CHAPTER 6

- Backpropagation Neural Net

6.1 STANDARD BACKPROPAGATION

The demonstration of the limitations of single-layer neural networks was a sig-
nificant factor in the decline of interest in ncural networks in the 1970s. The
discovery (by several researchers independently) and widespread dissemination
of an effective general method of training a multilayer neural network [Rumelhart,
Hinton, & Williams, 1986a, 1986b; McClelland & Rumelhart, 1988] played a major
role in the reemergence of neural networks as a tool for solving a wide variety
of problems. In this chapter, we shall discuss this training method, known as
backpropagation (of errors) or the generalized delta rule. 1t is simply a gradient
descent method to minimize the total squarced error of the output computed by
the net. .
The very general nature of the backpropagation training method means thal
a backpropagation net (a multilayer, feedforward net trained by backpropagation)
can be used to solve problems in many areas. Several of the applications men-
tioned in Chapter 1—for example, NETtalk, which learned to read Engtish
aloud—were based on some variation of the backpropagation nets we shall de-
scribe in the sections that follow. Applications using such nets can be found in
virtually every field that uses neural nets for problems that involve mapping a
given set of inputs to a specified set of target outputs (that is, nets that use su-
pervised training). As is the case with most neural networks, the aim is to train
the net to achicve a balance between the ability to respond correctly to the input
patterns that are used for training (memorization) and the ability to give reasonable

289



290 ' Backpropagation Neural Net Chap. 6

(good) responses to input that is similar, but not identical, to that used in training
{(generalization).

The training of a network by backpropagation involves three stages: the
feedlorward of the input (raining patlern, the calculation and backpropagation of
the associated error, and the adjustment of the weights. After training, application
of the net involves only the computations of the feedforward phasc. Even if train-
ing is slow, a trained net can produce its output very rapidly. Numerous variations
ol backpropagation have been developed to improve the speed of the training
Process.

Although a singlc-layer net is severely limited in the mappings it can learn.
a multilayer net {with one or ntore hidden layers) can learn any conlinuous map-
ping to an arbitrary accuracy. More than one hidden layer may be beneficial for
some applications, but onc hidden layer is sufficient.

In Scction 6.1, we shall describe stundard backpropagation, including a few
of the choices that must be made in designing a net with this feature. In the next
section, we mention a few of thc many varialions of backpropagation that have
been developed. Finally, the mathematical derivation of the training algorithm
and a brief summary of some of the theorems dealing with the ability of multilayer
nets to approximate arbitrary (continuous) functions are given.

6.1.1 Architecture

A multilayer neural network with onc layver of hidden units {the Z units) is shown
in Figure 6.1. The output units (the ¥ units) and the hidden units also may have
biases {as shown). The bias on a typical output unit ¥, is denoted by 1y the
hias on a typical hidden unit Z; is denoted vy,. These bias terms act like weights

on connections from units whose output is always 1. (These units are shown in -

Figurc 6.1 bul are usually not displayed explicitly.) Only the direction of infor-
mation flow [or the feedforward phase of operation is shown. During the back-
propagation phase of learning, signals are sent in the reverse direction.

The algorithm in Section 6.1.2 is prescnted for one hidden laver, which is
adequate tor a large number of applications. The architecture and algorithm for
two hidden layers are given in Section 6.2.4.

6.1.2 Algorithm

As mentioned earlier, training a neiwork by backpropagation involves three
stages: the feedforward of the input training pattern, the backpropagation of the
associated error, and the adjustment of the weights.



Sec, 6.1 Standard Backpropagation . 201

Figure 6.1 Backpropagation neural network with one hidden laver.

During feedforward, each input unit (X;) receives an input signal and broad-
casts this signal to the each of the hidden units £y, . . . . Zp. Each hidden unit
then computes its activation and sends its signal (z;) to each output unit, Each
output unit { ¥;) computes its activation (vz) to form the response of the net tor
the given input patiern.

During (raining, each output unil compares its computed activation yx with
its target value ¢, to determine the associated error for that pattern with that unit.
Based on this error, the factor 84 (K = 1, ..., m) is computed. 8y is used to
distribute the error at output unit Y, back to all units in the previous layer (the
hidden units that are connected to Yi). It is als0 used (later) to update the weights
between the output and the hidden layer. In a similar manner, the factor &;
(j=1,....phis computed for each hidden unit Z;. It is not necessary 10
propagate the error back to the input layer, but &, is used to update the weights
between the hidden layer and the input jayer.

After all of the & factors have been determined, the weights for all layers
are adjusted simultaneously. The adjustment to the weight wjz {from hidden unit
7, to outpul unit ¥) is based on the factor 5, and the activation z; of the hidden
unit Z;. The adjustment to the weight v;; {(from input unit X; to hidden unit Z;} is
based on the factor §; and the activation x; of the input unit.



292

Backpropagation Neural Net Chap. 6

Nomenclature

The nomenclature we use in the training algorithm for the backpropagation net
is as follows:

B

X

voj

War

Yk

Input training vector:
X = (X5 v Xiv oo Xah

Output target vector:
t= (t],.--.fk,-..,’m}.

Portion of error correction weight adjustment for w;, that is due to an
crror at output unit ¥y also, the information about the error at unit ¥,
that is propagated back to the hidden units that feed into unit Y.
Portion of crror correction weight adjustment for w,; that is due to the
backpropagation of error information from the output layer to the hidden
unit Zj.

Learning rate.

Input unit i

For an input unit, the input signal and output signal are the same. namely.
Xi

Bias on hidden unit j.

Hidden unit §:

The net input to Z; is denoted z_in;;

. nl
;= vg; + 2, Xt
i

The output signal (activation) of Z; is denoted z;:
z; = flz—iny.
Bias on output unit £.

Output unit %:
The net input 1o ¥, is denoted y_in,:

Yoiny = Wor + D 2
i

The output signal (activation) of ¥, is denoted v,:

v = FQy_ing).

Activation function

An activation function for a backpropagation net should have several important
characteristics: 1t should be continuous, differentiable, and monetonically non-
decreasing. Furthermore, for computational efficiency. it is desirable that its de-



Sec. 6.1 Standard Backpropagation 293

rivative be easy to compute. For the most commonly used activation functions,
the value of the derivative {at a particular value of the independent variable) can
be expressed in terms of the value of the funciion (at that value of the independent
variable). Usually, the function is expected 10 saturare, i.e., approach finite max-
imum and minimum values asymptotically.

One of the most typical activation [uncrions is the binary sigmoid function,
which has range of (0, 1) and is defined as

Filx) = '

1 + exp(—x)’
with
fixy = Fiall = filxl.
- v - - . - - /f——“‘-
This function is illustrated in Figure 6.2. e

Figure 6.2 Binary sigmoid, range (0, 1).

Another common activation function is bipolar sigmoid, which has range of
{—1, 1) and is defined as

falx) =

2 I
I + exp(—x}

L)

with
£ = S+ AT - [,

This function is Hllustrated in Figure 6.3, Note that the bipolar sigmoid function
1s closely related to the function

X —X

e — e

tanh(y) = —————— .
) et emt

{See Section 1.4.3.)



2094 Backpropagation Neural Net Chap. G

Figure 6.3 Bipolar sigmoid. rarge (— 1§, 1).

Training algorithm

Either of the activation functions defined in the previous section can be used in
the standard backpropagation algorithm given here. The form of the data (espe-
cially the target values) is an important factor in choosing the appropriate function.
The relevant considerations are discussed further in the next section. Other suil-
able activation functions are considered in Section 6.2.2. Note that because of
the simple relationship between the value of the tunction and its derivative, no
additional evaluations of the exponential are required to compute the derivatives
‘necded during the backpropagation phase of the algorithm.
The algorithm is as follows: '

Step 0. Initialize weights.
(Set to small random values),
Step 1. While stopping condition 15 false, do Steps 2-9.
Step 2. For each training pair, do Steps 3-8.
Feedforward:
Step 3. Each input unit (X, i = 1, .., , n) receives

input sign:if x; and broadcasts this signal to all

units in the layer above (the hidden units).
Step 4. Each hidden unit (Z;,f = .. ... p)sumsits
weighted input signals,

n

E’_i”.,' = Uy + 2 XU

i—1

applies its activation function to compute its
output signal,

z; = Flz_in)),

and sends this signal 1o all units in the layer
above {outpul units),



Sec, 6.1 Standard Backpropagation 2095

Step 5. Each output unit (Y, & = 1, ..., m) sums
its weighted input signals,
n

yoity = war + > 20k
=1

and applics its activation function te compute
its output signal,

Yo = flying),
Buackpropagation of error:
Step 6. Eachvutput unit (¥, & = 1., . ., m)receives
A target paltern corresponding to the input
/ training pattern, computes its error informa-
l tion term,
8 = (1 — va)f T (yoing),
calculates its weight correction term (used to
update w;; later),

A Wi = C{.?)AZ’,J',

calculates its bias correction term (used to up-
date wy, later),

AH’(U\ = 0!.5;;,

and sends &, to units in the layer below.
Step 7. Each hidden unit (Z;, j = {1, .. ., p)sums ils
delta inputs (from units in the kayer ubove),

"

8_.1'”_,‘ = 2 F).r\—ll-'_ﬁ\,

k=1

multiplies by the derivative of its activation
function to calculate its ervor information.
term.,

8, = d.in; fziny),

calculates its weight correction term {uscd o
updale v, later),

Awvg; = odjx,,

and calculates its bias correction term (used
to update vy, later),

A'qu = aﬁj.



206 Backpropagation Ncural Net Chap. 6

Update weights and biases:
Step 8. Each output unit (¥, k = I, ..., m)updates
its bias and weights (j = 0, ... . pk

wa{new) = wilold) + Awye

Each hidden unit {Z;,j = 1, ..., p)updates
its bias and weights (i = 0, ..., n)

viinew) = wi{old) + Awy;

Step 9. Test stopping condition.

Note that in implementing this algorithm, separate arrays should be used for
the deltas for the output units (Step 6, ;) and the deltas for the hidden units (Step
7, 8,).

An epoch is one cycle through the entire set of training vectors. Typically,
many epochs are required for training a backpropagation neural net. The foregoing
algorithm updates the weights after each training pattern is presented. A common
variation is batch updating, in which weight updates are accumulated over an
entire epoch (or some other number of presentations of patterns) before being
applied.

Note that f'(y_ing) and f’(z_in;) can be expressed in terms of y. and z;,
respectively, using the appropriate formulas on page 293 (depending on the choice
of activation function).

The mathematical basis for the backpropagation algorithm is the optimiza-
tion technique known as gradient descent. The gradient of a function (in this case,
the function is the error and the variables are the weights of the net} gives the
direction in which Lhe function increases more rapidly; the negative of the gradient
gives the direction in which the function decreases most rapidly. A derivation of
the weight update rules is given in Section 6.3.1. The derivation clanfies the reason
why the weight updates should be done after all of the & and &, cxpressions have
been calculated, rather than during backpropagalioq.

/
ry
s

Choices ) /

L

Choice of initial weights and biases.

Random Initiatization. The choice of initial weights will influence whether
the net reaches a global (or only a local) minimum of the error and, if so, how
quickly it converges. The update of the weight between two units depends on
both the derivative of the upper unit's activation function and the activation of
the lower unit. For this reason, it is important to avoid choices of initial weights
that would make it likely that either activations or derivatives of aclivalions are
zero. The values for the initial weights must not be too large, or the initial input
signals to each hidden or output unil will be likely to fall in the region where the



