3 Collections of p:articles
in gases and solids

3.1 Introduction

We have so far discussed only properties of single, isolated_ particlgs. As s;-):i):l ::
i i f many such interacting pa 2
ur attention to whole collections o : actin
‘fwc ::l:;::n(;ﬂe to consider molecules in a gas or electrons in a solid, it is nc;‘lor;'g;rl
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icle. The detailed properties
wton’s laws to each particle. . . :
Oficlj{(:scopic components could be specified only at a particular ;1meti3;ds
r\:rvlould change continuously. Further, because of tbc vast numbers 01 é:ab; »
involved in a typical gas or solid, a microscopic trca‘tmenlt wou
cumbersome to be readily solvable or physma(lily_ mﬁlanﬁi‘;éscopic e
interested in the
tunately, we are usually more 1 _ :
belz;:;our oflzrgc numbers of particles, to predict such‘propertles as curr:tr:;;
ressures, and so on. A statistical treatment that describes the average rbl i
fhan deta:iled properties of a typical component of the complett_‘. ?ssir:n tylrl o
particles is most useful, since the behaviour of the group of particles
ced directly. . .
. ;1; ?)‘:der to determine the average value of, say, the velocity of a mglect:uls ;11
a gas or the energy of an electron in a solid, it 1s necessary to :now“ rcs.ti :n w
iti i e distributed throughout the colieclion.
how the velocities or energies ar D s
i { statistics developed to descri ong
DR i nt but also on the possible
type of particle prese :
depends not only on the . : he possible
a neutral gas, mole
i ions between them. For instance, 1n ral : 1‘
lirxﬁgzﬁts:zge energy by collisions but there is no restriction c;n thlt. c:ir%,i 1;:1
indivi ther hand, when electrons interact i a 501
individual molecules. On the o ‘ : R
1 i the Pauli exclusion principic,
i wed energies are restricted by : 0 principle, Wk
g::?;iilslznly one electron to occupy a particular quantum state, a nd a different
statistics applies. _ . N
tYp\eJ\a’Ofz-;hall initially consider collections of neutral P“lll‘ldt.h .IIII.I(I Iill.\l'.i lu|T
t t?stical method of treatment that not only will be uscllul in describing ..n’:u‘
afsgle roperties of gases and plasmas but also 15 ;lp.ph.(‘:lhll‘ (o many n} ) |l
glcclrnl:lic nnnlcri:nlx.ﬂ We shall then study the statistics ol collections «
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interacting particles that obey the exclusion principle, since this is necessary
for later discussion of the electrical and thermal properties of solids.

3.2 Assemblies of classical particles—ideal gases

Let us consider an ideal gas of neutral molecules containing N molecules per
cubic metre. Individual molecules have a random motion and undergo many
collisions with other molecules and container walls, which result in changes in
the magnitude and direction of their velocity. There is no restriction on the
velocity of a particle at a particular time; it may be zero at one instant or
relatively high at another, and the energy of each molecule is independent of
that of the others. We wish to find how the various velocities and hence
energies are distributed between individual molecules.

At any instant, the position of a molecule can be specified by a set of
coordinates, (x, y, z) say, and its velocity v can also be resolved into
tomponents, (v,, v, v,), in the x, y and z directions, where

vi=vi+ol+0? (3.1)

Hence, the velocity of each particle can be represented by a vector on
I three-dimensional graph with axes v,, v, and v,. Such a velocity space is
lllustrated in Fig. 3.1 A few typical velocity vectors are shown and the dots

Fig. 3.1 Particles in velocity space.

Wpiesent the tips of the velocity vectors of the remaining molecules. The
rlnlllrm ol inding the distribution of velocities among the particles is reduced
W linding the density of such dots in velocity space. This dot density will have

aphecical symmetry, since there ure no preferred velocity directions, and it can
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be written P(v?). Thus, considering the elemental volume shown in Fig. 3.1, the
number of molecules per unit volume, dN ., with velocity components in the
range v,—v, +dv,, v,—v,+dv, and v,—v,+dv, is

dN,,.=P(v?)dv,dv,do, (3:2)

Alternatively, the number of molecules per unit volume with speeds ranging
from v—v+dv, dN, is equal to the number of vector tips (points in Fig. 3.1)
that lie in a spherical shell of radius v and thickness dv in velocity space, or

dN, = P(v*)4nv* dv (3.3)

The loosely termed dot density, P(v?), is called the distribution function for
speeds; it gives the number density in velocity space of molecules with a certain
speed, v. Notice that in all cases the number of particles in a given range equals
the distribution function multiplied by the size of the range.

Since each particle must be represented somewhere in velocity space, the
integral of the number in a given range over all velocity space must equal the
total number of particles per unit volume. For example

f dN”“J P(v?)dnv? do=N (3.4)
0 0

3.2.1 The distribution function, P(v?)

The method we use to determine P(v?) and hence the distribution of velocities
in a neutral gas is not very rigorous but has the merit of not being
mathematically complex.

Consider two molecules, each of mass M, with velocities v; and 0,, which
suffer an elastic collision that medifies their velocities to vy and v, respectively,
as shown in Fig. 3.2(a). Since energy is assumed to be conserved in the collision

vi+ovi=vi+0d (3.5)
collision
collision
U
vy
Uy M
U
M
(a) (b)

Fig. 3.2 Elastic collisions between gas maleciles
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Now, the number of molecules having velocity v, is proportional to the
distribution function evaluated at this velocity, P(v?). Similarly, the number of
molecules with velocity v, is proportional to P(v2). Thus, the likelihood of two
such particles colliding is proportional to the number in each class, and

collison probability oc P(v?)P(v3) (3.6)

The probability of reverse collisions occurring between molecules with
velocities v, and v, to produce particles with velocities v, and v, as depicted in
I'ig, 3.2(b) is, by similar argument, proportional to P(v3)P(v3). Thus, provided
the geometry remains constant and the system is in equilibrium, the
probability of collisions of either type must be the same, and

P(v}) P(v3)=P(v3) P(v3) (3.7)
Now the only type of solution that satisfies Eqs (3.5) and (3.7) simultaneously is
P(v?)= A exp(— pv?) (3.8)

which can be verified by substitution.

lquation (3.8) is the general form of the distribution function for speeds,
und all that remains is to find the values of the constants 4 and f. First, the
expression for P(v?) can be substituted in the normalizing equation (3.4) to
ubtain a relationship between A4 and g as follows:

o0
N=4nA j exp(— pv?)v? dv (3.9)
]
Il iy be verified from tables of definite integrals that

J.m exp(— pv?)v? dv=n"/2/(44%?)

0

Whiuh can be substituted in Eq.(3.9) to give

A=(B/n)**N (3.10)

We now require a further relationship so that 4 and f§ can be obtained
saplicitly, We shall make use of the fact that the temperature of the gas, T, is
#lined in such a way that the mean particle energy per degree of freedom is
b1 Thus, since there are N molecules per cubic metre in the gas, each having
thive dogrees of freedom, the total energy per unit volume is 3Nk T, Now, the

simiher of particles in the specd range between v and v+dv is given by
B () 3), where P(0?) is now given by Eq.(3.8), and each particle in the range
Wk energy AMo?. Thus, the total cnergy per unit volume is

AM )y | A expl  fo?))4no? do=3INkT (3.11)
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We again turn to tables of definite integrals to confirm that
J exp(— pv2)v* dv=3n'/%/85%? (3.12)
0

Making use of this fact in Eq. (3.11) and eliminating first 4 and then § from the
resulting equation and Eq.(3.10) gives

B=M/(2kT) (3.13)
and
M 3/2
AzN(hkT) (3.14)

which can be substituted in Eq.(3.7) to give

" M )32 Myv?
Pw*)= N<2 kT) exp(——2kT) (3.15)

3.2.2 Maxwell-Boltzmann distribution function

The number of molecules in the speed range v to v +dv is given by Eq. (3.3). We
can now be more explicit and include the expression for P(v?) given in
Eq. (3.15), to obtain

M \¥? Mpyp?
=4 ——0? 1

dN, :rrN(2 kT) exp( 2kT>U dv (3.16)

This can be simplified by writing
dN, =Nf(v)dv (3.17)

where
M \3? Mv?\ ,

f(v)=4n<2nkT) exp(— 2kT)v (3.18)

The function f(v) is called the normalized Maxwell-Boltzmann distribution
function for speeds. It is evident from the defining Eq. (3.17) that f(v) is the
fraction of the total number of molecules per unit volume in a given speed
range, per unit range of speed.

A graph of f(v) versus v is shown in Fig. 3.3(a). Areas under such a graph
represent fractional numbers of molecules in given speed ranges. For example,
the area of the region of length dv shown is f(v)dv, which, by referring to

Eq.(3.17), is seen to be equal to dN,/N, the fraction of the total number of

molecules per unit volume in the speed range dv. As a further example, the
fraction of the total number of molecules with speeds less thian o shown on
Fig. 3.3(a) is equal to the area under the curve to the left of
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Fig 1) (31) ?nd (b) Maxwell-Boltzmann distributions for speed and energy; (c) Boltzmann
distribution of particles in a field of force.

41} Use of distribution functions to calculate average values

We have determined the distribution of speeds among the constituent
Mulecules of an ideal gas, in terms of a normalized distribution function f(v),
#Hil e now able to use this to evaluate average values of speeds and velocities,
#hich in turn can describe bulk properties of the gas, as discussed earlier. It
sl be pointed out that the averaging procedures developed are quite
geiiniil und can be applied to any distribution function, even though we shall
b apiecitically concerned with the speed distribution function.

What 15 the most probable speed of a molecule, v,, in a gas obeying
Miswell Boltzmann statistics? The defining Eq.(3.17) indicates that this
seciin when f(v) is maximum, as shown in Fig. 3.3(a). Hence v, €an be found
By differentintion of L. (3.18), which gives

D= (2kT/M)'/? (3.19)

WE eal o our nttention o the nverage speed of o molecule in the gas, 0. This
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may be obtained by finding the number of molecules with a gjv;n speed,
multiplying by the speed, summing all such contributions, and dividing by the
total number of molecules. Thus, by definition,

jvw dN,v sy
0L 3. o 3.20
= [ of @) do (320

For the particular case ofa Maxwell-Boltzmann distribution, Eq. (3..18) can be
substituted in this expression and the integration carried out to give

. I N2 2

ﬁ:

Thus, although o and v, are nearly equal, 7 is slightly higer than v, as shgwn in
Fig. 3.3(a), because in the averaging process the higher speeds are weighted
more heavily than the lower.

The mean-square speed and root-mean-squate (r.m.s.) speed, v, aTC often
required, for instance, for calculating the average kinetic energy of gas
molecules. We can use the same averaging process as described previously to

define a mean-square speed; then

j AN,
;3=_°_T-=j v2 f(v)do (3.22)
(V]

This can be evaluated for the distribution function defined by Eq. (3.18), again
making use of tables of definite integrals, to give

v =3kT/M (3.23)
and the root-mean-square speed is then
0. =092 =(GkT/M)" =(/3)v, (3.24)

as shown on Fig. 3.3(a)-

It will be noticed in passing that Eq. (3.23) can be reg_rranged to show that
the average value of the kinetic energy of a molecule, M v2/2, is equal to 3kT /2,
which is consistent with our earlier assumption.

3.2.4 Energy distribution function

We now study how the energy of molecules is distributed throughout the
ensemble. We make use of the fact that the translational kinetic encrgy ol
a particular molecule, designated E, is given by

E=Mv?*/2 (3.25)

We consider energics in the range between £ and I dld and require wn
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expression for the number of molecules per unit volume wi i
, S e withe
range dN;. Differentiating Eq. (3.25) gives s T

1/2
dv—dE—dE(M) dE

“Mv M\2E) " (QEM)? O
liquations (3.25) and (3.26) are substituted in Eq. (3.16) to give
3/2
dNE=47rN<—£> exp _£ E__iE,_
2nkT kT) M 2EM)'/?
oar
dN;=Nf(E)dE (3.27
where f(E), the distribution function for energies, is given by
08 el E

I'he distribution function, f(E), as defined by Eq. (3.27), gives the fraction of
thie total number of molecules per unit volume in the unit energy range centred
Ul energy E It can be seen from Eq. (3.28) that the shape of the f(E) versus
I curve is dominated by the E'/? term at low energies, rises to a maximum
Villue, and then has an exponentially decaying tail at higher energies when the
#ap( - E/kT) term takes over, as shown in Fig. 3.3(b). It is left as an exercise to
shiow that the most probable energy, which occurs when f(E) is maximum, is

E,=kT/2
415 Boltzmann distribution

Wi have assumed previously that the gas molecules are not acted on by an

éi‘?lllll' forces. Under these conditions, the energy E refers to the kinetiz

fgé’ 1y (‘I\' I©) of a molecule; also, the density of the gas does not vary from point
: ‘HNII '

L ch- now relax this assumption and consider the assembly of molecules to be

;g 4 feld that causes each molecule to experience a force, which, athough it

4y vary spatially, is identical for each constituent. For e;xample, the

%ulf;e il gas may be in a gravitational field or the ensemble may be electrons
g:gdéi the mﬂucncc of an electric field. In either case, a more general theory
§_§&;m that L. (.1..28) is still applicable, provided E is the total energy and
seliden o potential energy (PE) term. The distribution function is then

7 [(EE) o exp(— E/kT) oc exp[ —(KE+PE)/kT] (3.29)
%kia srpresmon s quite peneral and applies to any assembly of particles that
g@a;h! ilrequently. For example, consider a collection of electrons that
SHElally hos o Maxwellinn distribution, say. When it is subjected to an

gEHW Held, apphied such that th potential energy, eV, varies with I,“k;“i““
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the electron distribution everywhere still remains Maxwellian but the energy
distribution function has an additional multiplying factor, exp (—eV/kT),
which affects the local electron density. The electron densitics n, and ny, at two
points where the potential energies are eV, and eV, respectively, are then

related by
ny/n, =exp[—e(V,—V)/kT] 0

Hence, the electron density decreases exponentially with increasing potential
energy. Such a relationship between particle density and potential energy is
called a Boltzmann distribution and is of the form shown in Fig. 3.3(c). It has
general applicability to many systems other than the ones mentioned.

3.3 Collections of particles that obey the exclusion principle

We have discussed assemblies of particles in which each constituent is
independent of any other in the sense that it can take up any energy value; in
other words, several molecules can exist in the same quantum state. We now
turn our attention to collections of particles, electrons in particular, that
interact quantum mechanically with each other in such a way that the
occupancy of a particular state is restricted by the Pauli exclusion principle, i.e.
no two electrons are allowed to occupy the same state. The ensemble must
again be treated statistically, but the additional restriction leads to distribution
functions of a form different from those encountered previously. The
distribution function to be derived is most important, since it is applicable to
free electrons in metals and semiconductors and allows many electrical
phenomena in such materials to be understood, which otherwise could not be
explained using classical concepts.

The arguments leading to a distribution function are similar to those
followed previously, but this time, since we are dealing with quantum-
mechanical systems, the uncertainty principle suggests that, rather than assign
definite energy values to each particle, the probability that an energy state 15
occupied should be considered. Accordingly, let us consider a particular state,
E,, and let the probability of this level being occupied be p(E,). As

a consequence, the probability that there are electrons at two different levels,
E, and E,, simultaneously is p(E,) p(E,). Now, suppose two such electrons
interact in such a way that they are transferred to two other energy levels, I,
and E,. The precise nature of the interaction will be discussed in later chapters
Energy will be assumed to be conserved by this process, and

E,+E,=E;+E, (3.31)

The exclusion principle implies that such an interaction is permissible only il
vacant energy levels existat I, and E,. Now, the probability that level It s noi
accunied is 1 p(lis) and the probability that states Iy and By are viaeant
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simultaneously i —
" inusst ;lt e1SsE[1 (f(E 3)] [1—p(E,)]. Thus, the probability that two
1 and E, interact and are transferred to states E, and E, is
3 4
p(E)p(E,)[1—p(E3)][1~p(E,)]

Since the system is as i
sumed to be in thermal equilibri
. . : quilibrium, the probabili
transferlr)r((;cess, that is, two electrons in the E, and E, s’tatesp inter:éltlty ?ifthe
ed to E; and E, states, must be the same, and hence el

P(E)P(E;) [1—p(E3)1[1 - p(E)]1=p(E;) p(E,)[1 — p(E,)1[1 — p(E,)]

or
1 1 1
—1 Al e 1
(p(El) ><p(E2) 1>—<p(E3)“1><p(E4)~1) (3.32)

T'he solution that sati i
50 sfies both this e i
i ey B Sxlpii quation and the energy conservation

[1/p(E)]—1=4 exp(BE) (3.33)

where 4 and B are const i
7 : ants. That this function si i
“(juations can be verified by substitution i aiEk vy s

Fquation (3.33) can be rearranged to give

., P(E)=1/[1+ A exp(BE)] (3.34)

or high-energy states, the exponential term dominates the denominator and
n

P(E)~ A exp(— BE) (3.39)

Fhig, at hi i istributi

. (:: -gugg)l;zge;il;s tthhe distribution approaches the Boltzmann distribution
diatiibution function: b:ci)ﬁ:t:.ﬁ:lgsia;:lze tificrlltti"ﬁedhw“h aid gl
e ntical for high-energy sta

¥ l“im ::“t:, ;};;steérils(Boltzmann) alloyvs multiple occupancy of Etyates ;erihi;g:
e fmb cuss:d does not, is plausible on physical grounds. At high
R e er of electrons distributed over many available state g'
’ ere are many more energy levels than electrons to occupy thesrrlls

pf"":" these conditions there is little cha

?g;: : : 's:u ) ;:',' :.h:-( .)s'lar;l‘e‘state apd whether the exclllll(;(itozfprtiﬁgip?ér i:?:?;ﬁl;;zcit;(:l?:
et e (-;‘34)@L£$;s‘01rréell)igﬁetso the form of the distribution function.
R P(E)=1/[1+4 A exp(E/kT)] (3.36)
Eﬁg';”n'llt::(l‘ iy:::lznj :::Clz:slsllln:l]rlc, without any loss of generality, that the
A=exp(— E,/kT)

i’é%iﬁ the new conntant, Fy i ealled the Fermi energy: the physical significance

ESHHH conainnt eneig
neipy will hecome apparent Inter, Meanwhile L. (3.36)
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becomes

1
El=————7% i 337
PE) =T exp [(E— Er/kT] @7
This is the Fermi-Dirac function; it gives, for any ensemble obeying the
exclusion principle, the probability that 2 particular state E is occupied. That
the form of the function is consistent with the exclusion principle is apparent
d unity since the exponential term is always

from (3.37); p(E) can never excee
positive; hence the probability of occupancy of a particular state cannot
exceed unity and no more than one electron per quantum state is allowed.
. The nature of the probability function is best appreciated by plotting p(E)
versus E at various temperatures, as in Fig. 3.4. At 0K the-exponential in
Eq.(3.37) has a value of 0 or co, depending on the sign of (E— Eg)- Thus, if
E < Eg, the probability function is equal to unity and for E > Eg, the function
equals zero, as shown in Fig. 3.4(a). Physically, what this implies is that at 0K

E E

|

Eg
0%
0 1
(a) (b)
Fig. 34 Fermi—Dirac probability function (a) at 0 K and (M) at TK.

all available states up to an energy level
Ey are empty, ie. no electrons can possi
serves as a preliminary definition of Eg
called the Fermi brim.

When the temperature is increase
clectrons that were originally at levels near
0 K, namely the Fermi level Eg, can now o¢
than E,. However, energy canno
low-energy states because there are n
above for them to move into and the probability function
remains substantially as it was for T =0 K. These arguments are gubstantial
by the shape of the probability function for T

PR, Y ot ol low tempoeraturet

E; are filled, whereas all levels above
bly have energy greater than Eg. This
and explains why it is alternatively

d to T K, there is a possibility that
to the maximum possible energy al
cupy states for which E is greater
¢ be transferred to those electrons 1n

o unoccupied energy levels immediately
at these energicy

.0 K., as shown in Fig, 1.4A(b). 1t
there is o small but finite probability that
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electrons will occupy available states for whi
iy py 2 _ which E > E. but th ili
tag gfl;t/h(ie;;gi?ts)igtlthf1ncr§a51ng energy. As the temperz:ture is il(:clr)er;)ébe?ibltllll?s{
o }1; unction become.s more pronounced and the probat,ailit
T thzl : thelg e{) eg.efgy states 1s correspondingly increased. -
e ;)ri(:l da ility that an electron occupies the Fermi level, i.e
e pmba.bi,l.t efpend_ent (?f the temperature. Anotherinteresting,fa.ci
N 1ty function 1s symmetrical about the value (E =E
.5). This can be shown as follows. Consider an energy level that;s 6]}:52

above the Fermi level, as sh in Fi
) 9 own | 488
o PR in Fig. 3.4(b). The probability that the level is

p(Ep+0E)= 1 1
1+exp[(Ep+0E—Eg)/kT] 1+exp(6E/kT) (3.38)

1—p(Eg—9d0E)=1— =
; I +exp(—0E/kT) 1+exp(SE/kT)

(3.39)

(C'omparison of Eqs(3.38) a
ri ; nd (3.39) demo
i : v nstrates the symm
:Mmm ; r::); s(l:‘(::z EF’ since Fhe probability that a level at a garticitlr:r ::fcthe
e Er is occupied equals the probability that a level b =
|"'dm;1: energy increment is empty. i e
‘inally, it should be pointed out i
that in man i i i
R y solids E is t
p (‘.(,,l :1)(2 :t izz elictronvolt.s and at ordinary temperature k"l;“ is glll)llcflfy . 'the
ey ZCrO\(l)o t. Thus, since the probability function goes from ni:arlracu'on
-t Cun\;:ri ax; e?n%r‘géfbr)ange near E; of only afew kT, the ordinatz (l)lfntl}ty
¢ y e n Fig 3. has been artifici , ;
ol the variation of p(E) near to E=Ey are n(l)ztﬂigsctompressed et

Fiubloems
L Forahy i
i hypothetical gas the numbe

I r of mol i i

speedd range from v to v+dv is given by e g
dN,=Kvdv vo>v>0
dN,=0 V>,

Shete K is 0 const: ’

: X i8¢ stant. The total numb

R : - The to er of molecules i i

¢ ,7:‘\'«' }V}al(alllvh of the distribution function and find the CE)Jenrs;laI:l]tt Iv(o’lume ef

b i ompute the average, r.m.s. and most probable speeds in tm e

e
iy, 2N/vd, 204/3, v/ 2, 0 i Ofvo'

ol M Pl 0

i II\IH!I'II 11 ll Bt with vV o m l lllll i W { ][0 ( H s y
\ (SR TR} 1t S ‘(I
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distribution function
f)=Cv?
f©)=0

Find the mean-square fluctuation of the speeds, which is defined as the
mean-square speed minus the square of the mean speed.

Ans. 0.04v3

for vo>v>0
for v>v,

3. Show that the Maxwell-Boltzmann distribution function for the speeds of
molecules in a gas can be written in terms of a most probable speed v, thus

4 2 2
f(v)=%ggexp(~z—z)
P 4

Use this expression to find the mean speed and the r.m.s. speed in terms of v,,.
Assume

2 k!
J exp(—ax?)x**1 dx = e

0

and

0

Ans. 2v,//7, (\/3),.

e 1, 3,90 (2k1 "
j exp(—ax?)x** dx = 2k+(1 )(azf+1)

4.Tn a Maxwellian gas the number of particles colliding with unit surface arca
of its container per second is ~

N (8kT

4\ nM )

Caesium atoms are contained within a furnace at temperature T K. Therc i1
also a hot tungsten wire (radius r, length [) inside the furnace and caesiun
atoms striking this wire became singly ionized. The resulting ions are collectcd
on a nearby negative electrode. Show that the ion current I to this electrodc i1
given by

I=erlp(2n/kTM)?

where p is the vapour pressure of the caesium at temperature T and M the
mass of the caesium atom. Can you suggest a practical use for this device!

5. A gas possesses a Maxwellian velocity distribution. Show that the fraction of
molecules in a given volume that possess a velocity component v whaow
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ignitude is greater than some selected value v,, is given by

mv3_|2KT el 2 \1/2
exp(l—n_”z)f ex ( Mox | 4 ( MVox
; 3 P\ kT

definite integral j: exp(— Bs*)ds=1%(n/B)'/? will be required.

& Show that the most probable energy of a molecule in a Maxwellian gas is

/2.

Mhow that the number of molecules, N o0-1n a Maxwellian gas whose energies
hetween zero and E,, where E,«kT, is given approximately by

Now o 0¥ ol Bz

N: 73 gt kT

bce calculate approximately the percentage of molecules whose energies are
than 1 per cent of k7.

Al 1'=0XK the electron energy levels in a metal are all occupied for E< Eg
ate empty for E> Eg. The energy distribution is then of the form

AN/N=CE'?AE for E<Eg
AN/N =0 for E>Eg

1o (' is a constant. Find (a) the average electron energy under these

ilitions and (b) the percentage of the total number of electrons with energies
veon 0.1Eg and 0.2E;.

Any. 0.6Eg, 5.8 per cent.




4 Conduction in metals

4.1 Introduction

In this chapter we shall be considering the conduction of electricity in good
conductors, typically metals. We shall see that in such materials the valence
electrons are no longer associated with any one particular ion core but are free
to wander about the lattice under the influence of external forces. The metal is
then considered simply as a ‘container’ of free electrons, which are only
trapped within the boundaries of the metal. Earlier arguments about bound
particles would suggest that confining the electrons in this manner leads to
a set of discrete energy eigenvalues, much the same as for electrons trapped in
the one-dimensional well of Sec. 2.2. Further, since electrons in the metal will
be subject to the exclusion principle, Fermi rather than Maxwell-Boltzmann
statistics will be applicable to them.

4.2 A simple model of a conductor

The potential energy of an electron located at some distance r from the nucleus
of a single, isolated metal atom will be of the general form shown in Fig. 2.3(a).
Consequently, there will be a set of allowed electron energy levels associated
with the atom, each specified by a particular set of quantum numbers, similai
to that shown in Fig. 2.3(a). Electrons are trapped within the potential energy
well and are thus bound to the atom; not even the outermost valence electrons
usually have sufficient energy to escape.

When such atoms are incorporated in the lattice of a metal, the potential
energy distribution between neighbouring atoms is different from that of the
individual atoms, as shown in Fig.4.1. Since potential energy is a scala
quantity, the potential energies of the individual atoms add and the net encryy
profile is depressed, i.e. is made more negative, as shown in the figure. Thi
causes-some of the less tightly bound electrons, lying in the outermost levels o
the individual atoms, for example those in E, of Fig. 4.1, to have encrpgics

higher than the binding energies of atoms in the lattice. Such valence electron:

can no longer be associated with a particular atom and are [ree to move aboul
the lattice in the vicinity of any ion core. Notice that electrons occupying the
lower energy states are unaffected by the atoms bemng mcorporated mto th
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é‘,/ ion core
Uiy, 4.1 Potential energy and energy levels of neighbouring atoms in a metal lattice.

#iElil ind remain bound to the parent nucleus. We can estimate the number
Uity of free electrons by assuming, conservatively, that each atom provides
t}lilv one such electron. A typical lattice constant of 0.1 nm then suggests
S lilimber density of [(107°)7 173 =103° atoms per cubic metre and a similar
Siiimnum number of free electrons in the same volume.

7 Iie situation is somewhat different near the surface of the metal. Consider
# dclion of the metal lattice shown in Fig. 4.2(a). The nearest atom to

égp;ulwulur sqrface obviously has no neighbouring atom outside the metal
gl llnj P )lCI]tl.al energy is not depressed as in the interior of the metal. Hence
fulentinl barriers exist at each surface, as shown, which are normally

;gg?m mountable E_)y electrons. Thus, although electrons are considered to be
B8 (1 wander unimpeded about the inside of the metal, they are reflected by

potential energy
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the potential barriers at each surface and are effectively trapped inside the

material in this way.
A simple model for a metal might then be as shown in Fig. 4.2(b). It consists
of a three-dimensional container or box in which electrons are free to move

-without hindrance, but under normal conditions electrons are prevented from

penetrating outside the walls by assuming the potential energy outside to be
very high. Such a box will have dimensions that are the same as those of the
metal being considered. Notice that there is some slight ambiguity about the
position of the surface of the metal. All that can be said is that a surface is
located within a distance of order of one lattice constant away from the last
nucleus in a section through the lattice, as shown in Fig. 4.2(a).

4.3 Electrons trapped in a three-dimensional potential box

If the free-electron model of a metal is assumed, the electron energy states will
be the same as those for electrons trapped in a three-dimensional potential
box. Consider a box with dimensions shown in Fig. 4.3. Electrons are free to

By
V = oo
] e
2 : ,/ V=eo
1,7V=0
o Vololepsfaim T uls il 1
VidioA] ! 1 ZOK
%
T A %o iy

Fig. 4.3 Dimensions of a three-dimensional potential box model of a conductor.

move inside the box since the potential energy there, V, is assumed to be zero.
Everywhere else V is assumed to be infinite, in order to confine the electrons (¢
the box. By reasoning similar to that given for the one-dimensional well
problem (Sec.2.2), ¥ must vanish at the walls to ensure that there is zcro
probability of an electron acquiring infinite energy by penetrating outside the
box. Schrédinger’s equation applied to electrons with constant total energy, I'.
inside the box, where V =0, and stated in the coordinate system shown is, [Ton
Eq. (1.43),
' 2% ¥ Y 2m

—E¥=0 (A1)
o2 o T T H

This equation can be solved by the separation-of-variables fechnique by

Alsuming
¥=rf.)f,(»f.) (4.2)

ﬁvherfe the f’s are functions only of the variable used as a subscript. This trial
sulution can be substituted in Eq. (4.1) to give

U S PR
fx dx2 fy dy2 fz dz2 TR B2 (4'3)

Then, by the usual arguments, since E is a constant, making the right-hand side

ul the equation constant, each of the left-h indivi
, s -hand terms must ind
Sinstants, C%, C3, C2, say, and ko

d*f,
dxz == C%fx

d*f,
dyzy= %f)’

dif

dz2

i !mh‘ been éstablished already, the boundary conditions on the wave-
Hulions require that W=0 at the walls of the box. Hence

¥=0

Caf, 4.4)

at x=0 and x=x,
y=0and y=y, (4.5)
z=0and z=z,

Mble solutions to Schrodinger’s equation, given by Eq.(4.4) and also
Wlialying the boundary conditions (4.5), are then

Sfr=A sin(n nx/x,)

fy=B sin(n,my/y,) (4.6)
Sf.=C sin(n,nz/z,)

816 (he n's are quantum numbers, which independently have integer values

R .m~;|nd A, B, C are newly defined constants. That these functions are

:;iln‘x of Eq.(4.4) and also satisfy conditions (4.5) can be verified by
Hon,

t_é somplete expression for the wavefunctions can now be obtained by
fiting the x-, y- and z-dependent parts back into Eq.(4.3). This

o s then normalized, using much the same technique as for the

ensional potential well in Sec. 2.2, to give finally

. ' 2 NYA e 2 NAE 12
3 %ngmm (\ ) :~;|n( ‘r --—) (~) sin<tlﬂ) (3) sin(nznz) @7
] \ X0 Xo Yo ) Zo Zy

that this wavelunction is the product of three one-dimensional
imu—hunn ol the type encountered in Sec. 2.2. (This result may come as no
8 o renders famihar with electromagnetic theory, since as the
Hiensional potentinl well 1w analogous to a short-circuited resonant
ston e, the three dimensional potential box has its electromagnetic

dleil noa shortcirenited resonant cavity,)

%
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The wavefunction expression of Eq.(4.7) is next substituted back into
Schrodinger’s equation to obtain the permitted quantized energy levels of

electrons in the box, to give
!’I,
w2 (nm\2 (nm\2 (nm\|*
E,,x,,y,h:__\:( x > v e sl LAY (4.8)
2m| \ xo Yo Zo
where n,, n,, n, are three quantum numbers that specify a particular electronic

energy state.
The problem is simplified if the containing volume is considered to be

a cube of side d. The expression for the energy eigenvalues given by Eq. (4.8)
then simplifies to

E=8m;2(n§+n§+n§) (4.9)
Finally, if we write
n2=n2+n2+n? (4.10)
the expression for eigenvalues of electrons in a cubical potential box is
2
E—:Smdznz @.11)

which is of the same form as that obtained for the one-dimensional potential
well (Eq. (2.6)).

4.4 Maximum number of possible energy states

It is instructive to find the maximum number of possible energy states for
which n, as defined by Eq. (4.10), is less than some maximum value, ng say. The
discussion and result will be most pertinent to later consideration of the
distribution of electron energies on a metal. -

A particular value of n, which has components n,, 1, and n,, all positive
integers, can be visualized in n space as shown in Fig. 4.4(a). In order to coun!
the number of possible combinations of (n,, n,) up to the maximum valu
ng, which will then automatically specify the possible energy levels via Eq. (4.9),
it is easiest first of all to assume n, fixed at some value, n,, say, and considci
a plane that is a section through n space as shown in Fig. 4.4(b). Each point ii
the diagram represents a particular combination of quantum numbers n, and
n,. Notice that any area on this plane is numerically equal to the number ol
possible combinations of n’s enclosed by the area. For example, the scclion
indicated by broken lines is 12 units of area in extent and encloses 1/
combinations of n, and n,. Now, for the fixed quantum number n,,, the othel
quantum numbers are related by

) 13 ? )

n*—=n* =ns-4 N
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£ 44 Disgrams illustratin i )
; g the evaluation of i
vlectrons trapped in a potential box. et iniam Rt e e of

rﬂmh lhp n'mximum number of possible combinations of n, and n, for n <
il lle within a circle centred at the origin and of radiug (n2 —an )”2\ i
i, by our previous argument this number of combinatiFons );;lu t’ _‘SS
Hv‘nlly equal to the area of the circle in the first quadrant i
. 8 now qllnwcd to assume other values the total numbe'r of possible
hations of ( s 1y n.)is included in a series of slices through n space, each
pond ing to different integer values of n_, as shown diagrammaticéll i
44(e) 1t follows that the total number of possible combinations f};}tn
Win numbers for n < ny, is numerically equal to that volume of a s ho 6;'
4y that i contained in the first quadrant of n space. This latter C(f)n;'? ¥
siry wince the m's are always positive integers. Hence i

talal Wil ol o Mnationa
% fumber of combinntions ol (Hyny,n,) fi(‘vj\"l"i’-‘)ijnllﬁ/G (4.12)

i general, e e e
i al, ench electron energy atate 18 characterized by four quantam
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numbers; in addition to n,, n, and n, there is a spin quantum number, which
can have either of two values. Thus, there are two spin states for any particular
combination of the quantum numbers n, which gives, from Eq.(4.12),

total number of possible energy states =2(nng/6)=nng/3  (4.13)

This gives the total number of available energy levels. These are not in general
necessarily all occupied by electrons. We shall assume, however, that in some
circumstances, the physical significance of which will be discussed later, all
states are occupied up to some maximum energy state characterized by ng. If
the number density of electrons in the box is N, we can then equate the total
number of electrons to the total number of available states, since no more than
one electron can occupy a particular state, by the exclusion principle. Hence

Nd3=an}/3
or
ng=3N/n)?d (4.14)

The energy of the highest occupied state can then be obtained by substituting
this value of n. into Eq. (4.11) to give

2 2/3
4 (ig (4.15)

FO =
8m\ =w

The subscripts to E anticipate later discussions of the physical implications ol
the result, when this maximum energy will be seen to correspond to the Fermi
energy of a metal at 0 K.

4.5 The energy distribution of electrons in a metal

In order to find out the manner in which energy is distributed among the frec
electrons in a metal, it is first necessary to determine the energy distribution ol
allowed energy levels that are available for occupation by the electrons. In
other words, the number of available energy states lying in a range of energicy
say between E and E +dE, is required.

It is found to be convenient to define a function S(E ), called the density
distribution of available states or simply the density of states, which is defined i1
such a way that S(E) dE is the number of available states per unit volume i
the energy range considered; the problem is then modified to that of finding {I
form of S(E).

The relationship between the energy of a state, E, and its quantum numbei
designation, n, for a metal cube of side d is given in Eq. (4.11). In the encrpy
range dE there will be a corresponding range of quantum numbers, dnsay. Wi
can evaluate the number of states in the range by finding the volume that (hy
range dn occupies in n space, as was explained in the previous section. Thu
considering a spherical shell in n space of radiug nand thickness dn, ng show
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n S (E)
2 (a) (b)

g 4.5 (a) Spherical shell used to evaluate S(E ); (b) relationship between S(E) and energy E.

i Fig, '4.5(a), thfa number of states with quantum numbers between n and
ol dn is numerically equal to the volume of the shell in the first octant
filtiplied by 2; the additional factor accounts for the two possible spin state:;

L u*f.‘ponding to each value of n. Thus the number of available states in the
FHHEC 1S

2(4nn*dn)/8=nn2dn (4.16)
which by definition of the density-of-states function, S(E), is equal to
S(E)dE 43
Henoe
nn? dn
S(E):F& 4.17)

Eéhﬂ“ml (4.11) can be differentiated to give

2 dn_(8/2m¥2 42 E12
dE e

§§§ieh vin be substituted in Eq. (4.17) to provide the following expression for
g& Hennity of available states:

oo (B2 mm®?
b([,):TEl/z (4.18)

%}F‘HH ate, the total number of available energy levels per unit volume in
S Enerey ringe, dFis obtained by multiplying this distribution function
LBy (he wize of the range. Thus an alternative definition of S(E)is that it i;
iither ol available states per unit volume, per unit of energy centred at E.

HEE fhat P (L TR) o mdependent of o the expression for S(F) is quite
EEH! and i omndependent of dunensions
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i tion S(E) and energy E is
i . between the density of states func '
h - irglia?tilgorfksl:g) It will be seen that the number of available energy levels
shown . 4.5(b). 1l be :
i lically with increasing energy. - :
lncgaSCS ﬁri?zelneraﬁ, not all the available energy stat'es are ﬁl_ledt, S;I:C, f(t);
Xamo;;/: Vit i’s extremely unlikely that an electron c?]:flhgilril S‘;ﬂjr(;ie;lese Whngher
: : i ich levels. at dete
: the relatively very hig . ne

occupy 0111e grf,ergy level, E say, is filled or not 18 the pfobablhty ;heat :1112
gl arrx ossess energy E. We have seen that for partlgles 'tha‘t on by e
EICCtrO_n s pci le, as electrons in a metal do, such a probabilty 1s give 1y e
excms'l(;r)l'p;:nfugct’ion p(E). Hence, the number of electrons per ux}lt v::ill;ble
g i iven energy range depends not only on the number of av e
thatt s lr}d?egrange but also on the probability that electrons can acq
states in

sufficient energy to occupy the states, or

Ct

x (probability that a state of energy E is occupied)

and
N(E)dE=S(E)dE p(E)

it volume per unit of energy
.« the number of electrons per unit vo! _ .
B dN (tE Pz‘ l'sl“ltllxlls the number density of electrons in a unit energy r;l:bgi; t15
Gfgitr_e at?le fr.om thé distribution function of available states and the pro y
obtain.

function since

N(E)=S(E)(E) | @.19)

1
i i f energy can thus be deduce

sity of electrons as a functlc_m o e

The n]lzlmb: rlg)e:ndyFigs 3.4 and 4.5(b), and is plotted a.t 0K agd s};)r?el 11:5,1 1::
i rg-u(lr;a in Fig. 4.6. At0K, N (E) increases parabolically with E, fo ,
tempe . 4.6.

i
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CONDUCTION IN METALS 71

the S(E) curve and all levels are filled up to the Fermi level, E; all levels above
the Fermi level are empty. At higher temperature some electrons in the levels
niear to the Fermi level can gain sufficient energy to have energies greater than
Iii. Thus, as the temperature is increased, the number of electrons just below
the Fermi level decreases and there is a corresponding increase in the number
of electrons in the high-energy tail with energies greater than Ex.

4.6 The Fermi level in a metal

I the number of free electrons per unit volume in a metal, n, is known, it is then
possible in principle to calculate the value of the Fermi energy, E;. This can be

done by normalizing, by summing the number density per unit energy, N (E),
uver all possible energies and equating to n, thus

ner(E) dE (4.20)

Wiiting N(E) in terms of the density-of-states function, S(E), and the

probability function, p(E), using Eq. (4.19), and including the more specific
sxpressions of Eqgs (4.18) and (3.37) give

n= J ; S(E)P(E)dE:(S\/ 2)mm*/? f = E'2dE

4.21
H h? o 1+exp[(E—Eg)/kT] it
Hhin inlegral is difficult to evaluate except when T'=0K; then p(E) equals
ity for all E<Ey, and is zero elsewhere, and
3/2 Eg
n=“—'—(8\/2)?m / f OE”2 dE
h 0
the Fermi energy at OK is thus given by
h* (3n\%3
Epo=—|— —3.65 % 1012 i3 ;
FO Sm(n:) X ne= eV (4.22)

& #eault that was anticipated in Eq. (4.15).

Fypical values for the Fermi energy at 0 K as calculated from Eq. (4.22) and
8 Bwledpe of n are: for silver, E,=5.5 €V; for copper, Ewy=70¢V;and for
slininium, I, 11.7 ¢V. Thus, the Fermi energy for a good conductor is of

W8 ider of a few clectronvolts. This emphasizes an essential difference
ﬁk(ﬂn 1o cliussical gas and the clectron-gas model of a metal at 0 K; in the
e a1l particles have zero cnerpy while in the latter all electron energies up
e Fermi energy are ponsible

Al eipernture:

cother thin O K, the Fermi energy can be obtained from
B2 ) by numerical Integration, Al room tem werature it can be shown that
ke I
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a reasonably good approximation for Ej. is

T2 KT X~
) o A X 423
g |:1 12 <EF0> :\ b

This equation shows that, whereas Eg decreases with increasing temperature,
since kT is usually much smaller than Er,, Eg is not far removed from Eg, and
is fairly insensitive to temperature changes.

4.7 Conduction processes in metals

We shall first examine electrical conduction in terms of the free-electron model
of a metal. Although there are drawbacks to the treatment, which will be
discussed subsequently, what follows will serve as a simple introduction to the
essential features of conduction processes.

Conduction in electrical conductors is governed by a fundamental
experimental law, Ohm’s law, which in its most general form may be written

J=6& (4.24)

where J is the current density, in a material of conductivity o, produced by the
application of an electric field &. If we assume that the current flow is due to the
movement of n free electrons per unit volume, each of charge —eand travelling
with velocity v, we can write ;

J = —nev (4.25)

Now, an electron subjected to an electric field, &, by definition experiences an
accelerating force, —e&. Thus, in the absence of any restraining force the free
electrons in a metal with an externally applied electric field accelerate
progressively, and as a consequence of Eq. (4.25) the current density increases
with time. This is clearly at variance with Ohm’s law, which requires the
current to be constant for a particular applied field. It is evident that, for the
two expressions for current density to be compatible, the electron velocity
must remain constant for any particular applied field. The constant velocity
can be explained in terms of ‘collisions’ of the electrons with the crystal
structure in which they move. The precise mechanism of the collisions will be
discussed more fully later. Meanwhile, it is sufficient to say that a free electron
can be accelerated from rest by the application of an external electric field,
acquires a linearly increasing velocity for a short time, but then undergocs
some form of collision that reduces its velocity to zero; the process then repeats
itself. As a consequence, the electron acquires a constant average drift velocity
in the direction of the accelerating force, which is superimposed on (o it
random thermal motion. This situation is shown diagrammatically in Iig. 4.7

The effect of collisions in this case, and, incidentally, for similar processes i
semiconductors which are considered in following chapters, is thus (o
introduce a viscous or frictional force, which inhibits the continual accelern
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‘collision’
o 5 5 4 —a— electric field
L _O (] (@]
o O~ O o
i ~
o) o BNy (o]
N
o (o) (o) \ (o]
(a) (b) (©)

Iig. 47 (a) Random mot'ion of an electron through the crystal lattice; (b) as for (a) but on a larger
‘scale; and (c) drift motion of an electron under the influence of an external electric field.

tion of the carriers by the field and limits the velocity to some average drift
velocity, vp.

If the average time between collisions is t,, then the number of collisions per
second is 1/7, and the average rate of change of momentum or the frictional
lorce on the carriers due to collision is mvp/7,. The equation of motion of an
¢électron subject to an applied field in the x direction, &, is then

d m(UDx)
— e =m g n )+ (426)
I'he solution of this equation is
—et1, &,
Vo= 1= [1—exp(~1/x,)] @27)

which may be verified by substitution. We can now substitute this value of vy,
i 1. (4.25) to obtain the current density

2
I =n(— e =225 [1 —exp(—t72,)] (428)

We nee that the electron drift velocity and the current density both rise
siponentially with time to become constant in a time comparable to ..
We can understand the significance of 7, further if we suppose that rafter
suine initial application of the field it is suddenly reduced to zero. Equation
[4.20) indicates that the decay of drift velocity from its initial value at t =0, vy,

ek 1o the thermal equilibrium state when vy, =0 is then governed by the
sHtition

Up = Upg eXpP(—1/7;) (4.29)
His time constant, t,, is often referred to as the electron relaxation time, since it
cuntiols the exponentinl way in which electron drift velocity and hence current
felian back (o zero when the ield w suddenly removed. Tt is typically of order

i
i cand uo torany tiie alter the apphontion of an electric field that is long



74 ELECTRONIC ENGINEERING SEMICONDUCTORS AND DEVICES

compared to this, the mean drift velocity and current density are constant,
their steady-state values being

vpy= —(et,/m)& (4.30)
and

J,=(ne*t,/mé&, 4.31)

The minus sign in the former equation indicates that the electrons drift in the
negative x direction, in the opposite direction to the field. This corresponds to
a conventional current flow in the opposite direction, so J, remains positive.

Equations (4.30) and (4.31) can be somewhat simplified if we assume that 7,
is independent of &, which is usually permissible. We then notice that the drift
velocity of electrons is directly proportional to the applied field. The constant
of proportionality, usually designated p, is called the mobility. Thus

bp=—Ué&, 4.32)
where the electron mobility
pu=et,/m 4.33)

The mobility is thus defined as the incremental average electron velocity per
unit of electric field.

We can now rewrite the current equation in terms of the mobility, and
Eq. (4.31) becomes

J.=neué, (4.34)

Comparing this equation with Eq. (4.24), it is seen that the conductivity of the
metal, o, can be expressed as

c=neu=ne’t /m (4.35)

This expression is quite general and holds for any conduction process,
provided u, n and m are specified for the particular process.

The discussion so far has excluded any mention of the distribution of
allowed electron energy levels or the exclusion principle, which must apply to
electrons in a metal. A graphical representation of the statistical distribution of
the energies of conduction electrons will now be considered, since it gives more
physical insight into the conduction process.

Each conduction electron occupies a particular energy state, which has an
associated velocity that can be represented as a point in the three-dimensional
velocity space shown in Fig. 4.8(a). In the absence of an applied electric ficld,
the electron velocities are random; for every group of electrons travelling with
a particular velocity, there will be a similar number travelling with the same
speed but in the opposite direction, and the distribution in velocity space will
have spherical symmetry. At zero temperature the distribution will be most
compact and all levels will be occupied out to a velocity, v, correspondimge to

A O AT AT A O YT
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(a) (b)

I'ig. 4.8 Distribution of electrons in velocity space: (a) with no applied field and (b) with field &,
applied.

the Fermi energy. Moreover, since Ep=3%mvE the outermost boundary
containing all possible velocities will be a sphere, shown as a broken circle in
I'ig. 4.8(a). Such a boundary is called a Fermi surface, even when it is not
upherical as it is in this diagram.

At more elevated temperatures the boundary of the distribution in velocity
upice becomes more diffuse since a small proportion of electrons now have
velocities greater than vg. This ‘fuzzing’ of the edges of the sphere is not very
pronounced because the corresponding range of energies is only a few kT,
which is generally much less than Ep.

When an electric field &, is applied as shown in Fig. 4.8(b), all electrons in
the distribution are subjected to a force e&, in the — x direction. Only those
¢lectrons near to the Fermi level can move, since only they have unoccupied
energy levels immediately adjacent into which to move. Suppose for the
moment that all electrons suffer a randomizing collision simultaneously at
(e (=0 and that at this instant the electrons have the equilibrium velocity
distribution shown in Fig.4.8(a). At some time ¢ later the distribution as
i whole moves in the negative x direction by a velocity increment e&,t/m. After

4 lurther series of collisions the distribution will tend to revert to its
siuilibrium position. Of course, in a more realistic situation, collisions occur
i1 1 more random manner; some electrons are returning to their equilibrium
punition in velocity space after a collision while others are being accelerated by
the field. Hence, on average, application of an electric field causes the entire
sipuilibrium velocity distribution to be shifted slightly by an amount e, t,/m in
the opposite direction to the field as shown in Fig.4.8(b). The velocity
disiribution i1s no longer symmetrical about the origin and the precise

tancellntion of electron velocity components in the direction of the field does
#ut occur, There is now a slightly preferred electron velocity direction in the
spposite direction to the field, which results in a drift velocity

1% et /m
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ECTRON

bt . petween the equilibrium and-the shifted steady-state

Thus, it is the dlﬁerencuﬂts for the drift velocity and result ing current flow on

distributions that acco _Of course, as soon as the field is removed, the steady

the application of a fie pe symmetrical equilibrium form. !

distribution relaxes 0% t¢ is that the distribution s affected only by the apphed

~ Afurther point to urface and so the most significant relaxation time is not

field near to the Fesl) ole distribution but that of electrons near to Eg, T, S2y-

the average for g Wh(4,31), which give the drift velocity and current density,

Equations (4.20) 2 i jicable provided 7, is interpreted as T,p-

are seet L0 be still ap be emphasized that only a very slight shift for tl}e
Finally, it should. 4 is necessary to account for the flow of current in

cquilibrium dlilstri:u;;gted in Fig. 4.8(b) is very much exaggerated for the sake
2 metal, and that d€

of clarity. odel has been used successfully to explain many aspects

The free-electron tjon in metals, particularly when Fermi statistics is
of electronic con e powever, some details of the propcrtles'of electrical
cmployed. There afe’O ¢ be accounted for quantitatively by the Sl.mple m.ode.l.
conductors that can? ¢hat the electron velocity be limited to a‘dnft veloc1ty, it
For example, in Or ecs gary to postulate some sort of collision mechaiupsm
has been found D€y . o tion. Early theories assumed that the collisions
followed by energy s s and ion cores, which occupy most of thp volume of
were between electrOh@ory is unacceptable can be seen by estimating the mean

a metal. That such agt dJistance between collisions, 1. For electrons near the
ra
frec path or ave

Fermi level Tats (4.36)

y city of an electron with the Fermi energy. Since. the Fermi
where Vg 15 tlhe.Ve:; ipsensitive to temperature, vg is given approximately by
energy is relative

vp~(2Ego e/m)uz

consider copper, Egox7eV and vp~ IQ6 ms~ ! The
) : copper can be estimated using Eg. (4.35); if a measured
relaxation. time fof o0’ Sm™* and a free-electron density of 102° are assumed,
conductivity of 6 % 0~ '*s. Hence the mean free path from Eq. (4.36) is of thc
then T i8 Of ordef etres. This is very much longer than the lattice constant,
order of tens Ofnanoo,l nm. Clearly, collisions are not occurring between
which is of ord jic ions since this would inevitably lead to mean _frcc p;}th::
clectrons and met? s the lattice constant. A more accurate description of the
of the same ordcr‘a,on process will be deferred until the next chapter.
nature of the collis of conductors for which the simple model does not
Another prope_fvely is the temperature dependence of resistivity. It is well

account quantitaﬂtﬂlly that the resistance of a metal increascs almost linearly
pmen
known experim

Thus, since
with temperature: l

1f, for example,

P
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and since vy is almost independent of temperature, I would be expected to
decrease almost linearly with increasing temperature; this is at variance with
a free-clectron theory, which suggests a T~ !/2 dependence of the mean free

path and the conductivity. The discrepancy will be accounted for in the next
chapter.

Problems

1. A particular metal contains 10?2 free electrons per cubic metre. Find the

number density of electrons in the energy interval 2.795 to 2.805eV at
T=300K.

Ans. 8x10°m™3

2. The Fermi level in copper at 0K is 7.0eV. Estimate the number of free
electrons per unit volume in copper at this temperature.

Ans. 84x10%%m™3

1. Calculate the Fermi energy at 0K in copper given that there is one

conduction electron per atom, that the density of copper is 8920 kg m ™3
ity atomic weight is 63.54.

Ans. 7.06eV

and

4. Use the equation of motion of an electron in a metal under the influence of
an electric field &, Eq. (4.26), to show that if an alternating field 6, exp(jwt) is
applied, the effective conductivity of a metal may be written

o=0,/(1+jort,)
where o, is the low-frequency conductivity. [Hint: Write Cexp(jot) as

i solution of the equation, where C is to be found.] What do you infer from the
sennlt?





