Physics of Electronics:

4. Conduction in Metals

&
5. Energy Bands

July — December 2008



Contents overview

A simple model of a conductor.
Electrons in a 3D box.
Maximum number of possible energy states.
Energy distribution of electrons in a metal.
Fermi level in a metal.

Conduction processes in metals.

Energy bands:
— Energy splitting
— Bloch’s theorem



A Simple Model of a Conductor

 From one atom to a collection of atoms:

~unperturbed potential
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The potential barrier confines the electrons inside the faces of the
conductor. Therefore we can model a conductor as unbound or
free electrons confined to a potential box.




Electrons ina 3D box

e Free electron model: v =0 inside box & V = « outside box
— Start from t-independent SE: 7 y
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— Solving, using continuity, and normalizing:

5\ N PRV
Yonn = [j sin[nxﬂxj( ) sin( Y y)[ ] sin[nﬂz]
S XO XO yO yO ZO ZO
h* 2 where: d = x, =y, =,
8md n?=n2+n?2+n,?

E =




Space of States

 We can represent every state as a point in a 3D
space.

4 * In this representation, each point

1y 3ﬂ ]
2~ - corresponds to one available
State.
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e To each unit of volume
corresponds one available state.

« We will consider large number of
points (continuum limit).



Maximum Number of States

» Given a (maximum) number n-, how many Origin
of states are there?

 The number of states such that n

< ng corresponds to the volume
generated by ng (spin) :

V. =27zn/6
e At 0 K we have:

Number of electrons = Number states n < ng

Nd3=mnni/3
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Energy Distribution of e- in a Metal

* What is the number of (available) states with
energies In the range E and E+dE ?

Ny * Number of states in shell dn is equal to
twice its volume:

2(4nn? dn)/8 =nn? dn

» Density of (available) states, S(E):
S(E)dE gives the number of states with
energies in the range E and E+dE
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Energy Distribution of e- in a Metal

* What is the number of (available) states with
energies In the range E and E+dE ?

N(E)JE = S(E)dE x  p(E)

number of e = number of available states x  probability of occupation

number of e~ per unit volume
‘ N(E) = S(E) p(E) and unit energy

T increasing




Fermi Level in a Metal

 From N(E) the number of electrons in a metal Is:

H=I N(E)dE = f " s@E)p(e) ap =&Y J . E'?dE

o A _ h? o l+exp[(E—Eg)/kT]
e At T =0:
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* Note that in a gas the energy of the particles is 0.
* In a metal the electrons have an energy up to E., (few eV’s).

e At T >0: 3 >
o5

At usual temperatures KT ~ meV E. depends slowly on T.




Conduction Processes in a Metal

 Consider a (classical) free e~ moving in a metal.
— There are collisions with the crystal structure:
Q/erage time between collisions
&= 10

— Collisions are described by a frlctlon term.

— The equation of motion of the electron in an external
electrical field is:

—ed—f=mXx



Conduction Processes in a Metal

 Consider a (classical) free e~ moving in a metal.
— There are collisions with the crystal structure:
/\K Q/erage time between collisions
({(}G
— The frlctlon IS assumed to be proportlonal to mx/z.
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— Atlarge times (t >> z): vy, = —(er,/m)é = —pu &,
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Conduction Processes in a Metal

 Consider a (classical) free e~ moving in a metal.
— Current density:

ne‘t. &

J=ngx wm) J=p(—e,, = m"x[1~exp(-—t/'r‘,)]

— At large times (t >> 7):

J.=(ne*t,/m)é, =neué,
\ J
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— The last relation 1s Ohm’s law with:

c=nepw=ne*t /m




Conduction Processes in a Metal

e Conduction and distribution of states:

— Every available state Is characterized by an energy E
with which we can associate a velocity ( E = Y2 mv?) :
& =0

Some scatter
dueto 7T >0
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Conduction Processes in a Metal

e Conduction and distribution of states:

— Every available state Is characterized by an energy E
with which we can associate a velocity ( E = Y2 mv?) :
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Conduction Processes in a Metal

e Conduction and distribution of states:
— What are the scattering centers?
— Are they the nuclei?

le =Ver,. = (2Ece/m)**z, il |

For copper:

E.~7eV; v.=10°m/s; 7.

m) I ~10nm

Scattering centers cannot be nuclei!!!
atomic distances are of the order of 0.1 nm _
( ) Vox = _(eTrF /m)




5. Energy Bands



Origin of Energy Bands

* Energy splitting. —

energy

Two atoms separated
a distance .
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Origin of Energy Bands

* Energy splitting.

Two atoms separated f,p

a distance r are

/ NV \

brought together. "’| 5 PR
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Origin of Energy Bands
* Energy splitting.

Two atoms separated
a distance r are

brought together.
hﬂ
8méd2 [
&
ik
S
L
4 8mb?

splitting

/ antis ymmetrical

degeneracy

m-———— - e ] =



Origin of Energy Bands

* Energy splitting.

Three atoms separated
a distance r are brought
together.

4




electron energy

Origin of Energy Bands

* Energy splitting.
More atoms are brought together.

continuous bands

start to form atomic

levels
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Origin of Energy Bands

* Bloch’s theorem.
— Let’s consider a 1D chain of N atoms of period a.

* The potential has the same periodicity:
Vix)=V(x+a)=V(x+2a)= ...

e The w.f. has to have the same periodicity:

Y(x + a) = Cix)



Origin of Energy Bands

* Bloch’s theorem.
— Let’s consider a 1D chain of N atoms of period a.

 Further we consider that the chain forms a ring:
Ylx + Na) = ¢(x) = CV P(x)

=) CN=1 = C = exp(i2ms/N) ; s=0,1,2,...,N—1.

 To satisfy the periodicity and the value of C, the w.f. has to be:

v (X) = u (X)e® | with: wu@) = wx + @) & k = 2wrs/Na

I.e. a plane wave modulated in space



Allowed Energy Bands

* Kronig-Penney model.
— Let’s consider a 1D chain of N atoms of period a.
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Ox dx we are looking
B2 =2mE/h* 22 =2m(V, — E)/? .~ for bound states
e 3 0
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Allowed Energy Bands

* Kronig-Penney model.
— Let’s consider a 1D chain of N atoms of period a.

| ® | ® | ® |
- a ez a >
Vo
. | 7
-a 0 a 2a
— From continuity of y and dy/dx at the boundaries:

* Atx=0. A4B=c+D. iBA-B=a(C-D).

— From Bloch’s theorem, v (X + a) = v (X)e'ka:

e At X =-Db: Aeif @) + Be-if(a-b) = (Cgia (-h) + Deg -z (-h)) g-ika
i3 [Aeif(a-b) — Be-if(a-b)] = o [Ceie (D) — Dg -ier(-h)] g-ike



Allowed Energy Bands

* Kronig-Penney model.

— The previous system of 4 equations have a solution only
If Its determinant is equal to zero giving:

[(a® — B#12a] sinh ab sin B (a-b) + cosh ab cos S (a-b) = cos ka
NOTE: The solution of this equation gives the values of the allowed E

— For simplicity, let’s consider the case b - 0 & Vy—
but such that & 2ba/2 = P remains constant.

—Inthislimita» f & ab « 1. Then:

(P/Ba)sin pa + cos Ba = cos ka



Allowed Energy Bands

* Kronig-Penney model.
— What are the allowed electron energies E= 732/2m?

— We have to solve (P/ga)sin fa + cos Ba = cos ka

A
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E 1 left-hand side of eq. (5.9)
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+
og_[ b “ range of right-hand side of eq. (5.9) _
= i“l 1 forbidden energy bands
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/
/  solutions exist allowed energy bands

\\‘_ _/I only in shaded areas

— As P becomes larger (i.e. the product bV,), the allowed bands become
narrower.
— AsP — 0, #— k (i.e. towards the free electron model)



Conclusions

* \We have Introduced a simple model for
conduction. Not all electrons conduce but those
close to the Fermi energy.

* \When going from isolated atoms to an assembly of
them, energy bands start to form.

 Electrons can only exist in those bands. Not all
energies are permitted.



