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A phonon laser
K. Vahala*†, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch and Th. Udem†

Red-detuned laser pumping of an atomic resonance will cool the motion of an ion or atom. The complementary regime of
blue-detuned pumping is investigated in this work using a single, trapped Mg+ ion interacting with two laser beams, tuned
above and below resonance. Widely thought of as a regime of heating, theory and experiment instead show that stimulated
emission of centre-of-mass phonons occurs, providing saturable amplification of the motion. A threshold for transition from
thermal to coherent oscillating motion has been observed, thus establishing this system as a mechanical analogue to an optical
laser—a phonon laser. Such a system has been sought in many different physical contexts.

The control of atoms and ions by optical forces has enabled
a wide range of remarkable scientific discoveries, includ-
ing realizations for control of quantum information1,2, pro-

duction of exotic quantum states3,4 and unprecedented leaps in
metrology3. The effect of optical forces on the centre-of-mass
motion of atoms is reversed by switching the laser detuning relative
to an absorption-line centre. For example, dispersive optical
forces are conservative and form attractive (red-detuned) or re-
pulsive (blue-detuned) potentials5. Scattering forces, on the other
hand, remove energy (red-detuned) and thereby cool6–9; or these
forces add energy (blue-detuned) to the centre of mass motion10.
The latter regime, commonly referred to as heating, has been
of much less interest in the field of optical manipulation and
control of ions and atoms. Nonetheless, early work showed that
heating phenomena can be complex, and include multistabil-
ity, and, surprisingly, the appearance of limit cycles in the ion
motion11–13. Two, recent developments have refocused attention
on this regime. First, velocity bunching has been observed in
88Sr neutral atoms that interact over a fixed time interval with a
blue-detuned pump in a magneto-optical trap14,15. A theory for
this behaviour identifies a velocity feedback mechanism associ-
ated with the blue-detuned scattering force14,15. Second, parallels
noted between ion studies and cavity optomechanics16, wherein
the parametric instability leads to mechanical amplification17,
further suggest that this regime of ion motion contains unex-
plored subtleties. It is shown here that, as opposed to heat-
ing, this regime is one of stimulated emission of phonons,
providing amplification to the centre-of-mass motion. In anal-
ogy with a laser18,19, the system functions like a Van der Pol
oscillator19,20 subject to a threshold condition and amplification
saturation. There has been considerable interest in the possibil-
ity of phonon laser or maser action for many years. A wide
range of systems have been analysed theoretically including ions21,
semiconductors22, nanomechanics23, nanomagnets24 and others25.
In addition, experimental evidence of phonon amplification, a
pre-requisite to phonon laser action, has been reported in cryo-
genic Al2O3:Cr3+(refs 26–28) and Al2O3:V4+ (ref. 29) as well as
semiconductor superlattices30. Using a single, cooled Mg+ ion31

within a Paul trap32, observations of phonon laser action are
presented and shown to be in excellent agreement with theory.
Overall, the remarkable control possible in experimental trapped-
ion systems makes this an interesting system in which to study
phonon laser physics.
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The ion resides in a harmonic trap with secular frequency
Ω0, and its motion is first considered semi-classically and later
from a quantum viewpoint. The limit of unresolved motional
sidebands (weak-binding regime10) is assumed as this case is
studied experimentally. The system (Fig. 1a) features a cooling
beam of intensity ic at frequency ωc, and a beam defined as the
‘amplification’ beam of intensity ia at frequency ωa. Each beam
induces a scattering force33 by interaction with the atomic dipole
(transition frequency ω0 and linewidth γ ). The ion velocity, v ,
satisfies the following nonlinear oscillator equation driven by χ(t ),
a white-noise Langevin function that accounts for several sources of
noise including spontaneous emission.

v̈+
[
κ(v)ic−g (v)ia

]
v̇+Ω 2

0 v = χ̇(t ) (1)

The derivation of this equation and the functional forms for
g (v) and κ(v) are provided in the Supplementary Informa-
tion. When 1ωc ≡ ωc − ω0 < 0 (red-detuned for cooling) and
1ωa ≡ ωa−ω0 > 0, κ(v) and g (v) are positive for ‘small signal’
motion (v ≈ 0). κ(v)ic is an optical damping term, which for
effective cooling (and ia = 0), is the dominant source of damping.
The term g (v)ia, on the other hand, represents mechanical am-
plification (negative damping), later shown to result from stimu-
lated emission of phonons. Intuitively, it results because a small,
positive change in ion velocity will Doppler-shift the atomic line
centre so as to increase the scattering force of the blue-detuned
beam, and thereby cause negative damping of the velocity. In
the context of the velocity bunching observations noted earlier,
this also produces a velocity feedback effect14,15. In the current
system, the term g (v)ia markedly alters the dynamics, which would
otherwise be that of an oscillator damped by the cooling beam
(that is, κ(v)ic). Indeed, the behaviour of this system, as now
shown, is that of a Van der Pol oscillator19,20. As an aside, the
Van der Pol oscillator equation is most often written with an
amplification term containing quadratic saturation. Van der Pol,
however, first introduced the amplification term as a function;
and later Taylor-expanded this term about the operating point.
The relevant functions in equation (1) could similarly be expanded
to reveal a quadratic term, but have been left intact to preserve
full generality of the results. For example, when 1ωa = γ /

√
3,

the amplification in equation (1), to leading order, takes on the
classic Van der Pol form given by g (v)ia ≈ g (0)ia− v2/v2sat, where
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Figure 1 | Ion-trap illustration, observation of coherent motion and
physical origin of stimulated phonon emission for the single-ion phonon
laser. a, An ion in a harmonic trap interacting with a cooling beam
(frequency ωc) and an amplification beam (frequency ωa). The ion with
position x and mass m moves in a trap potential v(x). The optical transition
has frequency ω0 and linewidth γ . b, Ion-luminescence series showing
time-averaged motion. The amplification beam intensity is increasingly
stepped from the lowest (no amplification) to upper images. The cooling
beam intensity is constant. A threshold that marks a transition from
thermal to coherent motion is apparent. c, At the quantum level,
amplification results from net production of phonons through stimulated
emission (rate R+) and absorption (rate R−) of centre-of-mass phonons.
The corresponding, phonon-assisted transitions to the upper level are
shown. Phonon emission and phonon absorptive transitions induce
polarization at frequencies corresponding to levels 2+ and 2− in these
diagrams. These lie within the distribution of transition frequencies given
by the lineshape function. Analogies to stimulated Raman amplification are
discussed in the text.

v−2sat is merely the second-order Taylor coefficient. The Van der Pol
oscillator is commonly used to understand lasers and electronic
oscillators18,19. It has a small-signal and large-signal (saturated)
regime of operation; these are studied separately below.

Setting v to zero in the damping and amplification terms (small-
signal regime), consider letting ia increase from zerowhile holding ic
constant (fixed cooling). As ia increases, ultimately, g (0)ia= κ(0)ic
(the threshold condition) at an intensity ia= iT≡ (κ(0)/g (0))ic. For
ia> iT, the overall damping becomes negative in equation (1) (that
is, g (0)ia > κ(0)ic), and ion motion grows, at first, exponentially
in time; before finally stabilizing in the large-signal regime. Before
considering this large-signal, saturation process, experimental
observations of threshold are presented. A single, magnesium ion
in a linear radiofrequency trap was studied. The experimental
arrangement is nearly identical to that detailed in ref. 31. The
Mg+D2 transition at 279.6 nm has a natural linewidth of 41.8MHz
and the axial secular frequency of the trap was set to 71 kHz in
all measurements; micro-motion was negligible. The amplification
beam was directed along the trap’s long axis to excite only axial
oscillations. The cooling beam was applied slightly off axis from
the long axis so as to project onto all three axes of motion.
Cooling to approximately 1mK was obtained. Figure 1b shows a
series of time-averaged images of the ion motion, for increasing
levels of amplification beam intensity (ia = 0 in the lowest image).
A threshold at which the amplified, Brownian, thermal motion
of the ion transitions to a double-lobed pattern (produced by
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Figure 2 | A comparison of measured and predicted ion motion as a
function of pumping that illustrates threshold behaviour and increasing
coherent motion for pumping above threshold. Measured, square of ion-
velocity amplitude (yellow, circles) plotted versus ia/ic (ic held constant).
Amplification/cooling beams are detuned by+12 MHz/−74 MHz.
The solid curve is the steady-state solution of equation (3). To match
the ab initio calculation, the data-set origin was shifted by (−0.05,
−0.72 m2 s−2). Inset: The role of amplification saturation in establishing
the operating point is illustrated by graphical solution of G(v0)ia=K(v0)ic
(steady-state solution of equation (2)). This excludes spontaneous
emission since the Langevin force averages to zero. G(v0)ia is plotted in red
for beam intensities ia=0.5,1,2,4× iT, whereas K(v0)ic is plotted in blue
at a single cooling intensity (both are normalized to their threshold values,
set equal to unity). For ia= iT,G(0)iT=K(0)ic so that, trivially, v0=0.
However, with increasing amplification beam intensity, the point v0=0 is
no longer stable (that is, G(0)ia>K(0)ic for ia> iT). In the terminology of
laser oscillators, G(0)ia for ia> iT is the unsaturated amplification.
Saturation of the mechanical amplification restores balance of
amplification with damping by increase of v0 as illustrated. The
corresponding operating points are diamonds, and are superimposed on
the dashed curve (solution of G(v0)ia=K(v0)ic) in the main panel. The
operating points are dynamically stable with respect to fluctuations as can
be verified using the inset (perturbations create slight changes in net
amplification/damping so as to restore the operating point).

the oscillatory motion of the ion) is apparent in the data.
From these images, the velocity amplitude is determined using
v0 = Ω0x0; and the threshold behaviour is further apparent in
Fig. 2 where the squared-velocity amplitude (to emphasize the
threshold) is plotted versus ia normalized by ic. The ratio ia/ic
is experimentally accessible, and, as discussed below, physically
appropriate if, as was the case in this experiment, saturation of
the atomic transition can be neglected. It was determined by
measuring separately the ion luminescence induced by each beam
at a reference, negative detuning. The amplification (cooling) beam
detuning is set to +12MHz (−74MHz) in these measurements;
and the solid curve in Fig. 2 is the theoretical operating point
curve as discussed below.

The oscillator operating point (that is, amplitude of motion
at a given pumping level) results from a saturation process,
similar to amplification saturation in a Van der Pol oscillator (or
laser oscillator). κ(v) and g (v), through their imbalance in the
small-signal regime (that is, g (0)ia > κ(0)ic), cause growth in the
amplitude of oscillation. Increases in motional amplitude induce
saturation that restores the balance of amplification and damping.
As in a Van der Pol oscillator and laser oscillator this balance occurs
in a time-averaged sense over one cycle of motion. To analyse the
saturation process, the velocity is expressed as v = v0cos(Ω0t +φ),
where v0 and φ are a slowly varying amplitude and phase (that
is, v̇0�Ωv0 and φ̇�Ω0). On substitution of this expression into
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Figure 3 | A comparison of measured and predicted ion motion as a
function of pumping that illustrates a regime of anomalous amplification
saturation. Velocity amplitude data points in yellow plotted versus ia/ic for
the amplification beam detuned by+40 MHz (that is, a regime of
anomalous amplification saturation such that1ωa>γ/2) and the cooling
beam by−74 MHz. The solid curve is the steady-state solution of equation
(3). For large intensity ratios, the oscillation amplitude becomes large
compared with the beam waist of the cooling beam. As such, the data
deviates from the predicted behaviour for larger amplitudes. As in Fig. 2, to
match the ab initio calculation, the data-set origin was slightly shifted (in
this case by (0,−0.22 m s−1)). Inset: The role of anomalous saturation in
creating operating point hysteresis is understood by graphical illustration of
equation G(v0)ia=K(v0)ic (steady-state solution of equation (2)). This
excludes spontaneous emission since the Langevin force averages to zero.
G(v0)ia is plotted in red for four amplification beam intensities, whereas
K(v0)ic is plotted in blue at one cooling intensity (both are normalized to
their threshold values, set equal to unity). Green (red) diamonds indicate
corresponding dynamically stable (unstable) operating points, as per the
caption of Fig. 2, and are superimposed on the dashed curve (solution of
G(v0)ia=K(v0)ic) in the main panel. The shape of G(v0)ia should be
contrasted with that in Fig. 2, inset. In the present case, the gain saturation
is anomalous, featuring, at first, a rising amplification with an increase of v0.

equation (1) and keeping only leading-order terms,

v̇0=−
1
2
[K (v0)ic−G(v0)ia]v0+ζ (t ) (2)

where G(v0)ia, K (v0)ic and ζ (t ) are the cycle-averaged amplifica-
tion, damping and Langevin (both cooling and amplification beam
related) force. Also useful is the dynamical equation for the cycle-
averaged oscillator energyE=mv20/2 (derived fromequation (2)),

Ė =−[K (E)ic−G(E)ia]E+Sa+Sc (3)

where Sc,a is the mechanical power added by spontaneous emission;
and damping and amplification are expressed here as functions
of E . A detailed discussion of equations (2) and (3), as well as
closed-form expressions for K , G and Sc,a, is provided in the
Supplementary Information.

The steady-state solutions to equations (2) and (3) provide oper-
ating point equations for amplitude (v0) and energy, or equivalently
v20 (note: a dynamic stability condition is also necessary as discussed
in the caption of Fig. 2). As the optical transition is assumed to
be only weakly saturated, ia and ic factor from the terms Sc,a. By
dividing through by ic in the steady state of equations (2) and (3),
the operating point functions take the form v0(ia/ic) and v20 (ia/ic).
They are plotted in Fig. 2 using independentlymeasured parameters
(that is, secular oscillation frequency and amplification/cooling
beam frequency detuning). To match the ab initio calculations the

measured data sets were shifted slightly (see Figs 2 and 3 captions) to
compensate for imperfect calibration of the coordinate origin. The
resulting agreement is excellent. As the combined effect of imaging
system resolution and thermal motion makes it difficult to distin-
guish the stochastic (that is, thermal) and coherent contributions to
motion at the lowest amplitudes, the overall agreement with data is
better using the energy operating point equation (solid grey curve),
which essentially gives the variance of motion.

Both theory and experiment show that the studied system
has striking analogies to an optical laser. As a function of
the amplification beam intensity (pumping level), it features a
threshold for transition from thermal motion to self-sustained,
stable oscillations. The physical connection is, in fact, deeper; and,
as now shown, the coherent oscillations are sustained by stimulated
generation of phonons. In the Lamb–Dicke regime (effectively,
the small-signal-regime limit of the Hamiltonian), the interaction
is HI = Vaσ+(b+ b†)+ h.a. (ref. 33), where V ≡ h̄ΩRk

√
h̄/8mΩ0

(ΩR is the vacuum Rabi frequency, k ≡ ω0/c and m is the ion
mass), b (a) is the phonon (photon) destruction operator and
σ+ is the two-level Pauli raising operator. Two, distinct processes
are illustrated in Fig. 1c: one in which a centre-of-mass phonon
is created and the second in which it is destroyed. As the optical
transition frequency is itself a distribution of frequencies given by
the transition lineshape function fγ (ω−ω0) (defined to be unity
at ω=ω0), the corresponding transition rates can be found in the
standard way using Fermi’s golden rule34,

R+=βfγ (1ωa−Ω0)(n+1) (4)

R−=βfγ (1ωa+Ω0)n (5)

where R± are the transition rates for creation (+) and destruction
(−) of a phonon; and β ≡ h̄k2γ ia/4mΩ0isat, where isat is the
saturation intensity of the dipole transition. In addition, as optical
saturation of the transition is assumed to be weak (ia � isat),
negligible occupancy of the upper atomic level is assumed.
Significantly, the creation rateR+ has two components: a stimulated
part that is proportional to the number of vibrational quanta, n, and
a spontaneous part. In the sideband-resolved regime, the relevant
rate equation for phonon number is given by,

ṅ= (R+−R−)=β
[
fγ (1ωa−Ω0)− fγ (1ωa+Ω0)

]
n+ s (6)

where equations (4) and (5) have been used and s≡βfγ (1ωa−Ω0)
is the spontaneous generation rate of phonons from equation (4).
The coefficient of ‘n’ in equation (6) is the phonon amplification
for the case of sideband-resolved operation. This case can be used
to establish that stimulated emission is also responsible for the
observed amplification in the present, unresolved-sideband case.
To verify this, consider the net rate of phonon generation, R+−R−,
in the weak-binding limit:

lim
Ω0→0

(R+−R−)= g (0)ian+ s=G(0)ian+ s (7)

where to establish equality, the formula for g (0) and also
G(0) = g (0) (both given in the Supplementary Information)
have been used here. Equation (7) shows that amplification in
equation (1) and in equation (3) is the result of stimulated emission
of phonons. The ion oscillator therefore constitutes the mechanical
equivalent of a laser; or a phonon laser.

The ion phonon laser operates with no identifiable inversion,
and, in this sense, resembles a Raman laser. Indeed, an analogy
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with stimulated Raman emission can be drawn by allowing the
polarization between 2+ and 1 (that is, the operator σ+) in Fig. 1c
(right) to have the role of the Stokes wave. Stimulated Raman
emission relies on damping of the phonon field that is much
greater than for that of the optical Stokes field35. In the present
situation, on account of the weak-binding assumption, it is instead
the polarization (that is, effectively the Stokes field) that is more
strongly damped than the phonon field. In such a case, it is the
phonon field that will experience stimulated amplification35. A
rigorous analysis shows that this is the case, and reconfirms the
above expression based on Fermi’s golden rule.

The above arguments, which provide an expression for the un-
saturated amplification (that is, the small-signal regime), also give
physical insight into how the mechanical amplification saturates
within the ion system. From equation (7), g (0) is proportional to
the competing phonon emission and absorption rates, and, in the
weak-binding limit, this difference is proportional to the slope of
the lineshape function evaluated at the pumping frequency. The
large-signal analysis provided in the Supplementary Information
shows that this slope continues to figure prominently, but in a time-
averaged sense. In particular, in the weak-binding limit, the large-
signal interaction Hamiltonian can be shown to yield an absorption
spectrum for the ion in motion that is merely the Doppler-shifted
lineshape function33. Under coherent motion, the ion therefore
presents a time-varying line centre, and hence lineshape slope, at the
pumping frequency. The analysis shows that a properly weighted
time-averaged slope over one cycle of motion yields the function
G(v0). Saturation thereby can be interpreted to result as a variation
in this time-averaged slopewith increasingmotional amplitude.

Considerable attention has been focused on solid-state imple-
mentations of phonon lasers. In these systems, the low velocity of
sound in solids presents a challenge to realization of phonon laser
action through the accompanying high density of phonon states.
This shortens lifetimes by creating transitions that compete directly
with the phonon laser transition25. Indeed, engineering vibronic
band structure has been proposed to restrict vibronic coupling25. In
this sense, a single, trapped ion represents a limit of zero vibronic
coupling that would be possible using a quasi-zero-dimensional
vibronic band structure (that is, delta-function phononic density
of states). Ion systems have a further intriguing property in that
vibronicmodes can be controllably added through the introduction
ofmore ions to the trap. Such ion chains and their normalmodes are
well established in the application of ions to quantum computing2.
In phonon lasers, they can, in principle, provide a highly controlled
way to study the transition away from the zero-dimensional system.
Moreover, as shown in the present work, ion systems feature
independently controlled damping and amplification beams. As a
result, the initial (un-amplified) mechanical Q factor of the system
can be adjusted through control of the red-detuned pumping
intensity. The independent control of power and tuning for this
beam and the amplification beam also creates other intriguing
dynamical regimes as noted below.

Several distinct regimes of mechanical amplification saturation
exist in this system. The regime of Fig. 2 occurs for 0<1ωa<γ/2.
For these detuning values, the amplification function, G(v0)ia, will
monotonically decrease with increased motional amplitude (Fig. 2,
inset). This is normal saturation, typical of saturation behaviour in
a laser oscillator19. However, when1ωa>γ/2, the behaviour alters
markedly. In this case, the amplification function initially rises with
increasing oscillator amplitude, before finally decreasing at large
amplitudes. This anomalous behaviour creates hysteresis in the
operating point and is considered in Fig. 3. Hysteretic behaviour,
as noted in the introduction, was observed previously for different
experimental conditions (a single laser, trap stiffness was varied)
and modelled on the basis of heating13. Concerning yet other
regimes, the damping rate associated with the cooling beam also

undergoes saturation, and can affect the stability of the ion system.
The analysis and experimental data presented here have featured
a large cooling-beam detuning (compared with the full-width at
half-maximum of the transmission) that is also larger than the gain
beam detuning (that is, |1ωc|>1ωa). A wider range of behaviours
is expected when either of these conditions changes, and will be
taken up in a future experimental study.

A phonon laser has been demonstrated by optical pumping
of a trapped ion. The optomechanical interaction associated
with the scattering force gives rise to a Van der Pol dynamical
system in which amplification is provided by stimulated emission
of centre-of-mass phonons. Steady-state operation occurs by
saturation of themechanical amplification, and excellent agreement
is obtained between theory and observed mechanical motion
versus pumping. The ability to locate microscopic sources of
vibrational coherence that are optically driven and cooled (and
addressable using wavelength) might provide a new tool in the
field of trapped-ion physics. The fact that phonon laser action is
sustained by very low power levels suggests that the ion might be
used as an ultra-sensitive force probe. Moreover, amplification of
the centre-of-mass motion36 is potentially useful in its own right.
The single ion, as a class of phonon laser, represents a kind of zero-
dimensional limit in which there is no vibronic output coupling. In
a Fabry–Perot laser analogy, the mirrors would be 100% reflecting
and threshold would be determined by internal cavity losses. At the
same time, however, this does not preclude other types of useful
coupling to the ion’s vibrational motion (such as electromagnetic).
For example, successful injection locking of the ion phonon laser,
in analogy to slaving of a laser oscillator by an external master
oscillator, has been achieved recently andwill be reported elsewhere.

Note added in proof. After submission of this paper, a related
theory of an optically pumped ion as a motional oscillator was
reported by A. E. Kaplan37.
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