The required transfer function may be written as follows:

o(s) _ A(s) (
i 21)
7(s) c(s)
The transfer function for the feedback path is given by the following
equation:
8¢(s)
f l(
—— = =(3 + ) : (22
o(s) B )
and hence the open-loop transfer function of the system is simply
0p(s) o(s) 8s(s)
0e(s)  0g(s) 8(s)
which becomes on substitution of the results of equations (19) and (22)
Oc(s a
A0 Ae)eg | ) (23)
ee(s) b c(s)
By letting
89 A(s)
c(s) = 2 s + 2k
ol = = C(S)( W) (24)

and substituting s = jw, where j = V-1, the open-loop transfer function may
be written in a more usable form as follows:

Bf(M) = w w
0. (@) N(B,,®)G(w) (25)

Tt should be noted that G(s) represents the transfer function of the linear
elements in the open-loop system. (See fig. 3.) In a similar manner, N
represents the equivalent transfer function for all the nonlinearities in the
open loop.

Method for Determining System Stability Graphically

By using equations (19) and (25), the closed-loop transfer function
8(s)/p(s) for the system may be formulated as

o(s) _ 6(s)/Be(s)
6p(s) " I+R g(s) (26)
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where the numerator is the transfer function of the elements in the forward
loop. The characteristic stability equation for the system is obtained by
equating the denominator of equation (26) to zero; that is,

1+NG(s) =0 (27)

Solutions of this equation represent conditions of marginal (neutral) stability.
Rearranging equation (27) and expressing the results in a polar form produces
the following equivalent equations which may be solved graphically:

()] = —2
N(Bo’w) (28)

8g(w) = 180° - wl(ﬁo,m)

where the substitution s = jw has been made.

In order to effect a graphical solution
of equations (28), the amplitude |G] is plotted
against the phase angle Bg with the frequency
W as a parameter. A typical plot is illus-
trated in part (a) of figure 6 for several
values C;, Cp, and 03 of the attitude-rate

- / gain aj. The vector ?1 is drawn tangent to
the a1 = C, curve and is directed in the
L v, sense of increasing frequency. An inverse
describing-function plot is then dimension-
alized by selecting a value for the natural
- frequency o, of the control engine and by
Prase ongle, 6 using equations (10) to convert the constant &
curves to constant w curves. A typical

{a) Typical gain-phase plot for Glw). inverse describing-function plot is shown in
part (b) of figure 6 for several values of the
amplitude ratio 015 Opy + = =+ - The vector
Vo 1is drawn tangent to the o = W curve and
is directed in the sense of increasing ampli-
tude ratio o (assuming o) > oz > op > Ul)
where o 1s defined by equations (10).

Amplitude, |6]

=z

Amplitude,

Once the inverse describing function has

ke, & : ; ! ' been dimensionalized, equations (28) may be
rohe kil solved graphically (ref. 3) by superimposing
N _ parts (a) and (b) of figure 6. Solutions are
(b) Inverse describing function 1/N. represented by those intersections which occur
Figure 6.- Illustration of graphical solution in at a common frequency . The procedure is
gain-phase plane. illustrated in part (c¢) of figure 6. An inter-

section, that is, a solution, is indicated for
a frequency of w = wy. The amplitude ratio o
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for the solution is between o = o, and
o = 03 and the attitude-rate gain is
&l = C2.

Solutions of equations (28) determine
conditions of marginal stability known as
limit cycles. If a limit cycle is stable,
the system will return or converge, after a
slight disturbance, to the marginal stability
condition. If the system diverges, the limit
cycle is unstable.

In general, a rigorous definition of sta-
bility, that is, whether a solution of equa-
tions (28) represents a stable or unstable
limit cycle, is difficult to formulate.
Instead, an argument is presented based on an
intuitive extension of the definition of sta-
bility for linear systems. The argument pro-
ceeds as follows: Let a(w) represent the
open-loop transfer function of a linear sys-
tem. By using the Nyquist stability method,
#(w) 1is plotted in the complex plane (for
0 < jo < j=) as shown, for example, in
part (a) of figure 7. A circle of unit
radius is then constructed about the origin
and the intersection of this circle with the
negative real axis defines the critical point
-1 + jO. Within the framework of the abbre-
viated Nyquist method (if it is assumed that
the open-loop transfer function G(w) 1is
stable), the relative stability of the closed-
loop system may be determined by the amount
of phase margin  present when G(w) = 1
or rather, when G(w) intersects the unit
circle. For example, at point A in part (a)
of figure 7 the phase margin WA is positive

(by definition) and the system is stable,
since the Nyquist plot of G(w) does not
encircle the critical point -1 + jO. If
G(w) intersected the unit circle at point B
where the phase margin Vg 1s negative, the
closed-loop system would be unstable. In
summary the system is stable if the phase
margin is positive and unstable if the phase
margin is negative. The condition of mar-
ginal or neutral stability occurs for zero
phase margin.

The preceding ideas may be extended
intuitively to a nonlinear system with an

-z

E L —w Twy

g: Ty

% | - Lemit cycle

L Increosing ongles —m
L L]

! ! ==
Phose angle, 6, lw) and 180° -,

(c) Typical graphical solution resulting when the
gain-phase plot and the inverse describing
function are superimposed.

Figure 6.- Concluded,

Imagrary

(a) Typical Nyquist plot for a linear system.

“magerary

— Real

Critical vector ond Glw)
. r‘ cointide (margingl stabelity)

Glw)

(b} Hiustration of the describing function
method using a Nyquist plot,

Figure 7.- Comparison of the Nyquist stability

method as applied to linear and nonlinear
systems,

19



amplitude- and frequency-dependent describing function. 1In this case, the crit-
ical point is located in the complex plane by the critical vector

. /&800 - ¥1(Bos®)
F]

I¥(Bore)]

where it is apparent that both the magnitude and direction of this vector vary
with B and w. As illustrated in part (b) of figure T, a solution is shown

at point A. Since the solution represents a point of marginal stability (zero
phase margin) the critical vector and the G(w) vector coincide (G 1is the vec-
tor which traces out the G(w) locus).

Suppose that position A is a solution and that the describing function
N(ﬁo,w) is such that a minute increase in amplitude (Bo) moves the critical
vector to position B. Based on the ideas presented previously for linear
systems, one is tempted to interpret the angle Vp as a small increment of
positive (stable) phase margin and to conclude that the critical vector has
shifted its direction so that the closed-loop system is stable for increasing
amplitudes. If the system is stable, the solution will eventually return or
converge back to position A and, on this basis, the solution may be classified
as a stable limit cycle. Conversely, with decreasing amplitudes, the critical
vector will shift to position C where the phase margin Vy is negative and the
system is unstable. As a result, the system will diverge and with increasing
amplitudes the solution at position A will again be reached. For a solution to
be classified as an unstable limit cycle, it appears that increasing
(decreasing) amplitudes must produce negative (positive) phase margins.

Although the preceding argument lacks a rigorous proof, it appears to par-
allel similar types of reasoning given in the literature (refs. 1, 2, and 3)
and is probably applicable to a wide variety of situations. In any case, as an
analog computer simulation confirmed, this type of argument did prove to be
adequate in classifying the stability boundaries for the system and nonlinear-
ities discussed in this paper.

If reference is made to part (c) of figure 6 and this type of argument is
used, the solution (intersection) may be classified as either a stable or
unstable limit cyele. By assuming that 03 > 0o, it is apparent that a small
increase in the_amplitude ratio o moves the critical vector in the direction
of the vector V, and results in a small increment of positive phase margin
since 6g is now slightly greater than the phase angle 180° - ¥;. The solu-

tion is thus a stable limit cycle.

To conclude this section, the following rule (from ref. 3), which may be
helpful in classifying limit cycles, is given. The rule is paraphrased here to
fit the specific situation illustrated in part (c) of figure 6. Consider an
observer on a curve of constant attitude-rate gain - in this case the a; = Cp
curve - facing in the direction of increasing frequency, that is, in the direc-
tion indicated by vector Vi. (The vector V,, it should be recalled, is
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tangent to the a; = C; curve. Now consider the vector ﬁé which originates
on the inverse describing-function plot and is tangent to a line of constant
frequency - in this case the w = w; curve. (It should be recalled that Vb
is directed in the sense of increasing amplitude c.) The_rule may be stated
as follows: If, to an observer looking along the vector Vi the vector Vé
crosses from left to right, the solution (intersection) represents a stable
limit cycle; if it crosses from right to left, the limit cycle is unstable.

DISCUSSION OF RESULTS

In this section the describing-function analysis outlined in the preceding
section is employed to determine the stability characteristic of a hypothetical
launch vehicle for the maximum dynamic pressure condition of a nominal ascent
trajectory. Stability bounds are established for small control engine rotation
angles, when the response of the system is essentially linear, by the root-locus
method. Then by using the inverse describing function computed previously and
representing the linear portion of the open-loop transfer function by gain-phase
plots, stability bounds for the nonlinear mode are determined graphically.
Finally, an analog computer simulation of the launch-vehicle system is used to
verify the desecribing-function results.

Physical System

The hypothetical launch vehicle analyzed in this study consists of a multi-
stage configuration with an overall length to first-stage diameter ratio of
about 8.3. The thrust-weight ratio is about 1.25 and the control thrust level

T
was selected as 10 percent of the total booster thrust, that is, EQ = 0.1. The

b
control engine is allowed to rotate through gimbal angles as large as +90°, but
may be arbitrarily limited at any amplitude up to and including this level.
Values for the coefficients required in equations (1) and (2) are given in
appendix B.

Linear Stability

For small amplitudes of oscillation the response of the control engine is
linear and is governed solely by equation (3). In addition, the coupling of the
control thrust with equations (1) and (2) may be satisfactorily approximated by
replacing sin g with B (in radians). The transfer function for the control
engine is therefore given by the equation

8(s) of

Be(s) 52 4 2twys + wg
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