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A Fuzzy-Logic-Based Approach 
to Qualitative Modeling 

Michio Sugeno and Takahiro Yasukawa 

Abstract- This paper discusses a general approach to quali- 
tative modeling based on fuzzy logic. The method of qualitative 
modeling is divided into two parts: fuzzy modeling and linguistic 
approximation. It proposes to use a fuzzy clustering method 
(fuzzy c-means method) to identify the structure of a fuzzy model. 
To clarify the advantages of the proposed method, it also shows 
some examples of modeling, among them a model of a dynamical 
process and a model of a human operator’s control action. 

I. INTRODUCTION 

N this paper we discuss a method of qualitative modeling I based on fuzzy logic. Related terminologies for qualitative 
modeling in fuzzy theory are known as fuzzy modeling and 
linguistic modeling. Qualitative modeling is not so popular in 
general but this concept is indirectly implied by fuzzy mod- 
eling or linguistic modeling. Here we deal with a qualitative 
model as a system model based on linguistic descriptions just 
as we use them in sociology or psychology. 

Though the terminology of “linguistic modeling” may be 
straightforward and more appropriate, we use “qualitative 
modeling” partly because we like to discuss certain problems 
in comparison with the “qualitative reasoning” approach in 
artificial intelligence and also because “qualitative modeling” 
has been one of the most important issues since the very 
beginning of fuzzy theory. Here artificial intelligence will 
be abbreviated to AI as usual and the terminology “fuzzy 
modeling” will be used in a narrow sense. 

Before entering the main subject we give an overview of 
fuzzy modeling in fuzzy theory and qualitative reasoning 
in AI; then we state the problems concerning qualitative 
modeling based on fuzzy logic from a systems theory point 
of view. 

After these discussions, we propose a method of qualitative 
modeling in a general framework known as the black box 
approach in systems theory. That is, we build a qualitative 
model of a system without LI priori knowledge about a system 
provided that we are given numerical input-output data. 

A. F i i p  Modeling 

Though the term “fuzzy modeling” has not been used so 
often, fuzzy modeling is the most important issue in  fuzzy 
logic or more widely in fuzzy theory. In fact we can find 
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the seminal ideas of fuzzy modeling in the early papers of 
Zadeh. Thus the research concerned with fuzzy niodeling has 
a history of more than 20 years. There are many interpretations 
of fuzzy modeling. For instance, we can consider a fuzzy 
set as a fuzzy model of a human concept. In  this study, we 
simply understand the fuzzy modeling to be an approach to 
form a system model using a description language based on 
fuzzy logic with fuzzy predicates. In a broader sense we can 
interpret the fuzzy modeling as a qualitative modeling scheme 
by which we qualitatively describe system behavior using a 
natural language. The fuzzy modeling in a narrow sense is a 
system description with fuzzy quantities. Fuzzy quantities are 
expressed in terms of fuzzy numbers or fuzzy sets associated 
with linguistic labels where a fuzzy set usually does not have 
a tight relation with a linguistic label; either a fuzzy number 
does not need to have a linguistic interpretation or a linguistic 
label is expressed as if it were a frill of a membership function. 

On the other hand, what we mean by a qualitative model is 
a generalized fuzzy model consisting of linguistic explanations 
about system behavior. Linguistic terms in linguistic explana- 
tions are found such that they linguistically approximate the 
fuzzy sets in an underlying fuzzy model. Furthermore, when 
a relation of state variables in a system is to be expressed 
linguistically in a qualitative model, we can use a method of 
linguistic approximation to accomplish this aim. 

In this paper, we focus our attention on qualitative modeling 
since we want to stress that one of the final targets of fuzzy 
modeling is “qualitative modeling.” We could even say that 
fuzzy sets and/or fuzzy logic were suggested with qualitative 
modeling in mind. 

Let us go back to Zadeh’s early ideas. In his paper in  
1968 [ I ]  following the first paper, “Fuzzy Sets.” in 1965, he 
suggested using an idea of fuzzy algorithm such as 

a) set y approximately equal to I O  if .I’ is approximately 

b) if .I‘ is large. increase l/J by several units. 
Those fuzzy algorithms are nothing but qualitative descrip- 

tions of a human action, or decision making. As examples, 
he shows cooking recipes, directions for repairing a TV set, 
instructions on how to treat a disease, and instructions for 
parking a car. As for the necessity of fuzzy algorithms, he 
notes that “most realistic problems tend to be complex, and 
many complex problems are either algorithmically unsolvable 
or, if solvable in principle, are computationally infeasible.” 

The most remarkable paper related to qualitative modeling 
is his paper of 1973 [21 on linguistic analysis, where he states 
”the principle of incompatibility,” according to which “as the 

equal to 5;  
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Case Condition Action to be taken complexity of a system increases, our ability to make precise 
and yet significant statements about its behavior diminishes 
until a threshold is reached beyond which precision and 
significance (or relevance) become almost mutually exclusive 

BZ low When BZ is drasticall low: 

Ox low (b) reduce fuel 
BE low 

(a) reduce klln s p e J  
1 

characteristics. It is in this sense that precise quantitative 
analyses of the behavior of humanistic systems are not likely 

When Br is sli htly low: 
(c) increase I.%. speed 
(d) decrease fuel rate 

to have much relevance to the real world societal, political, 
economic, and other types of problems which involve humans 
either as individuals or in groups.” 

BZ IOW (a) reduce klln speed 
Ox low 
BE O.K. 

(b) reduce fuel rate 
(c) reduce 1. D. fan speed 

2 

Based on the above considerations Zadeh suggested linguis- 
tic analysis in place of quantitative analysis. If we look at 
his idea of linguistic analysis from the viewpoint of model- 
ing, it is seen to be precisely qualitative modeling. As the 
main characteristics of this approach, he suggests “1) use of 
so-called linguistic variables in place of or in addition to 
numerical variables; 2 )  characterization of simple relations 
between variables by conditional fuzzy statements; and 3) 
characterization of complex relations by fuzzy algorithms.” 

It is well-known that, motivated by these ideas of “fuzzy 
algorithm” and “linguistic analysis,” Mamdani first applied 
fuzzy logic to control [3]. This topic has come to be known as 
fuzzy algorithmic control or linguistic control. Fuzzy control 
can be viewed in a certain sense as the result of the qualitative 
modeling of a human operator working at plant control. For 
example, fuzzy control rules may be as follows: 

1)  if the error is positive big and the change of error is 
positive medium, then the change of control is positive 
big; 

2 )  if the error is positive small and the change of error is 
positive small, then the change of control is zero, 

where the error is the difference between the reference input 
and the plant output, the change of error is the derivative of 
the error, and the change of control is the derivative of the 
control input. 

As seen in the above example, we use, to describe control 
rules, linguistic variables which take linguistic values such 
as “positive big,” “positive medium,” “zero,” and “negative 
small.” These are not merely symbols but rather the linguistic 
labels with quantitative semantics given by underlying fuzzy 
sets which are associated with membership functions. So we 
may call a label “positive big” a fuzzy quantity. In fact we 
use sometimes the term “fuzzy number” or “fuzzy interval.” 

The main problem of fuzzy control is to design a fuzzy 
controller where we usually take an expert-system-like ap- 
proach. That is, we derive fuzzy control rules from a human 
operator’s experience and/or engineer’s knowledge, which are 
mostly based on their qualitative knowledge of an objective 
system. 

The design procedure is thus something like the following: 
first, we build linguistic control rules; second, we adjust the 
parameters of fuzzy sets by which the linguistic terms in the 
control rules are quantitatively interpreted. For example, let 
us look at the linguistic rules for controlling a cement kiln 
[4], as shown in Fig. 1. From these, we can easily derive 
fuzzy control rules. In this sense, we may say that a set of 
fuzzy control rules is a linguistic model of human control 
actions which is not based on a mathematical description of 

BZ low a reduce kiln speed 
Ox low [b] reduce fuel rate 

(c) reduce 1. D. fan speed 

3 

BE high 

BE = back end temperature, BZ = burning zone temperature, 
OX= percentage of oxygen gas In kiln exit gas. 
Total of 27 rules. 

Fig. 1. Operator’s manual of cement kiln control. 

human control actions but is directly based on a human way 
of thinking about plant operation. 

Apart from fuzzy control, we have many studies on fuzzy 
modeling. Those are divided in two groups. The studies of 
the first group deal with fuzzy modeling of a system itself or 
a fuzzy modeling for simulation [5]-[8]. Some of those are 
considered as examples of qualitative modeling. The studies 
of the second group deal with fuzzy modeling of a plant for 
control [9]-[13]. Just as with the modem control theory, we 
can design a fuzzy controller based on a fuzzy model of a plant 
if a fuzzy model can be identified. Fuzzy modeling in the latter 
sense is not necessarily viewed as qualitative modeling unless 
the derivation of a qualitative model from the identified fuzzy 
model is discussed. It is, of course, quite interesting to derive 
qualitative control rules based on the qualitative model of a 
plant. 

For example [14], assume that we have a dynamical plant 
model such as 

1) if u , ~  is positive and yn-l is positive, then y, is positive 
big; 

2 )  if U,, is negative and yn-l is positive, then yn is positive 
small; 

3) if U ,  is positive and yn-l is negative, then yn is negative 
small; 

4) if U ,  is negative and yn-l  is negative, then yn is 
negative big. 

Then given a reference input 7‘ = 0, we can derive the 
following control rules based on the above model: 

1 )  if y,,-1 is positive and y,, is positive big, then U,,  is 

2 )  if yla-1 is positive and y,, is negative, then U,, is positive; 
3) if yTa-l is negative and yn is positive, then ’uTL is 

negative; 
4) if y,,-1 is negative and yT2 is negative big, then U,, is 

positive big. 
Here the error e,, is equal to -yn since the reference input 
(the set point) is zxo .  

In the fuzzy modeling, the most important problem is the 
identification method of a system. The identification for the 

negative big; 
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fuzzy modeling has two aspects as usual: structure identi- 
fication and parameter identification. This problem will be 
discussed in subsection D. 

E. Qualitative Reasoning 

Outside the research area of fuzzy logic, the concept of 
qualitative reasoning has been suggested in AI. Earlier studies 
of qualitative reasoning were found on mechanical systems 
in 1975 [15], and also on naive physics in 1979 [16]. We 
can identify as typical studies of qualitative reasoning the 
following: 

1) qualitative physics or naive physics [ 171, 
2 )  qualitative process theory [ 181, 
3) qualitative simulation [ 191. 
Here we call these ideas qualitative reasoning. The aims and 

characteristics of qualitative reasoning may be summarized 
as follows. According to de Kleer [17], “the behavior of a 
physical system can be discussed by the exact values of its 
variables (forces, velocities, positions, pressures, etc.) at each 
time instant. Such a description, although complete, fails to 
provide much insight into how the system functions. Our long- 
temi goal is to develop an alternate physics in  which these 
same concepts are derived from a far simpler, but never the 
less formal qualitative basis . . . our proposal is to reduce the 
quantitative precision of the behavioral descriptions but retain 
the crucial distinctions.” 

Also if we refer to Kuipers [ 191, we find “an expert system 
is often a shallow model of its application domain, in the sense 
that conclusions are drawn directly from observable features of 
the presented situation. One major line of research toward the 
representation of deep models is the study of qualitative causal 
models. Research on qualitative causal models differs from 
more general work on deep models in focusing on qualitative 
descriptions of the deep mechanism, capable of representing 
incomplete knowledge of the structure and behavior of the 
mechanism.” 

As we find in the above statements, there are small dis- 
tinctions and big similarities between fuzzy modeling and 
qualitative reasoning. One distinction is that fuzzy modeling 
starts from the fact that a precise mathematical model of 
a complex system cannot be obtained, whereas qualitative 
reasoning starts from the fact that, although a complete model 
may be available, i t  cannot provide insight into the system; a 
description based on deep knowledge is needed. On the other 
hand, similarities are found in the confidence of the advantage 
of qualitative expressions, in the goals, and in some parts 
of description languages for modeling. The common idea of 
qualitative system theory should be emphasized. 

Qualitative reasoning makes use of a quantity space on 
which “landmarks” are defined. Usually one landmark “0” 
is set, and then three values {+. 0 .  - }  are used which are 
qualitative in nature, similar to fuzzy values {positive, zero, 
negative} in fuzzy modeling. The difference between them is 
that qualitative values are crisp, acting as symbols, though they 
call {+. 0 .  - }  semantics, while fuzzy values are not symbols 
but quantitative semantics represented by their membership 
functions. In  qualitative reasoning such phenomena as 

1) temperature c( Q+ pressure 
2 )  pressure x Q- volume 

1) if the temperature increases (decreases), then pressure 

2) if pressure increases (decreases), then volume decreases 

As we have seen, this sort of description was found in Zadeh’s 
paper in 1968, which shows our motivation to use fuzzy 
concepts. As far as reasoning is concemed, in qualitative 
reasoning the following arithmetic is defined: 

are interpreted as 

increases (decreases); 

(increases). 

[:J; X y] = [:I;] X 

where [ x ]  means a qualitative value of a physical quantity .r. n 
is a discrete time, and i3.r is the qualitative derivative of .I’ with 
the values of {+. 0. -} .  Equations ( I )  and ( 2 )  describe binary 
operations on qualitative values; (3) describes the dynamical 
relation of a system. 

We must point out that, in fuzzy theory, the arithmetic of 
fuzzy numbers is in a much more general setting. For example 
we have 

where n, is a fuzzy number, “approximately U,’’ associated with 

a membership function, e.g., 

The arithmetic in (4) and ( 5 )  is a generalization of the ordinary 
arithmetic, which of course precisely includes ( 1 )  and ( 2 ) .  

In fuzzy modeling, the fuzzy arithmetic is used for com- 
putation and “if-then rules” are used for inference together 
with fuzzy reasoning based on fuzzy logic. Fuzzy reasoning 
is interpreted as approximate reasoning based on vague or 
incomplete knowledge. 

As far as the tools for model description are concerned, 
those in qualitative reasoning seem to be very simple compared 
with those in fuzzy modeling. We can recall a dentist’s way of 
description: a dentist uses the symbols {++. +. i. -. - -}, 
and a control engineer uses in the bang-bang control the 
symbols {+l. -l}, where the symbol zero can be added as 
an ideal case in the middle of + I  and - I from a theoretical 
point of view. The dentist’s symbols are fuzzy in nature, much 
more similar- to fuzzy values, while the control symbols are 
crisp and look similar to qualitative reasoning. 

Now let us look at the basic approach of qualitative model- 
ing. As far as the authors can determine, this approach suggests 
I )  to make a model by observations of phenomena based on, 
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for instance, empirical and/or physical knowledge or 2) to 
derive a qualitative model based on a differential equation 
of a system. This approach is effective if a system is simple, 
for example a mechanical system with a small number of state 
variables and simple interactions among state variables. But, of 
course, even if a system is composed of many state variables, 
this approach is useful provided that the system is a lumped- 
parameter system such as an electric circuit. As a conclusion 
it seems that qualitative modeling is concerned with well- 
structured systems; in most studies on qualitative modeling, 
they deal with toy systems, if we look at those from a systems 

2) If z1 is small and z 2  is more or less small or medium 
small, then y is big, dy/dzl is very negative, and 
dy/dxz is very negative. 

We can regard most of fuzzy models and fuzzy control rules 
[24], [25] as qualitative models. 

We distinguish, however, in this paper, a qualitative model 
from a fuzzy model. The terminology “a fuzzy model” is 
used in a narrow sense. A qualitative model is considered 
a fuzzy model with something more, i.e., with more linguistic 
expressions. 

For example, a fuzzy model of the type 
1) if z is approximately 3, then y is approximately 5;  theory point of view. 

First of all, if a mathematical model is available, we can 
use it for the purpose of engineering (analysis, control and 
prediction). This fact of course does not prevent us for making 
a qualitative model of a system, for instance, in order to 
explain its general structure and behavior to students. 

Second, even if we can find the local mechanisms of a sys- 
tem, it is often the case that we cannot build the whole system 

In modeling we do not take this approach to 2) if z increases by approximately 5, then y decreases by 
approximately 4 

should not be called a qualitative model. We can call the 
above model a fuzzy number model to distinguish it from 
a qualitative model. 

Further, in an ordinary fuzzy model that is used in fuzzy 
control such as 

mode] by aggregating the local mechanisms. This is why we l )  if is positive then is negative 
take a so-called black box approach to Systems identification 2, if is positive medium, then !/ is positive _ _  
in systems engineering. We have to note that what we mean 
by a complex system is a system for which we cannot have a 
relevant mathematical model; in other words, we cannot build 
a global system model by integrating local models. 

There is another reason for a black box approach. It is often 
the case that we cannot measure the states of a dynamical 
system. We can observe only the inputs and the outputs of a 
system in many cases. 

Summing up the above the discussions on qualitative rea- 
soning and fuzzy modeling, we may conclude: l )  motivations 
are different, 2) goals look similar, 3) tools are much more 
powerful in fuzzy modeling, and 4) methods of approach to 
modeling are different and those in fuzzy modeling are more 
varied and applicable. In any case, however, we see similarities 
between qualitative reasoning and fuzzy modeling rather than 
differences. 

The research domain of fuzzy logic started adopting a 
qualitative approach to systems analysis in the late 1960’s. 
We are quite sure that fuzzy modeling can be directly applied 
to problems considered by a qualitative reasoning method. 
Despite these facts, it is a great pity that we can hardly find 
any reference to fuzzy logic in the papers related to qualitative 
reasoning. 

C. Qualitative Modeling 

What we imply here by a qualitative model [20]-[23] is 
a linguistic model. A linguistic model is a model that is de- 
scribed or expressed using linguistic terms in the framework of 
fuzzy logic instead of mathematical equations with numerical 
values or conventional logical formula with logical symbols. 
For example as we shall see later, a linguistic model of a two 
input-single output system is something like the following: 

1 )  if .r1 is more than medium and .1‘2 is more than medium. 
then is small, ag/13.r1 is sort of negative, and t l ,y/ t l ,rz 
is sort of negative. 

the terms “positive small,” “negative small,” etc., are the labels 
conventionally attached to fuzzy sets, where the fuzzy sets play 
an important role, not the labels. 

We go beyond this stage by utilizing of the concept of 
“linguistic approximation.” That is, given a conventional fuzzy 
model with fuzzy sets, we improve its qualitative nature 
by using linguistic approximation techniques in fuzzy logic. 
In other words, we deal with a model in which we fo- 
cus our attention on how to linguistically or qualitatively 
explain a system behavior as we shall see in what fol- 
lows. 

Now let us discuss available sources, i.e., information 
or data, for qualitative modeling. We find the following 
classification of the sources: 

1) conventional mathematical models 
2) observation based on knowledge and/or experience 
3) numerical data 
4) image data 
5 )  linguistic data. 

In qualitative reasoning as we have seen, a model is built 
based on 1) and 2). A conventional mathematical model is 
usually identified based on 2) and 3). A fuzzy model is also 
based on 2) and 3), as in the case of a mathematical model. 
Sources 4) and 5 )  are also useful to build a qualitative model. 
A qualitative model based on 4), image data, can be interpreted 
as image understanding, that is, a linguistic explanation of an 
image. As for the examples concerned with 5 ) ,  we can consider 
translation of one language into another or making a summary 
of a story. 

In this paper we deal with qualitative modeling based partly 
on 2) and mainly on 3), as usual; a black box approach. The 
reason for this is that system identification is a key issue in 
the black box approach and all the basic matters in model 
building appear in the context of system identification. Indeed 
we think that any method of modeling should be able to solve 
the problems discussed from now on. 
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TABLE I 
CLASSIFICATION OF IDENTII-ICATIOV 

a: Input candidates 
b: Input variables 

Stucture Identification I 

a: Number of rules 
b: Partition of input space 

Stucture Identification I1 

Parameter identification 

Let us first consider the problems in modeling. Modeling 
is classified from the viewpoint of a description language. 
However, there are some common problems to be solved 
in modeling independently of both the description language 
and the data type. Thus we refer to the systems theory. The 
most complicated problems arise when we take a black box 
approach to modeling. In the black box approach, we have to 
build a dynamical model using only input-output data. This 
stage of modeling is usually referred as identification. It is 
worth noting that the concept of system identification and 
its formal definition were introduced by Zadeh in the early 
1960's. We may suppose that Zadeh suggested the idea of 
fuzzy sets since he found difficulties in the identification of a 
complex system based on differential equations with numerical 
parameters. 

According to Zadeh's definition [26], given a class of 
models, system identification involves finding a model which 
may be regarded as equivalent to the objective system with 
respect to input-output data. 

D. Identification in Fuzzy Modeling 

Now let us look at the problems in the identification of 
a fuzzy model. The identification is divided into two kinds: 
structure identifications and parameter identification. 

Structure identification can be divided into two types, called, 
in this paper, type I and type 11, where each type is also 
divided into two subtypes. Before going into details, we show 
a classification of identification in Table I. Later we shall 
consider a multi-input and single-output system. 

I )  Structure Identijkation: Generally speaking, the struc- 
ture identification of a system has to solve two problems: in 
type I, one is to find input variables and in type 11, one is 
to find input-output relations. Type I consists of Ia and Ib. 
In Ia, we find possible input candidates for the inputs to a 
system. There are of course an infinite number of possible 
candidates, which should be restricted to a certain number. 
This type of identification, like induction, i.e., selection of a 
finite number out of an infinite number, cannot be solved in 
general. Let us just recall Newton's law of kinetic motion. 
There is no systematic way to find the exact causes of an 
unknown phenomenon. We have to take a heuristic method 
based on experience andlor common sense knowledge; we do 
not discuss the identification of type Ia in this study. 

In the structure identification of type Ib, given the possible 
input candidates, we find a set of input variables to a system 
which affect the output. In this case we select a finite number 
out of a finite number and so there are some systematic ways 
to solve this problem. For example, we are familiar with 

this problem in multivariate analysis. In a conventional black 
box approach in systems theory, this type of identification 
is, however, not explicitly discussed, and models are based 
on preassigned input-output variables. Generally speaking, 
we need some criterion for identification to evaluate the 
performance of a model. For instance, we can use the output 
error, i.e., the difference between the model output and the 
real output. However as far as the structure identification is 
concerned, it is well known that we cannot use the output 
error. We need a special criterion for the type Ib. 

The structure identification of type 11, which is concerned 
with input-output relations, is further divided into the subtypes 
IIa and IIb. Let us first consider IIa. In this type we have to 
determine the number of fuzzy rules in a fuzzy model. By 
structure identification in ordinary systems theory, what we 
mean is to find the relations between the inputs and the outputs. 
Given a description language for modeling, it simply means 
the determination of the order of a model. Let us consider an 
input-output model of a static system: 

,y = a[) + fL1.l '  + f L * 2  + . ' ' + U I 1  ' I.'L (7) 

and also consider an input-output model of a dynamical 
system: 

where f is a discrete time. In both cases, the order, i t , ,  must 
be identified. 

We know that AIC [27], Akaike's information criterion, can 
be used to this aim in particular when a system is linear. The 
idea of the identification of the order, 71, can be explained as 
follows. 

We consider the model in (7). Given a set of the in- 
put-output data indicated by 0, Fig, 2(a) shows an identified 
model with a high order which has a good fitting for the data. 
This model minimizes the output error. However since the data 
are contaminated by noise, we might also observe another set 
of data indicated by A in the figure for which the model 
has no fitting. What is a model which fits both sets of data, 
independently of noise? Fig. 2(b) shows a model with a lower 
order which has a better fitting on the average than the model 
in Fig. 2(a): this model does not minimize the output error. 

So the identification of the order, i i ,  is very important in 
modeling: usually 'rt is determined so as to minimize the value 
of AIC, which, roughly speaking, means minimizing both the 
output error and the order. 

In a fuzzy model, the structure identification of this kind is 
stated in a different way. A fuzzy model consists of a number 
of if-then rules. The number, 71, of rules in a fuzzy model 
corresponds to the order, n, in a conventional model. This 
identification of 71 is called type IIa. 

There are two parts of an if-then rule: the premise part 
and the consequent part. So the rules have two structures in 
principle: the premise structure and the consequent structure. 
If we use a fuzzy model (see Appendix II) ,  the consequent of 
which is of a functional type [ 121 as in (8), we have the same 
structure problem as in a conventional model. We will not use 
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(b)  

Fig. 2 .  Input+utput data and model 

this sort of a fuzzy model in this paper. Below we shall discuss 
only the premise structure, which is concerned with IIb. 

Supposz we obtain the following fuzzy model with three 
rules by the identification of IIa: 

1 )  if 5 1  is small, then y is small; 
2 )  if 5 1  is big and z 2  is small, then y is medium; 
3) if x:1 is big and 2 2  is big, then y is big. 
The premise space of the above model, which is two- 

dimensional space of the inputs 2 1  and 5 2 ,  is partitioned 
into three fuzzy subspaces as we see; the number of rules 
corresponds to the number of subspaces. This partition is called 
the premise structure in a fuzzy model. So the identification IIb 
implies determining how the input space should be partitioned. 

Fig. 3(a) shows the partition of the input space in the 
above model. As we find in Fig. 3(b) and (c), there are a 
number of different partitions. The problem is combinatorial: 
we need a heuristic method to find an optimal partition 
together with a criterion [ 121. However in our approach, this 
problem is automatically solved in the process of the structure 
identification of IIa, where we use a fuzzy clustering method. 

As we discussed in the above, we deal with the problems 
of selecting the input variables (Ib) and finding the number 
of rules (Ha). 

2) Parameter Identijication: In ordinary system identifica- 
tion, parameters are the coefficients in a functional system 
model. In a fuzzy model, the parameters are those in the 
membership functions of the fuzzy sets. There is not a big 
difference between the two except in the number of the 
parameters, there being many more in a fuzzy model. We can 
use a conventional criterion, i.e., the output error, for parameter 
identification also in a fuzzy model. We have to notice that the 
structure identification and the parameter identification cannot 

xl 

xl 
(b) 

Fig. 3. Partition of the input space. 

be separately performed in principle. This fact makes the 
identification very complicated. In our approach, the parameter 
identification can, however, be separately performed after the 
structure identification. 

By summing up the above-mentioned tasks to be done 
for modeling, we could say that the ratio of importance 
of the structure identification of type I to that of I1 and 
the parameter identification would be, moderately speaking, 
100 : 10 : 1. In any event, if we know the input candidates 
to a system, our problem is almost solved. After this, we 
can certainly find an algorithm of the identification depending 
on a description language. Unfortunately we do not have a 
systematic approach to structure identification of type Ia: it is 
a problem of induction. Structure identification of type Ib is a 
combinatorial problem. Type IIa is similar to the identification 
of the model order in ordinary identification. Type IIb is 
also a combinatorial problem which appears only in the case 
of if-then rules. The parameter identification is merely an 
optimization problem with an objective function. 

In this paper we will mainly deal with structure identifi- 
cation since parameter identification is neither valuable for 
discussions nor theoretically important. 

11. FUZZY MODEL 

In this paper we use the following type of a fuzzy model 

R' : if :c1 is Ai and :1:2 is Ai  . . . and xTt is Ai, then y is Bi .  (9) 

where R' is the %th rule (1 5 i 5 vi), x:j( 1 5 j 5 71) are input 
variables, :I/ is the output, and Ai and B' are fuzzy variables. 

for a multi-input and single-output system: 

We can simply rewrite the form (9) as 

R' : if z. is Ai then TJ is Bi (9') 

where z = (XI.. . . . : r T l )  and A = ( A I , .  . . . A 7 , ) .  
For simplicity, the membership function of AS is denoted 

Ai (e) .  In this section we regard the fuzzy variables A and B as 
those taking as values fuzzy numbers which are not necessarily 
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associated with linguistic labels. Our method of qualitative 
modeling consists of two steps. In the first step we deal with a 
fuzzy model in terms of fuzzy numbers. In the second step we 
give linguistic interpretations to this fuzzy model. That is, we 
deal with a fuzzy model with linguistic terms which we call a 
qualitative model. Occasionally we let BZ take singletons, i.e., 
real numbers, instead of fuzzy numbers. As far as fuzzy control 
is concerned, it is well known that we can use fuzzy rules with 
singletons in the consequents without losing the performance 
of the control. However in order to derive a qualitative model 
from the fuzzy model in (9), it is better to use fuzzy numbers 
in the consequents. 

As for reasoning, we modify partly the ordinary method as 
seen in the following steps 2) and 3): 

1) Given the inputs xy. x! ,  . . . , and x:, calculate the degree 
of match, wi, in the premises for the ith rule, 1 5 i 5 m 
as 

W' = A",z:) x A;( :E~)  x . . .  x Ak(z:). (10) 

2) Then defuzzify Bz in the consequents by taking the 
center of gravity: 

b2 = 1 B'(Y)&/ J' B"Y)4!.  ( 1  1 )  

3) Calculate the inferred value, ij, by taking the weighted 
average of ba with repsect to uf 

m I 111 ... 

i = l  i=l 

where m is the number of rules. 
As we find in the process of reasoning, the rule Ra translate 

(13) 

In what follows we shall call a fuzzy model in the form (9) 
a position type model. 

Next we propose occasionally to use a position-gradient 
type model. It is often the case that we cannot build a fuzzy 
model over the whole input space because we lack data. In 
this case we need to take an extrapolation for estimating the 
output using local fuzzy rules. Note that in conventional fuzzy 
reasoning we take an interpolation using some number of rules. 

to the form 

R' : if z IS A' then y is b'.  

A position-gradient model is of the following form: 

R' : if z is A' then y is B' and d!g/i)z is C'. (14) 

where ay/dz = (ay/a.rl.. . . . t l ! ~ / t l . r , ~ ) .  C' = (Ci. . . . . C;L).  
and a y / a ~ ~  is the partial derivative of y with respect to , rJ .  

Using the rules shown in (14), we can infer the output for a 
given input for which no rule of the position type is available; 
if w' = 0 in all the rules for the inputs, 4 cannot be inferred 
in the position type model. The reasoning algorithm of the 
position-gradient rules is the following: 

1 )  Defuzzify B' and C',  and let those values be b' and c',  
respectively, where c' = ( r i . .  . . . ( . i t ) .  We can rewrite 
(13) as 

R' : if z is A' then y is b' and a*y/az is c' . ( 15) 

Ri:ifxlis Aiand x 2  isA2then i ..... 

, ,  

m 
0 

Fig. 4. Distance from the input S to the rule. 

2) Calculate the distance di between the input and the core 
region of the ith rule as shown in Fig. 4. As we see, the 
core region, in a two-dimensional case, of the ith rule: 
"if 5 1  is Ai and z2 is Ai then y is BZ," is the crisp 
region determined by the fuzzy sets Ai  and A i ,  where 
membership grades Ai and Ai are 1. 

3) Calcualte the inferred output, y, by 

i j  = m { l lI(di)* (hi+@ x c # ~ 7 1 1 ( d i ) ,  

i = l  i=l  

(16) 
where 71 is the number of inputs, m the number of 
rules, d i  the component of di on the x j  coordinate axis, 
and rw(d2) = e x p ( - d i )  is the weight of the ith rule 
dependeing on the distance d' .  

As is seen in (16), the term bz + x,"=,(dj x e:) is the 
extrapolated value of the output using the value of its partial 
derivatives ay/dz j .  We shall see below that the membership 
functions in this study are almost always of a trapezoidal type 
as shown in Fig. 4. 

A. Structure Identification 

Let us now discuss the method of structure identification. 
As stated in the Introduction we have to deal with structures 
of type Ib: to find a set of input variables among the possible 
candidates, and with structures of type 11: to find the number 
of rules and a fuzzy partition of the input space (see Table 
I). We shall use an ordinary method for Ib but propose a new 
method based on fuzzy clustering for 11. In general, it seems 
that we can neither separate the identification of type Ib from 
that of type I1 nor separate the structure identification from the 
parameter identification; these are mutually related. However 
we can separate these by using our method. This is a great 
advantage of the new method. 

In principle, the algorithm for the identification is of the 
iterative type. We present the algorithm through numerical 
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1.31 
3.35 
2.10 
3.52 
2.46 
1.95 
2.51 
2.70 
1.33 
4.63 
2.80 
1.97 
2.47 
2.66 
2.08 
2.75 
1.51 
2.40 
2.44 
1.99 
3.42 
4.99 
2.27 
3.94 

TABLE I1 
INPUT-OUTPUT DATA OF NONLINEAR SYSTEM 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1 

2 
3 
4 
5 
6 
7 
8 
9 
I O  
1 1  

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1.40 
4.28 
1.18 
1.96 
1.85 
3.66 
3.64 
4.5 1 

3.77 
4.84 
1.05 
4.5 1 

1.84 
1.67 
2.03 
3.62 
1.67 
3.38 
2.83 
I .48 
3.37 
2.84 
1.19 
4.10 
1.65 

1.80 
4.96 
4.29 
1.90 
1.43 
1.60 
2.14 
1.52 
1.45 
4.32 
2.55 
1.37 
4.43 
2.8 1 
I .88 
I .95 
2.23 
3.70 
1.77 
4.44 
2.13 
1.24 
1.53 
1.71 
1.38 

3.00 
3.02 
1.60 
1.71 
4.15 
3.44 
1.64 
4.53 
2.50 
2.15 
3.03 
3.97 
4.20 
2.23 
1.41 
4.93 
3.93 
4.65 
2.61 
1.33 
2.42 
4.42 
2.54 
2.54 
4.57 

3.80 
4.39 
3.80 
I .59 
3.30 
3.33 
2.64 
2.54 
1.86 
1.70 
2.02 
I .70 
I .38 
4.5 1 
1.10 
1.58 
1.06 
1.28 
4.50 
3.25 
3.95 
1.21 
3.22 
1.76 
4.03 

Group A Group B 

No. .rl .r2 .r2 .r3 Y No. .r 1 .1.2 .r3 .r4 Y 

2.71 4.13 4.38 3.21 1.58 
1.78 1.11 3.13 1.80 4.71 
3.61 2.27 2.27 3.61 1.87 
2.24 3.74 4.25 3.26 1.79 
1.81 3.18 3.31 2.07 2.20 
4.85 4.66 4.1 I 3.74 1.30 
3.41 3.88 1.27 2.21 1.48 
1.38 2.55 2.07 4.42 3.14 
2.46 2.12 1 . 1  1 4.44 2.22 
2.66 4.42 1.71 1.23 1.56 
4.44 4.71 1.53 2.08 1.32 
3.11 1.06 2.91 2.80 4.08 
4.47 3.66 1.23 3.62 1.42 
1.35 1.76 3.00 3.82 3.91 
1.24 1.41 1.92 2.25 5.05 
2.81 1.35 4.96 4.04 1.97 
1.92 4.25 3.24 3.89 1.92 
4.61 2.68 4.89 1.03 1.63 
3.04 4.97 2.77 2.63 1.44 
4.82 3.80 4.73 2.69 1.39 
2.58 1.97 4.16 2.95 2.29 
4.14 4.76 2.63 3.88 1.33 
4.35 3.90 2.55 1.65 1.40 
2.22 1.35 2.75 1.01 3.39 

examples. Let us consider the following nonlinear static system 
with two inputs, x1 and 2 2 ,  and a single output, y: 

We show a three-dimensional input-output graph of this 
system in Fig. 5. From this system equation, 50 input-output 
data are obtained (Table 11). The data of 2 3  and x4 are 
put as dummy inputs to check the appropriateness of the 
identification method. 

1 )  Structure IdentGcation of Type I: In the proposed algo- 
rithm, the identification of type Ib is done between the iden- 
tification of type I1 and the parameter identification. Let us, 
however, first consider the identification Ib. 

We have four candidates, 2 1  - ~ 4 ,  for the inputs to the 
system and have to find among them the actual inputs affecting 
the output, y. This is a combinatorial problem. For instance we 
can count 15 cases in this example: four cases if the system 
has only one input, six cases if it has two inputs, and so 
on. In general, let X be a set of possible input candidates 
5 1 ,  2 2 .  . . . . xTL;  then the total number of cases is the number 
of subsets except an empty subset of X ,  i.e., 2" - 1. Here 
we take a heuristic method to select some inputs from among 
the candidates; we increase the number of inputs one by one, 
watching a criterion. 

Fig. 5. Inputboutput relation of nonlinear system. 

First we divide the data into two groups, A and B, as in 
Table 11. As a criterion to this purpose, we use the so-called 
regularity criterion, RC [28], in GMDH (group method of data 
handling), which is defined as follows: 

k B  

- Y ? B ) 2 / h  + ELY: - Ip"! ' /kB] / 2 .  
1 = l  

(18) 
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TABLE Ill 
STRUCTURE IDENTIFICATION Ib OF NONLINEAR SYSTEM 

Input RC 
Variables 

.r 1 

Step 1 s 2 
.r3 
.r1 

0 

0.863 
0.830 
0.937 

. r l  - .r2 
Step 2 

.r l  - 1.3 

.r l  - . x i  

.r1 - s2 - .r3 

. r l  - .rL - .rf 
Step 3 

0.57 I 
0.583 

0.483 X 

0.493 X 

where 

k 1 and k ~ :  the number of data of the groups A 
and B; 
the output data of the groups A and B; 

the model output for the group A input 
estimated by the model identified 
using the group B data; 
the model output for the group B input 
estimated by the model identified 
using the group A data. 

y,' and yp: 

y IB: 

,,B I .  

As we can guess from the form of RC, we build two models 
for two data groups at each stage of the identification. Notice 
that we have to make the structure identification of type I1 and 
the parameter identification in order to calculate RC. We can 
easily find the meaning of RC in Fig. 2. 

Now we show the outline of a heuristic algorithm for Ib. 
First, we begin with a fuzzy model with one input. We make 
four models: one model for one particular input. After the 
identification of the structure I1 and parameter identification, 
which will be described later, we calculate RC of each model 
and select one model to minimize RC from among the one- 
input models. Next we fix the one input selected above and add 
another input to our fuzzy model from among the remaining 
three candidates. Our fuzzy model has two inputs at this stage. 
We select the second input as we do at the first step, according 
to the value of RC. 

We continue the above process until the value of RC 
increases. The result is shown in Table 111. As is shown, .c1 

is selected at the first step, .r2 at the second step. At the third 
step, however, both the values of RC for the third inputs, . r ~  
and .rA are bigger than the minimal RC at the second step. 
So the search is terminated at this stage. As a result we have 
evaluated nine of the 15 case5 and succeeded in finding the 
true inputs, . r 1  and .r2. 

Let us look at Fig. 6 to understand the algorithm. This figure 
shows a tree structure of this combinatorial problem. As we 

level 

level 

level 

level 4 - xl x2 x3 x 

Fig. 6. Search tree in identification of type Ib 

see, the tree in this case consists of four levels. Each node of 
the tree corresponds to a subset of the set of input candidates: 
the node at the level 0 corresponds to an empty set. Thus the 
total number of meaningful nodes in 2" - 1 for a case of n, 
input candidates. The nodes 2 1  and ~ 1 . 2 2  with double circles 
are selected in searching the tree as shown in Table 111. Only 
one node at each level is selected and so those nodes connected 
by dotted lines are not evaluated. Since the values of RC at 
level 3 become bigger than that of :c1 0 2 2  at level 2, the search 
is terminated at level 2 .  If not, the search is continued until 
the final level. As a result of this algorithm, we evaluate at 
most n(n + l ) / 2  nodes in this algorithm out of 21L - 1. 

We can further reduce the number of evaluations. For 
example, suppose the RC of the node z1 0 2 4  at level 2 is 
not improved compared with that of the best node, 1c1, at level 
1. Then we consider that the input xq should be eliminated 
and thus we stop evaluating the node 5 1  0 x2 0 5 4  at level 3 .  
This case will be shown later in the example of modeling a 
gas furnace (see Table VII). 

2)  Structure ldenrijcation of Dpe II: Usually in the design 
of a fuzzy controller we first pay attention to rule premises and 
find an optimal partition based on a certain criterion. Here we 
propose a different method; that is, we first pay attention to the 
consequents of the rules and then find a partition concerning 
the premises. Also in our method, we do not take an ordinary 
fuzzy partition of the input space, as is shown in Fig. 7, for 
if we take this kind of partition, the number of rules increases 
exponentially with the number of inputs. For this reason, we 
introduce the fuzzy c-means method, abbreviated FCM, for 
the structure identification of type IIb. The algorithm of FCM 
will be shown in Appendix I .  Using FCM, we make fuzzy 
clustering of the output data; we use all the data. As a result, 
every output y is associated with the grade of membership 
belonging to a fuzzy cluster B. Notice that we now have the 
following data associated with the grade of the membership 
of y i  ,in BJ(l 5 :j 5 c ) :  

We can induce a fuzzy cluster A in the input space as in 
shown in Fig. 8. By making the projection of the cluster A 
onto the axes of the coordinates .rl and .r2, we obtain the 

~ -- 
I-- - 
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x2 Input space 

X I  

Fig. 7. Ordinary fuzzy partition of input space 

Output space 
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fi,/ 7 p a c e  

X (c) 

Fig. IO. Construction of a membership function: (a) input cluster; (b) 
approximated convex fuzzy set; (c) approximated trapezoid fuzzy set. 

Fig. 8. Fuzzy cluster in the input space. 

Output space 

Fig. 9. Projection of a fuzzy cluster. 

fuzzy sets A I  and A2 as shown in Fig. 9. As is easily seen, 
we have at this stage the following relation: 

where B is the output cluster. 
Now this cluster gives a fuzzy rule: if : c 1  is A I  and 1c2 is 

A2, then :y is B. 
Remark I :  Although the output cluster B is convex, the 

input cluster A corresponding to B might not be convex: for 
instance we might obtain A l ,  as is shown in Fig. 10(a). In 
this case we approximate the input cluster in Fig. 10(a) with a 
convex fuzzy set as in Fig. 10(b). Finally we approximate this 
convex fuzzy set and B as well, with a fuzzy set of trapezoidal 
type as shown in Fig. 10(c), which is used in the fuzzy model. 

Fig. 1 I .  Two fuzzy clusters induced from one output cluster. 

Remark 2: the next problem is that we might have more 
than two fuzzy clusters, A' and A2 in the input space which 
corresponds to the same fuzzy cluster B in the output space. 
In this case we carefully form two convex fuzzy clusters as 
illustrated in Fig. 11 .  We obtain the following two rules with 
the same consequent: 

R1 : if : c 1  is A: and z 2  is Ai then ;y is B 
R 2  : if :rl is A: and L I : ~  is Ai then y is B. 

As we can easily understand, a fuzzy partition of the input 
space is obtained as a direct result of fuzzy clustering; we do 
not have to consider the structure identification of type IIb. 
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-20 1 -21.58 

-30 4 \ -32.47 

3.66 

R’ ; if x l  i s m  and x2 i s f o  then y is 
1.70 4.95 1.73 4.97 1.30 

1.80 3.60 1.95 4.43 

R2;  if XI i s [ B  and x2 ism then y is rb 
1.50 4.80 1.42 4.55 1.51 2.60 

I \ 2.00 4.50 1.52 4.43 2.51 2.66 

-41.69 R3;  if x l  ism and x2 i s g  then y is 
1.53 3.31 0.91 7.97 + 0.50 4.60 

1.18 2.84 1.24 4.29 -42.70 

Fig. 12. Behavior of S ( c )  in nonlinear system model. 

Let us discuss a method to determine the number of rules 
which is related to the number of fuzzy clusters in fuzzy 
clustering. Note that, because of Remark 2 the number of fuzzy 
rules is not exactly the same as that of fuzzy clusters in the 
output space, as we have just discussed above. 

The determination of the number of clusters is the most 
important issue in clustering. There are many studies on this 
issue [29]-[31]. Here we use the following criterion [31] for 
this purpose: 

n c  

k l  i=l 

where 

U :  number of data to be clustered; 
c: number of clusters, c 2 2;  
,rh.: kth data, usually vector; 
.r: average of data: s 1. .r2 . . . .rrz ; 

: vector expressing the center of ith cluster; 

11 . 11: n o m ;  

p L k :  

111:  

grade of kth data belonging to ith cluster; 
adjustable weight (usually 171 = 1.5 N 3). 

The number of clusters, c,  is determined so that S(  e )  reaches 
a minimum as c increases: it is supposed to be a local minimum 
as usual. As in seen in (21), the first term of the right-hand 
side is the variance of the data in a cluster and the second 
term is that of the clusters themselves. Therefore the optimal 
clustering is considered to minimize the variance in each 
cluster and to maximize the variance between the clusters. 
Fig. 12 shows the change of S ( c )  in fuzzy modeling of the 
system (17). In this case, the optimal number of fuzzy clusters 
is found to be 6. From this, the number of rules is identified by 
taking account of the case where a fuzzy cluster in the input 
space is divided into two fuzzy clusters. As it is easily seen, 
in the process of fuzzy clustering, we refer neither to the input 
nor to the parameters in premises. Therefore we can separate 
the identification of type I1 from that of Ib and the parameter 
identification. Futher as we find in the above discussion, a 
fuzzy partition of the input space IIb as well as the parameters 
Ai in the premises and Bi in the consequents are obtained as 
by-products of IIa. We use these A” and Bi to calculate RC 
in the identification of type Ib. 

3.91 3.94 
1.35 1.65 

R5;  if XI isw and x2 i s c  then y is 
1.02 4.98 1.06 2.40 3.22 4.94 

R‘; if x l  i s f i l l a  and x2 i s K  then y is a 
1.05 1.81 1.06 4.62 4.05 5.06 

Fig. 13. Model of the nonlinear sustem. 

After identifying the structure of type Ib (input variables), 
we combine the two groups of the data and induce fuzzy 
clusters in the input space from the output clusters to find 
the parameters A. We use those parameters obtained in the 
process of fuzzy clustering as an initial guess in the parameter 
identification. Fig. 13 shows the fuzzy model of (17). Below 
we shall use the mean square error of output as a performance 
index of a fuzzy model: 

where m is the number of data, yz is the ith actual output, 
and is the ith model ouput. In this example, we have 
PI  = 0.318. 

3) Identi’cation of a Position-Gradient Model: Finally let 
us discuss the identification of a position-gradient type model 
of the form (14): the determination of the term “dyldz, is 
Cj”. Since the partial derivative dy/dzi  is not given as data, 
we have to estimate it from the given input-output data. 

We assume an equation around the input-output data 
(z?. . . ’ . x;L, yo): 

y = yo + dy/dzl(zl - z:) + . . . + dy/dz,(z,, - x:). (23) 

We estimate the coefficients dy/dzj in (23) by using the 
method of weighted least squares using the other input-output 
data. As weights, we use 

where .c;(l 5 , j  5 n )  is the kth data. Then we can obtain a 
fuzzy set Ci in the form of (14) from the output cluster Bz 
just as we do to obtain the fuzzy sets A i .  
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I Find the Darameters 6 I 
t 

Divide data into two groups 
1 

Assume single variable 
among input candidates 

i 
Find the parameters A 
with respect to each I group of data 

P l  P2 P3 P4 

Fig. 15. Trapezoidal fuzzy set. 

Calculate RC 
for each input variable 

I 

t 

Combine two groups of data 
to reform the parameters A 

I Estimate by/bx and find the 
parameters C for a position- I oradient tvDe model + 

I Make parameters identification I 

Fig. 14. Algorithm for identification. 
Fig. 16. Constraint for adjusting parameter 

Summing up the above method of identification, we arrive 
at the algorithm given in Fig. 14. 

We should notice as pointed out in the preceding section 
that the parameter identification can be done separately from 
the structure identification in our method since the parameters 
obtained as by-products in fuzzy clustering are available to 
calculate RC in the process of the structure identification 
Ib. In ordinary algorithms of identification, the parameter 
identification must be performed in the process of the structure 
identification, which makes an algorithm complicated. Our 
method also enables us to omit the identification IIb of the 
partition of the input space. 

B. Parameter Ident$cation 

As discussed in the preceding sections, we determine at the 
stage of parameter identification the values of parameters in a 
system model. In the case of a fuzzy model, the parameters 
are those concerned with membership functions. 

In this paper, we approximate a convex fuzzy set with 
a trapezoidal fuzzy set. A trapezoidal fuzzy set has four 
parameters, as shown in Fig. 15, where p l  5 p 2  5 p3 5 p4. 

As mentioned, we have already found the parameters by 
making the projection of the clusters onto the axes of coordi- 
nates. We can derive a qualitative model from a fuzzy model 
with these parameters. However it is better to improve the 
parameters in order to use a fuzzy model for simulation. So 
we adjust the parameters as we do in the ordinary parameter 
identification. 

Since parameter identification is a problem of nonlinear 
optimization, there are studies on fuzzy modeling using the 

nonlinear optimization method for parameter identification, 
e.g., the complex method [12]. 

In the method we propose, we have a great advantage in 
that we can find, as we did in our example, the approximate 
values of the parameters; we can use these values as an initial 
guess in the parameter identification. 

Now we show an algorithm for the identification process. 
Set the value f of adjustment. 
Assume that the lcth parameter of the j th  fuzzy set is pj". 
Calculate pj" + f and p: - f .  If lc = 2,3 ,4 ,  and pj" - f 
is smaller than p$-', then 6; = $'; else 6: = pj" - f .  
Also if lc = 1 , 2 , 3  and p: + f is bigger than pS+l, then 

p j  = p;+l; else fij = pj" + f .  f is a constraint for 
adjusting parameters, as shown in Fig. 16. 
Choose the parameter which shows the best performance 
PI in (21) among {fi:,p;,fij} and replace pj" with it. 
Go to step 2 while unadjusted parameters exist. 
Repeat step 2 until we are satisfied with the result. 

- I C  

- I C  

We use 5% of the width of the universe of discourse as the 
value of f and we repeat 20 times steps 1 to 6. Note that we 
do not adjust the parameters in the consequents of the rules. 

111. QUALITATIVE MODEL 

A.  Linguistic Approximation 

In this section we discuss a way to derive a qualitative 
model from a fuzzy model. To this aim we use a method 
of linguistic approximation [32], [33] of fuzzy sets. We can 
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Fig. 17. Fuzzy set and linguistic approximations P and &. 

state our problem as follows: Given a proposition with fuzzy 
predicates, find a word or a phrase out of a given set of words 
to linguistically approximate it, with hedges and connectives. 
After this procedure, we can obtain a qualitative model with 
linguistic rules from the identified fuzzy model. 

We use the following two indices to measure the matching 
degree of two fuzzy sets [34]: 

Degree of similarity: 

S ( N ,  L )  =II N n L II / II N U L II, (25) 

where ( 1  . 1 1  is the cardinality of the fuzzy set, and N 
and L are fuzzy sets. 
Degree of inclusion: 

I ( N , L )  =II N n L  II / II L II . (26) 

the above setting, N is a fuzzy set considered as a fuzzy 
number and L is a fuzzy set associated with a linguistic label. 

In order to choose the closest L to a given N ,  we may refer 
only S ( N ,  L ) .  In some cases, however, it is better to refer also 
I ( N , L ) .  In Fig. 17, for two fuzzy sets P and Q, we have 

S ( N ,  P )  = S ( N ,  Q) 
W ,  p )  < I ( N ,  Q ) .  

As Q is included in N ,  we can say that Q approximates 
more appropriately N than P. We suggest leaving the exact 
use of these to the user’s preference. 

In this paper we consider linguistic approximation on three 
levels. 

Level 1: 
Level 2: 
Level 3: 

approximation with linguistic terms. 
approximation with linguistic terms and hedges. 
approximation with linguistic terms, hedges and 
connectives. 

We shall use the following hedges [35]: very, more or less, 
slightly, sort oj  not, more than, less than, as shown in Fig. 18. 
We apply certain constraints in the use of hedges. For instance 
we may say “very big,” or “more than middle,” but we do not 
say “more than big.” 

As an example, let us approximate two fuzzy numbers, A 
and B,  concerning the strength of wind in Fig. 19(a) with 
the linguistic terms in Fig. 19(b). The top and bottom parts 
of Table IV show the linguistic approximations of A and B 
according to three levels where the values of two indices are 
shown. 

(2) more or less A (6) more than A l)f- ............. I-\* 
f 

2‘ 

(3) slightly A (7) less than A 

.. ............ ............. : A  

- : modified A 

(4) sort of A 

Fig. 18. Linguistic hedges. 

0 

0 1 0 (mk) 
(b) 

numbers and (b) wind scale. 
Fig. 19. Fuzzy numbers and words for linguistic approximation: (a) fuzzy 

B. Control of Number of Linguistic Rules 

It is often the case that we are asked to explain phenomena 
“more precisely” or “more simply.” We have a limitation in 
responding to this sort of request if we merely try to refine 
or simplify the linguistic approximation. We can manage this 
problem by increasing or decreasing the number of linguistic 
rules. Two features contribute to this flexibility: hedges and 
connectives. 
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TABLE IV 
RESULTS OF LINGUISTIC APPROXIMATION 

Level Linguistic Expression S I 
~~ 

1 calm 0.62 0.96 

2 less than soft 0.87 0.97 

3 more or less calm or more or 0.94 0.94 
less soft 

Level Linguistic Expression S I 

I moderate , 0.76 0.92 

2 more or less moderate 0.81 0.83 

3 not strong but more or less 0.86 0.98 
moderate 

As we adopt a fuzzy clustering method for the identification 
of IIa i.e., the number of rules, we can simply control the 
number of linguistic rules by adjusting the number of fuzzy 
clusters. This is also a great advantage of the proposed method. 

IV. ILLUSTRATIVE EXAMPLES 
We deal with six illustrative examples in this section. The 

first example involves qualitative modeling of a nonlinear 
system, which has been partly discussed in the previous 
section. The second is also a numerical example in which we 
discuss the performance of our fuzzy modeling method. In the 
third example we make a qualitative model of a dynamical 
process. The fourth and fifth examples are concerned with 
qualitative modeling of human operation at process control. In 
the final example we make a qualitative model to explain the 
trend in the time series data of the price of a stock. 

In order to understand the examples in connection with the 
preceding discussions, let us list the key points: 

a) fuzzy model of position type, 
b) fuzzy model of position-gradient type, 
c) qualitative model, 
d) structure of type Ib: input variables, 
e) control of the number of linguistic rules, 
f) structure of type IIa: number of rules, 
g) parameter identification. 
In what follows, we shall attach symbols (a)-(e) to each 

example. Throughout the examples, (f), the structure identi- 
fication of type IIa, and (g), the parameter identification, are 
performed. 

A.  Nonlinear System (a ,  b, c, d )  

This example deals with the explanation of the proposed 
method of identification. Let us recall a static and nonlinear 
two input-single output system of the type shown in (17): 

This system shows the nonlinear characteristic illustrated in 
Fig. 5 and we use the data in Table 11. The process of the 
identification of type IIa has been shown in Table 111 and we 
have found the true inputs .c1 and .r2. The optimal number of 

2.10 

1.30 

R'; if x i  ism and x2 i s m  then y is 
1.15 4.97 1.06 4.85 

1.84 3.45 1.93 3.20 

R'; if x i  i s t n  and x2 ism- then y is r- 
1.46 4.06 1.16 3.79 1.51 2.60 

I 4 n  D e l  2.02 2.51 2.65 . . .- 

R3; if XI i s k  and x2 i s h  then y is 
1.10 2.76 1.63 5.21 1.W 3.31 

3.35 3.42 
2.00 227 1.24 2.92 

R4 ;  if XI i s k  and x2 is&, then y is 
2.08 2.32 124 3.60 2.88 3.98 

3.91 3.94 

R5;  if XI is& and x2 i s K  then y is t/l 
1.40 5.95 1.03 2.88 3.22 4.94 

Re; if x i  i s f i ,  and x2 is& then y is 
1.m 2.57 1.06 4.93 4.05 5.m 

Fig. 20. Model of nonlinear system after parameter identification. 

rules has been found to be 6. In this example, the number of 
rules is found to be equal to the number of clusters. After the 
parameter identification, we obtain a fuzzy model as in Fig. 
20, where the performance index of the model is P I  = 0.079. 
Before the parameter identification, we have obtained the fuzzy 
model with unadjusted parameters as we see in Fig. 13, where 
PI  = 0.318. We can certainly improve the model by adjusting 
its parameters. 

In this example, we also obtain a fuzzy model of position- 
gradient type as illustrated in Fig. 21. In the case of the 
latter model, the performance is greatly improved. We have 
PI  = 0.010. Finally we show a qualitative model of the 
position-gradient type. 

I )  If z1 is more than MEDIUM and 2 2  is more than 
MEDIUM, then y is SMALL, .3y/dzl is sort of NEG- 
ATIVE, and dy/da2 is sort of NEGATIVE. 

2 )  If 2 1  is not SMALL but less than MEDIUM BIG and 
2 2  is not SMALL but less than MEDIUM BIG, then y 
is MEDIUM SMALL, dy/dzl is sort of NEGATIVE, 
and dy/dz2 is sort of NEGATIVE. 

3) If 2 1  is not SMALL but less than MEDIUM BIG and 
:cp is more or less MEDIUM BIG, then y is more or 
less MEDIUM SMALL and MEDIUM, dy/d:1;1 is sort 
of NEGATIVE, and i)y/d:~2 is sort of NEGATIVE. 

4) If 21 is less than MEDIUM and 1c2 is less than MEDIUM 
BIG, then y is MEDIUM and more or less MEDIUM 
BIG, i)y/d:cl is sort of NEGATIVE, and i)y/dzp is sort 
of NEGATIVE. 

5) If :~ '1  is more or less MEDIUM SMALL or MEDIUM 
and 2 2  is more or less SMALL, then y is MEDIUM 
BIG, i)y/i)zl is sort of NEGATIVE, and dy/i):c2 NEG- 
ATIVE. 

6) If :c1 is SMALL and x 2  is more or less SMALL or 
MEDIUM SMALL, then y is BIG, dy/i)zl is very 
NEGATIVE, and dy/d:1;2 is very NEGATIVE. 
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~ 

21 

* Consequents are singletons 

Fig. 21. Position-gradient model of nonlinear system. 

x2 

1 xl 
0 3 4  6 7 10 

Fig. 22. Fuzzy system. 

We can understand the performance of the model by re- 
ferring to the characteristics of the system shown in Fig. 
5. 

B. Fuzzy System Model (a,  d )  

In this example we investigate the reproductivity of the 
proposed method of system identification. That is, we obtain 
input4utput data from a fuzzy system consisting of fuzzy 
rules and make its fuzzy model using the data. 

Fig. 22 shows a fuzzy system with nine rules in the form 
of (13) which has singletons in the consequents. 

We use 100 data points of XI .  2 2 .  : X S ,  :CA, and y taken from 
the system where 2 3  and :CA are dummy input variables; some 
data are shown in Table V. 

After the fuzzy clustering, we find the optimal number of 
clusters to be 8. From this we derive nine rules; one of eight 
clusters is divided into two rules because of the nonconvexity 
of an input cluster. 

The structure identification of type Ib proceeds as is shown 
in Table VI. In step 2 of this table, the two inputs, :1:1 and 2 2 ,  

with the minimal RC are correctly selected. 
After parameter identification, we obtain a fuzzy model of 

the type shown in Fig. 23. We can see a good reproductivity 
by comparing the identified model with the original system. 

TABLE V 
SOME INPUT-OUTPUT DATA OF FUZZY SYSTEM 

.1' 1 1' 2 1' 3 1' 1 Y 
~~ ~ 

8.85 9.32 0.69 5.84 6.00 
3.89 9.19 2.49 9.00 1.56 
4.43 3.67 2.95 5.17 -1.32 
1.98 6.74 7.08 6.62 -3.04 
1.69 7.20 5.41 9.23 -2.00 
6.23 7.26 6.50 6.25 2.92 

TABLE VI 
STRUCTURE IDENTIFICATION Ib OF Fuzzy SYSTEM 

Input RC 
Variables 

.1' 1 

Step 1 .r2 
.2.3 

.rl 

0 

1 1.335 
19.820 
18.249 

.rl - .r2 

Step 2 
.r1 - .r3 
.2.1 - .1'1 

10.904 
10.476 

.xl 
Fig. 23. Fuzzy system model. 

C. Box and Jenkins's Gas Furnace (b, c, d )  

We discuss the qualitative modeling of a dynamical process 
using a famous example of the system identification given 
by Box and Jenkins [36]. The process is a gas furnace with 
single input u ( t )  and single output y(t): gas flow rate and CO2 
concentration, re5pectively. We omit to show data which are 
found in [36]. 

Since the process is dynamical, we consider as candidates 
the ten variables y ( t  - 1). . . . , g ( t  - 4). u(t - 1). . . . . u( t  - 6) 
to affect the present output y(t).  Using 296 data points, we 
make fuzzy clustering and find six clusters. Table VI1 shows 
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47.66 0.79 -2.36 -1.39 
38.51 55.16 0.01 1.4 -3.51 13.59 

TABLE VI1 
STRUCTURE IDENTIFICATION Ib OF GAS FURNACE 

Input RC 
Variables 

m 0 

Step 1 

Y ( t  - 1) 

Y(t - 2 )  
Y(t - 3)  

Y(t - 4) 
u( t  - 1) 
u ( t  - 2 )  
u ( t  - 3)  

u ( t  - 4 )  

u( t  - 5 )  

u ( t  - 6) 

Y(t - 1) - Y ( t  - 2 )  
?At - 1)  - Y(t - 3 )  

Y(t - 1)  - Y ( t  - 4) 
g ( t  - 1) - u ( t  - 1)  

y ( t  - 1)  - u ( t  - 2 )  

Y ( t  - 1)  - u ( t  - 3 )  

g ( t  - 1)  - u ( t  - 4) 

y(t - 1 )  - u ( t  - 5)  
Y ( t  - 1) - u ( t  - 5 )  

g ( t  -1)- u ( t  -4)- u ( t  -1) 
Y ( t  - 1 ) -  u ( t  - 4 ) -  u ( t  - 2 )  

Step 2 

step 3 y ( t - l ) - - ( t - 4 ) - u ( t - 3 )  

y(t  - 1 ) -  u ( f  - 4 ) - u ( t  - 5 )  

g ( t  - 1 ) -  u ( t  - 4 ) - ~ ( f  - 6 )  

U 

2.276 
4.151 

5.720 

6.724 

4.816 

3.257 

1.869 
1.465 

2.040 

0.973 

1.067 
1.020 
0.745 

0.598 

0.439 

X 

X 

X 

0.565 

0.846 

0.439 X 

0.429 X 

0.454 X 

0.499 X 

the structure identification process of type Ib. As we find, we 
can select y(t - l), u(t - 4), and u(t - 3) by referring to the 
values of RC. 

In Table VII, some sets of input candidates, e.g., {y(t - 

in step 2 are associated with the mark x. The mark x 
shows that the values of RC for those input sets are bigger 
than the minimal RC at the previous step, i.e., RC for 
y(t - 1). As discussed in subsection 11-A-1, we eliminate 
the input candidates y(t - 2), y(t - 3) ,  and y(t - 4) after 
step 2 since we may not have good prospects by considering 
those as candidates at proceeding steps. So we evaluate only 
five sets of input candidates at step 3 as seen in Table 
VII. 

After the parameter identification, we obtain a fuzzy model 
of the position-gradient type as shown in Fig. 24. Fig. 25 shows 
the model behavior in comparison with the actual process. In 
Table VIII, we compare our fuzzy model with other fuzzy 
models where we see a high performance of our model; the 
number of rules are remarkably reduced, and P I  also. 

Now let us derive a qualitative model from a fuzzy model 
of position type using linguistic approximation at level 3. We 
obtain the following model. 

11, Y ( t  - 211, {Y( t  - I), Y ( t  - 3)) and { d t  - 11, Y( t  - 4)) 

I y(t-1) u(t-4) u(t-3) 3 y(t) ayby(t-1) ayhu(t-4) ay/w(t-3) 

R( rr;1°1.3: lJ1.: 
50.22 0.79 -2.27 -1.02 

47.50 55.10 -2.61 2.1 -292 2.79 

58.74 0.79 -1.77 -0.72 
51.11 63,13 4.62 4.41 286 

1 .m 

Fig. 24. Fuzzy model of gas furnace (position-gradient type). 

I I 

T I E  
- PROCESS '.... MODEL 

Fig. 25. Output of fuzzy model of gas furnace. 

1) If y ( t  - 1) is sort of SMALL or MEDIUM SMALL 
u(t - 4) is MEDIUM BIG or sort of BIG and u(t - 3) 
is more or less MEDIUM BIG or sort of BIG, then y(t) 
is SMALL. 

2) If y(t - 1) is not SMALL but more or less MEDIUM 
SMALL, u(t - 4) is not BIG but more or less MEDIUM 
BIG, and u(t - 3) is more or less MEDIUM, then y(t) 
is MEDIUM SMALL. 

3) If y(t - 1) is not MEDIUM BIG but more or less 
MEDIUM, u(t - 4) is not MEDIUM SMALL but more 
or less MEDIUM, and u(t-3) is more or less MEDIUM, 
then y(t) is MEDIUM SMALL and MEDIUM. 

4) If y(t - 1) is not MEDIUM SMALL but more or less 
MEDIUM, u(t - 4) is MEDIUM SMALL or more or 
less MEDIUM, and u(t - 3 )  is not small but less than 
MEDIUM BIG, then y( t )  is MEDIUM or MEDIUM 
BIG. 
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TABLE VI11 
COMPARISON OF FUZZY MODEL WITH OTHER MODELS 

(Candidates 
of input variables ) 

Model Name Inputs Number Model 
of Error 

Rules 
Tong’s model 

[51 
19 0.469 

Y ( t  - 1 ). 81 0.320 Pedryc’s 
model [6] tr(t - 4 )  

Xu’s model 
~ 7 1  

25 0.328 

- 0.193 

r/(t - 11, 
Y ( t  - 21, 
Y ( t  - 31, 2 0.068 model [35] u( t  - l ) ,  
n(t  - 2 ) ,  
l / ( t  - 3 )  

Takagi Sugeno 

Position- Y ( t  - 

model t t ( t  - 3 )  
gradient u ( t  - 4), 6 0.190 

5) If y(t - 1) is not BIG but more or less MEDIUM BIG, 
U (  t - 4) is MEDIUM SMALL or MEDIUM, and U (  t - 3 )  
is not SMALL but more or less MEDIUM SMALL, then 
y ( t )  is MEDIUM BIG and sort of BIG. 

6) If y(t-1) is MEDIUM BIG or more or less BIG, u(t-4) 
is more or less MEDIUM SMALL or MEDIUM, and 
u(t - 3 )  is less than MEDIUM, then y(t) is very BIG. 

As is well known, we can make a linear model of this 
process. The performance index of the identified linear model 
is P I  = 0.193. The P170.190, of our fuzzy model is almost 
the same as that of the linear model. We should remark that 
we do not aim at a good numerical model by fuzzy modeling 
in this study. If we want to do it by fuzzy modeling, we 
can use Takagi-Sugeno’s fuzzy model and we can improve 
the performance quite a bit more such that P I  = 0.068 
Wl. 

We will show this fuzzy model as well as a linear model 
in Appendix 11. 

D. Human Operation ut a Chemical Plant ( U ,  c, d, e )  

We deal with a model of an operator’s control of a chemical 
plant. The plant is for producing a polymer by the polymer- 
ization of some monomers. Since the start-up of the plant is 
very complicated, a man has to make the manual operation 
at the plant. 

The structure of the human operation is shown in Fig. 26. 
There are five input candidates which a human operator might 
refer to for his control, and one output, i.e., his control. These 
are the following: 

( output ) 

Monomer 
concentration 

Change of monomer 
concentration 

Set point for 
monomer flow rate 

Monomer flow 
rate 

( 6  rules) I 
U Temperature 2 

8, : Selected input variables 

Fig. 26. Structure of plant operation 

t 

-50 K 
-62.52 I 

-70 I Y C  
3 I 4 b b 7  I 

2 

Fig. 27. Behavior of S ( c )  in plant operation model. 

c t l :  monomer concentration, 
t t 2 :  change of monomer concentration, 
113: monomer flow rate, 
114. tt.5: local temperatures inside the plant, 

Y: set point for monomer flow rate. 

where an operator determines the set point for the monomer 
flow rate and the actual value of the monomer flow rate to 
be put into the plant is controlled by a PID controller. We 
obtain 70 data points of the above six variables from the actual 
plant operation as shown in Appendix 111. First we find six 
clusters by fuzzy clustering; we obtain six rules in this case. 
Fig. 27 shows the change of S ( c )  in the process of IIa. The 
identification process of type Ib is as shown in Table IX. As 
a result, we conclude that the operator must refer to the three 
informations u l  (monomer concentration), u2 (change of u l )  
and 213 (monomer flow rate) to decide his control action. 

We show the obtained fuzzy model in Fig. 28. Fig. 29 shows 
the excellent performance of the fuzzy model. 

Authorized licensed use limited to: Universidad de chile. Downloaded on August 14, 2009 at 13:29 from IEEE Xplore.  Restrictions apply. 



24 

~ 

R“ 

R6 

TABLE 1X 
STRUCTURE IDENTIFICATION Ib OF CHEMICAL PLANT OPERATION 

1 5 7 ; 9 2  
5.03 6.37 4.38 0.M 769 5224 

4.97 5.21 4.01 0.10 2072 3730 aurn 3.74 6.09 4.30 0.15 16m 5977 

d!lntn 4.16 6.57 4.33 0.15 1398 6636 

F- ,42h 
4.47 K E D  726 4.30 0.20 2358 7032 

5.25 6.14 4.19 0.15 4261 4924 

4.47 6.66 4.44 0.61 2703 €011 
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RC Input 
Variables 

U 1  6027 15 
U2 6077539 

U 3  

U 4  6663660 
U 5 5570 199 

lGOTjGI 0 
Step I 

Step 2 

U3 - U 1  46178 

U 3  - U 2  00 
U3 - U4 64124 X 

U3 - U 5  60277 

U 3  - U 2  - U 1  138950 I 000 Step 3 
U 3  - U 2  - U 5  41846 X 

I U1 U 2  U3 =) y a y b u l  yaU2 aylau3 

R’ 
4.71 9.32 4.28 0.22 -721 6047 

765 -1604 67 0.98 

1629 -1558 2594 0.99 

2545 -989 1166 0.99 

3917 -1535 63 0.99 

5599 -1410 2858 0.84 

6806 -1440 373 0.86 

Fig. 28. Fuzzy model of plant operation (position-gradient type). 

From the fuzzy model, we can derive the following qual- 

1) If ul is more or less BIG, and u2 is not INCREASED, 
and u3 is SMALL, then y is SMALL or MEDIUM 
SMALL. 

2 )  If u1 is more or less MEDIUM, and u2 is DECREASED, 
and u3 is SMALL or MEDIUM SMALL, then y is 
MEDIUM SMALL. 

3 )  If ul is MEDIUM, and u2 shows NO CHANGE, and u3 
is MEDIUM SMALL or MEDIUM, then y is MEDIUM. 

4) If u1 is more or less MEDIUM, and u2 is ANY VALUE, 
and u3 is MEDIUM, then y is MEDIUM or MEDIUM 
BIG. 

itative model. 

I I I I I 
0 20 40 60 

TIRE 
- OPERATOR MODEL 

Ouput of plant operation model. Fig. 29. 

5 )  If ul is more or less SMALL, and u2 is very IN- 
CREASED, and u3 is MEDIUM BIG, then y is BIG. 

6) If ul is more or less SMALL, and u2 is sort of 
INCREASED, and u3 is BIG, then y is very BIG. 

We have shown this qualitative model to some operators and 
obtained their agreements with the model. It is worth noticing 
that we can make a fuzzy controller using the obtained fuzzy 
model to automate the operator’s control. 

In general it is difficult to evaluate this sort of a qualitative 
model since a model error in an ordinary sense is not available. 
One method is taken here is to ask an expert about the 
performance of a model. Also in such a case as subsection 
IV-A, we can qualitatively evaluate a model by comparing a 
model with the original shape in Fig. 5. 

If we are asked to explain the operator’s action in a simple 
form, we can present a qualitative model, for instance, with 
three linguistic rules by adjusting the number of clusters. Those 
are the following. 

M I )  If u l  is MEDIUM SMALL, and rr2 is less than NO 
CHANGE, and (13 is sort of SMALL, then y is sort 
of SMALL or more or less MEDIUM SMALL. 
If ul is more or less MEDIUM, and u2 is ANY, 
and i t3  is more or less MEDIUM, then y is more or 
less MEDIUM. 
If u l  is sort of SMALL or more or less MEDIUM 
SMALL, and tr2 is more or less NO CHANGE, and 
I13 is more than MEDIUM BIG, then y is more 
then MEDIUM BIG. 

M2) 

M3) 

By comparing those MlLM3 with the above 1-6, we can 
find that M 1 is a summary of 1, 2, and 3, M2 is that of 3 and 
4, and M3 is that of 4, 5, and 6. That is, the original six rules 
are fuzzily summarized in three rough rules. 

E. Human Operation ut Water Purification Process (a, e, d )  

A water purification process is a process to produce clean 
water for civil use. Turbid water, called raw water, flows into 
the process from rivers or lakes and then a chemical product, 
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R' 

2 
R 

R3 

Ft 

Fl 

6 
R 

7 
R 

X I  x2 x3 x4 x5 Y 

0.W 30.14 

7 .11  7 .21  28.99 14.76 15.91 171.68 256.11 

Fig. 30. Fuzzy model of water purification process operation. 

called a floccul ting agent, is put into the process so that the 
turbid part of the water form flocks by cohesion which settle 
out in the settling basin. After sterilization by chlorine, we get 
clean water. 

The chemical reactions in this process are very complicated 
and so a human operator has to decide the amount of the 
flocculating agent by referring to some state variables. In 
principle, his control is of a feedforward type; it is generally 
difficult to automate such a human operator behavior. The 
referred variables are: 

X I  : 

~ 2 :  turbidity of raw water, 
. I , : $ :  

. r . ~ :  alkalinity, 

.r:: PH, 

change of turbidity of raw water, 

turbidity of water in the settling basin, 

CJ: amount of flocculating agent. 

We use 624 data points. Making the identification of the 
operator's control action, we obtain a fuzzy model with seven 
rules as is shown in Fig. 30. Fig. 31 shows the performance 
of the model. From this fuzzy model, we derive a qualitative 
model as is shown in Table X. 

TIRE 
- OPERATOR MODEL 

Fig. 3 1. Output of operation model at water purification process. 

F. Trend of Stock Prices ( U ,  c) 

Finally we deal with the trend data of stock prices. We 
use the daily data of two different stocks: 100 data points 
of the first stock, A, and 150 data points of the second 
stock, B. The data of stock A are shown in Appendix 
IV. Both data consists of ten inputs and one output. These 
are 
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TABLE X 
QUALITATIVE MODEL OF WATER PURIFICATION PRWESS OPERATION 

Rule Change of Turbidity of Turbidity of Water Alkalinity P” Amount of 
Turbidity Raw Water in the Settling Flocculating 

of Raw Water Basin Agent 
1 very small slightly small more than medium more than medium small 
2 slightly small slightly small less than medium sort of small medium-small 

s I i g h t I y 
medium-small 3 slightly small slightly big sort of small 

4 medium medium sort of small medium medium 
slightly 

medium-big 5 medium medium less than medium more or less small more or less big 

6 more or less big sort of small slightly small small medium medium-big 
7 medium slightly small more than medium slightly small slightly big big 

-30 , I I 

0 
I I  I l l  

20 40 60 80 1EZl 

TIME 
- STDCK PRICE ..... EODEL 

Fig. 32. Output of stock price model A. 

past change of moving average ( I )  over a 
middle period; 
present change of moving average ( I )  over a 
middle period; 
past separation ratio ( I )  with respect to 
moving average over a middle period; 
present separation ratio ( I )  with respect to 
moving average over a middle period; 
present change of moving average (2) over a 
short period; 
past change of price ( I ) ,  for instance, change 
on one day before; 
present change of price ( I ) :  
past separation ratio (2) with respect to 
moving average over a short period; 
present change of moving average (3) over a 
long period; 
present separation ratio (3) with respect to 
moving average over a short period; 
prediction of stock price. 

Here the separation ratio is a value concerning the dif- 
ference between a moving average of a stock price and 
price of a stock. Making fuzzy clustering, we obtain five 
rules in both cases. Here we omit fuzzy models. Figs. 32 
and 33 show a comparison of the price with the actual 
price; we can see the good performance of the models. 

-20 1 I I I I 

0 40 80 120 160 

TIUE 
- STOCK PRICE ..... MODEL 

Output of stock price model B. Fig. 33. 

The qualitative models of the trend data of the two stock 
prices are shown in Tables XI and XII. This sort of study 
is quite interesting. It implies that we induce “qualitative 
laws,” by observing data, to which economic phenomena are 
subject. 

V. CONCLUSIONS 
We have discussed an approach to qualitative modeling 

based on fuzzy logic. A qualitative model is derived from 
a fuzzy model using the linguistic approximation method. We 
have proposed the use of a fuzzy clustering method for the 
structure identification of a fuzzy model. The proposed method 
has been examined in several case studies. What we have to 
do further in qualitative modeling is to improve the linguistic 
approximation method. 

APPENDIX I 
ALGORITHM OF FUZZY C-MEANS METHODS [30] 

Given a set of vector data Z k ,  1 5 k 5 ri, we classify those 
into a certain number of fuzzy clusters. A fuzzy cluster is 
characterized by p,k. which shows the grade of membership 
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TABLE XI 
QUALITATIVE MODEL OF TREND OF STOCK PRICE A 

Change of Moving Separation Ratio I Change Change of Price 1 Separation Change Separation 
Average 1 of Ratio 2 of Ratio 3 

Rule 
Moving 
Average 

Moving 
Average Prediction 

7 

Past Now Past Now Now Past Now 
level 

level 

more or 
less level 

more or 
less level 

level or 
rise 

Now 
more less rise 

more or sort of 
less zero rise 

more or level 
less zero 

more or sort of 
less zero decline 

more than decline 

zero 

zero 

Now Past 

1 more or 
less rise 

2 

3 

level or 
rise 

level or 
decline 

level or 
decline 

level 

rise 

sort of 
plus 

more or 
less zero 

plus 

more 
than zero 

less than 
zero 

minus 

sort of 
minus 

more or 
less zero 

plus 

level 

more or 
less level 

more or 
less level 

more or 
less level 

sort of 
rise 

level 

level or 
rise 

sort of 
rise 

sort of 
rise 

rise more or 
less zero 

more or 
level less zero 

sort of more or 
decline less zero 

Er::: 
5 level or 

rise 

more or 
level less zero 

level sort of 
plus 

TABLE XI1 
QUALITATIVE MODEL OF TREND OF STOCK PRICE B 

Change of Moving Separation Ratio 1 Change Change of Price 1 Separation Change Separation 
Average 1 of Ratio 2 of Ratio 3 

Moving Moving Prediction 
Rule Average Average 

2 3 
Past Now Past Now Now Past Now Past Now Now 

1 sort of level or less than sort of level sort of more or sort of sort of more or rise 
rise decline zero minus decline less level minus decline less zero 

level or level or less than more or level or sort of sort of more than sort of 
rise decline zero less zero rise decline rise zero rise 

3 level or level more or more or sort of level or sort of level 
rise less zero less zero rise rise rise 

more or more or slightly more or level or more or level or less than sort of 
less rise less zero plus less level rise less zero decline zero decline 4 

5 more or more or plus more level sort of level sort of more or decline 
less rise less rise than zero decline minus less zero 

3) Calculate the element of a new U( ' )  as follows for of the kth data, xk, belonging to the ith cluster. We assume that 
1 = 1 + 1 :  

where c is the number of clusters, and we define a matrix U 
consisting of pik .  

Our problem now is to find c and to determine U .  The 
algorithm is as follows 

1) Set c = 2, an initial value U(1) of U and 1 = 1. 
2) Calculate the center wi of the fuzzy cluster by 

n 

4) If 1 1  U(l- l )  - U ( l )  I ( <  - E ,  then stop; otherwise go to step 

In this algorithm, r n  is an adjustable parameter, which is 
2. 

set as 2 in this paper. 

We define the distance from the kth data to the center 
of the ,ith cluster by 
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APPENDIX I1 
TAKAGI-SUGENO’S FUZZY MODEL AND 

A LINEAR MODEL OF GAS FURNACE 

Takagi-Sugeno’s fuzzy model is of the following form; 

Ri : if x1 is Ai and . . . and x, is AA then 

yi = c6 + c;x1 + . . . + cix,, (31) 

where yz is the outut from the ith rule, A; is a fuzzy set, and 
c; is a consequent parameter. 

Given an input (xy , x:, . . . , x:), the final output of this 
model is inferred by taking the weighted average of the yz’s: 

n n 

where yio is calculated for the input by the consequent 
equation of the ith implication and the weight w2 implies the 
degree of match in the premise as of the ith rule calculated 
as in (10). 

This fuzzy model can express a highly nonlinear functional 
relation in spite of small number of rules. The simple algorithm 
of the identification of this model is: 

1 )  Choose the premise structure and the consequent struc- 

2) Estimate the parameters of the structure determined in 

3) Evaluate the model. 
4) Repeat 1 )  until we are satisfied with the result. 
For further details of the identification of Takagi-Sugeno’s 

model, the reader is referred to [12]. 
Using the above type of modeling method, we obtain a fuzzy 

model of Box and Jenkins’s gas furnace with two rules as 
follows [37]: 

ture. 

1). 

then y(t) = 1.45y(t - 1) - 0.87y(t - 2) + 0.23y(t - 3) 

+0.19~(t  - 1) - 0.214t - 2) + 10.3 

48.8 59.0 
Rz : i f  ~ ( t  - 1) is 

then y(t) = 1.44y(t - 1) - 0.70y(t - 2) + O.lOy(t - 3) 

+O.lOu(t - 1) - 0 . 2 6 ~ ( t  - 2) - 0.27u(t - 3) + S.32 

On the other hand, we can also obtain a linear model of 
this system using the conventional system modeling method. 
The linear model is: 

y(t) = 0.57y(t - 1) + 0.02y(t - 2) - 0.53,/L(t - 3 )  

- 0 . 3 3 * ~ ( t  - 4)  - 0 . 5 1 ~ ( t  - 5) + 21.87. 

APPENDIX I11 
DATA OF HUMAN OPERATION AT A CHEMICAL PLANT 

U1 U2 
6.80 -0.05 
6.59 -0.21 
6.59 0.00 
6.50 -0.09 
6.48 -0.02 
6.54 0.06 
6.45 -0.09 
6.45 0.00 
6.20 -0.25 
6.02 -0.18 
5.80 -0.22 
5.51 -0.29 
5.43 -0.08 
5.44 0.01 
5.51 0.07 
5.62 0.11 
5.77 0.15 
5.94 0.17 
5.97 0.03 
6.02 0.05 
5.99 -0.03 
5.82 -0.17 
5.79 -0.03 
5.65 -0.14 
5.48 -0.17 
5.24 -0.24 
5.04 -0.20 
4.81 -0.23 
4.62 -0.19 
4.61 -0.01 
4.54 -0.07 
4.71 0.17 
4.72 0.01 
4.58 -0.14 

U1 U2 
4.55 -0.03 
4.59 0.04 
4.65 0.06 
4.70 0.05 
4.81 0.11 
4.84 0.03 
4.83 -0.01 
4.76 -0.07 
4.77 0.01 
4.77 0.00 
4.77 0.00 
4.73 -0.04 
4.73 0.00 
4.74 0.01 
4.77 0.03 
4.71 -0.06 
4.66 -0.05 
4.70 0.04 
4.63 -0.07 
4.61 -0.02 
4.57 -0.04 
4.56 -0.01 
4.54 -0.02 
4.51 -0.03 
4.47 -0.04 
4.47 0.00 
4.48 0.01 
4.48 0.00 
4.50 0.02 
4.50 0.00 
4.48 -0.02 
4.54 0.06 
4.57 0.03 
4.56 -0.01 
4.56 0.00 
4.57 0.01 

U3 U4 U5 
401.00 -0.20 -0.10 
464.00 -0.10 0.10 
703.00 -0.10 0.10 
797.00 0.10 0.10 
717.00 -0.10 0.10 
706.00 -0.20 0.10 
784.00 0.00 0.10 
794.00 -0.20 0.10 
792.00 0.00 0.00 
1211.00 0.00 0.10 
1557.00 -0.20 0.00 
1782.00 -0.10 0.00 
2206.00 -0.10 0.10 
2404.00 -0.10 -0.10 
2685.00 0.10 0.00 
3562.00 -0.40 0.10 
3629.00 -0.10 0.00 
3701.00 -0.20 0.10 
3775.00 -0.10 0.00 
3829.00 -0.10 -0.10 
3896.00 0.20 -0.10 
3920.00 0.20 -0.10 
3895.00 0.20 -0.10 
3887.00 -0.10 0.00 
3930.00 0.20 0.00 
4048.00 0.10 0.00 
4448.00 0.00 0.00 
4462.00 0.00 0.10 
5078.00 -0.30 0.30 
5284.00 -0.10 0.20 
5225.00 -0.30 0.10 
5391.00 -0.10 0.00 
5668.00 0.00 -0.10 
5844.00 -0.20 0.10 

U3 
6068.00 
6250.00 
6358.00 
6368.00 
6379.00 
6412.00 
6416.00 
6514.00 
6587.00 
6569.00 
6559.00 
6672.00 
6844.00 
6775.00 
6779.00 
6783.00 
6816.00 
6812.00 
6849.00 
6803.00 
6832.00 
6832.00 
6862.00 
6958.00 
6998.00 
6986.00 
6975.00 
6973.00 
7006.00 
7027.00 
7032.00 
6995.00 
6986.00 
7009.00 
7022.00 
6998.00 

U4 
-0.20 
-0.20 
-0.10 
-0.10 
-0.30 
-0.10 
0.10 
0.00 
-0.10 
0.00 
0.00 
0.00 
-0.10 
-0.20 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
-0.10 
-0.10 
0.10 
0.00 
-0.10 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 
-0.10 
0.00 
-0.10 

- 

- 

U5 
0.00 
-0.10 
-0.10 
0.00 
0.00 
-0.10 
-0.10 
0.00 
0.10 
-0.10 
0.00 
0.00 
0.00 
0.00 
-0.10 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 
0.10 
-0.10 
-0.10 
0.10 
0.10 
0.00 
0.00 
0.10 
0.00 
0.00 
0.00 

-0.10 
0.10 
0.00 
0.00 

- 

Y 
500.00 
700.00 
900.00 
700.00 
700.00 
800.00 
800.00 
800.00 
1000.00 
1400.00 
1600.00 
1900.00 
2300.00 
2500.00 
2800.00 
3700.00 
3800.00 
3800.00 
3800.00 
3900.00 
3900.00 
3900.00 
3900.00 
3900.00 
4000.00 
4400.00 
4700.00 
4900.00 
5200.00 
5400.00 
5600.00 
6000.00 
6000.00 
6100.00 

Y 
6400.00 
6400.00 
6400.00 
6400.00 
6400.00 
6400.00 
6500.00 
6600.00 
6600.00 
6600.00 
6700.00 
6700.00 
6800.00 
6800.00 
6800.00 
6800.00 
6800.00 
6800.00 
6800.00 
6800.00 
6800.00 
6900.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
7000.00 
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APPENDIX IV 
DAILY DATA OF STOCK A 

x l  x2 x3 x4 x5 x6 x7 x8 x9 x10 Y 
0.239 0.237 8.307 2.820 -0.498 0.8’10 -3.281 -2.569 -2.523 -3.355 34.612 
0.279 
0.319 
0.346 
0.351 
0.269 
0.250 
0.256 
0.296 
0.326 
0.354 
0.395 
0.388 
0.433 
0.466 
0.466 
0.391 
0.346 
0.348 
0.357 
0.357 
0.314 
0.292 
0.297 
0.266 
0.255 
0.264 
0.249 
0.243 
0.223 
0.227 
0.246 
0.272 
0.270 
0.303 
0.268 
0.267 
0.336 
0.379 
0.400 
0.350 
0.315 
0.295 
0.294 
0.350 
0.340 
0.404 
0.478 
0.401 

0.246 
0.272 
0.270 
0.303 
0.268 
0.267 
0.336 
0.379 
0.400 
0.350 
0.315 
0.295 
0.294 
0.350 
0.340 
0.404 
0.478 
0.401 
0.427 
0.361 
0.378 
0.413 
0.457 
0.455 
0.408 
0.415 
0.404 
0.394 
0.410 
0.364 
0.318 
0.238 
0.176 

-0.026 
0.070 
0.053 

-0.035 
-0.044 
-0.097 

0.0 
-0.070 
-0.114 
-0.026 
0.026 
0.053 
0.035 
0.018 
0.105 

(Table continues on next p a g e )  

16.771 
21.253 
19.867 
19.447 
14.320 
11.157 
12.787 
12.453 
12.088 
13.587 
15.971 
19.283 
22.512 
28.465 
26.016 
19.058 
13.125 
11.815 
10.504 
11.021 
10.674 
13.067 
11.830 
9.733 
5.862 
7.374 
6.214 
5.066 
2.165 
2.820 
5.222 
5.819 
4.654 
7.848 
5.809 
5.527 

11.263 
14.309 
16.444 
14.317 
14.815 
12.767 
16.698 
19.689 
21.823 
26.391 
30.825 
29.467 

6.222 
6.819 
4.654 
7.848 
6.809 
5.527 

11.263 
14.309 
16.444 
14.317 
14.815 
12.767 
16.698 
19.689 

26.391 
30.825 
29.467 
28.084 
20.990 
22.186 
25.798 
26.044 
28.734 
25.776 
28.491 
25.557 
24.262 
24.554 
24.102 
17.360 
17.873 
10.554 

2.607 

21 .sa3 

-5.226 

-2.184 
-10.837 
-9.218 

-14.666 
-5.967 

-13.023 
-16.885 
-9.731 
-6.585 
-9,802 

-12.209 
-10.641 
-5.201 

-0.250 
-0.418 

0.084 
0.253 
0.084 
0.756 
1.168 
1.649 
1.379 
1.200 
0.949 
1.410 
1.390 
1.752 
2.171 
2.051 
1.651 
1.342 
0.906 
0.967 
1.436 
1.146 
1.133 
0.725 
0.589 

0.0 
0.0 

0.130 
0.650 

0.0 
-0.258 
-0.906 
-2.482 
-1.674 
-2.384 
-3.001 
-2.878 
-3.556 
-2.842 
-3.004 
-3.586 
-2.198 
-0.173 
-1 385 
-1.141 

0.0 
0.444 

-0.420 

2.588 
0.841 
-0.834 
3.364 

0.0 
5.790 
3.127 

-1.627 

2.274 
-1.483 
0.752 

3.791 
-1.494 

2.922 
2.ia9 
4.170 
4.003 

-0.641 
-0.646 
-5.198 
1.371 
3.381 
0.654 
2.599 

-1.900 
2.582 

-1.888 
-0.641 
0.646 

0.0 
-5.131 
0.676 

-6.044 
-14.296 

8.340 
-4.619 
-8.878 
1.771 

10.195 
-6.092 

-7.569 
-4.550 
8.580 
3.512 

-3.393 
-2.634 
1.803 
6.200 

1.696 
-0.834 
-0.841 
-2.545 
0.870 
2.588 
0.841 

3.364 
-1.627 

0.0 
5.790 
3.127 

-0.834 

2.974 
-1.483 
0.752 

3.791 
2.922 
2.129 
4.170 
4.003 

-1.494 

-0.641 
-0.646 
-5.198 
1.371 
3.381 

’ 0.654 
2.599 

-1.900 
2.582 

-1.888 
-0.641 
0.646 

0.0 
-5.131 
0.676 

-6.044 
-14.296 

8.340 
-4.619 
-8.878 
1.771 

-6.092 
10.195 
-7.569 
-4.550 
8.580 

-4.568 
-3.255 
-0.502 
0.756 
0.338 
3.626 
1.682 
1.597 
6.672 
8.739 
9.408 
6.320 
5.850 

5.714 
7.311 
7.710 
9.817 

11.917 
9.393 
7.247 
0.760 
1.163 
3.102 
2.600 
4.087 
1.374 
3.383 
1.431 
0.781 
1.299 
0.646 

3.289 

-4.519 
-3.625 
-8.622 

-19.692 
-11.512 
-13.538 
-18.777 
-14.889 
-17.127 
-6.008 

-10.432 
-11.327 
-1.556 
2.078 

0.0 
-1.510 

0.848 
4.352 
2.688 
3.364 
0.834 
1.682 
4.068 
9.098 

11.580 
3.909 
1.516 

3.010 
5.228 
9.098 
9.496 

10.646 
7.644 
2.668 

-2.224 

-6.414 
-4.519 
-0.650 
5.483 
6.761 
1.308 
3.249 

-1.267 
0.0 

-1.888 
0.0 

-4.519 
-4.490 

-10.263 
-18.932 
-12.760 
-11.437 
-5.838 

-1 1.547 
-12.914 

5.314 
-4.352 
-2.780 
-4.205 
7.279 
8.580 

-2.634 
-4.241 
5.268 

-0.502 
0.756 
0.338 
3.626 
1.682 
1.597 
6.672 
8.739 
9.408 
6.320 
5.850 
3.289 
5.714 
7.31 1 
7.710 
9.817 

11.917 
9.393 
7.247 
0.760 
1.163 
3.102 
2.600 
4.087 
1.374 
3.383 
1.431 
0.781 
1.299 
0.646 

-4.519 
-3.625 
-8.622 

-19,692 
-11.512 
-13.538 
-18.777 
-14.889 
-17.127 
-6.008 

-10.432 
-11.327 
-1.556 
2.078 

0.0 
-1.510 
0.266 
6.012 

24.390 
24.187 
17.662 
-2.441 
7.444 
2.481 

-11.728 
-12.889 
-20.015 
-10.534 
-17.924 
-20.470 
-16.801 
-16.324 
-20.848 
-26.017 
-27.582 
-22.595 
-23.392 
-19.191 
-24.341 
-26.161 
-22.092 
-21.533 
-20.013 
-23.914 

-20.658 
-18.602 

-19.243 
-19.243 
-14.875 
-16.790 
-13.581 

0.0 
-10.778 
-4.036 
3.543 

0.0 
5.561 

-3.364 
5.459 

16.206 
5.268 
2.544 
0.878 
2.705 
4.429 

-3.336 
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x l  
0.427 
0.361 
0.378 
0.413 
0.457 
0.455 
0.408 
0.415 
0.404 
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