

LTE DRIVERS & TRENDS

Terminal, network and application development drive traffic growth

Advanced terminals

HSPA radio networks

Internet applications

Traffic increase requires low cost/bit technologies

Price per MByte has to be reduced to remain profitable

Company Confidential

4 © Nokia Siemens Networks

Presentation / Author / Date

Source: Light Reading (adapted)

INTRODUCTION TO LTE/SAE

Key Architectural Concept Flat and Cost effective Mobile Network

• From CS to PS domain (VoIP), split of functions between eNodeB & aGW

• Interworking, smooth migration, service continuity and investment protection

GSM/GPRS/EDGE, WCDMA/HSPA and LTE architectures

Evolution Path towards LTE-architecture

3GPP - Architecture Evolution towards a flat architecture

HSPA terminals

Cdma2000-1xRTT, EV-DO and LTE architectures

Packet Core Evolution Path for CDMA Networks 3GPP2 - Architecture Evolution towards a flat architecture

•••• = control plane = user plane

Evolution Paths towards LTE-architecture

LTE provides diverse evolution paths towards a flat architecture

LTE/SAE UPGRADE SOLUTION OVERVIEW

LTE introduction – via SW upgrade Investment protection built-in

Simple LTE Upgrade with Nokia Siemens Networks

End to end LTE/SAE solution : Flexi Multimode BTS, MME, SAE-GW

LTE deployment on commercial hardware

3x60 W Flexi Multimode RF Module and System Module: HSPA now LTE with software upload

LTE SITE SOLUTION

Flexi Multimode BTS Site

Complete three sector site solution

- System Module
- 3-sector RF Module 3 x 60 W
- WCDMA / LTE operation

The most cost and size optimized 3-sector site

Complete BTS (DC powered): • 50 liters • 50 kg

System Module 3-sector RF Module

Complete 3-sector Outdoor site with Flexi BTS

Flexi Multimode System Module 3x 60 W RF Module

Flexi Base Station fits any location

Wall installation

Pole installation

Floor installation

Inside constructions

19" cabinet installation

Flexi Base Station fits any location

All-Purpose Flexi BTS Reduces Complexity

Flexi Multimode BTS deployment in existing sites

LTE 2600 can be deployed on UMTS 2100MHz grid (figures applicable to Urban Deployment)

- \rightarrow 2.1 dB in downlink benefit of LTE
- \rightarrow 2.6 dB in uplink benefit of LTE

- \rightarrow LTE cell range nearly identical to UMTS
 - → LTE cell range nearly identical to UMTS

LTE DEPLOYMENT IN EXISTING OR NEW SPECTRUM

LTE Bandwidth Scalability

- LTE provides scalable bandwidth 1.4 20 MHz using different number of subcarriers and different FFT size
- Large bandwidth provides high data rates
- Small bandwidth allows simpler spectrum refarming,

24

LTE Downlink and Uplink Peak Bit Rates

• DL: 2x2 - MIMO: 64QAM => 172 Mbps in 20 MHz and 86 Mbps in 10 MHz

• UL: Single stream Tx:16QAM => 57 Mbps in 20 MHz and 28 Mbps in 10 MHz

	Resource bloc	6	15	25	50	100
	Subcarriers	72	180	300	600	1200
Modulation coding		1.4 MHz	3.0 MHz	5.0 MHz	10 MHz	20 MHz
QPSK 1/2	Single stream	0.8	2.1	3.6	7.2	14.3
16QAM 1/2	Single stream	1.7	4.3	7.2	14.3	28.7
16QAM 3/4	Single stream	2.6	6.4	10.7	21.5	43.0
64QAM 3/4	Single stream	3.9	9.7	16.1	32.2	64.5
64QAM 4/4	Single stream	5.1	12.9	21.5	43.0	86.0
64QAM 3/4	2x2 MIMO	7.7	19.3	32.2	64.5	129.0
64QAM 4/4	2x2 MIMO	10.3	25.8	43.0	86.0	172.0
64QAM 4/4	4x4 MIMO	20.6	51.6	86.0	172.0	343.9
	Resource bloc	6	15	25	50	100
	Subcarriers	72	180	300	600	1200
Modulation coding		1.4 MHz	3.0 MHz	5.0 MHz	10 MHz	20 MHz
QPSK 1/2	Single stream	0.8	2.1	3.6	7.2	14.3
16QAM 1/2	Single stream	1.7	4.3	7.2	14.3	28.7
16QAM 3/4	Single stream	2.6	6.4	10.7	21.5	43.0
16QAM 4/4	Single stream	3.4	8.6	14.3	28.7	57.3
64QAM 3/4	Single stream	3.9	9.7	16.1	32.2	64.5
64QAM 4/4	Single stream	5.1	12.9	21.5	43.0	86.0
64QAM 4/4	V-MIMO (cell)	10.3	25.8	43.0	86.0	172.0

Company Confidential

Mobile-Broadband Upgrade Example HSPA 900 MHz, LTE 2600&1800 MHz

Flexi BTS allows for maximum flexibility in broadband upgrade path since choice of WCDMA/I-HSPA/LTE is defined by software download

Company Confidential

LTE co-existence with GSM/GPRS/EDGE networks

- Closest frequencies at both sides of the LTE carrier can be optimally utilized for GSM frequencies
 - Guard bands can be minimized with optimal Flexi BTS filtering and coordinated network deployment

Scalable bandwidth of LTE system design allows to support spectrum migration in-line with network operator capacity requirements

LTE refarming to 900/1800 MHz frequency bands

LTE Frequency Refarming deployment phases

Nokia Siemens Networks provides full set of equipment, functionalities, tools and services for the LTE Frequency Refarming process

LTE Frequency Refarming on 900/1800 MHz (5 MHz Illustration example)

GSM only operation in 5 MHz

LTE 5 MHz in uncoordinated case¹ (different sites than GSM)

LTE 5 MHz in coordinated case (same sites than GSM = same operator)

¹Uncoordinated case based on 36.101 narrowband blocking requirements

- = GSM carrier by the same operator
- = GSM carrier by a different operator
- = guard carrier
- = LTE carrier

Antenna System Options for LTE refarming

Company Confidential

Antenna System sharing for LTE refarming

32 © Nokia Siemens Networks

Presentation / Author / Date

High Performance Co-Location for GSM900/1800 co-siting with LTE

GSM typically requires 2 TX antennas for on-air combining purposes

LTE typically requires 2 TX antennas for MIMO

In re-farming case both system suffer from 3.5 dB hybrid combining loss when sharing TX antennas resp. only 1 feeder per system in DL direction (= no MIMO).

For high-performance sectors, 4 antennas can be used:

- 2 TX chains per Radio Technology
- 2 RX paths for GSM (conventional)
- 4 RX paths for LTE for improved UL sensitivity and capacity. UL gain is ~3..4db over 2 RX diversity and allows for multi user UL MIMO gain.

Radio Resource Management for efficient LTE Deployment and Frequency Refarming

Inter-operability capability

- Inter-system traffic management between GSM/WCDMA and LTE network layers
- Inter-frequency traffic management between different frequency layers
 Handover combinations supported in commercial phase releases
- Coverage based handovers for continuous service provisioning
- Load and service based handovers for traffic balancing and end-user service performance optimization

Evolution to LTE in same band via software

LTE SERVICE STRATEGIES

Peak data rates will continue to grow...

- HSPA downlink data rate increases with 2x2 MIMO and 64QAM up to 42 Mbps and uplink data rate with 16QAM up to 11 Mbps
- LTE supports data rates of 173 Mbps and 58 Mbps respectively

LTE - Network Evolution with highest performance

16

14

12

10

8

6

Δ

Mbps/cell (5MHz cell)

LTE UE support Peak data rates above 100 Mbps

- All categories support 20 MHz
- 64QAM mandatory in downlink, but not in uplink (except Class 5)
- 2x2 MIMO in other classes except Class 1

	Class 1	Class 2	Class 3	Class 4	Class 5
Peak rate DL/UL	10/5 Mbps	50/25 Mbps	100/50 Mbps	150/50 Mbps	300/75 Mbps
RF bandwidth	20 MHz	20 MHz	20 MHz	20 MHz	20 MHz
Modulation DL	64QAM	64QAM	64QAM	64QAM	64QAM
Modulation UL	16QAM ²	16QAM ²	16QAM ²	16QAM ²	64QAM
Rx diversity	Yes ¹	Yes	Yes	Yes	Yes
BTS tx diversity	1-4 tx	1-4 tx	1-4 tx	1-4 tx	1-4 tx
MIMO DL	Optional	2x2	2x2	2x2	4x4

¹Performance requirements are based on 2-rx, but 2-rx is not mandated directly

²No 64QAM

Company Confidential

VOICE EVOLUTION STRATEGIES ON WCDMA/HSPA AND LTE NETWORKS

HSPA evolution – reducing call setup time

CS Voice over HSPA – key benefits

Voice over HSPA and LTE – key benefits

- 50-100% capacity gain over CS over WCDMA Release 99
- Talk time improves considerably

43

UE-UE call set-up time improves significantly (from today's ~3.5sec to below 1.5sec)

LTE used for high speed packet data access only Operator voice service provided over CS network

- LTE network is applied to provide high speed packet data access
- LTE network can be accessed with laptop data cards
- Operator provided voice service is implemented with 2G/3G CS network
- Subscribers may use Internet based VoIP services over LTE
 - Similar limitations as with Internet VoIP apply (limited QoS capabilities, no handover to 2G/3G)

Company Confidential

Fallback to CS voice outside of LTE coverage

MSC Server System

- Terminal is simultaneously attached to both LTE and 2G/3G CS radio networks
- Terminal automatically uses 2G/3G CS network when the user initiates a voice call via operator network
- When the user receives a voice call, the UE is moved from LTE to 2G/3G CS network before the call is set up
 - Procedure is standardized in 3GPP Rel 8

- IMS is the 3GPP standardized connectivity control machinery for voice and multimedia sessions
- MME makes a handover for PS voice session
- Interworking function is needed between MME and MSS
- Voice session is handed over to 2G/3G CS voice, procedure is standardized in 3GPP Rel-8
- Simulatenous voice and data sessions can be supported:
 - In 3G network when multi-RAB is enabled
 - In 2G network when Dual Transfer Mode is enabled

Company Confidential

All-IP network – VoIP over LTE everywhere

- All-IP network can be any 3GPP or non-3GPP access network that is able to provide support for operator VoIP
- IMS is the 3GPP standardized connectivity control machinery for voice and multimedia sessions