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Abstract
Nanostructures can be in the form of nanoparticles or nanograins, nanowires or

nanotubes, and nanoplates or multilayers. These nanostructures may be used
individually or embedded in a bulk material. In both cases, they share two common
features. First, the small dimensions minimize or even eliminate the presence of defects.
Second, nanostructures entail large surface or interface areas. The absence of defects
makes nanostructure materials stronger than their bulk counterparts, leading to the
eventual realization of ideal strength. The presence of surfaces and interfaces may
either reduce or increase the strength. Atomistic simulations can provide insight into the
deformation mechanism at the atomic and electronic level, something that is very
difficult to obtain from experiments. This article describes generic features of
nanostructures and summarizes the five areas presented in the articles in this issue.
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Introduction
A structure becomes nanoscale when at

least one of its three dimensions is below
100 nm. Gleiter1 classified nanostructures
according to their dimensionality, as
schematically shown in Figure 1a. In
nanoparticles or nanograins, all three
dimensions are nano, making them zero-
dimensional (0D). Nanowires or nano -
tubes are large in only one dimension,
making them one-dimensional (1D).
Analogously, thin films, multilayers, 
or membranes exceed the nanometer
regime in two of the three dimensions,
making them two-dimensional (2D).
Confinements of electron distribution in
small dimensions can lead to both quanti-
tative and qualitative changes of mater -
ials functionalities. In connection with
mechanics, these three types of nanostruc-
tures share two common features. On one
hand, the smaller the structure, the less
chance it incorporates defects. On the
other hand, the number of atoms situated
in the surface or interface increases drasti-
cally. These two structural characteristics
of nanostructures determine, to a great
extent, their elastic and plastic responses in
the presence of surfaces and interfaces. For
example, the Young’s modulus of a nano -
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Figure 1. (a) Schematic of nanostructures—0D nanoparticles and nanograins, 1D
nanowires, and 2D membranes and multilayers; (b) Variation of normalized Young’s
modulus (E) as a function of Cu nanoplate thickness. Reprinted with permission from
Reference 3. © 2004, American Institute of Physics.

structure can increase or decrease with
dimension, as shown in Figure 1b. These
aspects form the focus of this theme issue.

At an interface, the periodicity of atomic
arrangement terminates. This  termination
means the loss of atomic neighbors at a free
surface, and therefore the change of elec-
tron distribution. As an example, Figure 2
shows electron  re distribution near a ZnO
(112̄0) surface.2 Due to the loss of atomic
neighbors, each of the surface bonds (S1,
S2, and S3) is strengthened, as indicated by
the overlap of electron distribution (as
shown by the red contours in Figure 2).
This tendency of electron redistribution
moves the surface atoms and exerts strain
on atoms under the surface. At a metallic
surface, similar electron redistribution
occurs, leading to surface stress and strain.
The surface stress may lead to or facilitate
surface reconstruction, change of elastic
moduli, phase transformation, dislocation
nucleation and motion, and self-organiza-
tion of nanostructures.3–5 When surface
stress itself is insufficient, additional
mecha nical stress helps facilitate the phase
 transformation.5,6,7

Local electronic structure plays a key
role in determining the nature of defects in
crystals. For instance, the general planar
fault energy curves, which represent the
energy dependency of rigidly shearing a
crystal, influence the nature of slip activity
in nanocrystalline systems.8 Figure 3a
 displays the valence electron density in
face-centered-cubic (fcc) Al that is rigidly
sheared at a {111} plane along the 〈 ̄11̄2〉 slip
direction. The inter {111}-plane bonding is
substantially altered. This alteration
results in the maximum energy configura-
tion in the generalized stacking fault
energy (GSFE) curve  displayed in Figure
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Figure 2. Top view of the atomic
structure of the ZnO (112

_
0) surface, the

density contour of electrons at S1, S2,
and S3, and that in the bulk for
comparison. Reprinted with permission
from Reference 2. © 2006, American
Institute of Physics.

a b

Figure 3. Al fcc (face-centered cubic) electronic charge density map of a {111} plane that
intersects a rigidly sheared {111} plane along the 〈 1

_
1
_
2〉 slip direction. (b) The energy

dependence as a function of normalized rigid displacement—the generalized stacking fault
energy (GSFE) curve. In (a) the configuration is taken at the maximum energy of (b) (black
arrow), the unstable stacking fault energy.

Coverage of This Issue
This issue focuses on crystalline nano -

structures. Nanotubes are not the main
focus because they have been covered in
previous issues of the MRS Bulletin.12 Two
aspects of mechanics are addressed by sim-
ulations: mechanical deformation driven by
stress or strain and mechanics-driven syn-
thesis of nanostructures. The five overview
articles cover the topics of ultra-strength of
nano structures, the strengthening role of
nanoparticles, elastic and plastic responses
of nanowires, plastic deformation of
nanoscale multilayers and nanograins,13,14

and advancements in mechanics-driven
synthesis of nanostructures.

Looking at a generic feature, Zhu et al.
review recent advancements in under-
standing the ultra-high strength of nano -
structures. The strength is dictated by
dislocation nucleation and motion at low
temperatures. In the absence of mobile
dislocations, plastic deformation will not
proceed until new dislocations are nucle-
ated, which can lead to a much higher
strength, approaching the ideal strength.
The ultra-high strength is reachable, for
example, during nanoindentation of sin-
gle crystalline solids. When dislocations,
although available to facilitate plastic
deformation, do not have sufficient time
to respond to a stress, the strength can also
increase; this is the case in high strain-rate
deformation. In nanostructures, addi-
tional obstacles such as interfaces and
nanoparticles also serve to increase the
strength. Zhu et al. review the length- and
time-scale effects on the deformation
processes in nanostructures with ultra-
high strength. They emphasize the critical
role of activation volume in understand-
ing the strength-controlling mechanisms.

One possible application of the extre -
mely high strengths of nanoparticles is 
to exploit their role as reinforcement to
improve the mechanical properties of 
bulk materials. Chrzan et al. consider the
strengthening of alloys through the intro-
duction of nanoscale precipitates, hinder-
ing the propagation of dislocations in the
crystalline matrix. The precise mechanism
by which nanoparticles strengthen a bulk
material is size dependent: The very small
particles can be cut by dislocations,
whereas dislocations are forced to circum-
vent larger precipitates. The structure of
the precipitates also can be altered
through its interaction with dislocations.
However, exceptional structural stability
and strength can be obtained by introduc-
ing nanoscale particles; for example, small
nanoparticles of 3–5 nm in diameter can
be structurally stable at high temperatures
and lead to a six orders-of-magnitude
increase in creep resistance. The deforma-

3b and is referred to as the unstable
 stacking fault energy.9 Atomistic simula-
tions have shown that when the unstable
stacking fault energy is close in value to
the stable stacking fault energy (such as in
Al), the nucleation of full dislocations at
the grain boundary becomes more likely
within the simulation time.8 A similar
rationale applies to twin fault and twin
migration activity within the nano -
crystalline system.10 Beyond the demon-
strating examples in Figures 2 and 3,
interfaces serve as sinks and sources 
of defects and conspire with dislocations
in a variety of mechanical deformation
processes.

Atomistic simulations have been instru-
mental to the understanding of the defor-
mation mechanism responsible for the
mechanical behavior of materials and are
particularly prominent for nanostruc-

tures. Individual nanostructures are gen-
erally much smaller than 100 nm in
dimension. This dimension is well within
the reach of classical atomic simulations
such as molecular dynamics and kinetic
Monte Carlo simulations. For those of
even smaller dimensions, electronic (full
electronic or tight-binding) calculations
are feasible, providing full details of
atomic/electronic behavior. Such details
are usually beyond the reach of direct
experimental characterizations, and yet
they dictate the mechanical deformation
of nanostructures.

In synergy with experiments, the atom-
istic simulations can provide useful
 guidance to experiments in suggesting
deformation mechanisms, especially since
the method provides direct access to many
“hidden” parameters in experiments such
as the interface structure at the atomic and
electronic level, the stored excess energy,
the free volume, and the internal stress dis-
tribution.11 However, atomistic simula-
tions, even at the full electronic level,
involve approximations and idealizations
such as the representation of many-body
electronic effects. The short time steps
required in molecular dynamics result in
using strain rates that are incredibly high
when compared with experimental values.
Therefore, extrapolation toward experi-
mental observations has to be done with
extreme care, making it almost impos  si -
ble to determine the true rate-limiting
processes.

There are, however, several success sto-
ries of synergetic effects between simula-
tions and experiments such as surface
reconstruction and the dislocation mecha-
nism in nanograins, both of which have
been predicted by atomistic simulations
and confirmed by experiments.
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tion mechanisms derived from atomistic
simulations are critical input for elasticity-
based dislocation dynamics, a simulation
technique at a higher lengthscale.15–17

Focusing on 1D nanostructures, Park 
et al. review recent developments in
nanowire mechanics. Near surfaces, atoms
have fewer bonding neighbors, leading to
a redistribution of electrons that results in
the rearrangement of surface atoms for
metallic solids or reconstructions for cova-
lent solids. The rearrangement or recon-
struction also leads to elastic stiffening or
softening of the surfaces. At the same time,
it also imposes a large strain on the
nanowire interior, triggering nonlinear
elastic stiffening or softening. When the
cross-sectional dimension is small enough,
surface rearrangement or reconstruction
also can lead to phase transformations,
such as fcc to body-centered-tetragonal
(bct) in gold nanowires. Defects nucleated
due to surface stresses can couple with
those created due to externally applied
forces. Under large deformation, the
strength of nanowires depends on
whether nucleation or glide requires larger
stress. As a result, metallic nanowires can
become either stronger or slightly weaker
with the introduction of twin boundaries.

Focusing on 2D multilayers and nano -
crystalline metals where each crystal is a
nanograin, Derlet et al. review recent
advancements in mechanics in confined
volumes, particularly the interaction
between dislocations and grain bound-
aries. The complex lifetime of a dislocation
is reviewed, starting with its nucleation at
the grain boundary, followed by its pro -
pagation and eventual absorption in the
 surrounding grain boundary network.
Dislocation nucleation at grain boundaries
is studied in systematic bicrystal simula-
tions that consider coincident site lattice
boundaries and in simulations using fully
3D crystalline networks in which general
high angle boundaries with tilt and twist
components can be studied. The latter also
allows the study of the effect of triple and
higher order junctions on the dislocation-
interface interactions. The unique proper-
ties of fcc/bcc (body-centered cubic)
nano-layered composite systems and the
details of their interface properties are also
reviewed. Their concluding discussion
focuses on the limitations of finite temper-
ature molecular dynamics. New transition
path methods may be used to overcome
the inherent high-strain rate/high-stress
regime through the calculation of activa-
tion volumes that characterize the strain-
rate sensitivity of the atomic scale plastic
processes studied.

Turning to the applications of nano -
mechanics, Liu et al. review recent

 advance ments in mechanics-driven syn -
thesis of nanostructures. Strain generates
long-range fields, such as Columbic fields,
of charged particles. This long range nature
enables the self-organization of structures
so as to minimize the thermodynamic free
energy. Quantum dot formation during
hetero-epitaxy is one such example. Driven
by the mismatch strain between epilayer
and substrate, the quantum dots tend to be
periodic and uniform to minimize the
strain energy. Size uniformity in the synthe-
sis of these quantum dots affects their
 functional behavior, such as mono-
chromic light emission. Crystalline sur-
faces, already under intrinsic surface stress,
are very responsive to additional stresses.
Introduction of gas molecules onto a sur-
face can generate sufficient stress to peel off
the surface layer and drive it to form tubu-
lar structures. This mechanics-driven self-
organization of tubular nanostructures
offers the advantage of structure control. In
contrast, vapor-based synthesis usually
leads to nanostructures of mixed structures
(e.g., nanotubes of mixed chirality).

Prospects
The overview articles in this volume

show that atomistic simulations have had
a large effect on the advancement of
nanostructure mechanics, and there is still
opportunity for further advances. Much
effort has been invested in the basic science
of nanostructure mechanics.18 Looking for-
ward, there are two areas that pose great
challenges and offer potentials of reward.

The first area is the bridging of time
scales in atomistic simulations. In contrast
to the bridging of length scales, there has
been less progress in bridging time scales.
Both electronic structure and classical
molecular dynamics simulations are
 limited to nanoseconds in time scale.
Hyper-molecular dynamics and similar
approa ches enable simulations lasting
microseconds for selective materials sys-
tems in which diffusion kinetics is simpler.
Unfortunately, this condition is not satis-
fied most of the time. By associating atoms
to lattice points, lattice kinetic Monte Carlo
simulations extend the time scale to
microseconds or seconds. However, the
use of the lattice renders it impossible to
directly represent mechanical deformation.
Fortunately, strain and stress can be repre-
sented by strain energy. Incorporating
strain energy into the lattice kinetic Monte
Carlo simulations and coupling this
method with other simulation methods
(such as classical molecular dynamics and
a continuum approach) may lead to atom-
istic methods over multiple time scales.

The second area concerns the hierarchy
of nanostructures. So far, the majority of

atomistic simulations have focused on 
a single type of nanostructure. Realistic
applications will likely involve hierarchies
of nanostructures. For example, a future
integrated circuit may include doped
nanowires or nanotubes as p-n junctions,
nanofilms as insulators, and nanoparticle-
reinforced composites as case materials.
The hierarchies will likely include hetero-
interfaces where charge transfer is critical.
Coupling of electronic structure calcula-
tions and classical molecular dynamics
simulations may enable rigorous simula-
tions of charge transfer and also allow the
efficient treatment of large dimensions.
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