

FI 2002 ELECTROMAGNETISMO Clase 12 Método de las Imagenes

LUIS S. VARGAS

Area de Energía

Departamento de Ingeniería Eléctrica

Universidad de Chile

INDICE

- Condiciones de borde y unicidad Ec.
 Laplace
- Método de la carga imagen
- Resumen medios materiales en electrostática

Teníamos

$$\nabla V(\vec{r}) = -\vec{E}(\vec{r})$$

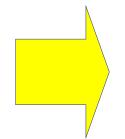
Tomando la divergencia

Usando la 1ª ecuación de Maxwell

$$\nabla \bullet (\nabla V(\vec{r})) = -\nabla \bullet \vec{E}(\vec{r})$$

$$\nabla \bullet \vec{E} = \frac{\rho}{\mathcal{E}_0}$$

$$\nabla \bullet (\nabla V(\vec{r})) = -\frac{\rho}{\mathcal{E}_0}$$



$$\nabla^2 V(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0}$$

Ecuación de Poisson

Prof. Luis Vargas

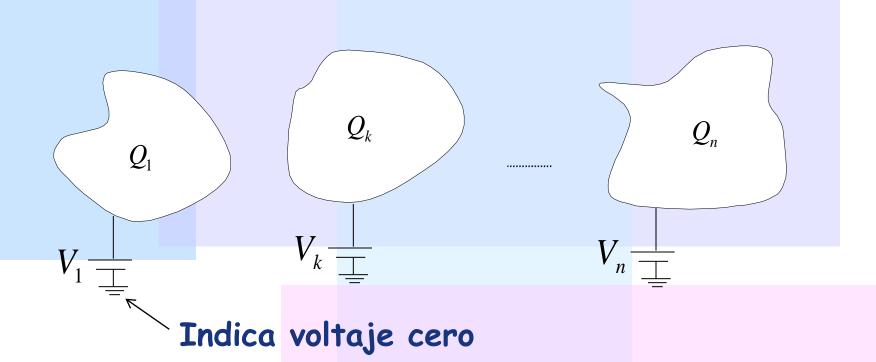
Si no hay cargas:

$$\nabla^2 V(\vec{r}) = 0$$

Ecuación de Laplace.

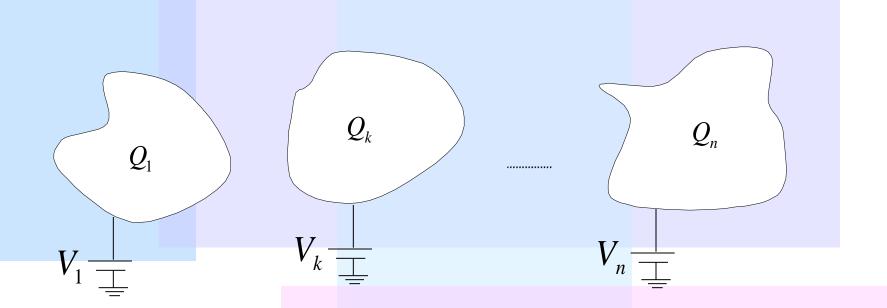
- Es la más usada en la práctica para determinar el campo eléctrico
- ·Para resolverla se requieren condiciones de borde

Consideremos un sistema con conductores en equilibrio electrostático



El potencial de cada conductor está fijo mediante fuentes de voltaje (fuerza electromotríz fem)

Interesa resolver $\nabla^2 V(\vec{r}) = 0$



En este caso el potencial en las superficies de los conductores son las condiciones de borde del sistema (además de $V(\vec{r})=0$ para $\|\vec{r}\|\to\infty$)

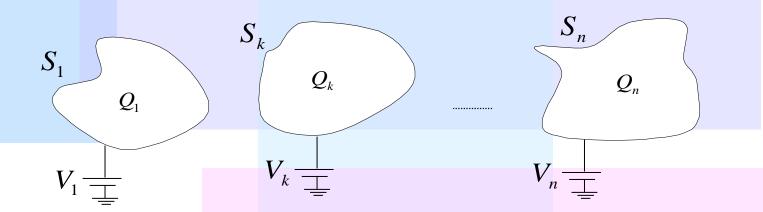
Interesa resolver

$$\nabla^2 V(\vec{r}) = 0$$

Condiciones de Borde

$$V(S_k) = V_k \quad (k = 1,...,n)$$

$$V(\vec{r}) = 0$$
 para $\|\vec{r}\| \to \infty$

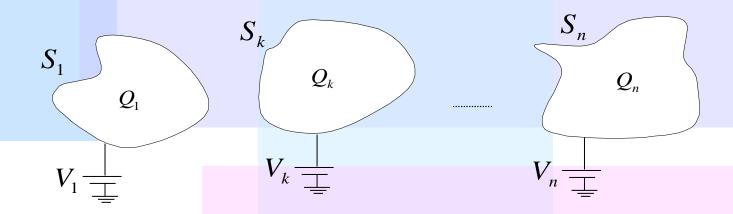


Se puede demostrar que la solución a este problema es única.

O sea, si encontramos una función $\psi(\vec{r})$ que satisface $\nabla^2 \psi(\vec{r}) = 0$

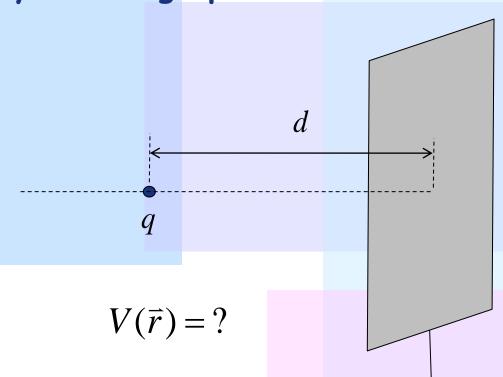
y que además satisface las condiciones de borde

$$\psi(S_k) = V_k \quad (k = 1, ..., n) \quad \mathbf{y} \quad \psi(\vec{r}) = 0 \quad \mathbf{para} \quad \|\vec{r}\| \to \infty$$



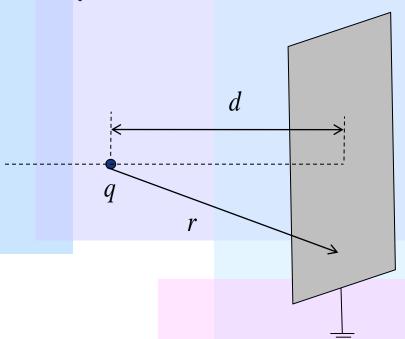
Entonces $\psi(\vec{r})$ es la función potencial del espacio delimitado por las superficies conductoras

Consideremos un plano infinito conectado a tierra y una carga puntual a una distancia d



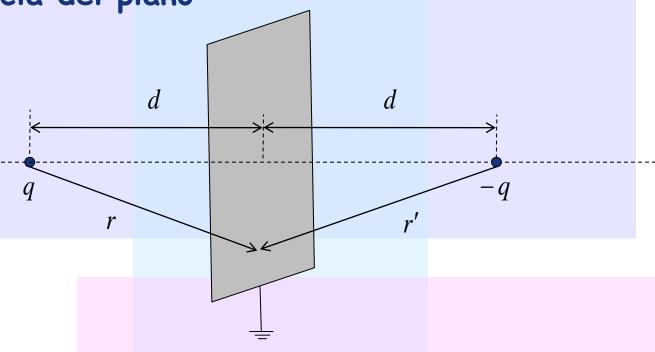
Se pide calcular el potencial en el lado de la carga

Podemos encontrar una función potencial $\psi(\vec{r})$ que satisfaga $\nabla^2 \psi(\vec{r}) = 0$ y la condición de borde $\psi = 0$ en el plano?



Sabemos que el potencial que produce la carga en el plano es $\psi(\vec{r}) = \frac{q}{4\pi\epsilon r}$

Luego, para satisfacer la condición de borde $\psi=0$ en el plano, podemos ubicar una carga de signo contrario a igual distancia del plano

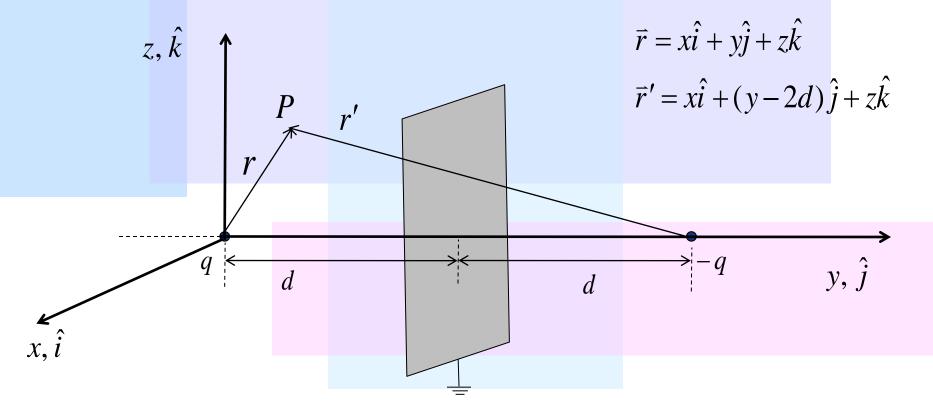


El potencial es ahora
$$\psi(\vec{r}) = \frac{q}{4\pi\varepsilon_0 r} - \frac{q}{4\pi\varepsilon_0 r'}$$

y como r = r' se cumple que el potencial es nulo en el plano

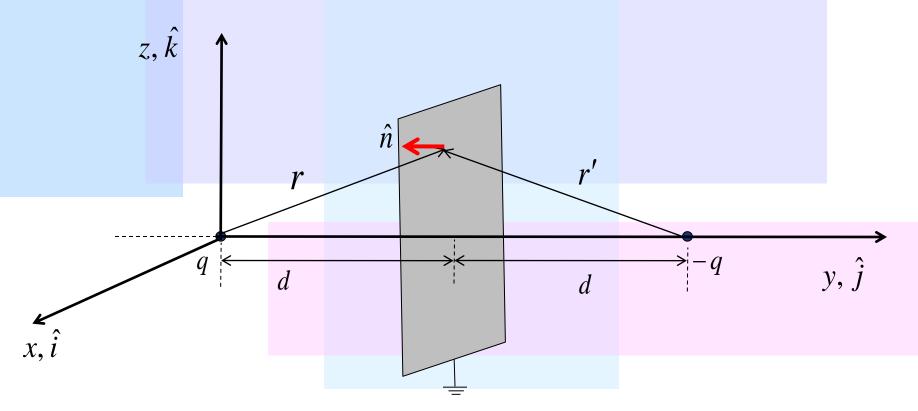
El potencial en cualquier punto P del lado izquierdo es

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} - \frac{q}{r'} \right) \qquad r = \left(x^2 + y^2 + z^2 \right)^{1/2} \quad \mathbf{y} \quad r' = \left(x^2 + (y - 2d)^2 + z^2 \right)^{1/2}$$

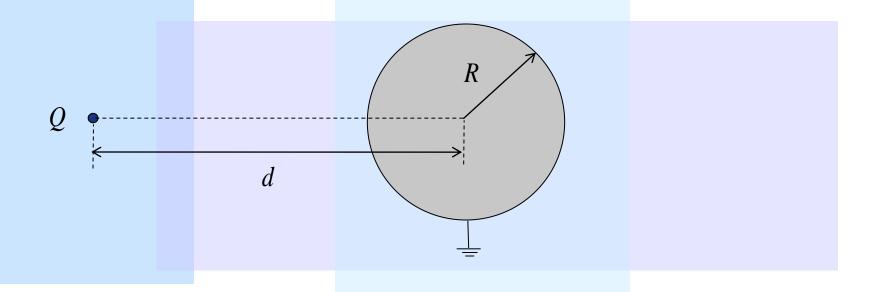


La densidad superficial de carga en el plano es

$$\sigma(\vec{r}) = \varepsilon_0 \vec{E} \bullet \hat{n} \qquad \text{con } \hat{n} = -\hat{j} \qquad \mathbf{y} \qquad E(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q\hat{r}}{r^2} - \frac{q\hat{r}'}{r'^2} \right)$$

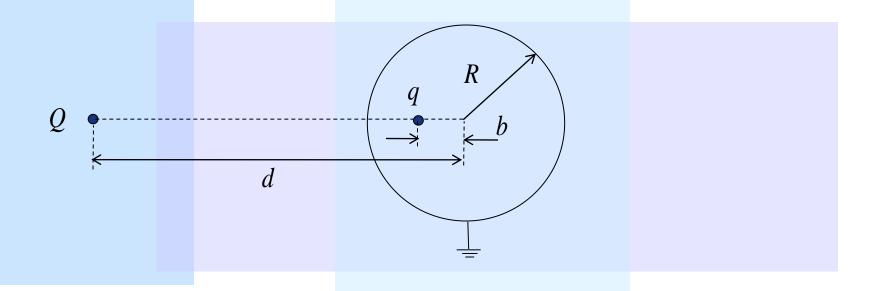


Caso carga frente a esfera a potencial constante



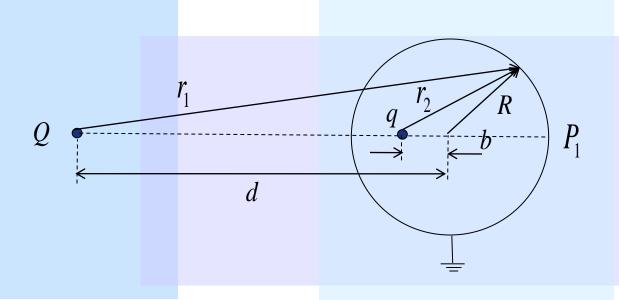
Se pide calcular el potencial en todo el espacio

El potencial dentro de la esfera es nulo.



Para calcular el campo fuera usamos el método de la carga imagen. Suponemos una carga q a una distancia b del centro

El potencial en la superficie de la esfera es



$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{r_1} + \frac{q}{r_2} \right)$$

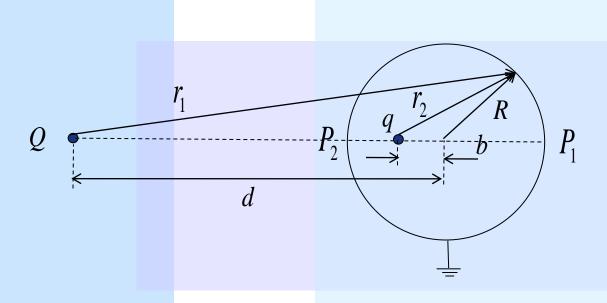
Evaluando en el punto P₁

$$r_1 = d + R$$
$$r_2 = b + R$$

Imponiendo la condición de potencial nulo en P₁

$$\frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{d+R} + \frac{q}{b+R} \right) = 0 \implies \frac{Q}{d+R} + \frac{q}{b+R} = 0$$

El potencial en la superficie de la esfera es



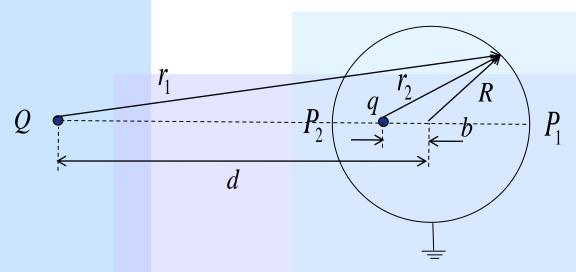
$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{r_1} + \frac{q}{r_2} \right)$$

Evaluando en el punto P₂

$$r_1 = d - R$$
$$r_2 = R - b$$

Imponiendo la condición de potencial nulo en P2

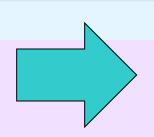
$$\frac{Q}{d-R} + \frac{q}{R-b} = 0$$



Tenemos el sistema de ecuaciones

$$\frac{Q}{d+R} + \frac{q}{b+R} = 0$$

$$\frac{Q}{d-R} + \frac{q}{R-b} = 0$$



$$q = -\frac{R}{d}Q$$
$$b = \frac{R^2}{d}$$

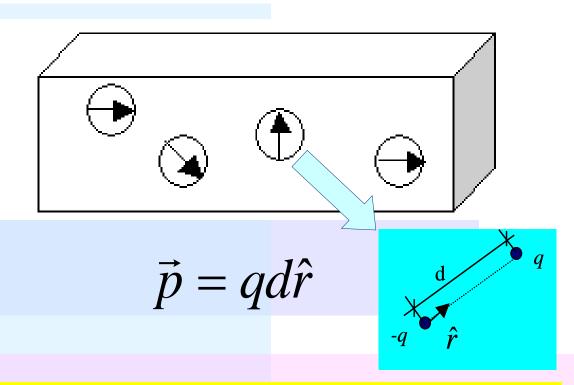
Estos valores de q y b hacen que el potencial en cualquier punto de la superficie esférica sea también cero

Resumen medios materiales en electrostática

Dieléctricos

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

$$ec{D} = arepsilon ec{E}$$



Los medios se componen de dipolos que pueden girar en torno a su posición de equilibrio, pero no se desplazan.

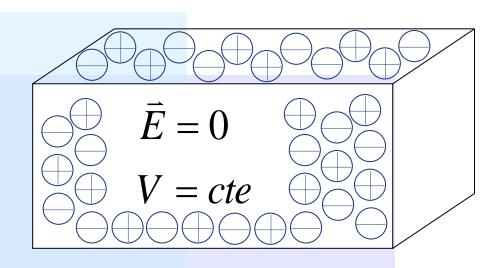
Resumen medios materiales en electrostática

Conductores

- Sólo tiene distribución superficial
- No hay polarización.

$$\vec{E} = 0$$

$$V = cte$$



Los conductores poseen abundantes cargas (positivas y negativas) que pueden moverse libremente en presencia de un campo eléctrico