5 Electrons in solids—
an introduction to band
theory

5.1 Introduction

The conduction theory presented in the previous chapter assumes that many
free electrons are available within the body of the material, which behave as
classical particles. In a metal the free valence electrons are shared by all atoms
in the solid; hence there is a tendency for the periodic potential of the crystal
lattice as seen by the conduction electrons to be smeared out and to appear
almost constant. This accounts for the success of the free-electron model in
explaining most, if not all, of the conduction phenomena in metals. However,
for materials with different crystal structures, for example i the importani
case of covalent bonded solids such as some semiconductors, valence electrons
are located much nearer to the parent atoms and cannot be associated with the
entire collection of atoms as in a metal. The free-electron model fails for such
materials since the potential seen by valence electrons can no longer be
regarded as constant since it varies rapidly, particularly near to ion cores in the
lattice.

A quantum-mechanical model that overcomes this difficulty assumes that
the conduction electrons, as well as being subject to the restriction of the
exclusion principle as before, are not entirely free but move in the perfectly
periodic potential of a crystal. Such a distribution of potential arises becausc ol
the regular spacing of ion cores in the lattice and its perodicity is equal to th
lattice constant. We shall see that in this situation the energy of electrons can
be situated only in allowed bands, which are separated by forbidden enerpy
regions. Within a particular allowed band, electrons behave in much the sai
way as free electrons; they can again interact with externally applied fields 1
produce conduction effects but the interaction parameters have to be modific
to account for the presence of the lattice.

The so-called band theory of solids, which is developed from the periodi

potential model, has been most successful in explaining some of the anomalies
predicted by the free-electron model and also can account for the differig
electrical properties of conductors, semiconductors and tngulntory, Wil
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etermines the conduction properties of a particular material is whether the
slectronic states within an allowed energy band are empty or full.

The more complete model also accounts for apparent changes in effective
#lectron mass with position in an energy band. Further, it will be shown that
the properties of a material with an almost filled band are identical to those of
i imaterial containing a few positive charge carriers in an otherwise empty
fnd; this is a quantum-mechanical justification of the concept of a hole, which
Wwill be used extensively when discussing semiconductors later.

Iinally, departures from the assumed perfect periodicity of potential will be
slinwn to account for resistive effects in a practical material.

H.J Allowed energy bands of electrons in solids

811 General concepts

~ Il wus shown in Chapter 2 that the electrons in an isolated atom are only

wllowed to possess discrete values of energy. The exclusion principle also
slipulates that each energy level, which is defined by a set of three quantum
it bers, can only be occupied by at most two eléctrons, provided they have
Hpposite spins.

When atoms are packed closely together in a solid such that the electronic
Wihituls of neighbouring atoms tend to overlap, the allowed electron energy
Iveln nre modified from those of the individual constituent atoms. Consider,
EE #xample, two identical atoms that are gradually brought together. As the
Sileimost orbitals overlap, electrons that originally had the same energy in
Al lolated atoms have their energies slightly modified so that the exclusion
Eﬁviplc is not violated for the two-atom system; each allowed energy level is
;@N Into two closely spaced levels. If the atoms are brought still closer together
i thit the electrons in inner orbitals of each atom interact, the lower energy
88 aplit in a similar manner.

Biergy level splitting of atoms in close proximity can be explained in terms
£ 8l ple quantum-mechanical model, as follows. Consider, for example, two
liugen atoms separated by an initially large distance, r. The electronic
y structure of each atom will be as shown in Fig. 2.3(a) and for the two
4 In ny shown in Fig. 5.1(a). To a first approximation each atom can be
teaented by a one-dimensional rectangular potential well of width é, as
Wit in g, 5.1(b). We have seen that the wavefunctions of bound electrons
ek i potential well are nearly sinusoidal (or exactly sinusoidal if the well is
#illely deep) and that the corresponding energies are discrete eigenvalues.
griimple, the possible wavefunctions of the lowest energy state (n=1) are
Belown in 1ig, 5.1(c). Notice that the negative i solution, shown as a broken
A included, since it s equally possible because it is only the quantity |2
t han any physioal significance, The general expression for the energy
I trapped electron s given in Bq, (2.6); hence the lowest enerpy
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Fig. 5.1 (a) Potential energy of electrons in two isolated hydrogen atoms; (b) one-dimensional
potential well equivalent; (c) wavefunction of trapped electrons in the lowest energy statc

state for an individual well is
E, =h*/(8md?) (5.1)

Now, consider the atoms when they are brought more closely together such
that r> 8, as shown in Fig. 5.2(a). The boundary conditions stipulate that both
the wavefunction, ¥, and its gradient, dy/dx, must always remain continuou
It would appear that there are two possible configurations for the wavefunction
of the complete system, as shown, one in which y is symmetrical about th
centre line dividing the atoms and one in which y is antisymmetrical. When 1
atoms are brought even nearer, such that r=4, the wavefunctions ol (I
lowest-energy electrons merge into the symmetrical and antisymmetrical
forms shown in Fig.5.2(b) The electron energies corresponding to cuch
wavefunction of the complete system can again be obtained from Fq. (2.6) and
are

h? 1 h'
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iy 52 Possible wavefunctions for the lowest energy state of a two-hydrogen-atom system as the
separation is changed.

anl

22h2 h2

oy Sy 5.3
1,antisym 8m(2(3)2 8m52 ( )

Fit even closer separation such that r <4, the possible wavefunctions for the

s¥ilem are shown in Fig. 5.2(c) and the corresponding electron energy values
die

h2
E TG 4
TS 8m(r + 6)? (5:4)
sl
4n?
) PWIOE R i o '
1,antisym 8m(r+5)2 (5 5)

Hhese possible energy states of the system for various spacings r are collected
BBeher in Fig, 5.3 16 will be seen that as soon as the spacing between the

SIS e vuch thit 7= &, two delinite energy states exist for the system where for
B lndividual atoms there wiag onlv one
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Fig. 53 Energy of lowest states in a system of two hydrogen atoms separated by distance .
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Fig. 54 (a) Series resonant circuit; (b) coupled resonant circuits.

coupled resonant circuits. The simple series LRC circuit depicted in Fig. 5._4(”)
has a single current maximum when the frequency of the applied sinusoidal
voltage is equal to the resonant frequency, f,, as shown. When two such
circuits are tightly coupled via mutual inductance as shown in Fig. 5.4(b), two
current maxima occur at frequencies displaced slightly to either side ol /
Such frequency splitting can be compared to energy level splitting in atomi
systems, particularly when it is remembered that energy and frequency i
related quantities in quantum-mechanical systems.

£
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Now let us consider briefly the case of three atoms brought into close
proximity. For a particular separation there will now be three possible
vonfigurations for the wavefunctions, as shown in Fig. 5.5(a). The correspon-
iling energies associated with the particular wavefunctions shown are as
tlepicted in Fig. 5.5(b). Again, we see that each level of an individual atom is
iplit into the same number of levels as the number of atoms in the system.
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| netl
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r

. 55 Three-atom system: (a) possible wavefunctions for the lowest energy states; (b) electron
energy as a function of atomic separation.

~ The extension of this argument is straightforward and it is reasonable to
] (hat in a system of n interacting atoms each discrete energy level of an
Widual atom is split into n closely spaced levels as the atoms are brought
(her, A system containing seven atoms is shown diagrammatically in
1.0, notice that the higher energy levels split at larger separations. This is
¢ the clectrons at these levels are on average further from the nucleus
| fiternct with neighbouring atoms more readily.
U course, in a more realistic system such as a solid the number of
Aing atoms is much higher than seven; a typical figure may be, for
Satiple, 1077 Also the total width of each band of allowed energy levels is of
Weler [ eV oand depends not on the number of atoms grouped togéther but on
I iterntomic spacing, Since in this instance 10?2 discrete levels have to be
timodated innnenergy range that is only 1 ¢V in extent, individual levels
B8 bind are of necensity very closely spaced together; the allowed energy
BVl within o band are therelore sild 1o be guasi-continwous. Summarizing,
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Fig. 5.6 Electron energy levels of a hypothetical seven-atom system.

4 states per atom

the allowed electron energies in a solid occur in bands in which the energy is e
I in this band

almost continuously variable, separated by forbidden energy regions, which /}j | ' . Is
correspond to energy levels that the electrons cannot attain. .' = 2 : -
Let us now be more specific and consider the useful example of carbon S @ (i) ®
p ' diamond lattice constant, a

which possesses properties similar to those of the more common semiconduc

tors. The electronic structure of a single carbon atom is seen from Table 2.1 (o
be 1s22s22p?; that is, its inner principal shell is filled but there are only four
electrons in its outer shell and there are four vacancies in the outer subshell. |l
we first of all consider a ‘gas’ of such atoms with the interatomic spacing, o
lattice constant, a, so large that no interaction occurs between them, then the
energy levels of each atom are as shown at (i) in Fig. 5.7. As the carbon atoms
are brought into closer proximity (i.e. a is reduced), level splitting occurs i
described, which results in bands of allowed energies, as for example at (ii). I«
even closer spacings as at (iii), the bands can overlap. Eventually, as a
reduced still further, the energies of the outer-shell electrons can lie in onc ol
two bands, separated by a forbidden gap, as at (iv).

Of couse, it is not possible to vary the interatomic spacing, continuously i
we have assumed for convenience, since for a particular crystalline solid (¢
lattice constant is fixed. The band structure of a particular allotropic fori if
carbon will then correspond to a vertical slice through Fig. 5.7; for examply,
carbon in the diamond form has a band structure similar to that at (iv). Wi

Fig. 5.7 Energy bands for carbon with varying interatomic spacing.

i Any given direction, V repeats itself after distances equal to the lattice
il in that particular direction, a say. Thus

Vix)=V(x+a)=V(x+2a)= ...

Blirho, the precise nature of V(x) is complex and the solution of
liper's equation including such a function is difficult. The problem is
Biably eased if a simpler mathematical model of the solid is assumed in
i potential in a given direction, as seen by electrons in higher-lying
Hiln, clrmngcs abruptly from some value V,, to zero with a periodicity
il in Pig. 5.8. The model, which was proposed by Kronig and Penney,

shall see later that it is the magnitude and form of the band structuic ol i

a particular solid that completely specify the electrical conducting proper{ies fil 7 /

peculiar to it. Before doing so we will consider a more quantitative approachi s TF % ——————— / ——E
: - W et

to the investigation of the band structure of solids.

5.2.2 Mathematical model of a solid

In an ideal solid, the ion cores of the crystal are spaced with perfect repulaiiiy

gt o ndnatial aveaniannerd Ihu an alantran in tha saalld V. g nariadid I8
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thus consists of a regular one-dimensional array of square-well potentials.
Such a variation in potential is roughly similar to that of a linear array of
atoms, as shown for example in Fig4.2(a), but the approximation is most
crude; the chief merit of the model is that it predicts qualitatively the effects
that are seen in real solids while retaining some mathematical simplicity.
Furthermore, the discussion is limited to a one-dimensional model; while
many of the results are qualitatively representative of those obtainable for
a three-dimensional model, complete generalization is not always possible.
Note also that the regions of low and high potential in the model alternate
periodically; this property will be shown to be responsible for the allowed and
forbidden electron energy bands.

Even when the simple model of a solid is assumed, the mathematical
treatment is involved and the analysis will only be outlined. An analogous
electrical system will be discussed later that will explain some of the properties
of the model. Applying Schrodinger’s equation to the potential variation
shown in Fig. 5.8, we have that, inside the wells, ¥V =0 and

0*¥Y
-5)_6_2—_‘_[32\1’:0 (5.6)
where
B? =2mE/h?
and in the barriers, where V,>E,
ER
—67 T oc2 ¥=0 (c‘ /)

where
o2 =2m(V, — E)/W*

Equations (5.6) and (5.7) can be solved using the appropriate boundiiy
conditions. It is usual at this stage, however, to make a further simplification (11
the model so that the problem becomes more tractable. This consists of letting
the width of the barriers, w, go to zero and their height to infinity, insuch a wiy
that the ‘strength’ of the barrier, w¥, remains constant; in other words, (I

potential is considered to be a periodic delta function. One type of solutiait

that satisfies Eqs (5.6) and (5.7) is then found to be of the form

¥ = U, (x)e™" Y

When the normal exponential time dependence is included, th
part of the solution represents a plane wave of wavelen pih 4

travelling in the positive or negative x direction, depending on the sipn
The factor U, (x), called a Bloch function, is a periodic function that vark
the same periodic

¢ exponentiil
2n/k, whicliis
ol k
n with
fy as the lattice, a. Thuy the solution to Schrddingeis s
e s woauaa thiat are madulated neriodically 1n e
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When the usual boundary conditions of continuity of ¥ and 0%¥/0x are

npplied, it is found that Eq.(5.8) i i i
B 31 t(i Sfy) is only a solution for particular values of

(maw Vo)sin(ﬁa)
h? Ba

m;c(l;cl:cgtlrsois glzeﬁ;;e;d ;nCIIEctll.l(S.é). Notice that the left-hand side is a function of
‘ nd the strength of the potenti i

thh}-h'and side consists of a wavelength tern?.o e ek R v
¥ loht;i: iaslil% tslzlacth\}/_he.rfats. the cos(ka) term lies in the range between — 1 and
& |, imitation on the left-hand side of th j i
#uiume values outside this ran i i ol v

. this range, depending on the value of w¥,; this i

lustrated graphically in Fig. 5.9(a). Whenever the left-hand side ig’gre:t;:

+cos(fa)=cos(ka) (59

thin | or less than —1, no travelling-wave solution of the type described by

i] (5.8) exists for that particular val
e pae value of electron energy, E. Such values of

hl.:i‘c t'glatilcinship between E and the wavenumber, k, for the travelling-wave
on in allowed bands can be derived from Eq. (5.9) if a particular value of

7 I, In assumed, and is typically as shown in Fig. 5.9(a). The resulting band

{ilicture of allowed electron energy bands separated by forbidden energy gaps

W Wlho included in the diagram.

:  :;:: |bieen(::1lizeq from Eq.(5.9) and Fig. 5.9(a) that if the barrier strength is

; : |" bd o 1s made larger, the allowed bands become much narrower
)L lorbidden bands are correspondingly widened. At the ther extreme
I, 18 reduced to zero, Eq.{5.9) reduces to =k and hence from Eq.(5 6)’

B=k=2m/)=(2mE)"? /h
E=h%/2mi?) (5.10)

Horpy ex pression is. identical to that for the free electron, Eq. (4.11); the
in ",M surprising, since as wlV,, becomes zero the potenti,al b'arr.ie !

#il ||an clectrons can move freely inside the solid T
|~hlvvnjmg Eq.(5.9) again, and the solution in th;a formof an E — k
i1, l~|g,. ﬁ_‘)(.b), the value of k is not uniquely determined, e.g. if on th
i nide of the equation k is replaced by k + 2nn/a, where ;1 i.sga.m int y
Helil linnd side remains the same. This implies that C;Ch lotof E — l?'eg;r,
|!“l;muin can be shifted left or right by an integral muﬁiple of 27r/amItt i:

Ve se thi :
,‘Egh :::cnl to use this concept and to define a reduced wavevector limited
nlaz=k> —nja

‘:;!l!fh\' the broken curves in 11, 5.9(b), in which the curves marked a and
iied | Mt/ /il i
] 1y |: Il,-4|l and 2i/a nlong the axis to appear as a’and b’ in the
sortte] it o shodts of 2an/oin kv !

2ty ilues transform curvesc, d, ¢ ¢ i
il U in the reduced 2o SRy
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‘Lﬁt us now try to gain some physical insight into the striking behaviour
Wiwn in the E-k diagram whenever k=nn/a, by employing the following
ulric circuit analogy. Consider the coaxial transmission line shown in
¢ 5.10(a); the voltage, V, at any point x on the line is given by
dz

-&7+w2,uoe,eoV=0 (5.11)
the line is air-filled but periodically loaded at intervals of a with dielectric
of relative permittivity ¢, and thickness w, as shown, then the voltage
lon becomes similar in form to Eqs (5.6) and (5.7), provided w?pi ¢, =

dielectric discs
(relative permittivity &)

=====lr\

E : l‘
\

- /

o)
0
(b)
incident voltage
wave
ieflected-wave 4 _
phise angle ¢ O+ 27mn

nA

as= —

d;m (#) A periodically loaded (rapambssion line; (b) o & dingram of the loaded line; (¢) total
4 pellection econrlng when ko — mn.

()
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and w?u,¢.€, = —a’. Hence, in the circuit analogy, voltage V is equivalent to
electron energy E and frequency bands are analogous to electron energy
bands. The w—k diagram for the loaded line can be obtained by solving
Eq. (5.11) using the appropriate boundary conditions and results in series of
pass bands of frequency and stop bands that occur when ka =, 2, 3, nz, as
shown in Fig. 5.10(b). The stop bands arise because when ka=nn the discs are e
spaced an integral number of half-wavelengths apart and reflections from \ 0 ®) 7l
successive discs add in phase as shown diagrammatically in Fig. 5.10(c). Then : ‘free’ electron 1 i
even if individual reflections are weak, their combined effect is to produce total E=p*/2m \ 2
reflection; hence, for this condition, no travelling-wave solution exists for the

voltage and only standing-wave solutions are possible. ,

The situation in the stop bands is analogous to what occurs at the forbidden
energy levels in a solid; at some critical wavelength (or k value) the partial
reflections of travelling electron waves from successive potential barriers add
constructively to produce a reflected wave of the same amplitude as the
incident wave and only a standing-wave solution occurs. This may be
confirmed by putting k= +nn/a into Eq.(5.8); then, since U,(x) is periodic
with periodicity a, P is also periodic, which suggests that ¥ has a standing,
wave form around these particular k values.

We have seen that it is impossible for an electron to possess energy
corresponding to that in a forbidden band. However, an interesting con
sequence of the analysis is that, within the allowed energy bands, travelling
wave solutions exist that are unattenuated, since «=0; this implies that therc i
no electron scattering in the uniform lattice of a perfect crystal and within a1
allowed band an electron can move in a completely unrestricted manner. This
statement has to be reconciled with the fact that in a practical solid we hav
seen that, as a consequence of Ohm’s law, the electron must be subjected (1
a viscous force, which inhibits its continual acceleration. Further discussion ol
the essential differences between ideal and practical solids, which can resolve
this difficulty, will be deferred until after we have discussed other consequencis
of the E-k diagram.

P
S

‘free’

|
eleCtron>/ ;| /l/

s e

dE/dp

electron velocity
vg

‘ Aela
©

r

d’E
dp?

mm
a
momentum, p.= hk

(a)

@

effective mass m *

]
|
4 Fig. %11 Variation of energy, velocity and effective mass of an electron in a solid.

gh the lattice can be represented by a wavepacket of plane waves
sl around some value of k, each wave component being of the form

exp[ —j(Et/h—kx)]

5.3 The velocity and effective mass of electrons in a solid

Let us first consider a free electron,; its kinetic energy E and momentum p nie
related parabolically since
=my and E=p*/2m (5 1) ' : ;
P P/ ' upr velocity, v,, of the wavepacket, which we have seen is identical to
wiion velocity is, from Eq.(1.30)

0w O(E/h) 10E_OE

which is identical to Eq.(5.10).
However, electrons in a solid are not free; they move under the combined

influence of an external field plus that of a periodic potential due to atom coies D, - et A (5.13)
in the lattice. As a result, the clectron energy is no longer continuouy and (he Ok Ok hok  op
encrgy—momentum relationship, since p = hk, will be similar in shape (o (1 e velocity of an electron, which is represented by a packet of waves

shown in Fig. 5.9(b), as depicted in Fig. 5.11(a). Now, an clectron moviig HEAE Lo a particalar value ol k <k, say, is proportional to the slope of
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the E-p or the E-k curve evaluated at k,. The slope of the E-p curve in
Fig. 5.11(a) is shown in Fig. 5.11(b) and gives the relativeelectron velocity over
the lowest energy band. Notice that the electron velocity falls to zero at gach
band edge; this is in keeping with our finding that electronic wavefunctloqs
become standing waves at the top and bottom of a band, i.e. v, =0 there. It is
evident that because of interaction with the lattice the momentum of an
electron in a solid is no longer simply related to either its energy or its velocity
and the classical equation (5.12) is no longer applicable.

Now, consider an electronic wavepacket moving in a crystal lattice under
the influence of an externally applied uniform electric field. If the electron has
an instantaneous velocity, v,, and moves a distance dx in the direction of an
accelerating force, F, in time d¢, it acquires energy, JE, where

FOE
OE=Foéx=Fv 5t=h—57€‘5t

which, in the limit of small increments in k, can be rearranged to give
dk/dt=F/h (5.14)

Digressing for a moment we see that for a classically free electron this equation
reduces to Newton’s second law
d dp dv :
F=—(hk)=—=m— (5.19
dt( ) de - dt ‘

But this is not the case for the electron in a solid. This is not to say thul
Newton’s laws no longer hold, but is a consequence of the fact that the
externally applied force is not the only force acting on the electrons; as we h;{ Vo
seen, forces associated with the periodic lattice potential are also present. ‘I'h¢
acceleration of an electronic wavepacket in a solid is equal to the time ratc of
change of its velocity, thus

: dv, d(dE\ d°E
acceleration = E =P dp _dtdp

or, using Eq.(5.14)
dv, dp d’E FdZE

TR dp?  dp?

which can be rearranged to give

2 =q
_— d°E % (5 16
dp? dt _
Comparing this equation with the classical equation of motion fora parti e

Eq. (5.15), we see that the quantity (d* £/dp*) ' is equivalent to the mass of the
free electron. Thus if, for an clectron moving in the periodic lattice of a solid, we
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teline an effective mass, m*, where
d2E =1 d2E =il

F=m*dv,/dt (5.18)

this means it is possible to treat electrons in a solid in a semiclassical
ner since quantum-mechanical interactions are included in the effective
i lerm; an electron of mass m, when placed in a crystal lattice, responds to
lied fields as if it were of mass m*, interaction with the lattice being
unsible for the difference between m and m*. That it is possible using the
to of an effective mass to treat an electron in a solid as a classical particle
uld not be allowed to mask the fact that the electron—lattice interaction is
ntially quantum-mechanical. This is emphasized by the fact that m* can
' over a range from a few per cent of m to much greater than m, which
u0l be explained by classical arguments. A further point is that m* is not
Histant but is a function of energy. We can see how it varies typically over
i #hiergy band by noting the definition implicit in Eq. (5.17) and forming the
Hjirocal of the second derivative of energy with respect to momentum; these
i ire shown graphically in Figs 5.11(c) and (d). It will be seen that m* can
fppreciably with position in the band; at the low-energy edges of the band
s have positive effective mass but at the top end of a band their effective
van, surprisingly, become negative!

hie changing sign of the effective mass of an electron can be explained
wlly, as follows. Suppose an electron is situated at a point a on the E—p
i of Fig, 5.12. If an electric field, &, is impressed in the direction shown,
Gléulmn will accelerate and moves to the right on the diagram to some
il b, where both its energy and its velocity have increased; this conven-
Hil behaviour corresponds to a positive effective mass. Now, consider an

hole d

[¢)

hn/a 7 W() hrla
) —
electiw hield, &

Wig 512 B op Magrss of a hypothetical solid,
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sav. When the field is applied again the
electron at the upper eﬁ:rzfi fszilé(rié;ti:ingrease 4 but its velocity has decreased
electron moves t0 ,d’ st 1 1(b)). The electron appears to have been deqele_rated‘l;Z
(sEefotesatipie Flglérélting force and since Eq. (5.18) applies always this cfllrl’ .
the previously acce the electron having a negative effective mass. It will be
ALEOUNTEtHIO! l;)y 5.11 that negative effective masses occur whiﬂ?ever the E—p.
apparc;nt from Fig. > wards and that the electron mass is p_osmve whenever
e T downwards. Now, the direction of accelerat'lon of an electron
fhesnyel > concavfh‘::PSi n of both its effective mass and its ch'arge, $0 _a“_
i dctermmed 5o Ccougnting for the properties of an electron Wlth nega'tl_w'
alternative way .of ac 5 ticle with positive mass but having a positivc
mass is to consider 1t as a p A /(++m*). Thus, when elec-

: cceleration = ) : i rents
charg@ fhrnn afa band are acted on by an applied field ,ﬂ_‘e G ane c-:-lz and
i thfi t;) . (t:)he movement of electrons with a positive charge
correspond to

a positive effective llsna;stsl:;";-t e band is only partly filled. For example, we
Immessra ,etal conduction electrons occupy all levels' up to aroun_t!
Dage scen-that, i ;;n If’as is often the case with other maten.als,' a band is
the<berm EheTE dFit ig: often convenient to discuss its prol?ertles in terms ol
g egtlrely ﬁll‘:u;ﬁilled states rather than those occupied by the mall"v_
A rglz}tlvely - s. An unfilled energy state providing a vacancy that can b
EEmei e B e éron wavepacket is called a hole. Consider the hole ShO\‘)vn
o.ccupled by A elccin Fig. 5.12 at e. Because of the symr.netry of the E p
dl.agrammatlcally witi. p;)sitive momentum, say at b, will be cancelled by
diagram an elecu'onthis case at f, with the same magnitude 01" momentum h'ul
anothc?r elect‘ron’ 1211 This cancellation of momentum b.Y pairs applies to all
SEROSIELY dlreCt;e- one at g, which is at the corresponding energy level to l.hl
flestrins s hasa nega,tive velocity, v, (from Eq. (5.13)),and so the hOl-(‘{”
hole; this electron B R ng poSitive velocity, which can be acc Oul?ted.fm "
€ mt.lst t}ave a COf,rtiVI; charge to the hole. Hence an electron moving m‘ [
aFtnbgtlng : pOSl'n a current flow that is equivalent to a hole or vac(nT( }
dizestion e 8 osite direction. In general, the effective mass of a hole i
moyme e oppn its Jocation in the band and the sign of the mass e b
BEain aspeRa ) Ots similar to those used previously. However, since holes ai "
found by argument \on of a band, if they are designated as positive cha rg‘cr;uu
phenibetecel tt}e t(}),g opposite direction to electrons, in this case th_uyu‘._.‘
morclﬁovir c;ni(:lvfh;nsame direction as the field, and they must usually possens
accelerate
a positive effective I(Iilastsi.on in a nearly filled band can be accm!nlcd for by
We pes s cont_ufl of a small number of positive particles of charge 1
con51de_r 1ng th‘? e 11;-) tive mass, m,*, which are called holes and corresponid
posssssing postuts = ecu ied electron states in the band. This cm.u‘(:l" 15 Vital
gt n‘iimb?r:(fﬁlrl:;o(fi?thi details of conduction processes in semiconductais
to an understa A
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#i 4 Conductors, semiconductors and insulators

The band structure of a solid is a convenient method of classifying its
suniduction properties. Of course, electrical engineering materials can readily
bie tharacterized experimentally by means of their conductivities, but the band
theory explains the essential differences between materials with widely
dillering conductivities.

Ihe conduction process in any material is dependent on the availability of
shiige carriers. Clearly, if a given energy band is unoccupied it can make no
funtribution to electronic conduction. What is not quite so obvious is the fact
thil there can be no net conduction effects if all the bands are completely full
sither, Consider, for example, a completely full band with E-p diagram as in
Iy 512 (disregarding the hole now). We have seen that because of symmetry
ol the graph there can be no net electron momentum when no external field is
spplied; obviously, no current flows when the field is zero. When the field, &, is
dpplied, electrons at a or b, say, are accelerated by the field and their
Wumentum 1s increased. However, an electron at d, say, can have its
fiientum so increased that it reaches the boundary of the band edge, is
tellected and reappears at d’ with oppositely directed momentum. Thus, since
il lovely remain filled before and after the application of the field, and since the
diiliibution of electron momenta is unaltered, there is still no net flow of
SHirent

Hi vrder for conduction to occur there must be empty available states in

% (Witicular band. Then, when an electric field is applied, as shown in Fig, 5.13,
i
E

| l
| I
! V/: empty states
i a !
= = F ]
. N = i\ normally filled
Iiﬁ e i ] states

o s

hnla 0 hm/a

Fig. 513  Partially filled energy band with an applied ield.

%ii s il levels just below the empty ones can gain energy from the field and
~ Bt the available levels, for example from a to a’, and all other electrons
SR L the fight in momentum space, as shown. This results in a net electron

BRI 10 the oppostte direction to the field that is no longer zero and an
S current Howy

o pood conductor, the essentinl requirement of many carriers being
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available in a partially filled energy band is achieved by the two ogtermog
bands, one of which is completely empty and one full, overlapplng; this
situation is demonstrated diagrammatically in Fig. 5.7, where the section at
(iii) represents the band structure of a metal. It is cqnventional to draw tl}c
band structure of a particular material with fixed lattice constant as shown in
Fig. 5.14. While the extremities of each band are, in fact, dependent on crystal

A
A empty band E|
full band
overlapping upper band empty conduction
band
]
5;? forbidden energy
S £ Eq aj
=t gap
(5]
8 ————————— —
§ full valence band — -
©
(a) metal (b) insulator
E}

a few conduction

conduction band / elecrons
E, { _~ holes for conduction

valence band

(c) semiconductor

Fig. 514 Typical band structure of metals, insulators and semiconductors.

orientation, usually the maximum and minimum possibl.e values for thf: band
edges, regardless of direction, are chosen. A further point is that the abscissa on

such diagrams has no significance. It is usually only necessary to show the

outermost filled band and the next highest empty band, since .lower bands’ ar
usually completely occupied and play no part in the conduction process. Th

band diagram of a metal is as shown in Fig. 5.14(a), tl_len. All levels are filled mv
the band up to some level approaching Ep, aboye‘whlc!{l there are many emply
states. Only electrons near the Fermi level participate in conductl_on anfl. they
behave as if they had an effective mass, m*, evaluated at E= EF. Smce E is nol
located near a band edge, m* is nearly equal to m, as shown in Fig. 5.9(b); thii
accounts for the success of the free-electron model of a condpctor.

At the other conductivity extreme, insulators are cha racterized by a If;msl
structure consisting of a completely full band, the valence band, sepa rated from

\
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i empty band, the conduction band, by a wide forbidden energy gap of several
dlectronvolts, as shown in Fig.5.14(b). At all ordinary temperatures, the
Mitistical probability of electrons from the full band gaining sufficient energy
i surmount the energy gap and becoming available for conduction in the
tonduction band is slight. This very limited number of free conduction
#lectrons at all but very elevated temperatures accounts for the high resistivity
il insulators.

Semiconductors, as their name suggests, have conduction properties that
dte intermediate between those of metals and insulators. They have a band
Sticture as shown in Fig. 5.14(c), which is basically similar to that of
{inulators, except that the gap energies are very much smaller, being typically
il order 1 eV. Since the gap is appreciably smaller than for insulators, it is
stilistically more probable at ordinary temperatures for electrons in the
itherwise full valence band to be elevated across the forbidden gap to the
sty conduction band, where they are available for conduction. An essential
illerence between conduction in metals and conduction in semiconductors is
thit when electrons in a semiconductor gain sufficient energy to occupy the
finduction band they automatically create vacancies in the valence band due
I their absence. Thus, additional current flow is possible due to charge
#iition in the now partially empty valence band; such currents can be
disctibed in terms of the motion of holes, as discussed in the previous section.
e relatively low conductivities of semiconductors compared with metals is,
sl iourse, a consequence of the relatively small number of charge carriers, both
slections and holes, available for conduction.

B [loctrical resistance of solids

Wi hive seen that for a perfect solid there is no attenuation of electrons in an
sllswed energy band, ie. there are no electron ‘collisions’ and the solid is
ftinpirent to the electron; in this situation the mean free path for collisions is
Wlliiite, In the previous discussion of electrical conduction in metals it was
B necessary to postulate some sort of collision mechanism to provide
# lictional force to account for the terminal drift velocity of electrons, which
SHaliien that Ohm’s law is obeyed. Since conduction processes in other solids
St aimilar, with the added complication of hole conduction in some materials,

i ipain clearly necessary for some kind of collisional damping to be present.

Al elevtron in an allowed band can then gain energy from an applied field and
S higher in the band, but then can suffer a collision (more usually it is said
BB soattered), give upits energy in the form of Joule heating of the lattice, and
S (o lower down in the energy band. The conductivity of the solid can
SRl be expressed using equations similar to Bq. (4.35), except that, since the
Eé%ﬂiﬂrs are no longer necesdnrily free, their effective mass must be included to
Secaind for mternction of coroer and Inttice

Bt what are electrons colliding with? What are they scattered by? Tt was
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shown in Sec. 4.7 that electrons colliding with ion cores cannot account for the
electrical resistance of a solid. It is the interaction of electrons with the slightly
aperiodic potential fields experienced in real solids that can cause scattering
effects and hence account for electrical resistance effects. Such deviations from
the perfect periodicity in potential, which was assumed for an ideal solid, can
be due to thermal lattice vibrations, lattice defects, or the presence of impurity
atoms and boundaries, some or all of which are normally present in practical
materials.

The most important scattering process at ordinary temperatures can occur
in crystals where impurity atom or structural imperfections are negligible. The
departure from periodicity necessary to produce scattering is in this case
brought about by thermal vibration of the lattice atoms about their
equilibrium position. Such a displacement alters the local potential, hence its
regular periodicity, and an electron travelling in this field can have both the
magnitude and direction of its momentum altered. Such an event constitutes
what we have thought of as a collision and is often called lattice scattering. The
description is something of a misnomer since it is not the lattice that produces
the scattering so much as its thermally induced vibrations. Scattering
interactions between carriers and lattice vibrations become more probable the
higher the temperature because of the larger amplitude of vibrations. Thus, we
see qualitatively that the average time between collisions, or relaxation time,
7,, and hence the carrier mobility decreases with increasing temperature in
materials in which lattice scattering is the dominant mechanism, such as
relatively pure or structurally perfect crystals.

A further scattering mechanism is attributable to the presence of impurity
atoms in the lattice, which, may be ionized or otherwise, although the forme:
are more important. Such atoms alter the local electrostatic potential and
create the necessary aperiodicity in the field to cause impurity scattering of the
electrons. The effectiveness of the deflection of an electron by an ionized
impurity is greater the lower the velocity of the electron; hence impurity
scattering tends to dominate in purer crystals at lower temperatures when
thermal scattering is weak, as well as being important when the impurity
concentration is high.

Other possible scattering mechanisms are due to vacancies, dislocations
and other lattice imperfections. It is also conceivable that conduction electron:
could be scattered by holes and vice versa but the probability that thesc
processes occur is slight.

Now let us try to estimate more quantitatively the effects that departurc
from periodicity have on the resistivity of a real solid. Again, it is convenient (¢
revert to the dielectric disc-loaded coaxial line model of a solid discussed 1
Sec. 5.2.2. For a uniform disc spacing, a, we saw that there was no attenuation
in the line, i.e. all reflected waves cancel, unless ka=nzn. If we now assum
a small deviation from periodicity J, such that é < g, it can be shown that (h
reflection coefficient will be proportional to § and the back-scaticred power to
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4" Thus the fraction of power reflected, dP, in a length of line dx is given by
dP/P=Kd?dx
where K is some constant. Integrating we have

P(x)="P, exp(— K%x) (5.19)

Where P, is the power at x=0.
Applying this result to the analogous case of electron waves travelling in the
jiiodic potential of a solid, then if the mean-square departure from

jeiiodicity in potential is 82, it follows by comparison with Eq.(5.19) that

W2 =3 exp(— K% x) (5.20)
I other words, electrons are scattered by the aperiodic potential and the

probable electron density falls off with distance as exp(— Kgix). Notice that if

4" =0 there is no scattering. When 6 is finite, however, the electron density falls
It I /e of its initial value in a mean free path, I, and so

Toc 1/(K82) (5.21)

Since the principal scattering mechanism is due to thermal vibrations we
shull consider the consequences of Eq. (5.21) applied to this case. Ion cores in
4 tealistic solid have a natural frequency of vibration about their equilibrium
pusition; also, as one is displaced, the position of its neighbour is affected and
dLuistic waves propagate. A simple mechanical analogy is that of a linear
thuin of masses, M, joined by springs of stiffness C. Each simple oscillator has
bletle energy Mx?/2 and potential energy Cx?/2. Now, the equipartition of
Sheipy condition requires that the mean energy in each energy state at any

it licular temperature, T, 1s kT/2. Hence
Cx22=kT/2 (5.22)
dil the mean-square deviation from the equilibrium is proportional to T.
Hhiin, lor a practical solid,
32T
aipd from Fq.(5.21)
TcT™!

H sllows from (4.37) that the conductivity, g, is proportional to I and hence
ooc T 1

S the renmtivity, [, 18 propot tional to temperature. This result is in accordance
Sith practice, where

p = po(l 4 onT) (5.23)
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where a; is the temperature coefficient of resistance. The residual resistivity
term in the expression is due to lattice defects, which are present even at very
low temperatures. Such defects are particularly large in disordered alloys such
as nichrome and their effect is to tend to swamp the increase in p due to lattice
vibrations. Hence such alloys are useful where high resistance combined with
a low temperature coefficient of resistance are required.

Now, the energy of the acoustic wave due to thermal vibrations of the lattice
is quantized and can only change in units of hf. The quantum of acoustic
energy is called a phonon (cf. photon of electromagnetic energy). Hence, at very
low temperatures, Eq.(5.22) is no longer valid since kT becomes comparable
to hf and a phonon description of the interaction must be used. This can
account for the departure from linearity of the p—T curve of a practical solid at
very low temperatures.

Although a phonon is actually an acoustic wave propagating through
a solid, it is often convenient to think of the associated quantum of energy, the
phonon, as a particle in the solid capable of interacting with other particles.
Thus, the mechanism we have discussed can be considered as the collision
between electrons and phonons and is indeed sometimes referred to as
electron—phonon collisional scattering.

It is now evident that the classical collisions that have been postulated to
account for resistive effects are realized in a solid by the interaction of electron
waves with other waves due to lattice vibrations.

Problems

1. The E-k diagram for an energy band in a particular material is as shown. Il

~

an electric field is applied to the material in the negative k direction (force in (h
positive direction), find (a) the polarity of the effective masses of the fou
wavepackets made up of groups of states near A, B, C and D, (b) the direction
of the velocity of each of the four wavepackets and (c) the direction ol th
acceleration of each. What are the physical consequences of these results’

Ans (Q)—, —, +, +,(b) —, +, +, —, () —, —, +,
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2. The conductivity of a metal having n free electrons per unit volume is given
by Eq.(4.37) and the Fermi energy by Eq.(4.22). Consider a metal with
it simple-cubic lattice structure of side 0.2 nm and one free conduction electron
per atom. Assuming that the mean free path for electron collisions with the
lnttice is 100 lattice constants, find the relaxation time for an electron with the
F'ermi energy.

Ans. 2.2x 10714



