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process (en, sel, a)
begin
- = triztate driver
it en = "1" then

- - multiplexer
if sal = '0° then
I <= g;
else
zZ == b
end il
alse
z <= {othars => "7');
end if,

and process:

Note how the combinational part of the behaviour has been kept separate from
the tristate driver part, with the multiplexer logic completely contained within
the first branch of the outer if statement which represents the tristate driver.

12.2  FINITE STATE MACHINES

The basic form of a finite state machine (FSM) is a sequential circuit in which
the next state and the circuit outputs depend on the current state and the
inputs. The most common application for FSMs is in control circuits. The basic
form is shown in Figure 12.4.

An FSM can be modelled in VHDL as a combinational block and a register
block, and in that sense is nothing special. However, most synthesisers have the
capability of performing state optimisation on FSMs to minimise the circuit
area. This optimisation is only available if the FSM model fits a special
template.

inputs === combinational

clock [

Figure 12.4 Finite state machine.
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Figure 12.5 Signature detector state transition diagram.

As usual, the template varies slightly from one synthesiser to another and
some synthesisers support several variants of the template, but the template
presented here is a common denominator.

The key feature of the FSM template is that the current state and next state
are represented by an enumeration type, with one value for each state. The state
signal may need to be identified as such by an attribute, so the synthesiser
knows to apply state optimisation to the state machine. The inputs and outputs
can be of any type.

The example is a very simple state machine which detects a certain bit
sequence (a signature) on a 1-bit-wide serial input. The state machine is defined
by the state transition diagram in Figure 12.5. The state transition diagram
shows the states as circles with the state name inside. The states themselves
are also annotated with the output value which is required from the state
machine when it is in that state. The state transitions are labelled with the
input value which causes the transition. This example is a Moore machine,
since the output only depends on the current state and is independent of the
input,

The example in YVHDL is shown in context in a separate architecture. In
general, state machines can be mixed with other circuitry and the separation
has been done purely for clarity:

liprary eee;
use ieeestd_logic_1164.all;
entity signature_detector is
port (d :in std_logic;
ck :in std_logic,
found © out std_logic);
end;

archilecture behaviour of signature_detector is
type state_type is (start, foundl, found(, detect);
attribute enum_encoding of state_type : type is
0o 01 11 10
signal current_state, nexl_stale : state_type,
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begin
- - register block
process
begin
wail until ck'event and ck = "1,
currenl_stale == nexl_slale,
end process;

- - gombinational logic block
process (current_state, d)
begin
case current_state 15
when start =>
found == ()
ifd = "1’ then
next_state <= found?;
alze
next_state <= sfart;
end if;
when foundl ==
found <= "0
iftd = 0 then
next_state <= found0,
else
next_state <= found?;
and if;
when foundd ==
found == 0
ifd = "1" then
next_siate <= datect,
alse
next_state <= start,
end if;
when detect =>
found == "1%
ifd = "1’ then
next_state <= foundl;
alze
next_state <= found(;
end if;
end case;
end process;

end;

The attribute enum_encoding that has been attached to the state_type used to
define the state signal will vary from one synthesiser to another. Some synthe-
sisers will not support it at all. This attribute allows the encoding to be expli-
citly stated—in this case a Gray code has been used. In the absence of an
explicit encoding, the synthesiser will allocate states automatically.

This template should be adhered to closely. The combinational logic block
should be modelled as a process with a case statement branching on the
current value of the state. The contents of each branch of the case statement
should contain simple assignments of values to the next state and output
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signals. Branches in the state transition diagram are modelled by if statements
within a branch of the case statement, as in this example. To model a Mealy
machine, the outputs would also be conditional on the inputs, so the assign-
ments to the outputs would also be inside the if statements.

An alternative template, which fits some design styles better than this one,
has the next state logic in the registered process and only the output decoding
in the combinational process. The above example using this alternative style is:

architecture behaviour of signature_detector is
type state_type is (start, found?, foundd, detect);
attribute enum_encoding of state_type : type is
Moo 01 11 10"
signal state : state_type;
begin

- - register block
process
begin
wait until ck’event and ck = "1,
case stale is
when start ==
ifd ="1then
state == found?,
alsa
state <= start;
end if;
whean foundl ==
itd = "0 then
state <= foundD,
else
state <= foundi;
end if;
when foundd ==
itd = "1 then
slate == deatect;
alze
state <= start;
end if;
whean datecl ==
ifd = "1 then
slate <= foundi;
elsa
state <= fgundQ;
end if;
end case;
and process,

- - combinational logic block

process (state)

begin

case state is

when start => found == '0I";
when found! == found <= "0
when foundd == found == 0
when detect => ifgund <= "1’
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end case;
end process,

end:;

This template makes the distinction between Moore and Mealy state
machines more obvious. In this example the combinational logic block
depends only on the state and does not have any other inputs. This makes
it a Moore machine. If the combinational output also depended in any way on
the inputs to the state machine (in this case port d), then it would be a Mealy
machine,

An F5M should be designed to be either resettable, re-entrant, or both. A
reset, either synchronous or asynchronous, can easily be added to the register
part of the template and has no effect on the combinational part. For example, a
synchronous reset to the start state could be incorporated by adding a reset
input to the entity and rewriting the register part:

- - register block
process
begin
wall until ck'event and ck = "1
if rst = "1" then
current_state <= sfart;
else
current_state <= next_state:
end if;
and process,

To make a state machine re-entrant, all states must be considered, including
those not shown in the VHDL. In the VHDL, the enumeration type representing
the state can have any number of values. The hardware implementation,
however, may have more states than the VHDL because it has to be imple-
mented using a binary encoding, which for n flip-flops will have 2" permuta-
tions. Any difference between the number of permutations of the bits in the
hardware implementation and the number of states in the VHDL model are
extra, or undefined, states. These extra states, which do not even exist in the
VHDL model, can be mopped up by an others clause at the end of the case
statement.

In this example, four states are used and a Gray encoding using two bits
has been specified, so there are no undefined states. However, consider an
example with five states. This will be encoded in 3 bits, giving eight
permutations, so there are three undefined states in the VHDL. In this case
an others clause could be added to the case statement to specify what
happens if the state machine gets into an undefined state. This branch is
unreachable in simulation, so cannot be tested (this is the main weakness in
this strategy), but it does ensure that the state machine is re-entrant after
synthesis.




