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A Simple Model of a Conductor
• From one atom to a collection of atoms:

~unperturbed potentialp p

The potential barrier confines the electrons inside the faces of the p
conductor. Therefore we can model a conductor as unbound or 
free electrons confined to a potential box.



Electrons in a 3D box
• Free electron model: V = 0 inside box & V =  outside box

– Start from t-independent SE:p
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– Solving, using continuity, and normalizing:



















































0

21

00

21

00

21

0

sin2sin2sin2
z

zn
zy

yn
yx

xn
x

zyx
nnn zyx



where: d = xo = yo = zo
n2 = nx

2 + ny
2 + nz

2



Space ofStates
• We can represent every state as a point in a 3D 

space.
• In this representation, each point 

corresponds to one available 
state.

• To each unit of volume 
corresponds one available state.

• We will consider large number of• We will consider large number of 
points (continuum limit).



Maximum Number of States
• Given a (maximum) number nF, how many Origin 

of states are there?
• The number of states such that n 
 nF corresponds to the volume 
generated by nF  (spin) :

62 3
FF nV 

• At 0 K we have:

Number of electrons = Number states n  nFF



Energy Distribution of e- in a Metal
• What is the number of (available) states with 

energies in the range E and E+dE ?
• Number of states in shell dn is equal to 

twice its volume:
Ed

• Density of (available) states, S(E):E

Ed

Density of (available) states, S(E):
S(E)dE gives the number of states with 
energies in the range E and E+dE

E



Energy Distribution of e- in a Metal
• What is the number of (available) states with 

energies in the range E and E+dE ?
N(E)dE =           S(E)dE  p(E)

number of e- =    number of available states      probability of occupation

N(E)  =  S(E) p(E) number of e- per unit volume
and unit energy



Fermi Level in a Metal
• From N(E) the number of electrons in a metal is:

At T 0• At T = 0:

• Note that in a gas the energy of the particles is 0.
• In a metal the electrons have an energy up to E (few eV’s)• In a metal the electrons have an energy up to EF0 (few eV s).

• At T > 0:

• At usual temperatures kT ~ meV  EF depends slowly on T.



Conduction Processes in a Metal
• Consider a (classical) free e– moving in a metal.

– There are collisions with the crystal structure:y
r = average time between collisions

– Collisions are described by a friction term.
– The equation of motion of the electron in an externalThe equation of motion of the electron in an external 

electrical field is:



Conduction Processes in a Metal
• Consider a (classical) free e– moving in a metal.

– There are collisions with the crystal structure:y
r = average time between collisions

– The friction is assumed to be proportional to                :
xmxme   E xmxe

r
x 


E

– At large times (t >> r):



Conduction Processes in a Metal
• Consider a (classical) free e– moving in a metal.

– Current density:y

– At large times (t >> r):

– The last relation is Ohm’s law with:



Conduction Processes in a Metal
• Conduction and distribution of states:

– Every available state is characterized by an energy Ey y gy
with which we can associate a velocity ( E = ½ mv2) :



Conduction Processes in a Metal
• Conduction and distribution of states:

– Every available state is characterized by an energy Ey y gy
with which we can associate a velocity ( E = ½ mv2) :

• Only the electrons close to the Fermi 
surface can move.

• Previous equations are valid but with:Previous equations are valid but with:

rFr  

  xrFxD mev E



Conduction Processes in a Metal
• Conduction and distribution of states:

– What are the scattering centers?g
– Are they the nuclei?

rFFrFFF meEvl  21)2(

For copper:pp

s10;sm10;eV7 146  rFFF vE 

nm10Fl

  xrFxD mev E
Scattering centers cannot be nuclei!!!

(atomic distances are of the order of 0.1 nm)



5. Energy Bandsgy



Origin of Energy Bands
• Energy splitting.

Two atoms separated 
a distance r.

Modeled by potentialModeled by potential 
wells.

If r is large, w.f. are 
unperturbed.

Negative w.f. is also 
a possible solution



Origin of Energy Bands
• Energy splitting.

Two atoms separated 
a distance r are 
brought together.

r > 

r = 1
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Origin of Energy Bands
• Energy splitting.

degeneracysplitting

Two atoms separated 
a distance r are 
brought together.



Origin of Energy Bands
• Energy splitting.

1 2 3

Three atoms separated 
a distance r are brought 
together.
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Origin of Energy Bands
• Energy splitting.

More atoms are brought together. Example: Carbon.

continuous bandscontinuous bands 
start to form atomic 

levels



Origin of Energy Bands
• Bloch’s theorem.

– Let’s consider a 1D chain of N atoms of period a.p

• The potential has the same periodicity:

a a

• The w f has to have the same periodicity:• The w.f. has to have the same periodicity:



Origin of Energy Bands
• Bloch’s theorem.

– Let’s consider a 1D chain of N atoms of period a.p

• Further we consider that the chain forms a ring:

a a

CN = 1

• To satisfy the periodicity and the value of C, the w.f. has to be:

with: &(x) = uk(x)eikx

i.e. a plane wave modulated in space



Allowed Energy Bands
• Kronig-Penney model.

– Let’s consider a 1D chain of N atoms of period a.p

a a
VV0

I IIb

0 a 2a-a

we are looking 
for bound states

I



Allowed Energy Bands
• Kronig-Penney model.

– Let’s consider a 1D chain of N atoms of period a.p

a a
VV0

I IIb

– From continuity of  and d/dx at the boundaries:
At 0

0 a 2a-a

• At x = 0:

– From Bloch’s theorem, (x + a) = (x)eika:

i

• At x = –b: Aei(a–b) + Be–i(a–b) = (Cei(–b) + De –i(–b)) e–ika

i[Aei(a–b) – Be–i(a–b)] =  [Cei(–b) – De –i(–b)] e–ika



Allowed Energy Bands
• Kronig-Penney model.

– The previous system of 4 equations have a solution only p y q y
if its determinant is equal to zero giving:

(a–b) (a–b)    a( )  ( )

NOTE: The solution of this equation gives the values of  the allowed E

– For simplicity, let’s consider the case b  0 & V0 
but such that 2ba/2 = P remains constant.

– In this limit  »  & b « 1. Then:

  



Allowed Energy Bands
• Kronig-Penney model.

– What are the allowed electron energies E= Ñ 2/2m?g 
– We have to solve   

P

forbidden energy bands

P

ll d b d

– As P becomes larger (i.e. the product bV0), the allowed bands become

allowed energy bands

As P becomes larger (i.e. the product bV0), the allowed bands become 
narrower.

– As P  0,  k (i.e. towards the free electron model)



Conclusions
• We have introduced a simple model for 

conduction. Not all electrons conduce but those 
close to the Fermi energy.

• When going from isolated atoms to an assembly of g g y
them, energy bands start to form.

• Electrons can only exist in those bands Not all• Electrons can only exist in those bands. Not all 
energies are permitted.


