely rend
The three-dimensional generalization of this obviously reads

Yp(r) = Yo, (x)llfpy MYp,(2)
-1 . (ipxx+pyy+pz2)

= Janhy 3
! P
= PR exp (1 F ) .

These are, as is immediately clear, normalized as

o0

/ Y (YN d’r = / Yy () Yp, dx

-0

< [0 [ v

— —0
= 8(pP — p)S(P}y — py)8(p, — p) =8(p' — p) .

The last step comprises the definition of the three-dimensional § function.

EXAMPLE I

5.2 A Representation of the § Function

In accordance with the definition

0(x)=0 for x#0 and

&
.] 3(X)dx=jf5 xydx =1
as well as

/ f)s(x)dx = f(0) ,
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the 8 function must be an extremely singular function.! As already frequently
mentioned, we can visnalize that §(x) equals zero everywhere except at x =0,
where it takes on such large values, that the area between §(x) and the x axis
yields exactly the value one (see besides figure).

The § function can be represented in a more formal way by a set of analytic
functions ¢, (x), so that

8(x) = lim ¢y (x) .

These functions ¢, (x) must have the property (see figure) of constantly in-
creasing at x = O for large values of n and decreasing continually for x # 0, so
that

o0

/ Pn(x)dx =1

—c0

remains valid for every n. There are many sets of functions which satisfy these
conditions. In this case we speak of various representations of the § function. An
especially advantageous representation is given by the functions

sinnx

Pn(x) = ) (D
X

where 7 is a positive number (n € Np). Obviously
n
pn(0) = — ()
T

holds.
In addition, the ¢, (x) oscillate with the period 27 /n and have decreasing
amplitudes for [x| — oo. Moreover, for all ¢,

o9} o0

sin nx

/ «)n,(x)dx=4] v -1 3)

holds. This is obvious for the limit n — oco. Then ¢,(0) =n/7 tends to oo,
and the oscillation period nAx = 2x, i.e. Ax = 2m/n, tends to zero, so that the
contribution of the rapidly oscillating function to the integral vanishes in the do-
main x # 0. Then only the contribution from the surroundings of the point x =0
remains (see figure). This yields

(p(O)Ax:EZ{—:l .
TR

LA stringent mathematical foundation of the & function was given by Laurent Schwartz.
We draw special attention to the elegant paper by C. Schmieden, D. Laugwitz: Math-

ammationkha ToitcalaFe LO 120 /1QK5QN
Cliiatdviic OVt vz, 1—07 (1700).,

on(z)

-

Two approximation func-

tions @, (x), with [ @a(x)
dx =1, which tend to the
8(x)-function for n — oo

4 10
n ]
~ 1! ';[\1

Y

The functions @,=jo(x) and
(ﬂn:ZO(x)
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Example 5.2 Hence functions (1) have all properties of the § function in the limit # — oo, and
we can write
5(x) = Tim sinnx

We list (without proof) some other representations of the § function:

1 —cos t(x — xp)

(@) d(x—xg) = l lim

T >0 T(x — x0)2
1 . £
A (b) 8(x—x0) = — lim ————5— .

W eEé—u X Ap)-1TE€

(¢) Let 6(x) be Heaviside’s step function (see figure)

—
z I forx>0
6(x) =
Heaviside’s step function 0 forx<0.

Then the relation
O(x — xp + &) —O(x — xp)
£

3(x — x0) = Sll_r:%
_ dé(x — xp)
T dx

holds. This means: the distribution § is the derivative of the Heaviside distribu-
tion. The integral relation

X—=X0
0 forx <
9(x —xp) = / 3(x' —xp)dx’ = I r=x0
I for x > xg
—00

is immediately clear.

(d) 8(x —xp) = lim ! exp [ (r—x0)*]
b0 b | B2
1 1

(e) 8(x—xp) =[}ER) Vb 14 [(x —x0)21/p2

EXAMPLE I

5.3 Cauchy’s Principal Value

A further, very useful, relation follows from the identity

1 X Fig x ie

= = ¥ . (1)

xtie  x2462 x2462 T x24¢2
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If we inspect integrals of the form

x OO
[ f
) e _hm/ /) 2+ i ®
-0
Fi hm/f(x) P 2dx 2)

the last term on the right-hand side yields, according to relation (b) stated in
Example 5.2,

Fi llm / f(x) d.x—$17r / f0)é(x)dx = Fim f(0) . 3)

The first term in (2) can also be rewritten as

o0
X
li ——dx
tim [ foo—
—c0

—& o0 &
. drx . dx . J(x)x
= —+1 —+1 ——dx
i [ et [ |52
—&
[ xdx
=P / @dx—}—f(O) hm/——i . @
Zte
—&
Here, P designates Cauchy’s principal value,
T o [ 7 T x
JX) T Jx) S(x)
Pj xdx_g%[/ dx-l—/ » J (5)
—0 —00 &

The second term in (4) vanishes because the integrand is an odd function even
in the limit ¢ — 0. Therefore we now can write (2) as

1 f f(x) =p f Q dx =im A €N
-0 | x*tie X TR w7
—00 —00
This can be summarized symbolically in the simple, often-used formula
. |
lim — = P—Find(x) . @)
>0 x Tig X

Example 5.3
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Two beli-shaped curves

EXERCISE I
5.4 The & Function as the Limit of Bell-Shaped Curves
Problem. Show that the § function can be represented as the limit of the “bell-

shaped curves”,

y(x,e) = 71_18[x2 -1—82]“1 (e>0).

Solution. The bell-shaped curves become narrower and higher with decreas-
ing ¢ (see figure with €; < &). We have

0 forx#0

I &)=
Lim y(x. &) [oo for x=0 |

but the areas below the curves always have the value

—+0o0 oo

f . 1 x|

/ y(x, £)dx = — arctan — =1,
J b4 €| _0o

independently of . Now we examine the integral

+00
F(e) = / J(x)y(x, e)dx

for a continuous, bounded function f(x) as function of the parameter . We
substitute x = ¢£ and obtain

+00
H@=fﬂ%@%,wﬂ

+00

! and / g®dé=1.

1
8¢ = 281

This integral now converges uniformly according to our assumptions, for an
M € R independent of ¢ exists with | f(¢£)g(&)| < Mg(§). Now we have a the-
orem at hand which then guarantees that F(¢) is continuous. Hence we have
limg_, 0 F(e) = F(0) and thus

+o0o
lim f F(x)y(x, &)dx = lim F(e) = F(0)

+oo +00

:fﬂM@@zfﬂmmm

—00 -0
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for arbitrary continuous bounded functions f. Consequently we can write

3(x) =“lim y(x, €)” .

&—>U

The quotation marks should remind us that the limit £ — 0 may not be performed
before the integration over a test function.

Exercise 5.4






6. The Schriodinger Equation

In classical mechanics it is possible to calculate, for example, the vibrational
modes of a string, membrane or resonator by solving a wave equation, subject
to certain boundary conditions. At the very beginning of the development of
quantum mechanics, one was faced with the problem of finding a differential
equation describing discrete states of an atom. It was not possible to deduce ex-
actly such an equation from old and well-known physical principles; instead, one
had to search for parallels,in classical mechanics and try to deduce the desired
equation on the basis of plausible arguments. Such an equation, not derived but
guessed at intuitively, would then be a postulate of the new theory, and its valid-
ity would have to be checked by experiment. This equation for the calculation
of quantum-mechanical states is called the Schrodinger equation; let us now
“derive” it.

In relativistic classical mechanics, time coordinates and spatial coordinates
as well as energy and momentum are treated as the four components of a four-

vector. i.e
vector , 1.e.

E
xy = (r,ict) , pvz(p,i—-) , v=1,2,34. 6.1)
c

By enlarging the operator representation of the three-dimensional momentum to
a four-dimensional, relativistic covariant vector-operator we get

(p;—ﬁ =—1nfil=—ih(iii a \; (6.2)
"¢/ [ ox, ) \ox 3y 9z d(ict) /

Both sides of this equation are four-vectors. By comparison, the energy is
replaced by the following operator:

A .. 0

E =ik i (6.3)
We remember here that we already had an operator for the energy in (4.83),
namely the Hamiltonian H of a particle. Obviously we have two operators for
the energy. Both £ and the Hamiltonian H describe the total energy and can
therefore be set equal. This generates the Schrodinger equation.

E¢(r, 1= ﬁl/f(r, t) or ifia%lp(r, N = ﬁlﬁ(r, 1) with

A=-Lasve . (6.4)
im
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6. The Schridinger Equation

Using the wave function of a free particle (de Broglie wave),

i
Y(r,t) = Aexp [_ﬁ(El —p-r)]

= Aexp (% Z p,,x\,) = Aexp (%ﬁf) , (6.5)

we find that the operator £ has the total energy E as an eigenvalue.
The Schrddinger equation (6.4) is not a relativistic equation. Indeed, starting
from

E? = p? 4 mdct (6.6)

for the energy of a free relativistic particle, the free Klein—-Gordon equation
follows, i.e.

2
_ 52%1#(,, B = (—h22A+m3u(r. 1) . 6.7)

The Schrédinger equation and the Klein—Gordon equation are linear dif-
ferential equations; this means that with ¥ and i, the function defined by
Y =ay + by is a solution, too. This is the mathematical formulation for
the principle of superposition, which was discussed in Chap. 3. Schrédinger’s
equation is of first order in time and second order in space; the Klein—Gordon
equation is of second order in both space and time. We suppose that the wave
function at time #y contains all the information about how the state propagates
if there are no external perturbations. Only Schrodinger’s equation as a first-
order differential equation in time satisfies this requirement. The Klein—~Gordon
equation, being important in relativistic quantum mechanics, needs to be reinter-
preted. The Schrddinger equation (6.4) contains the imaginary unit i as a factor,
which implies that oscillating solutions are possible.

It is separable into time and space, if the Hamiltonian H=H(, p) is not
explicitly time dependent:

Yr(r, 1) = y(r) f(2)
and therefore
0 R
ih(r) Ef(t) =[Hy¥(n] f(D) . (6.8)

[Since y(r, £) and ¥ (r) are two different functions, this should not lead to any
misunderstanding.] After separating the variables, one finds the equation
i F@  Hy(r)
S Y(r)

This means for the time-dependent function

=const=F . (6.9)

f(#) = const exp (—i%) ) (6.10)

\
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The function with the spatial argument (r) solves the stationary Schridinger
equation

Hy(r) = EY(r) . 6.11)

The wave function (r,f) is periodic in time, with the phase factor
exp[—i(£z/h)], and that is why the densities ¥*1 and also, as we shall see, the
currents are time independent. Equation (6.4) is an eigenvalue equation of the
Hamiltonian, with E being the real energy eigenvalue. The general solutions of
(6.4) are oscillating functions in time,

Ynlr, ) = Ya(r) exp (—1%) , (6.12)

with the normalization

[ i ovanav = [wiownmaey =1 (6.13)

afinad nd to nfinita qta
Any oLut‘LGnary state ¢ COorres p"ﬂds tG ‘v‘vuu-d\,uuuu energ_y ana o an innnite sta-

bility in time. It has the character of a standing wave because the density of
probability given by ™y is time independent. This is not true for a linear
superposition of stationary states.

EXERCISE I
6.1 A Particle in an Infinitely High Potential Well

Problem. A particle of mass m is captured in a box limited by

0<x<a; O0O=<y=<b; 0=z=<c.
The corresponding potential is given by
Ve 0 if O<x<a; O<y<b; O<z<c
oo elsewhere .
(See figure.)
Solution. The Hamiltonian is given by
N A A hz
H=T+V=-§—A(x, Y, 2)+Vix, y,2) . (D
m

Inside the box: Here we have the potential V = 0 and the following stationary
Schrédinger equation:

R I CH
—5 “‘2‘“‘2*_2) ¥ix, v, 2) = E(x, y,2) . @

P 442

The potential along the
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Exercise 6.1

We are going to solve this problem using the well-known separation of variables
procedure:

"'/’(.,‘C Ry} Z) —

., Y (Y3 (2) . 3)

This leads to three separate equations connected by the constants of separation
—k% (the constants squared are chosen to be negative, this does not conflict with
the general case, since the constants themselves are allowed to be imaginary):

1 &yix

TD) _ g2 =123,
Yilx)  dx;
X]=Xx, X2=Yy, Xx3=2. @)

The solutions of these different equations are simply
¥ (x;) = const sin(k;x; +96;) .
The total solution inside the potential well is therefore given by
Y(x, y, 7) = Asin(kix +81) sin(kpy + &) sin(ksz +83) 5

where A is a normalization factor and §; are phases which must be determined.

Qutside the potential well: The wave function must vanish here, because V is in-
finitely large; otherwise there would be an infinitely large potential energy, since
(¥ |V(r)|y) diverges. Since the wave functions have to be smooth, we get two
sets of boundary conditions:

Yx=0,920=90ky=0,2)=y(x,y2=0=0,
and
¢(X=aa)\z)=¢(x,y=b,z)=¢(x,y,Z=C)=0- (6)

The first set requires §; = 6, = 83 = 0. The other set gives a quantization condi-
tion:

aky =nmyn , bky=nyn , ckz=n3m

and therefore

T T b3
ki=n1—, k=nmn—, kx=n—. (7

a b c
Here, ny, np, n3 ==%1; £2; £3; ... are independent quantum numbers. The

possibility of choosing n; = 0 must be excluded, because the corresponding
wave function (see the end of this exercise) would vanish everywhere. The total
energy is

h2
Ezﬂ(k%+k§+k§) ; 8)
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it can have only discrete values, namely
2 2
Einon: = f [(mz\ +(n7£\ +(m£\-| (9
m

This discrete energy spectrum is converted into a quasi-continuum when the
mass m or the extension of the box becomes very large. The lowest energy value

un= g [(5) + G+ ()] W

is not zero, as one would expect classically. This is the first example of non-
vanishing zero-point energy (see the extended discussion in connection with the
harmonic oscillator, Chap. 7).

The solution inside the box

Vninans (1) = A sin(kix) sin(kzy) sin(k3z) (1n

must yield a unit total probability, which means that

1=j w:|n2n3wnln2n3dv

a b c
=1|A|? / sin?(kjx) dx f sin” (ko y)dy f sin?(k3z)dz
0 0 0
abc
=—|Al? (12)

and therefore the normalization factor equals

Al=y=7= (13)

The energy spectrum is shown in the next figure.
We took a < b < c; therefore the level Eyq is energetically higher than the

ln‘u:]c E‘.,, and F. and the relatian F..: ~ F- L. halde In tha rage 1n
w¥wiD ‘_4] l aLing l‘llz, ALING UL LTviauivias ‘_JLll - ‘_IJLI / ‘_lllL llv‘uo ALl IV VAdow 111

which a, b, and ¢ do not differ too much, all these levels are close together. Then
we speak of a triplet (in general a multiplet), of states. For a = b = ¢, the particle
moves in a cube, and all states belonging to a triplet are degenerated in energy.
We have then

Er1 = Ep = Ej2 . (14)

he wave functions of
ne wave runctions of

uv, AVARL . 3

8 . 2 . wm . m
Exyt: Yo = — SIn—x sin —y sin —z ,
a a a a

8 /4 2n i
E121 : 1#121 = 3 sin —x sin —y sin —z ,
a a a

/8 .7 . mw | 2n
E112: Y12=./—sin—x sin—y sin —z . (15)
y a’ a a a

Exercise 6.1

3

§> shell gaps
3

I1

Energy levels for a particle

within a rectangular box
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al b

XX
x
D

9
X X|x
X X

X
o O
o 0

p 4
p {
(]
o}

Nuclei in (a) the ground
state, (b) the excited state;
(x) stands for a proton,
(o) stands for a neutron

a) b)

x

XXX
XXX
XXX

X

O QOO
® 9o
o G0

X

K
X
q

X
X

Magic nuclei in (a) the
ground state, (b) the ex-
cited state. Comparison with
the diagram above shows
a much higher excitation
energy

—a a

T

If we break this degeneracy slightly, the volume is approximately that of a cube
and the three levels are close together in energy, as we just pointed out. For states
of higher energy we observe an equivalent phenomenon. For instance, there are
two triplets (because of a slight break in the cube’s symmetry) close together,
namely Y221, Y122, Y212 and ¥311, Y131, Y113, followed by one single state
(a singlet), namely rp72. Such multiplet structures of states are identified with
“shells”. Shell models explaining shell structures are important in atomic and
nuclear physics. For example, in nuclear physics all nucleons in a nucleus are
supposed to be in a potential well. Of course this potential well is spherically
symmetric, but for small nuclei a boxlike potential is an acceptable approxima-
tion. Because of the spin of the proton and the neutron (compare later Chap. 12)
and the Pauli principle (compare later Chap. 14), only two protons and two neu-
trons can be put into each level. We start by filling the lowest energy levels
individually, because the system prefers the state of lowest energy. Here, the
“last” particle determines the most ““visible” properties. If this last state is in-
side a multiplet, then a small excitation energy suffices to lift that particle into
a higher state of energy; the nucleus is then easily excitable.

If we consider a nucleus that contains just the number of protons and neutrons
to fill a shell, then much more energy will be required to excite a nucleon into the
first excited state. Such nuclei are particularly stable, because they can only be
destroyed (i.e. strongly excited) if large energy gaps are overcome. In such a case
we speak of magic nuclei (comparable with filled electron shells in the atoms of
inert gases) or double magic nuclei.!

-r

EXERCISE

6.2 A Particle in a One-Dimensional Finite Potential Well

Problem. Solve the one-dimensional Schrodinger equation for a finite potential

well described by the following potential (see figure)

-V if
0 if

r's

Vix) = {

x| <a
x| >a .
Consider bound states (£ < 0) only.

Solution. (a) The wave functions for |x| < a and |x| > a. The corresponding
Schrodinger equation is given by

h?
— ﬁ P (x)+ V()Y (x) = Ey(x) where

d%y

"
V=L

ey

1 For an extensive discussion of the nuclear shell model, see J. M. Eisenberg and

W. Greiner: Nuclear Theory, Vol. 1, Nuclear Models (Collective and Single Particle
PLonam

ena) 3rd ed (North-Holland. Amcsterdam 1087)
fnenomena), 514G ed. (INOrt-rioliang, Amsieraam 178/ ).
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We define, for the sake of brevity,

K== "2 2
and get:

(1) ifx<-—a: Ul — kY =0,

Y1 = Aj exp(kx) + By exp(—«kx) ; (3a)
2) if —a<x<a: Y +Ky,=0,

Yy = Az cos(kx) + B; sin(kx) ; (3b)
3) ifx>a: kM3 =0,

Y3 = Az exp(kx) + Bz exp(—«x) . (3¢)

(b) Formulation of boundary conditions. The normalization of the bound
state requires the vanishing of the solution at infinity. This means that B) = A3 =
0. Furthermore, y(x) should be continuously differentiable. All particular solu-
tions are fitted in such a way that v as well as its first derivative Y’ are smooth
at that value of x corresponding to the border between the inside and outside.
The second derivative " contains the jump required by the particular box-type
potential of this Schrodinger equation. All this together leads to

Vi(—a) =y2(=a) , VY2(a) =¥3a) ,
Yi(—a)=y3(=a) , Y@ =3 . “

(¢) The eigenvalue equations. From (4) we obtain four lin
neous equations for the coefficients Ay; Az; Bz; B3; namely

a
&
p:‘»
3

Ay exp(—«a) = Ay cos(ka) — By sin(ka)

«A1 exp(—«a) = Azksin(ka) + B2k cos(ka)

Bs exp(—«ka) = A; cos(ka) + By sin(ka) ,

— kB3 exp(—ka) = —Azkssin(ka) + Byk cos(ka) . &)
By addition and subtraction of these equations, we get a more lucid form of the
system of equations, which is easy to solve:

(A1 + B3) exp(—xa) = 2A; cos(ka)

k(A1 + B3) exp(—«a) = 2Azk sin(ka)

(A1 — B3) exp(—«ka) = —2 B sin(ka)

k(A1 — B3) exp(—ka) = 2Bk cos(ka) . ©)
Assuming that A; + B3 # 0 and A, # 0, the first two equations yield
x = ktan(ka) . @

Inserting this in one of the last two equations gives

Ai=B3z; By=0. (8)

Exercise 6.2
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Exercise 6.2

The intersections of these
curves determine the energy
eigenvalues

Hence, as a result, we have a symmetric solution with y(x) = y(—x) . We then
speak of positive parity.
Almost identical calculations lead for A1 — B3 # 0 and for B, # 0 to

k=—kcottka) and Ay =—-B3; A,=0. €]

The thus-obtained wave function is an antisymmetric one, corresponding to
negative parity.

(d) Qualitative solution of the eigenvalue problem. The equations connect-
ing « and k, which we have already obtained, are conditions for the energy
eigenvalue. Using the short forms

E=ka, n=«a, (10)

we get from the definition (2)

2
E+n =37 = an
On the other hand, using (7) and (9) we get the equations

n=gtan , n=-—-§cot(f) .

Therefore the desired energy values can be obtained by constructing the intersec-
tion of those two curves with the circle defined by (11), within the (£, ) plane
(see next figure).

At least one solution exists for arbitrary values of the parameter Vg, in the
case of positive parity, because the tan function intersects the origin. For nega-
tive parity, the radius of the circle needs to be larger than a minimum value so
that the two curves can intersect. The potential must have a certain depth in con-
nection with a given size a and a given mass m, to permit a solution with negative

€2 492 =12

1 n=¢{tan{

{
{
(
1
1
[
t
[
1
1
1
1
b
'
i

W

Pa)
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parity. The number of energy levels increases with Vy, @ and mass m. For the case
mVa? — oo, the intersections are found at

tan(ka) = oo corresponding to  ka = 2ﬁ2_ ! T,
—cot(ka) = o0 corresponding to  ka =nm
n=1,2,3,... (12)
or, combined:
k2a)y=nm . (13)
For the energy spectrum this means that

On enlarging the potential well and/or the particle’s mass m, the difference
between two neighbouring energy eigenvalues will decrease. The lowermost
state (n = 1) is not located at — Vp, but a little higher. This difference is called the
zero-point energy. We will come back to it later when discussing the harmonic
oscillator (see Chap. 7).

(e) The shape of the wave function is shown for the discussed solutions in the
two figures.

EXERCISE I

6.3 The Delta Potential
Suppose we have a potential of the form

Vx)=—-Vpd(x) ; Vo>0; xeR.

The corresponding wave function ¥(x) is supposed to be smooth.

Problem. (a) Search for the bound states (FE < 0) which are localized at this
potential.
(b) Calculate the scattering of an incoming plane wave at this potential and

find the coefficient of reflection

2
R— |¢refl

 Yinl? |

where Vet, ¥in are the reflected and incoming waves, respectively.

’

arnmoidan thha Timie o o N
1IU CULIDIUCTL UIC 11L& —7 U,

Hint: To evaluate the behaviour of y(x) at x =0, integrate the Schrodinger
3 \ nnAd
, Ya

Wave functions with posi-
tive parity; they are symmet-
ric relative to the origin

Wave functions with nega-
tive parity; they are antisym-
metric relative to the origin
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Exercise 6.3

Solution. (a) The Schrodinger equation is given by

h? d?
[_E@ - V05(X)] V(x) = Ey(x) . (D
Away from the origin we have a differential equation of the form
d? 2mE
) Y(x) = — —hTW(X) : )
The wave functions are therefore of the form
Y(x) =Ae P+ Bef if x>0 or x<0, 3)

with B =/—2mE/h? € R. As ||> must be integrable, there cannot be an ex-
ponentially increasing part. Furthermore the wave function should be continuous
at the origin. Hence,

Yy =AM x<0),

Yy =Ae P (x>0 . @
Integrating the Schrédinger equation from —e to +¢, we get
+e
h? ,
—EﬂW@—w&m—wwm:E/wnwwkwmy )
—&
Inserting now result (4) and taking the limit ¢ — 0, we have
=2
n-
—2—(—/314—/314)— VoA =0 (6)
m

or £ = —m(V02 /2R3). Clearly (though surprisingly) there is only one energy
eigenvalue. The normalization constant is found to be A = /m Vy/h2.
(b) The wave function of a plane wave is described by
2mE
= hz -
It moves from the left-hand to the right-hand side and is reflected at the po-
tential. If B and C are the amplitudes of the reflected and transmitted waves,
respectively, we get
Y(x) = Ae 4 Be . (x<0),
Y@ =Ce™ 5 (x>0) . ®)

Conditions of continuity and the relation ¥'(&) — y/(—¢) = — f¥(0) with f =
2mVy/h? give

w(x) — Aeikx , k2

D

i

f
B = — A
A+B = C f+2ik
: = . )
iIk(C—A+B) = —fC 2ik A

T f2ik
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The desired coefficient of reflection is therefore

W’ref'z‘ ]B|2 m2V02

R = - - .
Winl? [0 [AZ ~ m2VZ+ 42

o~
—
>
S

If the potential is extremely strong (V) — o0) R — 1, i.e. the whole wave is
reflected.
The coefficient of transmission is, on the other hand,

Ilﬂtraml |C|2 h4k2
T=—-— = = i (11)
ale 12 1A12 22 . E412
1Y~ |x=0 142 mevy 17K

If the potential is very strong, (Vo — oc) T — 0, i.e. the transmitted wave
vanishes.
Obviously, R+ T =1 as is to be expected.

EXERCISE I

6.4 Distribution Functions in Quantum Statistics

Let a quantum-mechanical system have the energy eigenvalues ¢; which are
degenerate g; times and are each occupied with n; particles in such a way that

PARY i

Z”i = N(= 105) (N

1

is the total number of indistinguishable particles and

Znis,- =F 2)

Problem. (a) A state can be occupied by one fermion only, but with an unlimited
number of bosons. This is the consequence of the Pauli principle. (We will return
to it later in Chap. 14.) Prove that it is possible to distribute n; particles over g;
states with

o wr=(*)

AN V4
&gi!

= ————— (Fermi-Dirac statistics)
nil(gi —n;)!

possibilities in the case of fermions, with

1
a wPE= ( git+ni— ) (Bose-Einstein statistics)
/

n i

Exercise 6.3
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Exercise 6.4

possibilities in the case of bosons, and with
B i v .
() WP =g (Boltzmann statistics)

possibilities for classical, i.e. distinguishable, particles.

(b) We define {n;} ={n1,n2,n3,...} as a distribution of particles with
a “weight” W{n;}, which is simply the number of possibilities of distributing ex-
actly n; particles in energy levels ¢;. Naturally the one most likely to be realized,
i.e. the most probable distribution, is the one with the greatest weight.

Derive the variational principle from these remarks and by considering the

notant niimhar af narticlac and the congtant tatal anarovy:
WAZLIOWGLIL 12UV VL tlm LVIWIWD iV LIV WULIDLALIL LUl ULIUI&J.

S[ln(W{(ni)}) —aN - BE]=0 . 3)

Here, the parameters «, f are Lagrange multipliers and {{n;)} is the distribu-
tion searched for. Prove that in the case of g; >> n; > 1 the average number of
occupation, namely {r;), for the level with index i is given by:

(ni) = gilexp(e; — w)/kT +8]7" )
with

+1 for fermions
d=4{—1 forbosons (5)
0 for classical, distinguishable particles .

Hint: Use Stirling’s formula for calculating n! for large values of n

nl=2xn" Ve » (z)n , (6)

€

and then insert x; € R for n; € N, i.e. change from a discrete #; to a continuous
variable x;.

(c) Draw a diagram for the Fermi~Dirac distribution (n ;)™ as a function of
the energy E at T =~ (). How is the parameter u to be interpreted?

Solution. (a) In order to understand the different statistics, we first consider the
problem of n; indistinguishable balls that are to be distributed into g; boxes.

(I) Fermi-Dirac statistics. There are n; distinguishable balls to be distributed
into g; boxes:

066 . o
L] L. ™

1 2 3 4 - g

Each box can contain only one ball (the Fermi-Dirac case!). The first one could
be placed in one of the g; boxes. For the second one there are then g; — 1 possi-
bilities left, because one box is already occupied by the first ball. For the last ball,
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exactly (g; —n; + 1) possibilities are found to exist if g; > n;. The total number
of possibilities is given by the product

gi(gi—N(gi—-2)...(g—ni+1)
_ gilgi—...(gi—ni+D(g—np)...1
(gi —ni)!
gi!

= ot 8
@ —n)! ®

So far, we have assumed that the particles are distinguishable; if they are not dis-
tinguishable, however, there are several identical combinations. For example, the
combination

@ is identical with
1 2 3

9
olofe

This means that we have overestimated the number of possibilities of distri-
bution up to now by the number of permutations among the n; particles. The
permutations of n; elements raise a factor »;!, so that finally
_ &i! _ (& (10)
\Fti/

(II) Bose—Einstein statistics. Each box is now able to contain arbitrarily many,
indistinguishable balls (the Bose—Einstein case!). Here the following method
will work. There are

n+1=(n+1)
n

possibilities of placing n Bose particles in two degenerate states. In three
degenerate states there are

n+2\ (n+1 N n n n—1 4y 2 + 1
2 ) U1 1 1 R 1
possibilities. Generally it holds that

WEE — <Ri+ni—1> _ (gH—ni—l) _ (gi+n; — 1)

i n; gi—1 (& — D'n;!
We want to reflect on this once more in a different way. For each particle and box,
a slip of paper is marked with Ky, ... , K, for the boxes, and with By, ... , By,

for the balls. Now slip K is set aside and all other slips (both kinds, those la-
belied K, and those labeiled B,,) are placed in an urn; there should be g; +n; — 1

Exercise 6.4
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left. Now the slips are taken out again, one by one and in an arbitrary sequence,
and placed at the right of K1; for example:

K\BsK7B3B1K3K2B4 ... . (i)
This can be interpreted as follows: balls located between two boxes are supposed
to be in the left one. In our example, it would be ball number 8 that has to be in
box number 1, whereas balls 3 and 1 belong to box number 7, no ball to box 3,
ball 4 into box 2, and so on.

From part (1) we already know that there are (g; +n; — 1)! arrangements pos-
of the balls and their boxes in that row are unimportant. Indeed there are no new
arrangements if the n; balls are exchanged among themselves. The same is valid
if the (g; — 1)K slips are exchanged. Thus there are

WBE — gi+n—-D! (gi+n —1
! nil(gi —1)! n;

different arrangements.

(III) Boltzmann statistics: Suppose we have two balls and g; boxes. There are
exactly g; possibilities of distributing ball 1. If more than one ball is allowed in
a single box, there are also g; possibilities of distributing ball 2. Altogether there
are gi2 arrangements. Analogously, for n; balls there are

(12)

B n;
WP =g (13)
arrangements.

(b) As we have indistinguishable particles in both the Fermi—Dirac statistics
and Bose—Einstein statistics, the number of distribution arrangements for n; par-

ticles into energy levels &;, if we have the particle distribution {n1, ... , ny}, is
given by the product
m
WFD{nl,nz,n3,... ’nm}zerFD (14)
i=l1
m
WBE{nl,nz,ng,... ,nm}:l—[WiBE . (15)

Let us turn now to Bolizmann statistics with distinguishable particles, where

m
NP 7

things are found to be more complicated. We are obliged to set N =" ; n;
particles into the levels in such a way that there are n; particles in each one. The
number of possible ways of doing this is calculated in the following way. We start
with N! possibilities, disregarding the group structure containing m groups. We
then correct this number by factors n ;! coming from the arbitrary occupation in
each group. This yields

NY/nilny!. . .ny! (16)
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possibilities. Hence,

N! z
WB(ny, np.n3, .. ) = : [1e" (17)
nilnatns!-- - ny! plle
which we can also write as
B - g"
wh{m}=M[]= - (18)
X 1l’l,’!
i=

The next step is to calculate the maximum of these various distributions W{n;},
in order to find the particular distribution with the greatest weight. The maximum
of WFP{n;} agrees with the maximum of In(WP{n;}), which is easier to handle
mathematically. Therefore using Stirling’s formula (6), we obtain

gi!
In WP {n,} = Z In

nj '(gl —n;)!
~ Tam
Li‘ - nt’,‘f“/z e (g; — n;)8i—ni+1/2g=gitni
1
~y {111 \/2—+gz Ing; —n;lnn; —(gi"‘ni)ln(gi—ni)] .19

i

In the last two steps we have made use of g; > 1, n; > 1. To find the max-
ima of a distribution we admit continuous values for n;, so that n; — x; € R,
and introduce two Lagrange multipliers® 8 and o to incorporate the conditions

E=73",njei and N =", n;, respectively. The variational principle yields
5 |In WFD{Xj}—ﬁZ&‘ij—OlZXj
— Zax, [ In WP {(x;} — Be; —a-l
ox;

= Z 8x; (ln Bi T Bei — ) ) (20)

The last step is found as a result of (19), thus:

?
o= 2 lxjInx; — (g —x)) In(g; —x))]

J
=48ijl—Inx; —1+In(g; —x;)+1]
8i —Xi
X

=In(g;i —xij) —Inx; =1n (21)

2 See H. Goldstein: Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, MA 1980)
or W. Greiner: Theoretische Physik, Vol. 2, Mechanik, 4th ed. (Verlag Harri Deutsch,
Thun, Frankfurt a.M. 1981).

Exercise 6.4
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A necessary condition for the existence of the maximum is that the terms in
parentheses in (20) vanish; therefore we deduce that

B = o = (g (Pt ! (22)
i
and then
o _ 8i
(xi)rp = (n;) 0 = m . (23)

Finally, it is convenient to rewrite the parameters 8 and « in terms of the
customary (and more physical) quantities 7" and g, so that

SSLRARR S (41

(xi)rD = (ni) ¥p = gilexpl(e; — ) /kT1+ 1} 7!

with
1 [
i T T R 24
P=ir ir - HP (24)
Coming back to the case of Bose—Einstein statistics, we proceed analogously
From
n; — 1!
anBE{ni) =Zln (gl+ i )
— nl(g = 1!
~3 In {(2n)‘1/2(g,- tny — 1)&T—12 gmgi—xit]
i
i+1/2 —n: L .. -1
x [ Pemi(g—1)81/2¢ gi+1] }
~ Z {In@m) ™% + (gi +n;) In(g; +ny)
i
—nilnn; —gilng} , (25)
it follows that
a 4y
3 b WEE(x;} = In(g; + )+ 1 —Inx; — | =In 85 26)
X x

and therefore,

5 Ln WEEx ) =B e, —aij]
| T g

=3 8x; (m BitXi g —a) . Q7
i Xi
Thus we deduce that

(xi)BE = (n;) BE = gilexpl(s; — w)/kT1—1)71 | (28)
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In the case of Boltzmann statistics, we again proceed analogously and find Exercise 6.4

1 A ’Bf A ] 1 7
In W7 {n;} = In(N!

=IN!'+) (nIng —Inn;!)

I
~InNl+ ) (n; lngi—-ln[\/z_nn’_’i“/ze—ni])
1
i

Q

Tn AJY L ( (n.Tnho .7 _n.Inn. L n.\
UL LY . T : \Il«l 11151 111 d b IllllllvlTIlvl}

1

=InN'+ ) (i —Inv27+nIng —n;lnn;) (29)

Here, the variational principle yields

a[m WB{xj}—,BZijj‘—-aZXj}
j j

_Li‘(w Lm\x—i}—ﬂa,—aJ , G
and thus, finally,

(xi)B = (n;) B = gi exp[—(&; —pu) /kT] . (32)
The‘Lagrange multipliers, which were introduced in (24), are fixed by the
conditions

E= Zﬁixi and N= Zx,- . (33)

i i
Therefore

are functions of u and T'; the chemical potential = (N, T) is a function of the
particle number N and of the temperature 7. The interpretation of the parame-
ter T is suggested by comparison of e.g. the first equation in (33) in the case of
Bose-Einstein statistics with Planck’s radiation law [see Example 2.2, Eq. (13)].
Hence, it is plausible that 7 will also be the temperature in the case of Fermi—
Dirac statistics and Boltzmann statistics. For a stationary number of particles and
fixed temperature 7', w is fixed, too. The quantity K In{W{(n;)}) = S is called
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Exercise 6.4

}(ng)FP
N [r=0
‘\
\\\T>0
\\ o
m E

The Fermi-Dirac distribu-
tion as a function of the
energy £

the entropy of the system, which coincides with the concept of entropy in ther-
modynamics. The entropy S gives information about the system’s disorder. The
bigger S, the “more wildly” the particles are spread over the levels. From (23),
(28) and (32) we finally get the form for the distribution functions correspond-
ing to the various statistics. In compact form, (n;) can be given as a function of
temperature as

(ni) = gelexpl(ei — w)/kT1+8)" (34)

I +1 in the case of fermions
using d={—1 in the case of bosons
0 in the case of classical particles .

(c) In this special case we have from (23)
(ng) ™ = gplexpl(E — w)/kT]+ 1} (35)

and therefore

0 , E>pu
Iim (np) ™ =11, E=p=0(E-p
1 , E<u
(solid line in the figure).

For T 2 0, corresponding to an energy kT, the Fermi level is “smeared” over
the region AE ~ kT (see figure).

EXERCISE I

6.5 The Fermi Gas

From the foregoing we know that the allowed energy levels of noninteracting
particles of mass m in a three-dimensional, infinitely deep potential well with
edges of length / are given by (see Exercise 6.1)
252
nh

E = e (ni+n§,+n§) i nx,ny,n;eN. (D)
For electrons in a metal or for gas molecules in a container, the value of [ is
supposed to be so large that the energy spectrum may be regarded as continuous.

Problem. (a) Show that the number of states AN of energies in the interval
between E and E + AE is given by

3
AN = («/%) VEV?AE . )

472 h
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(b) Calculate the Fermi energy ¢f = w (T = 0) for an ideal Fermi gas of N
particles. Make use of the fact that each energy level is twice degenerate because
of the spin degree of freedom.

Solution. (a) Instead of counting the states (ny, 1y, n;) of equal energy (which
would not be easy), we use the quasi-continuous approximation and determine
the number of points inside a spherical shell of radius

n=,/n%+n%+n% 3)

and thickness An in the first octant in (ny, ny, n;)-space, since ny, ny, n; € N.
This is simply the “volume”

AN = g(4nn®)An = Zn’An . @

According to the assumption n* = E(2mI?/n%h?), we have

V2
n="pl2 5)
wh
dn I2m
An=—AE=——FE Y2AE and 6
"= UE 2h a ©)
AN = [2m)*?v/@x*R?)EV?AE = CE'2AE |
C=0m*vi@an*r?y, v=0_. (7)
(b) The energy of the discrete case is given by
Er = Z (niyrei . (8)
i
If the energies are continuous, this expression changes into
o0 (]’l) o0
Er=) —ale=) g(E)[(E)EAE;
i=0 ! i=0
o0
o / g(E)AEYEAE . )
0

Here, g(E) is the number of states in the energy interval AE; f(E) describes the
fraction of occupied states. In fact, we are able to interpret the energy interval
(E, E+ AE) in the continuous case (for sufficiently small A E) as one level with
degeneracy gi—g = g(E)AE =sAN (s =1 for bosons, s =2 for fermions of
spin %). The expression f(E) = (ng)/g(E)AE is called the distribution function
and g(E) the density of states.

Because of spin degeneracy (s = 2), we have from (7) for fermions:

g(E) =2CE"Y? |
FTP(E) = [exp(E — ) kT +1171 . (10)

**********

Exercise 6.5
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Exercise 6.5

For T =0, ff2, (E) = 6(E — &p) [see Exercise 6.4; 8(E — ¢r) is the Heaviside
step function] and the number of particles N is assumed to be constant, i.e.

8

N=S"(n) > / R (E)g(E) dE
j 0

&

0
(3N’ 3 232 P (NN 1
= &= ac = (37°) E;kv) . (11)

Application: an electron gas in a metal can be considered a Fermi gas. The mean
energy at temperature 7 = ( is then

ef
[ EEV2dE
= 0 PN
E= (———=1_¢ . (12)
[ EV2dE
0

From this quantity we can calculate the pressure p of the electron gas (zero-
point pressure). It is possible to define the pressure as the work dA that has to
be done to reduce the volume by dV : dA = p|dV|. This work is equivalent to
the increase of contained energy, which is N E. Then, without changing the total
number of electrons during compression, we simply obtain from (12) and (11):

dE
dv

2N
=2 (13)

=N =~
p 5V

Taking silver as an example, we get a zero-point pressure of approximately
2 x 10° times the atmospheric pressure. This enormous pressure just means that
the compression of the electron gas requires a large amount of work. The result is
a typical quantum-mechanical effect: if all electrons were in the lowest state, then
only the much smaller amount of work involved in raising the zero-level energy
of each electron would be required, approaching zero with increasing volume.
The Pauli principle causes occupation of higher states, the mutual distance of
which increases with a decrease in the volume as a consequence of the uncer-
tainty principle. Therefore the Pauli principle is essential to the explanation of
the limited compressibility of solids.
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EXERCISE I

©.0 AN 2GCa: 1Li1assiCa: 5as

Problem. Show that for the ideal classical gas
3
E = 5NkT

is valid, where E is the total energy and N the total number of particles. What is

the intarnratation of the tamnerature 7 i
LULiv LeilUlw I

o
LIV Ll prvu L1 UL uuv walip u

Hint: Use [;° x'"'e™*dx = I'(t) together with I(t+1) =1tIT) and I'(3) =
J7.

Solution. For the ideal Boltzmann gas we have [see Exercise 6.4, Eq. (34)]:

FRE) =W DI and g(E)=CE'?. 0
Then
oo o0
E(T,m) = f fP(E)g(E)EJE = Ce#/¥T f E32eEIT 4|
0 0
[o.@]
= C e/ T (kT)3/? [x3/26—xdx
0
= I(5/2)C(kT)*/? **T"  and )
oo oC
N:ffB(E)g(E)dE=Ceu/kT(kT)s/zfxl/ze_xdx
0 0
= I3/2)C(,T)*?er/HT . 3)

It follows from (2) and (3) that
E/N=3kT , ie E(T)=3NkT . 4)

The mean energy of a particle is E/N = %kT. This result elucidates the
meaning of the parameter 7', at least in the case of the classical ideal gas: 7 is
directly proportional to the energy per particle.
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EXERCISE I

6.7 A Particle in a Two-Centred Potential

We consider the following simple model of a diatomic (one-dimensional)

V=) molecule, consisting of two potential wells lying side by side (see figure); here,
the potential is given by (a < [).
00 x| > (+a)/2
2 S| k2 Vix)=10 for (I—a)/2<|x| <(+a)/2
*__1__, " | Vo x| < (I —a)/2 .

The schematic two-centred  Particles of mass m described by the Schrodinger equation move in this poten-

potential tial. We wish to find the eigenvalues (0 < £ < Vp) of the Hamiltonian operator
and the corresponding wave functions. We shall then compare this result with the
result for two atoms at large distance (/ > a) and discuss why molecular binding
is established.

We write down the Schrédinger equation,

2 A
EY(x)=|—h"=—+ V() | ¥(x) ,

2m
for the regions II, III, IV.
h?A

ILIV: = — =) = EY() ;

KA
111 : (—‘27 + V()) Y(x) = EY(x) . (1

In regions I and V, the wave function has to vanish, v = ¢y = 0. These
equations give

A ¥=0 x<—2(l+a),

(I) ¢ =A'sinkx+A"coskx —3(+a)<x<—-i(l-a),

() ¢ =Be +Ce™ —Jl-ay<x<+il-a,

(V) = D'sinkx+D"coskx +i(l—a)<x<+i(+a),

V) ¢¥=0 +3l-a) <x, (2)
bvix)

The different regions of the
potential

~(l+a)-L(-a)0 Ji-a)i(l+a) =
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with Exercise 6.7
k:V/ZI:ZE and ﬁzvlzm_’(?;_@ ) 3)
]

The wave function has to be continuous; in particular, we must have
Y(— % (l—a)) =ym(— % ({ — a)), etc. Furthermore, the derivative has to be con-
tinuous for |x| = %(l — a). Therefore we have to “join” the different solutions in
an appropriate way, which will only be possible for certain energies E(~ k, ).
The boundary condition at the points x = ﬂ:%(l + a) immediately implies

D y(x) = Asink[x+3(+a)] .
AV) Y(x) = Dsink[x— L ~a)] . @)

Now we still have four boundary conditions:

Be—ﬁ/Z(l—a) + Ce+ﬁ/2(1_a) = Asinka ,
—-B/2(l—a) _ CB e+_ﬁ/2(l—a) — Akcoska

B,Bc cosna ,

BetP20=a) L co=hB/20=4) — _Dginka ,
BRetA2=0 _cge=P/2=0) — prcoska |

or
2(B+C) cosh g(l—a) =(A~—D)sinka ,
2(B— C)B cosh g(l —a)=(A+ D)kcoska ,
—2(B —C)sinh g(l —a)=(A+ D)sinka ,
—2(B +C),Bsinh§(l—a):(A—D)kcoska . &)
These are four (partially decoupled) equations for the variables B+C, B - C,

A+ D and A — D that are not allowed to vanish all together. Now % Bl —a)is
always # 0; therefore we can divide by the hyperbolic functions,

in k kcosk
B+C=—— —(A-D)=——— " (A-D),
2cosh 5(/—a) 2fsinh 5(l—a)
B_C— —sinka (AL D) = kcos ka (A4 D) ©)
25inh§(l——a) B Zﬁcoshg(l—a) ‘
Hence,

E—

A

1]
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Exercise 6.7

1 in k
Ltanka_——cothﬂ(l—a) and B+C=—""0 (4 -Il
| % b 2coshE(l—a) ]
A
(N
and
{A—i—D:B—C:G
A3
| e
[ztanka————tanhﬂ(l—a) and B—C= Slﬁnka (A—D)-H.
¢ P Zsinh 5(I—a) 1)
Ay
8

The conditions A; to A4 are either true or false. Therefore we abbreviate the

above statements using logic symbols:

(A1 VAN (A3 Vv Ay) =

[TPn]

VvV means “or” and A means “and”.
Expanding gives

(AIANAZ) V(AL ANAY V(A2 AA3) V(A2 A Ag) =true .

First of all, we show that the conditions (A; A A3) and (A A A4) cannot be true:

(A1 A A3) =true

e

Since all the variables are not allowed to vanish, we have

(A1 A Az) = false

p —coth P
tanhE(l—a)—cothz(l a) .

(Ar ANAgy)=true =

(10)

The last equation is true only if 8 = 0; this case has also been excluded above.
Hence, (A2 A Ay) = false, too. Our logical equation is therefore reduced to

(A1 A Ay V(A2 AA3z) =true .
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Inserting the definitions gives the following system of equations:
Al—Dy=B+C =0,

1 =1 B
| & tankja = B tanh 5 (I —a) , or
—sinkia

=%
251nh%k(l—a)

A+ Dy =B, —-Cr =0,

1 4 L 1 b 77 ~\
7o ldn K24 = — 74— COUlllL - {—d
[ 2 B { )

v

(11)

—sinkpa
By= — 5 ———
2cosh (1 —a)

The two middle equations yield the eigenvalues E gi) and E;i), respectively, as
the solution of a complicated equation

{ki = @mE/RHY? | B =[2m(Vo— E)/h*'?} . (12)

Now we drop the upper index, which numbers the different solutions. The wave
functions in the regions II, III, IV are consequently

D) Y= Aysinkilx+3(+a)],
Yo = Azsinka[x + 1+ a)]
(IT1) 4y = 2By sinh Byx ,
Yo = 2B) cosh fax
(AV) ¢ = Arsinki[x— J(+a)] ,
Y2 =—Azsinko[x — §(I+a)] . (13)

Strictly speaking, we should now normalize the wave functions; this, however,
we will not do. Since they belong to different eigenvalues, they are certainly or-
thogonal. The normalization determines the A; and therefore also the B; up to
a phase.

We note that ) and v, are also eigenfunctions of the parity operator: ¥/
possesses negative parity, \r; positive parity.

In the case of large distances (I — 00), i.e. two distinct atoms, both equations
determining the energy become identical,

k [ E
anka=— ot tan%«/ZmE:— TE (14)

This equation is not analytically solvable, either. [If we analyse the extreme
case Vy — 0o, we get two atoms which are separated by a very high potential
wall and are therefore also independent. Here we have tan(a/h)v/2mE = 0 (see
Exercise 6.1).]

Exercise 6.7
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Exercise 6.7 Now we want to derive an approximate relation for the energy differences
Ey—E=Ajand Ep— E = Aj. E is the energy for two completely separated
atoms (! — 0o, Vg < o0); E; (i =1, 2) is the energy for two atoms at a finite
but large distance i. We assume f;(i —a) > 1, i.e. we examine the lower en-
ergy states. To abbreviate, we define b = %(l —a); therefore B;b > 1. k and B
are assumed to have the same meaning as above (I — o0).

With the aid of Taylor’s formula, it follows that

A/ 2m «/2mE A,‘ Ai
ki——h—\/E'l-Ai— 5 ‘,1+_E_k(l+i) ,

vzm A,‘
5i=—h*vV0*E—Ai=ﬂ 1-

W—E

- 1 Ai ) 15
(- 5) "

if we drop expresstons containing

Aiz, Aie_zﬁb and —e b

With this we get, using tan ka = —k/ 8,

tank tan ( ka+ka 2L ) = tank + L e
ank;a = a a— = n ——Kd—
! n 2E 4 cos2ka 2E

=zt srv A (16)

Aj
tanh ﬂlb = tanh [ﬂb - ﬂbm]

i
cosh? Bb~ 2(Vo — E)

inh Bb — cosh b
1+ (tanh b — 1) = 1 4 So0Bb—cosh
cosh gb

=1-2e 20 17)
coth Bob =coth fb=1+2e7 2P0

= tanh b —

= tanh b

Consequently

1 1 Aj
— tan kja = - (1——l)
L. L 2F
/ K\ 28 )
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B 1 1 N aVy A

B |2BE 2EVp-E)|'
1 Vy(l+ap)—E

— ot e A

B 2BE(Vo—E)

1 1 A
—ﬁ—tanhﬂ,b = [1 + 7'] (1 —2¢ 260y
1

p 2(M—E)
-1 Za28b_ 7L
BB T2R-BE)
1 1 2 A
——cothppb=—~— — e 2b_ __ 2 (18)
B2 B B 28(Vo— E)
Hence, the eigenvalue equation for E; reads
1 V(d+aB)—E L2 e A 19
__ |=——+= - =
B 2BE(Vy—E) B B 28(Vo—E)
with the solution
E(Vy—E
A =aEV =B pia (20)
Vo(l +ap)

Correspondingly, A = —Aj. The energy E; exceeds the energy of a single
atom,; the energy Ej is, however, smaller. Hence, we get the following figure:

Y

ERQ---—"" -
—————— 3
- E®
2
E@o = - £
E(l)==::::: Eg)
eV

If we bring together two potential wells (atoms) with an electron in the state
of lowest energy, we will decrease the energy, i.e. we get a bound state for the
molecule.

Our model is, of course, somewhat unrealistic. For one thing, we should ques-
tion how well atoms can be described by one-dimensional rectangular potential
wells. Furthermore, we have to take into account that the two atomic nuclei are
repulsive, so that binding is hampered. The two atoms will adjust themselves to
a distance at which the force of attraction caused by the change of energy of the
electron is as large as the repulsion of the two nuclei. In this state, the total energy
of the system (2 atoms +1¢7) is minimal.

Exercise 6.7

I — oo: two separated po-
tential wells with energy lev-
els EV, ED@ .l large,
but finite: the formerly de-
generate energy levels split
up; one level is lowered, the
other one is elevated in en-

crgy
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6.1 The Conservation of Particle Number
in Quantum Mechanics

In electrodynamics, the well-known continuity equation is valid:

%-I—divjezo . (6.14)
ot

where g is the charge density and je, the current density. This equation is the law
of conservation for the electric charge: if the charge density in a volume element
changes, then a current flows through the surface of the volume element (Gauss’
law).

Now we try to find a similar relation for the number of particles in a region.
Instead of the charge density, we consider the probability density w = y*v. If
we demand that no particles be created or annihilated, we also have a continuity
equation:

ow
— +divj=0. (6.15)
or

Our aim is to deduce the particle current density j. To this end, we begin with
the time-dependent Schrédinger equation

Bl/f 1 .

—H 6.16
o ik v (6.16)
The complex-conjugated equation is
o™ 1 .
=——H"y* . 6.17
at ih v (©.17)

Multiplying the first equation by y/* from the left and the second by v and adding
both, we get

:<¢*w)+ =AY =y Y =0 6.18)

If we assume that the potential is independent of velocity and real, we are able
to insert H = p2 / 2m + V(r) and obtain

—(w W+ (x/xvzw AR (6.19)
From the second expression in brackets we can extract a nabla or del operator:

YV — VI = VI L VYV - Vg Vgt — V2
=V VY —y*Vy) |
With this we have

—(1// 1/f)+ = le(l!/Vw —Y*Vy) = (6.20)
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This equation is of the form of the desired continuity equation, if we define the
particle current density in the following way:

=5 VYT =gV (6.21)
i
Application of Gauss’ law
f(divj)dV = fj-ndF (6.22)
v F

leads to the integrated equation:

%/w*n/de—i-f;jndF:O. (6.23)
14

F

The particle flux through the surface of a region is equivalent to the variation of
the particle density inside the region.
We had required the time-independent normalization of the wave function

Vfw*vde=1 ,

1.e. that the particle current through an infinitely distant surface vanish. Hence,
by inspection of (6.23), only those states can be normalized to 1 whose current
flux through an infinitely distant surface vanishes. If we want to calculate the
mass current density or the electric current from the particle current density, we
have to multiply the continuity equation by the mass (or charge), since the mass
(or charge) density is given by

Om=my"y, ge=ey"y . (6.24)

Therefore a law of conservation exists for the mass and charge of a system, too.
As an example for the calculation of a particle current, we take a plane wave
¥ = Aexp(ik - x). From (6.21) we get

j=Ar gy By (6.25)
m m

The close relation between particle current j and velocity v is immediately evi-

dent. Of course, the current through an arbitrary distant surface is not zero in this

case, so the functions are not normalizable in this way; the plane waves have to

be normalized to § functions according to Chap. 5.
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6.2 Stationary States

As we recall, in the case of a not explicitly time-dependent H, we were able to

e a0

separate the variables x and ¢ of the time-dependent Schrodinger equation,

ih%w(x, 0= Hy(x, 1) . (6.26)
With ¥, (x, 1) = ¥, (x) £, (t) we got two differential equations,
ih@ =E fu(t), Hyn(x) = Epyn(x) . (6.27)

From the first equation we obtained the time factor f, (f) = exp[—i(E,/h)t],
which was normalized in such a way that | f,|> = 1. Equation (6.27) is the sta-
tionary Schrodinger equation. With E, = hw,, we have for the eigenfunctions
of H:

Yn (x, 1) = P (x)enl (6.28)

The general solution ¥(x, f) of the time-dependent Schrodinger equation is
a superposition of all v, (x, 1):

W, 1) =D Co(O)Pn(x,
H
=Y Ca(ym(x) with Cy(t)=Cp(0)e ' . (6.29)
n
The coefficients C,, are determined by the integral

€)= [ e 0. ) (6.30)
To prove this, let us first observe (6.29) at time ¢ = O:

U(x,0) =) Ca(0)yn(x) . (6.31)

Since the wave functions ¥, (x) are orthonormal, i.e. (4|} = 8;un, We can
multiply both sides by v,; (x) and integrate. This gives us

ﬁmmﬁmu=zq®fwmﬁmm
= Ca0)8um = Cn(0) .

This is precisely result (6.30); in particular, we refer to the analogy of the ex-
pansion (6.29) for the decomposition of an arbitrary vector A in terms of an
orthonormalized basis e;:

A:Zaiei ,
i
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where the components (coefficients of expansion)

a; — A €;
are scalar products of the vector A and the basis vectors e;. According to this, we
can view (6.29) as a decomposition of a state ¥(x, ¢) in terms of the basis v, (x).

The coefficients of expansion Cy, (f) are consequently the components of the state
W(x, t) in terms of the basis vectors ¥, (x).

6.3 Properties of Stationary States

It holds that v (x, D, (X, 1) = ¥} (x) ¥, (x), since the time factor is normalized.
Therefore, the probability density is constant in time for stationary states:

wx, ) =wk) . (6.32)

The current j, (x, f) is given by (6.21):

) ih
Jn (x7 t) = %[WI’L (x’ t)Vll,;zk(x7 f) - llf;zk(x? t)Vwﬂ (x’ t)] . (633)
Since the nabla operator does not affect the time factor, we also have

i.e. the current of stationary states is constant in time as well. Now we can expand
Yn (x, £) in terms of eigenfunctions of any operator A:

Ya(x,0) =Y Ca()Pa) .
A

For b[d[lOIldI'y states, the prooaomneb jLA,' for Ill'l(lll'lg the Vame A of the ob-
servable described by the operator A are time independent if A is not explicitly
time dependent, since

CA(I)=/¢Z(X)1/M(X, fdx = eiw"t/WZ(x)Wn(x)dx ,
where forr =0
Ca = [ Wt ds

From these two equations the statement

IC4(0)]* = CA0)]* (6.35)
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Emission of a spherical
wave. The vectors illustrate
the radially directed phase

velocity of the wave

EXERCISE I —

6.8 Current Density of a Spherical Wave

The spherical wave

e:l:ik-r

1[[:

is given.

. k=kl
r r

Problem. (a) Calculate the probability current density j for the wave function.
(b) With k = k(r/r) calculate the number of particles that flow per second
through a sphere of radius r. What physical processes are described here by ¥?

Solution. (a) The probability current density of a wave function is defined as

n h
J= 2.—(1/;*V1/f — ¢y V) = —Im{y"Vy} .
im m
For the wave function
v =exp(xik-r)/r ,
the gradient is
Vir = Vexp(xik-r)/r
= —1-V exp(Zik-r) +exp(xik-r)V (1 /r)
-
= (tik—r/rtyexp(xik-r)/r .

From this we have for the current density, with the help of p = hk:

. :i:hk I iy 1

J= m rz - rz .

(b) The number of particles per second streaming through a unit surface is
given by

v
N=j-nxls:j-»’:xls::l:-2 .
r r
Thus
Ns = +4nv

expresses the number of particles passing through the surface of the whole
sphere.

Depending on the sign, the wave function describes either an emission or
absorption process.

1P
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Let V(x) be a periodic potential with V(x +a) = V(x).
Problem. (a) Show that the Hamiltonian

A=-"9 v (1)
m

commutes with the translation operator 7A"(a), which has the property

T@y(x) = y(x+a) . 2

(b) Deduce from the periodicity of the potential that the wave function has
the form

Yr(x) = e ¢ (x) (Bloch functions) , (3)

where k € R and ¢ (x+a) = ¢r(x). Suggestion: For two linear independent
solutions 11 (x), ¥2(x) of the energy eigenvalue E, which are simultaneously
eigenfunctions of 7'(a), we have

W(x) = |:1/f1 (x)%t/fz(x) — Wz(x)%llfl (x):| = const . 4)

(c) Discuss the eigenvalue condition and determine the allowed range of
energy in the potential

+00
Vix) =—-W Z S(x+na); V>0, neZ %)

n=—o0
[Kronig—Penney model of the energy levels (band structure) in solids.]

Solution. (a) The translation of a wave function ¥(x) by a is given by

1, d" 1 sia\n N
Ylxta) = Z () = Z —(3) =t . ©
Here Taylor’s formula has been used to expand (x +a). Obviously, the
translation operator is 7 (a) = exp(ipa/h) with the momentum operator p =
—ih(d/dx) and
nZ d? I,

“ma =t ®

From this we get directly

[f(a),ﬁﬁlzo. ®)

[
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Exercise 6.9

Besides,

[7 (), VIOIY(x) = T@VX)P(x) — V)T (@) ¥(x)
= Vi +a)y(x+a) - Vi +a) =0 , ©
because V(x +a) = V(x), since periodicity is assumed.

(b) The one-dimensional Schrodinger equation is an ordinary differential
equation of second order. Therefore it possesses two llnearly independent so-
lutions for each eigenvalue E: 1/f(1) and 1/r(2) Since [T'(a), H (@)] =0 we can
choose w(l) 1/r(2) to be simultaneous eigenfunctions of 7(a). So we have

T@yy 0 =yvPa+a=rPyPw i=12. (10)

The }L%) are constant numbers that depend on the energy. Since H 1/’([) w(’)
we get

] d
[w<1’<x>w(2> F@vE 0]= W
1/,(l) 1l,(Z)' 11’(2) 1/,(1) (1)1/f(2)" _ 1/,(2)1/,(1)"
— g2 = (V) — B ) h”z’ V-Ey =0, (11)

Hence W(x) = const. Since W(x) = W(x +a) = A1 Ao W(x) is also valid, it fol-
lows that A1A> = 1. Besides,

P ra) =T@yg" @) = 2"y ) ; (12)
e. 29" are also eigenvalues of T'(a). But they cannot differ from )‘(E) , because
1/r(1) and ¥ are linearly independent; i.e. either
AT =D AP oD B eRr (13)
or
AP =22 AP =D o2 = (14)

If, in the first case, we assume without restrlctlon of generality that A0 E > 1, then
llf(l)(x) cannot be square integrable, because 1/f £ D (x+na) = A(l))"llf(l) (x) due
to (10) and Ilfr)(x] will increase ad infinitum for x — 0o. Therefore the second
case must be true. Let

W=eler  \@_etier 4R (15)
(ag =0 includes the case Ag = 1). If we define kg = ag/a, we get

v ta) =y @ ad v a+a=e "ty Pw . 16
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In the decomposition
¥’ () = o () (17)
we must have
¢ +a) =9 () (18)
since
lkEa 1kgx¢(1)(x) . elkan(l)(x) I/I(l)(x+a) — eikEa eikEx(bg)(X-i-a)

(for i = 2, the proof is analogous). In general, we suppress the index E of the
wave function and write

Yr(x) = e (x) (19)

where 1 and {_j are linearly independent and ¢y, is periodic.
(c) In the range 0 < x < a, it holds that V(x) = 0, and therefore

Yi(x) = Ael 4 Be ¥
with

k> =2mE/R*, x€(0,a) . (20)
But now we have, because of (16),

Yr(x) = e ~a) ; @n

therefore with (20) we must have in the interval x € (a, 2a)

wk(x) — Cika[A ei;{(x—a) + Be—ix(x—a)] ) (22)
The wave function 1Zf ot the derivative of ¥, is continuous at a, as can be
s€en Uy integrating the S hré rg“ quauun fioma—ctoa+e:

a+e h2
0= f dx [EW(X) + %W"(x) - V(x)w(x)]
a—¢&
a+te
= [ |—E1/f(x) +5 w” () + Vo (x - a)w(x)-I
a-g
From this follows

h2 a+e

YW +Vod@=0 or

2m a—g

2
Ii—[@[/(a +&)—y'(a—e)l+ Voyr(a) =0
Zm

Exercise 6.9
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Exercise 6.9

A f(iBa)

Lt cadd
iz

which is written in the limit £ — 0 as

%W/(G-FO)—llf'(a—O)]+V01/f(a) =0. (23)
The continuity of the wave function at x = a yields

Ya—0)=y(a+0) . 24
With (22), (23) and (24) become

. . . o) . .
ek (i A — ik B) — (kA" — ik Be %) + %VO(A el 4 Be %0y = ( |
(25)
or

elka _ E:lka e ika _ eIka

LiK(elka _ ei/ca) + (2m/h2) VO eil(a —iK(eika _ e—il(a) + (2m Vo/hZ) e—iKa-l

()0

(26)
The vanishing of the determinant leads to the eigenvalue equation
Vo sin
cos ka = cos ka — argz oM _ flia) . (27)

This equation relates k of (16) and E. Instead of choosing E and calculating &,
we can also choose k and calculate £ graphically. Since | coska| < 1, we have
no solution of the eigenvalue equation for | f(ka)| > 1.

1st Case. E < 0 (bound states),
k=i, BeRy, B=,[2mE/n?|. (28)

Now we have sinif =1isinh B, cosiff = cosh  and

amVy sinh Ba
h? Ba

f(ipa) = cosh Ba — (29

NN

-
.
G

\fFeiigiiocsz isa steeply monotonous increasing, even function that exceeds 1 at Bpa (see
i figure). Therefore
B maVy :
K2 i 252 252
0 Boa Bga |E| = L < ’BO =E;, (30)

2m 2m

As soon as the function

f(iBa) > 1, then (27) will

because E is assumed to be negative, E > — Ey. This is illustrated in the last

or,
have no solutions figure below.
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2nd Case. E > 0,k € R,
According to (27) f(xa) is even and equal to 1 at ka = x with

cosx—7 PREEE ie. 3D
Vi
— ——a;;xo 2sin % cos % = 2sin? % . 32)
x solution of (33)
o zero of sinz/2
This is fulfilled for
.X X amVpy 1
Slna =0 or taniz—ﬁz—% (33)
ie.for (x1),=2nmr and (x),=2n7m—A(nn), where neN and

lim,— o A(nm) = 0. Analogously we find the points at which f(xa) is equal to
—lat(x])p, = 2n—1)mwand (x3), = 2n— )7 — A[(2n — 1)7r]. Between (x2),
and (x1)n, or (x3), and (x}),, there are no allowed energy eigenvalues, as is
obvious from the figure above.

The graphic representation of the energy dependence on the wave num-
ber k is characterized by “forbidden regions” that shrink for increasing k. If
f(nm) = (—1)", then we obviously have ka = nz for cos(ka) = (—1)", i.e. we
have “energy gaps” at those places (see top, right figure). Therefore the spectrum
falls apart into “aliowed” energy regions (named energy bands) and “forbidden”
energy regions (gaps) (see last figure). Energy bands play an important role in
the motion of electrons in periodic structures in solid state physics (conduction
bands, valence bands).

Exercise 6.9

Graphical display of the so-
lutions of (33): they are in-
dicated by x, and are shifted
by —A(nm) from the ze-
ros of the function sin(%x),
which are located at x/2 =
nr,n=0,1,2...

forbidden
Allowed and forbidden re-

gions

> TEZ/'/
L
\.t_/E0 s

ka

Energy bands with interven-
ing energy gaps
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6.4 Biographical Notes

SCHRODINGER, Erwin, Austrian physicist, *Vienna 12.8.1887, 1 Alpbach (Tirol)
4.1.1961, was a student of F. Hasenohrl. As a professor in Zirich, S. worked on statistical
thermodynamics, the theory of general relativity and the theory of colour vision. Excited
by L. de Broglie’s Ph. D thesis and A. Einstein’s publications concerning Bose statistics,
S. created wave mechanics. In December, 1925 he defined the Klein—Gordon equation
and later, in January 1926, he invented the Schrodinger equation, which describes, in
nonrelativistic approximation, the atomic eigenvalues. In March 1926, S. proved the
mathematical equivalence of his theory with matrix mechanics (M. Born, W. Heisenberg
and P. Jordan). S. always attacked the statistical interpretation of quantum theory (as did
Einstein, von Laue and de Broglie), especially the “Copenhagen interpretation”. In 1927
S. went to Berlin as Planck’s successor and emigrated in 1933, as a convinced liberal, to
Oxford. In the same year he was awarded, together with P.A.M. Dirac, the Nobel Prize
in Physics. In 1936 S. went to the University of Graz, Austria, emigrating a second time
when Austria was annexed. The Institute for Advanced Studies was founded in Dublin
for him and others. In 1956, S. returned to Austria.

BOSE, Satyendra Nath, Indian physicist, *1.1.1894, 14.2.1974 Calcutta. Together with
Einstein, he set up a theory of quantum statistics (Bose—Einstein statistics) that differs
from the classical Boltzmann statistics and from Fermi statistics, too. B. invented this
statistics for photons; Einstein extended it to massive particles. B. was a professor in
Dacca and Calcutta from 1926 to 1956.

BOLTZMANN, Ludwig, Austrian physicist, *Vienna 1844, { Duino near Trieste 1906.

He studied physics at the university of Vienna where he was an assistant of Josef Ste-

..... 1Q£0

V7.

He also taught at Vienna, Munich and Leipzig. Among his students were S. Arrhenius,

W. Nernst, F. Hasenohrl and L. Meitner. The young B. worked successfully on experi-

mental physics (he proved the relationship between the refractive index and the dielectric

constant for sulphur, which was required by Maxwell). Near the end of his life he oc-

cupied his mind with philosophical issues, but his main interest was always theoretical
physics.

The central problem of his life’s theoretical work was the reduction of thermodynam-
ics to mechanics, requiring the solution of the contradiction between the reversibility of
mechanical processes and the irreversibility of thermodynamical processes. He showed
the relationship between the entropy S and the probability of a state W with the formula
S = k1n W (k: Boltzmann'’s constant). This was the starting point of quantum theory both
in the formulation of Max Planck in 1900 and in the expanded version of Albert Einstein
(1905). Other important achievements of B. are the formulas for the energy distribution
of atoms moving freely or in force fields (Maxwell-Boltzmann distribution) and the the-
oretical explanation of the law of the radiation power of a black body (Stefan—Boltzmann
law, 1884).

B. was an exponent of the atom theory. The small response and even rejection that
he received for it from many contemporary physicists disappointed him throughout his
lifetime. He did not live to see the final victory of the atom theory introduced in 1905
by Einstein’s theory of Brownian motion.

B. committed suicide at the age of 62.
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FERMI, Enrico, Italian physicist, *Rome 29.9.1901, 7 Chicago 28.11.1954. F. was
a professor in Florence and Rome before going to Columbia University in New York
in 1939. There he stayed until 1946, when he went to Chicago. F. was mainly engaged
in quantum mechanics. He discovered the conversion of nuclei by the bombardment of
neutrons, and, beginning in 1934, was thus able to create many new synthetic radioac-
tive substances that he thought were transuranic. F. formulated the statistics named after
him (Fermi statistics) in his treatise “Sulla Quantizazione del gas perfetto monatomi-
co” (Lincei Rendiconti 1935; Zeitschrift fiir Physik 1936). In 1938 he was awarded the
Nobel Prize in Physics. During World War II, F. was substantially engaged in projects
devoted to making use of atomic energy. Under his guidance the first nuclear chain re-
action was performed at the Chicago nuclear reactor on 2.12.1942. In memory of F,, the
Enrico Fermi Prize was established in the United States.






7. The Harmonic Oscillator

As an application of the Schrodinger equation, we now calculate the states of
a particle in an oscillator potential. From classical mechanics we know that such
a potential is of greater importance, because many complicated potentials can be
approximated in the vicinity of their equilibrium points by a harmonic oscillator.
Expanding a potential V(x) in one dimension in a Taylor series yields

Vix) = Va+ (x —a))
1 5
=WV@+V'(a)(x —a)+ éV”(a)(x —a) ... . (7.1)

If a stable equilibrium exists for x =a, V(x) has a minimum at x =a,
ie. V'(a) =0 and V”(a) > 0. We can choose a as the origin of the coordi-
nate system and set V(a) =0; then an oscillator potential is indeed a first
approximation in the vicinity of x =a, i.e. in the vicinity of the equilibrium
point.

In the following we shall consider the one-dimensionai case. Then the clas-
sical Hamiltonian function of a particle with mass m oscillating with frequency
w takes the form

2
_ P M2

5 , 7.2
2m + 2 @ 7.9
and the corresponding quantum-mechanical Hamiltonian reads
. h? 42 m
H=——— +—w?x* . 7.3
amdxz 297 (7:3)

Since the potential is constant in time, the time-independent (stationary)
Schrodinger equation determines the stationary solutions v, and the correspond-
ing eigenvalues (energies) E,. The stationary Schriodinger equation takes the
form

£2 12

5 VD + T = EY) 4

Because of the importance of the harmonic oscillator and its solutions for quan-
tum mechanics, we will now consider the method of solving this differential
equation in detail. Using the abbreviations

2m mw
s3E, A=, (7.5)

It 112

k=
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we can rewrite the differential equation as

&>y a2 s2 N o P
?x?—}—[lc -2 xHy =0 . {7.6)

Equation (7.6) is known as Weber’s differential equation. For further simplifica-
tion, we introduce the transformation

y=kx2 , (7.7)

and obtain
&y 1dy [« |
2V (e =0, 7.8
ydy2+2dy+(2 4y)‘/’ 78
wiih
K hk? E
(7.9)

K:ﬁ=2ma)=ﬁ;'

To rewrite (7.8) in standard form, we split off the asymptotic solution. The latter
can be inferred by examining the dominant behaviour in terms linear in y for the
asymptotic region y — oc. Hence, we try writing

v = e 0y . (7.10)
Using
dyr 1 de | _yp d2yr 1 do &9 .
U Ll ) d —— == ¥z
dy l: pr(y) + dy] e an 72 4go( y) o + & e

the differential equation for ¢(y) follows from (7.8):

g (1 dp [k 1
— 2=y =4[z —>)e=0. 7.11
dy? * (2 y) dy " (2 4) Y (710

Before further examining (7.11), we shall digress to the field of hypergeomet-
ric functions. Our aim is to understand the basic mathematical features as well
as possible without going into rigorous derivations; a heuristic treatment will
suffice.
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EXERCISE I,

A

7.1 Mathematicai Suppiement: Hypergeometric Functions
The Hypergeometric Differential Equation
The hypergeometric differential equation, expressed by C.F. Gauf} in the form

2
d.?-&-[c—(a—i—b—i—l)z]ﬁ—abqb:O (1)
dz- dz

contains the three free parameters a, b, ¢ and possesses a great variety of so-
lutions. It has three nonessential singularities at z =0, 1, co. To solve (1), we
substitute the power series

z(1—2)

() =277 Z cpz”

v=0

into the differential equation (1) and find the recurrence relation

oo
2(1-2)2° Y cy(v+0)(v+o —1)z">
v=0
oC x
+[c—(a+b+1z]7° Z cy(v+0)2" " —abz® Z vz’ =0. )
v=0 v=0

Multiplying out the factors and re-ordering the terms yields

ox2
coo(c+0 =171+ [eviv+o+ Dv+e+0)
v=()
—co(W+a+o)(v+b+0)]2"T7 =0 (3)

For this expression to vanish identically, all the coefficients have to be equal to
Zero, i.e.

o(c—1+40) =0 (the “index equation”) and 4)
(v+a+o)(v+b+o0)

Cypl = Cy . (5)
wv+14+0)(v+c+0)

One solution of (1) (if we set ¢y = 1) is therefore given by
o
(a+oqh(b+o)y ,
2)=17° —_—— 27 , 6
va)=2z Vg(:)(l+0)v(c+0)v ©

using the abbreviations (Pochammer symbols)

(@)y=a@+1)...(a+v—-1),
1

{a\n
U
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Exercise 7.1

The radius of convergence can be inferred from the ratio test for convergence,

. Cy
r= lim —
V=00 | Cy + 1]

=1. (8)

The index equation (4) yields two possible values for the exponent o'
(1) o = 0. The solution in this case is the hypergeometric series

e}

v b v v
$1(2) = 2F1(a, by c; 2) = ZMZ_

< (c)y v~
V=0

&)

The indices appended to 2 F) are related to a generalization of the hypergeomet-
ric series in the form

oo

. CoY = (a)v(o2)y ... (C‘p)u i
e ;0 Bv--. By v

(10)

The solution (9) only makes sense if, in the series 2 Fj, none of the denomina-
tors of the various terms of the series vanishes, i.e. the existence of 2 Fy implies
the condition that ¢ #% —n, where n =0, 1, ... . Then the series is holomorphic
in the unit circle. When a = —n or b = —n, the series terminates and defines
a polynomial of nth degree. For example,

2Fi(—n,n+1; 1, x) = P,(1 - 2x) (11)

is a Legendre polynomial (see Examples 4.8—4.10). Further special cases are,
among others, the Gegenbauer and Tschebycheff polynomials.1

(2) 0 = 1 —c¢. According to (6) and (9), the second solution may be expressed
by the hypergeometric function with changed parameters, namely

1—c

p2() =2 "“aF@a+i—cb+li-62-¢72) . (1
Note the factor z! =€ before the hypergeometric function 2 Fy. The solution ¢,
onlyexistsifc #2,3,....

The general solution of the hypergeometric differential equation is therefore

¢(z)=A2F1(a, b; c; D+B CaF(a+l—c,b+1—c2—c2) ., (13)

under the condition that ¢ is not a positive integer; otherwise there is only one sin-
gle solution. The second independent fundamental solution then becomes more
complicated.

! See, for example, George Arfken: Mathematical Methods for Physicists, 2nd ed. (Aca-
demic Press, New York 1970) or Milton Abramowitz and I.A. Stegun: Handbook of
Mathematical Functions (Dover Publ., New York 1972).
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For the analytic extension of the solution beyond its region of convergence
we use the appropriate formula

2Fi(a, b; c; 2)

_ b=, cetgloboa X
= F(b)['(c—a)( z) "2k (a,l cta;l—b+a; z)
Nolta=b) _ b l—atb
F(a)F(c—b)( 2) 7 2F1 (b,l c+b;1—a+b; Z) . (14)
From this, the asymptotic behaviour for |z| — oo follows:
o _Tore-a  _, Iola—=b)
ZFl(a’b’C’Z)_———F(b)I‘(c—a)( Z) +—__Ita)['(c—b)( )77 (15)

The Confluent Hypergeometric Differential Equation

By analytical continuation of the unit circle to the entire complex plane we may
infer another important differential equation from (1). Substituting the linear

11201 Qull

transformation x = bz into (1) leads to

d’¢ d¢
x(l b) T+ [c—( +l)——x]a—a¢ 0. (16)
In the limit b — 0o, we get the Kummer differential equation:
d’¢ do -
dx2+(c—x)——a¢ 0. 17)

This equation has a nonessential singularity at x =0 and an essential one
at x = oo, which arises through the amalgamation (confluence) of z =1 and
7=00

The general solution of (17) is obtained by again expanding in a power series
around x = 0. Therefore we have

$(x) = A Fi(@c,x)+Bx' " | Fila—c+1;2—¢c; %) (18)

with the confluent hypergeometric function

o0
(a)y x" ax ala+1)x?
ceyx) = S —+... . 19
LF1(d; ¢%) ;(c),,v! ST T 19

The solution (19) originates from (13) in the limit & — oo, with x = bz. This is
quite obvious. The series (19) exists only on condition that ¢ # —n. It converges
for arbitrary values of x. The case a = —n again yields a finite polynomial.
Special cases are the Hermite and Laguerre polynomials.

The asymptotic behaviour for |x| — oo is

F(C) e—ianx—a+ Hc) eX xt—¢

Ne—a) Na)

1F1(a; ¢, x) — (20)

Exercise 7.1
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Exercise 7.1

For a = —n, polynomials of nth degree arise, in particular the Laguerre polyno-
mials,
. n+m)!
LI (z) = 1Fi(-n;m+1;2z) (21

and the Hermite polynomials,

Hy,(z) = (—1)" u1F1 (—n; l;2:2) and

2
@n+1!

Hypi(@=1(— nin! 2z i Fi ( 7i; 2’ ~2> . 22
We finally quote a useful integral formula for hypergeometric functions:?

oC

/ e 171 4 Fyl(a), (b); kil w Fpl(@), (W) K11 ds

0

_ (@m(d)mk /
=5~ 1(d) Z (b;" ,’"m w1 Fpl@), d+m; b K /s] (23)
m=0

with the following notation:

@m=al@a+1@+2)...(a+m—1) and

AFgl(a), (b); z]

= AFglai,ap, ... ,aA;bl,hz,... ,bB;Z]

ajay...ax z  ay(@+bDax@+1)...ax(aa+1) 22
_ 144 A_+1(l Yaz(az+1)...ax(aa )Z_+____(24)

biby...bg 11 bi(b1+ D)by(ba+1)...bgbg+1) 2!

2See L.J. Slater: Confluent Hypergeometric Functions (Cambridge University Press,
Cambridge 1960) p. 54.
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7.1 The Solution of the Oscillator Equation

Comparing (7.11) with (7) of the foregoing example, we identify (7.11) as
Kummer’s differential equation. The general solution is given by (18) of the
example:

o) =A1Fi(a L)+ By P+ 3y, (7.12)
where

Vs 1\ i

=—| === . 13

=37 0.9

The solution of our physical problem is determined by the wave function in
(7.10). Therefore the necessary square integrability of i implies that v has to
vanish at infinity. Nevertheless, as we see from (20) of the example, both particu-
lar solutions, so long as they are not finite polynomials, behave for large values
of y as follows:

y—> 00 @(y) = const e’y 12 e

Y(y) = e’)’/2<p(y) — const ey/zy“_l/2 . (7.14)
This means that the normalization integral diverges. However, if for the hyper-
geometric series the condition for break-off (termination) is fulfilled, ¢ becomes
a polynomial. Owing to the factor exp(—y/2) [see (7.14)], ¥ will vanish at in-
finity. Therefore the requirement for normalization leads, in consequence of the
condition for break-off (i.e. the hypergeometric functions terminate and become

polynomials), to the quantization of energy. Let us now consider the two possible
cases.

(Da=—-nand B=0withn=0,1,2,...;i.e.

with the eigenfunction

Y () = Ny e~ &2 gy (—m; L3 2a2) (7.15)
and the energy

E,=ho@n+3) . (7.16)
) a+% = —n;ie.

kK 1 "t 1
2 4 27
with the eigenfunction

Y () = Np ™4 D%x By (s

o=
>
>
(3%
—

(7.17)
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and the energy
E,=ho[n+1)+3] . (7.18)
Using (7.9) we find for the energy values:
E,=Q2n+ %)hw and
E,=Qn+Hho=[2n+1)+ o .
Combining these two results, we obtain the discrete energy spectrum:
En=(n+Hho, n=012... . (7.19)

As we see, the energy spectrum of the harmonic oscillator is equidistant with
the spacing fiw and has a finite value in the ground state (n = 0), the zero-point
energy %hw (see Fig. 7.1).

The polynomials occurring in (7.15) and (7.17) are known as Hermite
polynomials. With the usual normalization factor, they are defined as

2n)! 1
Han(§) = (—D”@ 1Fi (—n; = 52) :
n! 2
22 D! 3
Hon1® = (1" 2 L (—n; > 52) . (720

The eigenfunctions and energies (7.15)—(7.18) can then be written as
@  Yn=Npe P Hy (Vax) . Ey=(n+Hho;

®) Y =Nac P Hp (Vx|
En=[2n+D+1ho, n=01,2...;

and can finally be collected uniformly as

Vin = N e D (Vo) |
E,=(n+Hho, n=012.... (7.21)

For the Hermite polynomials we have the useful relation

.\J
[\
b
N’

~

(5 —(_ 1V,
1Ipi\g) —\7 1) ©

which we will prove in the following example.
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EXAMPLE I

2 Mathematical Suppiement: Hermite Polynomiais

On the basis of the foregoing considerations, the functions exp[—(X /2)x2]
H,(v/Ax), i.e. the Hermite polynomials multiplied by exp[—(x/2)x?], obviously
fulfil the differential equation (7.6) if

2m 2m
2 1
k 72E 2hw(n+§)

2m
=T(n+%)=2).(n+%) .

Therefore substitution of exp[ — (1 /2)x?]H,, (~/Ax) into (7.6) and straightforward
calculation yield

5‘1— expl—(A/2)x* 1 Hy (v/Ax)

— _axexpl—(t/2) 21 Hy (VAR) +exp[—(x/2>x2]d—'%@ :

2
% expl—(h/2)x21 H (V)

= (Ax)? expl—(1/2)x | H, (VAx) +exp[— (A/2)x 21 ”(*Fx)

dH, (vAx)

— xexp[—(A/2)x*1H, (v/Ax) — 2Ax exp[— (A /2)x?] <

(1)
Thus

2
(22 — 3 Hy (Vix) — 20 dHné;/Xx) )

dx2
+12(n+3) = A2 Ha (V) =0, 2
or

2
%)_ _zxx%m + 20 Hy (Vax) =

Introducing the variable £ = +/Ax, we obtain after division by A

2
‘ ,%2(5)_25(”1 (§)+2 H,(&)=0, n=0,1,2.... 3)
as

This differential equation is the defining differential equation for the Hermite
polynomials if n is a positive integer. From (3) a significantly more elegant and
manageable formulation of the Hermite polynomials can be given, using the
generating function S(§, s), so that

S, 5) = 1697 _ o=tk Z Ef@s” : 4)

n!
n=0
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Example 7.2 Expanding the exponential function in terms of powers of s and §, we see that
the coefficients of the powers s” are polynomials in terms of £ — the Hermite
polynomials. This can be shown as follows: we have

3 e _ T Gn " A (®)
il =y T O=)
n=0 n=0
§ o —S2+2SE _ 2 (“2S+2§)sn
= (=25 +20e —;;———nz Hy(8)
—Z 15 H® - 5

Equating equal powers of s in the sums of these two equations, we obtain

JdH..(£)

e =2 ® L Ha(©) = 26H, (O = 20,16 (6)

Therefore it follows that

0Hn(§)

S = 2600, — Hya6) ™
and hence
82Hn (5) _ 3H,, (éf) 8Hn+1 (3,:)
—a—gz——ZHn(g)-Fzg 3 - oF
=228 op e - e HE
%
JdH,
=2& d;E) —2nH, &) . (8)

This is exactly differential equation (3), proving that the H, (§) appearing in the
generating function (4) are indeed Hermite polynomials.

The recurrence formulas (6) may be used to calculate the H, and their
derivatives. Another explicit expression directly obtainable from the generating
function is quite useful; let us now establish this important relation. From (4) it

follows instantly that

0" S(E, 5)
as™ s=0

= H,(§) . ©)
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Now, for an arbitrary function f(s — &), it also holds that

= (10)
as o0&
Thus
—(s—8)?
S _ 20 e 9 697 (11)
os™ os™" agn
Comparing (11) with (9) yields the very useful formula,
, gn )
m@=wm55ﬁ*. (12)

The H,, (&) are polynomials of nth degree in & with the dominant term 2"£”.
The first five H, (£) calculated from (7.22) or (12) of the foregoing example are:

Hy®) =1, Hy(§) =2¢
Hy(§) =48 -2, H3(®) =8¢ —12¢ |
Hi(€) = 166 — 4882 +12 . (7.23)

The eigenfunctions (7.21) were combined by introducing the abbreviation & =
VAx and using the Hermite polynomials in a way that holds for both even and

oddn ie
Ul rey 1.0,

Yn(x) = Ny e TVDEH &), &=x . (7.24)

The constant N,,, which depends on the index #, is determined by the normaliza-
tion condition

meWM=L (7.25)

—00

since we require the position probability to be 1 for the particle in the entire
configuration space. Thus

fwmwm=%ﬁf€#m®%=L (7.26)

Using relation (12) of Example 7.2 to express one of the Hermite polynomials
that appears in the integrand of the normalization integral, the evaluation of this
integral becomes simply

N2 d" 2
2 nt'n —£
[ [V, (X)) “dx = (—1) ﬁ_[h H, (&) aEn e - d& . (7.27)

Example 7.2
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o0
[, & e
H —€ > G
j nis) den
—00
o0
-t . > dH, &' .
_ & n —&
=|——e H, - e > d& . 7.28
{( o) n(s)]_oo [ e te. om
—00
Th “rqt term 'c\’ becaucn nF (1M in Ey nla 79 nnno] to (__1\n— le_gz

\1&) i A..Aouljylv el LYU o T 1y

H, (&) Hy (§). It vanishes at infinity, due to the exponential function.
Having carried out partial integration » times, we are left with

f Hn(s)ie*fzd&-:(—l)" 7 e e dg . (7.29)
dé;n ke dg’:n

Since H, (&) is a polynomial of ath order with the dominant term 2"£", for the
nth derivative,

d"

de H, (&) =2"n! (7.30)

halde
HUIas,.

From this we find that

%)
‘szd
[ Hnorge e
—00
oo
PPN S N f _52 Py s ANH ARN L S -
=(—1)" )n!j e - dE=(—1)" (L )nlym , (/.31)
—00

and for the normalization constant,

My,
LR

<
-

N,,=‘
y'

The stationary states of the harmonic oscillator in quantum mechanics are
therefore

Yu(x) = ‘/ ! \/Zexp (—leZ) H,(¥Ax) . (7.32)
2"V 2
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To discuss the solution, we take a look at the first three eigenfunctions of the
linear harmonic oscillator (see Fig. 7.1):

n=0:Y%y(x)= {/i exp (—E)sz) ,

T 2
_q. _, 1 /x L2\ i
n=1:¢(x)= 5\/;exp(——§x) X,

1 [A 1
n=2:vYn(x) =, f‘/:exp (—r)»xz\ (4)»)62 -2) . (7.33)
V8V \ 2 /]

From (7.22) and (7.24) it follows that, for space reflection, the eigenfunctions
have the symmetry property

Un(=x) = (=" ¢Yn(x) . (7.34)

This means

neven: Y(—x)=1y(x) - parity +1
nodd: Y(—x)=—y(x) —> parity —1 .

For the lowest H,, it can easily be shown that they possess precisely » differ-
ent real zeros and n + 1 extremal values (see Fig. 7.1). With respect to (12) in
Example 7.2, we have

> d 2
Hyp1=—¢ —(e 5 H,) . (7.35)
dé

On the assumption that H, possesses n + 1 real extremal values, we can conclude
the existence of n + 1 extremal values for e ¢ an (since e~ - 0 for & — o0).
The extremal values are identical with the zeros of the derivative d/dé&; there-
fore H, 1 has precisely n + 1 real zeros. This conclusion shows that the Hermite
polynoimials f, (&) — and, in consequence, the wave funciions ¥, (£) — possess n
different real zeros. This is a special case of a universally valid theorem which
states that the principal quantum number of an eigenfunction is identical with the
number of zeros.

In Fig. 7.1, some of the ¥, are plotted together with an energy diagram.
The energy eigenvalues are represented as horizontal lines with the quan-
tum segments £, = (n+ %)hw. For each of the lines there is a corresponding

In addition, the figure contains the function of the potential energy

Vix) = Imax® . (7.36)
Thus we can make a comparison with the classical harmonic oscillator, which
oscillates with a certain amplitude characterized by the vanishing kinetic energy
at the turning point. Since £ = T + V, the region of classically possible oscilla-

tions is bounded by the point of intersection of the paraboia V(x) and the straight

=
t

Fig.7.1. Oscillator poten-
tial, energy levels and corre-
sponding wavefunctions
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line of total energy £. As a matter of fact, the figure shows that the extreme values
of the function v are localized within the classical region, nevertheless, tails of
the wave function extend to infinity.

The deviaiing behaviour becomes even more significant if we coniemplate
the position probability of the particle. Let T represent the period of revolution
of the particle, then classically we have

dt 2w w dx
w dx=—=—dt=— . 7.37
A= o = = (7.37)
The particle performs harmonic oscillations:
i dx

x=asinwt , o, =awcos wl = wa/1— (x/a)? ; (7.38)
hence,

(x)dx ! ! dx (7.39)

we(x)dx = ———— .

’ wa /1 - (x/a)?
w(z) The amplitude a is obtained from the energy E= ima)za2 ie. a= V2E/ma?.
Contrary to this, the quantum-mechanical probability for localizing a particle
Wel

' |
l 1

|
] 1

'
1

'
) 1
i '
1 (

|
DARAY AN

n=1

Fig.7.2. Comparison of the
probability density for find-
ing a particle moving in
an oscillator, classically and
quantum-mechanically. The
dashed lines denote the clas-
sical points of revolution

within an interval x + dx is given by (see Fig. 7.2):

Waqu(x) dx = |¥(x0)|?dx | (7.40)
which means, e.g. for n = 1 with respect to (7.33)
A
wqu(X)dx = |1 (x)[*dx = 2\/j e ax2dx . (7.41)
b4

+1 [ R

= — T
Xmax qu 7 \/ o

whereas classically, with E = 3/2hw, it holds that

/ 2E / 3ﬁ .
Xmax cl = +a = ik s (7.43)

The ant hatwaan clacgqios
Liiv uslvvuL\Au CCIWELIL CiassiC

with increasing quantum number n. A plo for n =15 .
for large quantum numbers (here n = 15), the mean value of the quantum
distribution approximates the classical limit.

From the figures we perceive that beyond the region which is classically lim-
ited by the relation E = T + V, the probability density is not equal to zero. This is
a consequence of the fact that 7 and V are noncommuting quantities, i.e. they do
not have simultaneously exact values, since V(x) is a function of space, whereas

Il
o~
~1
~
3%
N
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wa bwiz)
Wqu

T = p*/2m is a function of momentum. Therefore, owing to the uncertainty re-
lation | p, x]_ = —ih, it is impossible to split the energy preciselyin E =T+ V.
It would seem that localizing the particle beyond the classically permissible re-
gion implies a violation of energy conservation; however, this is not the case.
If we try to localize the particie (i.e. concentrate its wave function) in the smaii
tails of the function 1, the uncertainty of momentum increases to a point where
the new total energy exceeds the value of the potential energy V(x). Thus, from
the point of view of energy, the particle is allowed to adopt an x value beyond the
classically permitted region. In any case, it is the wave character of the quantum-
mechanical wave function which allows the penetration into potential wells and,
finally, its tunnelling. This effect is analogous to the jumping of electromagnetic

wavag (licht) avar narraw clite
yvyavwvwo \‘15‘1‘1} UYWL MALLIVYY J11v0O.

The behaviour described above is responsible for the tunnel effect, accord-
ing to which a potential well of size V; can even be surmounted by particles
with energy E < Vj. The tunnel effect appears, for example, in the case of field
emission and o decay. It has recently received particular attention because of its
practical application in the so-called tunnelling-electron microscope.* A further
difference between the classical and quantum-mechanical oscillator is the state
of minimum energy. Classically a particle can be in the state of equilibrium at
x =0, p=0, E =0. In quantum mechanics the smallest possible energy value
is E = hw/2, the zero-point energy.

This zero-point energy is a direct consequence of the uncertainty relation

2 2 h

3 See J.D. Jackson: Classical Electrodynamics, 2nd ed. (Wiley, New York 1980) and
W. Greiner: Classical Electrodynamics (Springer, New York 1998)

#1n 1986 G. Binnig and H. Rohrer received the Nobel Prize in physics for developing the
tunnelling-electron microscope; see e.g. G. Binnig and H. Rohrer, Scientific American,
Aug. 1985, p. 40.

Fig.7.3. Quantum-mechan-
ical and classical probabil-
ity densities for a particle
in a harmonic oscillator po-
tential with the energy E =
15+ 1/2)hw,1e.inthen =
15 state. The dashed vertical
lines indicate the classical
points of revolution
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Let us take a closer look at the expressions

APP=(p—pP=p ~20p+P=p —2pp+ P =p*~p . (145

Analogously, Ax2 = x2 — 52. On the other hand, in a state with a fixed energy
value, the mean values p and X are equal to zero since the integrand is an odd
function:

x= f Y (OxY, (x)dx = / [y () PPxdx =0 (7.46)
and

0o 00 q
Pr= f Yy () Pr ¥ (x) dx = —ih / W:(X)Ex—lﬁn(x)dx

[e.¢]
ih d ih
=5 [ LR =T nle, =0 (1.47
— 00
Therefore
ApP=p?, AxZ=i2. (7.48)
With this we may write the uncertainty relation in the form
—— h?
pPrxtz — . (7.49)
4
Now the average energy of the oscillator is
— P omet—
A= 0%5%. (7.50)
2m 2

Comparing both equations, we see that an increasing potential energy leads to
a decrease of Kinetic energy and vice versa.

Combining these equations, we obtain

2 2 %2

— mo* h

7 P A (7.51)
2m 8 p2
The function H = _ﬁ(?) possesses a minimum at F = %—ma)h, which can easily
be confirmed by evaluating the first and second derivative.

Since a state of fixed energy is characterized by H = E, we obtain as
minimum value of the possible energy eigenvalues

h
minE_>_7w:Eo.
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The zero-point energy Eq therefore is the smallest energy value that is compati-
ble with the uncertainty relation.

It is possible to indicate the zero-point motion (which leads to the zero-point
energy) by observing the dispersion of light in crystals. In solid bodies, atoms
and molecules perform small oscillations; according to classical theory, they
ought to diminish with decreasing temperature. These atomic oscillations are
the cause of the light dispersion, which therefore should vanish with decreasing
temperature. However, experiments demonstrate that the intensity of the scat-
tered light converges towards a finite limit, showing that even at the absolute
zero-point, atomic oscillations occur.

7.2 The Description of the Harmonic Oscillator
by Creation and Annihilation Operators

The normalized eigenfunctions of the harmonic oscillator all take the form
Vi
VA/m2n!

For the Hermite polynomials H, (£), the following recurrence relations hold (see
Example 7.2):

Yn(®) = e PH, &, E=Ax. (7.52)

1y - 1 d PN

§Hp =nH,_| + Eﬂn—H ’ agﬂn =cZinHp— . (/.93)
From these formulae, connections between eigenfunctions of the harmonic
oscillator, which belong to neighbouring quantum numbers, are obtainable:

+1
£y = ,/gwn_l + ”Tw,m , (7.54)
0 n
glﬁn = 2\/;wn—1 _SWn . (7-55)

Equation (7.55) is now rearranged, using (7.54), so that the right-hand sides of
both equations resemble each other:

n+
2

d n 1
:1#" = \/len—] 1 Ynt+1 - (7.56)
o0& Y 2 y

By addition (or subtraction) of (7.54) and (7.56), we get the relations
1

0
% ($+5§) 1pn:\/zl/fn—l )

1 d
= (5— —&) Yn =~vn+1Y,41 . (7.57)
Y <o\ /

a
vs
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With these equations we can now evaluate the neighbouring eigenfunctions v, —;
and v, from the eigenfunctions v,. For the sake of brevity, we define the
operators

i a\ . -
f(“’ s) “ ﬁ(é—_s):a ’ 7%

and hence obtain, instead of (7.57),

ay, = \/E\l’n—l » d+¢n =vn+1Yper - (7.59)

For the present we will call a the lowering operator and 4™ the raising operator
since the index n of the state i, is lowered or raised, respectively. In the fol-
lowing we formulate a better interpretation of @ and 4+ and then also name the
operators more appropriately.

7.3 Properties of the Operators d and 4

The operators @ and @™ are adjoint to each other (i.e. not self-adjoint), since it
holds that (with partial integration)

[ (sovie) ae= [ (e =5 o (7.60)

or, abbreviated,

(wldw) = (&+w|¢) . (7.61)
We have made use of the fact that the operators are real from their definition
(7.58),i.e.a=a* anda™ = (a™h)*.

The wave function v, is an eigenfunction of the operator product d*d
because

‘Tl—ﬁwn = ﬁ&+\0n—1 =nvyy, , (7.62)

which can be checked with (7.59). The eigenvalue n 1s the index of the oscillator
wave function 1,,. We therefore define a number operator N

N=datd, Ny,=nv, . (7.63)
The eigenvalues of N are n; the eigenfunctions are v/,,. We get the commutator
[a4,a7]- =1 (7.64)

easily by evaluating the two products according to (7.58).
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By successively applying 4™ on 1, we are able to calculate all eigenfunc-
tions, starting from the ground state. From (7.59) it follows that

__1_"+ _ __1__ AN
%—ﬁ Yn-1=...= n!(a ) Yo - (7.65)

Up to this point we have developed a formalism in terms of 4@ and 4% that enables
us to set up a differential equation for the ground state. With n = 0, we find from
(7.58) and (7.59):

Gyo=0 and Yo+ —— =0 . (7.66)

o 2 ., .
The substitution ¥y =~ %" yields o = —%. Thus the function of the ground state
is, up to a normalization factor,

Yo~ e 67

’

which coincides with the solution of the Schridinger equation for the harmonic
oscillator, yielding for the normalized ground state (7.33)

y
Yo = {/; e €2 (1.67)

7.4 Representation of the Oscillator Hamiltonian
in Terms of G and 4™

For the one-dimensional harmonic oscillator, the Hamiltonian is given by
(7.68)

Corresponding to the introduction of the new variables & = v/Ax = \/(maw/h)x
we can now define a new momentum operator

d ) e ko 9
= = 7.69
Pe = e T T T T T hw a? (7.69)
so that the Hamiltonian becomes
A= ho@ + ) = tho (£ i (7.70)
=-hw =-hw -—— ] . .
2 Pe) =73 Py
From the relation
82
£2— — =aat+ata,

175



176

7. The Harmonic Oscillator

Fig. 7.4. Energy levels of the
harmonic oscillator and the
effect of the creation and an-
nihilation operators

which is easily verified with (7.58), and by use of the commutation prop-
erty (7.64) and definition (7.63), we may infer a simple representation of the
Hamiltonian, namely

A=ho@"i+}) =hoN+}) . (7.71)
From this we can evaluate the energy eigenvalues
Ay, = ho(N + })Yn = ho(+ DY = Entn . (7.72)

The energy eigenvalues are E, = hw(n + %), as calculated above.

7.5 Interpretation of 4 and 4+

The ground state ¢ has the zero-point energy Eo = hw/2. Since the energy
spectrum of the harmonic oscillator is equidistant, the state v, possesses an en-
ergy value that is larger by the term nhw. We will distribute this energy to n
energy quanta ko (quanta of the oscillator field), called phonons. v, is called
an n-phonon state. In Dirac’s notation it reads

Y =1n) . (7.73)

The “kets” |r) contain the number of phonons. The zero-phonon state |0) is also

~allad tha 1yaweans TTad +h tort h th 1
called the vacuum. Using the notation above, the equations (7.59) become

dlny=+nln—1 , atn)=vn+1l|n+1) . (7.74)

The following interpretation is appropriate: if acting on the wave function, the
operator d annihilates one phonon at a time, whereas at creates one. Therefore,
from now on we will call 4 and a* the annihilation operator and creation opera-
tor, respectively. N is termed the phonon number operator, since its eigenvalues,
given by the equation

Nin)=nln) , (7.75)

are the numbers of phonons of the corresponding state.

T En/hw
7/2
a|3) :  Annihilation of a \ / 4/|3>
phonon N‘l 5/2 |2

at?|1)  Creation of two /
\ N
phonons 3/2 11)

N
L2 1)
=T
state
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The introduction of the phonon representation is often referred to (somewhat
imprecisely) as second quantization. The quanta of the wave field of the oscilla-
tor are exactly the phonons. This becomes clear if we consider the analogy with
photons.

However, for a complete mathematical treatment of the second quantiza-
tion of the electromagnetic field, it is necessary to use quantum field theoretical
methods.’

EXAMPLE
7.3 The Three-Dimensional Harmonic Oscillator

Problem. Determine the eigenvalues and eigenfunctions of the Hamiltonian for
the three-dimensional, spherically symmetric harmonic oscillator.

Because of the symmetry of the problem, we solve the stationary Schrodinger
equation

Ay = Ent¥m )

in spherical coordinates. n, [ are quantum numbers characterizing the eigenfunc-
tions and will have to be further specified. The Laplacian in spherical coordinates
is

2 209 L2

—2
Vie S 4S -,
a2 ror hR2r2

©)

where the angular-momentum operator L contains the derivatives with respect
to the angles ¢ and ¢ [see (4.75)—(4.77) and (4.82)]. The eigenfunctions of L?
are the spherical harmonics [see (4.76)—(4.80) and Example 4.9]:

LY (9, 9) = R+ 1) Yim (3, ) @)

To separate the angular and radial parts of the wave function ¥pj,,, we try writing

Ry (r)
r

Yuim (1, U, @) = Yim(9, @) - 5

5 See W. Greiner, J. Reinhardt: Quantum Electrodynamics, 2nd ed. (Springer, Berlin,
Heideiberg 1994).
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Example 7.3

Substituting (5) into the Schrodinger equation (2) and using (1) yields a differ-
ential equation for the radial part of the wave function Rp;(r):

, o (2mEy mzwzz I+ DY\
Rn,+( S )R,,z(r) (6)

Using the abbreviations in (7.5), this differential equation becomes identical with
(7.6), except for the angular-momentum term I(I4 1) /r?, usually termed the
angular-momentum barrier,

e ’<l+‘>\

LAY NoT “I’H —v .

r

~
J
SN

This differential equation can be transformed by a suitable substitution for Ry
to the same standard form (7.8) as previously (7.6).

This substitution will differ from (7.10) because of the angular-momentum
barrier. As before, in the case of the linear oscillator, we try to split off the asymp-
totic behaviour of the wave function. If » — oo, we may neglect the angular-

eptum term / I(I_L 1\ /v2 Then the solution of the differential Pnll‘;\hnn has

MaOMm,
1LIVLIIVIILGLLL

to behave like
Ru(r) —> ~ exp[—(A/2)r*] . (8)
r—=o0

At ¥ = 0, the angular-momentum term becomes dominant, independent of the
potential. Thus we try an expansion in a power series

o
Ry =r" E a;r'
i=0

Substitution into the asymptotic differential equation

(+1)
Ry — =5 Rt =0 ©)
yields

al@—1)—1(+1)=0

with solutions «; = —I, @ = [+ 1. Hence, we get
Ru(r) —>~rtt or ~r7t . (10)
r—>20

The first possibility in (10) suggests the substitution
Ru(r) = "l expl— (A /2)r2u() . (11)
Notice that, quite analogously, we could continue the calculation using

Ru(r) = r ' exp[—(A/2)r lu(r) .



7.5 Interpretation of d and 4+

179

However, this leads to exactly the same solutions as (11). This is not immedi-
ately obvious, but becomes clear by repeating the following steps, employing the
substitution (11).% With (11), (7) changes to

v”+2(l+l ~Ar) V=2l +3)—k)v=0 . (12)

r

By substituting the variable
t=xar? (13)

(12) transtorms into a Kummer differential equation [see (17) of Exercise 7.11:

zd2”+ AP U Ry PO WL R (14)
dar2 2 a |2Ut3) 7 vEY

with k = k2/2% = hik?/2mw = E/ho [see (7.9)]. It has the solutions

v =C1F [30+3 —0), 1+ 3; 22
7/ LR N A L) [ d
+Cor @D s R L= =0, -1+ 4 07 (15)

When [/ # 0, the second particular solution cannot be normalized, since it di-
verges too strongly at r = 0. Therefore we set C, = 0. The same is also valid for
I = 0. To prove this is not trivial, so we will now demonstrate the verification in
detail. (In the case of the linear oscillator, the second particular solution would
make sense from a physical point of view, The difference between the cases orig-
inates from the fact that, earlier, the normalization integral was one-dimensional,
whereas, now, it is three-dimensional; i.e. it has to be integrated with a different
volume element.)

We start by requiring that the momentum operator —ihV be self-adjoint,
since it represents a physical quantity and therefore should have real eigenvalues:

(16)
\ 7

where u,, u, are elements of a complete orthonormal set of solutions that belong
to a certain Hamiltonian, e.g. to the Hamiltonian (1):

fu:umdtzanm . (17)

Since the u, form a complete set, we may expand the components of —ii Vu,,
in terms of the u,,:

~iAVium =Y ey . (18)
k

6 See J.M. Eisenberg, W. Greiner: Nuclear Theory 1, Nuclear Models, 3rd ed. (North-

—— N e 1AL 1AL
) pp. 145-146.

Holland, Amsterdam 198

Example 7.3
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Example 7.3

Then from (16) we can obtain

[u;‘;(—ihV)(—ihVum)dr = /(—ihVu,,)*(ihVum)dt , (19)
or d )

/u;“,Aumdr = -/Vquum dr , (20)
employing Green’s theorem, which requires that the surface integral vanish. If

we multiply (20) by —k2/2m and set n = m, the left-hand side becomes the
mean value of kinetic energy of the state u,:

h2
<Ehan=-——jﬁVuu%h. 1)
2m
The second particular solution in (15) with / = O behaves like
R 1 1 1
R L m(ior Ll A2 e-0/0r (22)
r r \4 2 ] '

which means that the integral (21) diverges, whereas the expectation value of

the potential energy mw?*r* /2 remains finite (this straightforward calculation is

left to the reader as an exercise). The reason for the divergence of the integral of

kinetic energy is the divergence of the wave function at the origin r = 0. There
it holds that

v R 1

r r 2

and therefore

R
(V—) 202 dr ~ dr .
r

This term obviously diverges. Consequently, we also have to rule out solu-
tion (22).

We now return to (15). Employing the same arguments as in the case of the
linear oscillator, we conclude that, since the solutions are required to be regular
at infinity, the hypergeometric function has to break off, leading this time to the
condition

M+3-0=-n, (@neNy,
i.e. to a quantization of energy:
Ey=ho@n+1+3) . (23)

The term (3/2) hiw represents the zero-point energy of the three-dimensional har-
monic oscillator. Since there are now zero-point oscillations along the x, y and z
axes, the zero-point energy is three times as large as in the one-dimensional case.
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Spectrum of the three-dimensional harmonic oscillator

N=2n4+! n / Energy Number of
degenerate states

0 0 0(s) 2ho 1

1 0 1(p) 2ho 3

2 ! 06s) The! Lo
0 2(da) | J

3 1 1(s) 9 3 10
0 3(F) fh"’} 7

4 2 0(s) 1
1 2(d) L;hw} 5 15
0 4(g) 9

The complete, not yet normalized, eigenfunction belonging to the eigenvalue
E,; is then

. 2
Yruim(r, B, @) =7 & XD | B (—n, 14 3 M) Y (B, ) (24)

The 27+ 1 eigenstates with the same (#,!) but different magnetic quantum
numbers m are degenerate. Furthermore, the states with constant N =2n +
I are degenerate, too. Therefore N is sometimes called the principal quan-
tum number. The table shows the degeneracy of the lowest eigenstates of the
three-dimensional oscillator.

In spectroscopy, it is common to use the notation s, p, d, f, . .. for the angu-
lar momenta [ =0, 1,2, 3, ... . For example, a 5p state is characterized by the
principal quantum number N = 5 and angular momentum / = 1 (see table).

The diagram illustrates the spectrum of the three-dimensional harmonic
oscillator. The three-dimensional oscillator is of fundamental importance for

9
v ihw y rn:I.‘::!
X /N =3 {n:0¢:
7
hw
2 n:=1,£-0
N=2 {n:O g2

Example 7.3

The level structure of a par-
ticle in a three-dimensional
oscillator potential. Notice
the degeneracy of the higher

states
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Example 7.3

nuclear physics in the so-called shell model for nuclei, when establishing the cor-
responding Hamiltonian. In fact, it is an essential part of it: the shell model of
the nucleus is based on the assumption that the individual nucleons move in an

P SRS,

This average potential is often approximated by the three-dimensional
oscillator.” In addition, there is a so-called spin—orbit interaction, with which we
will become familiar when discussing relativistic quantum mechanics.

7.6 Biographical Notes

WEBER, Heinrich, German mathematician, *5.3.1842 Heidelberg, t 17.5.1913 Stras-
bourg. W. studied in Heidelberg, Leipzig and Konigsberg. In 1873 he was professor in
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Braunschweig (Brunswick), 123.2.1855 Gottingen. G. was a day-labourer’s son and
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Beginning in 1791, he was educated at the expense of the Duke of Braunschweig
(Brunswick). G. studied 1795-98 in Géttingen and took his doctorate in 1799 in Helm-
stedt. From 1807 on, G. was director of the Gottingen observatory and professor at the
University of Gottingen. He refused all offers to go elsewhere, for example, to join the
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pass and straightedge, if » is a Fermat-type prime number. In his doctoral thesis (1799),
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results of his studies were the calculation of the planetoid Ceres’s orbit (1801), research
into secular perturbations (1809 and 1818), and the attraction of the universal ellipsoid
(1813). In 1812, G. published his treatise on the hypergeometric series, which is first

7 See 1.M. Eisenberg, W. Greiner: Nuclear Theory 1, Nuclear Models, 3rd ed. (North-
Holland, Amsterdam 1987).
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correct and systematic investigation of convergence. From [820 on, G. devoted himself
increasingly to geodesy. His most outstanding theoretical achievement was the theory
of surfaces, which contains the Theorema egregium (1827). G. practised geodesy, too,
e.g. he performed comprehensive surveys in the years 1821-25. In spite of such ex-
tensive achievements, in 1825 and in 1831 his publications on biquadratic remainders
also appeared. The second of these treatises offers a description of complex numbers
in the plane and a novel theory of prime numbers. In his last years G. also enjoyed
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telegraph, made in 1833/34 together with W. Weber, and in 1839/40 the potential the-
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became known from his diary and letters; for example, G. had discovered non-Euclidean
geometry by 1816. G.’s reluctance to publish important results originated in the extraor-
dinarily high standards he set for the presentation of his research, and in his efforts to
avoid unnecessary argument.

KUMMER, Emst Eduard, German mathematician, *29.1.1810 Sorau (Zary),
114.5.1893 Berlin. K. was a teacher at the grammar school in Liegnitz from 1832 to
1842; later he was at the University of Breslau (Wroctaw) until 1856. In the following
years, until 1883, he was a professor at the University of Berlin. His major mathemat-
ical achievements are the differential geometry of congruences and the introduction of
the ideal numbers to the theory of algebraic number fields.

LAGUERRE, Edmond Nicolas, French mathematician, *9.4.1834, 1 13.8.1886 Bar-le-
Duc. L. was one of the founders of modern geometry. He became a member of the
Académic Frangaise in 1885. Besides geometrical problems (especially the interpreta-
tion of imaginary and real geometry), L. particularly furthered the theories of algebraic
equations and continued fractions.

GREEN, George, English mathematician, *14.7.1793 at Nottingham, t31.3.1841 at
Sneinton near Nottingham. Besides his activities as successor to his father who was
a baker and miller, G. followed closely all discoveries concemning electricity and read
the works of Laplace. After further studies at Cambridge, he worked there at Caius col-
lege. His main work “Essays on the Application of Mathematical Analysis to Theories
of Electricity and Magnetism” (1828) represents the first attempt at a mathematical de-
scription of the phenomena of electricity, and marks, along with the work of Gauss, the

beginning of potential theory.






8. The Transition from Classical
to Quantum Mechanics

n e

3.1 Motion of the Mean Values

We consider a Hermitian operator L. The mean value of the operator is, as we
know, defined as

Z:/w*iwdv . (8.1)

Since both the operator L and the wave function 1 can be time dependent, the
mean value L will in general be time dependent, too. When we evaluate the
temporal variation of L, we can exchange differentiation and integration. This
yields

d

d— L * .0

S= [ yave [(Liypryi ) av. 52)

at J o J \ ot ot

The first integral represents the mean value of the partial temporal derivative of

the operator L. The second integral can be simplified with the aid of the time-

dependent Schridinger equation:
R A

o - RV h

H*y* (8.3)

If we make use of the Hermiticity of H we obtain

d— LOL i s
aL:fl/f Ewdwrg/w |A, L]_ydv (8.4)

or, more simply,

d— 8L i —=
—L=—4+_[H4,1]- . 8.
dtL o h[ , L] (8.5)

Taking (8.5) as a basis, we can neatly define the total temporal derivative of the
operator dL/dz:

~>

i

~o

dl
=—+

Ar As
s v

[H,L}_ . (8.6)

=
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From this definition, we see that the temporal derivative of the mean value L
is equal to the mean value of di /dt. The sum and product obey the usual
differentiation rules:

d(/i+1§) dA+ dB (8.7)
dt d dr ’ )
d .. .dB

—(AB)= —B+A— | )
A8 = B dt (8.8)

which can be seen by applying (8.6). The proof of (8.8) is as follows:
d .x 0 an 0 A oaa
—(AB)=—(AB)+ —[H, AB]_
dt( ) at( )+ h[ ]

8Aé+Aaé+i
ot ot h

=" B+A— (8.9)

8.2 Ehrenfest’s Theorem

We consider the time derivative of the coordinate (or momentum) operator. Nei-
ther operator is explicitly time dependent; hence, the following is valid for the x
components:

& —1-[1?,)2]; , (8.10)
dﬁ H, 8.11
P A (8.11)

For the other components, analogous expressions are valid. To evaluate the
commutators, let us have a look at the Hamiltonian of a particle in the potential:

I_?:_(Px+py+p )+ V(x, y.2) . (8.12)

The operator X commutes with ﬁ_, ﬁ and the potential, which is supposed to be
an exclusively space-dependent functlon Thus

A 1. . )
[H, x]- = [px, x]l- = o [Px(xpx —ih) —xp7]
m

h pyx

1 m

= *[(_ih +xﬁx)ﬁx*ihl’x—xl’2]— (8.13)
2m
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The commutator with the component of momentum p, yields

. hav
LA, pxl- = [V(x, ¥, 2), Px]— = — . (8.14)
i oax

Hence, from (8.10) and (8.11) we get

dt  p

Ezﬁx , (8.15)
p av

a  ox 8.16)

Thus the same relations exist between the operators of position and momentum
as between the coordinates of position and momentum in classical mechanics:

dx d oV
P, %Y (8.17)

3. T ., a_
af 743 ai ox

Evaluating the mean values of (8.15) and (8.16) and considering dx/dt =
dx/dt, both of Ehrenfest’s theorems follow

d 1
—/w*wdx= —fw*ﬁxwdx
dt/ Ypeprdx = — jw —wdx (8.18)

This statement is summed up in Ehrenfest’s Theorem (1927): The mean values
of quantum-mechanical quantities move according to classical equations.

8.3 Constants of Motion, Laws of Conservation

A time-dependent operator is a constant of motion if the operator commutes with
the Hamiltonian. Indeed, for the case of time independence we have

a7 a7 :
arL oL 1

=—+ [ﬁ,i]_zo . (8.19)

If the operator itself is not explicitly time dependent, i.e. aL /ot = 0, it follows
that [H, L] = 0. Thus only those operators L represent constants of motion
which (1) are not explicitly time dependent and (2) commute with the Hamil-
tonian. This fact will be very important in our further studies of quantum
mechanics.
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The operator H of the total energy obviously commutes with itself. It is there-
fore exactly a constant of motion when it is not explicitly time dependent. This
is just the law of conservation of energy.

The momentum p is not explicitly time dependent. With respect to (8.14), it
immediately follows that p, = constant if 3V/dx = 0. Thus the law of conserva-
tion of momentum is valid in quantum mechanics, too.

For central forces, the associated potential V(r) is only a function of the radius
r. The angular-momentum operator [?= h2V2 [see (4.75)] thus commutes
with V(r). The complete Hamiltonian is [see (4. 82a)]

A=T+L2m? + V() ; (8.20)
hence
[H,1L71=0. (8.21)

Thereby, the law of conservation of angular momentum is valid (Kepler’s second
law: the area theorem). The same consideration is true for the z component of

qgu]ur momentum, because I'I 2’ LZ] =0 and [‘L‘I LZ] =0.

EXERCISE I

8.1 Commutation Relations

Problem. Show by application of the canonical commutation relation

o h
i, gx]l- = i—5ik (L
that the commutation relations
h aH h af?
(A, pil- = — , [H.4]-= (2)
i aq; p,
are valid for Hamiltonians of the form
H=4;,g,....4" p! and 3)
H= Z mn PR 4L 4)
k
Solution. The proof is given by complete induction. The equation
. hoH
[H,p]]l =——— (&)
1 dg;

is obviously true for H= Gi. We assume it also to be true for H = g". Then, for

H= ”+1 , the following is valid:
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[An—i—l n—|—l ~

, pil- = Bi— pigmt = Gi(@r i — g™ + (GiBi — PiGi)d}
. an— R\ .
=g (—ani-” l\ +(—T\q{'
\ 1 / \ 1)
hoH
i 94

h
= -+ D = ; (6)

hence, the relation is valid for all n.

The proof for (A, gi]- with H= P is performed analogously.

S
—~

If H=) Cunnp?"q’, then we have
h 9g}
[H Pz]— ZCmnpl qlapll—ZCmnP, ( 1 Bq{)
A hoH
=3 Con ¥ (——an’ 1)=—f-r- )
1 9g;

The proof for [H, §;]— is performed analogously.

EXERCISE I —

8.2 The Virial Theorem

The virial theorem formulates a general relation between the mean value of the
kinetic energy (|7'|) and the potential V:

ATy = (|F- VV@B)) . (1)

It is valid both in classical mechanics and quantum mechanics and can be proved
similarly in both disciplines. In classical mechanics, we start with the temporal
mean value of the time derivative of the quantity 7 - p, i.e. d(#- p)/dt, which van-
ishes for periodic motions. Correspondingly, in quantum mechanics we consider
the expectation value of d(7- p)/dr and get

d,
a P

The last identity can be verified easily in energy representation:

A

d | A
>=E(| ph= h(l[rP,HJ—I)—O- @)

(Yell#-p, H- |Vg) = (Ye|# PE—EF-p|YE)
=(E—E)(Yg|F-pl¥E)=0. 3)

The last step is based on the Hermiticity of H and the reality of E. On the other
hand, the commutator [#- p, H]_ can be easily computed for all H of the form

Exercise 8.1
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Exercise 8.2

H = p*/2m + V():

o o PR
ir-p, t1]— = l_xPx+YPy +2pz, —2m—— T~ VX, y, Z)J

iR o 0 o v v 9V
= — —ih{ x— - _
m(px+py+pz) i ( w +y8y +Zaz

=2ihT —ih(?-VV) . @)

Thus we have 2(|T'|) = (|#V V(r)|). We note that it does not matter for the proof
whether we start from 7 - p or p - 7, because the difference between the terms is
a constant which obviously commutates with H.If V is a spherically symmetric
potential, e.g. V(r) ~ r", the virial theorem yields Z(Ifl) =n{|V|). This is valid
for all n, where the expectation value {|V|) must exist, of course.

8.4 Quantization in Curvilinear Coordinates

Equation (8.6), which gives us the total time derivative of an operator F

dﬁ_aﬁ+1[ﬁﬁ] 87
d & in (8.22)
has a formal analogue in classical mechanics, the Poisson bracket. The total
temporal derivative of a function F(p;, ¢;, t) is given by

f

dF oF . [(3F 9F
—= it —p) . 8.3
e o +; (aqi at 3pip') 623

Here, p;, g; are the generalized momenta and coordinates, respectively, and f is
the number of degrees of freedom. By using Hamilton’s equations, the second
term on the right-hand side of (8.23) transforms to

i(ap L OF ) i(aFaH OF aH) F )
—Gi+—pi )= — = |=(F H},
“—\ogi " opit ) = \daidpi Ipi dg;

and, hence, (8.23) becomes

dF 9F
= +{F, H} . (8.24)
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The analogy between the classical equation (8.24) and the quantum-mechanical
equation (8.22) is obvious. The so-defined term {F, H}, involving the Hamil-
tonian function H, is called the Poisson bracket. The transition from clas-
sical mechanics to quantum mechanics can obviously be performed by the
transition to operators and the replacement of the Poisson bracket {, } by
the commutator (1/ih)[, ]—. The operator (l/ih)[l:", H]_ is also called the
quantum-mechanical Poisson bracket.

These considerations of analogy can be continued. In classical mechanics we
work with canonical variables and say a transformation from g;, p; to Q;, P,
is canonical if Q; and P; again fulfil Hamilton’s equations. This means the
transition

H(pls CIz) - ‘}{(Hv Ql) s (825)

where Jf stands for the new Hamiltonian function depending on the coordinates
P; and Q;. The same statement can be expressed by the Poisson bracket; indeed

{gi. pi} =14 , (8.26)
because the latter is equivalent to

7
L (ogi dp;  ogi ap;
Z(ﬁﬂ_i_&) —5; . 8.27)
4o 3ps 0Py 3G

o=l
The term (3g;/3ps)(dpj/3qs) always vanishes and (dg;/0q,)(3p;/3dps) gives
the identity only for i = j, hence, é;;. If we transform to Q;, F;, the transform-
ation is then only canonical if

{Qi, Pj} =4y (8.28)
is valid. (This will be further explained in Exercise 8.4.) Furthermore, the
following equations also hold:

{Qi,Qj}=0 and (P, P;}=0. (8.29)

Proceeding to quantum mechanics, we get the same relation, provided that we
set p; = —ihd/dx; in the above-defined quantum-mechanical Poisson bracket:

iBT 91

— | x;, — | =9; . 8.30
Ak ax,J* i (8.30)
Thus the momentum is replaced by the operator. Likewise, both of the above-
considered relations (8.29) are valid in quantum mechanics:

Jd 0 ]
IXi,Xj]—— =0 and '-_87,,, E =0. (8.31)

Lo Vid—
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Moreover, for the classical Poisson bracket, the following relations are valid:

{A,B}=—{B, A}, {A,C}=0 for C=const,

{A1A2, B} = {A;, B}A2 + A1{A2, B},

{A1+ Az, BY={A;, B} +{A2, B},
{A,{B.C}}+{B.{C, A}} +{C,{A, B}} =0 (the Jacobi identity) . (8.32)

It can easily be checked that the quantum-mechanical commutator fulfils the
same algebraic relations. This fact was first noted by P.A M. Dirac, who used
it to show the formal analogy between quantum and Hamiltonian mechanics.

The transition from classical to quantum mechanics can formally be achieved
by a special canonical transformation with the commutators

[pi, xj]- =ihéy , [xi,x;1-=0, [p;, pjl-=0. (8.33)

A short example shows, nevertheless, that one must take care with this transition,
now that the momentum is an operator. The terms

1 1
p2 »  TPXp, —Spxpx, et (8.34)
x X

are equivalent in classical mechanics. If, however, we replace the momentum by
the operator p = —ihd/dx, we get different terms in quantum mechanics.

Similar difficulties arise if we use curvilinear coordinates. The special na-
ture of Cartesian coordinates becomes clear when considering kinetic energy.
The kinetic energy in generalized coordinates is of the form

3

T=Y" mi(qu 42, 43)pi Prc - (8.35)
ik=1

The mass coefficients m;; are generally functions of space. Hence, if the momen-
tum is measured, they cannot simultaneously be exactly determined. Here, this
means that the kinetic energy cannot be determined by measuring only the mo-
menta. In Cartesian coordinates for a particle of mass m, the coefficients obey
the relation m;; = (2m)_1 dix; thus

q_ PP
N 2m ’

and the kinetic energy is determined exclusively by the momenta. Of course, the
form of the kinetic energy is essential in determining the Hamiltonian operator
(Hamiltonian). To obtain the Hamiltonian operator from the Hamiltonian func-
tion, it is always necessary to transform the function into Cartesian coordinates
before putting in the operators. This is the safest way to pass from the classical
to the corresponding quantum-mechanical system.

We now show the different outcomes of the two procedures, taking a central

potential ag an example.

(8.36)
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Correct Way

We consider a central force problem (e.g. the hydrogen atom) with the potential
Vi oo 22 e Mhn ITanilimtan Framntinnm tin Momtacian memidicoine talrag s fame
vir) — € /7, LIU IIdIUIUNTIAL TULCUOULE TH U aliesidll COULULTIAteS dROD UIC 1UT1L
H = p?/2m + V(r). We replace the momentum by the operator —i% V and obtain
the Hamiltonian

+V(r)y=——+V(r) . (8.37)
2m 2m

Now we must transform the A operator into the spherical coordinates r, ¢, ¢

yrlhinta nin peminsneniinta ta tho v lilane Tha Anitansna AF thio Aneaitatiagm 1o ral
willtll dic appivpriaic w uic PIUULCIII. 11U UULLULLIC UL UL Lullpulatiull 15 wil

known and leads to the Schrodinger equation

Hy=— R [l irziw + LI (sin z9~a—¢>
2m | r?ar or r2sin® a9 1
1 92

r2 sin? ¢ @W

A

-

]+wmw=Ew. (8.38)

Incorrect Way

We start from the classical Hamiltonian function and transform it from Cartesian
to spherical coordinates. Thus we obtain the Hamiltonian function:

PERLEY P IULIS S S WY
2m \'" 2 rZsin2o’ %)

o'}
(%]
)

~~
:
~—

Now, performing the transition to quantum mechanics with the transformation
equations:

. . . 5 0
[Pr.r]=~ih, pr=—ih
r

w
. . . . 0
[Pp, 9l =—~ih , p,= —1715(; , (8.40)

and noting the term for the quantum-mechanical Hamiltonian,

[ps, 3] =—ih , ps=—ih

L]

Ao Lyg® 18 1 N

=— StttV
2m \E)r2 r? 63172-1-r23i112198¢2}+ o

we recognize that the outcomes of the two procedures differ; in the second case,
we have lost some terms during the transformation.

The transformations of kinetic energy operators from Cartesian to curvilin-
ear coordinates seem to be very awkward, and there may be cases in which it is
impossible to write down the kinetic energy in Cartesian coordinates. Thus the
question of how to proceed in such a case inevitably arises.
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In the following, we explain a method by which, starting from an arbitrary
system of coordinates, we can obtain the correct term of the quantum-mechanical
Hamiltonian.

We consider a system of N particles with 3N degrees of freedom. The
Cartesian coordinates of the particles are xy, x2, . .. , x35. The associated Carte-
sian momenta are denoted by pi. p2, ..., p3n. Thus the classical Hamiltonian
function is

2
H= Z + VX1, ..., x38) (8.42)

The kinetic energy occuring therein is of Cartesian structure, i.e. itis diagonal in
the momenta and has constant mass factors 1/2m. On the basis of our experience
with the single-particle system [e.g. the hydrogen atom — see (8.36) and (8.38)],
we are able to transform this Kinetic energy into its quantum-mechanical form.
The operator of the kinetic energy is
N h2 [ o2 92 \
I'=——AMAN=—7— 5+ 5
2m 2m \ oxy X3y /

(8.43)

where the 3N-dimensional Laplace operator (Laplacian) is written in brackets.
It should be made clear that this is a model which is indeed justified by our
experience.

Analogously, we now consider curvilinear coordinates (1, ua, ..., u3n).
The square of a length element in 3 N-dimensional space takes the form

a7
24y

d52 = Z g,-kdu,-duk . (8-44)
i,k=1

The coefficients gy (u;) are the elements of the metric tensor; in general they
depend on the coordinates u ;. The kinetic energy yields through

ds\ 2
r="(%) (8.45)
2\ dt)
the relation
du, duk
i . 8.46
sz_: Bk ar (8.46)

Thus the gix(u ;) are a kind of mass coefficient. We call the determnmt of the

matrix (g;) det(g;x) = g, and the inverse of the matrix {(gik) -l = (g *).
In curvilinear coordinates, Laplace’s operator Az is!

1 9 .9
A= —— - ik ___} . 8.47
~/§-Z| au,-( 88 Buk) (8.47)
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Using this form of the Laplace operator we always obtain the correct operator of
the kinetic energy in the transition to quantum mechanics, namely

;o hzlzaf,.ka 8.48)
- 2m fg “— du; 88 Ouy '

This general method of quantization is especially important in nuclear physics
for the quantization of collective phenomena.2 In the case of a vibrating nucleus,
for example, we are dealing with a system the mass of which (vibrating mass) de-
pends on the amplitude of the oscillation. The greater the oscillation, the more
nucleons participate in the motion (cf. Fig. 8.1). The metric tensor (mass ten-
sor) becomes coordinate dependent and the quantization (8.48) is of decisive
importance.

EXAMPLE I

8.3 The Kinetic-Energy Operator in Spherical Coordinates

Using the example of spherical coordinates, we once again derive the kinetic-
energy operator (8.38), but now from (8.48), which applies to all coordinates.
The length element in spherical coordinates is

ds? = dr* +r2dw? + r?sin’ 9dy® = Zgii(dui)2 - M

4

Thus we obtain for the single elements of the metric tensor

2 2 (il
gn=1, gn=r", gup=r-sn°?, @
farming tha dinognnal matriy
LULINLNE ulC UlagUtial 1Hiaula
1 0 0
2
(gx)=|0 r 0 - (3)
0 0 r?sin®®

The determinant and the inverse matrix are easily evaluated:

det(gix) =g = r*sin?¢  and
1 0 0

=10 1/ 0 . )
0 0 1/r7sin®®

2See J.M. Eisenberg and W. Greiner: Nuclear Theory 1: Nuclear Models, 3rd
ed. (North-Holland, Amsterdam 1987).

OO

Fig.8.1a,b. Surface oscilla-
tions of a nucleus. At (a),
small amplitudes, fewer nu-
cleons participate in the mo-
tion than for (b), large am-
plitudes. The vibrating mass
thus becomes amplitude de-
pendent (coordinate depen-
dent)
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As all gi; = 0 for i # k, the kinetic energy operator consists of only three terms:

f:-h_z_l_ af_ J ‘/_ 0 +ii_i
2m \/5 \ur ar 319 i‘* 8 Ehp i‘2 Siﬁzﬁaw/
B2 (9% 28 | I 1 9
~m (w-i_;g;—l_rzsmﬁaﬁ‘ - 1955+r2sin208_<;5) ©)

This result agrees with (8.38), which was obtained by first making the tran-
sition from classical to quantum mechanics in Cartesian coordinates and then
performing the transformation to spherical coordinates.

EXERCISE I

8.4 Review of Some Useful Relations of Classical Mechanics:
Lagrange and Poisson Brackets

to an Q,,P,,W ere

Q; = Qilqgj, pj,8) , Pi=Plgj, pj,0 . ()

This transformation is called canonical if a function #¢(Q;, P;, t) (Hamiltonian)
exists, such that

H(g:, p;) = H(0;, P)) . (2)

SENME S e

H=3, pigi—L and #
grangian L and H, and L’
0, = aFH b ¥4 3)

[ 2 aH ’ I — an .

Poincaré’s Theorem states that the following surface integral is invariant under
canonical transformations:

Jl=//zd41idpi .
A i

Hence, it easily follows that the Lagrange bracket is invariant under canonical
transformation.

Og; dp;  Op; 9q;
{{u,v}}=§:(i—p———p-i) . 4)

=3, PiQ;— L' are the relations between the La-
and H, respectively. In short,

ou dv du v
= —_ ). 5
(1, v} Z (8% - aq,») (5)
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Problem. (a) Prove Poincaré’s Theorem.

(b) Show the invariance of the Lagrange bracket under canonical transform-
ations.

(c) Show the invariance of the so-called fundamental Poisson brackets under
arbitrary canonical transformations:

{pi,pj}=0
{gi,q;}=0
{gi. pj}=3dij . (6)

(d) Verity the relation
{FaG}q,p={F! G}Q,P (7)

for two arbitrary functions F and G, i.e. the invariance of the Poisson bracket
under arbitrary canonical transformations.

Solution. (a) The position of a point on a two-dimensional area A in phase
space is completely determined by two parameters, « and v. On this area we can
express the coordinates g; and p; as functions of u and v, since g; = q;(u, v),
pi = pi(u, v). With the aid of the Jacobi determinant, the area elements dudv
and dg; dp; can be transformed into each other; the Jacobi determinant being

S opi
g pi) _|du  du @)
o(u, U) aql ?&
Jv  dv
The two surface elements are related by
a iy Di
dgidp; = 24P g g (9)
o(u, v)

i.e. the statement that J; has the same value for all canonical transformations,
fdeQfdpi=Jl=//Zkode ; (10)
A A K

can be expressed with the aid of (9) as

a(qi, pi) Ok, Fk)
//Z o, v) O // Z ow, v (1

Thus the proof is reduced to the statement

a(qls Pr a(ka Pk)
Z o(u, v) Z ou,v) (12)

i

Exercise 8.4
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i.e. both Jacobi determinants are identical. Now we consider the canonical trans-
formation g, p — Q, P to be achieved by the generating function F»(q, P, 1), for
which

._8F2 ‘_8F2 JC—H—*-an (13)
Pi= QT T or
is valid.
For the calculation of the functional determinant we first need
ap; ad ( 8F2)
a7 = 14
ou ou\dg /)~ 14

where we have used (13). Owing to its definition, /; depends only on g
and Py; here, time acts as a parameter, not a coordinate. With the aid of the total
differential for F>, we get

api 2F, 9P 2F, 9
_pi:Z 2 _k+z 2 %4k . (15)
du P 0q; 0P, ou P 0g;dgx Ou

An analogous result is obtained for dp;/dv, so that the functional determinant
assumes the form

aqi Z 2 F OP; Z 92 F, 9k

Za(qi,pi)_z Ju p 0q;0P u — 0qi0qx du 16)
~ du,v) B 5 O F, OPk 32F; oqx
| ov 9g;dP, v 2 s o
k

% O4ivqk OV |

After application of the rules of calculation for addition and multiplication of
constant factors with determinants, this is transformed to

aqi % agi B_Pk

3(qgi, pi PP |ou ?F |
Z (;ql Di) =Z 2 | Ju du +Z 2 | du ou . a7
—~ 3(u.v) 099k |9gi  Oqr| “7 0qidP |dqi  IPk

| ov av \ | ov ov |

It is apparent that the first term is antisymmetric with respect to changing the
indices of summation i and &, because this only involves changing two columns.
Thus the first term vanishes and can be replaced by another vanishing term:

P, OP, dq; P
w 9@, pi) PP | ou  ou A w FPFr \ou ou (12
3, v) _%k«ap,-aPk P 9P +% 8qioFy |dqi OPc|

ov ov ov ov

If (18) is transformed into the form of (16), the element a1 reads

2K oP 2F, 9g; 9 OF
5 omrs e Gty e = ohy 09
OP0P du dq;0P; du  ou OP:

i i
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Here, contrary to (16), we have moved the sum over k in front of the determinant
and the sum over / into the determinant. Because of (13), it holds in (1) that

31"72
= Qr ; hence,
aP Ok ence
00k 0P
aqi, pi ou ou 0 , P,
Z (qi Pt):Z ou ou :Z (Ok k). (20)
=) 4o |00s oA T 4 dwy)
av v
Thus, fr\ﬂ'Pﬂ'\PI‘ with (12), Poincaré’s statement is proved.

S witizli<z)/ 2IC2L 1S rA

(b) Slnce we have already verified Poincaré’s statement in part (a), the
statement in (4) holds:

9(gi, pi) 0(Qi, P)
IZ A(u, v) Z ou,v) @h

It is identical with the just proved relation (20) for the Jacobi determinants.

Tndaad avnracginn ag
1Maeeq, 1\«W11I,1115 uu) CAPITHH1UIL ad

dqi dpi  Opi 9g; dQ; 0P, 9P; 00
& —_— )= — - , 22
IZ(au v du ov IZ du dv  du v @)

we see that it is equivalent to the invariance of the Lagrange bracket:

{{u. v}}pq =Hu. v}}po - (23)

(c) First we show a useful relation. Let u;, [ =1,2,...,2n be a set of 2n
independent functions such that every u; is a function of the 2n coordinates
qgt,92, -+« »qns P1> P2, - .. » Pn- Then the relation

2n

Z{{ul,ui}}{ul,uj}=5ij (24)

I=1
is always valid. According to the definition of the Lagrange and Poisson brackets,

it follows that

%M%m%%» 25)
Ogm OPm  Om OPm

The first term can be transformed to
i%%zmw_z%w%_
- ou; 0pm ou; 0qm — ou; Opwm 0Gm

Zapk Bu, _iﬁu_l% (26)
ou; apm p Opk Ou;

Exercise 8.4
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Exercise 8.4

The last term in (25) can be evaluated in the same way:

{\—‘ 0qk 3"1\ /‘—‘ 3PA 8u1 v\au qu

b Lk = . 27
\L 3u; O } \ du; Opm } Bqx ou; @9
So that the sum of the terms in (26) and (27) yields a total differential in u i
n
du; o ou; o ou ;
Z(_Jﬁ+_fﬂ)=_f:3ij, (28)
P opr Ou; gy Ou; ou;

The second and the third terms of (25) always vanish. We show this as an
example for the second term:

Sk ) (o ) 9
om Ou; Apm ] ouy Ogm ’
because
2n
d
2o, (30)
0Gm

Thus we have shown that
2n
ou
D W widMur,ujy = —L =45 . 31)
7 ou;

We note that up to now, the choice of the coordinate system has been irrelevant.
Hence, (31) is valid for all coordinate transformations, not only for canoni-
cal ones. The latter quality serves to evaluate several Poisson brackets, without
committing ourselves to a certain system of coordinates.

For the 2n independent functions u;, we choose the set ¢,...,qp,
p1, ..., pp and consider in particular the case u; = g;, u; = p;.

Thus (24) or (31) (which are the same) yields

Y e adipn, pi}+ > Uan ailar pj) =0, (32)
1 l

because du;/du;j = dg;/0p; = O for all i, j. As was shown in part (b), the La-
grange bracket is invariant under canonical transformations. We will use this
property in order to show the invariance of the Poisson brackets appearing
in (32).

The following expressions are thus invariant:

{pi.ai}} =—8y and {{g;,qi}} =0 . (33)
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Inserting these into (32) the second term vanishes and we are left with

{pi.pj}=0. (34)

Since (32) is valid for all transformations, the same applies for the Poisson
bracket above.
Choosing u; = p; and u ; = g; in (31) we obtain

lai, q;} =0, (35

which is again valid for all transformations. Choosing u; = g;, u; = g; in (31)
yields

> Uar, ailMar a;}+ ) _Hpo a)Mpr @it =85 - (36)
1 1

Since the first term vanishes, the second expression has to satisfy

—25,'1{{1?1,61]'}} =3dj » (37)
1

which is only possible if
{gi, pj} =8ij . (38)

Thus the invariance of the fundamental Poisson bracket under arbitrary canoni-
cal transformations is shown by use of the invariance properties of the Lagrange
bracket. In particular

{gi, pj} =1{Qi, Pj} =8 , e

S % 0p; B dpy) _(§0010F; 00OF) g
g Op1 p1 Bqu £~ 90, 9P 9P 3Q v

(d) For two arbitrary functions F and G, the Poisson bracket is defined with
respect to the set g, p in the following way:

{F.Glap=)_ O IG_OF 0G (40)
e Nogjop; 9pjog;)

The ¢; and py are functions of the new variables Q; and Py, respectively, and
vice versa. Hence, the function G can also be expressed in terms of Q;, Pr. This
possibility is now used by transforming (40) into
oF [ 0G 0Qr 0G 0P
F.6r= 3 o (3or 5+ e 5
= L3a; \0Qk 3p; 3P 3p;
oF (090G 90y 9G BPk)'|

9.\ 90, 3a: ' aP. 9a
O] \Y&x 04j Ok 04j

(4D)

/o d

Exercise 8.4
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Exercise 8.4

A clever reshuffling of several terms leads to
( G
(F, G}qp—z 20 1P Qdap+ 55 (F Pida ) - 42)
/

Replacing F by Q; and G by F similarly yields

(O, F}q,p=Z o Q,}qP+Z "0 Pilgn - (43)
~ Q) dP;
j
As we have only invariant Poisson brackets left [cf. (a)], we can start to evaluate
oF oF
(Qk Flgp =) =8k = 7 (44)
F d i aP;

Here the analogous relations to (35) and (38) for Q, P are used (the invariance
of the fundamental Poisson brackets!). Substituting P; for F and F for G, on the
other hand, vields

(P, Flg.p= Z‘ {Pk, Q,}+Z *{Pk, Pj};
J

thus

aF aF
F-P an =/ T Fs =T . 45
{F, P}y, 50; {F, O} 5P (45)

(P Glap=2_ (a—Q—ngk‘aTo;a—Q:) =1k Glor (30)

Thus we have demonstrated the invariance of the general Poisson bracket under
canonical transformations.
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8.5 Biographical Notes

EHRENFEST, Paul, Austrian physicist, * Vienna 18.1.1880, t Leiden 25.9.1933. E. was
a professor in Leiden (Netherlands) from 1912 on. He contributed to atomic physics with
his hypothesis of adiabatic invariants (BR).

POISSON, Siméon Denis, French mathematician, *Pithiviers 21.6.1781, tParis
25.4.1840. P. was a student of the Ecole Polytechnique and he was employed there after
completing his studies, being a professor from 1802. P. was a member of the bureau of
lengths and of the Académie des Sciences. He was a French peer from 1837. P. worked
in many fields, e.g. general mechanics, heat conduction, potential theory, differential
equations and the calculus of probabilities.

POINCARE, Henri, French mathematician, *Nancy 29.4.1854, {Paris 17.7.1912.
P. studied at the Ecole Polytechnique and became professor at Caen in 1879, later, at
Paris. He produced more than 30 books. At the turn of the century he was believed to
be the outstanding mathematician of his age. P’s greatest contribution to mathematical
physics was a paper on the dynamics of the electron (1906) in which he obtained, in-
dependently of Einstein, many of the results of special relativity. Einstein developed the
theory from elementary considerations about light signalling, whereas P.’s treatment was
based on the theory of electromagnetism and was thus restricted. P.’s writings on the phi-
losophy of science were as important as his contributions to mathematics. He became a
member of the Académie Frangaise in 1908 (taken from Encyclopedia Britannica, 1960
edition).

LAGRANGE

RiEARF

. . s
Joseph Louis, French mathematician, *Torine 25.1.173

, 6, TParis

10.4.1813. L. came from a French-Italian family, and in 1755 became professor in
Torino. In 1766 he went to Berlin as the director of the mathematical-physical class
of the academy. In 1786, after the death of Friedrich 11, he went to Paris, where he con-
siderably supported the reform of the measuring system, and where he was professor at
several universities. His very extensive work contains a new foundation of variational
calculus (1760) and its application to dynamics, contributions to the three-body prob-
lem (1772), the application of the theory of chain fractions to the solution of equations
.......

culus to algebra. With his “Mécanique analytique” (1788), L. became the initiator of
analytic mechanics. Important for function theory is his “Théorie des fonctions analy-
tiques, contenant les principes du calcul diftérentiel” (1789), and for algebra his “Traité
de la résolution des équations numériques de tous degrés” (1798).






9. Charged Particles in Magnetic Fields

9.1 Coupling to the Electromagnetic Field

If a charged particle of charge ¢ moves in an electromagnetic field, the Lorentz
force

F=c(E+> xB) ©.1)
AN C Ve

acts on the particle. The electric and magnetic field strengths can be expressed
by the corresponding potentials A(r, 7) and ¢(r, f) according to

104
Vo———, B=VxA. 9.2)
c ot

Here, A(r, 1) is the vector potential and ¢(r, ¢) the Coulomb potential. In classical
mechanics, this motion is described by the Hamiltonian function

1

H=s- (p— —A) Yed 9.3)

which will be shown in Exercise 9.1. This indicates the simplest way of coupling
the electric field to the motion of the particle. The momentum p is replaced by the
term p — (e/c)A. The substitution p — (e/c) A is gauge invariant and is called the
minimal coupling. Hamilton’s canonical momentum p is the sum of the kinetic
momentum mv and the term (e/c) A, which is determined by the vector potential.
Thus

p=mv+§A . 9.4

The transition to quantum mechanics is obtained by replacing the canonical mo-
mentum p by (h/i)V, according to the rules of quantization in the coordinate
representation (see Chap. 8). Thus we obtain the Hamiltonian

p=! (hV——A\ +ed . (9.5)
2m \ 1
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Calculating the square, it should be noted that, in general, the gradient and vector
potentials do not commute. We get

. ,r.b2 ,,r. 2

H=——"A— (V-A+A. V)+ A2+e¢,
2m 2imc

. K2 h 2

H————A—i—E—A V+—(V-A)+—e——A2+e¢ . (9.6)
2m 2mc?

It is well known that the electromagnetic potentials A and ¢ are not unique, but
are gauge dependent. Particularly in the Coulomb gauge, it holds that V- A = 0;
thus the third term vanishes. If we change the order of the terms and use, for the
sake of clarity, the momentum operator p, we obtain

~ P e,
A=t tep——a. A
om T P+ g
2
A=fo-—Ap+s A", 9.7)
mc

Here, the operator Hy represents the motion of the particle without a magnetic
field; the coupling of the motion of the particle to the magnetic field is given
by the product A - p. The third term depends only on the A field; for normal
field strengths of small magnitude, it can be dropped. If the vector potential A
describes a plane electromagnetic wave, the coupling terms in (9.7) lead to ra-
diative transitions (emission and absorption). The states of the particle in an

electromagnetic field are given as solutions of the Schrodinger equation with the
Hamiltonian derived above in (9.5):

[p — (e/0)A) 0
i——_——Zm +eq)} y=ihoy . (9-8)

We can check that Ehrenfest’s theorem is also valid for this Schrodinger equa-

tion, for which we shall now prove the gauge invariance. Gauge invariance means

that the solutions of the Schrodinger equation describe the same physical states

if we apply to the potentials the transformations

1of(r,¢

A=A+Vfr,n and ¢ =¢—- fir.
c ot

with the arbitrary function f(r, 7). Using the four-component relativistic notation

by introducing the four-vector A, these transformations read

9.9

of .
Al = ol with
A,=1{Ai¢} and p=1,2,3,4 (9.10)
where x! =x, x2 =y, x> =z, x* =1icr.

If we denote the Hamiltonian with primed potentials by H', the correspond-
ing Schrodinger equation becomes

Ay =ih%w’ ) (9.11)



9.1 Coupling to the Electromagnetic Field

207

Our statement now is that ¢ and v’ differ only by a phase factor. If so, the gauge
transformation does not change the physical quantities, because, during their cal-
culation, only products of the form 1*y or matrix elements (v ... |y) in which
the phase cancels occur. We start with

¥ = yexp (%f‘(r, t)) 9.12)

and insert this in (9.11), which thus becomes

[p—(e/c)A—(e/c)V f1* ie edf ie
- vexp (2= f)+ (e¢— ;E) vexp (5 f)

_lh—‘/’e p(;:cf)—za—];w ( ecf) : (9.13)

We can easily see that
(A—EA/)I/I,— My _CA—Cvf)yex (i—ef)
P c T\ c c P hc

—exp (/) (§V+5Vf—iA—fo)w
C 1 c C C

I
[¢]
>
aw]
e
x|
.
S
—_
=
<
|
|
=
<
o~
N2
——
£a
N—

Applying the operator [p — (e/c)A’] once again, we obtain the equation

alﬁ’ . 9.15)

Ay =ih-—
¥ =ih-

In other words, (9.15) follows from (9.11) by using (9.12). This outcome shows
us that the solutions of the Schrodinger equation (9.8) still describe the same
physical states, even after gauge transformation. The states v, and v, differ only
by a unique (i.e. state-independent) phase factor expl(ie/hc) f(r, )]. The phys-
ical observables are not affected by this as mentioned above. It is clear that it
is not the canonical momentum p — —ih 'V (the expectation value of which is
not gauge invariant), but the genuine kinetic momentum mv < 1AV —(¢/c)A
(which is gauge invariant), that represents a measurable quantity.

Hence, if in a physical problem the momentum operator p appears, the op-
erator p must always be replaced by p— (e/c)A if electromagnetic fields are
present. This is the only way to guarantee gauge invariance in quantum the-
ory; otherwise, certain potentials A and ¢ could be determined in quantum
mechanics, and this should not be possible!

We shall now summarize once more the principal idea of gauge invariance
in quantum mechanics, in relativistic notation. The gauge transformation for the
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electromagnetic fields A u(xy) is

3
A=A+ qf ., with
OXH,
Ap={A,i¢} and x, ={x, ict} . (9.16)

This leaves the electromagnetic observables, i.e. the field strengths E and B,
unchanged. The four-momentum operator is given by

5 . [a a 3 9 . iE
pﬂz_lh!n [ e R e _p’_l D (9-17)
[ 0x1 dxz2 dx3 Jdict ] l C

and minimal coupling is achieved through the replacement

R . e

Pu= Pu=—Apu . (9.18)
In quantum mechanics, the gauge transformation (9.16) must be supplemented
by the phase transformation of the wave function

ie

V() = v exp (2= fw) (9.19)

so that

(hu—2a,)v' = ( pu= = ) e (X i) v

— exp ( % 1, )) (ﬁu — SAM> (x,) (9.20)

holds. Then we can be certain that observables of the type

(VI}(XM) V(xu)’ 1//;(x“)) = (¥ (r0) | Vx| ¥i(x,))  and (9.21)

(v £ (Bu=3) (i) = (7 [F (5 - S4,) [ice)

are unchanged by (i.e. are invariant under) gauge transformations. The equations
in (9.20) are exactly the right-hand side of the former equations (9.13) for u = 4
and (9.14) for u = 1,2, 3, respectively. The following examples and exercises
will further clarify this discussion.
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EXAMPLE I

9.1 The Hamilton Equations in an Electromagnetic Field

Let 1,92, ... ,49s.... .qy be the generalized position coordinates determin-
ing the configuration of the system, and p;, p2, ..., ps, ..., py the canonical
conjugated momenta. The Hamiltonian (in classical mechanics we prefer to
call it Hamiltonian function) H is a function of those position coordinates and
momenta, and, in general, of time ¢.

Hamiiton’s equations are, as we know,

dps oH dgs 0H 0
dt ~— dgs = At dps
The derivative of any function F(g;, pj, t) of the generalized coordinates, mo-
menta and time, with respect to time, is

dF_aF+é OF dqs+‘L aF dp;
dt ot S%;aqs dt éaps dt

@3]

Using Hamilton’s equation (1) we can transform (2) into the following form:
dF  aF

—=—+{H, F} , 3
5 3t+{ 1 3
where {H, F} is
f
dF 6H OH oF
H F}= —_— 1 4
( } g{a‘h dps  Ogs 3Ps} @

and is the so-called Poisson bracket [cf. (8.14)].
Obviously, Hamilton’s equations (1) can now be written

dps dg
dr :{H, Ps} s d; :{H’qS} ’

s=1,2,....f (5)

[we have only to set F' = p; and F = ¢, in (3)].

In Chap. 8 we learned that in quantum mechanics, equations of motion are
written in an analogous way. In the special case of a Cartesian system and of
a particle in a field derivable from a potential function V(x, y, z, f), we have

P+ py+p; 4
H=—J—ﬁ+v(xyy,zst)9 (0)
2m
where g1 =x, g2 =,93 =2, and py = px, p» = py, and p3 = p,. With (5) we
obtain

dp, aH av
= H7 X} = T L T T L
dr {H, px) ox ax
dx oH x
S oH == @

dr dpy m



210

9. Charged Particles in Magnetic Fields

Example 9.1

The equations of the other coordinates and momenta can be obtained in the same
way. From (7) we get

12 ary
a~x av

m?d?——ax ’ ®

i.e. Newton’s equation of motion.

Consider now the motion of a charged particle with charge ¢ and mass m in
an electromagnetic field described by a potential ¢ = (1/¢)V(r, f) and a vector
potential A, so that

E=-V¢—--=, ©)
B=curl A , (10)

where E and B are the electric and magnetic fields. In this case, the Hamiltonian
function can be written as

o

H=2im(p—iA\)2+ed). (11)

Indeed, we will show that the Hamilton equations that emerge from this function,

dpy  OH  dpy  OH  dp,  3H
d ~ ax ' de  dy T At 9z
dv  9H dy 0H dz H

— ==, —=—, —=-=, (13)
dt  opy  dr ap, At op.

\ (12)

are equivalent to Newton’s equations for the same particle under influence of the
Lorentz force:

2 1
mi—rze(E+—va) , or
c

d’x i 1 /dy dz

—— =e|Ex+-|—B.——B,}| .
a7 X+c(dt e ‘)]

&y T 1 {dz dx

2 =¢|E,+-|—B——B. )|,

"ar T -‘+c(dz T 7)]

&z T 1/ dx dy

mdtzze E3+E H—B __dtBX . (14)

Inserting H from (11) into (12) and (13), we can write, after derivation,

d e e JA e dA
P [ (=S B (=) 52

dt  mc ox E

+(prfAZ) %]—e@ , (15)
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From (13) we get

gf' = l (px—EAx\ )
dt~ m \"" )
dy 1 e
L),
dd m (p) c
dz 1 e
Zo = (p-2a4.) 16
dd m (Pz c - (16)
This implies that
dpx d’x e dA,
=m—+-—. 17
a"ar e an
Thus (15) can now be written in the following form:
d>x  edA, edrdA, edydA, edzdA, I a8)

MY T o ax Todr ax odr ax Cax

Since the value of the vector potential A is obtained at the position of the
charge e, the total derivative of A, with respect to time is

dA, 0A, 0Acdx 9A.dy 9A. dz
dt ~— a  ox dr 3y dr 9z dr

(19

After inserting into (15) and (16) the values of [py — (e/c) Ax], [py — (e/c)Ay]

and [p, — (e/c)A,] and of dp,/dr from (17), we find with the help of (19) that
d?x
m—
dr?

edA;, 3¢ e[dy (0A, OA, dz [dA; 0Ax
=———e—+—|—| —- — | — - . (20
c ot ex+c[dt<3x ay +dt ox az 0)

Here we can use the formulae (9) and (10), which connect fields and potential,
to get

2

d-x e (dy dz
—=¢Ey,+-|—B,——8B . 21
™ ar x+c(dt ¢ dr y) @1

This is the first of the equations in (14); we can derive the other two relations in
the same way. We thus see that the Hamilton equations (12) and (13), resulting
from the Hamiltonian function (11), are equivalent to Newton’s equations {14).
The potentials A and ¢ can be chosen at will, if only formulae (9) and (10) lead
to the required electromagnetic field. Using A’ and ¢” instead of A and ¢, where

13
A'=A+Vf and ¢’=¢———f , (22)
c ot
and f is an arbitrary function of the position coordinates and time, we get E' = E

and B’ = B. When replacing A and ¢ in the Hamiitonian function (i1) by A’

Example 9.1
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and ¢’, we get the equation of motion (20), with A and ¢ replaced by A’ and ¢/,
i.e. with the same equations (14). Thus, using (22), we have shown that equations
(14) are independent of the choice of the potentials. This property of Hamilton’s
equations is known as gauge invariance.

Note that the Hamiltonian function H is changed by the transformation (22)
in contrast to the equations (14). For instance, the motion in a homogeneous
constant electric field oriented along the x axis can be described by the poten-
tials A = 0 and ¢ = — Ex as well as, for example, A’ = (—cEt, 0,0) and ¢’ = 0,
according to (22). It can easily be verified that both choices lead to Newton’s
equation of uniformly accelerated motion, but in the first case, the Hamiltonian
function represents the total energy of the particle, and in the second, it represents

the kinetic energy.

EXERCISE I
9.2 The Lagrangian and Hamiltonian of a Charged Particle

Problem. Determine the Lagrangian and the Hamiltonian of a charged particle
in an electromagnetic field. Use vector calculus as far as possible.

Solution. The effect of the electromagnetic field on a charged particle can be
described by a velocity-dependent generalized potential.

Starting with the Lorentz force, we determine this potential, and the La-
grangian and Hamiltonian functions. The Lorentz force takes the form

F=e(E+g><B) . ()

We can express the electric and magnetic fields by the potentials

104

Insertion of (2) into the Lorentz force (1) yields

104 1

We can use the relation
Bx(VxC)=V(B-C)—(B-V)C—-(C-V)B-C x(V xB)

to transform the triple vector product
X (VxA)=V@w-A—-w-V)4, 4

since the velocity v is not an explicit function of the position.
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The total derivative of the vector potential with respect to time is given by

t t
The first term is the explicit change of the vector potential with time; the second
term stems from the fact that the position at which the value of the potential is
obtained changes because of the particle’s motion.
We now replace the vector product (3) by the relations (4) and (5) and get

(- A)——— ()

To deduce the generalized forces @Q; from a velocity-dependent potential
U(q;, 4;), we rely on the Lagrangian formalism, where the relation

ou d [faUu
R Tl 7
0 %+m(%) ™
is valid. For comparison with (7), we transform
dd d
= = VA, ®)

where V, signifies the derivative (gradient) with respect to the three components
of the velocity. We take, for instance, the x component and compare (6) and (7)

using relation (8):
F 3(¢6A)+d8(¢eA) ©)
=—— — —v- e ——v- .
* ox ¢ c dr dv, gy

Since the electrostatic potential ¢(r, f) is independent of velocity, we were able
to add it to the last term. Hence, we get the generalized potential,

U:w—gwA. (10)

Using L =T — U yields the Lagrangian

1
L=-mv—ep+iv-A, (11
2 ¢
and, in the form of generalized coordinates, we have
1 . e
L= om Ei (CI,- —€¢(qi)) +- E{ GiAi (12)

The canonical momentum is given by

oL . e
pi=_——=mqg;+ EAi (13)

a5
uyy

Exercise 9.2
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Exercise 9.2

or, in vector form,
p=mv+ f‘A . (14)
C
Now the Hamiltonian can be derived from the Lagrange function L by

H=Y pigi—-L. (15)

It has the form

2

L (p=24) +ep (16)
) '

2m \

where the velocity is replaced using (14).

H=

EXERCISE
9.3 Landau States

Problem. (a) What is the Schrodinger equation for the motion of charged
particles in a constant magnetic field B = Be,? Choose the following vector
potential:

A=(—By,0,0) and ¢=0.
(b) Show that the following separation of variables,

Yx, y,2) = @y |

used after substituting y =y’ —hiac/eB, leads to the equation of a harmonic
oscillator.
(c) What are the energy eigenvalues?

Solution. (a) It can be easily verified that the chosen vector potential in fact
leads to the magnetic field B = Be,.

As has already been shown [see (9.8)], the Schrodinger equation (in its
stationary form) is

1 2
- (ﬁ - EA) Y(r) = Ey(r) . (1

Calculation of the product [ — (e/c)A)? and insertion of A yields

2 2 2
+e—32y2—h237—hz~8—]w=w )
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or

h? heB 8 ¢*B?
AT heBLO B Y k. 3)
\ 2m mc " dx  2mctT )

(b) The expression ¥(x, y, z) = exp(iax +18z)¢(y) with two constants «
and g leads to

—57;(_“ a 2m dy? mc y+2mczy

ilaox+-R7) 4-A7)

x @ Hg(y) = El@Hg(y) @)

[ h2 2 g h? 3> heBa 2B 2]

and thus

h? d>  heBa +e2B2 2) uiy)
2m dy? = mc YT oam2Y )PV

—~
W
N’

That ¢ o exp(iox +182)¢(y) seems to imply that the particle is free to move in
the x and z directions (L B and || B), and that this motion is related to the kinetic
energies (h?/2m)a? and (A2 /2m) B2, respectively.

We will soon come back to this point. Now, substituting

hco . he

=y oy 6)
Y eB Y mauy (
and setting
eB h? )
wy=-— and e=E—-—p8", (D
mc 2m
the Schrddinger equation becomes

hz 2 7ot
=\ 35,¢ o) . ®)
m
This can be simplified to
hz d2 m a2 1ot root
(Tm —dy,2+§woy )(p(y)—sw o) - )

Now we have, once again, the equation of a harmonic oscillator. Note that the
“kinetic energy” in the x direction (52/2m)a? has now been absorbed into the
Y’ degree of freedom.

Exercise 9.3
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Exercise 9.3

(c) From the above we can immediately write down the energy eigenvalues,
namely

1
sn:hwo(n+-2—), n=0,1,2,.... (10)
The functions ¢'(y’) are related to the Hermite polynomials and are located
around

y=0, ie. yy=—(hc/eB)x .

hZ

5 1
En(ﬁ)=%ﬁ +haog{n+5 ) . (11

2
Neglecting the motion in the z direction (8 = 0), the energy E,(0) is quantized.
For a given o, the wave function

Y(x, y, z) = exp(iax +182)@(y)

is localized in the y direction, but not in the x direction. This result is unex-

pected, for both directions should be equally represented. However, as we have

seen above, the energy is independent of «, so that we have infinite degeneracy.
Thus wave packets of the form

00

Ynp(x, 3, 2) = j c(@) @B g () dar (12)

—Q

where c(c) can be (nearly) chosen at will, are also solutions of the Schrodinger
equation (2). Therefore we can choose c¢(o) so that the solution is located in
the x direction, too. Such bound states in the x—y plane are unrestricted in the z
direction, i.e. along the direction of the magnetic field B. They correspond classi-
cally to electrons orbiting perpendicular to B, but moving with constant velocity
(momentum) along B and are called Landau states; the energy levels (11) are
Landau levels.
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9.2 The Hydrogen Atom

The most important example of the motion of a particle in a potential field is the
hydrogen atom.

Electrons and protons attract each other with the force ¢?/r?, corresponding
to the potential —e?/r. Here, r is the coordinate of relative motion, and is all that
interests us for the moment. We choose the proton to be the centre of our coordi-
nate system; the mass m used in the following context is then the reduced mass
of the electron:

Me 1
= ame1-—) . 9.22
(fmefmy | © ( 1836) ©-22)

Since we have a central potential, we use spherical coordinates. The stationary
Schrodinger equation is then

~~
0
N
D
e

HY = Ey = (2 ——\11/

The squared momentum operator

10 0 1
2 2 2
=-hA=-h (r2 or 8r+ AM’)

can be divided with the aid of L2 = —h?Ap, into a radial part and a rota-
tional part containing the angular-momentum operator L (see Example 4.9).
Consequently, the Schrédinger equation takes the form

13,8 i? 2m e?
(rzar or W)W+ﬁ(E+7>w:O' ©.24)

In the Schrodinger equation a centrifugal term — L2 /2mr? appears, similar to
that in Kepler’s problem in classical mechanics.
With the following separation of variables,

Wr. 9, ¢) = Qw o (0.25)

it is possible to separate (9.24) into a radial and an angular part. We start with

2
13 5,3 Ry 13°R(r)

— 2, _ -
r2dr or r ro or?

(9.26)

and introduce the separation constant /(/ + 1) to get
2 42 2
re 0°R(r)  ,2m e 1 2y
— | E+—|=— L°Y(®,
R a2 w2 ( r ) ERTERRSCY)
=[(+1). (9.27)
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Hence, we have the two equations

2R, [2m [E‘ ez\ Ww+n7y,
a2 T2 \"T ) T

LY (P, @) = BHA+ DY (9, @) ,  with

LY
=
<
&)
i
<o
o
&
—_
)
o
)
N’

1=0,1,2,... and —Il<m<+4l. (9.29)

The solutions of the angular differential equation (9.29) are the already fa-
miliar spherical harmonics Yy, (1%, ¢) (see Examples 4 8 and 4.9). The separa-
tion constant is the quantum number of the square of the angular momentum
L? = K21(I+ 1). The additional quantum number m appearing in (9.29) charac-
terizes the z component of the angular momentum Z, > mh. [The solution of
(9.29) will be discussed once more, in detail, in Exercise 9.4.] The radial func-
tion R;(r) depends on the total angular-momentum quantum number /, as can be
seen in (9.28). We will soon see that the condition of square-integrability for the
wave function (normalization) calls for another quantum number, the so-called
radial quantum number n,.

To find the energy spectrum, it is sufficient to deal with the radial part,
because the energy E appears only in (9.28). Indeed, since the problem is spher-
ically symmetric, the energy can only depend on the radial part R(r) of the wave
function. (In the classical Kepler problem, the energy depends on the distance
between the particles.)

/r YyrdvV =1 (9.30)
leads to

/ Ri(NR;(ndr=1 ©.3D)

0

because of the separation (9.25) and the orthonormality of the spherical harmon-
ics. Here, we only determine the (discrete) bound states which are characterized
by negative energy eigenvalues.!

To find a suitable substitution for solving the differential equation (9.28),
it is useful to consider first the limits r — 0 and r — o0o. For r — 0, the term
containing the angular momentum is dominant and one gets the equation

d?R; U+ 1)
— TR =0. 9.32
dr? 2z ©-32)

"' A discussion of the solutions of the continuum (E > 0) can be found e.g.in
A.S. Davydov: Quantum Mechanics (Pergamon Press, Oxford 1965).
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By trying a power series Rj=r*(14+a;r +axr?+...) and neglecting the
higher-order terms, only the following lowest-order term remains:

ala—Dr* 2=+ )r* 2 =0 . (9.33)

The solutions for o are then o = !+ 1 and o« = —/. The case @ = —/ leads, as does
the three-dimensional oscillator (cf. Exercise 7.2), to the same solutions as the
casea =1[+1.

In the other asymptotic limit (r — ©0), we can approximate (9.28) by

d’R; 2m
—= t ﬁERl =0. 9.34)

The abbreviation

y =——E (9.35)

is often used and logically chosen, since the energies of the bound states should
be negative. In this case the solution of (9.34) is

U=Ae " +Be¥ , (9.36)
where we have to exclude the second term, because it becomes infinite as
r — 00. With the solutions of both extreme (“asymptotic”) cases, (9.32) and
(9.34), we try the substitution

Ri(r)=rTle™F() . 9.37)

After inserting this into (9.28) and writing

2
me

=2 d k=—, 9.38

z=2yr an v (9.38)

we get

’F dF

z——2—+(21+2—z)————(l+l—k)F=O . (9.39)
dz dz

Recalling the mathematical discussion in Chap. 7, we recognize this as Kum-
mer’s differential equation. The solution is given in (18) of Exercise 7.1. We
exclude the second term of the total solution, as it behaves like r—2~} r—0),
i.e. Ry ~r~lis always divergent.

Thus we obtain

F=C1hU+1—k21+2;2yr) . (9.40)

To be normalizable, the confluent series should end at a certain term; this
requirement leads to the quantization of the energy.
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Setting

[+1—-k=-n,, n=01,2,..., 9.41)
we rearrange the terms, getting

k=n+Il+1=n. (9.42)

The number # is the principal quantum number (n =1, 2, .. .) and is determined
by the radial quantum number #, (n, =0, 1, 2, ...) and the angular-momentum
quantum number ! (I =0,1,2,...).
The definitions (9.35) and (9.38) allow us to determine the binding energy:
me* 1 1
En=—rm—S=—13 ,
2h2 n? 2 apn?
where ag = h?/me* = 0.53 A is called the Bohr radius.
When we set n = |, we obtain the binding energy of the hydrogen atom in the
ground state,

(943)

1 €
Ey=—~— = —13.6¢eV . (9.44)
2 agp

The wave functions of the hydrogen atom are

Vi (1) = N €7 | Fy (=1p, 2+ 2, 20 7) Vi (8, )

Ryi(r)
Yim (9, @) , (9.45)

= Npj

r

where y, = me®/li*n = 1 /nag and with the normalization constant

L (n+D! 14372, 3/2
N 2ya) =n+I+1. (946
N (21 +1)! 2n(n—l—1)!( ya) T ey, n=n.+1+ (9.46)

The radial part of the wave function Ry (+) obviously depends on two quantum
numbers, n and [ (or n, and /). The dependence of I results from the separation
of variables in (9.25), by which the rotational term /([ + 1)/r% was introduced
into the differential equation (9.28), whereas the dependence on # is caused by
the eigenvalue equation, which originated from the requirement that the wave
function be square-integrable [normalization condition (9.31)].

The Yy are eigentunctions of the Schrodinger equation (9.24) belonging
to the energy eigenvalues E,. Equations (9.41) and (9.42) allow the quantum
numbers / and m to have the values 0 </ < (n—1) and — < m <. Counting
3121 possible states of the same energy, we see that every eigenvalue is degenerate
n- times:

-1 !

n n—1
YD) m=> @+l)=n’. (9.47)
1=0

1=0 m=-!



9.2 The Hydrogen Atom

221

Tables 9.1 and 9.2 present the normalized wave functions for the lowest states of
the hydrogen atom. In the second table, the wave functions are separated into the
radial (R,;(r)/r) and angular (Y}, (¥, ¢)) parts. The energies (E,) depend only
on the principal quantum number 7 and are shown in the last column. The energy
units are —e”/2ap = — 13.6 &V, i.e. the ground-state energy, and ), = 1/nayp,
ap = h?/me*> =0.52 A. Every state with the eigenfunction Y, characterized

Table 9.1. The wave functions ,;,, for the lowest states of the Schrédinger hydrogen atom

Vaim (2 0, )

n l m ’7’1
1 0 0 ﬁ xy? xe " 1
2 0 0 ﬁ xy23/2 X(1—=yr) xe ¥’ %
2 ! 0 ﬁ XV25/2 xr xe "’ x cos ¥ %
2 1 +1 ﬁ xy25/2 Xr xe ¥’ X sin ¢ ¥ %
3 0 0 31% Xy33/2 x (3 — 6yr +2y2r2) e~V %
3 ! 0 \/—?;—7; X 7’35/2 X2 —=yr)r xe ¥’ X cos ¥ 5
3 1 +1 ﬁ XV;/Z X(2—yr)r X e 1" x sin ¢ et :
3 2 0 3\/‘5 < )/37/2 wr? eV x(3cosd—1) %
3 2 +1 \/% X)/37/2 xr? x e v x sin ¥ cos e :
3 2 +2 2;3_” X y; 12 xr? xe V" « sin? 9 e£2i¢ 1

Table9.2. The wave functions in Table 9.1, separated into radial and angular parts

n Lm Rui(r) Yim(®,¢)  En
I 0 0 xy3? x xe " x A 1
2 o T |
2 0 0 2 xy X (1 —yr) Xe X 7
2 1 0 % X)/;/2 Xr xe r2r /%cosﬁ ‘l_l
2 1 = xn? xe 7 x [ sin® oo 1
3.0 0 z X)/33/2 x(3—6yr+2y%r%)  xe " x ﬁ 5
8 5/2 - 1
3 1 0 % xy3/ X{(2—yr) xe rr ><\/gcosq g
31+l @ xy;”? x@—ym) xe 3 x /2 sin x eti¢ l
3 2 0 ,/Z%-— xy37/2 xr? xe T 4i %coszﬁ—%) %
302 £ /& xy37/2 xr? xe M x \[5-3sindcos  xetY 5
302 & oy X2 xe 1 x [ 3sin2 xetZie 1
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by the three quantum numbers #, / and m is an eigenstate of three simultaneously
measurable quantities:

(1) the energy E, = (—me*/2h%)(1/n?),
(2) the squared angular momentum L? and
(3) the projection of the angular momentum on the z axis Z,.

The principal quantum number n characterizes the energy level E,; the (azi-
muthal) quantum number I indicates the magnitude of the angular momentum
L2; and the magnetic quantum number m gives the size of the z component of
angular momentum, L. Thus the eigenvalues of the three quantities E,, L% and
L are sufficient to determme the wave function Yy, (r, ¥, @).

The probability of finding an electron with the wave function Y, (r, ¥, @)
in the volume element dV = r? sin 9 do dedr is

Waim (7, 9, 9) AV = [Yum (r, 9, 9)|2dV . (9.48)
If we insert
Ry (1)
wnlm (7‘, ﬁ, (p) = nr Ylm(ﬁ7 99) s

we can write the probability in the following way:
Wi (1, B, (p)r drd2 = R? (1) dr | Y, (9, ©)|*ds2 . (9.49)

Integration over dS2 yields the probability w,(r)dr of having an electron
between two spherical surfaces of the radii » and r + dr:

Wy dr = Wy (Nr* dr = R2(r)dr . (9.50)
For example, in the state /0o, the probability is
wio(r)dr = N3je= /90,24y | (9.51)

where Njg is the normalization constant (9.46). (Plots of the probability w
against r are shown in the lower part of Fig. 9.1.)

The wave functions of the hydrogen atom also describe the states of ions with
only one electron, such as Het, Lit™, ... The only difference lies in replacing
the charge e? by Ze? (see Sect. 9.7).

If we deal with atoms with a nuclear charge number Z greater than 1, we have
to replace ag by ap/Z and the maximum of the probability approaches the nu-
cleus like 1/Z, i.e. the electron is forced by the stronger Coulomb forces into an
orbit closer to the nucleus.

The maximum of the function Rgl (), i.e. the most probable distance of the
electron, is given for the state 1r(op by

ro=dag, ao=—;=0534 (9.52)
me
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t R(r)/r 1 t R? n=1

This is the classical Bohr radius, since according to classical theory, the electron
should move around the nucleus on a circle w1th radius ay.
With increasing principle quantum number #, the maximum of the charge
distribution shifts away from the nucleus; the electron is less tightly bound.
According to the radial quantum number 7., there are in general several

maxima, a principle maximum and some supplementary maxima (see Fig. 9.1).

9.3 Three-Dimensional Electron Densities

Looking at the sketches in Fig. 9.2, the question arises why there are nonsym-

i al NOFf a tha
metric states in the ayh\.«l;uully S_‘yuu"ﬁ\.uu, Coulomb p puu.«uucu Ul COUrse, uic

nonspherical symmetry of the wave function is immediately acceptable if a weak
magnetic field is applied. The distributions shown are cylindrically symmetric
to the z axis. The prominence of the z axis originates from the choice (orienta-
tion) of the spherical coordinates. Physically the z axis can be fixed, for example,
by a (weak) magnetic field. The complete solution of the Schrédinger equation
(9.23, 9.24) corresponding to the energy eigenvalue E,, is a linear combination of
all Y., since the wave function v, is n? times degenerate. Thus, in the absence

Fig.9.1. The normalized ra-
dial functions R,;/r (left-
hand side) and the normal-
ized probability densities
wpy (right-hand side) of the
hydrogen atom for principal
quantum numbers n=1,2
and 3
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Fig.9.2a. Section through
the electronic density distri-
bution |¥|? of several states
of the hydrogen atom. The
density of the hatching cor-
responds to the probability
density of the electrons
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Fig. 9.2b. Three-dimensional

plot of the electronic density
distribution |¥|? of the low-
est states of the hydrogen
atom. The radial variables
are in units of the Bohr

radius (0.53 13.)

n=10[=0,m=0

n=31=2m= +1 n=31=2,m= %2
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of a magnetic field, we will generally have

n—1 I

Vn =Z Z Anlm Ynim (9.53)

=0 m=—1

with arbitrary coefficients an,,. In particular, we can construct states ¥, con-
taining the v, with equal probability. Since the wave functions V., are
orthonormalized, the squares of the expansion coefficients are in the latter case
the reciprocal of the degeneracy factor

1
lanim|* = = - (9.54)
n

This is true, as already indicated, if, for some physical reason (e.g. a magnetic
field), none of the components is dominant.
The superposition of all Yz, in (9.53) is in fact a spherically symmetric state,

which is easy to verify. If a particular direction is selected by external fields,

WAL 15 LASy 10 VAL cAtelilial RGNS

degeneracy ceases, and the electron density is anisotropic (e.g. the Stark and
Zeeman effects).

9.4 The Spectrum of Hydrogen Atoms

The energy values of (9.43) characterize the energy levels of the hydrogen atom:

me* 1 1e2 1

SR 9.55
2h2 n? 2 ay n? (9:55)

En=

During the transition of an electron from the level E, to another level E,, the
atom emits a photon of energy

hwy = En — E,» (Bohr’s frequency condition) . (9.56)
Inserting E,, (or £,/) we get

erm (1 1Y e,

Opr = == n<n, 9.57
2R3 \ 2 112) ’ 7

and the frequency

1 1
Vpn' = R <;/'2— - n—z-) s (958)



9.4 The Spectrum of Hydrogen Atoms

227

where R = me* /4nh3 = 3.27 x 101" 57" is the Rydberg constant. The quan-
tity E,/h is called the spectral term. The differences between these terms
determine w,,,.

Figure 9.3 shows the energy-level diagram of the hydrogen atom and the most
important transitions. We see that with increasing principal quantum number 7,
the differences between energy levels decrease, i.e.

lim £,=0 and lim (E,—E,_1)=0. (9.59)
n—>00 n—00
If the energies are positive, the values are arbitrarily closc together. This con-
tinuum describes an ionized atom. The ionization energy is the negative bindin,

energy.
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All frequencies involved in transitions which end on the same lower state
form a spectral series. The transitions to the ground states n’ = 1 constitute the
Lyman series. The frequencies are

verf(L_1)
\12 2]

The transitions to states with n’ =2, 3,4 and 5 comprise the Balmer, Ritz-

Paschen, Brackett and Pfund series. Recently, hydrogen-like atoms in highly

excited levels up to n = 100 have been observed; they are called Rydberg atoms.
Their diameter is around 10° times larger than the diameter of the ground state.’

"

-

FEa W a2\
=2,3,... . (9.66)

2 See also M.L. Littman et al.: Phys. Rev. 20, 2251 (1979).

Fig.9.3. Energy levels and
spectral series of the hydro-
gen atom
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9.5 Currents in the Hydrogen Atom

The operator of the current density j was introduced in Chap. 6 as

ih
j= —; WV — V) 9.61)
u

Here, 1« denotes the mass of the electron. This letter is used to distinguish it from
the magnetic quantum number m.
The eigenfunction of the hydrogen atom (9.45) is written as

V’nlm = {Vp]

where R, (r) is the radial part and N,,; the normalization constant [see (9.45) and
{9.46)]. We use spherical coordinates to facilitate calculation. Then V reads

v—{ala, ! a}' (9.62)

e A r cin 1% Am
f Ou FoSaiL oy’

v

The components of the current density are now

ik d
Jr(nlm)— 2 ('ffnlm 1/fn1m nlma d’nlm) ,

(nl 19
]l(?n m) ('dfnlm _d/‘nlm nlm ;)91#"[”1) )

.(nim) —_ i_rl ___1__ 0 1 9.63
Ty o (lf,ﬂlm rsint® 3¢ Yoim = Vom0 rsin® w"lm ' (0.63)

o

Then we get

ad Rni(r) |m| lm) ( nl(r) *Iml —-1m)
Vnim arw"”" N}, ( P (9)e™m or \ (¥ ¢/

2 Ru(r) 3 (an(r)
r

or r

_ v2 (plm! g 2
— 32, (2" 9)) )_wn,m D im (9:64)

as well as

l,ml/m l/fnlm = ;Im e l,('fnlm s (9.65)

Ryi(r) and Pll'"| (1) are real functions. It follows immediately that
Jr=Js=0. (9.66)

This is quite reasonable, because a current in a radial direction would cause the
entire charge either to be collected in the nucleus or to be emitted from the atom
after a certain period of time.
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The only nonvanishing component of the current is the ¢ component, as this
is where the only derivative of a complex part of the function enters, according
to the last equation in (9.63).

The current density in the ¢ direction is

. ik 1
Jo= W (1/fntm s

sin ¥
hm
———— (Ynim|* (9.67)
,ur sin ¢

( )wnlm ‘/fnlm (lm)wnlm)

meaning that the azimuthal current is mainly determined by the azimuthal quan-
tum number m, certainly a very reasonable result. The notion of the electron
circling the nucleus seems intuitively correct and is based on the Bohr model.

9.6 The Magnetic Moment

If do is an area vertical to the current dircction (see Fig. 9.4), the current di,
passing through this area is

dl, = j,do . (9.68)

In standard texts on electrodynamics it is shown that the electric current d/, cir-
cling around a plane area F, causes a magnetic moment dM = (F/c)di3 Tts z
component in an atom is therefore

F 1
dM, = = dl, = ~j,Fdo . (9.69)
C c

We have to multiply the particle current density by the charge —e to get the

electric current density, which is now needed.

72n“2 SR TR,

Qiman T __
OILC T =/ Sifli~ v, lllC luagucut. MoOINciit oCCONICs

—ehm
aM, = — Pt sin? 9 do (9.70)
cr sin v
ie.
ehm 2.
dM; = — (Yrppm|“7tr sin ¢ do |
and finally
ehm
L= (9.71)
2cu

3 See J.D. Jackson: Classical Electrodynamics, 2nd ed. (Wiley, New York 1975) and

W. Greiner: Classical Electrodvynamics {Qr\ﬂﬂnor New York ]CIOQ\
ssicai L prige

NI LD 'yuzwuuua W

z 4

r sind do

9>

Fig. 9.4. Calculation of the
magnetic moment
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since dV =2nrsinddo is the volume of the current element through do
and the integration over the normalized wave function is 1. As there are no
supplementary currents in the atom, the magnetic moment is

M=M= —upm , 0.72)

where up = —eh /2uc is the so-called Bohr magneton. The absolute value of the
maximal magnetic moment is ug/; that of the minimal moment is zero.

Noting that the z component of the angular momentum has the value L, =
respect to the angular momentum. It is defined as the ratio of the absolute
value of the magnetic moment {M,| divided by the angular momentum in units
of i, i.e.

_ | M|/ 1B

= m , (9.73)

and therefore ¢ = 1. By definition, the magnetic moment is measured in units
of ug and the angular momentum is measured in units of 7, which explains the
numerator |M,|/up and the denominator |L,|/% in (9.73).
Since the electron has another angular momentum, the spin, we can define
another g factor with respect to the spin. This will be done in Chaps. 12 and 13.
As we see, there indeed exist real electric currents in the atom, similar to those

1 3 : 1 v, T P Fruiaa Ahamias oo
which Bohr assumed to be caused by circling electrons. In quantum mechanics as

well, the semi-classical Bohr model yields a vivid picture of the states described
in an accurate manner by quantum mechanics.

9.7 Hydrogen-like Atoms

Ions or atoms having only one valence electron in the outermost shell can be
described as hydrogen-like atoms. In Chap. 14 we will see that every electron
state can be occupied by only one electron because of Pauli’s principle. Further-
more, in our case, we have not taken into account up to now the spin in the wave
function. As we shall see, the electron spin can take two values: spin up and spin
down, with respect to the z axis. Thus a state ¥, can be occupied by two elec-
trons, as it should be for complete wave functions, instead of one. In addition, we
have to consider the fact that the inner electrons screen the nuclear potential, this
effect can be described by an effective nuclear charge number Zeg. This num-
ber is Z (the number of protons in the nucleus) reduced by the integral over the
electron density in a sphere of radius r:
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r
4
Zete(r) = Z — 7” [ or’dr’

r

=Z~ 4nx22/|1/fn1m(r)|2 2ar (9.74)

Here, g is the total spatial charge density and the sum is extended over all totally
occupied shells. In practice, the value of the effective charge number is deter-
mined (fitted) by the experiment. This procedure provides a useful possibility
tor describing the spectra of the alkali atoms.

Recently, with the development of heavy-ion accelerators, which allow
the production of, e.g., high-energy uranium ions (up to 1 GeV /nucleon), it
has become possible to produce “bare” heavy nuclei. For example, uranium
nuclei without any electrons, or with only one or two electrons, have been
observed. Clearly, the electron wave function of a 91-fold ionized uranium
atom is a hydrogen-type wave function. However, relativistic and quantum-
electrodynamical effects become important for these large-Z atoms, and this
opens up a new field of research.

An jterative method of calculation is offered by the Hartree method. Here,
the potentlal of an electron i is the superposition of the central Coulomb potential
—Ze? [r; and the potential derived from the remaining electrons. This leads to a
stationary Schrodinger equation of the form

a2 *
i Z 1#1#()
p; e ZZ J Jde vi=E;, i=1,2,...,Z.

2m ri ri—rjl

/#t
9.75)

The terms in brackets indicate, respectively, the kinetic energy, the Coulomb in-
teraction energy of the electron i with the nucleus and the Coulomb interaction
energies between electron ; and all other electrons.

Thus we get Z coupled differential equations for the various wave functions
¥i(ri). Moreover, because of the quadratic terms in ¥, these equations are non-
linear. They can be iteratively solved, starting with the hydrogen wave functions.
The Hartree method does not lead to very accurate results because a quantum-

mechanical interaction between two identical particles, the so-called exchange
interaction, is neglected. This supplementary effect (which we will treat for the

two- electron atom in Chap. 15) is cons1dered in the Hartree—Fock method.
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We have already introduced the Schrédinger equation for the hydrogen atom and
separated it into a radial and an angular-dependent part (with the separation con-
stant C). The differential equation for the angular-dependent part of the wave
function [see (9.27) and (9.29)] is of the form

Ap Y +CY =0 (1)

We shall now determine the solutions and the corresponding quantum numbers
of the differential equation.
Even though we have already treated the spherical harmonics in Example 4.9,
it will be educational to derive them once more in a somewhat different way.
The angular-dependent part of the Laplacian is

g = —— P (g 2 YL P

— (N
T U sing a9 U T 99/ sin? 9 9g? e
To solve (1), we insert this Laplacian:
U PN 4 N 1 a2Y+CY 0 3
— | SINV — 5 = .
sin ¢ 39 a9 sin? ¢ dg?

The variables # and ¢ are separated as follows:
Y, ¢) = O()P(p) . C))
Multiplied by sin® &/ (@(9)p()), (3) takes the form
) 0 2
Sy 0 i sin ¢ 90) +Csin? ¢ = -——1 __8 ¢(9)
) sin 9 3 a9 o(p)  dp?

The left-hand side of this equation depends only on #; the right-hand side, only
on ¢. So we set both sides equal to a constant K and obtain the different equations

1 d /. dew o)
sing dot (sm v dg ) +COW) -k sin2# >
d2

C‘i(f) +Kg(g) =0 . ©)

The solution of (6) is

B(p) = e*VEY

We require that the wave function be single valued. This means

etivEKe _ eiiﬁ(¢+2n) — otivKpt2iVEx
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From this equation we get K =m? and m =0,1,2,3,..., where m is the
magnetic quantum number (quantum number of the magnetic moment), as we
already know. Thus the integer vaiues of m follow from the uniqueness of the
wave function.

With the substitution

t=cos?, sind=+v1-—¢*,
dt
dy = — ,
V1-12
(5) takes the form
d de m?
—|la-H— Cc-— O =0. 7
dr[( t)dz]+( 1—12) M

To solve (7), we try

D

2\m/2
A=y v,

The equation for v, (£) then reads
2

1—¢2

Hd; {(1 _2 4 —zz)m”vma)]} + (c—

_2\m)2 _
ar )(1 1)y o (=0,

from which we obtain, after performing the differentiation and reordering,
(1 — 20 (1) = 2(m + Dtvl, (8) + [C —m(m + D]vm(®) =0 . (8)

Differentiation of (8) yields the same differential equation for v}, (f), with the
coefficients m replaced by m + 1:

(1=, =2(m +2)1(v),) +[C— (m+ 1) (m +2))(v,,) =0 .

Thus solutions v], = v, 1 are possible or, represented by a function vp,

d™ vy (1)
U (1) = —am ©
In the case m = 0, the differential equation (8) reads:
(1—*)vf — 210 +Cvg =0 ; (10)

this is Legendre’s differential equation (see Example 4.8). We try to solve it in
the vicinity of £ = 0 by inserting a power series

volt) =ap+art+ayt* +ast* +... (11

where vy (t = 0) = 4y and vy(t = 0) = a1.

Exercise 9.4



234

Exercise 9.4

9. Charged Particles in Magnetic Fields

To determine the coefficients of the series, we differentiate this twice, term
by term:

vy = a1+ 2axt +3a3t> +day’ + ..., (12)
1)8:2a2+3x2a3t+4x3a4t2+... . (13)

When we insert (11), (12) and (13) into Legendre’s differential equation (10), we
find

oc 00 oo 20

v—2 v v v __
5 v(v—Da,t" — ; v(v — Day,t’ — S 2va,t’ +C ) at’ =0 . (14)
v=2 v=2 v=1 v=0

Since the factor v(v—1) vanishes for v=0 and v =1, we can change the
summation and write

oG o0
Z v(v—Da,t’ = Z v(v— Da,t’
v=2 v=0

or

o0 o0
221)(1‘,[" = Z 2vayt’ .
v=1

v=0

This simplifies (14) to

[es} o0
Z v(v—Day ' = Z[v(u+ 1)—Clayt” .
v=2 v=0

To compare the coefficients of the power ¢/, we have to set v =1+ 2 on the left-
hand side and v = on the right-hand side. We then obtain
r'e BN A VS EN R R P — FXrsT ¢ 1N 71 -2
Urolirja2 = (i +1)—Clay . (L)

With the recursion formula (15) we are able to evaluate all coefficients from ag
and a; because

Id+1)—-C
A+ D+2)

By successive insertion of this equation, it can be shown that the coefficients
satisfy the general relations

a2 = ay ([ Es 0) .

AR P Ok — BRTS
ay =(DC(C—-2x3)...[C—2k—2)2k 1)](2k)!’

ke (o a
a1 = (—DXC = 1x2)...[C—(2k 1)(2k)](2k+1)!.



9.7 Hydrogen-like Atoms

235

The complete solution of the Legendre differential equation is then given by the
sum of the two power series:

1
vo(t) =ap {1—C’— +C(C—2x3)%—C(c—zxz)(c—4x5)g;+

+=D*Cc(Cc-2x3)...

+a {

Each of these series diverges if it

IICD cain UC lUlLCU to bUllVClg

a; =0.

Furthermore, we choose C =I(/+1), where [ =0, 2,4, .

and/=1,3,5,... inthe second case. Then only a finite number of coefficients

L

2 4

2!

3

[C— (2k —2)(2k —

6

12k
1)](2k)' .. }

5

t 4
(= (C=1xD g +H(C~1xDC=3xd) g +...

H=DXC =1 x2(C—3x4)...

s

[=0.m=0

I=1m—9

I=2m=0

2k+1

[C— 2k — 1)2k]

does not terminate at a certain point. The se-
by setting either ap = 0 and a; # 0 or ag # 0 and

(=1, m=1

2k+1)!

. in the first case,

Exercise 9.4

The spherical harmonics
Yim(8,¢) for the lowest
values of [/ and m. We
have plotted the function
|Y1 (8, $)|* in spherical co-
ordinates. For a given di-
rection of 6 and ¢ in the
coordinate system, the dis-
tance of the surface to the
origin equals the squared ab-
solute value of the spherical
harmonics
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Exercise 9.4

]

L |

A diatomic molecule. The
coordinate vectors r| and ry
describe the centres (nuclei)
of the two atoms. R indi-

cates the centre of mass

are nonzero, and the power series converges, i.e. we obtain polynomials. These
polynomials are the only solutions which are regular at |¢| = 1, and which can
be considered as solutions of the physical problem. They are known as Legendre
poiynomials Pi(t) { =0, 1,2, ...) (see also Example 4.8). They are normalized
so that Pj(1) = 1, and they satisfy the following orthogonality relation:

+1

/Hmwmm=

-1

2
2141

3[[/ .

Reversing the various substitutions, the complete solutions of (1) read
; , d™ Pi(cos )
Y@, @) = Vim (3, ) = e sin™ 9 ————=
d(cos )™

We see, again, that the angular-dependent part of the hydrogen wave function is
represented by the spherical harmonics ¥y, .

EXAMPLE I

9.5 Spectrum of a Diatomic Molecule
With the techniques we have developed so far, we now want to determine the
spectrum of a diatomic molecule in a qualitative way. The potential between the

atoms is assumed to be local and not explicitly time dependent, it is given as
a function of the distance between the atoms (see figure),

V = V(r, r).

The Laplacian appearing in the Schrédinger equation has to be applied to the
coordinates of both atoms:

A=A +A4, with

E: CA
Al=—+—+— and
ax?  ayt dz
32 9r @
Ay = ‘

sty
ax§ By% 32%

Hence, the stationary Schrodinger equation becomes

—h? —h2
(~2——A1 + —Az) Y(ry, r) + VL, r)y(r, ) = Ey(r,rn) . ()
mi 2m2
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Introducing the centre-of-mass coordinate R and the relative coordinate r, the
two-body problem can be reduced to an equivalent one-body problem. The

fall 1 1 .
following relations hold:

MR = m r| +mary with the total mass
M=mi+my, and 2)
r=r-n. 3

We also have to express the Laplacian in terms of the new coordinates. Taking
the x coordinate as an example, we obtain, with the definitions (2) and (3),
mixy +myxa
=, X=X —X2.

M

Thus, for the derivatives with respect to x1 and x;, we get

8 my 3 2

ox; M oX  ox
a my 9 d

axy; MIX oax

and

Hence,
hr @ R @ h 92 R? ¥
“ama? amaad . AMAXE 2uaed
where 1/p = 1/my + 1/mj is the reduced mass. Analogous results follow for the
other components, and the Schrodinger equation (1) takes the form
2 2

—j—MARK/f(", R) - %AH&(”, R)+ V(")W(r» R) = EW("! R) .

Using ¥(r, R) = f(r)F(R) and splitting up the energy into E = E, + Eg, we
separate the differential equation into the centre-of-mass motion
hZ
——ArF(R) = ERF(R) , 4
o AR (R) = ErF(R) 4)

and the relative motion

h2
_”ﬁArf(r) + V(r) f(r) = E, f(r) . &)

Equation (4) no longer contains the potential; the motion of the centre of mass
is free and described by a plane wave:

F(R) = Cexp (——;{P-R) ,

where P2 = 2MEg. This is quite reasonable, since we expect the molecule to
move, as a whole, freely in space.

Example 9.5
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Example 9.5

o

\

PR
i)

Qualitative form of the po-
tential V(r) between two
atoms

Qualitative behaviour of the
effective potential Wj(r) be-
tween two nuclei. rg, rs (or
in general r;) indicate the
positions of the minima of
the /-dependent potential

In the equation for the relative motion we perform the usual separation of
variables for a central potential:

R

f(")zf(r,ﬂ»@): Ylm(l%(p)

This leads to the radial equation [see e.g. (9.28)]

h* SR +W;(r) = ERrR 6
_ 7)) = s
2 r? ! K )
with the effective potential
R2 I+ 1)
Wi(r) = V() + -~ | )
2u r

which is the sum of the true potential V(r) and the rotational energy L2/2ur2, as
in classical mechanics. To get a qualitative survey of the energy eigenvalues E,
which constitute the spectrum of the molecule, we assume an acceptable form
for the potential.

As illustrated by the upper figure, the potential should be repulsive if the two
atoms are too close together. At a value ry, it should have a minimum and for
large distances r, it should be attractive and tend towards zero. The repulsion
for values r < rg is produced by the practically “naked” (i.e. without electrons)
nuclei facing each other. The minimum at r = rg is caused by the molecular elec-
trons, which move around both centres. [We shall explain this later on in greater
detail (see hydrogen molecule in Example 15.2).]

If the molecule has an angular momentum, the repulsive centrifugal potential
has to be added. Therefore the minimum becomes less marked and shifts towards
larger distances, as shown in the lower figure.

In the case of small oscillations, the energy eigenvalues can be calculated by
replacing the potential about the minimum by a parabola. Since the location of
the minimum depends on the angular momentum, we call it 7;. Now we expand
Wi () around the point r:

1 d*W(r)
(r_rl)-f-ET

dwi(r) (r—r1)2+... .

r=r;

Wi(r) = Wi(r)) +

@

r=t;
The higher terms are neglected, because we consider small oscillations about the
equilibrium position |r — r;| << r; only. The second derivative can be written as

LRAD)
7 = ;La)lz . 9
This gives us approximately a parabolic potential. Since the first derivative van-
ishes at the point of equilibrium 7 =7;, (8) becomes, using the abbreviation
xX=r-—ry

RAI+1) 1

Wi(r) = Vi) + ——— + ~ peopx®
2ur; 2
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With the moment of inertia &; = ;Lrlz, the Schrodinger equation (6) changes into

hZ d2R rV RAJ+1) 1 22 R ER
2 dx2 I_(rl)‘f‘T'l'zMw[ J — Lr

Accordingly, our approximation leads to the linear harmonic-oscillator equation.
This can be easily seen by substituting

R0 +1
E=E-vm- D
20,
which yields
h> &R P R=ER .
Top e T2

As we already know, the eigenvalues of the linear harmonic oscillator are given
by (see Chap. 7)

1
:hwl(n+§) , n=0,1,2,...,

and thus the whole spectrum results as

RAI+1)

10
20, 10)

1
E=Ey = V(r)+ho (n+§)+

The energy obviously consists of a rotational part B>l + 1)/26;, and a vibra-
tional part hw;(n + 1/2). In addition, the vibrational frequency ¢y is determined
by the rotation; w; depends on ! [see (9)]. Because of our approximation, the
solution (10) is valid for small quantum numbers » and / only.

The rotations are observed in the far part and the vibrations in the nearer
part of the infra-red spectrum, This means that the level density of the rotation
at a given vibration energy exceeds the density of levels for different quantum
numbers ». In other words, the rotational states can be classified according to the
vibration states. The levels of vibration are equidistant, which we see from (10),
while the ratios between the rotation levels are 1:2:3:4:... , if the moment
of inertia &; remains constant, The scheme of a rotation—vibration spectrum is
shown in the following picture:

(= SUSIR T, B - B R @

Example 9.5

Rotation—vibration spectrum
of a diatomic molecule
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Example 9.5

Such rotation—vibration spectra also exist for nuclei and probably even for
clementary particles; for such problems we refer to the literature.*

EXAMPLE I

9.6 Jacobi Coordinates

The Jacobi coordinates are a generalization of the relative and centre-of-mass co-
ordinates used in Example 9.5, The latter are suitable for describing a two-body
system. But what does the treatment of an N-body problem look like? Jacobi
coordinates give the answer.

First we take the particles 1 and 2 and treat them in the usual way:

mixi
&1 = —X2 =X — X2,
mj
muyi
m= —w=y-—y,
mi
miz|
Hl=——2=21—22 . (1
mi

The first Jacobian vector & = {&1, 11, {1] is the relative vector between particle 1
and particle 2. The second Jacobian coordinate is now defined as the relative vec-
tor between the centre of mass of the first two particles and the third one. The

vl Tarnhi
third Jacobian vector connects the fourth particle with the centre of mass of the

first three particles and so on (cf. Sect. 14.2). Therefore we have

mixi
& = —Xx2 ,
"y
mixy +moaxp
b=——""—"—2x3,
mi+ma
J
E] i —Xj+1
Zk:l M
1 N
SNZﬁkaxkEX, 2

and analogous equations are valid for the 7; and the {; components. This is
illustrated in the figure below.

4 See, e.g., J.M. Eisenberg and W. Greiner: Nuclear Theory 1, Nuclear Models, 3rd

ed. (North-Holland, Amsterdam 1987).



9.7 Hydrogen-like Atoms

241

Evidently, &y is the centre-of-mass vector of the whole system. Now, we want
to transform the kinetic energy operator

T=

& (2 2 2
Y‘ ) )
2 = \axg Ay o)

k=1
to Jacobi coordinates. First we note that from the transformation formulas (2) it
follows that

(3)

9% _ mk 3
—=— k<j; = =-1, k=j+1;
e M; = o I+
o, . .. .
— =0, k>j+1, where 4)
axy,
J
Mj=zmk &)
k=1

is the total mass of the first j particles. With the help of (4) and (5) we find:

N ., N N an, N oo

ne

o N

v _ oW % _ 3 V%

ax 9 dxy 0&; ax

=1 Pk o= §j 9% =1 §i i Ok

N9 ¥%; 9
W e %y )Y 6)

0&; M;:  Ox; N
=1 ";:J k=1 T jtl1 EN

Note that (T‘J —_IY=0for i « N Only in tha cace 7+ — A dnsq the
TULW wiiaL k lllHK/l"J A} AV S ) J S 4Y . \Jlll] 111 UIv vddwvw J 4Y UULVO Uwv

expression in parentheses become nonzero and attain the value 1.
The kinetic-energy operator is calculated in an analogous way. It is sufficient
to evaluate the operator:

1 oty

mg 8xk

N

wa

S DD 3 pa S o
My = 0& ;08 ;7 Oxy Axy, ’

k=1 j=1j'=1

The Jacobi coordinates for
four particles, numbered [,
2, 3, 4. r are their pos-
ition vectors. Ryy, Rjp3 are
the vectors for the centre of
mass of the first two and
three particles, respectively.
The Jacobi-coordinate vec-
tors & point from the par-

ticle i +1 to the centre of

mass of the first i particles
nass tne frsi: panicies
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Then we get, by using (4) and (5),

R N N N W\
Dy = ZE(;ZZ M déji)éj)

k=1
ZiZN: Lome 3% +i 1 9y
== mi M 0061 < myi 9L
i 1 / ii Iuk 821 imk 82"\(5' \
_ ) LA S
g ( MMy djiEy T M asjask_l)

o e\ S M 087 0,
L[S sy e )
B YV AVANYRFTS

\k:] i MMy 39 oM 3513&—1)

4
Mz

Il
—_

[
o
TN
Mz
M‘
AE
N =~
S
2|
< I |t\-)
M=
NS
2| —
QL
>
w| B
NES
SN

<
Il

-
\

“
~

Il

—_

/ J
N A o2y 1 8%y
13 Zﬁa_gf my, 9E2
k=1 \j=k = Jj "°j k-1
N N 2 N j—1 2
1 Py 1 8%y
=2 —_—— — [because of (5)]
(\JZ: JX: M 998 2,2; M; 3513&’)
=i j> J=i K=V 7

J
SA_’: my 9% il P
M; %7 m *&L |

k
=1 j=1 M; 338y — M, 90k
N N 2 2
m Y 1 3%y
+y S —
k=1 (Jgk M; 852 mi 3¢

N N a2 2
-\ X e e | ®
= M a5 mi 9,
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Thereby we have changed the order of summation over &, j and j’ at (x). The Example 9.6
last sum transforms into

k=1 k0 ) k—1
N omddy N2 1 &y
oty 31 oy
B ;_j 02 ey a6
_1d@y S 1\ .
_M@ ,=1(ﬁj m1+1)¥,2-’ ®
which means that
. N-—1
o= LIV S LT (10)

=——+ W)
Mgy, = wi o)

where p ; is the reduced mass of the centre of mass of the first j particles and the
particle with the number j + 1:

1 1 1

u—,-:E-erHl : (1)
Taking into account that
Dy = (Dx+Dy+ D)y (12)
we get from (10) the relation
A 1 N-L
Dy = -vavlp+ Zl M—jvﬁw . (13)
j=

This is the Kinetic-energy operator (up to the factor —h?/2), expressed in Jacobi
coordinates. As expected, the centre-of-mass motion separates. It is described by
the first term on the right-hand side in (13).
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9.8 Biographical Notes

: ot KO am e e < ATaty
BOHR, Niels Hendrik David, Danish physicist, *Copenhagen 7.10.1885, 1 Copenhagen

18.11.1962. A professor from 1916, in 1920 B. became du‘ector of the Instltu te of The-
oretical Physics at the University of Copenhagen. In 1913 he succeeded in applying
Planck’s quantum hypothesis (1900) to Rutherford’s planetary atomic model. This Bohr
model was the first to explain theoretically the spectral series of hydrogen. B. generalized
this model to include the description of other elements and developed a theory of
the periodic system of the elements. His correspondence principle, which was named
after him, established a relation between the classical and the new quantum theory. In
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1920 he received the Nobe! Prize in Puy sics. Tusvthef with the y young W. H‘,Lm,uprs,

B. developed the “Copenhagen interpretation” of quantum mechanics in 1927, the now
prevalent physical interpretation of quantum-theoretical formalism, based on the Heisen-
berg uncertainty principle and the well-known duality of particles and waves. Later on,
he worked on problems of nuclear and elementary particle physics. From 1933 to 1936
he used the “sandbag model” for describing nuclear reactions of collisions. His interpre-
tation of the nuclear fission of uranium was important for its later technical use. From
1943 to 1945, B. worked on the development of the atomic bomb in Los Alamos.

LANDAU, Lew Dawidowitsch, Soviet physicist, *22.1.1908 Baku, 1 1.4.1968 Moscow,
director of the Institute for Theoretical Physics of the Soviet Academy of Sciences.
L. investigated, in particular, diamagnetism and low-temperature physics. In 1962 he re-
ceived the Nobel Prize for his explanation of superfluidity especially as it appears in
HeIl.

RYDBERG, Janne (John) Robert, Swedish physicist, *Halmstad 8.11.1854, { Lund
28.12.1919. From 1901 on, a professor in Lund, R, worked on the periodic system of
the elements and series spectra. In 1889 he submitted his “Recherches sur la constitu-
tion des spectres d’émission des éléments” to the Swedish Academy of Sciences. The
Rydberg constant and, recently, Rydberg atoms were named after him. In 1913 he pub-
lished his papers “Elektron, der erste Grundstoff” and “Untersuchungen {iber das System
der Grundstoffe”.

LYMAN, Theodore, Amer. physicist, *Boston 23.11.1874, {Cambridge (Mass.)
11.10.1954. From 1910 to 1947, L. was director of the Jefferson Physical Laboratory
at Harvard University. He was a pioneer in the field of UV spectroscopy, and in 1906 he
discovered a series of the hydrogen atom in the UV range, which was named after him.

BALMER, Johann Jakob, Swiss mathematician, *Lausanne (Basel) 1.5.1825, { Basel
12.3.1898. B. taught at the Basel Lady’s College and from 1865 until 1890 was also lec-
turer at the University of Basel. In 1885 he was the first to construct a formula describing
those parts of the hydrogen spectrum known at that time (Balmer series). Later he rec-
ognized the relation between the constant / of his formula and the Rydberg constant and
its significance as the limit of the series.

PASCHEN, Friedrich, German physicist, *Schwerin 2.1.1865, { Potsdam 25.2.1947.
P. was professor in Tiibingen and in Bonn. In 1924, he became president of the
Physikalisch Technische Reichsanstalt Berlin and a professor in Berlin. He constructed
very sensitive galvanometers and quadrant electrometers and worked together with
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C. Runge, mainly in spectroscopic experiments. In 1908 he extended the Balmer for-
mula to the TR lines of the hydrogen spectrum (Paschen series). In 1912/13, together
with Back, he discovered the Paschen-Back effect: the splitting of lines in strong mag-
netic fields. The Paschen Law (1889) states that the ignition voltage of a discharge in
a gas depends only on the distance between the electrodes and on the gas pressure.

BRACKETT, F. P. Brackett, American astronomer, *1865, t 1953; his most important
achievement was the discovery of the Brackett-series in the spectrum of the hydrogen
atom. It describes the radiation due to eclectron transitions from excited states into the
shell with the principal quantum number n = 4.

HARTREE, Douglas Rayner, British physicist and mathematician, *Cambridge
27.3.1897, + Cambridge 12.2.1958. From 1929-37, H. was a professor of applied math-
ematics, and then of theoretical physics, at the University of Manchester; from 1946-58,
he was a professor in Cambridge. H. became a member of the Royal Society in 1932.
His most important achievement was the development of approximation methods for the
calculation of quantum-mechanical wave functions of many-electron systems. Further-
more, he worked on problems of digital calculators, ballistics and atmospheric physics.
His main publications were Numerical Analysis (1952) and The Calculation of Atomic
Structures (1957).

FOCK, Wladimir Alexandrowitsch, Soviet physicist, *Petersburg 22.12.1898. F. became
a professor at the University of Leningrad in 1932. In 1939, he joined the Academy of
Sciences of the USSR and collaborated at several institutes. F’s main field of work has
been quantum mechanics and quantum electrodynamics, he is one of the founders of the
quantum theory of many-particle systems. In 1926 he set up a relativistic equation for
particles without spin in magnetic fields, independent of O. Klein. In 1928, together with
M. Born, he demonstrated the validity of the adiabatic principle in quantum mechanics
and developed an approximation method for wave equations of many-particle system
(the Hartree-Fock method) in 1930. From 1932 to 1934, he generalized the Schrédinger
equation for systems of variable-particle number in so-called “Fock space”. He also
worked on the interpretation of quantum theory, general relativity (“Theory of space,
time and gravitation” 1955), the theory of elasticity, and the theory of refraction and
propagation of radio waves.






10. The Mathematical Foundations
of Quantum Mechanics IT

10.1 Representation Theory

The state of a particle is completely described by the normalized wave function
W (r, ), which we have used until now. In the Schrédinger equation,

)
(% + V(r)> Y(r,t) = ih-%«/f(r, 1, (10.1)

which gives us the evolution in time of the state, we expressed the momentum
operator by the differential operator, i.e.

p=—ihV . (10.2)

This representation (r, #) of a particle state is called the coordinate repre-
sentation. Because of Heisenberg’s uncertainty principle, the momentum p of
a particle is not exactly known if its position r is fixed. According to (3.50), the
average momentum is

(p)= f VX (r, H(—iAV)Y(r, HdV . (10.3)
We can extract information about the momentum of a particle from the wave

function ¥ (r, f) if we expand it in terms of eigenfunctions of the momentum
operator; this is simply a Fourier transformation. The Fourier integral reads

1 i 3
W(r,t)—Wfa(}’,t)exp(ﬁp'r)d p
= [ aw.0vp (104)
The integration is extended over all of momentum space; the function a(p, ) is

the Fourier transform of ¥(r, 7) at time . The plane waves 1/, (r) are eigenfunc-
tions of the momentum (see Example 4.4). Indeed, we have

1 i . " h i B
wp=Wexp(ﬁp-r) , with pl/fp—i—Vexp(Ep-r)—m/fp .
(10.5)
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Now, by inspection of (10.4) it becomes evident that the function a(p, ) de-
scribes the particle state as completely as the function y(r, £). We call a(p,t)
the momentum representation of the state of the particle. With the reciprocity of
the Fourier transformation, it follows from (10.4) that

1 .
a(p,t) = W f W(r, £) exp (%p-r) ar

= f Y, Y dr . (10.6)
Hence, if y/(r, #) is known, we can construct a(p, t) according to (10.6); and,

1 1 H x7 A ahla ¢~ Acncbam: ot faf=e N 2l A 71N AN
vice versa, if a(p, #) is known, we are able to construct (7, ©) through (10.4).

Analogously, the equivalence of the normalization can casily be shown:

f i, ]2 & = f a(p. P dp . (10.7)

Indeed, (3.41) expresses this fact for particles within a box. The relation corre-
sponding to (10.3) for the average of the position operator reads
(r““)=fa*(;7,i)(iﬁ‘7p)a(p,t) &p (10.8)

where V, = (8/0p,, 8/dpy, 3/3p;) is the nabla or del operator in momentum
space. Indeed, we can easily calculate with (10.4)

0= [venrvendr
= [ @ pd par w03 rae v

= f & pdp'a*(p.ap’, 1) f Ery (g (r) . (10.9)

Now, by use of the first equation in (10.5), we can replace the vector r in the
space integral by

/ Crys(n ryy () = / WO (=iRV ) (D) &

=—ihV, / VRO, (N dr
=—ihV,8(p-p’) , (10.10)
so that (10.9) becomes

(ry= f & pd’ pa*(p, ap', 1) (=ihV )8 (p— p)
= f &*pa*(p, Dlap’, n(=ih)s* p — p))| 12
- f & P (—ihY a8 (p — p')]

=/ & pa*(p, nGhV )a(p, 1) .
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The function a(p, ) represents the momentum distribution of the particle state
Y (r, 7). The absolute square |a(p, £)|? gives the probability of finding the particle
with definite momentum p, i.e. with the wave function

i

_ 1
Itlp(r) = Wexp (hpr)

in the state ¥(r, r). Hence, |a(p, 1)|? is the probability density in momentum
space.
Up to now we have based our considerations on the physical point of view

that the coordinate wave function ¥(r, ) of a particle is determined by measuring
its spatial distribution. The momentum distribution follows by Fourier trans-
formation. But often in physics we must adopt a reverse approach; for example,
in electron scattering experiments, momentum distributions (form factors) are
measured. Then the (spatial) charge distribution of a nucleus follows from a
Fourier analysis (see, e.g., Example 11.8).

Coordinate representation and momentum representation are equally suited
to describing the state of a particle. Equations (10.4) and (10.6) allow transition
from one type of representation to the other.

Let us now briefly consider the energy representation. For simplicity we
assume the particle to have a discrete energy spectrum with eigenvalues
Ey, E;, ..., E,. ... and acorresponding system of orthonormal eigenfunctions
Y1, ¥2, ..., ¥y, ... . The expansion of the general wave function ¥ (r, ) in
terms of energy eigenfunctions reads

' Y T‘ £t FARRN s10 110
(r,n =) _ay(t)ym(r) , (10.11)
n
where the index n indicates the energy dependence. We can get the expansion
coefficients from (10.11) by multiplying it by ¥}, and integrating over the whole
space:

am(t)=f v, ndr . (10.12)

It is clear that the state of the particle is completely determined by the set of a,,
i.e. the energy representation. Indeed, v(r, f) and the a, (¢) follow from one an-
other; the transformations are given by (10.11) and (10.12). This is completely
analogous to the former situation in which we were able to evaluate ¥(r, 1) from
a(p, ) with (10.4) or a(p, t) from ¥ (r, f) with (10.6).
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To apply our formalism we evaluate the momentum distribution of an electron in
the ground state of a hydrogen atom. The normalized wave function of this state
is given by [y, = 1/nay; see (9.45), (9.46) and Table 9.1]

=" (—i) D
ra - _"_HS Xp ao ) (
vawO

where  denotes the frequency and ap, Bohr’s radius. The momentum represen-
tation is given by

1 i
a(p,t)=foh(r,t)exp(—gnr) dv . (2)
Inserting (1), we get
o0
e*‘lﬂ)[ r i
a(p,t) = W / exp (_a_o) exp (—ﬁpr) dv . 3)
—o0
i To simplify our integral we choose the z axis parallel to the momentum and get
\ in spherical coordinates (see figure)
I
: W e—ia)t r
p|0\ a(p’[):W exp _E(; exp( hprcosz?)r drsin#dd de ,

—1a)t 2 ! i
a(p,t) = / exp (——) /exp (——prcos 19) dcos® | r2dr .
) 2a3h3 a h
Special choice of the coordi- -1

N L. P (AN
nates to evaluate the integral \7)

Angular integration yields

()
p 2a0 h

[ /1

—exp I_—r )]} rdr , )

St vy

——i
ap
and from this equation, it follows directly that

a( z)—l(@)m L ©)
PO=2\n ) uroumhar
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The probability density in configuration space is obtained from (1) as

lafofse V12 _ eXp[—(r/a())z]
|WAr, )| — *3‘— ,

7[610
while we obtain the density in momentum space from (6) as

3
8a0

la(p, H|* = )

 whAL+ (pPag /A
The form of both densities can be shown as in the figures.
Integration over the momentum density also yields the correct value of one:
oo

2 3 24 2 32 [ xPdx
] la(p)|~d p—/la(p)l 4np dp = <] Grop =1. (8)
—0Q
Here we have substituted pag/h = x. The momentum distribution (7) can be ver-
ified experimentally by observing photoelectrons in ionization experiments or by
measuring inelastic electron scattering. Relation (7) has been confirmed in such
experiments.

10.2 Representation of Operators

The operator equation

¢=Ly (10.13)

trancforme a function e to othar fiinecti Fn evnlicit calenl ticn we
transiorms a runcudn ¥ o anoiner iuncuon ¢. r'or an SXpiicit caicui

have to choose a certain form of representation. Until now we have used the
coordinates r to express an operator; i.e. we have been working in coordinate
representation. In this case, the operator L generally takes the form

PO - (h
L:L(ﬁ,r):L(TV,r . (10.14)

1e wave function, we have to trar

If we change the representation of ti
operator accordingly.

Let us consider first the energy representation. We expand the wave func-
tions ¥ (r) and ¢(r) in (10.13) in terms of eigenfunctions of the energy, i.e. of
the Hamiltonian (Hv,, = E,¥,). Thus we have

V) =) a¥a(r) and @)=Y by(r) . (10.15)

[

I¢(r)l2

Pao

Probablhty distribution in
configuration (fop) and in
momentum space (bottom)
Fnn tlan Lo, Ao r e cerare A
101 Lic u_yulugcu gluuuu

state
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The energy representation of the functions ¥ and ¢ is then given, according to
the previous section, by the set of coefficients a, and b,, respectively.

To get the energy representation of the operator L, we insert the expansions
(10.15) into (10.13), yielding

anllfn =L Zanl/f,, = Zanitjfn .
n n
After multiplication by ¥, and integration, it follows from this equation that
-, — [ ..
2 bndmn =) ay j Yo, Ly, dV . (10.16)
n n
This suggests introducing the matrix element

Loy :fw;;iwndv (10.17)
as an abbreviation, so that we can now write for (10.16):

by = ZLmnan . (10.18)
n

This equation is the energy representation of (10.13). The total set of the Ly,
i.e. the matrix L,,,, constitutes the energy representation of L. As already in-
dicated, because of the two indices, the L,,, are combined into a matrix. Since
both indices run over the same set of numbers and because the number of energy
eigenvalues is infinite, the matrix L,y is a quadratic infinite matrix.

To give an example of an operator with continuous eigenvalues, we shall now
compute the momentum representation of (10.13). The problem is simplified by
considering the one-dimensional case (r — x, p — p, = p).

Since we are looking for the momentum representation, we expand in terms
of momentum eigenfunctions, i.e.

= ()

but now we do not write them explicitly, and have

‘/’pz

v = [av,0ap, g = Jf B(PIV () dp (10.19)

The functions a(p) and b(p) are the momentum representations of Y and g,
respectively. Inserting (10.19) into (10.13) yields

/ b(p)V, () dp = L / a(p)V, (1) dp = f ap)Ly,mdp . (10.20)
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Since the operator L is assumed to be given in coordinate representation (10.14),
it depends on x and not on p. We can therefore write it under the integral.
Multiplication by 1/’;/ (x) and integration lead to

/b(P)dP/l[’;/(x)llfp(x)dx:/a(p)dpflll;,(x)illfp(x)dx . (10.21)
With the orthogonality relation

[

| ¥pvpedar =5 p) (10.22)
and the abbreviation
Ly,= / Yy () Lyp(x)dx (10.23)

we get the momentum representation of (10.13):
b(p") = / Lypa(p)dp . (10.24)
The indices p and p’ are continuous and hence the matrix element

Lp/p - L(p,’ P)

is a function of the variables p and p’. But the term “matrix element” is also used
in this case. The infinite matrix (L ) is the momentum representation of L. For
explicit calculations see Examples 10.2 and 10.3.

Now we want to review some laws of matrix calculus and show their validity
for matrix elements of operators.

A mattix L = (L,,n8,,n) 1s called diagonal; especially for Ly, = 1 we have
the unit matrix E = (8mn). The matrix which is called the complex conjugate

matrix of L is defined by

L* = (LY = (L)f,m . (10.25)
The transposed matrix L of L = (L) is

L= (Lymn = LInm - (10.26)
It is obtained from the original matrix by transposing the indices, i.e. mirroring
the matrix elements on the principal diagonal. The elements of the adjoint matrix
L fulfil the relation

LY = Lymn = L ) - (10.27)

In the case L = L™, we call the matrix L self-adjoint or Hermitian. Now we
show that a Hermitian operator is represented by a Hermitian matrix. Indeed,



254 10. The Mathematical Foundations of Quantum Mechanics I1

Ly = f ‘/f;:zi“/’ndx = / ‘/’ni*ll’:r![dx
VA \ ¥
= U Yo Lm dx) =Lk . (10.28)
Two matrices are added component by component:
Com = Anm + Bum . (10.29)

Let € be the sum of the operators A and B. We can show that the matrix
corres pvndmo to F is the sum of the matrices corre nnpdmo to A and R

Con = [ v Cowar = [ w3(A+ By
:fw;AAwndx+/W;é‘/fndx=Amn+an . (10.30)
The multiplication of matrices is defined as

mn =iAkakn . (]0.31)

Let us prove that the matrices of operators fulfil the same relation. If C = AB,
then obviously

Cmn:fl/f;‘zéwndx: /w,;;Aéw,,m: /w,fzfi(ézjf,,)dx : (10.32)

We set (lA?t,bn) = ¢, (x) and expand this function in terms of orthogonal functions

Vi (x)
on(0) = By =Y b ¥i(x) (10.33)
k

with coefficients by,,:

bin = / Wi By, dx = By, . (10.34)

By inserting (10.34) into (10.33) and the result into (10.32), we obtain for C,,,
Con = f v A (Zbknllfk) dx = f Vi > b Ay dx
k k
=Y Bu f Yk Aydx (10.35)
k

In analogy to (10.34), we define

f Yk (AP (x) dx = Ay, (10.36)
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and verify with

Con=Y_ BinAmkc =Y AmikBin (10.37)
k k

that the multiplication rule (10.31) is also valid for matrices which belong to
operators.

In the following, the wave functions ¢(x) and ¥(x) are represented by the
numbers b, and a,,, respectively. We want to transform the equation

p=Ly (10.38)
into matrix form. Therefore we use the column vectors
ai by

@y =|2|. G)=|02]. (10.39)

Now, we can replace the equation ¢ = Ly, which is equivalent to b, =
> - Lmnay, by the matrix equation

(bn) = (Lmn)(an) » (10.40)

where (L) corresponds to the operator L. Explicitly this equation reads

bl L]l L12... ai
by| —|Ln L»n... a | (10.41)
\:/ \U: L\

We call (a,) and (b,) the representations of the wave functions v and ¢,
respectively in the chosen basis .

The expectation value (W|L|y) of an operator L in the state ¥(x) is easily
determined in matrix representation. We have

L=l Lipe = [ v @iywd

_ / dx 3" @by 0O L (am Yim (1)

=) djam f dx YL Ym () =D @y Lumam
ar\

oo (L1 Liz...) /az 10.42
(aj,a;3,...) : . (10.42)

The results of this section are quite important. We have learned that in addition to
coordinate representation, a whole variety of representations exist for expressing
quantum-mechanical relations. Later on in Chap. 12, this fact will prove useful
for describing spin.
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EXAMPLE I,

)
=
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'15
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10.2 Momentum Representation o

Let us transform the operator of the x coordinate £ = x into momentum repre-
sentation. According to (10.23) it is

Xpipe = / ‘/’;}X () xYp, (x)dx . o

For momentum eigenfunctions we take again the plane waves
expli h)x
Yy (X) = expli(p/)x]
V2 h

and get

xpxpx—_‘? [CXP(—lk \xexp 1p;x)dx, @)

2’ e e \ it J

This can be written as a partial derivative with respect to p/,:

h 9 P,
Xpep, = h/exp —1—x —a—7exp 1?x dx

=“,,n — ( (P, — pox) dx
x S

_hs
idp

8(‘1); —DPx) . (3)

/
X

This is the momentum representation of the operator of the x coordinate in ma-
trix representation. With the momentum representations b(p,) and a(p,) of the
functions @(x) and v(x), respectively, the equation ¢(x) = xy/(x) becomes

b(ps) = f Xp, p.a(p)dp),

3
=— /ih (a (P~ px)) a(p,)dp, . )
J

Partial integration yields

A
"\Px}d /

b(px) = —ih[8(p) — p)a(PIIES + ik j 3P — px)
3
=ihs—a(py) - (5)
Px

Comparing this equation with @(x) = £y (x) = xy¥(x), which is in coordinate
representation, we note that the coordinate x is replaced by the operator i%9/3py;



10.2 Representation of Operators

257

the latter has to be interpreted as the momentum representation of the operator
. In the case of the other coordinates y and z, the derivation is similar, and so

. . . A
we nhtain the fallawino mamentim renrecantation of #:
VWU UULGIL Ui 10U LS IUUVLLLII UL TUPIUSLIIlauvi Vi 7 .

F=ihV, , (6)

where V, is the nabla or del operator (gradient) in momentum space.
The following table shows the connection betweeen the momentum and the
coordinate operators:

Representation F p
Configuration space

(coordinate representation) r —ihV
Momentum space

(momentum representation) ihV, P

In coordinate representation, 7 = r is simply an ordinary vector whose com-
ponents are numbers; p = —ihV is a vector whose components are differential
operators with respect to x. In momentum representation, the situation is re-
versed: 7 =1ihV, is a vector whose components are differential operators with
respect to p, while p = p is an ordinary vector with numbers as components.

10.3 The Harmonic Oscillator in Momentum Space

Now we show that the solution of the one-dimensional quantum-mechanical
oscillator yields the same eigenvalues in momentum space as in configuration
space. To do this, we replace the Hamiltonian in x-space representation,

52
v P m s 2
H=—+4+—wx", 1
T2 (1)
by the Hamiltonian in its momentum-space representation (see the table in
Example 10.2):
P
2m

2
g m .29

The Schridinger equation Hy = Ev now reads

2 m 2
p 2 2a
—_— R -_— 3
( whaz)w_Ew, or 3)

2 2
14 m 5., 0
— — —wh"— —E =0. 4
(2m 29" g2 )‘!’ @

Example 10.2
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Example 10.3

We divide both sides of the equation by m?w? and get, after reordering

h? g2 g
2 E oo

\ " Imap?  2ma?  mia? )" ®
With the substitutions

E’=% and w’:;;—w, (6)
the differential equation (5) becomes

( RE ¥ om o, ., )N

k—%$+5w P —E)wzo. (7)

This equation takes the well-known form of the oscillator equation in configu-
ration space [see (7.4)]. Hence, all the conclusions reached in Chap. 7 can be
applied with the result that

1
E—hat (ntl) . @®)
\ “«/
By resubstituting E’ and o’ we get

E:hw(n—}—%) , &)

i.e. the same energy values as in our former calculation in configuration space
(see Chap. 7). Furthermore, the wave functions are of the same form in both
representations.

In the following we give the matrix representation (we shall also call it the matrix
form) of several operators. This will be useful in our later studies.
Matrix of the Coordinate Operator % in Configuration Space

We show that the matrix form of the coordinate X in x representation is given by
X =X 8(x—x) . (10.43)

Indeed, the laws of matrix multiplication give
o) = [ xewan= [ Xow-dumar=xued . (104
—00 —0
i.e. the matrix for X produces the right factor (eigenvalue) x’ in the equa-

tion ¢(x') = x’¥(x"). Hence, we call x,, = x'8(x —x’) the matrix form of the
coordinate x in x representation.
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Matrix of V(x) in Configuration Space

Let V(x) be an arbitrary function of the x coordinate. As above, we insert V,, =

V(x")8(x — x’) into the equation
P(x) = V(x)y(x)

and get

o) = J/ Vex¥(x)dx = J/ V(x")8(x — x")yr(x) dx

—0o0 —00

= V(xHyE) .

(10.45)

(10.46)

Obviously, (10.45) and (10.46) are identical. Hence, V,, = V(x")8(x — x’) is the

matrix form of the potential in coordinate (x) representation.

Matrix Form of the Momentum Operator in Configuration Space
(x Representation)

This matrix reads
- L 0,
Prx=1h—8(x"—x) .
ox
By way of proof, we insert it into

@(x) = pyr(x)

and get
o0 o0 8
o) = [ pespoar=in [ s —npimar

Partial integration yields
T ]
o(x') = Ih[8(< — )P () [TX ~ ik f B —x) () d .
—00
The first term vanishes again and so
o0
/ : / 0 0 /
p(x) = —ih | 8(x'—x)—y¥(x)dx = —ih_— (X)) ,
ax ax’
—00

which is the standard form of (10.48) and verifies our assumption.

(1047)

(10.48)

(10.49)

(10.50)

(10.51)
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10.3 The Eigenvalue Problem

An important and frequently em in quantum mech EiI‘LCS in-

An important and frequ
volves finding eigenvalues and eigenfunctions of a given operator A. If the
operator A is given in the representation of its eigenfunctions, the diagonal elem-
ents of the corresponding matrix Ay, are just its eigenvalues. Let us develop
methods for finding eigenvalues and eigenfunctions of the operator A if it is not
given in its eigenrepresentation.

The eigenfunctions 17, of A fulfil the equation

Ay, (x) = ay(x) (10.52)

We expand them in terms of functions ¢, which are not eigenfunctions of A:

Yalx) =) clgn(x) . (10.53)

The combination of (10.52) and (10.53) yields
AY don=a) iy, . (10.54)
After multiplying by ¢} and integrating, we have

> Ay = ac? (10.55)
e ' T A7

where the abbreviation Ay, means

Ay = / o Ag,dV . (10.56)

Let us now assume Agy, is given and the eigenvalues a and the eigenvectors {a 1
in (10.55) for the given matrix (Ag,) are to be computed. If we know both, the
eigenvalue problem is solved in any representatlon since with {c?}, we can con-
struct via (10.53) the eigenfunctions of A, i.e. ¥, (x), in x representation, too. To
find the ¢}, it is convenient to write (10.55) in the form

> (At — @)t =0 . (10.57)
n

Obviously (10.57) represents an infinite homogeneous system of equations for
the coefficients c. Such a system has a nontrivial solution if the determinant of
coefficients vanishes, i.e.

det(Ag, —ad,)=0. (10.58)



10.3 The Eigenvalue Problem

261

The problem is that, in general, this determinant is infinite. To solve (10.58), we
consider secular determinants of Nth degree:

Ajl—a  An 5 AN
Dy(@=| Az An—a |  Aw |=p. (10.59)
AN Ay AyN—a

=1
=}
g

This is a truncation ion (10.53) ata
e

for convergence by increasing the parameter N. Th
Nth degree and therefore yields N solutions for a. These solutions

the expans
i

[¢]
g.
=
2
© ¢
=
S
=
o~
x
p—
Ii
o
=
w2
o
e,

aV,a™, . alV (10.60)
are all real, because Dy (a) is the determinant of a Hermitian matrix (the operator
A is assumed to be Hermitian, as all operators in quantum mechanics associated
with observables should be).

Now we evaluate each eigenvalue g; for a sequence of increasing determi-
nants Dy and get a sequence of solutions:

a”a® ™M (10.61)

The convergence of this sequence can be explained physically. The matrix
elements Ag, measure the correlation between the states ¢ and ¢,. But in
the case n > k, this connection will be negligible (for example, highly excited
states hardly disturb the ground state). Then the Ay, usually get very small and
contribute only very little to the first roots of the secular determinant.

We insert each of the so-calculated a; into (10.57) and obtain the coefficients
cn(a;) and, with (10.53), the eigenfunctions

Yo = ) cn(@i)en(x) . (10.62)

When the spectra and matrices of the operators are continuous, we get an inte-
gral instead of a sum in (10.57) and this equation becomes a Fredholm integral
equation of the second kind:

/A(E/,E)C(E)dé =ac(£’) . (10.63)

We shall have to deal with such continuum problems later on in quantum elec-
trodynamics in the discussion of spontaneous vacuum decay. They also appear
in the decay of bound states into several continua. At this point we shall not deal
with them any further.
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10.4 Unitary Transformations

An operator A can be represented by matrices in several ways. Indeed, for any
complete set of wave functions v, (x), we can construct the corresponding rep-
resentation of the operator A [see (10.17)]). Now we consider the transformation
behaviour of these matrices when changing the representations.

An operator A may be given in a representation with a basis of functions
Y, (), which are the eigenfunctions of an operator L (.e. ill’n (r) = L,yra ().
Then,

A = f VO A dV (10.64)

is the L representation of the operator A. On the other hand, a representation of
A with eigenfunctions ¢, (r) of M [i.e. My, (r) = M, @(r)] is also possible:

I ~
Apy = f o) Apu(r)dv (10.65)

To distinguish between these representations, we use Latin indices for the L
representation and Greek indices for the M representation.

Now we want to determine the transformation matrix which connects (Ax,)
with (A,,). Therefore we expand the eigenfunctions of M in terms of eigenfunc-
tions of L:

Py = Z Snu¥n (10.66)

Multiplication by vy and integration yield

Fan
e
o
[#2)
N

N’

f1/r*m..dV=v‘Q,..,X...‘_ S
j rmYi “

Obviously the matrix element Sy, is the projection of Y, onto the state ¢y.
Replacing the M eigenfunctions (in 10.65) according to (10.66) leads to

AuvszS;,Lw:AZvawm dVZZS:MSm"fw:Awde ’

oo n,m

A= St AumSmy - (10.68)
nm

Now, using the elements of the adjoint matrix

(S, =St (10.69)



10.4 Unitary Transformations

263

gives the transformation rule between the matrices of A in the two representa-
tions:

(Au) =Y (5T n(Anm) (Smo) - (10.70)

or, denoting the matrices by capital letters only,
Ay =STA.S . (10.71)

The indices M and L refer to the various representations of A. The requirement
that the v, as well as the ¢, be orthonormal wave functions implies the unitarity
of S. This is shown in the following derivation:

By = [ GhondV = / DS S lndV = Sk Suvbun
v v m n n,m

Buv =D _ Sy Sy = (ST v (10.72)
m

i.e. the product of § and its adjoint matrix S is equal to the unit matrix:

ot o P .
S Y=1. (

,_‘
S
9
G

<

Unitarity also means the equivalence of the adjoint S* and the reciprocal matrix
S~1. We note that a unitary matrix is not necessarily Hermitian:

St=s5'+5. (10.74)

The physical meaning of the unitary transformation (10.66) is the conservation
of probability: if a particle is in a state ¢, with probability 1, it can be found with
the probability |S,,,|? in the states v,,. The set |S,1[%, ... , |Sunl?, .. . then gives
the probability distribution of the particle with respect to the states v,,. Therefore
it must hold that

4 fe2 10,4
n

D 1SunlP =) S Sun =1, (10.75)
n
i.e., according to (10.72), § is unitary.
An important and frequently used theorem is the invariance of the trace of
a matrix under unitary transformations. The trace of a matrix A is denoted by
trA and is defined as the sum of all diagonal elements. According to (10.68) and
(10.72), we calculate
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trAy = Z A,J,p, = ZZ S;;,LAnmSm;L ’
n

®w nm

_ N A [y (G
= /., AamPmurnp,

w.n,m
= E Anm (SS+)mn = __>_ Anm 5mn ,
n,m h,m
=3 Am=trAL (10.76)
n
Hoanoa tr A —trAd . Thingtha trarna nf o matriv donoag nat danand an tho nartirnlar
iviive, u ﬂM — sy, 411U LU Udadve Ul d llIduiA byuwd 1IuvL U\.‘Pbllu vl o l]al ivuiar
representation.

10.5 The S Matrix

The temporal evolution of a system can be described as a series of unitary trans-
formations. The operator of this time-evolution transformation will be denoted
by S; the corresponding matrix is the S matrix (scattering matrix). We now derive
the § operator and show some of its properties.

The operator in question has to transform a state at time ¢ = 0 into the state
at time ¢:

Y(r, ) = SOY(r,0) . (10.77)

If we insert y¥(r, ) into the time-dependent Schrodinger equation, we can
determine S, namely

(iha% - H) SOY(r,0) = (ihi—f — HS) Y(r,0)=0,
-

HS=0 . (10.78)

AC
oo

ih——
ot

In the case of H not being explicitly time dependent, the following solution
results:

$ = exp (—%Fn) . (10.79)
From (10.77), it follows that §(0) = 1. Therefore the integration constant in

(10.79) is set equal to 1. If we apply the operator $ to a function as in (10.77),
we expand the exponential function into a power series:

$ = exp (——%I:It) = % (——%Ht) . (10.80)

n
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We give special attention to the energy representation in which H is diagonal,
re. HY, = Ep¥, (x). With

Y@ 0) =) anu(r) (10.81)

n

we get the temporal evolution of ¥ (r, 0) by applying the operator S according to
(10.77). This gives

Y(r, 0) = 59(r, 0) = ) anSy

=Y Y (-5 0) v
n k !
=YY (~rE) v

k

SYU(r.0) =Y ay exp (-%Ent) Yn () . ) (10.82)

Obviously the well-known time dependence for stationary states follows. In the
energy representation, S is diagonal, as we can see from (10.82):

Sy = f ¥ Sy, dV = exp (-hiE,,z) Sun - (10.83)
Equation (10.80) shows, too, that S is a unitary operator:

A+: —L : ]+: (l 7+ = i & praed §—1

$ [exp ( - Ht) exp (-1 t) exp ( - Ht) 1. (10.84)

because H is Hermitian. We now expand the wave function ¥ (r, ) with respect
to the eigenfunctions ¢, of the operator L:

Y= bu(ea(r) . (10.85)

If we again describe the temporal evolution by $, accordin gto (10.77) we obtain

D bn@en(r) =Y Sba©)gn(r) - (10.86)
n n
Multiplication by ¢, and subsequent integration yield the matrix equation

bun(®) =) Sun(Dba(0) (10.87)

where S, = f o SA'(pn dV. Now let us consider the special case b, (0) = 1. Then
all other b,/ (0), n’ # n, are equal to zero because of normalization. This means
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that in the L representation, the particle at time # = 0 is completely in the state
@, (r). We can say that the system is prepared to be initially in state ¢, (r).
Consequently, (10.87) yields

b (t) = Sma(t) . (10.88)

This is an interesting result with a rather obvious physical interpretation.

The matrix element Sy, (f) then yields the amplitude with which the system
has passed over from state ¢, into the state @, atter time ¢. Or in other words,
the value

(n = m) = |Spa () (10.89)

gives us the transition probability from state ¢, into state ¢,, under the influence
of A. This relation will play an important role in our subsequent calculations of
transition probabilities of a quantum-mechanical system and in the calculation
of quantum-electrodynamic scattering processes (transitions from an ingoing to
an outgoing state).!

10.6 The Schrodinger Equation in Matrix Form

As an example of the formalism developed so far, we look at the solution of the
Schrodinger equation

ih— =Hvy | (10.90)

and use the energy representation for the wave function, i.e. the eigenrepresen-
tation of the not explicitly time-dependent Hamiltonian,

I:I'z[’n = Enyn . (10.91)

JRPRPIS

Expanding the wave funciion with respect to eigenfunctions
Y0 =Y aOya(n (10.92)
h
and inserting it into the Schrédinger equation (10.90) we get

day
LY PEACED IR AL (1093)

Multiplication by v, and integration yield

A (1)
ot

ik

= Epan(t) . (10.94)

I See Sect, 11.4.
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Only the fact that we have chosen the energy representation of H with Hy, =

E,.8mn is responsible for the differential equations for a,,(z) not being coupled.
The solution of (10.94) is:

i
am (1) = an(0) exp (—EE,,,Z) . (10.95)
The amplitudes of the stationary states are time dependent; the integration con-
stants result from the initial conditions. If we use a representation other than the
energy representation, then (10.99) below, in which we can see the coupling of

tha Aiffa 11
the ditferent aull_/]ut'uduo amd t hy the matrix elemeﬂt“ is valid.

Now, in a similar way, we want to calculate the temporal change of the mean
value of an operator L. The mean value is given by

- f wrivav . (10.96)

Inserting the expansion of the eigenfunctions (10.92) yields

iy= / S e OvE ML S a@u(0dv

= Za;',; (1) Lypntn (1) (10.97)

cording to definition (10.17) of the matrix element. Equation (10.97) gives the

mean value of the operator in matrix representation as a function of time. We take
the temporal derivation of the mean value and get

d(L)
L_Z rannan+Zam = an+2a L,,m . (10.98)

day,
h— = Hyra (10.99)
o Z nkOGk
k
This is the Schrédinger equation (10.90) in matrix representation;” it is valid in
any representation. In the energy representation (10.91), especially, it reduces to

2Hciscnbsrg [Z. Phys. 33, 879 (1925)] introduced matrix elements as the quantum-
mechanical analogue to the Fourier amplitudes of classical mechanics. Just as
a classical quantity is determined by its Fourier amplitude, the corresponding quantum-
mechanical quantity should be given by all these matrix elements. Heisenberg did
not initially use the expression “matrix element”; Born and Jordan first ascertained
[Z. Phys. 34, 858 (1925)] that the multiplication law for quantum-mechanical quan-
tities, given by Heisenberg, is identical to ordinary matrix multiplication. The entire
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the simple decoupled equatlons (10.94). If we insert (10.99) and the complex-
conjugated formula into d{L} /dt of (10 98), then we get

&Ly )
m.n.k
+ E > ayLynax Hux - (10.100)
m,nk

As the Hamiltonian is Hermitian, we have
Hy, = Hpn (10.101)

and with a change of the indices of the first and third terms [in the first term we
substitute (m, n, k) — (n, k, m)], we are able to summarize as follows:

dL) < oL 1 —
o mn * ‘r r . _r 2 SN 210 109
KT m: : i,y o an T T m{ - Gy fn \Limn flnk — LopkfImn )dk . (1U.1U2)

According to the rules of matrix multiplication and with the introduction of
operator products, a further simplification is possible, namely

d(L) JL
( Za ’”"ak+ Za (LA - AL pa . (10.103)

7
/
I

We combine the double sums and introduce the commutator [H, L] so that
L ILnk
—d = Z (—’" + —([H L1 )mk) (10.104)

results. Setting d(L L)/dt = (dL/d¢) and using (10.97), we get the matrix element
of the temporal change of the operator:

dL ) S S
(——) = —I—%[H, Ll - (10.105)
mn

dr at

We already deduced this result in Chap. 8, and used it to derive Ehrenfest’s
theorems; now we have it in matrix representation.

theory was further developed and became firmly established with the help of ma-
trix calculus [M. Born, W. Heisenberg, P. Jordan. Z. Phys. 35, 557 (1926)]. The papers
referred to here can be considered fundamental to the development of quantum
mechanics.
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10.7 The Schrodinger Representation

In our previous description of the dynamical evolution of a physical system
we used time-dependent state functions Y(r, t). The physical quantities, at least
the not explicitly time-dependent ones, are described by time-independent op-
erators. We call this type of description the Schridinger representation or
Schrodinger picture.

10.8 The Heisenberg Representation

In the Heisenberg representation (Heisenberg picture), the situation is reversed:
the wave functions are time independent and the dynamical evolution is de-
scribed by time-dependent operators.

The two representations are completely equivalent in describing a system;
they lead to the same expectation values, the same spectra, etc. The transition
from one representation to another one is given by a unitary time-dependent
transformation, as we will see below.

To explain the different types of representation (which are sometimes also
called “pictures”, i.e. Schridinger picture, Heisenberg picture etc.) we look at
a matrix element of an operator L:

For the wave function, we write in energy representation:

Ym(F, 1) = Y (F) exp (—;—Emr) . (10.107)

The time dependence of the stationary state is given by an exponential factor.
Inserting this into the integral (10.106) yields

Lon (1) = / W (F) exp (%Emt) Lr(r) exp (—%Enz) v
= / Yy (r) L exp (hi(Em — En)t) Ya(r)dv

Lon = [w,’:l(r)f,H(t)l/fn(r)dV . (10.108)

Of course, the matrix element has not changed during our manipulations. The
equations (10.106) and (10.108) differ only in that the time dependence is in one
case [(10.106)] in the wave function (r, £); in the other case [(10.108)] in the
operator Ly(f). The operator in the Heisenberg representation is thus

f— fy=1exp (%(Em —En))t. (10.109)
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This is true if the operator is not explicitly time dependent. In the general case we
can describe the transition from Schrodinger to Heisenberg picture by a unitary
transformation. With the operator

S=exp (—%ﬁt) (10.110)
we get
V) =5y (r, ) (10.111)

for the wave functions, and for the operators
Lu=5"0isSw , (10.112)

where the index H stands for Heisenberg and S for Schrddinger. A comparison
with (10.108) and (10.109) shows the validity of transformation (10.112) in the

10.9 The Interaction Representation

If we have a system whose Hamiltonian splits into an Hy part and into an
additional interaction V,

H=H+V, (10.113)

we describe it by the so-called interaction representation (or interaction picture).
In this description, both the state functions and the operators are time dependent.
1t follows from the unitary transformation

St =exp (%ﬁoz) (10.114)

in the Schridinger representation. Equation (10.114) is analogous to (10.110).
As with (10.111), we get the wave function with

>

~1
Yn(r, 1) =Sy ps(r, ) . (10.115

YO\ s

!

N

The operator in the interaction picture is obtained as
Lo =5"0LsSiw , (10.116)

which is analogous to (10.112).
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10.10 Biographical Notes

FREDHOLM, Erik Ivar, Swedish mathematician, *Stockholm 7.4.1866, {Morby
17.8.1927. His famous work on integral equations was published in 1903, where he es-
tablished the fundamentals of the modern theory of this topic. He was awarded with the
Wallmark prize of the Swedish Academy of Science and the French Academy’s prize.
He was appointed professor of theoretical physics in Stockholm in 1906.






11. Perturbation Theory

An exact solution of the Schridinger equation exists only for a few idealized
problems; normally it has to be solved using an approximation method. Pertur-
bation theory is applied to those cases in which the real system can be described
by a small change in an easily solvable, idealized system. The Hamiltonian of
the system is then of the form

H=Hy+ecW (1.1

where H and Hy do not differ very much from each other. Hj is called the Hamil-
tonian of the unperturbed system; the perturbation W (i.e. the adaptation to the
real system) has to be very small; and ¢ is a real parameter which allows the ex-
pansion of wave functions and energies into a power series in &. The parameter
¢ is also called the smallness (or perturbation) parameter.

In this form we can describe a great number of problems encountered in
atomic physics, in which the nucleus provides the strong central potential for
the electrons; further interactions of less strength are described by the pertur-
bation. Examples of these additional interactions are: the magnetic interaction
(spin—orbit coupling), the electrostatic repulsion of electrons and the influence of
external fields. For the present, we restrict ourselves to perturbations constant in

time and a Hamiltonian Hy, the spectrum of which is discrete and not degenerate.

11.1 Stationary Perturbation Theory

We assume that the Hamiltonian is split up according to (11.1), and that the
eigenvalues and eigenfunctions of the unperturbed Hamiltonian Hy are known:

72,0 — 50,0
n b n

N 7117
1Ly \11.4)

We are seeking the eigenvalues and eigenfunctions of the complete Hamiltonian
H,ie.

AvY = EY | (11.3)
(Ho+eW)¥ = E¥ . (11.4)
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™
H
o

—€¢0
\

T I

n=m n
Fig. 11.1. Effect of perturba-
tion: for £ #0 other states
Y0 are mixed with ampli-
tudes a, to the unperturbed
state 0. The latter is fully
retained for ¢ = 0. The states
in the vicinity of ¥ are
more strongly admixed than
those further away

The desired exact wave function ¥ is expanded in terms of the known solutions
wo of the unperturbed system:

W)= ani(r) . (11.5)
n

Inserting this into (11.4) and using (11.2) yields
Y an(E)—E+eW)yl =
n

Multiplication by ¥%* and subsequent integration gives

> anl(E] ~ E)opn +€Wina] =0 . (116)

n

We have used the fact that the eigenfunctions are orthonormal:

/ YIYIAV = S
The matrix element W, stands for

Wy = f yoWyldv | (11.7)
Equation (11.6) can be transformed into

am(Epy = E+&Wpm)+6 > ay Wy =0 . (11.6)

n#m

For ¢ = 0, we have only the idealized state, with a =land £ = EU so that,
according to (11.5), ¥ = 1/fm Now if & #0, thc wave function w1ll change
and other neighbouring states 0 with n # m will be admixed (see Fig. 11.1).

To calculate this, we use the fact that the perturbation is small. We expand
both the desired expansion coefficients a,, and the energy eigenvalues Ej in
powers of the perturbation parameter &:

am=a$)+ea,(,})+8zaf3)+... )
E=E,=FEV4+eEV 12>+ | (11.8)

The numbers in the brackets show us the degree of the approximation, e.g. a(z)
means that this coefficient is small in second order in £. We now insert the series
(11.8) into (11.6a) and order in powers of &:

(ES —E@)q©® 4 ¢ [(Wmm EMNa® +(ES — EOal) + > Wypa®

...... mr

n;ém B

+&2 | (Wyum — EM)alV + (EO — EDa® + 3" Wpal) — EOg®
n#Em

+&3..1+...=0. (11.9)
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From this formula we can determine the energy values and the expansion co-
efficients in the various orders of approximation, which we shall now study

systematically.

Oth Approximation

If we set & = 0, there is no perturbation and (11.9) yields

(EQ —EaD =0 . (11.10)
m runs over all levels,m = 1,2, 3, ... . Let us focus on the level m = k and look

for the change of its energy and wave function. Equation (11.10) then yields

EO—E0 | a® =5 . (11.11)

1st Approximation

Inserting these values into (11.9) and taking into consideration only terms up to
the first order in &, we have

(Ep — EQ)8mi +e[(wmm — EM)Spi + (ES — EDyal)

+ankan] =0. (11.12)
n#Em

The first term does not contribute at all because of the solution of the Oth approx-
imation. For m = k, we get the energy shift of the & level in a first approximation
as

ED =Wy . (11.13)

The admixture amplitudes for the other states follow from (11.12) for m # k:

Wik

020 D W —a and ol —
(bm—bk)am + Wux =0 and a,, —M

._A
—
=

p—a

, m#*k. (i1.

In the case of m = k, we obviously do not obtain a condition for the a,(,: )= , from
(11.12). Hence, we have to determine a,(cl) in a different manner, namely by
the normalization of the wave function . Indeed for ¥, we get, according to

(11.8), in first-order perturbation theory
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1/’=Zan1/f,9 :Z Z Sia;i) 1/[,9 = w,9+8 (a,(cl)w,?-f-zafll)wg)

n ‘i:O,l n#k
0 (.0 Wae g 11.15
=y +e|a wk+ZEO_EOwn : (11.15)
n#k k n

Since the v should also span an orthonormal system of wave functions, we get

(Wily) = 1= w”!w0>+( ufg!ga;_%g)+(mk<”1,/f0{z,/f0>

n Tk
+e (0 uflaPvl) = 1+ e@” +a") + 202 . a116)

Neglecting the term proportional to £> (because we are calculating up to first
order only), we have

0=e@ +a"") . (11.17)

As the wave function is determined only up to a phase factor, we can choose the

a,(,f ) to be real. Then, obviously, a,(cl) = Q results.

2nd Approximation

If we insert the values of the first approximation into (11.9) for m = k, only parts
of the coefficient of £? remain and for the energy it follows that

Win W,
E(z)zz kn Pnk (11.18)
n#k El?_' Eg

and analogously for the amplitudes with m # k,

Wkk ka Z Wonn Wik

7170 ~(0\2 N

a?® = _
m i) fat) 0 =0

. mon#k. (11.19)

Again, we do not obtain a condition for af,%) in the case m = k, so we have to use
the normalization condition of the wave function once more. This procedure can
be continued so that the perturbation effects can be determined in any degree of
approximation. According to (11.8) we got for the energy of state & in the 2nd
approximation

Win Wk

Eszl(()—l—EWkk—&‘z ce
ZEQ—EQ

n#£k

(11.20)

This contains the interesting result that, in first order, the correction of the energy
is simply the expectation value of the perturbation W, which is quite reason-
able. If k denotes the ground state of a system, EJ < EV, and the effect of



11.2 Degeneracy

a second-order approximation is always negative, regardless of the sign of the
perturbation, because

WiWin = |Win| > and ES—EJ >0

are always positive. This is an important fact, which we can use in many prob-
lems, particularly in those cases in which the first-order correction Wy vanishes
for one reason or another.

For the application of perturbation theory, we assumed the perturbation to be
smalil, i.e. the energy leveis and their differences are not changed significantly.
We can express this in the following way:

EWnn

-EP;——EQ <<1 for m;én . (11.21)

Since the energies EY and EJ are very close to each other for large quantum
numbers in the Coulomb field [see (9.43)], perturbation theory can only be ap-
plied to the case of strongly bound states. We have required during the derivation
of the perturbation formulas that the nature of the spectra not be changed qualita-
tively. The perturbed states v/, should continuously emerge from the unperturbed
states 1,0,50) if the perturbation W is turned on.

11 P Thaooan e axr
11l.4 pegeneraly

Now we shall briefly discuss the application of perturbation theory to a spec-
trum with degenerate states. Up to now we have talked about states without any
degeneracy. Indeed, for any energy E,E', we have assumed that only one definite
state 1//,? exists; in a system in which degeneracy occurs, this is no longer the case.
For a given level of energy Eg , a series of eigenfunctions ‘/’Sﬁ’ B=12,..., fx
might exist. (Here, g stands for one or more quantum numbers.) The energy
eigenvalues are independent of 8. Such a level is called f,,-fold degenerate.

If we go back to (11.6a), we will now have to write it in the following form:

amoe(Eg +eWname — E) +¢ Z anﬂWmomﬂ =0, (11.22)
nf#ma

where, according to (11.7), the matrix elements are given by
Wnanp = f Y WY dV (11.23)

The energy eigenvalue EY of the unperturbed state contains no additional index.
It is independent of o because of degeneracy; this is precisely the peculiarity of
degeneracy.
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If we look at the Oth approximation, we can see the effect of perturbation on
the degenerate state quite clearly. From (11.10), we get for the Oth approximation
for the ievel m =k

a(E)—E®) =0 . (11.24)
Obviously,

E“”:E,? and a,((?:a,?a;éo for a=1...f

and ag, =0 for m#£k.
The double sum over n and 8 reduces to a single sum over 8 for the Oth
approximation (because n = k only) and we get for the kth level

Ji
(E} + Whaka — E)afy +€ Y ayWiarp =0 . (11.25)
B#a

The index o runs from 1 to fj. Therefore (11.25) represents a system of Ji li-
near equations for the a,(cg). The determinant of the system is of dimension f;. It
has to vanish if the linear system of equations is to give nontrivial solutions a,?a,

i.e. solutions not equal to zero. Hence,

Yii— L& EWio - EWI f
eWn E0+eWy —E eWay,
Dk = =0
W1 E'+eWpnp—El  (11.26)

We have deleted the index k in the determinant because it always appears in
the same way. Equation (11.26) is called a secular equation. It is an equation
of degree fj for the determination of the energy E and it thus has in general
fi solutions Ey, for E. As the perturbation eW is small, the solutions are close
together. In general the degeneracy of a level is lifted under the influence of per-
turbation and the formerly fi-fold degenerate state splits up energetically into
fk close-lying states with energies Ex, o= 1,... , fi.

The appearance of a degeneracy can always be traced back to a symmetry of
the system. For example, the (2 + 1)-fold angular-momentum degeneracy of the
state of a particle in the central potential (see Exercise 7.2 and Chap. 9) is a result
of the spherical symmetry (isotropy of space) of the potential. If the symmetry
is broken by a perturbation (broken symmetry), the degenerate levels split into
a series of neighbouring levels. Such a perturbation may be caused by an addi-
tional weak interaction (e.g. spin—orbit coupling causes so-called fine-structure
splitting) or by applying an external field.
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The eigenfunctions ¢y, of the energies Ej, are special linear combinations
of the degenerate states glr,?ﬁ. The corresponding amplitudes aga 5 are obtained by
insertion of the solutions E = Ej, into (11.25), which can then be solved for aga.
The resulting eigenfunctions are then of the form

Jx
Pra =) AoV (11.27)
=1

Since we are now again dealing with nondegenerate levels, the further approxi-
mation can be obtained in perturbation theory as before.

EXAMPLE I

11.1 The Stark Effect

As an example of perturbation theory, we now calculate the level splitting of
a hydrogen atom in a homogeneous electric field. As we shall see, the effect of
the electric field on an atom is to split the spectral lines. This phenomenon was
experimentally shown by Stark in 1913.

Experiments showed that the effect of an electric field on hydrogen or other
atoms depends on the field strength; this is, of course, to be expected. But the
effect is different for hydrogen than for other atoms. The energy levels of hydro-
gen (e.g. the Balmer series) for weak fields split proportionally to the first power
of the field strength (the so-called linear Stark effect). The splitting of the energy
levels of all other atoms is proportional to the second power in the field strength
(quadratic Stark effect).

There was no explanation for the Stark! effect in classical theory; only quan-
tum mechanics indicated how to understand this phenomenon. We shall now
discuss the theory of the linear Stark effect in greater detail, restricting ourselves
to the second level (n = 2) of hydrogen.

The applied external electric field E (in the experiments it was 10%-
105V/cm) is much smaller than the inner atomic one, which is caused by the
nucleus and is of the order Epycl = e/ a(z) ~5x10° V/cm (ag is the radius of the
first Bohr orbit). To solve the problem we use perturbation theory of the degen-
erate case. The potential energy of the electron in the external electric field, V.
is treated as the perturbation.

The first level ¥r1(p in the hydrogen atom is not degenerate. Therefore, in the
simplest case, we start from the splitting of the second level. As we know, the

I A general discussion of symmetry problems in quantum mechanics can be found
in W. Greiner and B. Miiller: Quantum Mechanics — Symmetries, 2nd ed. (Springer,
Berlin, Heidelberg 1994)
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Example 11.1

hydrogen levels are n?-fold degenerate; i.e. four eigenfunctions belong to the en-
ergy E = Eg of the unperturbed hydrogen atom. These wave functions are (see
Table 9.1)
1 —r/2a
@1 =W = u e7/2a0 Yoo (2sstate) , (1a)
2a’
vV ““o

r/2a
/,_0 e /20 Yio (2p states) , (1b)

o

2 =¥10 =

2
/20 e 720y 4, (L)

@34 =W141 =
6a(3)

The four-fold degeneracy is lifted by the appearance of an electric field, Now
there is an additional potential energy for the electron in the homogeneous field
E because of the adjustment of the dipole moment er of the electron in the field.
If we arrange the electric field in the z direction, the potential energy will be given

by
4
V=—er-E=—¢z|E|=—¢|E|r ?ﬂYm . 2

Let Hy denote the Hamiltonian of the unperturbed system. The perturbed
Hamiltonian will then be

I:1=I:Io+f/.

We calculate the matrix elements of the perturbation according to (11.26) and
use the functions ¢, introduced in (1). The matrix elements are of the form

(o)
Vap = fgo;wﬁdv.
—Q

Most of the integrands are odd functions of the space coordinates; this can
immediately be seen upon insertion of the perturbation (2) and functions Do
of (1). After integration, only the matrix elements V5 and Vs turn out to be
nonvanishing. In this case,

Vi = V21

0
1—r/2 2 /4
= / —Me‘r/z"o(—elEl)r/—aoe_’/Z“DrYS‘OYmYlO ?’Tdv
—00
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0
=—e|E| [fl—r/?.an\ " e rian,3 gy [dglynﬂr,u )
J\ / U’1204 J 14101 \V, ¢/
0 0
Elag [
€|Lidg -
T /Q4dQ(1—Q/2)e ®x1=3e|E}ag . (3)
0

Here, we have used the fact that Yo = (47)~1/2. Because of the degeneracy of
the system, the general solution of the Hamiltonian to the energy eigenvalue EJ

eigenvalue E7
is given by a linear combination of the functions ¢q:

4
o= dugn )
a=1

To determine the coefficients ay, we use the system of equations (11.25), which
in this case reads

4
(Eg-l— Voo —E)aa—t-z agVap = 0,

B#a
a=1,2,3,4. (5)

Since all matrix elements vanish except for V|, and V5, the system reduces to
four equations, namely

(Ey— E)ai + Vizaa =0, (6a)
Vara1 +(ES — E)az =0, (6b)
(Eg—E)a3 =0, (6¢)
(Ey—E)as =0 . (6d)

To get a nontrivial solution the coelficient determinant has to vanish, i.e.

ES—E Vi 0 0
Vi ES-E 0 0 \ .
0 0 E-E o |
0 0 0 EY-E

From this we easily obtain the four values for the energies of the perturbed levels,
which are, as we know, solutions of this determinant. The result is

E,=Ey=E), E.=ES+Vip, Es=E—Vp. )

Example 11.1
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Example 11.1

The four degenerate hy-
drogen levels belonging to
the main quantum number
n =2, split up by the Stark
effect into three levels. The
medium energy, which cor-
responds to the unperturbed
energy E9, is still twice
degenerate

Obviously, the superposition of the homogeneous field did not completely can-
cel degeneracy. This can be explained by the fact that we now have cylindrical
symmetry instead of the spherical symmetry from before. In other words, no
complete cancellation of symmetry occurs. The resulting splitting is shown in
the following figure.

Energy |

5 é&s““w'

—i

Field Strength | E)|

The linear level splitting by the electric field appears only in hydrogen. It
results from the linearity of Vj, in E [see (3)] and because of (7).

There is no [ degeneracy in many-electron systems; therefore, no average
dipole moment exists, but the atom is polarized by the external field. The
so-induced dipole moment is proportional to the field strength; therefore the en-
ergies of the atom change with |E|. This phenomenon is called the quadratic
Stark effect. To get the wave functions (4) corresponding to the energy values
(7), we insert the energies into the system (6):

For E,=Ep= Eg , itfollowsthata; =a; =0, azandas arbitrary .

For E(:Eg—f— Viz, itfollowsthatay=a; , a3=a4=0 .
For Ed:Eg—Vu, wegetay=—ay, az=as4=0.

With the applied field |E| we thus obtain the following wave functions:

for E=E): Wy =ass+asps=aspo, +as¥y—y,
with a§+a§ =1,

L
for E:Eg+ Viz: ¥n=—(p1+¢)

/2

1
= E(Wzoo +v210) ,

L
for E=E9—Vpy: =—@—¢)
Vv

1
= — — . 8
ﬁ(ilfzoo ¥210) (8)

It is easy to show that the matrix, built by the functions ¥4 iy i1v, is diagonal.
The Stark effect with n = 2 is qualitatively interpreted in the following way.
As the motion of the characteristic wave function of the electron is not spheri-
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cally symmetric (because of the degeneracy of the 2s and 2p states), the atom has
an electric dipole moment p. For this reason, an atom in the electric field

E=(E,=0,E,=0, E;=F)
gains the additional energy
V=—(p E)=—|plEcosy , )

where y is the angle between the direction of the electric dipole of the atom and
the z direction.

If we compare this expression with (3) and (7), we see that the electric dipole
moment of the atom is |p| = 3age, where the solution ¥; corresponds to ¥y =0,
but ¥ corresponds to y = . For the third and fourth solutions we then have
y = 5. The latter result is due to an electric dipole moment which is perpen-
dicular to the electric field; for this reason, no additional energy is produced. In
other words, the linear Stark effect in a hydrogen atom with n = 2 is caused by
the characteristic electric dipole momentum p.

The results of these calculations, obtained by the use of quantum mechan-
ics, agree with the experiments only for weak fields (E ~ 10> V/cm). For strong
fields (E > 10* V/cm), additional splitting occurs (the quadratic Stark effect),
caused by the fact that the degeneracy in the angular-momentum quantum num-
ber is broken. The Stark effect vanishes totally if the field strength is greater than
10° V/cm. This phenomenon is connected with the self-ionization of atoms in
the electric field: electrons in an excited level lose their binding to the atom if
strong homogeneous electric fields are superposed.

EXERCISE N

11.2 Comparison of a Result of Perturbation Theory
with an Exact Result

Consider a hydrogen-like atom with a central nuclear charge number Z, contain-
ing one ls electron.

Problem. Calculate the change in energy by increasing the charge of the nucleus
by one (Z — Z +1). Use first-order perturbation theory and compare this with
the exact result.

Solution. The wave function for the first electron reads

I 55 _ me
V= =y e y=57. (0
The unperturbed energy is
4
E\(Z)=-"57% . @)

2h2

Example 11.1
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Exercise 11.2

In first-order perturbation theory, the energy change is given by

Su}

AE, = (¥ AH |y)

AN
oy, (3)

i.e. by the expectation value of the perturbation operator AH. In our case, we

have

~ 62
AH=AV=-". @)
r

This yields

[o.0)
1 3 2.2 ¢
AE13=;y 4 | drree " -

0\8 <

=493 | drre " = —4y32
Y Y 4)/2
) me4
= —ye = ——ﬁZ . (5)

In comparison with this, the exact result is

met 2 2
Es(Z+1) - E(2) =——2h2[(2+1) —Z7]
met ([ 1\
:_—h,2 kZ+E) . 6)

The first-order perturbation theory approximation is obviously quite good for
large Z, as would be expected.

EXERCISE I

11.3 Two-State Level Crossing

Let the Hamiltonian Hy have two closely neighbouring levels with energies
E 20) = Eg)) and eigenfunctions 1//1(0), éo). Let all other eigenvalues be very dif-
ferent from them, so that the two levels can be considered as rather isolated

energetically.
Problem. Investigate the Hamiltonian
H= ﬁo +V and

(a) show by use of perturbation theory that on the one hand, only these levels
contribute to the correction of the energy eigenvalues and, on the other hand, that
one cannot use perturbation theory any longer. What must W? and 1//3 be like?
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(b) Show that perturbation theory can be improved by diagonalizing the two- Exercise 11.3
level problem, which gives

1 1
E1p=5(Hu +H22)i§\/(H11 — H»)2+4|Hp;2|?
with

0y 1., (O
H,,-:/]p[.( " Ay ©dx

(c) Plot E| » as a function of AH = Hy; — Hyy. What does AE = E|— E)
look like if, in the first approximation, a level crossing occurs, i.e. if the potential
V is such that Hy; = Hxp?

Solution. (a) The first correction of the energy eigenvalues is
Efl) = E,@ +Vi=H; , (1)
and, in second order,

EP = Hy= Y |vy|? [P~ E®) . @
J#i

For the two levels we have £ ? ~ E g, i.e. the denominator is going to be small and
we can neglect all other terms if V;; # 0 (this means that for a radially symmetric
potential, the wave functions yr; and v, must have the same angular-momentum
quantum numbers). In this case we can neglect all states except 1 and 2. Nev-
ertheless, because of the small energy denominators in (2) certain terms in all
orders of perturbation theory are going to be very large and perturbation theory
loses its meaning.
(b) Let the eigenfunctions of Hy be 1//?, 1//3 with

5 (O 0, O .
Ay =E%? | i=1,2. 3)

We diagonalize the total Hamiltonian H = Hy+ V within this two-state basis,
i.e. we search for

Ay =(Ho+ V)Y =Ey , @
with

Y 1 (0) 4, (0) rEN

vV =ay oy, . )

Multiplying from the left by l/f?* and y¥*, and integrating over x, we get the
following system of linear equations for a and b:

(Hijj—E)a+Vizb=0,
Woia+ (Hypp— E)b =0 , (©)
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Exercise 11.3

which has a solution (a, b) # (0, 0) if
1—E V2

Va1 Hy —
= E*— (Hi1 + H)E+ Hyj1 Hyp — [Vig| 2 = 0

(H, \ ,
detk E) = (Hy— E)(H» — E) — | V2]

or

Ejp= %(Hu +Hp)+ %\/(Hn — Hx»)?+4|Via|?
is valid. If we can use ordinary perturbation theory, i.e. if
|E§O) _Egﬂ)| > |Viz2|  and
’Ei‘” - Eéo)’ > Vo2 — Vi1
is valid, we get from (8) the energies,

0 0
E =E! )+Vif:l:lV12|2/(Ei(O)_E5' )

This is exactly the result of second-order perturbation theory.
(¢) Let us abbreviate

A=H) —Hy ;

then

1 1
E1p=Hn —EA:!:E\/ A2 +4|Vip|? .

(7

®)

®

(10)

an

The shortest distance between the energy eigenvalues is 2| Vi, i.e. the level
crossing is prevented by the interaction. This is related to the so-called Landau—
Zener effect, which we shall not discuss here. It should only be mentioned that
the Landau—Zener effect deals with the question of the transfer of a particle
(e.g. an electron) occupying one of the two crossing levels. As we might intu-
itively imagine, the particle transfer to the other crossing state depends on how
close the two levels come to each other and also on the velocity with which the
level crossing is passed. Inserting the energies E; 7 of (8) into (6), the new states

can be easily calculated:
0 0
vi=ayy +biyy)

1 |
=V12\0f0)‘(+—A—§ A2+4|V12|2) 2

2
Y2 = a4+ b vy

1 1
= Vioyy” - (+5A+ 3 A2 44|V, 2) s

(12)
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with the interesting result that the wave functions are intermixed strongly at
the level crossing, but are practically unperturbed far away from the crossing
point (large |A|). Moreover, ¢fA) approaches 1/,50) far to the left of the crossing
point (large negative A) and it approaches wfm far to the right of the crossing
point (large positive A). For lﬁéA) the situation is reversed. This fact can be ex-
pressed as follows: the unperturbed wave functions do indeed cross and remain
unchanged except for in the immediate vicinity of the crossing point. The en-
ergies EEA) and EEA) also change from one unperturbed value E g()) and E (0),

recnectively to the other one ie F'(O) and F'(O) resnectivelv. The gitnation is
respectively, to the other one, 1.€. £, " and &, 7, respecively. 1he situation 1s
illustrated in the figure below.
Yy v
o
=
Hyp 2 ~~" Hy
S~ -7
$ \\;k// +
el Ny 4 —
- '\\
//’ E s
X
¥ U

As an example of level crossing, we look at the electronic energy levels in a
two-centered potential which is caused by two lead nuclei with a distance R be-
tween the two centres. This potential is no longer radially symmetric; it merely
still has azimuthal symmetry, i.e. 7, is still a good guantum number. Further-
more, the Hamiltonian commutes with the parity operator. The solutions, shown
below, were obtained not with the Schrodinger equation, but with the relativistic
Dirac equation, but this is of no importance here. If we start from an Hy which
belongs to a two-centre distance R and passes over to R+ AR, the potential
changes by

AV=V(R+AR;r)—V(R; 1) ,

1
+ .
|r+§ez|)

This perturbation does not change the azimuthal and parity symmetries. The ma-
trix elements V|, vanish if the states have different parity or different magnetic
quantum numbers; otherwise, they are in general different from zero.

Now we can understand the figure shown in the margin.2 (We shall not ex-
plain all symbols exactly.) As we can see, the 3so state crosses the 3ds ;7 state
at R ~ 650 fm. This is possible because V;; = 0 (different s quantum numbers,
which are called here o(m =0) or 7(m = 1)). On the other hand, the 3so and
the 3ds >0 states repel each other. These states have the same m quantum num-

V(R;r) =Ze ( (13)

R
|r — 5e;|

2Figure appeared in G. Soff, W. Greiner, W. Betz, B. Miiller: Phys. Rev. A 20, 169
(1979).

Exercise 11.3

Level crossing: energy lev-
els Eq, Ep, dependent on
the unperturbed system. The
values of Hy; and Hy are
indicated by dashed lines
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[kev)

Pb +Pb

— O-state
---- T-state

00"
R[fm]
Example of level crossings
in an electronic superheavy
quasimolecule, as it is found
in a heavy-ion collision of
lead on lead. These cross-
ings play an impoitant role
in the ionization process oc-
curring during such atom-

800

500

700

ber and the same parity. The 3 p3,20 and the 3d3 /20 states are able to cross each
other, because they differ in parity (— V;; = 0) while agreeing in the m quantum
number.

EXERCISE I

11.4 Harmonic Perturbation of a Harmonic Oscillator

Consider the harmonic oscillator Hamiltonian
R2 9 Co ,

H=H+W By=—t 2 420
o+ Wowith Hy=-2"25+5

and let W = C1x?/2 be an oscillator perturbation potential.

Problem. Calculate, using perturbation theory, the energy eigenvalues and
compare them with the exact result.

Solution. In this case, the stationary solutions of the Schrédinger equation with
the Hamiltonians Ho and H are known, namely those of the harmonic oscillator.
The exact eigenvalues of H are

Co+Cy
w=\—
m

E,=ho(n+73) , (D
and those of FIO are
/C
Eg = hwy(n + %) , W= =0 . 2)
m

Nevertheless, we want to calculate the eigenvalues of H approximately by
perturbation theory to test its effectiveness. It was shown in (11.20) that in

cond-order nerturbation

SU 1 poiidioauiil

Win Wi
E = E0+W + _ 3)
/ i ; E0_ E9 (
with
Win = (1 | W] ¢) = W, =<¢z!—2‘x2}¢n> . @

To calculate W),,, we need some of the relations already determined in Chap. 7,
and again introduce the coordinate

£=+ix= %x
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The basis functions are [see (7.52)]

(mawo/R)V* s
On = me S, &)

where H,(§) are the Hermitian polynomials. The v, are the eigenfunctions
of Hy. Then

fng, . o+l

§dn = y2P-1ty 3 bnt1 -

We need, however,

E ¢n [&% 1‘|"\/ S¢n+l

_~~
=)
~

— ‘-/ | ;s | l\ ] 1 PO I N
—vin ) Tt T 3) n-rzv\n—ru\

o3

~~
~—

With this we can calculate

Win = <¢/ ¢n> (¢1 62| ¢)
Cl \/m&,. 7+(n+ \5114
2 ma)o

“1 ¥2

43/ Do 2)3l,n+2] (®)
So we get for the energy of the ground state (I = 0)

Wao W,
E=E) j+Wp+Y 270

L 0 [ (9)
n=1 E/Z()_E"

As all Wy, = 0 except for n = 2, it follows that

C1/2)x%|$2) 2
—Ehwo+(¢o‘(C1/2)x2'¢o>+ [{Pol(C1/2)x" |2}

0 0
El 0 En:2
1 Ci ko1 A(CHHR ImPad)(1/2)
=g +——5+
2 2 mawy 2

(10)

because Cy = mw?

289

Exercise 11.4
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Exercise 11.4 In fact it is possible to take into consideration all orders of perturbation
theory. The result will be

1 1, 1 [\
E=—hwy|14+=— ——— =
2 “"’[ 2 Co 2x4(C0)

1x3 [CI\> 1x3x5 [C 41
+2x4x6 Co 2x4x6x8 \Coh

Ilﬁw() 1+Q

277 0

1 Co G 1 Co+Cy 1
=-hy— [1+=—=-h/—=-hw . 11
2 m +C0 2 m 2 @ an

With this we have found the exact result in perturbation theory of infinite order. It
is also clear that second-order perturbation theory (10) yields a correction for the
unperturbed oscillator towards the exact result for the modified oscillator (11).

EXERCISE

11.5 Harmonic Oscillator with Linear Perturbation

Consider the harmonic-oscillator Hamiltonian

h* 3 C
Rt Coo
2mox2 2
with W = Cpax as the perturbation potential.

ﬁ=1§0+W with 1:1()2—

Problem. Calculate, using perturbation theory, the energy eigenvalues and
compare them with the exact result.

R? 9 Co
AV 7(x2+2ax)1// =Ey . (1
We define y = x + a and transform to
h? 9 Co
AVt O e =Ey @
or
R Co , ,
—Ea—vﬂ/f 7)’ v=E%Y;
C
E’:E+70a2 3)
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Equation (3) is the ordinary oscillator equation with the known eigenvalues
E), :hwo(n+%) , n=0,1,...

C

or

s Cn A
E, =ha)0(n+%)—7"a‘ ) )

Now we try to find this result by perturbation theory. In order to do so, we again
need the matrix elements

h
Win = (1 |Coax| dp) = Coa, | —— (pr [§| n)
 mawq

a)()z‘/ﬁ. . (6)
m

For the energy of the ground state (/ = 0), we get, using

Won = oa\/ —— {¢0 1&] Pn)
M,

h n fn+1
= Coa,| — \/j(SO,n—l +4/——8on+1} , N
mawy 2 2

the equations

h 1
Woo =0, W =Coa,/—— /7 ;
mawg V 2

Won =0 for n#0,1. ®
\ \ | L
\ | /
AN
\ oA/ y
\ /
AN l
<1 X
N ol
-C
= Q
2

Exercise 11.5

The superposition of an 0s-
cillator potential with a lin-
ear potential yields a shift of
the original oscillator; other-
wise everything remains the
same. The dashed lines re-
fer to the shifted coordinate
system
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Exercise 11.5

This yields
G mon}
Ey— —ﬁwo +0+ 1———— +
2 shwy — ha)o3
1 Cia :
= —hwy— 5
2 2mawj
1 Co
= —hwy— —a? . 9
2 2 ©)
This agrees with the exact result above. Therefore we can conclude that for the

ground state the higher orders of perturbation theory have to vanish identically.

11.3 The Ritz Variational Method

It is possible to determine the ground state without the explicit solution of the
Schrédinger equation by requiring that its energy be the lowest of all possible
energies for all possible wave functions. To understand this, we consider an ar-
bitrary Hamiltonian H and demand that its spectrum have a lower limit. This
means that it has a lowest, nondegenerate energy eigenvalue:

HYy=Eu¥n ; (n=0,1,...) ; (11.28)
E.>Ey; (n#0). (11.29)

We can expand any arbitrary normalized wave function ¥ into eigenfunctions of
H and get

= anvn . Y lal’=1. (11.30)
n n

Then the mean energy of V is

<¢‘H|¢) <¢’n H|‘/’m>am —Za:amEnsnm

=ZEnlan|ZonZ\an|2=Eo. (11.31)
n n

This obviously means that every other state v, which differs from the true ground
state g, has a higher energy than 4. This result can also be written in the form

_ | WAl
Eg_ggg l:——ij) ] . (11.32)
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Here, Y € H indicates that ¥ is an element of the Hilbert space H. i need
not even be normalized in this equation. Finding the energy of the ground state
has therefore become a variational problem. That the expression in brackets
(in 11.32) is stationary we know from variational calculus to be a necessary
condition for the extremum (minimum):

(WIHIY)
S(Ey)=86——""1_0 . (11.33)
VT )
With the well-known ruie for differentiating the ratio of two funciions, it follows
that
GWIHIYY) () — (PIHIY)G (YY)

=0, 11.34)
(yly)? (

where it is sufficient that the numerator vanishes. As v is a complex function, we
can look at ¢ and y* as two independent functions. As in the case of Hamilton’s
principle in mechanics, we find

8 S i
Sw*(x)/d XY (HY) = Hy(x) (11.35a)
8 3 *0
5y () / Ex YTy =yx) . (11.35b)

1 71

We ihen get, with (11.34), an eigenvaiue equation for

(W1¥) Ay () — (| A|¢)p(x) =0 or

. H
Hy(x) = %tﬂx} = Eyv(x) , (11.36)

which is exactly the Schrodinger equation.

The variational principle (11.33), known as Ritz’s variational method, is
therefore equivalent to the Schrodinger formalism of quantum mechanics (for
stationary states). Under the additional condition that £y, be the absolute mini-
mum, we then get (11.32) and thus the ground state energy.

Ritz’s method is used for many practical purposes; we proceed in the fol-
lowing way. The (test) wave function y(x, o1, ... , ;) is made to depend on
the real parameters «;; we then search according to (11.33) for the minimum of
Ey(ar, ... o)

?
—(Ey(a1, ... .cy))=0. (11.37)

In this way, we get an upper approximation for the energy in the ground state.
It is also possible to use Ritz’s variational method for the lowest energy states
of a special kind; for example, for the lowest state with angular momentum ! = 0,
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= 1 I =2 etc. We then find the lowest energy states for / =0 or [ = 1, or for
I'=2, etc. The test wave functions have to be of the same special kind, i.e. they
have to be angular-momenium functions for/ = 0,7 =1, ori = 2 etc.

It is also possible to determine the second lowest state of the same kind of
states if we demand that it be orthogonal to the lowest state. A great number of
extensions are possible.

EXAMPLE I

11.6 Application of the Ritz Variational Method:
The Harmonic Oscillator

We are searching for the ground state of a particle in the oscillator potential

Vix) = %mw2x2 . (D)

o) = Aexp(—% 2) , @)

with A and A as free parameters. A describes, of course, the normalization of the
wave function and is therefore trivial. The interesting parameter is A. We get

. ( h? ¥ A2
Hlp)=|—-———+ ma)x)Aexp(——x)

2m ox?
h2 1 A2
=A [%(AQ 2+ Ema)2 2] exp (—Exz) 3)

and consequently

(Azx/” 4«/n)+1mw2~/_ﬁ]
2

2m \" A 223 243
Alm (R 1
=53 (——2 +§mw ) 4
and
—
7T
(plp) = A2X— . ®)
The energy as a function of A is given by
(plHlg) 1 (A% ma?
E(\ —t+— . 6
W)= {(ple) T 2m + 2 ©
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Hence, the Ritz procedure leads to

0E _ h’h  mo?

= - 7
oA 2m 223 0, @
and thus
2.2
m-w 2 mw
M= g A= ®)

Therefore the ground state energy is

R2A2 ma?

Eo(h) = ——2 4+ —

0(ho) 4m 4)%

wh ho 1

=—+—=-hw. 9
R 5he )]
We see that in this special case, by using the variational method, we get ex-
actly the ground state (see Chap. 7). The ground state wave function is then

determined by inserting A¢ from (8) into (2).

One of the main tasks of quantum mechanics is the calculation of transition prob-
abilities from one state v, to another state v, . This occurs under the influence of
a time-dependent perturbation V(r, £), which, so to say, “shakes” the system and
so causes the transition. The question of the transition of a system from one state
to another generally only makes sense if the cause of the transition, i.e. V(r, 1),
acts only within a finite time period, say from ¢ =0 to ¢ = T. Except for this timc
period, the total energy is a constant of motion, which can be measured.

The change of the wave function while V(r,f) is acting is given by
a Schrodinger equation. The solution of this equation, however, generally leads
to great difficulties. General predictions can only be made if the transition is
caused by weak influences, i.e. weak potentials V(r, r). These influences can be
interpreted as perturbations.

If perturbations are already taken into account in the Schrédinger equation,
it takes the following form

ihaa—'f = Ho("\y + V(r, Dy . (11.38)

Here, I-Alo(r) is the operator for the total energy of the system without pertur-
bation; the index O stands for the time independence. V(r, 1) is the perturbation
(perturbation potential).

295

Example 11.6



296

I1. Perturbation Theory

V(r, t)T
/10N

0 T t

Fig. 11.2. General form of
a perturbation in the time
period 0 < ¢ < T. Such a per-
turbation can be caused,
for example, by an exter-
nai field, which is switched
on during this period, or
by a particle that is passing
by. In the latter case, T is
a measure of the collision
(interaction) time

For the calculation of the transition probability W,,,(f) from the energy
level E,, to the energy level E,, of the unperturbed system [described by Hy Nl
it is advisable to use the E representation (energy representation). But first we
look for eigenvalues of the unperturbed problem, i.c.

ih% = Ho(")Vr . (11.39)

If the stationary part of the normalized wave function satisfies the equation
Hy(r)yu(r) = Exu(r) , (11.40)

then the time-dependent functions

Yilr. ) = yi(r) exp (== Eut) (11.41)

are the solutions of the unperturbed system. They form a complete set of func-
tions and the solution of the main problem (11.38) can be expanded in terms of
these functions, i.e.

Y0 =Y a0yirrep (-2 Eu) = Y awie,n . (1142)
k

k

Inserting this into the original equation (11.38) leads to
ihZ%V; +Zaiha—v}k=2a1{11ﬁ +> aVy (11.43)
a M= koW KV Yk -
k k k k
or, because iA Btﬁk/at = ﬁm/}k,

day - -
ih Y = =3 a®OVir, 1) . (11.44)
e k

After multiplication by v (r, £) this becomes
. day i
i Zk: v viexp [—E(Ek - Em)t]
A RN r i/.-. o1 o
= ) ax()y,, Vg exp [—E(bk—bm)tJ . (11.45)
k

Considering the normalization of the wave functions ¥ and the abbreviations

Ek_Em

, 11.46
5 ( )

Vi (1) = / Ex v and  wp, =
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after integration over dV, (11.45) leads to

. dak . .
in Z Fcs,,,k glomkt — Z ax (1) Vi () €2mk! (11.47)
k k

With w,,,, =0, we finally get

dam

ik
T

Zak(t) Vi (1) €194 (11.48)
k

The frequencies w;,; are sometimes called Bohr frequencies for the transition
E,, — E;.

We assume that at the beginning (i.e. before the perturbation sets in), the
system is in the state E,. So we have fort =0

¥, 0) = 3 a0 (r, 0) = Yiu (r, 0) = u(r) . (11.49)
k

This just means that
a,(0)=1 and a(0)=0 for k#n, (11.50)

and already suggests the interpretation of the ay (¢).
To understand this even better, let us first look at the normalization of yr(r, £).
We find

1= /‘d?’_): W (r. D (r. O
F A CERV A A CERY/

=Y ai (a0 exp | 7 (Ex — Exi f Ex v (v ()
k&'

=) af(Day (e oy
kK

=Y laxl*. (11.51)
k

The expansion coefficients ax(f) must obviously satisfy the normalization con-
dition for all times ¢, especially in the interval of the perturbation (0 <t < T).

Now we want to discuss the meaning of the ai (¢). At time ¢ we can write the
wave function (r, ) as

V= @y exp (—%Ekt) . (11.52)
k

The matrix element

Z ar (O (r) exp (—% Ekt) >

k

= am (1) exp (—% Emt) (11.53)

(m(DY(r, 1) = <‘/’m ()
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describes the overlap between the time-dependent wave function v(r, 1) and the
stationary wave function 1, (r). The probability of finding the state 1, (r) in
Y(r, 1) at the time 7 with the energy £, is given, as is well known, by the square
of this term, i.e. by

[ Wm DIV, D) 1P = lan()]? . (11.54)

Since, according to the initial conditions [see (11.50)], at t = 0, ap, (t = 0) = 8,
holds and since, in general, a,, (f) # 0 (for all m) for ¢ > 0, it is evident that
the quantities |ay (I)I2 give the probability of finding the system at time ¢ in the
state . with the energy Ey. Taking the initial conditions into account, |a,, (1) is
the probability for the transition from the state ¢, to ¢,, in the period from ¢ = 0
toT:

Wonn (£) = lam (1> . (11.55)

Now it is our task to calculate the amplitudes ay, (t) from the coupled differen-
tial equations (11.48) and the initial conditions (11.50). So far, the problem is
clearly and exactly formulated The solution, however, can in general only be
obtained approximately and successively. We consider the fact that V (r, £) rep-
resents a small perturbation; in the absence of perturbation, the system remains
unchanged in its initial state. Thus in zeroth order we can make the following

approximation, considering only small perturbations:
PRIOET (11.56)

which means that we start the zero-order solution with the initial conditions
(11.50). This approximation is used to calculate the next best approximation,
as we insert this solution into the right-hand side of the differential equations
(11.48) (successive approximation):

(1)
h ,:11 — Z a(o) (t) mG (t) elwmkt an (f) elwmnt ) (1 1 57)
k

This procedure can be continued until we reach the precision desired or neces-
sary. In general, the iteration procedure for the differential equations (11.48) can
be formulated as

da(t+1)

_Z Dy (f) eemit (11.58)

We restrict ourselves to first-order approximation and find, after integration, that

t

/ Vi () €727 AT + 8 (11.59)
0

1
Wy (1) =
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Now the qualities of the perturbation, mentioned above, are used. Thus we as-
sume that V(r,f) =0fort < 0and t > T. Further, we suppose that V,...(f) is so

small that the first-order approximation holds even for = T. Then we get for
t>T

T
1 ,
a,(nl)(t) =% / Vinn (1) €' T dt

1
1

=5 V(D) e ™dr | m #n . (11.60)
i

\>8 ©

8

This means that, in particular, a,(,z ) () is constant in time for ¢t > T. It becomes
a constant of motion for t > T. The perturbation has ceased and the system has
settled into a new state.

Let us now study the meaning of a,(,,1 ) (1) in greater detail. For that purpose we
note that the perturbation can be expanded in a Fourier series:

oc
Vir, t) = / V(r, w)e “'dw . (11.61)

—Q

According to the theorem of Fourier integrals, the Fourier component V(r, w) is
then

X
1 .
V)= / V(r, e dr . (11.62)
—0oC

For the matrix element (11.46) we then find

Vo) = [ x93V, 090

_ f =i oy / Ex Y (O, o)W (r) |

—0oC

o0

= f eV, (w)do | (11.63)

—0oC

where Vi, (w) is now the matrix element of the Fourier transform V(r, )
because, according to the Fourier theorem and in analogy to equation (11.62),

9}

1 .
Vin (@) = - / V() €' dt . (11.64)

-0

299
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V(rt)]

0 T

Fig. 11.3. Perturbation con-

stant in time over the period
0<t<T

Comparing this with the expression for a,(,,l ) (#) (11.60), we find the relation

ar(r:)(t) = Evmn(wmn) . (11.65)

Thus we obtain for the transition probability

47 9
Winn (£) = ?' Vian(@mn)|” 5 t2T . (11.66)

Hence, for times ¢ > T, the transition probability W,,, is constant and — as we
see — is only nonzero if Vi, (wm,) # 0, too. This means the transition from
the state 1, (level E,) to the state v, (level E,,) is only possible if the fre-
quency wmp = (Em — Ey)/h is contained in the perturbation spectrum, i.e. in the
Fourier spectrum V;,, (@) of the perturbation [see (11.63)]. Thus the transition
exhibits resonance behaviour.

Obviously, we have the same situation as with a system of oscillators with
eigenfrequencies which are equal to the Bohr frequencies wpy,. If an external
perturbation occurs that varies in time, then only those oscillators are stimulated
which have an eigenfrequency that is included in the Fourier spectrum of the
perturbation.

11.5 Time-Independent Perturbation

If

[ =V(r) for 0<t<T
VAr, f) (11.67)

=0 otherwise

i.e. if the perturbation is not time dependent while acting in the period 0 < < T

(see Fig. 11.3), then the integrals can be easily evaluated, and we find from
(11.50) that
(11.59) that

2
t
1 .
Won () = 10D P = =5 Vi f dreomt| | (11.68)
0
—_—
f(ta wmn)
with
. 4 2
ftw) = — e 1 = 5 sin’” %t = S (1—cosar) . (11.69)

As a function of , the quantity f{(z, w) takes the form shown in Fig. 11.4.
It has a well-defined peak at w = 0 with the width 27 /t, which becomes more
distinct and sharper with increasing .
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f(t,w)h

The following relations are even exact (compare with Exercise 11.10)

/ f(t, ) do =27t (11.70)
J
and
Tim f (t’t‘”) = 278(0) . 11.71)

For a fixed value of ¢, the probability W,,, in (11.68) depends in a simple way
on the final state m. Up to a constant, it is the square of the perturbation ma-
trix element | Viyp |2 multiplied by the factor f(¢, @) that depends on the Bohr
frequency @, of this transition. Since this weighting factor f(¢, @) has a well-
defined peak with the width 27/t at wy,, = 0, transitions will mainly occur into
such states that have energies in a band of the width § E >~ 2/ /¢ around the en-
ergy of the initial state. This means: the transitions conserve energy up to a value
of the order E ~ 2mh /t. For t — oc (and therefore T — 00) there are no tran-
sitions. This is intuitively clear, because a perturbation which is constant for all
times cannot induce a transition; it does not “shake” the system. It is not surpris-
ing that here all frequencies occur, because the Fourier transform of a function
constant in time over a certain period contains all frequencies except eventually
those of a countable subset.

Fig.114. The function
f(t, w) switches over to
2mtd(w) for t — 00, ie. the
maximurm at @ = () becomes
increasingly sharp
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Continuum states

= Ionization limit

= Ve,

i

b)

Fig. 11.5. (a) Transition from
a discrete to a continuum
state  during ionization;
(b) transition from the con-
tinnum state g, to the
continuum state ¥, in the
bremsstrahlung. At the same
time, a photon with the en-
ergy how = Ey{ — E; is emit-
ted

il

Ny

Fig.11.6. Spectrum with
a discrete (Ey) and a contin-
uous E(w) part

L1, Perturbation Theory

11.6 Transitions Between Continuum States

So far we have considered an “unperturbed” operator Hy(r), wWhich has only
a discrete spectrum. We have also used a formalism which presumes that the
states are not degenerate. By suitably changing this formalism, we can of
course apply it to degenerate states. The generalization for a continuous spec-
trum 1s somewhat more complicated, but very often of practical importance,
for example: the ionization of atoms (transition from a discrete bound state to
a continuum state — see Fig. 11.5a) as a consequence of the perturbation field
of acharged particle that is passing by, or the bremsstrahlung (continuum-—
continuum transition —see Fig. 11.5b) of charged particles as a result of accelera-
tion or deceleration in the field of other particles. Let us now discuss this problem
from a general point of view.

If the operator Hy(r) also has a continuous spectrum (see Fig. 11.5), we have
as eigenfunctigns

and r';'o“w“o,(r) = E{@)yu(r) .

Howi(r) = Ex:

kr(r) (11.72)
Here, « is a continuous index that characterizes the continuum states of the spec-
trum. The stationary solutions, belonging to the time-dependent Schrédinger
equation, are accordingly

i

Uk(r, 1) = Yr(r) exp ( 7 Ekt) ,

Galr, 1) = Yalry exp (—'ﬁ E(a)2> . (11.73)

For the normalization of the eigenfunctions of the discrete states, We again have

/ﬁ/(r, t)zﬁk(r, 1) Ex= Ory (11.74)

For the overlap integrals between ¥y and v, it holds that (because of the
orthogonality of these states)

f Gt (r, Oia(r, 0 dPx =0 . (1175)

The normalization of the wave functions characterizing the continnous spectrum,
however, is given by

f i, Oa(r, ndPx = La(oc—oﬂ , (11.76)
n(e)

where n(a) is a positive function of . Obviously the functions 1/7a(r, 1) =
V() Yelr, t) are normatized to § functions (see e.g. Chap. 5).
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For the solution of the “disturbed” problem, we must use all eigenfunctions,
i.e. the complete set, and so we obtain the linear combination

V=Y a0+ f o (1) (v, e (11.77)
k
Inserting this into the Schrodinger equation
., 0y .
171? = (Ho+V(r, )¢ (11.78)
yields

day -
ih (Z Ttkl,//k—i-/

daq(?) - . a_ll;k f . %
k o wada>+Xk:ak1h ot a()ih o

= Z ak’:lol/;k + f aa(t)ﬁm[;a do + Zakvlﬁk

+ f ay (N Vg da | (11.79)
so that
. day - dag(p) -
ih (Z;Ewwf o x//ada)
=ZakV1/~fk+/aa(t)V1/7uda (11.80)
k

remains. Now, proceeding as above [see (11.43)ff.], we find, after multiplication
by the wave function v} or v}, that

in | 37 4% exp [ £ By — Enr] Wi

As
ur 123 4

k

dag() i ;
+ / - exp[ﬁ(Ek'—E(a»r] wk/wada}

=Y aexp [;.L—(Ek' - Ek)t] Vi Vi
k
+ /aa(t) exp [%(Ekr _ E(a))t] Wi Vi da (11.81)

or

ih{ 3 S exp [ (@)~ Bt | i v
k

+ f da;’t(t) exp[%(E(oz’)— E(a))t] w;,wada}
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= Z ay exp [% (E(a") — Ek)t] Yoy Vil
k

+ f g (f) exp[%(E(o/)—E(a))t] v Vi da . (11.82)

Integration over the space coordinates, and taking into account the normalization
and the overlap integrals, leads to

ih Z % exp [% (Ek’ — Ek)l] 8kk,
=Y arexp [%(Ek/ - Ek)t] f Cx Vi
k

+ f f ae (1) exp [%(Ek/ - E(oz))t] W Vi dardx (11.83)

and

”

, dag (1) i , 1 ,
m,j = exp[ﬁ(E(a)—E(a))t]ma(a—a)da

= Zak exp [%(E(Ol’) - Ek)t] / dx Iﬁ:, \ %17
k

+f d3xfa,,(t)exp [%(E(a/)—E(oz))t] Vo Vi da (11.84)

Now, it is advisable to use for the interaction matrix element the same symbol as
in (11.46), where the indices o and 7 can stand for both the continuous and the
discrete spectrum. Thus

Vor (1) = f &y Ve, Dy (11.85)
In the same way, we generalize the Bohr frequencies:
1
Wor = E(EO‘_ET) . (11.86)

Here, either E; = E(a) or E; = Ej is possible, depending on which part of the
spectrum the index o corresponds to. Then the coupled system of differential
equations takes the form

dak/ :
P =D ae ™ Ve () + j[ da(f) e e Viq(f) da (11.87a)
dr P
1 % day (¥)
n(a') dr

= Z ar ek Vo () + f ay () el¥e! Vo(t) da . (11.87b)
k
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We already know the meaning of the a; from above; for the a, (f), the situation
is slightly different. To determine their significance, we proceed as before in
(11.51):

1= f Exypy = Z ayap el kn? / d’x Vi Y

Kk

+y [ da(a:aa(t)eiw | Exviva+avaeion [ @ w;:w)
k
+ f da / da’a:(t)au,/(t)ei“’ww” f &y Ve

= Z Iak|2+/ dozf da'a;(t)aa/(t)ei‘”w’tLS(O{—a’)
p n(a)

nw)

=Zlak|2+f delag (O —— (11.88)
k

Just as we expected for wave functions belonging to the continuous spectrum,
only the expression

e () —— da (11.89)
n(a)

has the meaning of a probability. More precisely, (11.89) gives the probability of
finding the system in the range of states between « and o+ de.

Projectors

We denote by B(a) a small, connected range of values of the parameter «
(this corresponds to a group of “neighbouring” states; see Fig. 11.7) so that the
operator

Pp = ] da, (r, Hn(@)P(r, ) (11.90)
B(x)
represents the projector (projection operator) onto those states contained in the

interval and characterized by the values of the parameter a within the range of
values B(a). The projector functions as follows:

Py = / dayry (r, Hn(a) f Ex G, D, (11.91)

B(x)

The action of Pg on a wave function ¥(r, t) is defined by the integral over 7 in
(11.91). The projector is somewhat similar to the Weyl packet (eigendifferential
—see Sects. 4.4 and 5.1).

E
B(a) { E(a)

— El_

-

L

Fig. 11.7. The domain B(w)
of the continuous spectrum
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Now, if 1 is any wave function, we find from the expansion
) Y -~

V=2 a0+ | dalaw 0l 0

k

i
= Zak exp (—gEkt) Y (r)
k
/ 1 / /
+ / do'a (1) exp (—EE(a )t) Vo (1) (11.92)

that

Pey = f doire (', Hn(a)

B(x)
i 3 gk, /
S awesp [1E@ -~ Eor] [ vz e
k
+ f da’ay (1) exp [—i—%(E(a)—E(o/))t] / d3x’1/f;(l/)1ﬁar(r’)}

- f dalu(r, On(a) f doa (1) exp [+%(E(a)—E(a’))t]

B(x)
2 ] [\ P _ TN
X n(a)U\ u )
= f daay (O Ve (r, ) (11.93)
Bla)

holds. The application of the operator Pg thus causes the projection of the wave
function onto that domain of states Vs, which is characterized by values o within
the interval B(w). This explains the name projector. If we now consider the en-
ergy E(a) as a new variable (i.e. we transform from « to the energy E), and if we
name the corresponding range of values B(E), we can also write the projector as

Py = / AETo (', Doa(EYFE( . 1) | (11.94)
B(E)
with
ou(E) = n(o:)E . (11.95)
dE

This quantity g, (E) is called the density of states « at the energy E. By inspec-
tion of the operator (11.94), we see that, indeed, oo (E) is the number of states
per unit of energy. We shall now examine two properties of Pg.
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(a) Idempotency: Pj = Py
Indeed we find with ¥ = 3" ax Vi + | doaq (1) ¥ that
Byy = Py(Ppy)
=Py / daag (D a(r, 1)

B(a)
= [ dot' Yo (v, () / &ExpL @ o) / dovag (D Ve (7, 1)
B(voz’) i Bza)
= f do/ o (', D) / dozaa(t)f d3x’1l~r;,(r’, )
B B [1/n(e)]é(e~0)
= / daaa(t)lﬁa(r’,t)=1331/f- (11.96)
B(o)

Since this relation must be true for any 1+, we can conclude that the idempotency
relation Pg = Pp holds generally.
(b) Hermiticity: P = Py
If ¢ =3 by + [ dabe (D)o, then it follows that
5 [ .

r3¢=j dorby (1)

o
3

~~
p—t
p—
N’

JPW AN
al\r ,t) .

<

B(w)

We investigate the action of the operator 13; for arbitrary ¢ and ¢ by considering
the integral

f dxo* Py = f &> x(Ppe)*y

N\ ¥

= [@x| [ anbatiiact.o (Zakuﬁw / da’aa«r)%r)

B(c)

= [ dasio | [ Exigis [avo [ @xigie
—————— —_

B(w)
\ =0 1 /n@))se—a) /
- / dab;(z‘)/da’aa/(t)LMa—a')
n(a)
B(a)
= / dab;(t)aa(t)—l— . (11.98)
n(a)

B(a)
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On the other hand, we calculate

:fd3x (Zbkl/;k—}—/ da’/ba'(l‘)lllaf) f daaa(t)ll;a('ja )]

B(e)

/ daae(t) | Dbt / Exrf o + / bk (1) [ Eriiy do

B(Ot) _‘,_/ s‘,__/
=0 [1/n(e)]8(c—ct)
, 1
= / daaa(t)f dab;,(t)%ﬁ(a—a/)
B(o)
i} 1 .
= f daba(t)aa(t)m = / Exp* Py . (11.99)

B(x)
As this relation is valid for any ¢ and v, it follows that £} = Py. This means
f’B is Hermitian.
Now we can return to the calculation of transition probabilities. Because
PBz// yields that part of the wave function that lies in the range of neigh-
bouring states y, within the interval characterized by B(«), the absolute value

/ |PB¢| d3x is just the probability Wp of finding the system in the states within
B(a):

w [12av? = [ @xcban boy. o
=fd3x'/’*ﬁi;ﬁ3'/’=fdBX'ﬁ*ﬁBﬁBw:/d3x1/f*1331/f(r’,t)
= J/ &x (Zaklﬁk% n+ / 0o a (O (7, r)) J/ dotan (G 1)

B(x)

=/do/a;,(t) / daaa(t)—:(56(a—a')
n

B(a)

* 1 _
= f daaa(t)aam—“/ dor

Bla) B(x)

_ / ag (1) 2

n(w)
B(E)

ag (1) 2
n(o)

n{x)

Qu(E)AE . (11.100)

It is now easy to determine the transition probability if the system is initially
in a state n of the discrete spectrum, i.e. a;(0) = 8., ao(0) = 0. Hence, in first
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order, we get from (11.87)

(N
dak

dag’(®) _
dt

dr

ik el@anl (1) . (11.101)

» 1
= el@k! Vin () ; ﬁlh
na

For the discrete part of the spectrum, there is no change compared with the ear-
lier result [see (11.57)]. Therefore we shall further examine here only the second
part, which describes transitions into the continuous spectrum. (Such problems
arise, for example, in the case of ionization, when particles that pass by perturb
the system.) After integration of (11.101) we find that

(1) !
n o1 .
Zgzﬁfwmwwmf (11.102)
0
and
M |2
a !
W,Ha=f w (1 04 (E)dE
n (o)
B(E)
t 2
1 .
=;ﬁf /Van(r)e“"""’dr 0a(E)dE (11.103)
B(E) 10

because if the transition occurs out of a particular state, then tpe transition prob-
ability is just the probability of finding the system in states v, (E) of the range
B(E) at a later time. Note that « = a(E) in (11.103)!

If the initial state (characterized by & = B) belongs to the continuum, then

a]((()) =0and a((,o) = 6(B — «). The result is completely analogous, namely
o P
aw (1) 1 v iwepT
=— |V wfT 47 | 11.104
n(@) ih] ap()e ™ dT (11164
0

This leads to the transition probability Wg_, 4;

2

WR_>B=71— /

t
B = 33 Jf Vop(D 7 dz| 04(E)dE . (11.105)
0

If the perturbation is constant in the interval 0 < ¢t < T, i.e.

|
B(E)

Vi, 9 =V(r) for 0<t<T
r,t
=0 otherwise
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then
s 3 s
Vaﬂ(T)E/ d” xy, V(INYp = Vag (11.106)
so that
1
Wgp= ) f |Vap|? f(t, wap)o(E)AE | (11.107)

B(E)
where again [see (11.69)]
‘ 2

. 2
fit, w) = fe"‘”dr = —(l—coswr) . (11.108)
w
0

In (11.107), the squared matrix element [Vag | cannot be taken out of the inte-
gral because it is related to the integration variable by a(E). Otherwise (11.107)
is totally analogous to the earlier result (11.68), only that, here, the density of the
final states g, (E) appears. If these final states are concentrated around a state
with the energy E1, ie. go(E) = 8(E — Ey), then (11.68) can be immediately
deduced from (11.107).

11.7 Transition Probability per Unit Time: Fermi’s Golden Rule

Here we wish to examine the transition to states v, within the energy interval
[E1 —(5/2), E| + (¢/2)]. The width ¢ is chosen so small that in this interval Vap
and 04(E) can practically be considered to be constant, i.e. independent of o
or E. Then we can write for the transition probability (11.107):

1
Wi = galVeseuEr) [ fit o dE M)
B(E)
where now B(E) = [E|E; —(¢/2) < E < E1 + (¢/2)].

If the time is chosen large enough, so that £ gets much larger than the
oscillation frequencies contained in the function f(z, w), i.e. so that

2rh
s>>ﬂ7, @

[compare with Fig. 11.4 for f(#, w)], then the remaining integral in W,_, g can
be evaluated rather straightforwardly. Yet, two cases must be distinguished.
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(a) The central peak of f(t, @) lies outside the integration interval (see figure),
ie.
states
Wa(f, t)

2rch

Obviously, in this case, the system changes its energy under the influence of the
perturbation (no conservation of energy). With

f(t, ) = — (1 —coswh
PSS Radd 2 \ wey
w

we obtain

f ft, wap) dE

B(E)
Ei1+e/2 (E1+¢€/2—Eg)/h
[ 2h? dE [ 2h q 4
= D —— - — Coswidw .
(E — Ep)? j w? @
E1—¢€)2 (E1—€/2—Eg)/h

The second integral makes a negligible contribution because, according to the as-
sumption (2) for g, the integration interval contains many oscillations and cos wt
repeatedly takes on all values between —1 and 1. Therefore

r 2'1;02
j f(ta woeﬂ)dE=—
B(E)

1E1+e/2 "2
L&

E—Eglg,_.p (E1—Eg)—¢2/4

2h2¢

%—_—_— . 5
(E1— Ep)? ®

and the time-independent expression for the transition probability results:

2¢| Vg
(E1 — Eg)?

(b) We now consider the case

W pE) = o(Ey) . (6)

2mh
EI_E,E"‘N’8>>T- @)
Here, the ceniral peak lies within the integration interval, and the main contribu-
tion to the time integral comes from that part (see figure). We make only a small
error by moving the boundaries of the integration to 0o, i.e.

(e ]
1 —cos wt
ff(t,waﬂ)dE%25/$dw. 8)
w
B(E) —00

= E

In case (a), transitions from
thn ctatn do ittt ada e
uIc SLaic Vlﬁ WILIL UIC CllUlEy
Ejg into the continuum states
Yu(E) in B(E) around E are
considered

m

B(E)=2¢

—
&

H

In case (b), Eg lies within
the range B(E)
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The value of the integral is determined according to the residue theorem:

o0
"1 I3
2 / O o =21, thus / f(t, wop) dE ~ 2mhit ©)
Cl)
—00 B(FE)

and with this

2
2
Wepe) = _“‘|Vaﬂ(E)| Qua(E)t (10)
results. Here, we have written E as the argument, because the main contribution

results from w =0, i.e. for E, = Eg = E. Since the final state has the same en-
ergy as the initial state, this transition conserves energy. Furthermore, because
& > 2mh /t, the transition probability is larger than the sum of all other parts.

Now we introduce the transition probability per unit time Wy—, g» which is
naturally defined by

dw,
—ﬂ;B(E’ . (11

Since it was found in (6) that Wy_.p is time-independent for those transi-
tions which do not conserve energy, wq-.p vanishes. For energy-conserving
transitions, however, we find the important formula

Wg—B(E) =

2
Wso pe) = ?Waﬁ(E)lea(E) . (12)

It should be emphasized again that the matrix elements which appear and the
density of states are assigned to states o, which have the same energy E g as the
initial state. The expression (12) is called Fermi’s golden rule.

The conditions for the validity of this formula are evident from its derivation.
Let us recapitulate the two most essential assumptions once more. It is neces-
sary for the time 7 to be long enough to guarantee that & 3> 27k /t; on the other
hand, time ¢ must be short enough to justify the first-order perturbation theory
approximation, i.e. Wy gt < 1.

EXAMPLE I

11.8 Elastic Scattering of an Electron by an Atomic Nucleus

In this example, we give an appllcatlon of Fermi’s golden rule and simultane-

nf q
OUSI" HNustrate some \,Guueym o1 b\.aucuug LuCij

We examine the scattering of a high-velocity electron by a nucleus with the
charge number Z. The electron-nucleus interaction — in our case the Coulomb
energy — is treated as a perturbation:

2 —
V(r, R) = |rZ—eR| exp (— Ir de) . (1)
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Let r mark the coordinates of the electron, R those of the nucleus. The exponen-
tial factor in (1) is introduced because of the screening effect of the electron cloud
on the nuclear charge. We need it for mathematical reasons, too, since it helps to
avoid divergencies when integrations are performed. The length 4 is a measure
for the shielding distance. For |r — R| > d, the interaction disappears, because
the charge of the nucleus is then completely shielded by the bound electrons.

Before the scattering, the whole system is described by the state |v;) and af-
terwards, by the state |yf). We want to calculate the probability for the transition
|i} — |v¢) in order to learn something about the structure (charge distribution)
of the nucleus when comparing it with experiments. The electron is in a state
of motion with momentum pg and energy Ey before scattering occurs and is
scattered by the Coulomb field (1) into a state with p and E. Since these are
continuum states, the transition probability per unit time is given by (12) of
Example 11.7:

2
w= —h’iwf V] i) 0r(E) . @)

The total wave functions of the electron-nucleus system are products of the wave
function of the electron and that of the nucleus. We use plane waves as an ap-
proximation for the wave function of the electron. This approximation is called
the Born approximation. But it is only valid if the electron-nucleus interaction
is small, i.e. the nuclear charge should not be too large and the velocity of the
electron has to be great enough. These conditions are summarized by the relation

Z ¢
—-<k1. (3

Thus the wave functions are
i
Vi =exp (ﬁPO . l‘) di(R) ,
i
vr=exp(5p-r) 6B )

or, written in another way,

1¥i) = lko) 1) . |5} = lko) If) . ®)

This can also be expressed as

(rlko) = exp(iko - 7) = exp (%Po-r) ,

(rlk) = exp(ik-r) = exp (%p . r) ,
(Rli) = ¢i(R) ,
(R|f) = ¢:(R) | (6)

a form of notation used by some authors; we will also use it occasionally (see,
e.g. Chap. 15).

Example 11.8

electron

iy @
&
atomic nucleus

An electron is scattered by
an atomic nucleus
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k
The vector hs describes the

momentum transferred from
the electron to the nucleus
po = hkoand p = hk are the
momenta of the electron be-
fore and after the collision

The new coordinates r’. The
vector s is taken as polar
axis

The ¢(R) are the normalized wave functions of the nucleus. We did not nor-
malize the plane waves (4) — based on (11.76) and (11.95) —, in order to define
the density of the plane waves in a general way (i.e. aiso for plane waves which
are not normalized on § functions).

The ket vectors |k) form a complete set of orthogonal functions:

Pk
(klK') = @m)’s(k—K') | / k) e kl=1 . (7)

These formulae will be necessary when caiculaiing the density of states. But let
us now evaluate the matrix elements. Since the wave function factorizes into an
electronic and a nuclear part, the volume element dV also implies integration

over both volumes dV, (electron space) and dV, (nucleus space). Thus

(Y| Vi)
—lr—R :
=z / o (RG(R) [ LU= RUD wopor gy, gy, t)
J J F— R
The indices e and n stand for “clectron” and “nucleus”, respectively. We first cal-
culate the integral over the electronic coordinates and abbreviate ko — k by the

vector § (see upper figure):
s=ko—k . C))

Therefore s = pg — p is the momentum transfer from the electron to the nu-
cleus during the scattering process (see upper figure). The integral over dV., is
evidently a function of R:

Je(R) = / weﬂ’%—kwd% . (10)

Since we integrate over the whole space, we can change our system of coordi-
nates and integrate over the whole space again (the integration boundaries need
not be changed). We replace r by # = r — R and introduce spherical coordinates
with ¢ being the angle between s and r’ (see lower figure).

In terms of these coordinates we have

dVe = r?dr’ sin9 do de

—~
—
=

—

and, from r = 7 + R, we get

(ko—k)-r=5s-r=s-+s-R
=sr'cos?+5-R . (12)
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Thus the integral becomes
e—r'/d .
Je(R) = f ——— i IR, 2 i 9 dr d dgp
r

oo T
. o _
_Zne”'R//r’e r'/d gisr'cos® i 3 doy dr’
0 0

00
els: ‘R [ At fd (Disr’ s 4
I w N \\/ ~ jul
isr/
0
oo
PSRTY 3} [( (is=1/d)’ _ o=(is+1/dr'y g1
IS
0
1 eisr efisr’ |
=27 els R~ e T /d
is \s——l/d is+1/d o

. 1 1
= Irelf R
T (is—l/d+is+1/d)

sk 4w

EERyr (13)

This result can be simplified: the term 1/d? in the denominator can be neglected
if s2d? > 1. This means that the momentum transfer must not become too small.
Hence,

4
SRy~ SR (14)
s

Therefore the matrix element takes the form
47 f o
(YelVIg) = Zezs—z J/ or (R Ko (RYAV, . (15)

For elastic scattering, the state of the nucleus is not changed. Let the nucleus be
in its ground state ¢. Then we have ¢y = ¢; = ¢, and the product Z¢*¢(R) is the
density distribution of the protons in the nucleus. Instead of the wave functions,
we can introduce the charge density g, (R) of the atomic nucleus (more accu-
rately: g, (R) is the charge density without the factor e, which we have explicitly
taken out):

Z¢p*¢ =0p(R) with [QP(R)an =Z. (16)

For further simplification we assume spherical symmetry of the charge distribu-
tion:

op(R) =0p(R) . 17)

Example 11.8
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This assumption is only valid for atomic nuclei in the vicinity of the magic num-
bers. The others are prolately (cigar-like) deformed. Therefore we obtain for the
matrix element

(v V| ¥) = op(R) ¥ Rdv,

47re

5 F(s) . (18)

The quantity F(s) is called a form factor. It is the Fourier-transformed charge
distribution and reflects the deviation of the nuclear charge distribution from
point structure. Indeed, if the nucleus is assumed to be pointlike (i.e. ¢p(R) =
8(R)), we get F = 1. _

The form factor F(s) = [ gp(R) €' "BV can be further evaluated by again
introducing spherical coordinates and using the axis defined by s as the polar
axis. Hence, we get

dVi = R*’sin9dRd®dy and s-R= Rscos? , (19)

and therefore

F(s)=12n / f 0p(R) &R eos? R2gin 9 dRdw

=27Tj QP(R)\ ,/ d(COSﬁ)} R°dR
0 0
T 1
=2r / QP(R)ﬁ(eiSR — e SRYRZdR
0
o0
_ f op(R) sin(sR)RdR . (20)
s

The last integral can be calculated only if the charge distribution g, (R) is known.
We will consider this point later (see Exercise 11.9). Our current result can be
summarized as

2

4
V1) = 5 Fo) | @

and we can turn to the calculation of the density of states. The orthogonality
and closure relation (7) implies that n(«) equals (27) 2 if « is identified with k.
In other words, in the space of the vectors k, the density of states is constant
and equal to (27) 3, i.e. the number of states in the interval [k, k4 dk] is equal
to (27) "3 d3k. If we had used plane waves normalized on § functions from the
beginning, the density would have been n(k) = 1.
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Now we are interested in states with momenta pointing in a certain direc-
tion £2. These momenta differ from each other in their energy only. Therefore
the density of these states is o(§2, E), i.e. o(£2, E)df2 dE is equal to the number
of states which have a momentum pointing into the solid angle [£2, £2 4+ d$2] and
whose energy lies in the interval [E, E + dE]. Thus we get

(82, E)d2dE = &k (22)
o @)’
By introducing spherical coordinates in the k space
Shk=k>dkd2 , we get (23)
k2 dk
0(82, E)yd2dE = ——=d2 . (24)
2n)?

We note that the density of states is independent of £2, which allows us finally to
write ¢(£2, E) = o(E). Substituting the momentum p for k, the density of states
o(E) becomes

p*dp P’ 1

OE)= R dE ~ Gnh)y dE/dp

(25)

To calculate the derivative, the energy conditions of the collision have to be
examined. We assume the electron is very fast and therefore proceed from the
relativistic energy—momentum relation

 Poct+m2ct + Mc? =/ P22 +m2ct +VR222+ M2 A = E . (26)

If the kinetic energy of the electron is large enough compared to the rest energy,
the term mc? can be neglected and we obtain

E
— =po+Mc=p+vhi2 4+ M2 . 27
c
According to the definition of s, we get
h2s? = p%) +p? —2popcos O . (28)

Because of the great mass difference between nucleus and electron, the energy
transfer can be considered small compared to Mc?, and therefore p ~ py and
(p— po)? =0, so that P+ p(Z) = 2ppyg results. Thus we get

O
h2s? = 2pop(1 — cos @) = 4pop sin 5 (29

Example 11.8
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Example 11.8 From relation (27) we find for E/c that
(po—p+ MC)2 = k%5 + mc?
= 4pypsin’ g + M2 (30)
On the other hand, we have

(Po— p+Mc)* = (py — p)* +2(po — p)Mc + M2

~2(po — pYMc+ M2c? 31
because pp— p~ 0 and thus the square (p— pp)? is vanishingly small. If we
compare the two last relations, we obtain

.2 ®

(po — p)Mc ~ 2pgpsin® 5 (32)

and with this, finally,
Po
= ) 33

P Y Cpo/Moysin2 62 (33
Now the expression dE/dp has to be calculated. For this purpose we start with

E = pc+vVh2s2c2 4+ M2c4 | (34)
from which we get

dE h2c?(ds?/dp)

—=c+

dp 2Vh2s2¢2 4+ M2c4

h2c? ds?
ry _ 35
ot 2Mc? dp (33)

and, if we make use of (29) and (33),

dE 2170 .2 e Po

ap c(+Mcsm > Cp (36)
Finally, we get the following expression for the density of states (25):

2 3
prp pr 1
e(E) = (37)

Q@rh)epy  (2nh) cpy

With the help of Fermi’s golden rule expressed in (12) of Example 11.7, and in
(21) and (37), the transition probability per unit time is given by

2

2 ~ 2 2n [4me? 2 p3 1
i»f = 7 Vi E)=— F - —
e e R R

42m)3et 5 1 PER

= == F(s)| s s—

h (4pop/h#)?sint ©/2 2nh)3 cpy

__4MFeP P ( &2 )21 P pop 38)

6P sint @/2cpy \2py) ¢ posin® 92 ‘
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The transition probability itself cannot be measured directly, but a quantity can
be observed, which is called a cross-section or, more accurately, a scattering
cross-section, and is denoted by o or doj respectively (see figure). do;—.¢ is the
number of particles scattered per unit time and per unit of the incoming par-
ticle current into the section of the solid angle (82, £2 + d$2). Since the states
|k) represent particles, the current of which is v, we obtain for the differential
cross-section

Di—f ds2

51

doi¢ = (39)

The electron velocity v can be set approximately to the velocity of light ¢; thus
we write

2
doir 1 e p 1 2
ae At (2p()c posnt@ya O (40)

This is the extended Rutherford scattering formula for the cross-section. Substi-
tuting p/ po from (33) yields finally

doi 2\ |
= = F(s)|? } 41
2 (2p0c) st o2 T X TG s 62 “1)

A 4eplr)x 102 [fm”)

10 ~—

05 RH

n | 1 N 1 L 1 1 1 -
0 2 4 6 8 10
rltm]

Fig. 11.8. The charge distribution 4mp(r) of the lead nucleus, determined by elastic elec-
tron scattering. p(r) is approximately constant inside the nucleus as far as r ~ 5 fm and
decreases in the surface region with a thickness of & 2 fm. Other nuclei show similar
behaviour: whereas the surface thickness is nearly equal for all nuclei, the radius Rp,
at which 4g(r) has its half-maximum value, changes according to Ry = rgA!/3, where
ro~ 1.2 fm, and A is the number of nucleons

incident wave \\\ f / seatiered
———\IL-

—7\

The incident particle wave
and the scattered wave
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The effect of the recoiling nucleus is taken into account by the last factor. If
the atomic nucleus is very heavy (M — 00), this factor is nearly 1, correspond-
ing to a scattering without momentum transfer. The form factor | F(5)|? takes
into consideration properties (extension) of the nuclear charge density. It can be
experimentally deduced using (41) and comparing it with the experimentally de-
termined cross-section (by measuring the differential cross-section). From the
thus determined form factor, the charge distribution can be calculated according
to (20). Robert Hofstadter, who made systematic measurements of this kind, was
awarded the Nobel Prize for this work in 1961. Some of the most accurate charge
distributions of atomic nuclei were measured in the same way by Peter Brix at
the electron accelerator in Darmstadt.

By way of example, we show the charge distribution of the lead nucleus
(see previous figure). It is nearly constant inside the nucleus and has a surface
thickness of /2 2 fm.

EXERCISE N

11.9 Limit of Small Momentum Transfer

Problem. Show that electron scattering with small momentum transfer permits
the determination of the total charge and mean quadratic radius of atomic nuclei
only.

Solution. To solve this problem, we start with the structure function (20) in
Example 11.8:

F(s) = ?/QP(R) sin(sR)RdR . (1)

Assuming small momentum transfer s, or, more accurately, sR < 1, we can
expand sin(sR) to obtain

(R’
sin(sR) ~ sR — )
Thus F(s) becomes
T m o, [ 2
F(s) =4n/gp(R)R2dR— §s2fgp(R)R4dR =z- ?”s2<R2) )
0 0

The first term is just the total charge Z of the nucleus, while the second one
contains the mean quadratic radius. To measure more details of the charge dis-
tribution gp(R), the momentum transfer has to be increased [compare with (29)
in Example 11.8]:

(f'Ls)2 =4pop sin? g— . @)
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This can be done by increasing the energy E of the electron and simultaneously Exercise 11.9
increasing the momentum pg = p. Of course, we should take the best scattering

angle possible (# = 180°), i.e. we must detect the backward-scattered electrons

at higher energy. Then the next term of the sine expansion becomes important,

so that one gets

(sR)? R

sin(sR) ~ sR — 3 S (5)
with the following result:
2 4
Fis) = dm (R) - -5 () + s (RY) ©)

We recognize that the different factors in front of the powers s> of the form
factor reflect the higher moments of the charge distribution.

EXERCISE I
11.10 Properties of the Function f(t, )

Problem. Show that the function

ft, w) = 1/a?| e — 1]

[ f(t, w)dw =27t and
Jim -Ji(tt—“’) = 278(w) .

Solution. According to (11.69) the function f(¢, w) is defined as

2

fit, 0) = (1 —cos o) ; (H
w

therefore
o o0 1
—cos wt
/ flt, w)ydw =2 J[ Tda) . (2)
— O -

By substituting wt = x, the integral becomes

o oo 1
[ rewo=a [0 ®
-0 —00
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which can be integrated by parts:

o 0o,
1—cosx sinx
[ [y
X X

—00 0

With the help of the relation

o
=/e_‘“‘du for x>0,

and interchanging the integration, the integral (4) can be evaluated:

m .
sin x
/ dx = smx/e_”xdudx
X
0

0
o0

du/ e “*sinxdx
0

du
14 u?

I

Il
St~ g O~ 0\8

=arctanu|; = X
0 2
Thus we get

/ f(t,w)dw=2t><2xg:2m .

-0 .

4)

(5)

(6

(N

To solve the second part of the problem, we use the representation of the

8 function (see Example 5.2):

5(w) i i 1 —coswt
W) = — l1Im
Tt—0o Pt

With the help of (1), we obtain

t, 2
lim ft, ) = lim ——(1 —cos wt)
t—>00 I3 t—>00 (4t

I (11— 3
=27 lim _m

= = 2m8(w)
t—=oo 1 w*t

®)

~
\O
~—
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EXERCISE I

11.11 Elementary Theory of the Dielectric Constant

Let Hy be the Hamiltonian of an electron with charge —e, e.g. in a molecule
(to simplify the problem, the spectrum is assumed to be discrete). An incoming
plane monochromatic linearly polarized electromagnetic wave shall not be in-
fluenced by the polarization of the molecule, i.e. its frequency w shall be clearly
different from all absorption lines. It can also be proved that the contribution of
the magnetic part of the wave produces negligibly small effects.

Problem. (a) Under these circumstances the wave can be described by a homo-
geneous external potential, which is periodic in time and has the amplitude £
and the frequency w. Find the related Schrodinger equation, if the z axis points
in the direction of the oscillation.

(b) Let yg be the ground state of Hj with the energy Ey. Take

S /1 N (1, .
Y(x, t) = (X)) exp k—ﬁbot)-i-t‘btlf‘”(x, t) (D

and find the first correction ! to the “stationary ground-state” in the time-
periodic potential.

Hint: Set
YO, 1) =04 (x) exp [~ (Eo+ ho]

o (x) exp [—%(Eo _ ha))t] . )

(c) In the absence of an external field, let the molecule be in the ground
state Yy, without a dipole moment, i.e.

(po) = —e / GirdndV =0 . 3)

To calculate the dielectric constant, start with the definition for the dielectric
constant £ via the relation

eE=E+4nP 4)
and insert the polarization P in a nonconducting solid given by
P = Pe, = Npe, , 5)

where N is the density of the molecules (i.e. numbers of molecules per cm®) and
P, the part of the mean dipole moment —e [ y*zydV, linear in Fy, of a single
molecule oriented in the z direction. Calculate the dielectric constant .

Solution. (a) For the electric field, we write

E = Fysinwte; .
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Exercise 11.11 The related potential ¢(r, 1) has to satisfy

E=—grad¢ , (6)
so that ¢(r, £) can be written

o(r. ) =¢(z,0) =—zFysinwr . )
Thus the electron feels the potential energy

V(r, 1) = —ed(r, ) = ez Fp sin wt (8)
and the Schrédinger equation for the molecular electrons can be written

(Ho + ez Fy sin o) Y (r, 1) = ih%t/f(r, 0 . 9)

(b) With the given formulation (1) for v, the Schrédinger equation reads
(o + ezFy sin ) [wo(r) exp (~%Eot) + FoyDer, t)]
i d
= Egyro(r) exp (—%E(}l’)-i—th()Elﬁ(l)(r, f) . (10)
Comparing the terms linear in Fy on both sides, we obtain
, i 5 (D g2 W
ez Fy sin wtrg exp (— ﬁEot) + FoHoyr" (r, 1) = th()b—t!lf (r,p
It

~ d i
= I_Ho—ihn—-l 1//(” = —ez sin wtyry exp (—%Eot) . (11)
L U{J AN /

If we use the hint for ¢ (1), and note that

1 . .
: f = — wt _ —lot ,
sin % (e € )
we get
ﬁgw+ exp [—%(EQ + ﬁw)t} + .:gu_ exp [— %(ug — ﬁw)z]
i
~(Eo+ho)wy exp [—ﬁ(EU + ﬁw)t]
—(Ep— ho)w_ exp [—%(Eg — hw)t]
ez i 1) ~i
= Zduexp (—ﬁEot) (el — gty (12)

The common factor exp[—(i/h)Eyt] can be dropped; the functions e!®’ and
e'" are linearly independent, i.e. their coefficients have to vanish. This yields

~ ez
Hywy — (Eg+ho)ws = 2_in ,

How_ — (Eg — hoyw_ = —;—Z,x/fo . (13)
1
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Now Eg+ hw is not an eigenvalue of ﬁoz otherwise, w would be an absorp-

,,,,,, ko)

tion frequency; nor is Eg — fiw, because Ej is the lowest eigenvalue of Hy (the
ground state). Therefore the equations have no homogeneous solution and can
be solved without ambiguity. Let E;(j =0, 1,2, ...) be the eigenvalues of Hy
(which we have assumed to be discrete) and ¢;(r), the related eigenfunctions.

Then w can be expanded:
oo
wy = Z C}H(pj .
Jj=0

Because of I:Io<p i = Ej¢j, we obtain

o o
(SO R I +, &
jgocj Ejp; (E0+hw)jgocj ¢U—-+2iw0 .

Multiplication by ¢} and integration yield

1
C{P (Bx— Eo—ho) = +5 (pelezl o) and

e lgjlzlyo)
w+(r)—+2i ; Ej—E()—ha)(pj(r)

and, analogously,

[e¢]
e {pjlzlgo)
w-=-5 S E-Eo+ Rt -
Therefore we can write the wave function as

F o]
W(r, 1) = [«m(r) + 205" 0,0 () 2] o)
2i AR \ 171 i

rJ

j=1

e—iwt elwt i
X — ——FEyt) .
(Ej—Eo—hw Ej-E0+ha))]eXp( 7 o)

(¢) The mean dipole moment in the field direction is

eiwt e—iwt
) +O(F}) ,

(14)

(15)

(16)

(17)

(13)

(19)

(20)

Exercise 11.11
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Exercise 11.11

1) ‘P \
\\\ ‘fJ <0
N
SN
\ i K
b) \
; An
!ll f; >0
l,’
a) /!

The refractive index n in the
range of anomalous disper-
sion in the case of (a) posi-
tive and (b) negative refrac-
tion

and hence
¢2FU — UE; — Ey)
p = 2i sin wt . 21
P J;I‘PJM\”O‘ O B~ ha? @b

In the absence of the field (Fy = 0), only the ground state ¥y = ¢ is populated
and whose dipole moment vanishes:

(Yo |zl Yro) =

Hence, it is the electric field of the light wave which partly polarizes the atoms
or the molecules. This is quite reasonable and may be intuitively expected.
With hw; = Ej — Eg and the so-called dipole strength

2Me

fi== )|z |wo)|*w;

(where m. = electron mass), we obtain for the dielectric constant

. . 87 Ne?
eFye; sinwt = Fye, sinwt +-e;
o
XZ|(¢]|z|w0)f Fysin ot
< F =P
2 o<
= (1+4nNe b Ji \ Fysinowte (22)
\ Me L“ w2__w2}
j=t 7
Hence
4nNe* o fj
ew)=1+ . (23)
Mme ng w? —?

This corresponds to the classical expression of the dielectric constant.

Since, to a good approximation, the refraction index n is related to the
dielectric constant by n? = ¢, the above formula (23) represents the quantum-
mechanical calculation of the refraction index as well. Contrary to the classical
expression, the quantum-mechanical oscillator strength

2me
fi= % o) |2} wo)| *(E; — Eo) (24)

can also have negative values if the atom or molecule is in an excited state in the
beginning. This leads to the phenomenon of negative refraction (see figure).
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STARK, Johannes, German physicist, *15.4.1874 Schickenhof, in Thansii}, district of
Amberg, 121.6.1957 Traunstein. S. became a professor in Hannover; in 1909 he went
to Aachen, in 1917, to Greifswald and in 1920, to Wiirzburg. He founded the “Jahrbuch
der Radioaktivitit und Elektronik™ in 1904 and discovered in 1905 the (optical) Doppler
effect in so-called channel rays and in 1913 the Stark effect. He was awarded the Nobel
Prize in 1919. In 1933 he became the president of the “Notgemeinschaft der Deutschen
Wissenschaft”. He was a friend of P. Lenard and a supporter of “German physics”; thus
he dismissed quantumn theory and the theory of relativity as “the product of Jewish

thinking”.

HOFSTADTER, Robert, American physicist, *5.2.1915 New York. H. is a professor at
Stanford University, California. He has considered problems of molecular structure and
has contributed to the development of scintillation and crystal counters. H. proved that
the proton and the neutron have a finite extension and structure. By examining electron
scattering by atomic nuclei he succeeded in finding the charge distribution not only for
System. For this research, H. was awarded the Nobel Prize in Physics in 1961, together
with R. Mdssbauer.

BRIX, Peter, German physicist, *20.10.1918 Kappeln/Schlei. B. was a professor from
1957 to 1973 in Darmstadt, then director at the Max-Planck-Institute fiir Kernphysik
in Heidelberg. Together with Kopfermann, he examined the isotope shift and built the
first German electron linear accelerator in Darmstadt with which he and his colleagues
measured accurately the charge distribution of atomic nuclei.
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12. Spin

We have often mentioned the spin of the electron in our previous considerations.
In this chapter we want to discuss the experimental evidence for the existence of
spin. Furthermore, we shall develop its mathematical description.

Like the Pauli principle, spin is a phenomenon which first occurred in quan-
tum mechanics and has no analogy in classical physics. The electron was the first
elementary particle whose spin was detected. Several experiments, which could
not be classically interpreted, motivated Goudsmit and Uhlenbeck in 1925 to
hypothesize:

Every electron has an intrinsic angular momentum (spin) of %ﬁ, which
corresponds to a magnetic moment of one Bohr magneton, jp =
lelh/2mec.

In the following, we briefly discuss three special experiments.

In the first section we mentioned the Stern—Gerlach experiment (1922) as an
example for the quantization of the angular momentum.! Figure 12.1 shows the
principle of this experiment. A beam of hydrogen atoms (in the original experi-
ment, silver atoms) is sent through an inhomogeneous magnetic field. The atoms
are in the ground state, which implies that the electrons are in the 1s state; thus
they have no orbital angular momentum. Therefore the atoms should not have
any magnetic moment. However, a splitting of the beam into two components
is observed, as the distribution of the intensity given in Sect. 1.6 shows. This
splitting has its origin in a force?

F=-V(-M-B)=V(M-B)=(M-V)B , (12.1)

which acts on the magnetic moment M in the inhomogeneous magnetic field B.
This splitting gives rise to the assumption that the electron has an intrinsic mag-

1 This experiment was performed at the Institute of Physics at the University of Frankfurt
a. M. At that time, O. Stern was a “Privatdozent” working with Prof. E. Madelung at
the Institute of Theoretical Physics, and W. Gerlach a university lecturer at the Institute
of Experimental Physics.

2See J.D. Jackson: Classical Electrodynamics, 2nd ed. (Wiley, New York 1975) and
W. Greiner: Classical Electrodynamics (Springer, New York 1998).

Fig. 12.1. The Stern—Gerlach
experiment
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Fig. 12.2. Doublet splitting

12. Spin

netic moment. Because the beam is split into components of equal intensity,
it follows that all electrons have a magnetic moment with the same absolute
vaiue. They aiso have two possible orieniations, i.e. parallel or antiparailei to the
magnetic field.

In principle it is also possible that the magnetic moment originates in the
nucleus. But we shall later see that the ratio of the magnetic moments of the
nuclei to the Bohr magneton is approximately equal to that of the inverse of
the corresponding masses (#electron/Mproton)- Indeed, a more careful analysis of
the Stern-Gerlach experiment reveals a fine structure of the lines caused by the
magnetic moments of the nuclei.

12.1 Doublet Splitting

A further proof of the existence of electron spin is given by the multiplet struc-
ture of atomic spectra. Let us take, for instance, the doublet splitting of sodium.
Sodium has one valence electron. The transition of this electron from the first
excited state to the ground state (2p — Is; see Fig. 12.2) leads to two adjacent
spectral lines of 5890 A and 5896 A.

Although the 2p level is three-fold degenerate (im =0, 1), this degener-
acy can be removed by an external magnetic field. But doublet splitting can
already be observed without an external magnetic field. This can be explained

Owing to the magnetic field originating from the orbital motion of the elec-
trons, the intrinsic magnetic moment — stemming from the spin ~ orients itself
in two energetically different positions. This is analogous to the splitting of the
beam in the Stern—Gerlach experiment. Doublet splitting follows from the two
orientation possibilities. The splitting of the spectral lines caused by the spin is
observed in all atoms and is called multiplet structure.

The magnitude of the magnetic moment of the electron caused by the orbital
motion can be determined experimentaily. it is a muitipie of the Bohr magneton:

(M| = up = el h/2mc . (12.2)

Indeed, classically, the magnetic moment caused by the orbital motion is given
by the formula’

1 1
M:—/r’xj(r')dv’=~rx1:irxv=LL, (12.3)
2c 2c 2c 2mc

3See J1.D. Jackson: Classical Electrodynamics, 2nd ed. (Wiley, New York 1975) and
W. Greiner: Classical Electrodynamics (Springer, New York 1998).
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where g is the charge, v the velocity, m the mass, j(r') = qu(r')8(r’ —r) is the
current density and L the orbital angular momentum of the particle.

As we have seen in Chap. 4, the z component of the orbital angular momen-
tum is quantized according to

=0,4+1,... =+l . (12.4)

Hence, we expect from (12.3) that M, = ugm;. For each angular momentum
if there are 21 + 1 possibilities for adjusting the magnetic moment [i.e. (20 +1)
values for m; — see (12.4)]. In the case of spin momentum, only two such differ-
ent orientations occur. Therefore we conclude by analogy that the component of
the spin parallel to the field is only half of Planck’s constant:

S;=1h and S;=-1h . (12.5)

Since from (2/; + 1) = 2 it follows that [y = 1/2, it is clear that the spin of the
electron, i.e. its intrinsic (rotational) angular momentum, is 5 h This would in-
deed explain the two orientations observed both in the Stem—Gerlach experiment
and also in doublet splitting.

Thus the spin of the electron is said to be half-integer. This property of the
spin marks a further difference between spin and orbital angular momentum. An
orbital angular momentum of /A has a maximal magnetic moment of /up [see
12 2\1 According to the measurements, the spin of an electron with a magni-
tude 1 h also 1mplles a magnetic moment of yp. This is most surprlsmg because
we would have expected the spin magnetic moment to be only 5UB.

To solve this dilemma, we introduce a new factor g. The connection between
angular momentum and magnetic moment is generally written as

=g(g/2mo)J , (12.6)

where J denotes the orbital angular momentum or the spin and g is the charge
of the particle. The quantity g is called the gyromagnetic factor or g factor. For
the orbital angular momentum we have g = 1 [see (12.3)]. For the spin, however,
g = 2. Since the electron is negatively charged, ¢ = —e, its magnetic moment is
always antiparallel to the angular momentum. If we combine the angular mo-
mentum L and the spin S into a total angular momentum J, the resulting total
magnetic moment M is not parallel to the angular momentum, because of the
differing gyromagnetic factors (see Fig. 12.3). The total magnetic moment M
precesses around the total angular momentum J. Therefore, after averaging over
time, only the component in the J direction remains. (In Example 12.3 we shall
discuss this fact in more detail.)

In the case of atomic nuclei, the “nuclear magneton” is commonly used as
a unit for the magnetic moment. It differs from the Bohr magneton in that it re-
places the electron mass m in the denominator of (12.2) by the proton mass mp.

S
I
M/
P \M
1
)
M

Fig. 12.3. Vector addition of
the orbital (L) and spin (S)
angular momentum and the
corresponding magnetic mo-
metits M; and M, respec-
tively. The resulting total
magnetic moment M is —
because of the spin g fac-
tor g=2 - not collinear
with the total angular mo-
mentum J. This leads to
a precession of M around J
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Fig.12.4. Setup of the Ein-
stein—de Haas experiment

Therefore the nuclear magnetic moments are roughly three orders of magnitude
smaller than those of the electron. The interaction between the nuclear moment
and the moment of the electron leads to the hyperfine structure of the spectra.

12.2 The Einstein—de Haas Experiment

If an iron bar is magnetized, not only the elementary magnetic moments, but
also the elementary angular moment which cause them, change and become ori-
ented. Because of the conservation of the angular momentum, the iron bar as
a whole must change its macroscopic angular momentum, too. From the mag-
netization and the angular momentum of the bar, the gyromagnetic ratio can
be determined.

This basic idea led Einstein and de Haas in 1915 to an experiment that makes
it possible to measure the gyromagnetic ratio (see Fig. 12.4). An iron bar is hung
from a string in such a way that it can rotate about its axis. From the torsion vi-
brations of the string, the angular momentum L, which the bar gets as a whole
when it is magnetized, can be measured. Suppose that N electrons with their
elementary angular momentum j contribute to the magnetization. Then

Nj+L=0— L=—Nj (12.7)

holds and correspondingly we get for the magnetization

Mya; = NMjectron = Ng(g/2me)j = —g(g/2mc)L
=+g(e/2mc)L = +g(up/h)L . (12.8)

By measuring the macroscopic quantities L and My, we can determine the
gyromagnetic ratio g of the elementary magnetic moments and the angular mo-
menta which cause them. L is measured by the deflection of the light ray (see
Fig. 12.4); My can be determined by the residual magnetism (after previous
gauging).

As aresult of the Einstein—de Haas experiment, a magnetic moment of +2up
was found; thus g =?2. The negative sign (g = —e) results from the negative
charge of the electrons. The magnitude of two Bohr magnetons excludes the or-
bital angular momentum as the source of the ferromagnetism and can only be
explained by the existence of the electron spin.

A further conclusion to be drawn from this experiment is that the magnetiza-
tion of the iron bar does not originate from elementary magnetic monopoles, but
stems from electric currents caused by angular momenta.

We also note in passing that a precise determination of the g factor of the
electron follows from measuring the doublet splitting and also from the Rabi
experiment, which we shall discuss later in Example 12.2.
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12.3 The Mathematical Description of Spin

Spin is an angular momentum; therefore its mathematical description is analo-
gous to the formalism of the orbital angular momentum, which we became
acquainted with earlier.* In this section we will deal with some peculiar features
resulting from the facts that spin is a half-integer and that it can orient itself in
one of two ways.

Experiments suggest the exnstcnce of a spin vector S=1{S,, Sy, S }, which

21 tmm e

llab LlllCC bUlllpUllClllb Ox, Dy, d.llU Oz, ll DllUUlU UC an auguhu Momeintuim
vector operator. The characteristic feature of angular-momentum operators is
their commutation relations. Therefore we require that the Sk, §y, S‘Z obey the
same commutation relations as the operators Ly L s I:Z of the orbital angu-
lar momentum. This is the manifestation of the spin as an angular momentum.
Hence,

S, Sy — 8,8, =ihS$, ,
$,8,— 8.8, =ihs, ,
S8y — 8¢S, =ihS, , (12.9)

S,-gj—SjSi :iha,-ijk . (12.10)

1 for even permutations of 1, 2, 3
&ijk = 0 for 2 or more equal indices (12.11)
—1 for odd permutations of 1, 2,3 .

With this ;x tensor, e.g. the cross product of two vectors A = {A;} and B = { B;}
can be written as

(AxByi=) &pAiB; . (12.12)
ivj

Furthermore, the operators $; should be Hermitian, i.e. S; = §, to guarantee
that their expectation values are real.

For the representation of the operators it is customary to use the Pauli ma-
trices 6;. To exclude the factor 7h from the equations, we define them in the
following way:

S;=4%héy, S,=1%mné,, S, =1ihs,. (12.13)
4 We treat the algebra of angular momentum in great detail when discussing symmetries

in W. Greiner, B. Miiller: Quantum Mechanics — Symmetries, 2nd ed. (Springer, Berlin,
Heidelberg 1994).
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Thus, the commutation relations (12.9) take the following form:

o — o
xOy — x = £i0; ,

<
o
(=}
o2

y
G46, — 6,6, =2i6,

A A

6,6x — 616, =12i6y ; (12.14)
or, in a more compact form,
6i6j —66; = 2ig;jk6k - (12.15)

Because the spin components $; have, according to their two possible orienta-
tions, only the two eigenvalues, ﬂ:% h , the spin matrices must be 2 x 2 matrices
which have — as we know — exactly two eigenvalues. In the following, we take the
z direction as the “direction of quantization”. Then the z axis is the axis which
the orientation of the spin is related to. Mathematically, this means that the spin
functions are given as the eigenfunctions of the matrix 6;.

The matrix 6, is diagonal in its eigenrepresentation and has the eigenvalues
+1 as diagonal elements:

. 1 0 . 10
oZ=<O _]) and 3:(0 1):1. (12.16)

For the matrices 6x and &y, the analogous relations hold in their eigenrep-
resentations. Since the unit matrix remains unchanged when we change the

rameacantatinm tha tdantity
ICPICSCIILdIOn, ull 1GCIiLy

~2
R

A2
221 (12.17)

QR

2
y

holds generally. To obtain the matrices 6, and &, in the eigenrepresentations
of 6., we start from the commutation relations (12.14). Multiplication of the sec-
ond equation in (12.14) from the left and from the right by &y, and addition of
both equations yields

2i(86, + Gyby) = (6,8, — 6:6,)6, +6,(6y6, — 6,6,)
- (12.18)

if we also take (12.17) into account. This means that, independently of the
representation,

M

A

ny+

<
<
A

~ N 71721
yOx =V (i1c.1

holds, and likewise for the other components.
The Pauli matrices are anticommuting. These relations can also be written in
the following form:

[6x, 6'y}+ = [8)” 64+ =16;,6x1+=0 . (12.20)
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Relations (12.17) and (12.20) can be combined in a more compact form:
6’,‘61'-!-6']'6,' :25,']- . (12.21)

To calculate the matrices &y and &y explicitly, we write the following:

. aiy an A bit by
6y = , O,= . 12,22
* (a21 azz) Y (bZI bxn ( )
From the anticommutation relations (12.20) of &, and &, with &,, we get
arl a2 — —ajll ain (12 23)
—ay1 —axn —a ap)’

and thus a1 = a7 = 0. Therefore

_ {0 an)
e 0 )

Since the matrices should be Hermitian, &, = 6} = 6% is valid and hence

Q>
~~
—
[
[\
+a
~

a1 =aj, , (12.25)
so that

. (0 ap 22 (lapl> 0

Ox = (“Tz 0 ) and &5 ( 0 lan?) (12.26)

Because of (12.17), 62 has to be {; it follows that
lap|*=1. (12.27)
The appropriate way of writing the matrix element is e, « being real.

For the matrix &, we can proceed in an analogous way; i.e. we write the
matrices in the form

N 0 el N 0 ¢’
Oy = (e_ia ) N O'y = (e_iﬁ 0 ) . (1228)
Applying the anticommutation relation (12.20) to 8, and &, leads to
ell@—p) 0 e—l@—p) 0
( 0 e“i("’_ﬁ)> =— ( 0 sil@p) ) - (12.29)
or

@B _ _e=i@—p) _, lila—p) _ _q (12.30)
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Thus ¢ — 8 = %n. All relations can be satisfied if only the last one is fulfilled.
Therefore we set

a=0, B=-Ir, (12.31)

and get the Pauli matrices in the &, representation:

. {0 1 . (0 —i ~ (1 0
ax_<l 0), oy_(i 0), 02_(0 _]). (12.32)

The unit matrix together with the Pauli matrices are four linearly independent
matrices, which can be taken as a basis in the space of the two-dimensional ma-
trices (compare with Exercise 13.1). They are also suitable for the description
of other physical quantities which appear only in two states. Precisely for this
reason, we again find the Pauli matrices in the formulation of the isotopic spin,
which describes the states “proton” and “neutron” of a nucleon.

The total spin is

o m om RE 5 3 52
52=S§+S§+S§: T(of+o§+022) = Z?‘LQ]I

1/1 24
_2(2+1)h 1, (12.33)
in complete analogy to the formalism of the orbital angular momentum. From
the commutation relations (12.9), it also follows that [SZ, §i]_ =0, i.e. each
spin component commutes with the square of the total spin.> Of course, this
also follows from (12.32) and (12.33), because the unit matrix commutes with
every other matrix. Since §? is proportional to the unit matrix, it is immediately
obvious that

(82, $1-=0

holds for all §i.

12.4 Wave Functions with Spin

By taking the spin into account, we assign a further degree of freedom to
a particle. To describe this degree of freedom, we additionally introduce the com-
ponent of the spin in the z direction, S, as an argument of the wave function.
The component S, can take only two values, namely :I:%h. Therefore the wave
function has the following coordinate representation:

Y=y 5,0 . (12.34)

5To this end the conclusions reached in Chap. 4 can be repeated step by step.



12.4 Wave Functions with Spin

337

Since S, takes on only two values, it is useful to denote the wave functions
with spin as column vectors with two components (spinors). This concurs with

the fact that the spin operators $; are represented by 2 x 2 matrices. The two
components of the spinor are

Y, )=y, +ih 0, a0 =y -1k 0, (12.35)

while the complete wave function is

V= (%g g) =Y1(r, Dx++v2(r, ) x-

=y, ((1)) +¥2(r, 1) ((1)) : (12.36)

The introduction of product functions for both components, i.e.

Vi, Dx+ =¥1(r, 1) ((1)) and Y (r,)x— = Y2(r, 1) (?) . (12.37)

is particularly convenient. The functions x4 indicate only the state of the spin,
i.e. “spin up” or “spin down”. |y |? is obviously the probability of finding an
electron with spin up at the location r and the time 7. Correspondingly, || is
the probability of finding an electron with spin down at the location r and time ¢.
This interpretation suggests that the total probability of finding the electron
independently of its spin direction must be 1; thus

f (1,01 +1y2(r, 0] %) dV = f (¥v3) (5‘2) v
— / W, ndv =1 . (12.38)

Spinor notation offers a clear formulation of how the spin operators, written as
Pauli matrices, act on spinors. The eigenstates of the operator &, are

5, (‘/(’)1) - ( _01) (‘/(’)1) = (+1) (‘/(’)1) and (12.39)
R / G \ /11 G N/ G \ / G \
(2G5 2) ()0 (2)-

The spin functions x+ are unit spinors:

X+ = ((])) and x_ = ((1)) . (12.41)

O =
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Obviously,

{1\ / 0\
=ViX+ , Or =X~ . .
(5) e or (0) = 1

The unit spinors are, as can easily be seen, eigenfunctions of the spin operator &,
with the eigenvalues +1 and —1, respectively:

O x+=(+Dx+ and G:x-=(-Dxq . (12.43)

Let us write down an arbitrary spin operator in the form

& _ (S Si
S= : 12.44
(SZI S22 ( )
If we use the matrix representation, an operator acts on a spin function by matrix
multiplication (see Chap. 10):

®=8¢ , where &= (“’1) and ¥ = (‘”l) . (12.45)
2, Y2,

In a more detailed form, this relation reads
1\ _ (Su Sz () _ (Suvh + Sy ’ (12.46)
02 $1 Sn )\ $2191 + S2292

or, for each component,

o1 =Suv1+Sev .,
2 =Sv1+Sny . (12.47)

The average value of an operator is defined by [compare with (10.96)]
(S) =fw+§qfdv . (12.48)

If the wave functions are spinors, we have to use the Hermitian-conjugated wave
functions, instead of the complex-conjugated [see (10.27)], i.e.

Y\ -
(%) =(v3) . (12.49)
The average value is then easily calculated as
() =/(§(r, t))dV=/'P+§(r, nwdv , (12.50)
with

(S(r,n)y=wtsw ,

(Sr. 0y = (W3 (:3; g;i) (ﬁ) ’

(S(r, 1)) = Y S + U S1av + 92 Sy + V3 Sy . (12.51)
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Here, (S‘ (r, 1)) is the average value of the spin operator (averaged over the spin

An-nnﬂr\nc\ at the ]r\r-ahnn r an time ¢ nn the other hand /('(f\\ is the averagce
;;;;; at g 10C ang ume 7, 1€ OINer 1ang, (o e average

over the spin directions and each location at time ¢.
Let us apply the above to calculate the average value over both possible spin
states of the Pauli matrices. For the x component we have

(ox(r, 1)) = = (YY) (1 0) (f) =y¥iv2+¥ryn . (12.52)
In an analogous way we get for the y component

A wo (O —1Y (Y1 Lk Lk

(6y) = (Wiv3) (i 0 ) (%) = —iyY ¥ +iyYsy; and (12.53)

(Gojr = Wiy ((1) _01> (g;) =yl —viv2 . (12.54)

12.5 The Pauli Equation

In Chap. 9 we developed the Hamiltonian for the motion of an electron (charge ¢)
in an electromagnetic field in the absence of spin. This Hamiltonian reads

Ay = — (ﬁ~—Z~A)2+e¢, (12.55)

where A is the vector and ¢ the Coulomb potential. Since the spin interacts with
the magnetic field, the electron gains additional potential energy. The magnetic
moment reads

=g (2 522 (24 §= s, (12.56)
\<me ) \<mc )/

)

uB = (le|h/2mc) and the potential energy in the magnetic field® is
U=—-M-B. (12.57)
The Hamiltonian of an electron with spin takes the following form:
1 = Hy+upé-B . (12.58)

We can use the information about the g factor of the electron (g = 2), which
was discussed earlier, precisely at this point. With this Hamiltonian [(12.55) and

6 See J.D. Jackson: Classical Electrodynamics, 2nd ed. (Wiley, New York 1975) and
W. Greiner: Classical Electrodynamics (Springer, New York 1998).
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(12.58)], we get the Schrodinger equation of a particle with spin, known as the
Pauli equation,

1 /. e \2 . L
[%( —EA) +e¢+uBa-B:|lII—1h—8t— : (12.59)
where
_ ("
v (wz) (12.60)

are the spinor wave functions. We call such two-component wave functions sim-
ply spinors; sometimes they are called two-spinors to distinguish them from the
four-spinors occurring in relativistic quantum theory.”

Thus the Pauli equation is a system of two coupled differential equations for
Y and vy, describing electrons with the z component of their spin up or down,
respectively. Because of the form of the Pauli spin matrices, we can easily see
that the system (12.59) is decoupled for &, and only coupled by 6 and 6.

In the following we shall calculate the current density which results from the
spinor equation (12.59). To do this, we write it in the form

v .

The adjoint equation of (12.61) reads

a1
(o) 4

—ih =
ot

Tsv™ + up(6 - BT = Ai Wt +up¥té B, (12.62)
because 6 is Hermitian and the magnetic field B is real. Now we multiply (12.61)

from the left by ¥+ and (12.62) from the right by ¥. Subtraction of the equations
yields

d A A
ihaqﬁw =Vt (HyW) — (HiwHY . (12.63)
If we insert Hy, all parts which contain no operators drop out, i.e.we are left with
9 h? i
ety = — [tV (VAW (V. AL AV
ot 2m 2me
+(V-A+A -V} (12.64)
The first term on the right-hand side can be transformed into

YtViy — vyt = div(rtve —yvet) | (12.65)

7 See Chap. 13 and W. Greiner: Relativistic Quanium Mechanics — Wave Equations 3rd
ed. (Springer, Berlin, Heidelberg 1994).
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For the second term (we must pay attention to the order. ¥ is the first and ¥

the second factor)
ne second ractor!),

WHV-A+A- VW H[(V-A+A- VU
=20T¥divA+24-(WTVY +(VEY)
=20 W divA+2A4.- V(@) =2div(A¥ YY) |

is valid. Therefore from (12.63) it follows that

o 2 SE
ity =~ giv[wtve — (vohHw] + 28 divavte)
ar 2m mc

This is the continuity equation in the form

ow
ot
w=wtyw

+divj =0, where

is the probability density and

ih
j= - tve - (Ve - -~ Avtw
2m mc

is the current density of the electrons.
Now we insert the two-component wave function

/ N\

v = (5;) and U+ =y, yd)

and arrive at
w= (YY1 +¥3v2)
and

ih
J = 5V 92V = V=45V )
e * *
— AWV YY)
or, rearranging,
. ik * * e *
J =5 W VYr —¥ Vi) - %Awl v

ih * * € *
+ 5,,‘,W2Vw2 =Y Vi) — %A'/fz Y .

(12.66)

(12.67)

(12.68)
(12.69)

(12.70)

(12.71)

(12.72)

(12.73)

(12.74)

It turns out that both the probability density and the current density are composed
additively of the parts of the two different spin directions; this is reasonable. Mul-
tiplication of the particle current density j by the charge e yields the electrical

current density je.
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Bhd A A

M

Particle with spin and mag-
netic moment M precessing
in a magnetic field B

The current density je does not contain the spin; rather it is the current density
caused by the orbital motion of the electrons (with a different spin). However,
the spin of an electron also causes a magnetic moment, which can be expressed
by a corresponding current. We shall call this part of the current density js the
spin current density. This current density cannot occur in a continuity equation
in which the charge conservation is expressed by convection currents.

To calculate the spin current density js, we start with Maxwell’s equations.
For the curl of the B field the following well-known relation® exists:

curl B= (4n/c)(Jo +ccurl (M)) . (12.75)

11 4ivL)

We have replaced the magnetization (M) in this case by the averaged density of
the magnetic moment (M), where averaging over the spin states is meant. The
magnetic dipole density is given by

(M) = —ug¥tév , (12.76)

and thus

curl B=4dn/cj = (4/c)(jo — cup curl ¥ TG w
= @n/c)(Je+Js) - (12.77)

The contribution
js = —cupcurl ¢ tgw (12.78)

is the current causing the magnetic moments of the electrons, and is equivalent
to them.

EXERCISE I

12.1 Spin Precession in 2 Homogeneous Magnetic Field

Problem. Determine the precession of the spinin a homogeneous magnetic field
(see figure).

Solution. If a charged body moves in a homogeneous magnetic field, it circu-
lates around the direction of the field with the frequency w = 2wy = —eB/mec.
Here the charge of the electron is (—e). This follows from the fact that the Lorentz

8 See J.D. Jackson: Classical Electrodynamics, 2nd ed. (Wiley, New York 1975) and
W. Greiner: Classical Electrodynamics (Springer, New York 1998).
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force balances the centrifugal force:

—er/c:mra)z . (1)
Thus

w=—eB/mc , (2

whereby w1, = —eB/2mec is the so-called Larmor frequency.
The spin function at time ¢ = 0 reads

X =aox++box— - 3)

If we take for the constants ag = e'¥ cos(®/2) and by = e® sin(©/2), the nor-
malization condition

laol > + bl 2 =1 ()

;..
Z’

ohv ad chall anladata tha fanmanag of meanaoal
is qu1uu51y fulfilled. Now we shall calculate the mmequency of pi‘eCcamGﬁ of the

spin in the magnetic field B = {0, 0, B;}.

Let us assume (hat the electron is fixed at a certain location and its spin is the
only degree of freedom. That part of the Pauli equation (12.59) which contains
the spin yields

)¢ . eh

R — p6 By =—""6,B

1 3 UBO - DX 2mCUZ X

ih% = hard,x . (5)

The spin function written as a column vector reads

x=ax++bx_=a((1))+b<(1))=(‘;) . (6)

Inserting this into (5) results in
. fa 1 0 a a
(3)=or (o 2) ()= (%) 2

d=—iwa , b=iwLb . (8)

a=age ! | p=hyel! )

The time-dependent spin function thus reads

B e \OL &Y 0os5(0)/2)
X= ( ei(uLt eié Sin(@/Z) ) . (10)

Exercise 12.1
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Exercise 12.1

Setup of the Rabi experi-
ment. The magnetic fields of
magnets | and 3 have strong
gradients in opposite direc-
tions, while the field of mag-
net 2 is homogeneous

The expectation value of the spin is obtained from

= (XX x Oy x xTE ) - (11)

Inserting the Pauli spin matrices from (12.32) and y of (10) into (11) leads to

~ h
(S)= 5[005(2@” + 38 —)sin O, sinQQwrt + 8 —y) sin &, cos O] (12)

Obviously, the spin component in the field direction S; is conserved while the
spin precesses around the z axis with twice the Larmor frequency 2y . This is
due to the gyromagnetic factor 2 of the spin. In contrast to this, the average value
of the orbital angular momentum precesses with only the frequency «y, around
the z axis [see Example 12.3, (15)ff.].

EXAMPLE I

12.2 The Rabi Experiment (Spin Resonance)

To measure the nuclear magnetic moment, Rabi developed the method of spin
resonance.The scheme of this experiment is sketched in the figure below.

S A S
| Xy D

4B | 2 ‘dz

dz

If the particles reach the inhomogeneous magnetic field 1, they will be de-
flected, depending on their spin orientation, in such a way that the slit A can be
passed only by particies with a certain spin direction. The homogeneous fieid 2
has no influence on the deflection of the particles. Thereafter, the particles enter
field 3, which has a field gradient opposite to that of field 1. Field 3 cancels the
original deflection, so that the particles reach the detector.

If the homogeneous field 2 is superposed by an oscillating field, which leads
to a spin flip, then the particles will be deflected in field 3 in the wrong direction
and will not reach the detector. From the frequency of the oscillating field (the
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resonance frequency), leading to a minimum in the beam intensity at the detector,

the magnetic moment of the particle can be calculated.

110 14

Now we want to investigate mathematically the behaviour of a particle with
spin :t%h in an inhomogeneous magnetic field B; on which a weak oscillating

field is superposed. The magnetic field should have the following form:

B = (Bg cos wot, Bgsinwot, B;) . (1)
We write the following for the spin function:

x() =a(®e ¥y, +b(e® x- (2)

where @ = —uB,/h is the Larmor frequency for the precession of the spins
around the homogeneous field. The factor 1 denotes the connection between the
magnetic moment and the spin of the particle:

M=opu . (3)

We start from the spin-dependent part of the Pauli equation:
. 0X .
1ha—t=—B-Mx=—uB-orx . @

Inserting (1) and (2) into (4) yields

3 /a(t) e—i(ﬁt\
ih— s | = — u(Bo cos wgtd
at b(t) e]a)t U( 0 (1)0 X

' A ) £ e i@t
+ By sinwypté, + B;6;) (ab((z) cidt > . ©)

Now explicitly inserting the Pauli matrices and calculating the derivatives yields

. —it —iat iat
if (abeei(f" ) + b (a_ze,-a;,) = —t By cos wot (ab:_ia;t)

. . _bei(bt ae—lzf)t
— 144 By sin wyt (ae_i“—”) — B, (—bei“'” . (6)
The last terms on both sides cancel each other because hd = —u B;. Together
with A&’ = —u By, we can write for both components of the spinor x
. s ~1y 1(2B—wp)t I
a=—1w'be™ v )
b= —ifae 12&e0)r 8)

These equations can be decoupled by taking the derivative of the first one and
eliminating b and b:

d—i26 —wg)a+d*a=0 . )

Example 12.2
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Example 12.2

To solve this homogeneous differential equation, we try writing a o ¢'® and
thus get the characteristic equation for @ having the solutions

N A (10)

or

w12 =2+5 9:@—% ,

5=\ (@—wn/22+@" . (11)
The common solution for the coefficient a is therefore given by

a(t) = ay e g, 1201 (12)
We choose the initial conditions in such a way that the particle at £ = 0 is in the
spin state x4, i.e. |a(t = O)|2 =1 and b(t = 0) = 0. Thus from (12) it follows
that

ar+ar=1. ( 13)

Together with (12) and (7) we get for the coefficient b

__ 2182

mo=—%7-mu9+&wﬂmwmﬂ9~&ém4ﬁ. (14
Starting from the initial conditions, we can now calculate the coefficients a; and
ay. From b(t = 0) = 0 it follows that

a1(2+8) +ax(2-8)=0 . (15)
Together with (13) we get

1 2 1 2

a1=2(1~3/ , a2=—2—(1+—6—) : (16)
Both amplitudes a(¢) and b(?) are given by

a(t) = (cos St —-i% sin 81,‘) s

b(t) = ——i% sin §re 18, 17)

From the terms in (2), returning to the spin, we realize that the quantity |b(7)]? is
the probability of finding the particle in the state x_ at time ¢:

|b(5)| % = (& /8%) sin’ 8¢ . (18)

Let tg be the time the particle needs to pass through the oscillating field. The ex-
perimental data are to be adjusted in such a way that after this time, the largest
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possible number of particles are in the state x_. At this time, the maximum of the
spin-flip probability !b(.t)!2 will be reached. From d!b!z/ dt = 0 it follows that

sinétcosét =0 . (19)

The sin? 8¢ curve of (18) has its maxima at the same locations at which the sine
function has extrema. Hence, the maximum, which we are looking for, is given
by the zero of the cosine function.

Therefore, at time fg, it holds that

b

8t il
0= = .
2V (@ —wo/2)2 + &2

2

or Iy (20)

The time 1y is fixed by the velocity of the particle and the size of the area which
the oscillating field occupies. Equation (20) contains, in addition, the data on
the magnetic field and the unknown magnetic moment g, which can thus be
determined.

EXAMPLE N

12.3 The Simple Zeeman Effect (Weak Magnetic Fields)

As a further example of the application of the Pauli equation, we consider the
splitting of the spectral lines in a weak magnetic field. Here we shall treat the
simple Zeeman cffect, i.e. we neglect the spin—orbit interaction.

The spin—orbit interaction leads to the fine structure of the spectra, a further
splitting, which we shall not take into account here.’?

The magnetic field should be homogeneous and possess only a z component:

R={(0,0

.0, B} . (1
In this case, we may express it by a vector potential

A={—}By, 1Bx,0} , )
as can casily be shown by the relation

B=curlA . 3

We denote the Coulomb potential by ¢.

9 We discuss this topic in W. Greiner: Relativistic Quantum Mechanics — Wave Equa-
tions, 3rd ed. (Springer, Berlin, Heidelberg 2000), where it follows naturally from the
Dirac equation.

347

Example 12.2
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Example 12.3

Again we start from the Pauli equation for a particle with the charge e. The
Hamiltonian reads

. 1 e \2 eh
H=—(p__A) tep——6-B . “
c 2mce

Since the magnetic field is weak, we neglect the term with A% and get, using
divAa =0,

p? h 3
(p——iA-ﬁ+e¢—e—B-&)W=ih—w. 5)
\ me 2mce y at

Instead of the term A - p, we introduce the angular-momentum operator. Accord-
ing to (2) we get

B B/ 9 9 B.
. A:—— p, — p :h— —_—— = — .
A-p 2(ypx xpy) =i > (yax x 3y) 2Lz

Together with Hy = P?/2m + e, (5) leads to
., 0 - B . R ,
ihlw = Agw — 22 (E, +hé,)w . 6)
at 2mc

Since we are interested only in the energies of the stationary states, we write the
following for the wave function:

U(r, 1) = Y (r) exp (—%Et) . 1)

Thus (6) can be transformed into the eigenvalue equation
A eB . N
HyW — ——(L;+hé6)¥ =EW . ®)
2mc

Taking the Larmor frequency wr, = —eB/2mc, and applying the spinor notation,
we get

in(f)+on [t (5 2)] ()= (2)

Both spinor components are decoupled (since &, is diagonal) and yield the
equations

Hoyri + oL, + Ry = Eyn
g 7 'y QY
YZ o \77

If the magnetic field were abscnt, we would get the eigenstates of Hj as solutions
— identical solutions, in fact — for both spinor components, as a look at (9) tells
us:

V1 = Y2 = Ynim = Ru(NYim (0, ¢) . (10)
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Since the wave function i, is an eigenfunction of L,

Z\fz'//nlm = hml/fnlm ; an

Y 18 also an eigenfunction of the complete equations (9). Thus the wave
functions are not altered in the approximation (A% = 0) we have used.
Together with the eigenvalue equation of the operator Hy

ﬁ[]‘//nlm = ES[wnlm

and the relations (10) and (11), we get from (9) the energy eigenvalues:
Epm=EY +oLh(m+1) for &= (w’gm)

and

palld -0 3 . 15

E, =E +w,h{im—1) for &= . (12)
nlm nl T WL ) kllfnlm} (1)

Because of the magnetic field, the energy depends on the orientation of the mag-
netic moment with respect to the field direction. Levels which are degenerate
when the magnetic field is missing then split up. The two-fold splitting of the
s states, which have no orbital magnetic moment, is proof of the existence of spin
(the Stern—Gerlach experiment).

The following figure shows the splitting of a yr10g and a Yy, state.

1/ i

m Spin

——— 1 up
/ 0 up
2p X —1/1 up/down

0 down
-1 down
0 up

1s — << — — — 1~--
0 down

The 2p state thus splits into five levels; one of them is twofold degenerate.

Since the interaction of the spin with the light wave emitted when a transi-
tion occurs is small, the spin is not altered. Therefore only transitions between
states of equal spin direction occur; these transitions are indicated in the figure.

(r‘r\mmnrﬂv ﬂ'\A rhr\nln galaction rule Am==+1.0 holds \
Lommony, GIPOo:C SCiCCuon ruic Ay o, U oG

We get the transition frequencies by using the dlfferences of the energies (12).
Since the spin direction does not change, we have

h,a): E /lr /—E //l// "
= E n'lr En”l” +0)Lh (m m//)
=wo+wL(m —m") ,

Example 12.3

& ~F o nA
opuuug O1 ui€ lj anag LP

levels in a magnetic field
(the Zeeman effect)
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B w Aw = twy,
MH
v

B Aw=0

The classical understanding
of the Zeeman effect

where «y is the transition frequency if the magnetic field is missing. Since the
difference is m' —m”, = %1, 0, we get two spectral lines in the magnetic field,
shifted from the original one by =y .

This result coincides precisely with the classical theory of the Zeeman effect
(see figure). Here, circular motion of an electron in a magnetic field is investi-
gated. The centrifugal force mre?’ and the Lorentz force +erwB/c act on the
electron, depending on the direction of motion.

Thus

mro?® + eroB/c =mr(w+ Aa))2
holds. If we neglect the second-order term o (Aw)? we get
Aw=eB/2mc =y, .

The decomposition of the circular motion is illustrated in the figure. The motion
leading to a shift in the frequency proceeds in the plane perpendicular to the field.
Aw = 0 corresponds to a motion parallel to the field.

We noted earlier that an angular momentum of a classical charged particle in
a magnetic field precesses with the Larmor frequency around the direction of the
magnetic field (see Exercise 12.1). It is possible also to identify a precession by
treating the Zeeman effect quantum-mechanically.

The Hamiltonian in (6) can be written in the form

H=Hy+w.L; +2w.8, . (13)

The rate of change of the angular momenta results from the commutation
relations
L,

dr

I A
:g[Hva] ’

and analogously for the other components as well as for the spin. The compo-
nents of the orbital angular momentum commute with Hp and S.; therefore, only
the commutation relation containing L, remains. Together with the commutation
relations of (4.65), it follows that

A S A

e ol Ly yorl i _y 14)
dl_—wLy, dt—wny dl_' (

The second derivatives with respect to time follow immediately from these
equations:

. &L R
=-oil,, —F=-0il,. (15)

d?L,
dr2
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We know that the expectation values fulfil the same relations as the operators. As
can easily be calculated, (14) and (15) have the same solutions:

(Lx) = Asin(wLt +¢) ,
(Ly)=—Acos(wLt +¢) ,
(L;) = const . (16)

The same commutatlon relations also hold for the spin. The Spin operator com-
mutes with Hn and L, but not with the term containing SI in (13). We get
relations equivalent to (14) and (15), whereby, correspondmg to (13) wr, is
replaced by 2ewy (cf. Exercise 12.1):

{8y} = AsinQuwrt +¢) ,
(Sy)=—AcosQurt+¢) ,
(S,) = const . am

As indicated in the figure, these equations imply that the components of orbital
and spin angular momentum parallel to the magnetic field (L, and S, respec-
tively) are constants of motion. On the other hand, the components orthogonal
to the magnetic field, L = (L, Ly) and S| = (84, Sy), rotate with the Larmor
frequency, wr, and 2wy, respectively.

Since we have neglected the coupling between spin and orbital angular mo-
mentum here, both vectors precess independently around the magnetic field. The
z component of the orbital angular momentum L, and that of the spin S, re-
main, as mentioned above, constant. We should note that the spin rotates twice
as fast as the orbital angular momentum. Taking into account the corresponding
gyromagnetic factors (see Sect. 12.1), the magnetic moment M, given by

M =My +Ms = (us/R)(L+28) (18)

behaves analogously. Owing to the absence of LS coupling, we directly get for
the z component of M

M; = (u/h)(L,+2S;) . (19)

Example 12.3

(L)
Precession of the orbital an-
gular momentum and the
spin (a), as well as their
corresponding magnetic mo-
menta (b), around the mag-
netic field (z axis)
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12.6 Biographical Notes

GOUDSMIT, Samuel Abraham, American physicist of Dutch origin, *11.7.1902,
14.12.1978. G. taught from 1928 to 1941 at the University of Michigan in Ann Arbor,
and was a member of the Massachusetts Institute of Technology in Cambridge, Mass.
from 1941 to 1946. From 1948 he worked at the Brookhaven National Laboratory in
Upton, N.Y., in particular on the structure of atomic spectra. To interpret the latter, in
1925, together with G. Uhlenbeck, he introduced the spin of the electron into quantum
theory. This concept proved to be of much greater importance than the discoverer ex-
pected. In 1944/45, G. was the leader of a secret mission (“Alsos™) to investigate the
German project on atomic energy. He received the Max Planck medal of the German
Physical Society in 1964.

UHLENBECK, Georg Eugen, Dutch-American physicist, *Batavia 6.12.1900.
U., a university professor in Ultrecht and Ann Arbor, introduced in 1925, together
with S. A. Goudsmit the hypothesis of “spin” as an intrinsic rotation of the electron.
U. published, among other works, “Over statistische methoden in de theorie der quan-
ta” in 1927 and received, together with S. A. Goudsmit, the Max Planck medal of the
German Physical Society in 1964 [BR].

de HAAS, Wonder Johannes, Dutch physicist, *Lisse at Leiden 2.5.1878, t Bilthoven
26.4.1960. H. was a co-worker at the “Physikalisch Technische Reichsanstalt” in Berlin
from 1913 until 1915, Together with Einstein, he demonstrated the Einstein de Haas ef-
fect in 1915, i.e. the occurrence of a torque when an iron bar is magnetized in different
directions. The verification of this effect was considered a confirmation of the existence
of the Ampére molecular currents. After he had been a teacher at a secondary school in
Deventer and the “Konservator” of the Texler Foundation in Haarlem, H. was a univer-
sity professor at the Technical University in Delft and of the University of Groningen.
From 1924 to 1948, he was the successor of H. Kamerlingh Onnes and together with
W. H. Keesom, was joint director of the low-temperature laboratory in Leiden. There, to-
gether with his students, he performed basic investigations of paramagnetism at very low
temperatures, superfluidity of helium, and superconductivity. In 1927, simultaneously,
but independently of W. F. Giauque, H. applied the procedure of the adiabatic dimag-
netization of paramagnetic salts to produce temperatures tar below 1 K. This procedure
had been suggested by P. Debye in 1926. Furthermore, in 1930, he discovered, together
with his assistant J. van Alphen, the effect named after both discoverers. This effect is
of importance for the investigation of the behaviour of electrons in metals [BR].

PAULI, Wolfgang, Austrian-German-Swiss physicist, *Vienna 4.12.1900, }Ziirich
15.12.1958. As a fifth-semester student of A. Sommerfeld in Munich, P. wrote a sum-
mary on the theory of relativity for the Mathemat. Enzyklopaedia. In 1921 he proved
in his Ph. D. thesis that quantum theory at that time was still incorrect. In his dis-
cussions with W. Heisenberg, M. Born and N. Bohr, P. contributed substantially to the
development of matrix mechanics. At the beginning of 1926 he applied the new theory
successfully to the hydrogen atom. In 1924, P. discovered the exclusion principle (Pauli
principle), for which he got the Nobel Prize in 1945. In the same year he postulated
the existence of nuclear spin to explain hyperfine structure. In 1927 he set up the field
equations for the electron, which included spin in nonrelativistic form; in the following
years, together with Heisenberg, he made 1nitial contributions to quantum field theory.
After periods in which he worked in Gottingen, Copenhagen, and Hamburg, P. returned
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in 1928 as a professor to Ziirich at the ETH. In 1930 he put forward the neutrino hypothe-
sis. From 1940 to 1945, while working in the United States, he was concerned especially
with meson theory. In 1946 he returned to Ziirich, where he devoted himself primarily to
quantum field theory and particle physics. In 1953, he began discussions with Heisenberg
on the unified theory of matter (“Weltformel”), which the latter had developed. P. greatly
influenced the physics of his time. With his profound analysis of the epistemological sup-
positions of science and his criticism of obscurity, he was considered the “conscience of
physics”. [BR]

LARMOR, Sir Joseph, English physicist and mathematician, *Magheragall, Co. Antrim,
Ireland 11.7.1857, 1 1942. From 1903 L. was a professor of mathematics at Cambridge
University. He worked on problems in theoretical physics, especially on the theory of
the electron, in the course of which he discovered the so-called Larmor precession. He
made important contributions to relativity theory, and wrote Aether and Maiter (1900).

RABI, Isaac Isidor, American physicist, *Rymanov (Galicia) 29.7.1898, t 1988. R. was
a professor at Columbia University in New York from 1929. By suitably changing the
molecular beam method discovered by O. Stern, R. could detect in 1933/34 the nuclear
spin of sodium and determine the nuclear magnetic moments and the hyperfine struc-
ture of the spectral lines. R. developed the resonance method to determine the magnetic
properties of atomic nuclei. In 1944, he was awarded the Nobel Prize in physics. During
the Second World War, R. participated in the development of radar. [BR]

ZEEMAN, Pieter, Dutch physicist, *Zonnemaire (at Zierikezee) 25.5.1865, 1 Amster-
dam 9.10.1943. Z. was a university professor in Amsterdam. In 1895, he discovered and
studied the Zeeman effect, which had already been observed ten years earlier by Charles
Jean Baptiste Fievez. In 1902, together with H. A. Lorentz, who gave an explanation
of the Z. effect on the basis of his so-called electron theory — meanwhile outdated —
Z. received the Nobel Prize in physics. [BR]






13. A Nonrelativistic Wave Equation with Spin

In this chapter we introduce a new method of deducing — in a systematic, theor-
etical manner — the Pauli equation for the electron with the correct g factor. In
contrast to carlier derivations, we do not refer to empirical facts, but develop the
new theoretical concept of the linearization of the wave equation.

What is meant by this will become clear in the next few sections. Concep-
tually we are dealing with the same method which will be used later on in
relativistic quantum theory to derive the Dirac equation from the Klein-Gordon
equation. Levy-Leblond,! for example, performed such a linearization for the
Schrodinger equation. Here, we partially follow his argumentation, nevertheless
abandoning it at some points, in order to demonstrate the ideas more easily and
clearly.

- 4 m e . a PR R o I | ee We Al ase
13.1 1€ LINnearizauon o1 e scnroainger r.quation

First we abbreviate the Schrodinger operator by

. 9 A2 . p?
S=ih—+—~A=E— — . 13.1
o om 2m 3D
The free Schrodinger equation then reads
Sy=0. (13.2)

It is asymmetric with respect to time (3/ ?t) and space derivatives (9/9x). This is
because the former appears linearly in S, while S is quadratic in p. To remove
this asymmetry, we try to construct a wave equation of the general form

Oy =(AE+B - p+C)y=0. (13.3)

Here A, B and € are to be linear operators (matrices) which still have to be
determined, but which no longer depend on E or p. According to (13.2), we

1 J. M. Levy-Leblond: Comm. Math. Phys. 6, 286 (1967).
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further require that the solutions v of (13.3) simultaneously be solutions of the
Schrodinger equation. This means that the equations

Y =0 (13.4a)

and

~

Syr=0 (13.4b)
must be simultaneously valid. Then an operator
& =AE+B p+C& (13.5)

must exist so that the multiplication of (13.4a) by 8’ again yields the Schrodinger
equation (13.4b), i.e.

'O =2mS . (13.6)

The factor 2m is actually arbitrary, but will prove useful later. The operators A’,
B’ and €', introduced in (13.5), again shall not contain £ and p. They still have
to be determined, as do A, B and C. If our procedure proves unsuccessful or im-
possible, we would be unable to find operators A, B and C. If we are successful
(and indeed, this will become apparent), then the equation @y = 0 represents a
more or less equivalent wave equation to the Schrédinger equation, but linear in
both E and p. Then we speak of (13.3) as the linearized Schrodinger equation.

To construct A, A’, B, B/, € and €', we multiply the expressions (13.3) and
(13.5) for @ on @ and carry through, according to (13.6), a comparison of
coefficients with 2m S. We obtain

3 3
(A'E+Z“,’.,3,-+é') AE+Y Bips+C| LomE-S 2, (137)
i=1 k=1

j=1
and thus
AA=0, A'Bi+BA=0,
A'C+C'A=2m ., BB;j+BB=-2;,
cc=0, C'Bi+BC=0 (i,j=1,23). (13.8)

Bo=iA+-1¢), Bi=i(d+1¢)
T2 C)  Bami A5,
‘_"_L" A/_AI_L"/
Bs=A-5-C, By=A'— (. (13.9)

So (13.8) becomes
B,B,+B,B,=-28,, (uv)=1105. (13.10)
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These relations can still be changed into another form which is more custom-

T M ko it
a{'y 1'1 relaﬂ‘v’i‘)‘[lc quaﬂtuul un.'\.«huluvs ietMoea uuu);usulcu, arbitr: ary U}lel ator

(with MM~! = 1). Then we choose

Bs=—iM, Bi=-im". (13.11)

The following anticommutation relations follow by insertion of (13.11) into
(13.10):

VaVp+PpPu =200 (@, B=1,...,4). (13.12)

We should note that these relations are valid only for four operators 7, while in

(13.10) there are five operators E“ present. It can easily be seen that the defini-

tions (13.11) automatically fulfil the anticommutation relations (13.10) for the

case that one or both indices are equalto 5 (i.e. wu =5 orv=>5, or & = v = 5).
For example, we calculate

BLB,+ B Bs = —iM'Mp, — p, M (—i) M
=—iPy—P)=0 for v=1,2,3,4, (13.13)

BYBs+ BsB, = —iM~ N ()M + (—)M(-D)M ™' =2 = -2 . (13.14)

So the five operators B, will be replaced by the four ,, and the arbitrarily chosen
operator M (which indeed must not be singular because it must have an inverse
operator M~ 1),

The anticommutation relations (13.12) define an algebra, which is known in
the literature as Clifford algebra. It can be represented by matrices and leads to
the algebra of the complex 4 x 4 matrices (of particular importance in relativistic
quantum theory) as a special representation.

In order to obtain an explicit representation for the #,, and thus for the By,
we observe (13.12) more carefully, and immediately verify that?

M=vi=yi=yi=1 and (13.15)
Ya¥VB = ~V¥gYe for o #p (13.16)

must hold. In other words, the squares of the y,, are 1 and the different y operators
anticommute.

It follows from the former that the eigenvalues of y, have to be +1. Matrices
representing the y’s have to be quadratic according to (13.15). And from (13.16),

2 From now on, we shall omit the operator sign on the y, operators, keeping in mind,
however, their operator character.
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it follows that the traces of these matrices have to vanish, because for o # B, we
have

VBYe = —YaVB = Yo = —VBYaVB =
Yy = —irygla¥p = —tryayg =Yy , (13.17)

and thus try, =0. In the last step we have made use of trace AB =
Y x AixBy = trBA and the fact that yg = 1, according to (13.15). As the trace
is just the sum over the eigenvatues, the numbers of positive and negative eigen-
values have to be equal. Therefore the v matrices have 1o be of even dimension.
The smallest even dimension, N = 2, has 1o be excluded, because in 2 x 2 matrix
space, there is only room for 3 anticommuting matrices &; and the unit matrix.
The 6;,i =1, 2, 3, are the well-known Pauli matrices, which anticommute ac-
cording to (12.21). (In Exercise 13.1 we will show that the three 4; and the 2 x 2
unit matrix 1 completely span the space of 2 x 2 matrices.)

Thus we conclude that the smallest dimension under which the conditions
listed above on the 4 anticommuting matrices y, can be fulfilled is N = 4. Be-
cause of the properties of the Pauli matrices, described in Chap. 12, it is not
difficalt 1o give the following representation for the y,:

0 5 . {1 0

Here, 0, 1 and the &; indicate 2 x 2 submatrices; thus (13.18) is an abbreviation.
Explicitly, (13.18) reads

0 0 O 1 6 0 0 —i
foo 10 fo 0 i o
i=lo 1 00| 5|lo -i 0 0}
1 00 0 i 0 0 0
0 0 L 0 10 0 0
fo o 0 -1 fo1 0 o
B=ly o 0o o) “=lo0 -1 0 (13.19)
0 -1 0 0 00 0 -1

The validity of relations (13.15) and (13.16) can easily be checked. For example

2 0 & 0 & 2 0 i1 0

v = ~ = ! = =Il4
! 6; 0)\6 © ] 51,1 0 1 ’
; (1 0\(1 0\ _(1 0\_g
Ya=Y0 —1Jl0 —1)/T0 1)7 %
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ot = [0 B[O 67\, (O 8\ (O &)
' \é& 0)\ J \g; 0J)\& 0)

_ (6i6;+6,6; 0 285 0
- 0 &i8j+6j&5 0 25,‘]-
1 0 ..
=2(0 l) & , for i,j=123, (13.20)
0 &\ {1 0)
Viva+yavi = k&i 0) (0 _ﬂ)

0 6 0 0
(6i 0):(0 0):0. (13.21)

To obtain a matrix representation for the l§v in accordance with (13.11), we
choose

. 0 1
M=<1 0>=

The relation

=M. (13.22)

o= o0
—_o oo
oo -
oo =0

(29

is obvious. We continue calculating:

T A 0 &\ _ (6 O .
B,—My,—-(Il 0)(51’ 0)_(0 51') for i=1,2,3,
0
i

(20

MM

1§4=i\7[y4= (9 E\
\L v

J\0 —1 0/’
Bs = —iM=—i (3 g) . (13.23)

As was just mentioned, the Pauli matrices &; and the 2 x 2 unit matrix 1 com-
pletely span the space of the 2 x 2 matrices. This means that any arbitrary 2 x 2
matrix can be expressed by the §; and 1. We will show this in the following
exercise.
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EXERCISE I
13.1 Completeness of the Pauli Matrices

Problem. Show that every 2 x 2 matrix (u“ uu) can be expressed by 1
and 6;. U

Solution. First we write down the proposition
3
Ui U2 A
= a;0; +aql
(uzl uzz) ; o1+ as

0 1 0 —i 1 0 10
=aily o)t2l; o) tBlo —1)+T4lo 1

(@3 +as) (a; —iap)
(a1t+ia) (—az+as)) -~

(1)

Both matrices have to be equal in each element. Then we get the following
system of equations:

U1y =0a, +0a2+az+as ,
u1p =a) —iay +0a3+0ay ,
uyp =ay+iap +0a3+0ay ,

w2y =0a; +0a2 —az +ay , ‘ (2)

with the determinant of coefficients

o0 1 1

1 -1 0 O .

1 i o0 o~H#O, ®
0 0 —1 1

which is always nonzero. Hence, a nontrivial solution always exists; i.e. not all
coefficients a; vanish, proving the proposition; ; and 1 span the whole space of
2 x 2 matrices!

EXERCISE I
13.2 A Computation Rule for Pauli Matrices

Problem. Let A and B be arbitrary vectors. Prove the relation

(6-A)G-B)=A-B+ié-(AxB) . (1)



13.1 The Linearization of the Schrédinger Equation

361

Solution. The commutation relations for the 4; are
5,’&] = iSi]‘k&k +5U , Wwhere
1 even permutation of 1, 2, 3

gijk = {—1 odd permutation of 1, 2, 3 2)
0 otherwise .

Addition (or subtraction) then gives
6,6]- — &ja'i = Zieijka'k >
6’,’6’j—}—5’j6’i :25;‘]‘ . (3)

We write out the scalar product

3
(6-A)(6-B)= Zm,(iﬁ ). @)

For the individual components we can write
0iA;6;B; = A;Bj(ig;k0r +3;5) , (5)
and

D AiBis;i =) AiB;
ij I

is just the scalar product A - B. In the first term, the sum can be expanded over k
without making any changes:

Z%MBW D ekAiB by (©6)

i,jk

because, for example, for i, j = 1, 2, k has to be equal to 3 and the additional
terms of the supplementary summation over k with k = 1, 2 vanish identically.
Now ¢;jxA; B; are just the components of the vector product A x B. Therefore
we have

ZEkaA B o‘k Ze,,kA B;6y

i)k
N\ Ao A A AL IR 1\
—L\dx")kak——u'\ x {/)
k
Altogether we get
(6-A)(6-B)=A-B+i6-(Ax B) . (8)

Exercise 13.2
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It now follows from (13.3) that the wave function

or

_{(Py\_ ¥

w—(X)_ > (13.24)
X2

must have four components, because A, B and € are 4 x 4 matrices. Here,
Q= (g) and x = (p );; are two-component spinors, which together form the
X2

fourcE)'mf)onent spinor . ) A
We now solve (13.9) for A and C:

A=1(Bs—iBy, C=-m(Bs+iBy) , (13.25)
and thus
i .(0 0\) i G2 .(0 n) (13.26)
= —1 an = zml . .
Lo 0 0

In the next step, the matrices A, B and C are inserted into the equation of motion
(13.3), giving

[_i ((1) 8) E+(g S) P+ 2mi (8 g)-l (;) =0. (13.27)

AN / N / AN /A a N

Writing this matrix equation by components, we obtain the coupled system of
equations for the two-component spinors x and ¢,

6-pp+2mix =0, & px—ikp=0, (13.28)

where ¢ is the vector with the components &;: & = {61, 62, 63}.

EXERCISE I

13.3 Spinors Satisfying the Schriodinger Equation
Problem. Show that the two-spinors ¢ and x satisfy the ordinary Schrddinger
equation.

Solution. We first eliminate x = —(& - p/2mi)g and get from (13.28) that

[ CDED], "

2mi
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Since (6 - p)(é - p) = p>, we obtain

52
A p _

This is the Schrodinger equation for ¢.

Now we eliminate E¢ = (6 - p) x/i from the second equation in (13.28), and
insert the result into the first equation in (13.28). Multiplying that result by E
yields

[(1/i)(8 - p)(6 - p) +2miE]x =0 or

")
(E—p—)x=0. 3)

2m

Therefore x also satisfies the Schrodinger equation, as was to be shown.

of the linearized

In Exercise 13.3 we show that the four-spinor ¢ = ﬁ

Schrodinger equation {(13.3), (13.28)] indeed satisfies the ordinary Schridinger

equation, as we required. Therefore the energy eigenvalues are in both cases also
E = p?/2m. After eliminating , the corresponding eigenvectors take the form

_ 2
V= [(—&'ﬁ/2mi)so] ' (13:29)

Here, it would seem that the wave function 1 with the lower component x
contains redundant information. That this is not valid in general will now be
demonstrated by considering the coupling with an external electromagnetic field.

13.2 Particles in an External Field and the Magnetic Moment

The gauge invariance of the Schrodinger equation requires the substitution
(minimal coupling — see Chap. 9)

., 0 ., 0 . .
ihe —ih-—eV(x,) and —ihV —>ihV— A0, .,  (13.30)
ot ot c
or, in Lorentz covariant notation,

9 9
b2 (—ih——fA,i) . u=1,234, (13.31)
dxy dx, ¢

Exercise 13.3
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where the four-potential is given by

~ ~

A={A,}={A,iV} . (13.32)

Here, e is the electric charge of the particle, V(x, r) is the Coulomb potential and
A(x, 1) is the vector potential. Let us remember the essential argument. A gauge
transformation is described by

af
A=A+ .
W= At (13.33)

with an arbitrary function f(x,). The minimal coupling (13.30), together with
the phase transformation for the wave equation

W' = rexp [—%f(xu)] , (13.34)

then lead to

(—ih—a- - EA’;L) e

dx, ¢

- (—ih—a— ~ZA,— f?i) v expl—(e/ific) f]

ox, ¢ ¢ Oxy
- [(—ih—a— - EAM> w] exp[—(e/iho) f
ax, ¢
‘e df e df" ey
(EE - EE> J expl—(e/ih) f]
- [(—ihi _ fAu) w] expl—(e/ilic) f1 . (13.35)
ax, ¢

This means that a gauge transformation can be absorbed with the state-
independent phase exp[—(e/ific) f(r, )] and therefore does not change the
physics {matrix elements, expectation values etc.). So the minimal coupling
(13.30) leads to gauge-invariant quantum theories.

With (13.30), the free equations of motion (13.28) become

Qe

.(ﬁ_SA)X~i(E-—eV)go=0 :

(p-2a)¢+izmy=0. (13.36)

Q

Again we eliminate y = —[6 - (p—eA/c)/2milyp and get
LA L . 7. e L (. €
[—I(E—eV)—%tr(p—EA)a-(p—EA)} 0=0, (13.37)

[E—ev—ﬁ&.(ﬁ—gA)&.(p—gA)]go:o. (13.38)
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Using once more the identity
(6-m)(G-m)=n>+i6 - (x x 1) , (13.39)
we thus obtain
e e
5 (p—-A)6 .- (p——-A
#(p-cA)e-(p-24)
. € N2 . € . €
= (p—24) +io-[(p-24) x (5-24)] - (13.40)
The last term reduces to
4 . e e . R
(p—iA)X(p—-A)=——(pr+A><p)
C C C

e A A
:—E[(ﬁxA)—Axp+Axp]

—_Sphxa), (13.41)
C
so that at last (13.38) can be written as
_ | ,
E—eV———(ﬁ—EA) +—£&-(ﬁxA)](p:O. (13.42)
L 2m c 2mc

Now p = —iAV and B =V x A. Hence, (13.42) becomes

. I /. e N\2eh | ]
E—eV——(p——A) 6. Blo=0. (13.43)
| 2m ¢ 2mce

This is just the well-known Pauli equation! See Chap. 12.
The last term in the equation of motion (13.43) is the interaction energy of
the magnetic field with the intrinsic magnetic moment of the particle

p="6, (13.44)

or, because the spin operator of the particle is § = (1/2)§,

= 'e_hszgspin [LB.§=2,LLB.§ . (13.45)
mc

The factor gspin is called the gyromagnetic ratio or gyromagnetic factor and

turns out to be twice as large as that coming from the orbital motion. The ratio

8spin/ gorbit 18 called the spin-Landé factor g,. For the particle in question, g is
therefore 2.

Thus a completely nonrelativistic linearized theory predicts the correct
intrinsic magnetic moment of a spin-% particle.

In contrast to this, almost all textbooks falsely claim that the anomalous mag-
netic moment is due to relativistic properties. The existence of spin is therefore



366

13. A Nonrelativistic Wave Equation with Spin

not a relativistic effect, as is often asserted, but is a consequence of the lineariza-
tion of the wave equations. This can be philosophically expressed as follows:
obviously, the good Lord wrote the field equations in linearized form, i.e. in the
nonrelativistic case, as a system of two coupled differential equations of first
order, and then coupled the electromagnetic field minimally. He did not write
them as a differential equation of second order (the Schridinger equation).

We have successfully derived the Pauli equation from the Schrodinger equa-
tion. Whereas in the heuristic derivation of the Pauli equation presented in
Chap. 12 the spin degree of freedom was introduced “ad hoc”, in the deriva-
tion presented here we have only postulated the linearization of the equations of
motion. Everything else that followed was just a consequence of this postulate.



14. Elementary Aspects
of the Quantum-Mechanical Many-Body Probiem

If we consider a system of more than one particle, we derive its Hamiltonian,
describing it quantum-mechanically in the usual manner from the Hamiltonian
function of the system in classical mechanics. The Hamiltonian function

N 2
p‘
H= ; <~2n'” + Vilri, t)) +§; Vi(ri, 1) (14.1)

describes a system of N particles with mass m;. Here, V;(r;, f) is the externally
given potential (the so-called one-particle potential), in which the ith particle
moves; it can, for example, mean the external electric potential. Vi (r;, re) stands
for the interaction potentials between two particles i and k; it can, for example,
be their mutual Coulomb interaction. To get the Hamiltonian, we replace the
momenta by the corresponding differential operators

3

. n
pi—~ pi= Tvi , (14.2)

where the index i of the nabla operator specifies that the gradient has to be de-
termined at the location of the particle i, i.e. V; only acts on the coordinates
of the ith particle. Consequently the momentum operators of different parti-
cles commute, i.e. [p;, p;j]- = Oforalli, j. Thus the many-particle Hamiltonian
reads

N
. h?
H=Z(%A.-+v,~(ri,t))+z Vie(ri, 1) (14.3)
i=1 i#k
This is obviously a generalization of the Hamiltonian for one particle. We can
pow formulate a many-particle Schrodinger equation
Ay =ik 9 v
A
where the wave function now depends on the 3N coordinates of all particles and
on time:

Y=y(r,... .0

=Y(X1, ¥Y1,21, -+ + Xks Yk> Th> « -+ » XN, YN, TN, D) & (14.4)
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The treatment of this many-body problem confronts the same difficulties in
quantum mechanics as in classical physics because of the complexity compared
to the one-particle problem.

The wave equation is defined in a space with 3N dimensions, in the so-
called configuration space of the system. The name of this fictitious space
originates from the fact that the specification of the coordinates of a spe-
cial point in this space means the specification of the three-dimensional co-
ordinates of the position (xg, yk, zx) for all particles of the system (k=
1,2,..., N), and thus determines the state (configuration) of all particles in
three-dimensional space. Therefore a point in configuration space with 3N coor-
dinates (x1, y1, 21, ... , XN, YN, zN) is also called the configuration point of the
system.

‘We denote an infinitesimally small volume element in the configuration space
by dV:

dV=dVidVp---dVi---dVy

= dx;dy;dzy - - - dxgdyedzg - - - dxydyydzy . (14.5)
Then the quantity
WXL, Y1y Z1s -« » Xks Yo Zhs -« - » XNs YNs 2N, DAV = ¢y dV (14.6)

is the probability that the system can be found at time ¢ in the volume element
dV of configuration space. This means w is the probability density of the con-
figuration of the system, in which at time # the coordinates of the first particle lie
between x1, x1 + dx1; y1, y1 + dy1; z1, 21 + dz1; and of the kth particle between
Xk, Xx + AXx; Yk, Yk + Ayis zx, zk + dzz; etc. Besides the volume element, we
also examine the volume elements in the subspaces of the kind ds2;, ds2;, ...
etc., which are defined by

dV = dxpdyrdzz d2x = dVds2, ,
dV = dxgdyrdzidx;dy;dz;ds2g; = dVidV;d2,; ,  etc . (14.7)

Integrating (14.6) with respect to the coordinates of all particles, excluding the
particle k, i.e. over d§2x, we thus find that the probability density of the kth par-
ticle lies between xz, xx + dxx; v&, v« + dyk; zx, zx + dzx; and all other particles
are in arbitrary positions. In other words, we find the probability in such a way
that the kth particle is near a given position in space. Denoting this probability
by w(xk, Y&, zk, 1), we obtain

w(Xk, Yk, 2k, ) dxg dyg dzg = dxxdyg dzg /1//*1lfd9k . (14.8)

In a similar way, the quantity

W(Xky Yks Zhs Xj» ¥j» Zj, D dxpdyrdzdx jdy;dz;
= dxpdyrdzzdx;dy; dzjflﬁ*lﬂdﬂkj (14.9)
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is the probability that the kth particle lies at the point xx, Yk, zx and the jth one, si-
multaneously, at the point x;, y;, z;. If we know the wave equation 1 expressed
in configuration space, we thus can determine the probab111ty of a given config-
uration (14.6) of the system, the probability of the position of any given particle
(14.8) and, finally, the probability of the position of any given pair of particles
(14.9) etc. In the same manner, the probabilities for the value of an arbitrary
quantity can be calculated according to the general formulae of quantum me-
chanics by expanding v in terms of eigenfunctions of any operator of interest
to us.

We assumme that the wave function ¥(x1, ... , zy, I), like the wave function
for one particle, satisfies the Schrodinger equation
oy
ih- = Hy | (14.10)
t

where H is the Hamiltonian (14.3) of the particle system. As stated earlier in
(14.1), in analogy to the classical Hamiltonian for a system of N particles with
masses m;, ..., Mg, ..., My,

N o N
A Di
H=Z(%+Vi(xi,yt72i,t))+ Z Vik(Xi, i, Zi, Xk, Yo 2k)

2
i=1 N i#k=1

where V;(x;, y;, z;, f) — as just mentioned - is the potential energy of particle

i in the external field and Vi (x;, ... , zx) is the interaction energy between the
particles i and k, the Hamiltonian takes the following form:

L R,

A= ; (—z—mivi + Vitxi, yis zi, t))

N
+ Z Vie(Xi, Yis ziy X Vi k) (14.11)
iF#k=1

whereby

5 32 82 32
Visrs+t5+t5
ox; 9y 0z;
is the Laplace operator acting on the ith particle. The Hamiltonian operator can
also be written down in the presence of a magnetic field and spin. It is equal to the
sum of the Hamiltonians of the single particles plus the terms which determine
the mutual interaction.

From (14. 10) we can get the cquduuu of conti muy for the prUDaDully win
configuration space. To find it, we multiply (14.10) by * and subtract the corre-
sponding complex-conjugated equation. Taking into account the structure of the
Hamiltonian (14.11), we get

h2 Al
1h—(¢ ¥ = — VI =YV

i=1
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Setting

{.o— lh" RNC B L v
Ji= —%(wv,w Vi), (14.12)

where V; is the operator with components V; = (d/dx;, 3/9y;, 9/0z;), we can
thus write (14.12) as

aw(rl,.., Y & PR
ot

N

bl ’t . 3

il )+§ divi Ji (P, e F e PN D =0 (14.13)
i=I1

This equation shows that the change in the configuration probability w is deter-
mined by the current of that probability. Hence, j; is a function of the coordinates
of all particles (and of time) and represents the current density caused by the mo-
tion of the particle i if the coordinates of all other (n — 1) particles are fixed. To
obtain the current density of the ith particle with the other particles in arbitrary
positions, (14.12) has to be integrated over all coordinates, except those of the
particle i, i.e.

Ji(xi,yi,Zi,t)=/ji(x1,-.. 2 Xiy YisZiy .-+, ZN, 1) AS2; . (14.14)

This current density also satisfies the equation of continuity, but now in three-
dimensional space, i.e. if we integrate (14.13) over d$2;, we get

0 0
. y ooy ’ Ql:— 9 ey st Q!
/atw()q N, ) d at/w(xl N, Hd

d
= — Wi iy Viy Ziyl) .
o (xi5 Yis 2i, D)

Moreover,
N N
> f divy jds2; = f div; j; 42, + ) divir jir ds2; .
i'=1 'S

The volume element ds2; [see (14.7)] contains the coordinates of all particles
with the exception of particle k. The integrals of the form [ divs ji» d§2; can be
transformed into surface integrals and they are, if ¥ vanishes at infinity, equal
to zero. In the integral [ div; j; d£2;, we are differentiating and integrating with
respect to different variables. Therefore we have

/di\’ijidgi :diVi/jid‘Qi =div; Ji(xi, ¥i,zi, 1) ,

where (14.14) has been used. We thus obtain the continuity equation for each
individual particle:

oW (x:, yi, zi, 1)
ot
in three-dimensional space (x;, s, z;).

+div Ji(x;, yi, 2, 1) =0 (14.15)
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14.1 The Conservation of the Total Momentum

£ Ty a1
1dErdrucic yblclll

=)

In classical mechanics, only the total momentum of a particle system under the
influence of internal forces remains constant. Thereby the centre of mass moves
in a straight line with constant velocity according to Newton’s law. But if there
are external forces, then the variation of the total momentum within a time unit
is equal to the sum of all forces acting on the particles of the system. We will

show that these principles of classical mechanics also retain their validity in the

domain of quantum phenomena. For this purpose we assume an operator of to-
tal momentum for all the particles of the system. Naturally, by operator of total
momentum p of the entire particle system we mean the sum over the individual

momentum operators py of all particlesk=1,2,... , N:
N N
P=) Px=—ih) Vi. (14.16)
k=1 k=1

Let us calculate the time derivative of the momentum operator p. According to
the general formula of quantum mechanics (see Chap. 8), it is

b _ (Hp—pH) (14.17)
a o PTRE '
Inserting A from (14.11) and noting that p commutes with the operator of the
kinetic energy
N
T=——
2 Zl my
we thus get
dp N N N
(v 3w (Zv,)
k=1 k#j=1 i=l
N N N
- (Z v,-) DoVt Y Vi - (14.18)
i= k=1 k#j=1
Furthermore,

N N
Vi (Z Vi) - (Z Vi) Vi = — (Vi ViGor, e 20)) (14.19)

i=1 =

because Vi (ry) depends only on the coordinates ry of particle k.
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Last of all, we calculate the commutation of the operator Z, -1 Vi with the
interaction energy of the particles ) , £ Vi i Thereby we assume that the forces
between the particles Ucpt:nu only on the distances between the partlclcs Fri, SO
that Vi; = Vi (7). Then only those operators V; of the sum Z, L Vi act on
Vij, for which i =k or i = j; i.e. the pair Vi+V; acts on Vy;.

Therefore we only examine

Vij(Vie+ V) = (Ve + V) Vi = —(ViVi)) = (V; Vi) (14.20)
But now

(ViViy) = Al Vk kj = (311/:]] :Z , (ViVij) = %erkj == (:11/:]] :Z
Consequently, we have

(ViVij)) +(V; Vi) =0 . (14.21)
This is simply Newton’s law, according to which action = — reaction. From this

(=2
it follows that the commutation of the operators (14.19) is identical to zero. We
thus get

~ N
d
== Y (VVisk, 3, 2 0) | (14.22)

i.e. the time derivative of the total momentum is equal to the operator of the re-
sulting force, which acts on the system by external fields. This law is analogous
to the classical law of momentum conservation. The only difference lies in the
fact that in quantum mechanics it is not formulated for the actual mechanical
quantities but for the operators representing these quantities, and therefore for
the mean values of these quantities (see Ehrenfest’s theorem in Chap. 8). If there
are no external forces (Vi = 0), it follows from (14.21) that

dp

=0. 14.23
m ( )

Hence, the total momentum of a system of particles, interacting mutually, is
conserved in the absence of external forces (14.23).

We recall that the operator equation (14.23) means (1) the mean value of
the total momentum does not change with time, (2) the probabilities w(p)
of finding a certain value of p remain unchanged too.
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14.2 Centre-of-Mass Motion of a System of Particles
in Quanium Mechanics

In the following, we show that the centre-of-mass motion of a system of particles
does not depend on the relative motion of its constituents. This fact is well known
in classical mechanics and is also valid in quantum mechanics.

We consider the Hamiltonian H, which takes into account only the influence
of the inner forces (two-body forces Vi (rk;)):

. K2 .
H:_7D+W , (14.24)
where
N 1 N
DN V2, w= (rei) . 14.25
Z p Z Vij (i) (14.25)
k=1 J.k=1
J#k

We express the Hamiltonian in terms of an adequate coordinate system, con-
sisting of the centre-of-mass coordinates X, Y, Z and the 3N — 3 relative coor-
dinates. The Jacobi coordinates, already introduced in Example 9.6, suit this
purpose. As we recall, they are defined by

mixi

§1= —X2=X1—Xx2 ,
mi
mix)+mox2
b= ——""—2x3,
my+my
Zi:lmkxk
§j= " TXi+l
2 k=1"k
N
—1 M Xk
En = L1 iRk =X, (14.26)

M

where M = Z,’:’:l my denotes the total mass of the system. Similar expressions
can be obtained for the y and 7 axes:

r_ miyk
nj = —Z"—j]— —yi+1, IN=Y (14.27)
k=1""k
j
_1MrZk
DY L (14.228)

Zi:l mg
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These are generalizations of the relations between the centre of mass and relative
coordinates of the two-body system. Important is the principle of construction:
the Jacobi vector §; = {£;, 0}, {;} is the vector from the (j + 1)th particle to the
centre of mass of the first j particles. Figure 14.1 illustrates the situation.

my

Fig.14.1. The Jacobi coor-
dinates &; in the case of the
vector 55.. It points from the
centre of mass Rs; of the
first 5 particles to the pos-
ition vector rg of the 6th
particle (Ms =mi+mo+

m3+mq +ms)

For the kinetic-energy operator (see Example 9.6), we have

N-1

.1 1

D= HVZ T Z ;v} , where (14.29)
j=t "

, 9% ¥ R G T

#Z * iy * acy  ax*  or? Tz (14.30)
denotes the Laplace operator of the centre of mass of all particles, and
G S
2 (14.31)

AT AT

the Laplace operator of the Jacobi coordinates §; = {& j»1j, ¢j}- The reduced
mass 1 ; is given by

- + , (14.32)

where mj, , my are the masses of the N particles.
The Hamiltonian of (14.24) can be rewritten in the form

A h2
H=—__vy2 (14.33)
2M
N-1 h,2
—Z —V?+W(§1,-~ CEN-L T, N1, 8 e L EN—T) -
2,u,j
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Using (14.30), it follows that

. fi? R? (3% 9 9P
T =" Vo | —4—4— 14.34
UM oM (ax2 Tt 322) ( )

i

represents the kinetic-energy operator of the centre of mass of all particles. The
kinetic-energy operator of the relative (inner) particle motion is given by

R NLp2r y
TRE—L%VJ- . : (14.35)

Looking at (14.33), we see that the interaction energy does not depend on the
centre-of-mass coordinates §v = {&n, v, tn} = {X, Y, Z). It depends, accord-
ing to (14.25), on the relative distances between the particles only. But the
relative coordinates can be expressed by the first (N — 1) Jacobi coordinates

&, ..., Ey_y, which follows immediately from the relations (14.26). If we trans-
formé&;,... v 1Ge. &, ... EN—1, 1, ... . N=1, 1, - -+, EN—1) by a linear
tfansformation to arbitrary relative coordinates g1, g2, . .. , g3§-3, the operator

75 remains unchanged. Therefore we can generalize (14.33) to

2

N h A
H= —EVZ + Hr(q1, 92, --- , G3N-3) . (14.36)

The Hamiltonian of the relative motion Hg does not depend on the centre-of-
mass coordinates; thus the wave function of the system separates into a relative
part and a centre-of-mass part. In the next step we introduce the operator of the
total momentum,

0

) 5 . .
Py=—ih-> | Py=—ih— Py=—ih— .
x="Max o Y= TGy 2T

(14.37)

so that we can write the kinetic energy of the centre of mass in the form

B2 By B2+ B}

T — =

ST oM 2M
K2 /92 9 92 K2

= ——}=———A. 14.38
2M(ax2+ay2+322) 2M ( )

The wave function of the system separates according to (14.36), and we write
it as a product of the centre-of-mass part ¢(X, ¥, Z, t), with the centre-of-mass
coordinates X, Y, Z, and the relative part ¥(q1, g2, - .. , g3n—3). Thus we have

lP(Xy Ya Z’ q]v 512, CE I ) q3N—3’ t)
=¢(X,Y, Z, )Y (q1,... . q3N-3,1) . (14.39)

375
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If we insert (14.39) into the Schrodinger equation, we obtain

L0 . a
lh’_'pzlha_t(¢(xa Ya Z, t)W(CIlv .. aq3N—37t))

ot
= Ay
hz
= <—mv + Hr(q1, . .. ,CI3N—3))
X (@(X, Y, D)P(q1, ... .q3n-3, 1)
L0900y h? o A o
91!03—1{/—“ L(])EZ— ﬁv Q+@QHRY . (14.40)

Dividing (14.40) by ¢y (for ¢y # 0) gives

10 Ly _ 1 h? 1
ith——+ih— —v? H
o Ty T Tpam” PRV
After reordering, we get

G0 R o NL (o s N

This equation is fulfilled if both sides are equal to a constant E. Then we have
for (X, Y, Z,1) and ¥(q1, @2, - .. , g3n—3, 1)

9 K2

l%?mvzﬁ E$ and (14.41)
o ~

iha—i/ — ARy — E . (14.42)

The first equation describes the centre-of-mass motion of a system of particles
with total mass M. If no external forces act on the system, the centre of mass
moves like a free particle of mass M. The simplest special solution is given by a

plane wave (a de Broglie wave), i.e.
i
(X, Y, Z, 1) = @nh)" Y exp [E(Est —PxX—PyY — PZZ)]
_ -3/2 1
=Q2nh) exp —?(P-X—Est) . (14.43)
2
By inserting ¢ in the Schrédinger equation (14.41), we can identify the compo-
nents of P = (Py, Py, P7) as the eigenvalues of the total-momentum operator.

For the eigenvalue of the kinetic energy of the centre-of-mass motion Ej, it
follows that

1
Es=w(P)2(+P§+P%)+E. (14.44)

The additive constant E is unimportant and can be chosen equal to zero (E = 0).
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The wavelength of the de Broglie wave is given by

o h
= 5= v P=,Py+Pi+P;, (14.45)

V being the velocity of the centre of mass.

We can now deduce from (14.43)—(14.45) that de Broglie waves (14.44) are
not oscillations connected with the internal structure of the particle system, but
represent the general quantum—mechanical motion of free particles (or, in our

af_mace maots tha mation of th, m ag
\«ﬂD\/, ﬂ, Ubllll\/'\}l‘lllﬂbb lll\}l.l\}ll, 1 \/ (98 L lll\llrl\)lj vli tlle S}"Stelll a'b a ‘V‘V’holn) “" fl’\f“ ]f

external forces.

The essential and interesting aspects of the many-body problem concern the
inner degrees of freedom, described by (14.43). The centre-of-mass motion is,
as in classical mechanics, a rather trivial aspect. It is only important if all the
particles of the system — which, as a result of inner binding forces, are confined
relative to each other — are deflected in an external field, or interact with other
complex systems. In the latter case we speak of cluster structure and mean the
splitup of an N-body system into various substructures.

Cluster structure plays an important role in the breakup of a nucleus with A
nucleons into two fragments with nucleon numbers A; and A7 (A1 + A2 = A)
or into three or more fragments. This is called two-body (binary) or three-body
(ternary) etc. fission. If one of the fragments is very big and the other one quite
small (e.g. A > (A—4)+40or A— (A—12)+12 and A =~ 220), one speaks
of radioactive decay. The most famous form of this is @ decay, in which an
« particle is emitted (*He nucleus).

More recently, so-called cluster radioactivity has been discovered, in which
12¢ nuclei, 10 nuclei, 2*Ne nuclei, 328 nuclei, etc. are emitted. It was theoreti-
cally predicted! and 4 years later, experimentally confirmed.?

Returning to our calculations, we finally get for (14.39), after separation of
the centre-of-mass motion (14.43) in the general form,

WX, Y. Z,q1, ... ,q3N-3, 1)

= @by exp [~ (P-X—~E)] W@ - .qan-3.0) . (1446)

14.3 Conservation of Total Angular Momentum
in a Quantum-Mechanical Many-Particle System

Again we consider a system of N particles and denote the components of the
orbital angular momentum of particle & in terms of Cartesian coordinates by *=
(lk lk l") The position vector of the kth particle is x¢ = (xk, yk. zx). We then

1 A. Sandulescu, D.N. Poenaru, W. Greiner: Sov. J. Part. Nucl. 11, 528-541 (1980).
2H.J. Rose, G.A. Jones: Nature 307, 245-247 (1984).
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have
% a9 9\
Ly =—Iin \yk ™ Zk e ,
. 3 ]
F=—ihg——xu—) .
’ (Zk X Tk sz)
N 3 3
L (xk7~ —yk,—) _ (14.47)
: dyk Xk

The components of the operator for the total orbital angular momentum
1= (I, Iy, I;) of the system are defined as the sum over the individual angular
momenta, i.e.

N N N
Le=Y 1. =YK, 6 L=>1I. (14.48)
k=1 k=1 k=1

In the following we will prove that the derivative of the angular-momentum oper-
ator equals the operator of the torque exerted on the system. According to (8.6),

the time derivative of a not explicitly time-dependent operator, e.g. [;, is

A

d, 1 A &
— =—[H, ] . 14.49
m h[ x] ( )
The Hamiltonian of the N-particle system with masses my, my, ... , my reads
N "
A= 3 (2 vio ez
per L /
N
+ Z Vi Xy Yoo Ty Xju ¥jr 2j5) - (14.50)
k=1
J#k

As before, Vi corresponds to the potential energy of the kth particle in an ex-
ternal field, and Vi; is the interaction energy between particles k and j. We
know from Sect. 4.8 that every single component of the angular-momentum op-
erator commutes with its square. Because the angular-momentum operators of
different particles commute — they act in different coordinate spaces — they are
not able to harm each other, e.g. [f’;, i{] = for any &k # j. Each component i{?
of a particle’s angular-momentum operator commutes with the square 1% of the
total-angular-momentum operator, i.e.

[i*

£

o~

Pr=(* %1=0, i=1,23 or xy.z. (14.51)

R}
Y Y.

Ik Ik Ik

We also know that ﬁ% commutes with (3, I7, 17,

example, for the x component:

. L LI &
pr=—RVi=-b| S5+ 5+5].
ax; Ay 0z

which can be verified, for
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and therefore

”? 9 9 92 9 9 ?
i E1=in’ | —, ke | i | 5, Yoo — Tk
P ] [8 2 o 9zx ka)’k ayz  9z2 N 0z ka)’k

Xk k k
a{a a9 9 92 9 a0\ 92
_oqint| (L —( L _)_
[3yk (3Zk _rm Ak kﬁyi) e e dy;
L [ 2 9 a0\
Fooll L e Bair e ¥ Srowtrany
2k \y dzp  Oyk Ay dzk /
( 9 9 ) 92
ykdzzc 3yk az,%
9 3 . 92
_ih3( L .
ayk’a%k 0Zk dyk N
a 92 N -+ ZZ 9 9 a -4
Zk —7—,—’—_
1 0y? Y 2 Bz Ove dzx
9 32 KR 32
2 ykEZ + 2k =0,
d)’ki) 2 “ow 922,
i.e.
(v, ¥1=0. (14.52)

Let us now split the kinetic-energy operator in (14.50) into a translational part
T,, along the radius vector ry and a rotational part (see Fig. 14.2 and Sect. 4.9):

h? I)?
V=T, + )

2my

(14.53)

Because cach component of the angular-momentum operator of a particle com-
mutes with (lk)2 and with Vk, it also commutes with 7, , according to (14.53):

(1,.51=0, (=xy2. (14.54)

N d 0 ad d . P,
k _ Tk — L B v % Fig. 14.2. The position vec-
Vklx lx Vi =ik [ (yk 0zZk o 8yk) (yk 4 2k ) Vk:l tor ry, its angular momen-

tum /; and the external force

=ih ()’k{)& —Zka—Vk> s (14.55)  Je=—ViVi(r) acting on
Tk the kth particle
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Tkj and, analogously, we calculate:
r/? ) o aij - .
[Vij, L] = 1R | yie——= — 2k~ (14.56)
. 0zk vk
Tk J

Fig. 14.3. The relative vec-
tor ry; between the kth and
the jth particle is defined as
Tej=re—rj

We express the derivatives in (14.56) in terms of the relative coordinate ry; and
have (see Fig. 14.3)

rkark—rj s

i — drﬁ_d_ — _P__ ( /("k _xj.)2 + (}’k _},j_)z_!_ (Zk _Zj)Z\ i
dzg  Ozx Ay oz \V ) or;
_ %~z 9
Tkj 8rkj ’
Similarly, we obtain
P _wey 9 0wy @
Vi - Tej  Orgj T 9z - fr;  Org; )
According to the above relations, (14.56) reads:
AT %k—2j Yk—¥j
[Vij, %] = ih—2 ()’k L~z 2|
arkj rkj Fkj
. Ve 1
=ih(zyj — 2y ——— . (14.57)
3I‘kj Fij

Using the relations (14.51)—(14.53), (14.56) and (14.57), the time derivative of
a component of the total angular momentum can be evaluated. According to
(14.48), we obtain for the x component

A N N
diy Vi avk) Wi 1
— — — 77— ) — Z P — 7 _— 1458
ar kE—l ()’k b Moy E (zkYj — 2 Vi) P ( )
= Jk=1
j#k

The second part in (14.58) vanishes, since the terms of the sum change their sign
by changing their indices, and thus cancel each other. The result is

B N . .
%=—;(yk3—zvl’:—Zk%y‘%) . (14.59)
Similarly, we obtain for the other two components
dl, Yoo o
& =_Z(Zkaxk—xk8—zk) , (14.60)

N

al, av, av,
:__ xk_k_yk_k) - (14.61)
k=1 ayk axk
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Thus we have proved the theorem, already known from mechanics, that the time

derivative of the orbital angular momentum equals the torque of external forces

acting upon the system (the torque of external forces). If no external forces are
present, or if their torque vanishes, the total angular momentum is conserved:

d, di, di
Sy _ %y (14.62)

dt At dt
Th"& {" nr fhn f“)(‘ﬂ f\f ‘IQnIQ"\Iﬂﬂ' Avfnmcﬂ Nreace !_ a aus 1"9(’ Q< T l- I’I ’ QI’P ('nn-

L1iUuS 1UL Ui va Vaitisilillg CACIIAL 1UILOS, LT dVUIagts vy, vy, ang L4

stant, as are the probabilities w(ly), w(ly) and w(l;) of finding a fixed value for
an angular-momentum component.

Including the internal spin s of a particle (see Chap. 12), the relations for the
total angular momentum can be straightforwardly modified as follows:

N N N

b=y @+ =)+ L=)_E+H. (1463
k=1 k=1 =1

where § s s’;, - denote the prQ]CCtIOIlS of the spin of the kth particle on the cor-

respondmg coordinate axis. The spin operators are representcd by 2 x 2 Pauli
matrices. If no external electromagnetic fields are present, i.e. if no forces are
acting on the spin, the conservation law for the angular momentum remains
unrestrictedly valid, since in this case the Hamiltonian commutes with each

comnnnent of ('k
LULIpULCLL UL 5

The commutation relations of the total angular momentum of a system of
particles correspond to those of the orbital angular momentum, because the
operators l" l" l;‘ , A’;, §¢ and §% §7 commute for different particle indices, and, fur-
thermore, i{‘ and sk commute with each other, because these operators act in
different spaces (coordinate space — spin space). Hence,

~ ~ ~ . ~ ~ ~ ~
] ]

U ] =ihJ; (14.64)

U3 =05 H=0U% =0 (14.65)

The eigenvalues of _;f are equal to the sum of the eigenvalues of lZf +§’z‘. In
Sect. 4.8 we found the cigenvalue of the z component of the orbital momentum
to be kR, with —1F <m* <1k (¥ =0,1,2,... represents the quantum number
of the 0rb1tal momentum of the kth particle). The eigenvalue of the spin is £7/2
[see (12. 13) (12 39) and (12.40)]; thus we have for the eigenvalues of ]f‘ the
values hm m being an integer multiple of for particles with spin 5 | For the
z component of the total angular momentum, we have

N N
jZ=th§=hm , m=Zm]Z‘ : (14.66)
k=1

k=1
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Equation (14.66) has to be interpreted as an elgenvalue equation; the index z is
omitted. To determine the eigenvalues of _] we introduce the eigenfunctions
| jm) of j* and j, with

Flm)y=Jjm) ,  jljm) =m|jm) . (14.67)

Neither J% nor m nor their relation to each other are yet known. To proceed in
this direction, it is customary to consider the step operators ]+ and j_, which are
defined as

A

Je=detidy, Jo=Ji—ily . (14.68)

Using the commutation relations (14.64), the validity of the following relations
can easily be verified.

[j+1 JAZ] = [jx, JAz] +i[jy’ jz] = —ihjy +iﬁijx
=—h(x+ijy)=—hjs , (14.692)
and, similarly,
Lo, jd=hj . (14.69b)

We rewrite the commutation relations (14.68) and (14.69) in matrix form, i.e. we
multiply both equations from the left by a bra, and from the right, by a ket vec-
tor. We choose a basis in which ), is diagonal: 17| Jjm) = hm|jm). We calculate
{(yjm'|...{jm") and obtain

(j+)m’m”hm” - hm,(j+)m’m” =—h ) mm»

(j—)m’m”hm” - hm,(j—)m’m” =4+h( I mm” (14.70)

or

(j+)m’m” (m” —m' + =0
(j_)m/mu(m”—m'—l) =0. (14.71)

Obviously, the only nonvanishing matrix elements of f+ and j_ are given
by (j+)m.m—1 and (j—)m m+1. The operator of the square of the total angular
momentum can be written in terms of jy j_ or j_jy:
f+j— = (]Ax +ij}’)(jx _ijy) = J? + JA% - iijy +ifij =j2 - J;z + hjz
J-jr =it = =h (14.72)
Completing the square yields

K2 AN\? . . h2 B2
= — —{j-= [ i, = ——{i+=) . 4.
Jpi-=J*+ 1 (Jz 2) ,J-Jr=Jt+ ) (L+2) (14.73)
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Considering the diagonal matrix elements (jm| ... |jm) yields

h2
U+Jdmm = G dmm—=10=Im=-1,m = S+ yu h? (m— %)2 )

) B2
G=idmm = Gdmmtt Gmrm = I+ —h2omt )P . (1474

We assume J2 to be a given, but still unknown, positive semidefinite quantity.
In the following we denote by m’ the lowest possible value of m, and by m”, the
maximal value of m. From (14.74) it follows that, by making use of

(j+)m’,m/—1 =0= (J‘*)m/—l,m’ and (j—)m”,m”-{-l =0= (j+)m”+1,m” s

we get

~ h»z ~ . 1A ) h,z ~ . )
JL+_4"=54("1/—%)L, JL+T=h4(m”+é)Lv

and therefore

1 /)2 1 JJ? 1
I —_— — ”:-—— —_— —
m_-2 h2+4, m 2+ h2+4. (14.75)

in the equation for m’, we have chosen the negative vaiue of the root in order to
get the smallest possible value for m'. The difference m —m’ + 1 is an integer,
giving the number of possible z projections of the total angular momentum j.
Setting m”, —m' +1 = 2j + 1 (in analogy to the orbital momentum), it follows
from (14.74) that

2 1
2j+1=2/=+- & PP =h%jG+1) . (14.76)
vlb_ “+

Since for the z projection of the total angular momentum m, both positive and
negative values must be equally represented, m” must be equal to —m’. Then,
fromm” —m'+1=2j+1, we get
fm|<j with m=0,%x1,%2,...,4%j, or
1 3

m:ii’ii’“' L. 1477
Thus the relation for the total angular momentum has been proved to be of the
eigenvalue form

=G+, (14.78)
Je=hm , |ml<j. (14.79)
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Fig. 14.da—c. The addition
of orbital (/) and spin (s)
angular momentum. Part
(a) shows the maximal, and
(c¢) the minimal, resultant to-
tal angular momenta; (b) il-
lustrates an intermediate
case

Depending on the number of particles and on the spin, j has either integral values
0,1,2,3, ..., oris an odd multiple of Lie. ; g 2. ... .Forthe projections of
the total angular momentum s we obtain 27 + 1 possible quantum-mechanical
orientations with reSpect to an arbitrary axis (here the z axis), namely m =
—J,—Jj+1,...,j—1, j.Electrons have spin 2, therefore, for a system consist-
ing of an even number of electrons, j has integer values, while an odd number
leads to an integer multiple of %

To prove the cigenvalue equations (14.78) and (14.79) we have made use
only of the commutation relations (14.64) and (14.65). Because the total angu-

lar momentum / and the spin § satisty the same commutation rules, we obtain

analogous relations for the eigenvalues of the corresponding operators:

= Z (14.80)

P=riA0+D, 1=0,1,2,..., (14.81)

I,=hm, Iml<!, (14.82)
N

§=> &, (14.83)
k=1

§°=hss+1), s=0,§,l,§,. , (14.84)

§;: = hms, |ms|<s. (14.85)

For given values of the total angular momentum [ and the total spin s, j as-
sumes, depending on the relative orientation of Z and s, all values between |/ — s|
(antiparallel orientation) and [ + s (parallel orientation):

J=l+s|l+s—1], =5 . (14.86)

This is physically reasonable and is illustrated in Fig. 14.4.3 States with the same

’ ':Iﬂd s fern’\ a gv‘nnp nfleP]c I\‘)"Dl“ a mulhn’of “I]'nl\h ]lD r\‘r\cn fngnther becnnon

of the weak [ - s interaction. From (14.85), it fOHOWb that for s </ a multiplet
contains 25+ 1 states. In other words, (14.86) tells us that there are 25 + 1 states
in a multiplet. Consequently, the specification of j, [ and s is essential to charac-
terize the energy of the entire atom. Of course, there will be additional quantum
numbers like the principal quantum numbers in the case of the hydrogen atom,
but also others typical for the many-body problem. In analogy to the hydrogen
atom, terms with [ =0, 1, 2, ... are marked with the capital letters S, P, D, F.
The lower index on the rlght mdlcates the j value; the upper mdex on the left
gives the value of the mu]tlphclty of the multiplet. For example Zp /2 marks the
term with /=1, j = 2, s= 2, (2x +1=2)and * F32, the term with [ =3

3We give a formal derivation of this, using the commutation relations only, in
W. Greiner, B. Miiller: Quantum Mechanics — Symmetries, 2nd ed. (Springer, Berlin,
Heidelberg 1994).
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j= %, s = %, (2 x % + 1 =4) etc. Strictly speaking, the index at the upper left
i redimdant hecauce the multinlicity rﬂum\uc oiven hy ’) 7 L1 i¢ immediataly
15 ICGULlani, OCCause Uil Mulipiacity, aaways givell 0Y 47 + 1, 15 HINNCGIaC:y
deduced from the lower right index

EXAMPLE I

14.1 The Anomalous Zeeman Effect

As an illustrative example of the angular-momentum algebra, we consider level
splitting in a complicated atom with several electrons in a weak homogeneous
magnetic field (the anomalous Zeeman effect). The interaction of the electrons
with the external magnetic field B is given by

A

W=—a B, 1

with the magnetic moment g = e/ (2mec)(I + 28); m. is the electron mass. The
anomalous g factor of spin, i.e. g =2, is included. The coordinate system is
chosen in such a way that the magnetic field B and the z axis are parallel.
I and s denote the total orbital angular momentum and total spin. The operator
of the magnetic moment can be expressed in terms of the total orbital angular
momentum (f = I + §):

f=Gj=e/Cmec)(I+28) = e/2mec)(j+5) , @)
G=e/@mec)|1+]-§/[i(j+ D1} . (3)

Here, we have made the assumption that in states |jm) only the component
[s- f /JjG+ D] j of the spin vector §, i.e. the component of § parallel to the vec-
tor of total angular momentum f , yields a contribution. The normal component
is, on average, zero; this is valid for vector operators (the projection theorem).*

With 12 = j2 + §2 - 2§ - J, we get

2 _f2 382
N e J —I-+5
G= I+ —— . 4
[ 2j(j+ 1D } )

Becaugerf the orientation of the magnetic field [B = (0, 0, B)], we only need
fz =G Js.

Let us assume that the magnetic field B is weak enough for first-order
perturbation theory to be sufficient to calculate the effect of the magnetic in-
teraction (1). We calculate the matrix element of the interaction in a basis of

*See e.g. M.E. Rose: Elementary Theory of Angular Momentum (Wiley, New York
1957), Chap. 20.
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Example 14.1

eigenfunctions | jm), in which the operators G and J, are diagonal, so that

(N'j'Um’ |, B| N jim)

- <N’ i ’G fZB’ lem>
= mgehBamm’all’ajj//(zmec) ; &)

with g being the so-called Landé factor. From (4) it follows that

G+HD -+ D +s(s+1)
2jG+1)
From Exercise 12.1 we know the Larmor frequency wy, = eB/(2mc), and hence

we obtain with (1), (5) and (6) the interaction energy of a particle system in a
magnetic field as

S

iG+D =10+ 1) +s(s+1
W:hmele—1+J(]+ ) q(+ 1)\“(” )-| . 7
L «J\J T 1) 1

This means that in first-order perturbation theory the modification of the energy
levels is

Enjim = Enj — (ehB/2mec)gm ®)
so that the shift between two neighbouring levels (Am = 1) is
AE = (ehB/2mec)g ; 9

AE depends on the Landé factor (i.e. on j, I, and s) and on the intensity of mag-
netic field. For states with total spin s = 0 and therefore j =/ (singlet terms of
atoms with an even number of electrons), we get g =1 and AE = eh B/2mec,
which is the normal Zeeman effect.

Equation (9) is valid only for weak and homogeneous magnetic fields, i.e.

1 ] + 1 oo than tha Amancss
for field strengths B, which cause a splitting that is smaller than the energy

difference of the unperturbed levels (without fields). This yields the condition

leh B/2mec| < |Enj— Envjr

(10)
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EXERCISE I

14.2 Centre-of-Mass Motion in Atoms

Problem. (a) Take into account the motion of the nucleus in atoms; make use
of the results obtained in the section on the centre-of-mass motion of a particle
system.

(b) What are the modifications of the transition frequencies of the hydrogen
atormn discussed in Chap. 97 In other words: what is the true value of the Rydberg
constant in the hydrogen atom?

(c) Determine the electron mass, making use of the relations between transi-

tion frequency and reduced mass in atoms with one electron.

Solution. (a) Taking into account the motion of the nucleus, the stationary
Schrédinger equation reads

| i ity KN Y R
— — [ —=+—+— r
l_ = 2mi \axiz ay? 31,'2”
= E¥(x1, Y1, 21, X2, Y2, 22) » (1

where m is the mass of the nucleus with the coordinates (x1, ¥1, z1), and m the
electron mass located at (x3, y2, z2). The relative distance between the nucleus
and the electron is

/; [Nt N - N N s N Vs Y
r=y (1 —x)?+ 1 —y2)* + @ - 2)? )

(see next figure).
We introduce Jacobi coordinates, corresponding to our general considera-
tions of the centre-of-mass motion of a particle system (in the Sect. 14.2),

_mxy +max?

Ei=x1—x2=x, &=év= =X,
mi+my
M=yi—yr=y ,,z_nN_w:Y
’ mi+my ’
miz1+mazp
Hi=21—n2=2, O=n=——""——"=2, 3)
m+my

applying the results for N = 2 on [see (14.25)].

We see that the Jacobi coordinates with index 1 represent the relative co-
ordinates; those with index 2, the centre-of-mass coordinates of nucleus and
electron.

The transformed Schrodinger equation and its solution follow immediately
from (14.32):

R (Py Py Py R Py Py Py
oM \9x2  ay?  9z2 2u \ ax2  9y? 972
+VYy=EyX,Y,Z;x,y,2), 4

The coordinates involved in
this exercise: 7| points to the
nucleus, 7 to the electron
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cise 14.2

with
M=mi+my, pu=mmy/(mi+m). (5)

For i we choose a separation of variables by exploiting our knowledge of a
freely moving centre of mass, i.e. we use a plane-wave for the centre-of-mass
motion:

WX, Y, Z; x,y,7) = Nexp [—% (PX+PyY+ PZZ)] 0, v, 2) , (6)

N being a normalization factor. Inserting (6) into (4) yields the Schridinger
equation for the relative motion:
hZ (32 @ 32 @ 82 @

SR i ST AR Ui o Vi = , 7
2u \ 9x2 + 9y? + dz2 ) +ViNg =s¢ 0
with

e=E—P?)2M . 8

Equation (7) describes the motion of a particle with mass y (the reduced mass)
in a given force field V(r). The quantity € stands for the internal energy of the
relative motion. E is the total energy, which contains the energy of the relative
motion ¢ and the kinetic energy P?/2M of the centre of mass. In Sect. 9.4, we
solved an equation analogous to (7), but on the assumption that the mass of the
nucleus is very large compared to the electron mass m >> m». Indeed, using (5),
we see that here u ~ m». In the case of the hydrogen atom, we found for the
transition frequencies between the principal quantum numbers » and n’ that

1 1 )
Vpn' = Reo (n—a - ’Tz) , with 9
m2e4
Rpe=—""—=.
4mh3

The desired values for ¢ and ¢(x, y, z) correspond exactly to the quantities
derived for the hydrogen atom, if we write u for m,.

(b) We have to replace m; by u in order to obtain an accurate value for the
Rydberg constant. We then get for the hydrogen atom

[ Mpme

p=—r"° (10)

Ru=22
= 4mh3 mp+me

For a nucleus A of charge Z and mass m 4, we have to replace the Coulomb in-
teraction in the hydrogen atom —e? /r, by —Ze? /r; and we consequently obtain
for the modified transition frequencies

wZeH? 1
= Tmm \n2 2

_ 72
— ZRa (ﬁ“?ﬁ) , (11)
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where Exercise 14.2

we maMe

Ra= o | =8N
AT 4xh3 H ma +me

(c) The fact that x4 assumes different values in different atoms was used by
Houston to determine the electron mass through precise measurements of the Hy
and Hy lines of the hydrogen atom. The H,, and Hg lines belong to the Balmer se-
ries, i.e. transitions that end in the n = 2 energy level (see Chap. 9). H, describes
the transition from n = 3 to n = 2, Hy the transition fromn =4 ton =2.

The transition frequencies of the H, lines can be determined in hydrogen and
He™ (i.e. singly ionized helium with only one electron circling the He nucleus):

1 1 5
vy = Ry 2—2—3—2 :3—6RH’

1 1 20
VHe = 22RHC (? - 37) = %RHc . (12)

N /

From (12), a relation can be established between the frequencies, depending on
the reduced masses:

1
_ gVHe " VH _ HHe —HH

= (13)
VH MH
Expressing ppe and pup by the masses my and mg. of the hydrogen and helium
nuclei,
mym myem
PH= ——— , fHe=——— , (14)
my + me Mye +Me

we obtain for y

Mye —myg \ m
y= (L—E\ — . (15)
\mHe+me/ an

The spectroscopic determination of y allows us to compute the ratio m./my ac-
cording to (15), i.e. the atomic mass of the electron, for given values of my. and
my.

Houston found the value

mp/me =183824+1.8 . (16)

This method is also suitable for determining isotopic masses, because the dif-
ferent reduced masses cause a line shift in a quantum transition. The mass
of the deuteron mp = 2my, which contains one proton and one neutron, was
determined by this effect.
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14.4 Small Oscillations in a Many-Particle System

As the simplest many-particle system, we first consider two identical particles
oscillating with small amplitudes about their equilibrium position. In this case
we can expand the potential energy in a power series:

x2:0>

Vx|, x
- (xq, x2)
=0 3)62

aV(x1, x2)

Vixi, x2) = V(0, 0) +x; <
X1

(Y Ll (v ‘

P s e L

20\ o =0/ 277\ 893 Lo
PV

+x1%2 o (14.87)
0x10x2 X =xy=0

For a vanishing elongation, the potential energy is minimal (no forces exist in
the equilibrium position) and can be set equal to zero. It then follows that

av av

0,0)=0, —
Vo, 0) 0x1 oxa

=0,

x1=0

=0. (14.88)

xp=0

The knowledge of the one-particle oscillator potential (see Chap. 7) suggests
setting

Gl i z (14.89)
A = 5 = PL(UO s B
axlz x1=0 8)6% x2=0

if we assume equal spring constants, masses u and frequencies for the two par-
ticles. The interaction energy of the particles is taken to be constant in lowest
order:

EY%
x19x3
“lx=0
x2=0

=\ (14.90)

w

We thus obtain in the case of small oscillations the following expression for the
potential:

2 2
@ w
Vix1, x2) = Tox% + %X% +Axixy . (14.91)
The Hamiltonian of the system follows immediately as
. R [ 8% 92 U
H=——\| S+ | +2G7 +x)) +axxz 14.92
o (Bx% + Bx% + 5 (7 +x3) + Ax1x2 ( )

In analogy to classical mechanics, we introduce normal coordinates ¢ and ¢,
so that the potential energy V(x;, x») can be represented by a sum of equal terms
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quadratic in g1 and g>. The kinetic energy can be expressed by the squares of
the momenta —i%(9/3g1), —ih(8/3g>). In general, normal coordinates are suit-
able for describing the eigenoscillations (normal modes) of a system, in which
the restoring forces are proportional to the elongation of all particles, and the
potential energy is thus a quadratic form of the elongations.

For the system under consideration we set

1 1
X1 7 (g1t+q2) ., x2 ﬁ(ql q2) ( )

Now x| and x> can be expressed in terms of the normal coordinates. For that
purpose the derivatives

Wy e L (o)
g 0x1 8g1  Ox2 dg; /2 \9x1  Oxp
92 1 {92 82 92

wz_( i AN AT

3 2 \3x1 dx10x7 -Bx—%/

Py 1P 92 9?

%ﬁ(ﬁ_z%;@z a_w) (14.94
are needed. The potential energy becomes

BOG 5 5 poy )» o

— xR than=— — gt += 5@ —43) (14.95)
with

/Lw% = uw(z) +A, uw% = p,wg —A. (14.96)
We obtain the Hamiltonian in normal coordinates as

2 2 2

Obviously the Hamiltonian of two coupled oscillators (14.92) is transformed into
a sum of the Hamiltonians of uncoupled oscillators with frequencies w; and w,.
The wave functions and the energies of the system are obtained by solving the
associated Schrédinger equation, which is

h? 821ﬁ uwl 2 h? 821,11 u
- T2 =F 14.98

Decoupling of this equation is achieved by the separation

Vg1, q2) =¥1(@)¥v2(q2) , E=E|+E;. (14.99)
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By introducing (14.99) into (14.98) and after dividing by ¥1(g1)¥2(q2), separate
terms depending solely on g or on g2 are obtained:

B2 0%y, pa?
L4 +~—Lgtv

= E . 14.100
" 8q2 > a4 1¥1 ( )
h? 9? uwz

———wj+—— a3 = Exva (14.101)
2p 0q;

We already know the solution of (14 100) and (14 101) from Chap 7. These

lWU CquuUllb UCDQJJUC Ild.llllUlle Ubblud.LUlb Wllll 11 Cunllble wy dllu wz, 1CopeL=
tively, and the wave functions are given by Hermite polynomials:

1 Al }qql
Ym = 201! ;e p( Hnl(\/_ql) (14102
with A; = uw|/h and the eigenvalues
E, =hoi(ni+%), n=012..., (14.103)

and, analogously,

1 A A
Yy = 7 —2ep( 2"Z)H,n(f %) (14.104)

szt tha ae o tag
WILIL UIC CLIICIE 10D

Eny =han(ma+3), n2=0,1,2,... . (14.105)

The eigenfunctions and energy eigenvalues of the whole system follow by
inserting the last results into (14.99):

Vaina (@1, 92) = Vny (@1)¥ny (q2) (14.106)
or

Epny = han(n +%)+hw2(n2+%) , (14.107)
from which we deduce the ground-state energy of the system as

hw] ha)z
E —_ . 14.108
0=+ ( )
Now we consider the probability of finding the normal coordinates ¢g; and g2 in
the intervals (g1, q; + dq1) and (g2, g2 + dg»), with the aim of making a state-
ment concerning the coordinates xp, xp of configuration space. The probability
mentioned is described by

w(q1, g2)dg14g2 = |Yu1n,(q1, 42)| *dq1 dga . (14.109)
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Correspondingly, the probability of finding the system in the coordinate space
x1, x2 in the intervals (xy, x1 + dx;) and (x2, x2 + dx2) follows by using

dq1 31
3x| aX2
1dg2 = dxjdxp = —dxpdxs . (14.110)
R T
dx; Oxz

This implies that we have to reverse the direction of revolution of the region
G*(q1, g2) with respect to that of the region G(x1, xp) if a transformation of a
surface integral from G(x, x2) to G*(q1, g2) is carried out (negative sign of the
functional determinant!). The surface element, of course, remains positive,5 )
that the probability is

w(xy, x2)dxydxy

wnlnp_( /_(.X1+X2) (xl XQ)\| dxldm (14111)

The generalization of these results to an N-particle system performing small
oscillations about its equilibrium is straightforward.

We denote the elongation of the kth particle by x, y¢, zx and obtain the
potential energy

3N
Z Cij‘tnnr

A
1) 1’1TF1‘I
Wil WO W

V=

’

S
B | —

i,j=1
where

T Wi} = (X1, X0, o XN V1 Y20 oo s VNS 215 220 -+ 2 2ZN) (14.113)

stands for the position vector in the configuration space of all N particles. In

an a]r\nu to 114 Q7 rxnr' {1/’ O tha Arnaffirionte f’ — (7. ara thas nA_Ardar
allaaOgy o (15.07) aid (14.o5v), Ui COCHICICNIS L = (L) aic uid SECONG-O1aer

derivatives of the potential energy:

32y
Cij=—r , for i#j, (14.114)
Bw,-awj wi—0
w}:()
2V
Ci= | , for i=j. (14.115)

...
W (=0

As in the simple example previously discussed, we can now introduce 3 N normal
coordinates g5, s =1, 2, ... , 3N, which are related to the Cartesian coordinates

3 Since volume elements are required to be positive, we should define the transform-
ation (14.110) from one volume element to another one using the absolute value of the
transformation determinant.
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by an orthogonal transformation:

3N
a=Y agwg ., s=1,2,...,3N, (14.116)
k=1
and
Zaikajk =4 = Zakiakj ; (14.117)
k k

a = (aj) is a matrix and its inverse 4~ ! is equal to its transpose 4~ = a7 or to
its Hermitian conjugate, if @ contains complex elements:

@'ay =) az'a; =Y auay; =8; | (14.118)
k k

from which it follows, together with (14.116), that

3N
wi= Y aug . (14.119)
k=1

Since 4 is an orthogonal matrix, the terms of the operator of the kinetic energy
also decouple in normal coordinates, if all particles have the same mass ju:

w N oowoaw  ow N
—=) ——, —=9 agdu=ay ,
0qs S, OW] 0fs (7 P

=1 k=1
Py N, 3ZN W
— =) — —ag | agm ,
aq? — Wy, — dwy )T
2w PN e
= AsiQsm - (14.120)

5 =
dg; o owy, dwy

Now, using the orthogonality of @ expressed in (14.117) and (14.118), the kinetic
energy is calculated as follows:

R2N 2w R AN gy

5 ) Ty = T
21 p— 0g: 2u el owy, dw;
R2 3N a2y 2N
=—— )Y —— =__ N\ '"Viyu . 14.121
2u lé; w?  2u k%; k ( )

The index k at the gradient operator

Ve (L)
3xk ayk 3Zk
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refers to the particle number &, as in (14.113). The potential energy is assumed
to be a bilinear form of the coordinates w; and w

€S w,; ang J

1 1 44
= i Z C,-jwiwj = Echw ,

i,j=1
w=aqg, w'=4%, (14.122)
so that
1 .-
V= 5qTacaTq, . (14.123)

To decouple the potential energy in normal coordinates, we require that
aca' =4 | (14.124)
where A is a diagonal matrix of the form

Aq
A
= Ajidy .

A3N3N

Since Cisa symmetric matrix according to (14.114) and (14.115), it is possible
to construct an orthogonal matrix & in such a way that A is a real diagonal matrix.

With (14.121) and (14.123), the Hamiltonian of the coupied system splits up
into a sum of harmonic oscillator Hamiltonians, namely

77,2 3N 32 3N
H:—ﬁ 8w2 Z Cijw;w;
z] 1
R A g2
=——) —+= uY‘wq‘ : (14.125)
L/j,"—‘dqs 2

where we have renamed the diagonal elements of A:
Ags = po? (14.126)
Now the Schrodinger equation for stationary states reads

N B2 g2 1
Z[ 20 +5 V-(wsﬂh) J‘I’(m,qz,.u + q3N)

s=1
=E¥q1,92,.-. ,93N) - (14.127)

As an expression for ¥, we choose in analogy to similar separation problems

U =@1(q1)P2(q2)P3(q3) - .. Pan(g3n) . (14.128)
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so that (14.127) decouples into 3N equations, which describe the same number
of independent oscillators. The equation for the oscillator with the sth normal
reads

h? 02d;(gs)
2u dq3
The solution of (14.127) is, in analogy to (14.102), of the form
Pps(gs) = [2"ns) ™ (s /) /212 exp(—L0sq?) Hos (Vsgs) , (14.130)

where Ay = puw;/h. The energy eigenvaiues are

1
+ E/‘(wsqs)z(ps(%) = Ed;(gy) . (14.129)

Eps=hos(ns+%) . ny=0,1,2,... , (14.131)
so that the total wave function can be written as

¥ = lI/n],nz....,r'L3N(q1’ q2, ... ,q3N)

= Pu, (@1)Pry (92)Prs(q3) -+ Py (@3N) (14.132)
Enina,... nsy = hoot (n1 + %) + hwnp (nz + %) + - 4+ haoy (ns + %)
+ - +hwsy (n3N+%) . (14.133)
The range of the quantum numbers ny, ... , n3y is over all integers, including

zero. As the zero-point energy of the system, we obviously get
L
Eg= Eh Z]w_v . (14.134)
=

The energy levels of the oscillating particle system are obtained by inserting all
allowed combinations of oscillator quantum numbers 7, . .. , n3y. In this case
it is sufficient to know the frequencies w; of the normal oscillations. As these re-
sults were obtained for oscillations with small amplitudes, (14.133) is only valid
for the low-energy range of the energy spectrum, i.e. for small quantum numbers
ng.

Such a physical situation can be found, for example, in molecules and solids
where the atoms oscillate with small amplitudes about their equilibrium position
so that an energy spectrum of the form (14.133) is obtained.

For larger amplitudes of oscillation, we have to take higher-order terms in the

Taylor series of the potential into account, such as
Pv
—| XiYjZk - 14.135
8xi3yj32k . iYiZk ( )

In this case, a linear force law no longer applies, i.. the potential energy is not
a quadratic form of the displacements, and hence the oscillations will no longer
decouple when normal coordinates are introduced. Under these circumstances,
our results are only approximately valid.
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EXERCISE I
14.3 Two Particles in an External Field

Problem. Calculate the influence of an external field on the motion of an in-
teracting two-particle system with the masses m| and mj. Let the potential
energies of the first and second particles in the external field be Vi(x1, y1, z1)
and Vo(x2, y2, z2), respectively; let the interaction between the particles be
W(x) —x2, y1 — y2, 21 —22)-

Hints: (a) Determine the time-dependent Schrodinger equation of the system in
centre-of-mass and relative coordinates.

(b) Assume the dimension of the system to be small, so that the external
potentials can be expanded around the centre of mass in terms of the internal
(relative) coordinates.

(c) Expand the total wave function in a basis of wave functions &,, which
are undisturbed by the exiernal fieids. This basis shall describe ihe relative mo-
tion. The coupling of the basis to the centre-of-mass coordinates is assumed to
be weak, or, equivalently, it can be treated as a perturbation.

Solution. (a) Let the mass and the coordinates of the first particle be m; and
(x1, y1, 21), those of the second particle m, and (x2, y2, z2). The interaction
energy between the particles is of the form W(x; — x2, y1 — 2, 21 — z2); the po-
tential energy of the single particles in the external field is Vi(x1, y1, z1) and

Af tha
‘vz(a‘, ¥2, 44), lwyectwe;, Huuuu, the S»l"uuduls\d vquauuu Of the system is

,haw h? — VWL h? V U+ VLW 4+ WY D
1h— = - -

a  2m YT my 2T TR

where ¥ = W(x1, y1,21, X2, ¥2,22,1). Instead of the particle coordinates
X1, ¥1, 21 and x3, y2, 22, we introduce centre-of-mass and relative coordinates

mix;+max2

L %4

X=—"", x=x1—Xx2,
mp+my
miy| +mpy;
Y=————=, y=y1—3,
mip+my
mi1z21+maz2
L=————"—"", z=21—27. 2)
mip—+my

The coordinates of the particles x1, y;, z1 and x2, y2, z2 can be expressed in

termea of theca new oo H
tCrms oI inese new coorainates:

yvi=Y+yy, yp=Y-dy,

n=Z+yz, m=Z-6z. 3)
my mi

=—, §=—. 4

4 mi+my mi+my @
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Exercise 14.3 Now the Laplace operators are expressed in terms of relative and centre-of-mass
coordinates. Therefore we need

W WX W I W W

v aXan ar o Cax | ox
az_w_a(azw+32¢/)+832w+azw
axF X% axdX /) 8Xax  ox?

2w P’y By

2
=8 — 42—+ — .
8 X2 + 68x8X + ax2 ()
Analogously, we find that
PFv L w P Pw
—_— = —-2 N 6
a2 T ax? Vomx T an ©)
from which we get
h? 32w R? 2w
2my &7 2my 3x3
_ h? v h? 3w -
T 2(my +my) X2 2( mimy \ 9x2
mp+my

Using the analogous expressions for the y and z components and (3), we find for
the Schrodinger equation (1)

w
ih%—t =—(R?2M)Viw

+VIKX +yx, Y +yy, Z+y)W — (B2 2u)Viw
+Vo(X —6x, Y =8y, Z—-52)¥ +W(x, y, DV , )

with the Laplace operators

, ¥ ¥ ¥

V_— v P

=tz t ez
2

S L

Vi=—+—+—, 9
x 8x2+8y2+322 ©)

ey 1 P
WCILL ad

-

mass M = mi| +#ip, as he reduced mass p = (mymy)/
(my+m>).

Separation, meanwhile familiar to us, does not work in this particular case
because the potentials V; and V, prevent a decoupling of the centre-of-mass
coordinates, making our considerations more complicated.

(b) To proceed analytically with our problem, we assume the extensions of

the system to be very small. This implies a restriction on systems and states for
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which the wave function ¥ decreases sufficiently fast with increasing relative
distance r = (x? + y> +z2)1/2. A typical distance a, at which the particle prob-
ability should approximately be zero, is the spatial extension of the system, for
example the expectation value of radius of the valence electron in an atom or the
longitudinal extension of a molecule.

Under this assumption, consideration of (8) within the range r < a is suffi-
cient and we expand the potentials V; and V, with respect to powers of x, y, z.
This gives

VikX+vx, Y +yy, Z+y2) + Vo(X —8x, Y — 8y, Z—682)
=ViX,Y,Z2)+ Vo (X, Y, Z)+ (V1 /ox)yx + - - — (3V2/02)8z+ - - -
=VIX.Y, Z)+w(X,Y, Z,x,y,2) . (10)
The term V(X, Y, Z) denotes the potential energy of the centre of mass;

w(X,Y, Z,x, y, z) couples the centre-of-mass motion to the relative motion.
With (10), the Schrédinger equation (8) can be cast in the form

ralp r 22 inane? S NF Tr FENTLT
”LE =172V + VX, ¥, Z)]¥
+ =R 2LWV2+ W, y, DWW +w(X. Y, Z,x,y. )% . (1])

(c) If the external field is absent, the eigenfunctions of the internal motion are
denoted by @ (x, y, z), with the energy eigenvalues EY. The following equation
is valid for these eigenfunctions ®?:

—~(R% /2 V2D + W(x, y, )0 = EO . (12)

The influence of the external field on the inner degrees of freedom of the system
is taken into account by the term w(X, ¥, Z, x, y, 2), so that

—(A* ) 2)VEB, + W(x, y, )Py +w(X, Y, Z, %, 3, )Py = Enn . (13)

The centre-of-mass coordinates appear as parameters in the coupling potential
of (13). Hence, the wave functions and energy eigenvalues will also depend on
the centre-of-mass coordinates.

If w(X,Y, Z, x,y,z) < W(x, y, z), then the coupling potential can be con-
sidered as a disturbance. If the solutions 453 of the free interacting system (12)
are known, (11) can be solved. The eigenfunctions and eigenenergies of (13) then
are

(pn=¢n(X,y,ZsX: sz) ?
E,=E,X,Y, Z) . (14)
As already mentioned, the centre-of-mass coordinates X, ¥, Z are only parame-

ters here. The total wave function ¥ in (11) is now expanded with respect to the
stationary states &y, :

Yix, .2, X, Y, Z, 1)
=D a(X.Y, Zdy(x.y,2. X, Y. 2) . (15)
n

Exercise 14.3
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Exercise 14.3 Inserting this into (11), we obtain a system of coupled differential equations with
respect to the expansion coefficients aj, (1):

8
iho <;and§n) = [-(h*/2M)V%+ V(X, ¥, Z)]Zn:a,,cp,,
+=(A22)VF +W(x, 3, D] D an®Pn

+w(X, Y, Z,%,5,2) Y an®y . (16)
n
It can also be written as

i) dn @y =—(h2/2M)V {Z(annm + Zan(vxqbn)}
+V Zan¢n - (h2/2ﬂ) Z an(Vidjn)
AW a®ntw ) an Py . (17)

With the help of (13), the last three terms in (17) can be seen to be identical with
Y anEnén. Multiplying (17) from the left by &}, and integrating over x, y, z
yields

iy = —(h2/2M) 3 2 (P | Vx| ) V xan

— (W2 /2M)Axam — (WP /2M) ) (D |Ax| ) an
+(V+Epam . (18)

The matrix elements (P,,|Vx|®P,) and (P |Ax|P,) are nonzero only if the
wave function @, depends on the centre-of-mass coordinates. In this case, a tran-
sition of the system from the state n to another state m is possible according to
the transition matrix elements.

If the system is prepared in the state [ at time t =0, i.e. ¢;(t =0) # 0 and
an(t =0) =0 for all n # i, then, according to (18), d;(t = 0) # 0 as well.

Time evolution causes the pure state

lp[=0 =ai¢i(xa ya Z, Xa Y7 Z)

to become a superposition according to (15).

If the basis wave functions depend only weakly on the centre-of-mass co-
ordinates X, Y, Z, we can, as an approximation, neglect the transition matrix
elements and find

dan
ih_aaz_ = —(h*/2M)Vya,+ (V + E)ay . (19)
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So the expansion amplitudes ay, (¢) follow the equations of motion of the centre
of mass in a potential field of the form

Vn = V(X9 Ya Z)+ En(X» Y’ Z) Ll (20)

which depends on E,, . This corresponds to the condition that the inner state of the
system be the nth quantum state. For each n, (19), within the approximation cho-
sen, can be interpreted as the motion of a massive point particle. In other words,
the whole system propagates for each internal state &, in a slightly modified
potential field (see figure). This is quite reasonable.

&)

14.5 Biographical Notes

LANDE, Alfred, German-American physicist, *Elberfeld 13.12.1888, 130.10.1975.
L. was professor at Tubingen from 1922-1931, and thereafter at Capitai University,
Columbus, Ohio. He developed the systematics of the multiplet spectra (1921-1923) and
the Zeeman effect (“Landésches Vektormodell”). He also introduced the g factor named
after him.

Exercise 14.3

A small cluster moving
through an external field.
The cluster acts like an el-
ementary particle in any
internal state &, as long
as the polarization effects
(interaction of the internal
degrees of freedom with the
centre-of-mass motion) are
negligible






15. Identical Particles

One characteristic of quantum mechanics is the indistinguishability of identical
particles in the subatomic region. We designate as identical particles those par-
ticles that have the same mass, charge, spin etc. and behave in the same manner
under equal physical conditions. Therefore, in contrast with macroscopic ob-
jects, it is not possible to distinguish between particles like electrons (protons,
pions, « particles) on the basis of their characteristics or their trajectory. The
spreading of the wave packets that describe the particles leads to an overlapping
of the probability densities in time (Fig. 15.1); thus we will not be able to estab-
lish later on whether particle no. 1 or no. 2 or another particle can be found at the
point in space r. Because of the possible interaction (momentum exchange etc.),
dynamical properties cannot be used to distinguish between them, either.

If we regard a quantum-mechanical system of identical particles, we will not
be able to relate a state v, to particle no. n; we will only be able to determine
the state of the totality of all particles.

In the case of a system of N particles with spin, the wave function of the
system is a function of these 4N coordinates (3 space and N spin coordinates):
(15.1)

Y =vy(rs1, s, ... INSN, D) .

Since the system consists of identical particles, the physical state remains the
same if the particles j and i are exchanged. This operation is carried out by the
operator Pj;:

Pijllf(f'lsl, v FiSi, o S F S, ,I‘NSN,t)

=AP(FISE, .o S, KiSiy ... JINSND) (15.2)

where, for the present, A is an arbitrary constant factor. A second exchange of
the two particles recreates the original state. Hence,

P2ty — 2 20ls — alr (15.3)

z ij (4 7 ¥ ¥ s \Esrer)
yielding two values for A:

A=41. (15.4)

Since we are examining systems of identical particles, the exchange of parti-
cles always acts in the same way on the wave function. This means that two

no distinction
t f particles possible

Fig.15.1. Overlapping of
probability densities (sche-
matic). Originally the wave
packets for particles no. 1
and no. 2 are prepared sepa-
rately. As time evolution of
overlap (doubly hatched
area) and it is no longer
possible to distinguish the
particles
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systems of particles may exist; systems with wave functions that change sign
upon the exchange of two particles, and systems whose wave functions remain

unchanged.
Therefore either
ﬁjws =, or ﬁijl”a =—1y, holds . (15.5)

We call the wave function v with the eigenvalue 41 symmetric and ¢, with
the eigenvalue —1 antisymmetric with respect to the exchange of two particles.
This is the origin of the indices “s” and “a” in (15.5). Whether particles are
described by a symmetric or an antisymmetric wave function will depend on
their nature. A transition between symmetric and antisymmetric states is impos-
sible. This is because the interaction between particles is symmetric under their
exchange; hence, e.g.,

Vir,r, ..., Fi, ... ,Fj, ... ,IN)

=V(r,r, ... Fj, ..., F, ... ,IN) . (15.6)

For this reason, the matrix elements between symmetric and antisymmetric
states vanish:

(ws(rl,rz,... i ... ,rN)IV(rl,rQ,... Hiv oo s Fjy e LIN)

[Yalri,ra oo riy e rjy o ) =0, (15.7)

and therefore no transitions take place between them. Both kinds of particle
occur naturally. The particles described by an antisymmetric wave function are
called fermions (named after E. Fermi); those particles described by a symmetric
wave function are called bosons (named after S.N. Bose).

The physical criterion that distinguishes between the two kinds of particles
is their spin: Fermions have half-integer spin; bosons have integer spin. This re-
lation between spin and symmetry properties of the wave function or — as it is
also called — between spin and statistics, was first found empirically. Later on,
when concerned with quantum field theory (quantum electrodynamics), we will
understand why this must be so.

Examples of fermions are electrons, protons, neutrons, neutrinos, C'3 nuclei,
etc. (all spin '5); examples of bosons are 7= mesons (spin ), photons (spin 1),
deuterons (spin 1), « particles (spin 0), oxygen nuclei (spin 0). For particles that
are composed of several elementary particles, the spin also determines the char-
acter of the statistics, as has already been mentioned. The « particle that consists
of four nucleons with spin % has spin 0 and is a boson. We get the same result
when considering that the exchange of an « particle requires the exchange of two
protons and two neutrons; the signs that result from the two-fermion exchange
compensate for each other in this case.
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15.1 The Pauli Principle

The antisymmetry of the fermion wave function is equivalent to Pauli’s exclu-
sion principle, empirically formulated by Wolfgang Pauli in 1925 when he was
investigating atomic spectra. It states that there can be only one electron in a par-
ticular quantum-mechanical state. This simple formulation of Pauli’s principle,
however, has to be specified in somewhat more detail. We have just stressed that
in a system of electrons only the state of the whole system and not that of the

sinole narticles is defined ‘Anr-nrrhn(ﬂv the state of an electron in an atom will

SLLSIC pa Gviiav.

certainly change if another electron is put into the electron shell or if the atom is
ionized.

We will be able to avoid these difficulties if we refer to the measuring process
used on an electron. Taking into account the degree of freedom resulting from
the spin, the electron has four degrees of freedom. Therefore, its state is charac-
terized by four independent numbers. As usual, the appropriate quantities to be
chosen are energy, angular momentum, the z component of the angular momen-
tum and the z component of the spin. This set of quantities corresponds to the
quantum numbers n, [, my, m;. The choice of another set of quantities, e.g. the
three momentum components and the spin component, is also possible. Accord-
ing to the choice we make, the wave function is then determined by four quantum
numbers:

¥ = Yuimm, - (15.8)

Now we can formulate the Pauli principle in a more precise form: In a system
of electrons, the measurement of four quantities that are typical of the electron
(e.g. the quantum numbers n, [, m;, m;) can have a well-defined (fixed) value for
one electron only at any one moment. Two electrons can never simultaneously
occupy the state (15.8). Soon we will understand the thus formulated Pauli prin-
ciple as a consequence of the antisymmetry of the wave function described in
(15.5).

Since this emnirically ascertained princi

25 CIOPaTl

pr 1 u
metry of the fermion wave function, the Pauli principle i
electrons, but for all fermions.

15.2 Exchange Degeneracy

We consider a system of N identical particles without any interaction; the in-
clusion of interactions would not change any of the following fundamental
considerations. The Schrodinger equation for such a system is
(B +Hy+ -+ + HV)Y(ris1, 1252, ..., INSN)
= EY(ris1, 1282, ..., INSN) - (15.9)
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The single-particle Hamiltonians I:Ii (r;, 5;) can be distinguished from each other
by the fact that they act on different particles. If we designate the ith eigenfunc-
tion of the particle k by @; (r, sz), we will have for the eigenvalue problem of the
single particle

Hi(rie, )91 (e, sx) = Eii(re, sk)
k=1,2,...,N; i=12,.... (15.10)

The Schridinger equation (15.9) is then solved by the product of single-particle

wava fAimetang:
WAVL LULIVUIVLRID,.

Y(ris1, 1282, ..., INSN) = @iy (FL, S @i (12, 82) ... 0iy(Py, s8) - (15.11)

The ij(j=1,2,...) are special numbers that characterize the eigenfunctions.
If there are n; particles in the state ¢;, then we will get for the eigenvalue of the
total energy

o5
I
- [\1
2
&
™
2
H
<
g
“on
5

Because of the indistinguishability of the particles, we are not able to say which
particle is in which state. This means that there are N!/(n1!na!n3!...) combi-
nations of single-particle wave functions in (15.11) that give the same energy
eigenvalue E. This is called exchange degeneracy.

Exchange degeneracy is lifted by the requirement of wave-function symme-
try for the bosons and fermions. In fact, the entire space of functions spanned
by the eigenfunctions to the energy E contains only one symmetric and one
antisymmetric wave function. The symmetric wave function for bosons results
from the sum of all possible N! permutations of the arguments of the single-
particle wave functions in (15.11). If we designate the permutations by P, then
the wave function of a system of bosons together with its normalization factor
(N'nilna!.. .)‘1/2 reads

- i

Veoson = Tt

N!
X ) Py (r1, )90 (12, 52) - .. @iy (N, SN) - (15.13)
P=1

Here, we have assumed that the single-particle wave functions are orthonormal-
ized.
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15.3 The Slater Determinant

The antisymmetric wave function is generally accepted to be best expressed
in the form of a determinant. Slater’s determinant is an N X N determinant
consisting of a single-particle wave function (15.10) arranged in the following
way:

i (ri, 1) @i s1) oo @in(r, 81)
1 e, ) o, ) ... ¢, s)

Yfermion = W . (15.14)
@i (rN, SN) @i (rn, sN) ... @iy(TN, SN)

Note that each column always contains the same single-particle wave function,
while each row contains the same argument in the single-particle wave function.

The determinant form easily ensures the required properties of the fermion
wave function in an elegant way. By interchanging two particles (two rows), the
sign changes. The function will vanish if two particles occupy the same state (two
columns are equal). This is Pauli’s principle! It is thus a consequence of the an-
tisymmetry of the wave function, an indeed most interesting and fundamental
result.

We shall now illustrate these features in the following example.

15.1 The Helium Atom

Some phenomena occurring in many-body problems may be demonstrated by
the helium atom. It consists of the He nucleus surrounded by two orbiting elec-
trons. For the mathematical description of the helium atom, we start with the
independent motion of two electrons in the Coulomb field and treat their mu-
tual electrostatic interaction as a perturbation. The Hamiltonian of the systems
is

Ay = (H)+HQ) +WA2)Y = Ey(n. r) . )
The Hamiltonians H(1) and H(2) are the operators for the single-particle
problem, i.e. the individual electrons. They are

A h?
H(l)=——A1+V(ry) and
2m

A h2
H@) = —5— A2+ V(1) 2

with V(r) = —Ze?/r, Z =2.
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The solutions are obviously obtained from the hydrogen wave functions if
Z = lisreplaced by Z = 2. Hence,

H(W)Y,(r1) = Expr(n)  and

HQ)Ys(r2) = Esyis(r2) 3)
The indices r, s represent the set of quantum numbers #, I, m. The degeneracy of
the hydrogen wave function will not be taken into account to prevent the problem

from becoming too complicated. The two-electron Schrédinger equation without
interactions now reads

Hoy = (H)+ HQ2)¢Y = Ey . (4)

According to the separation of the problem expressed in (2) and (3), we imme-
diately get the product wave function

v(ry, r2) = Y () vs(n) )
which obeys the eigenvalue equation
Hoy(ri, r2) = (Er + E¥(ry, r2) . (6)

Obviously, not only the state v belongs to the eigenvalue E, + E, but also the
State

Y (r1, ) = Y (r)Ye(n) | (7)

i ig 1 R A tln cAnAn A enatiala I e tln cbada
where the first pamcle is in the state s and the second particic is in ine state
/

¥,. This is the exchange degeneracy mentioned earlier. The two states ¥ and
emerge from each other by interchanging the coordinates of the particles. As a
solution of the Schrédinger equation (4), we therefore have to consider a linear
combination of two states:

Y(r, ) = ay, (r) s (r) + by (rv,(n) . (8)

Because of the normalization of the states,

a4+ =1 )

holds.

Now we take into account the influence of the interaction by using per-
turbation theory. Therefore we start with (11.25). (Here, we have named the
perturbation energy “W” instead of “¢W”.) The unperturbed energy is E0 =
E, + E; the expansion coefficients ay, are a and b. With the abbreviation

e=E—E —E, (10)
we get the two equations

(W1 —8)a+Wib=0,
Wara+(Wa2 —e)b=0, (11)
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with the secular determinant

[Wii—e Wi |
D= . 12
W21 Wi —¢ (12)

The matrix elements of the perturbation are given, together with the interaction

&2 2
W(l,2) = =—, (13)
lri—r| 2
by the integrals
AP Ys(r)
Wiy =W22=ezf i ‘)LW( I vy v (14)
12
and

2 [V e
dvidv, . (15)

Wi=Wy =e
r2

Usually the matrix elements are denoted by the letters
Win=Wy=K and Wpr=W =A. (16)

The quantity K is the Coulomb interaction of the two charge densities e|y,(7}) 12
and e, (72)|%. The quantity A is called the exchange energy; it has no classical
analogue. The exchange integral is due to the fact that an electron may be in the
state v, as well as in the state ;. The magnitude of the exchange integral de-
pends on the product ¥, y, i.e. on the overlapping of the two wave functions.
Thus, for example, the exchange energy between the ground state and a highly
excited state is very small.

From the requirement for a nontrivial solution of system (11), it follows that
the secular determinant has to vanish:

D=0, A7)
so that
(K—g)>=A2 (18)

e=K=+A. (19

(20)

Example 15.1
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and for ¢ = K — A, analogously

1
= —bh=d— . )
a b +ﬁ (21)

The exchange degeneracy is broken by the interaction; the state splits up into a
symmetric and an antisymmetric state:

Ys(r1, 1) = \%(Wr(ﬁ)‘#s(’?)""»[fs(rl)wr(rZ)) and
Vol 1) = %mmm (72) = Y (F1)Y (1)) 22)

Until now, we have regarded the electrons as spinless particles. Since the elec-
trons have a spin, (see Chaps. 12, 13) they are fermions and their total wave
function has to be antisymmetric. The interactions involving spin (spin—orbit,
spin—spin) are neglected; then we can write the total wave function as the product
of the space (y) and spin (x) wave functions:

=Y, n)x . (23)

Since the total wave function has to be antisymmetric, the product functions (23)
always consist of an antisymmetric and a symmetric function. Either the spatial
part i is symmetric and the spin function x antisymmetric, or vice versa.

We denote the spin function of the particle 1 with spin up by )(1+ , ete.
Three symmetric and one antisymmetric states can be constructed from the spin
functions:

s

x§ =i xS
1

x) = ﬁ(xf“x{ +x X)) s

Xs = X1 X2
1

x) = ﬁ(xf“x{—xfxf) : (24)

The factors 1/+/2 are necessary for normalization. The helium atoms with sym-
metric spin function are called orthohelium; those with an antisymmetric spin
function are called parahelium. The properties are summarized in the following
figure. E; is the ground state energy of the hydrogen atom for Z = 2; E, is the
corresponding energy for the first excited state.



15.3 The Slater Determinant

411

Wave function Orthohelium Spin Energy
El + Eg
+,+ Ei1+E;+ K- A
1 ( X1 Xz f * metastable
75 W)y (r2) e ;
—tar)Yir)) | FX N TR X)) —e——-— §
=]
X S8
X1 X2 + ‘ EE
2E;
Parahelium
Ey+E 2+ K+ A
1 m“ciwd
W) ¥a(r) state
o) B )y §
' 2 ‘ E g ground state
5 2+ K+ A S
& S
2E

Parahelium is energetically the lowest state of helium. Its spatial wave func-
tion is symmetric; both electrons may simultaneously occupy the ground state.
Then the Pauli principle requires an antisymmetric spin function. For orthohe-
tium, the spin function is symmetric; the Pauli principle prevents both particles
from simultaneously being in the ground state. Because of the small spin—spin

ntoracrtion (intaraction of the reenectiva maonetie dinpla e\ tho noceibil_
tnteraciion Jnieraciion o1 ine respecuve magneudc \.uyuj\. 111\;111\.1u.a/ the POoSsSsiot

ity of a spin flip in orthohelium is very small; therefore orthohelium represents
a metastable state of helium.

EXAMPLE I

15.2 The Hydrogen Molecule

The exchange energy is the reason for the homeopolar binding of molecules. To
get a better understanding of this kind of binding, we examine the simplest ex-
ample: the hydrogen molecule. Here, we use perturbation theory, as we did for
the helium atom in the preceding example. As an approximation of zeroth order,
we use products of the hydrogen eigenfunctions for the molecular wave func-
tion. We begin with two hydrogen atoms that are very far away from each other

and rpgarrl the forces nr‘(‘nmnc ﬂnﬂno their apprnsmh aga nprfnrhahnn Tt is clear

that this way of treating the ploblem 1s not very accurate, because the forces ap-
pearing in the molecular region of interest will not be small any more. With the
notation given in the figure, the Schrédinger equation for the two electrons in the
potential of the two protons is

h? 2 et et & e
*—(A1+A2)llf+|:~; ———————— ]11’=EW . N
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1 r12 2
O —0Q
b2
Tal Ta2 b1
3 0
a rﬂb b

Atomic nuclei (protons) a
and b and electrons 1 and 2
in the hydrogen molecule
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The distance ryp, is used as a parameter in the following calculation. The Hamil-
tonian H of equation (1) is now split up in two different ways. With the
abbreviations

N K2 2
Hy=———A1——,
2m ral
. 2 62
Hy=—A—— and
2m w2
N 2 2 2
Waopbl=————+—, 2)

a2 Tl 2

we can write

A

H = Hy + Hyp + Wazbl -

This decomposition corresponds to associating electron 1 to nucleus a and
electron 2 to nucleus b. Consequently, for a large distance between the two nu-
clei, the Wy, b part of the Hamiltonian, which is treated as a perturbation in
our approximation, vanishes. With this association of electrons to the nuclei,
(1) becomes for ryp — 0

(Ha1 + Hvo)u = Eu | 3

which is an equation that describes two noninteracting hydrogen atoms. It is
solved by the product wave function

u(r, r2) = Va(rapye(re) , “4)

where v symbolizes the hydrogen wave functions that follow from the equation

Hava = E 1y (5)

and the corresponding equation for y,. Here, we set E = 2E|, since we like to
assume that both hydrogen atoms are in the ground state with energy E;.

Immediately, we see that we have an exchange degeneracy for this problem,
since associating electron 2 with nucleus a, and electron 1 with nucleus b leads
to equations that differ from the former one only in the indices. Instead of the
operators (2) we then have

- h? e - h? e?
Hp=—-—Ay——, Hpy=——A1——,
2m a2 2m s
2 2 2
Wabhr=—"—-——+—. (6)

Fal T2 112

Again, W1 v vanishes for ryn — 00, and the remaining part of (1) is solved by

v(ry, 12) = Yo (re)Valra) - (7
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The hydrogen wave functions v fulfil a correspondingly changed form of (5).
Equation (1) is solved for ry, — oo by a linear combination of the i
and (7), namely

au +bv = ayra(ra1) Yo (rv2) + bvo(ron) Ya(ra2) )]

where a and b are constants of the nuclei a and b, respectively. We use this lin-
ear combination (8) of the functions « and v as the zeroth approximation for the
solution of our problem. Note that the functions « and v are only orthogonal in
the limit 7, — 00. When the two nuclei come closer to each other, the electron
wave functions overlap and the integral

.
i
[

|S|2=fu*vdV1dV2

=f¢:(ra1)%(rb1)dV1 fl/fa(raz)llf;(rbz)de )

N §*

will be nonzero.
As aresult of the perturbation W, the energy of the system changes, as does
the wave function. We write

E=2E +¢ and Y =au-+bv+g . (10)

The various terms Wa; p2, Waz b1, & and ¢ are assumed to be small; products of
these quantities are neglected in the following. Now we insert (10) into (1) and

get, by neglecting products which are small in second order,

a(Hyy + Ay + Waz 1) +b(Hap + ot + War 62)v + (Ha1 + Hi2)e
=2FE(au+bv)+e(au+bv)+2E ¢ . (11

The parts of the unperturbed system cancel and after reordering according to the
different functions, we have

a(Wa2,b1 — )it +b(Wa1 b2 — &)v+ (Ha1 + Ao —2E1)g =0 . (12)

For a = b =0, (12) is a homogenous differential equation for ¢ with the solution
@ = u, as a comparison with (3) shows. We use the theorern that the solution of
a homogenous differential equation is orthogonal to the inhomogeneous part of
the differential equation. Hence,

111111 ~

/ [a(Waz,b1 — &)t +b(War b2 —e)vI*udVidVa =0 . (i3)

In formulating (11), we have expressed the Hamiltonian H that acts on @ via the
decomposition (2). If we use the decomposition (6) as the next step, we will get
instead of (12) the differential equation

a(Waz,p1 — )i +b(Wa1 b2 — €)v + (Hag + Hp1 —2E1)@ =0 , (14

Example 15.2
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which is solved by the function ¢ = v for the homogenous part. Then the same
argument as above in (13) leads to the integral

f [a(Wazo1 — &)+ b(War g2 — )ul*vdVy Vs = 0 (15)
It holds that

f ] 2 Wy 1 AV dVy = f 101 2 War 2 dVi dVy = K | (16)
and

/ u*UWaz,m dVydv; = / v*u WarpodVidVa = A . a7n

The equality of the integrals is due to the fact that the arguments differ by their
indices only. Here, K is the Coulomb energy of the perturbation; A is the ex-
change energy. If, for example, we insert the perturbation W in the form (2), it

will follow that

2 2
kmmer [l [y,
vl Fa2

+e / [Va(ran) 1y ()
r

12

dvidv; , (18)
and
A= _ezj /A ("al)\[’b("bl)dv1 x S*_ezf 1/&\(’"323'1%(%2) dVy x §
I'vl a2

+ ) f ‘Jf;k(ral)‘ﬁg(rbZ)wa(raZ)Wb(rbl)

r

dvidv, .

In the case of the Coulomb energy, the various terms express the energy of the
interaction of the various electron charge distributions with the other nucleus and
the mutual interaction of the two electron charge distributions.

In the case of the exchange energy, the mixed densities appear. The quan-
tity S, defined in (9), expresses the overlap of the nonorthogonal electron wave
functions. We have

S(rap > 00)=0 and Sirp—>0)=1.

By using the abbreviations introduced for the different integrals, we can write
(13) and (15) in compact form:

(e—K)a+ (5% —A)b=0, (19)
(€S> —Aa+(E—K)b=0 . (20)
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Thus we have two equations for determining the coefficients of the linear com-
bination (8). Assuming a nontrivial solution for the system of equations, its
determinant has to vanish, yielding the relation

(e—K)? = (57— A)? .

The solutions of these equations give the energy shifts

K—A

€1=1"g5 = Canti » (21)
K+A

&) = 'l—m = Ssym . (22)

The insertion of these two solutions into (19) and (20) yields for the coefficients
a=-b for & and (23)
a=b for e . (24

Therefore we get a symmetric solution, with the energy

K+ A

Esym =2E1+ 1182 (25)
and an antisymmetric solution, with

Eai = 25 +2—4 (26)

e A (£0)

To ascertain the energies, we have to calculate the integrals K, A and S with the
wave function of the ground state of the hydrogen atom. Owing to the extensive
calculation necessary for this task, we give only a graphical representation here.
We treat the protons as classical point particles. Then the energy

2
o =6 — @7

T'ab
is the binding energy of the molecule. In the following figure, the Coulomb en-
ergy K +e%/rup is given as a function of the distance of the nuclei (in units
of Bohr’s radius). The result is a very weak binding. The exchange energy is
negative and, except for the case of very small distances, it is greater than the
Coulomb energy. This causes a stronger binding in the symmetric state (22),
and repulsion in the antisymmetric case (21). Therefore the sign of the exchange
energy is responsible for the binding of the Hy molecule. The real binding en-
ergy of the hydrogen molecule is much smaller than the value of this calculation
(—4.4eV). In spite of this quantitative failing, the calculation gives an idea of

how homeopolar binding comes about.

Thus we have found a symmetric local wave function of the ground state of
hydrogen. Because of the Pauli principle, the spin function has to be antisym-
metric, i.e. the electron spins are oriented in an antiparallel manner [see (24) of

Example 15.2

Edev]

2t &
_3 -

The different energy contri-
butions to the binding of the
hydrogen molecule
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Two hydrogen atoms whose
nuclei are separated by a dis-
tance R

Example 15.1]. We distinguish, as with helium, between parahydrogen (singlet
state) and metastable orthohydrogen (triplet state).

Our presentation of a solution to the problem by perturbation theory is based
on considerations by W. Heitler and F. London. More precise methods first solve
the two-centre problem for the electrons, i.e. the Schrodinger equation with the
Hamiltonian (2) without the electron-clectron interaction e2 /r12. In 1930, E.
Teller and E.A. Hylleraas applied this new method.

Recently this kind of problem has again attracted attention, particularly in
connection with the creation of very heavy quasi-molecules in the collision of

and one electron (e.g. uranium—uranium molecule) with small distances between
the nuclei, the two-centre Dirac equationl has to be solved, because the inner
electrons in heavy and very heavy elements are relativistic. We shall treat this
topic in more detail when discussing relativistic quantum theory.

15.3 The van der Waals Interaction

As an example of an application for the variational method (see Chap. 11) we
calculate the long-range (van der Waals) interaction between two hydrogen
atoms in their ground states. To this end, it is useful initially to treat this problem
using perturbation theory, because afterwards it is easier to see that the lead-
ing term of the interaction energy is inversely proportional to the sixth power
(~ 1/R%) of the varying distance R between the two atoms. It will also be-
come apparent that perturbation theory and the variational calculation represent
opposite limits for the determination of the coefficients of the 1/R® term.

The two atomic nuclei A and B of the hydrogen atoms are separated by
a distance (see figure) and the z axis is given by the connecting line between A
and B. We denote the local vector of electron 1 relative to nucleus A by #, and
the local vector of electron 2 relative to nucieus B by r,.

1 2
A R B

z axis

1See B. Miiller, W. Greiner: Z. Naturforsch. 31A, 1 (1976). An extensive discussion
of this exciting physics can be found in: W. Greiner, B. Miiller, J. Rafelski: Quantum
Electrodynamics of Strong Fields (Springer, Berlin, Heidelberg 1985).
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The Hamiltonian for the two electrons reads (with spin—orbit coupling neg-
lected)

H=Hy+H , with

. 2 ) 2 2

Ay=—(v24vh-S£ ¢

0 ) ( 1 2) ry

. et 2 e &

=, ¢ < _ ¢ (1

where, in the ground state, the unperturbed Hamiltonian Hy has the stationary
solution

Yo (r1, r2) = Yoo (r) Yoo (r2) - (2)

Here W, (r) denotes the known hydrogen eigenfunctions [see (9.45)]. We re-
gard H'asa perturbation, which is surely approximately valid for a large distance
between the two atoms R > ag, ag being Bohr’s radius.

Since we are interested in the leading term of the interaction energy, we ex-
pand A according to powers of 1/R and pay attention only to the terms of lowest
order:

G- _{ [ 2(22—21)

-1/2
(xz—xl) + -y +@—z1)*]
R2
—-172 —-172
B O U W P O
R R? R R2
2
—3(x1x2+y1y2—241Zz) 3

The leading term apparently describes the interaction energy of two electric
dipoles, which are given by the momentary configuration of the two atoms. The
neglected terms of the order 1/R* and 1/R> correspond to the instantaneous
dipole—quadrupole interaction and the quadrupole—quadrupole interaction, re-
spectively.

Now, 1t is clear that the expectation value of the leading term of A 3) in
the state Wy (r1, r2) (2) vanishes, because ¥ is an even function of r| and r;,
while H’, on the contrary, is an odd function of r and r,. One can also show
that all neglected terms of higher order in H’ have a vanishing expectation value
in the state ¥ (ry, r2), too, because these terms may be expressed by spherical
harmonics Y, with / # 0. Therefore the leading term of the interaction energy
of the two atoms has to be of second order in perturbation theory when the dipole
panﬁ[see (3)] is taken into account, and so it has to depend on the distance like
1/RS.

Example 15.3
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Perturbation Theory
In second-order perturbation theory, the interaction energy of the two hydrogen
atoms is
W(R) = Z |(n| |0 @
E,—Ey
n#0

Here, the index n stands for all states of the pair of electrons of both hydrogen
atoms, including the dissociated states. Because of (4), it is clear that W(R) is
negative, since E, > E; and therefore nominator and denominator are always
positive. Hence, we may conclude that the interaction of the two hydrogen atoms
is attractive and proportional to 1/R® if R is large (i.e. R>> ag). We realize
that this conclusion is valid for any pair of atoms which have nondegenerate
spherically symmetric ground states; this is generally the case.

We can get an upper bound for the positive quantity —W(R) as follows. Let
us substitute all E,, in the nominator by the lowest value E;. Here, E is the first
excited state (2 p state) of the hydrogen atoms. Then all denominators in the sum
(4) are equal, and the summation is performed in the following way:

(n|H'|0)2 |(n| H'[0)|?
—W(R)=)" <y
o En,—Eo oy E|—Ey
2
o)

= EliEO’;Kn‘FI,
e (Sllalla

o)-fola1d)?)

1 A X
- 0]a72 O>—<O|H’ 0)2)
E, —Ey (<
(01A"*|0)
= Fo- ®
— L
Here, we have used the completeness relation and the well-known fact that
(o] |o)=
Thus
(0|A"|0)
W(R) > ——— . 6
(B2 = ©)

Now, we have (see Chap. 9)

2
=-2 ( 26 ) (both atoms in the ground state)
ap

2
=-2 ( ¢ ) (both atoms in the first excited state) .
ag
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Consequently,

3e?
E]—E():Z;lg - (7)

Furthermore, it follows from (3) that

2
A €
H? = F(x,zxg+y%y%+4zfz%+2xlxz)’1}’2—---) : (®)

The expectation value of the mixed terms (like 2x1x2y1 y2) vanishes for the same
reason as in the former discussion (an odd function of the components of 7|
and/or r2). In addition, each of the first three terms of (8) yields a product of
identical factors. For instance,

1
[ 21001 2d% = [ 2 oo 2r

J

o0
1
= 3 jrze_zr/“‘)éirrrzdr =aj . 9)
3may
0
Then
2 4
I Al 6e7ag
V0= Re

With this equation, (6) reads

8 ezag
W(R) = —— (10)
Variational Method

Equation (10) represents a lower bound for W(R). An upper bound may always
be computed by a variational procedure. We have to consider the problem of
choosing a reasonable test wave function &. If we choose ¥ to be independent
of R, then the expectation value (¥ |H'|W) is proportional to 1/ R3, which is not
useful for our case, since we want to know the coefficient of the 1/R® term.
Therefore we have to take into account the polarization effects in the wave func-
tion. Since we assume that the polarization is proportional to H', we write the
test function in the following way:

W(r1, r2) = Yrioo(r) Yoo (r2) (1 + AH')
=Yrn)(1+AH) , (11)

Example 15.3
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where A represents the variational parameter. Then the variational problem [see
(11.32), (11.37)] gives

Eo+ W(R)
) A+ AR Ho+ B rir) (L + AR &Eri &Py

- (12)
JI Wor, m)P(1+ AR dr dr
A is assumed to be real. The right-hand side of (12) may be rewritten as
Eo+2A(0/H2|0) + ,:2 (O1F By H'10) ’ a3

since Wy(ry, r2) is a normalized eigenfunction of ﬁo, with the eigenvalue Eg =
e /ao, and, furthermore,

ob]0)= ol

0):0_

The matrix element (0| A’ HyH’|0) gives a negative contribution. This can be
shown by inserting complete sets of eigenfunctions of Hy:

(o[ for|0) = 30| | n){ o] m) 7]}
Z;En (()lﬁ’

because all E,, are negative. Thus, by

n>|2<0,

Eo+2A(0H"|0) + A2(0|H' HyH'|0)
1+ A2(0|H"2|0)
- Eo+2A(0|H?|0)
1+ A2(0|A72)0)

(14)

we can give an upper bound for (13). A
As we are interested only in terms up to the order H'?, we expand the
denominator of (14) and obtain

é”2}0> ) (15)

Eq, the energy of the ground state of the two hydrogen atoms, is negative.
Therefore (15) has a minimum at A = 1/E, and thus (12) takes the form

Eo+W(R) < E LA 6
0 )< Ep B, 0T ge

(16)
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Together with (10) we have both an upper and lower bound for the interaction

energy, which can be expressed by the inequality
88261(5) - 6eza3 7

Finally, we should note that careful variational calculations have shown that the
numerical coefficient in W(R) is close to 6.50.2 The result achieved in this way is
not absolutely correct, because only the static dipole—dipole interaction has been
considered. If we also take into account the retardation caused by the finite speed
of propagation of the electromagnetic interaction of the two dipoles, we find that
W(R) =~ —1/R’if R is large compared to the wavelength of the electromagnetic
radiation of the atomic transition:

hcag
R» ——=13Ta | . (18)
(4

But the interaction energy at these large distances is so small that it is physically
uninteresting (insignificant). Therefore we may proceed from the assumption
that expression (17) is a useful and reasonable approximation for the interaction
of two spherical atoms.?

15.4 Biographical Notes

HEITLER, Walter Heinrich, German physicist, *Karlsruhe, 2.1.1904, t15.11.1981.
H. was in Géttingen from 1929-33; thereafter, he worked in Great Britain. H. was
a professor at the Institute for Advanced Studies in Dublin from 194149 and at the
Universitit Zirich from 1949, After the development of the fundamentals of quantum
mechanics in 1927, H. and F. London were able to explain the homeopolar chemical
binding within the framework of quantum mechanics. Then H. applied quantum-
mechanical methods to radiation theory and cosmic radiation; in particular, together
with H.J. Bhabha, he was able to explain the origin of the showers of cosmic rays by
his cascade theory. Further research dealt with the theory of nuclear forces and meson
theory. In 1968 he was awarded the Max-Planck Medal of the Deutsche Physikalische
Gesellschaft.

LONDON, Fritz, German-American physicist, *Breslau, 7.3.1900, t Durham, North
Carolina, 30.3.1954. L. grew up in a cultivated, liberal German-Jewish family. He stud-
ied at the universities of Bonn, Frankfurt and Munich, and wrote his doctoral thesis in

2 See, e. g., L. Pauling, E.B. Wilson, Jr.: Introduction to Quantum Mechanics (McGraw
Hill, New York 1935), Chap. 47a.
3 See, e.g., H.B.G. Casimir, D. Polder: Phys. Rev. 73, 360 (1948).

Example 15.3
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Munich entitled “Uber die symbolischen Methoden von Peano, Russell and Whitehead”.
In 1939 he published, together with Ernst Bauer, a short monograph on the theory of
measurement in quantum mechanics. in 1925 he began to work in theoretical physics un-
der the direction of Sommerfeld in Ziirich and Berlin. In 1933, L. and his brother, Heinz,
left Germany because of the political situation. For two years L. worked in Oxford and
spent another two in Paris at the Institut Henri Poincaré. In 1939 he became a professor
of theoretical chemistry at Duke University, in North Carolina. In 1927 he and W. Heitler
solved the quantum-mechanical many-body problem of the hydrogen molecule. To do
so, they took advantage of an analytical technique that was formulated by Lord Rayleigh
in his “theory of sound”. Thereafter L. worked mainly in the field of molecular theory.

TELLER, Edward, Hungarian-American physicist, *“Budapest, 15.1.1908. Since 1935,
T. has been a professor in the United States (New York, Chicago, Los Angeles, Liver-
more, Berkeley). T. took part in the development of the atomic bomb and very early on
promoted the construction of the hydrogen bomb. He was one of the founders of Liv-
ermore National Laboratory and has been scientific advisor to several presidents of the
USA

HYLLERAAS, Egil Andersen, Norwegian physicist, “Engerdal (Norway), 15.5.1898,
1 Oslo, 28.10.1965. H. studied at the universities of Oslo and Gottingen and graduated as
Dr. phil. in 1924 as a student of L. Vergard. H. became a member of the Chr. Michelsons
Institute (Bergen) in 1931 and won the Gunnerusmedalje (Kgl. Norske Videnskalero
Selskab, Trondheim).

van der WAALS, Johannes Diderik, Dutch physicist, *Leiden, 23.11.1837, { Amster-
dam, 8.3.1923. After years of teaching, W. studied physics at the University of Leiden.
On the basis of his knowledge of the work of Clausius and other molecular theorists,
he wrote his doctoral thesis “Over de continuiteit van den gasen en Vloeistoftestand”
(1873). By applying simple mathematical equations in this thesis, he gave a satisfactory
explanation of the properties of gases and fluids in the framework of molecular theory.
Thomas Andrews and other experimental physicists later confirmed W.’s thesis, in par-
ticular the existence of critical temperature. In 1875 he was appointed a member of the
Royal Dutch Academy of Sciences and two years later became a tenured professor at
the University of Amsterdam. W. was a much-admired teacher and inspired his students
to do both experimental and theoretical work. His scientific papers were primarily con-
cerned with topics in molecular physics and thermodynamics. In 1910 W. was awarded
the Nobel Prize in Physics.

SLATER, John Clarke, American physicist, *Oak Park, Illinois, 22.12.1900. S.’s most
important contributions were to quantum theory, but he also worked on the theory
of solids, thermodynamics and microwave physics at the Massachusetts Institute of
Technology (MIT) during the years 1930-1951.
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In this chapter we summarize the mathematical principles of quantum mechan-
ics, using a more abstract mathematical formulation than before. Many of the
relations which will be considered here have already been discussed in the pre-
ceding chapters in a more ‘“‘physical” way and most have been proved in detail.
Some of the explanations and proofs are supplemented or demonstrated once
again in a more compact manner in additional exercises.

16.1 The Mathematical Foundation of Quantum Mechanics:
Hilbert Space

By a Hilbert space H we mean an abstract number of elements, which are called
vectors |a), |b), |c) etc. H has the following properties:

1. The space H is a linear vector space above the body of the complex numbers
w and v. It has three properties:

(a) To every pair of vectors |a), |b), anew vector |c) is related, which is called
the sum vector. It holds that

la) +1b) = |b} + |a) (commutative law)
(la) + b)) + lc) = la) + (|b) + |c))  (associative law) . (16.1)

(b) A zero vector |0) exists, with the property

la) +10) = la) . (16.2)

(c) To each vector |a) of H, an antivector | —a) exists, fulfilling the relation

la} +|—a) =10} ; (16.3)
for arbitrary complex numbers p and v, we have

p(lay+1b)) = pla) +plb)

(u+v)la)=pula)+via) ,

pvla) = p(vla)) ,

1la)=la) . (16.4)
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2. A scalar product is defined in the space H. It is denoted by

(la).16)) or (alb) , (16.5)
yielding a complex number. The scalar product has to fulfil the relations

(la), A16) = A(la), b)) ,
(la) , 16} +c)) = (la) , 1b)) + (la) , c))

(la), b)) = (Ib) . la))* . (16.6)
The last equation may also be written as

(alb) = (bla)* .
It is easily shown from this, that

(Aa), b)) =A(la) , b)) = A" (alb) , (16.7a)
and

(a1) +1az) , b)) = (lar) , 16) + (a2 , b)) = (@1|b) + (aalb) ~ (16.7b)
follow. The norm of the vectors is defined by

Ia) | = v/(ala)
(read: norm of vector |a) = +/{aja)).

It can be shown that Schwartz’s inequality,

[a) | 1116} | = [{alb)| | (16.8)
is valid and that the equality is only valid for the case

la) = A [b)
(parallelism of the vectors).
3. For every vector |a) of H, aseries |a, ) of vectors exists, with the property that
for every £ > 0, there is at least one vector |a,) of the series with

ll'1a) —lan) || <& . (16.9)

A series with this property is called compact, or we may say |a,) of the space H
is separable.
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4. The Hilbert space is complete. This means that every vector |a) of H can be
arbitrarily exactly approximated by a series |ay):

lim |} |a) —las) | =0 . (16.10)
n— 00
Then the series |a,) has a unique limiting value |a).

For Hilbert spaces with finite dimensions, axioms 3 and 4 follow from ax-
ioms 1 and 2; then 3 and 4 are superfluous. But they are necessary for spaces of
dimension oo that occur in quantum mechanics in most cases. In the following,
we discuss once again some definitions that are used very often.

1. Orthogonality of Vectors:

Two vectors | ) and |g) are orthogonal if
(flgy=0. (16.11)

2. Orthonormal System.

The set {| f,,)} of vectors is an orthonormal system if
(fn'fm) =dum - (16.12)

3. Complete Orthonormal System:

The orthonormal system {| f,,}} is complete in H if an arbitrary vector | f) of
H can be expressed by

1= anlfa) - (16.13)

In general, ¢, are complex numbers:
Y o fn>
n
= tn (fmlfn)
n
= Z ¥nSmn
n

=apy , (16.14)

Cm = (fm[f) = <fm

so that we can write
REIMIDIAGE (16.15)
n

The complex numbers «, are called the f, representation of | f); they rep-
resent, o to say, the vector | f}; they are the components of | f'} with respect
to the basis {| f,)}. If the sum in the last equation encloses an infinite number
of terms, then we speak of a Hilbert space of infinite dimensions. In quantum
mechanics, this is usually the case.
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16.2 Operators in Hilbert Space
A linear operator A induces a mapping of H upon itself or upon a subspace
of H. Here,

A@|f)+B1g) =aAlf)+BAlg) . (16.16)
The operator A is bounded, if

[415] <cus (16.17)

forall | f) of H, C being the same constant for all | ). Bounded linear operators
are continuous. This means that for

| fud = 1f) (16.18a)

Alfa)— AN (16.18b)
also follows. Two operators A and B are equal (/i = .53) if, for all vectors | /) of
H,

Alfy=BIf) . (16.19)
The following definitions are often used:

(a) unity operator i i )=/ ;

(b) zero operator 0 : 0] Ify=10)

(c) sum operator A+B . A+B) ) =AIH)+BIf) ;

(d) productoperator AB :  (AB)|f)=ABIf)) . (16.20)

The relations shown here have to be valid for all | /) of H. With respect to the
product operator, we have to add that, in general,

AB + BA .
The commutator of A and B is defined by
[A, Bl_=AB—BA . (16.21)

Now we explain the very important concept of the adjoint of a restricted opera-
tor. If an operator A exists for the operator A for all | f) and | g) of H in such
a way that

(I8, AlfH=(AT1g),15) . (16.22)

then At is called the adjoint operator of A. This relation can also be expressed
by

(g|A]f)=(r|A*|g") . (16.23)
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The adjoint of an operator (16.22) possesses the following properties, which are

(1) (eA)yt =a*At;
2) (A+B"=AT+B";
(3) (AB)y"t=BTAT;
@4 (AHt=4A. (16.24)

All these properties were discussed and proved in Chaps. 4 and 10. On the basis
of the definition given above, the properties may immediately be confirmed.
An operator A fulfilling the relation

A=At (16.25)

is called a Hermitian operator. From this it follows that the expectation values

ara raal-
Aiv ival.

(f

A

Alf):(f|14+|f)* I(f|14|f)* =real . (16.26)

16.3 Eigenvalues and Eigenvectors

We speak of an eigenvector |a) of the operator A belonging to the eigenvalue a
in the case

~

Ala) =ala) . (16.27)
Here, the eigenvalue a is, in general, a complex number. Especially for Hermitian
operators A(A1 = A), the following is true.

(a) The eigenvalues of Hermitian operators are real.
(b) If |&’) and |a”), are two eigenvectors of a Hermitian operator A with two
different eigenvalues a’ # a”, then

(a’|a") =0.

(c) The normalized eigenvectors of a bounded Hermitian operator A create
a countable, complete orthonormal sysitem. In this case the eigenvalues are
discrete. Then we speak of a discrete spectrum.

We therefore can conclude that an arbitrary vector |y) may be expanded in terms
of the complete orthonormal system |a) of the Hermitian, restricted operator A:

lWy=>" la) (alyy) . (16.28)
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As noted above, we have
{a"ia"") =dgq" - (16.29)

The scalar product of two vectors |¢) and |) may be expressed in the A
representation; also,

(o) = (gla) (aly) (16.30)

Here, a helpful trick has been used. If we introduce the unity operator 1, known
as completeness, by

ﬁ=Z|a) (al , (16.31)

we get

Wy =1|y)= Zla (aly) | (16.32)

and, further,

(i) = (ol 1]y) = Zma ) alys) (16.33)

which is consistent with (16.28) and (16.30). The expansion (16.32) implies that

> lalp*=1. (16.34)

Therefore we may also say that {(a|y) is square-summable. Apparently the ab-
stract Hilbert space is mapped onto the space of the square-summable functions

{ovgonfunr-ﬂnno nfflno npornfnr A\ Thl& we {\nll [h‘e ‘A roprovonfnhnn of '-/: an‘l

mean the infinite set of numbers (all/f) in (16.32). Applying an operator B to [v)
yields

(@|Bly)=>_(d|Bla"){a"|v) . (16.35)

Thus the operator B can be written in the A representation as the matrix

(@11Blar) (a1] Blaz)
(@2|Blar) (a2|Blaz)

B (d|Bla")= : : - (16.36)
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and the vector ¥ in A representation as

{a1|¥r)
(a2l ¥r)

vy —(dly)=| : . (1637)
{an|¥r)

Therefore the onerator B in A reprﬂsentahnn is a nuadrajic matrix; the ve,ctor

W; ezgenrepresentatton as
(d|Ala")=a'8yar - (16.38)
Sometimes it is advantageous to write the (arbitrary) operator B in the form
B=iBi= Z a'|Bla")a"| . (16.39)

The analogy of the representation of a vector in a Hilbert space to the components
of a vector in vector space is evident. The choice of the representation coincides
with the choice of the coordinate system in the Hilbert space.

Now we proceed to the transformation of the A representation into B
representation. Here, the so-called transformation matrix

(a]b) (16.40)

plays an important role. In analogy to (16.38) it follows that

{t'|B|b") = b6y . (16.41)
It is convenient to start from the unity operator
i=Y |a)a|=)"|p){p| . (16.42)
ARV R Ly TV
! b/

The following relations can be understood immediately:

)=l = o))

(@|v)=(a|]w) =D _(eIt)¥]v) ,

b

bn) _ Z (b’|a') (a’|é|a”){a”|b”) ' (16.43)

(| Clo") = (i

Similarly to (16.42), we get

(@lcla’) = | BiC ) = D (e Bl Y

a”

Cla

") (16.44)
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This means that for the matrix element of the product of two operators BC, the
customary rules for matrix multiplication are valid.

EXERCISE I

16.1 The Trace of an Operator

Solution. The trace
trC = Z |C Ia

Then we write

of the operator C in the A representation is

L)

uC=) " (d|C|d)...=uiCi

=Y D (el eEl ) pla)

d v v
= ZZZ (b} (a0} (&' |C |67
P

—LLb” blIC|b”

b//
iCjp")=Y {p"|Clp") .

S
.4 b’
Since € |c) = c|c), we have in the eigenrepresentation of ¢
uC = L \C |c

Ved

! The German name for trace, “Spur”, is often used in the literature.
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EXERCISE I,
16.2 A Proof

Problem. Show that

> 3l |€la)P = wie
a/ a//

Solution. It can easily be seen that

Sl (Cla)F =30 | Cla") e | ¢ la")
=YY {@|Cla"){a"|C|a)
= Z(a'|(:‘(:‘+|a’> =trCC™T .

Here we have used (16.23) and (16.44).

16.4 Operators with Continuous or Discrete-Continuous
(Mixed) Spectra

Many operators occurring in quantum mechanics do not have a discrete, but
a continuous or a mixed (discrete-continuous), spectrum. An example of an op-
erator with a mixed spectrum is the well-known Hamiltonian of the hydrogen
atom. Actually all Hamiltonians for atoms and nuclei have discrete and con-
tinuous spectral ranges; therefore they have mixed spectra. Usnally the discrete
eigenvalues are connected with bound states and the continuous eigenvalues are
connected with free, unbound states. The representations related to such oper-
ators cause some difficulties because, for continuous spectra, the eigenvectors

are not normalizable to unity (cf. our discussion of Weyl’s eigendifferentials in

Chaps. 4 and 5).

1. Operators with a Continuous Spectrum

The operator A has a continuous spectrum if the eigenvalue @ in

Ala) =ala) (16.45)
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is continuous. The states |a) can no longer be normalized to unity, but must be
normalized to Dirac’s delta function:

(@|a")=8(d"—a") . (16.46)
Here, the delta function replaces, so to speak, Kronecker’s § of the discrete spec-
trum [cf. (16.29)]. In the expansion of a state |¢) in terms of a complete set |a),
the sums [cf. (16.28)] are replaced by integrals:

[¥) =/ &) {d|v) da’ . (16.47)
{@| ) represents the wave function in the A representation. The inner product of
two vectors |¢) and |i/) changes analogously to (16.30) into

i) = [ lola)lv) aa' (16.482)
which is sometimes written as

i) = [ ¢ @iarad (16.485)
Here, Y/(a) = {a|yr) may be understood (somewhat imprecisely) as a “wave
function in A space”. Of course, it is just the A representation of |yr).
2. Operators with a Mixed Spectrum
If the equation

Algy — o la)

Rl b A b et )
yields discrete as well as continuous eigenvalues a, we are dealing with a mixed

A spectrum (cf. Fig. 16.1).
a In these cases, the expansion of |} in terms of |a) reads
# continuous
T Wy =) |d){d|v)+ /]a’)(a’\x/f) da’ | (16.49)
discrete “

Fig.16.1. A mixed spec-
trum. For a < a, the spec-
trum is discrete; fora > @ it
is continuous

where the sum extends over the discrete, and the integral over the continuous,
eigenstates |a).

In order to make the notation more compact, it is understood that ), or
[ ...dd is split into the discrete and the continuous parts of the spectrum, if
there are any, according to (16.49).
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16.5 Operator Functions

Operator functions f(A) may be defined as a power series if the function f(x)
can be expanded in this way. Thus if

o0
fxy=) Cux",
n=0
then the operator function f(A) is defined by
o0
fAy=>_C,A" . (16.50)
n=0

For example, e‘&, cos A, etc. may be defined in this way. Another possibility of
defining operator functions is obtained via their eigenvalues: if

A la)y=4d'|a) |
then we have
fA)|a)= fa)|a) . (16.51)

For operator functions of the form (16.50), (16.51) follows immediately. Two
exercises will illustrate these points.

EXERCISE I
16.3 Operator Functions

Problem. Derive the relation

(B AD[p") =" (pla) fla) (@|b") -

al

Solution. We calculate:
(6| f(A) 6"} = (b'|1 f(A)1]p")
=Y Ela) | fd)|a" a"|p")

/

a a//

=2 (ple) fld)ba ar |0

:Z(b’|a’) f(a')(a’|b”) ; (1)



434

16. The Formal Framework of Quantum Mechanics

EXERCISE I

16.4 Power-Series and Eigenvalue Methods

Problem. Show by the method of power-series expansion (16.50) and by the
method of eigenvalues (16.51) that

B isiné
(i8I0, _ cos5 isin5

\i Sii‘lg cos g /

Solution. (a) We use the power series of the exponential function and get
o0} . n
; 1 /i
i(B/2)ox __ I n
e —Zon,(z) or . ()
n=

Wehaveo? =1 = (1) (1)) an

splits into even and odd powers. We get

o0 . .
- 1 /ig\" 1 /ig\"
LB/ Dyox _ — | £ — | =
e _lzn!(z) +"XZ,,,(2)

n even nodd

d therefore 0; = 0. For this reason, the series (1)

B ..
= llcos§+1ox smg ) (2)

(b) We use the method of eigenvalues (16.51). It is suitable to introduce the
vectors

="} and n=(° 3
Iz,+)—(0) an IZ’_)_(I)' 3)

i.e. the eigenstates of o, = ((1) _01) This property is expressed by the notation

|z, A). Now, it can easily be checked that

(i lox|zj>=(‘;’ (‘)) : @

To use the method of eigenvalues, we need the eigenvalues of o,. For this
purpose, we solve the eigenvalue problem

ox X, Ay =XA|x, A) , (5)



16.5 Operator Functions

435

and find A = £1 and the normalized eigenvectors,

] 1 /1 1 (1 6
w=75(1) - mr=5(4)- ©

Using (1) of Exercise 16.3, we get

i(8/2)ox

(z.i]e 20y =) (@ilx, &) €PN (x, Ag, ) )

A==1

From this we are able to construct all matrix elements. For example, for
i=j=1, weget

. 1 1\ 1 1
(B/2)ox - B/ ___
(Z’ 1|el 7 lZ, 1>_ 5 (1 0) (1) e \/E (l l) (())

+%(1 0)(_11)64(5/2)\%(1 _y) ((1))

! el(8/2) —+—%e_i(ﬂ/2) = cos —g— .

2

In a similar manner we derive the other matrix elements, and finally arrive at

B iunB
. coss ising

(z, i|el(ﬁ/2)""|z, he 2 2] (8)
ising cos g

Even the inverse operator A~ can be defined by the method of eigenvalues (and
not only by the inversion of the matrix), namely:

- 1
-1
A |a’)=;|a’) : (16.52)
With Ala’) = d’|@'), we have
ATTA=AA"1=1.

If one of the eigenvalues of A, i.e. one of the quantities @', vanishes, the inverse

A

operator cannot be defined. In this case, A~! does not exist.

Exercise 16.4
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16.6 Unitary Transformations

An operator U is unitary if

~ ~

=0t (16.53)
A unitary transformation is given by a unitary operator:
|@hew) = U |agua) - (16.54)

Hence, for an operator, it follows that

<a;1ew Anew a;;ew) = <0 a4 ’Anew U agld> = <a£>ld U +Anewl} agld)
def
= ( Aold Aold ()ld) .
Therefore
Aold = 0+Anew0 , Or
Anew = (O T AU ' = UAga0™ (16.55)

where we have used (16.53). It can easily be checked that scalar products are
invariant under unitary transformations, because

\ . , , \ S
:)ldluaold} \031 a|UTU|a, 1d) = {Potalabia) - (16.56)

Also the eigenvalues of Anew are the same as those of /iom (invariance of the

eigenvalues), i.e.

=UAy U Ula
11

Anew |“/ 01d> U Aaig ’a:ﬂd} =0 g |af)1d>

new>

= ayU |201a) = @y |Opew) - (16.57)

It can easily be shown that, given
Cold = AciaBoa  and (16.58)
old = /’iold + éold s (16.59)

>

it also holds that

Crew = Anew Bnew  and (16.58a)
Dncw = Ancw + Bnew . (16.59a)

The generalization of these relations is obvious: All algebraic operations remain
unchanged by unitary transformations.



16.7 The Direct-Product Space

437

16.7 The Direct-Product Space

Frequently the Hilbert space must be expanded, because new degrees of freedom
are discovered. One example we have already encountered is the spin of the elec-
tron (see Chap. 12). The total wave function consists of the product of the spatial
wave function ¥ (x, y, z) and the spin wave function x(o):

Pix, y, 2)x(o) .

We say the Hilbert space is extended by direct-product formation. The following
examples explain this further.

A nucleon may be either a neutron or a proton with nearly identical masses:
mp62 = 938.256 MeV, myc? = 939.550 MeV. For this reason we consider it as
a particle with two states, the proton state | p) and the neutron state |n):

| ny — (1\ ln\ — (0\ (]ﬁ ﬁn)

o \O/Charge Y \]/charge J

The vectors | p) and |n) span the two-dimensional charge space or isospin space
(in analogy to the spin). Since the nucleon may also occupy two different spin
states

the direct product space consisting of spin and isospin space is given by the four-
dimensional space with the basis vectors

212 (0) o (0),

P B 0 charge 0 spin
I 0

297 (0) (1) 0"

P ¢> 0 charge ) 1 spin

mi— () ()
B kl)charge ko) spin

0 0
0= (1) (0),0,"
lcharge 1spin

d

N

~~ N N

i

SO0 OO0 OO~ OO O -

e e

—~

(16.62)
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Thus, in this four-dimensional space, the charge properties as well as the spin
properties of the nucleon can be described. If further “intrinsic” properties (i.e.
more inner degrees of freedom) of the nucleon should be discovered, the space
will have to be further enlarged. In fact,