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Contents overview
• Assemblies of classical particles.
• Collection of particles obeying the exclusion 

principle.
• A simple model of a conductor.
• Electrons in a 3D box.
• Maximum number of possible energy states.
• Energy distribution of electrons in a metal.
• Fermi level in a metal.
• Conduction processes in metals.



Assemblies of Classical Particles
• Consider a gas of N neutral molecules

dVxyz
The number of particles in dVxyz is

and in a shell of thickness dv is 

where P(v2) is the density of 
particles having a speed v (i.e. 
density of points in v-space).

Total number of particles is:



Assemblies of Classical Particles
• The distribution function (distribution of speeds):

– To find P(v2) let’s consider collisions inside this gas

– Constants A and β are found from:

Collision and reversed collision:

Energy conservation:

Total number of particles:

Definition of T:

Mean kinetic energy
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• Relation between P(v2) and f (v):
– Number of particles in a shell of thickness dv:

– f (v) gives the fraction of molecules (per unit volume) 
in a given speed range (per unit range of speed).

Fraction of 
molecules with 
speed less than v’

Maxwell-Boltzmann Distribution Function



Energy Distribution Function
• From speed to energy distribution:

– Considering only kinetic energy:

– Replacing on dNv:

Note that the density of the particles 
is independent of the position

⇒
2

2MvE =



Boltzmann Distribution Function
• How the energy is distributed in the ensemble

– We now consider that the particles in the ensemble not 
only have KE but also PE (gravitational or electrical 
field).

– If the PE depends on the position so does the density of 
the ensemble:



• Ensembles obeying exclusion principle
– Two quantum particles (E3, E4) interact and end up in 

two states (E1, E2) previously empty:

– When E→∞ it  reduces to the Boltzmann distribution:

Fermi-Dirac Distribution

E1+ E2  = E1+ E2

β = 1/kT

E1, 1- p(E1)

E2, 1- p(E2)

E3, p(E3)

E4, p(E4)

=



Fermi-Dirac Distribution
• Ensembles obeying exclusion principle

– The constant A is redefined through EF and can be 
found via normalization

Note that for T = 0, p(E) reduces to 
a step function. It means that all the 
states with energies E ≤ EF are 
occupied and those above, are 
empty. When T > 0, some states 
below EF are emptied and some are 
occupied due to thermal energy.
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A Simple Model of a Conductor
• From one atom to a collection of atoms:
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A Simple Model of a Conductor
• From one atom to a collection of atoms:

The potential barrier confines the electrons inside the faces of the 
conductor. Therefore we can model a conductor as unbound or 
free electrons confined to a potential box.

~unperturbed potential



Electrons in a 3D box
• Free electron model: V = 0 inside box & V = ∞ outside box

– Start from t-independent SE:

– Solving by variable separation:

( ) 02
2

2 =Ψ−+Ψ∇ VEm


idem for y & z



Electrons in a 3D box
• Free electron model: V = 0 inside box & V = ∞ outside box

– Start from t-independent SE:

– Solving and using continuity                                        
(Ψ = 0 at the walls)

( ) 02
2

2 =Ψ−+Ψ∇ VEm


where
nx , ny , nz = 1,2,3..



Electrons in a 3D box
• Free electron model: V = 0 inside box & V = ∞ outside box

– After normalization

– Back into SE we obtain the energy of every state

– Note that results are similar to 1D well

For every triplet (nx , ny , nz) there exists an allowed state.

where
d = xo = yo = zo

n2 = nx
2 + ny

2 + nz
2
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Space ofStates
• We can represent every state as a point in a 3D 

space.
• In this representation, each point 

corresponds to one available 
state.

n (nx , ny , nz) 



Space ofStates
• We can represent every state as a point in a 3D 

space.
• In this representation, each point 

corresponds to one available 
state.

• To each unit of volume 
corresponds one available state.

• We will consider large number of 
points (continuum limit).



Maximum Number of States
• Given a (maximum) number nF, how many 

allowed states are there?
• How many triplets (nx, ny, nz) are 

there such that:
nF ≥ n = (nx

2 + ny
2 + nz

2)½ ?

• The loccus of  nF is a sphere.



Maximum Number of States
• Given a (maximum) number nF, how many 

allowed states are there?
• How many triplets (nx, ny, nz) are 

there such that:
nF ≥ n = (nx

2 + ny
2 + nz

2)½ ?

• The loccus of  nF is a sphere.

• The number of states such that n 
≤ nF corresponds to the volume 
generated by nF:
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Maximum Number of States
• Given a (maximum) number nF, how many 

allowed states are there?
• How many triplets (nx, ny, nz) are 

there such that:
nF ≥ n = (nx

2 + ny
2 + nz

2)½ ?

• The loccus of  nF is a sphere.

• The number of states such that n 
≤ nF corresponds to the volume 
generated by nF  (spin) :

62 3
FF nV π=



Maximum Number of States
• Given a (maximum) number nF, how many 

allowed states are there?
• At 0 K we have:

Number of electrons = Number states n ≤ nF

• Therefore:

• The energy corresponding to nF:



Energy Distribution of e- in a Metal
• What is the number of (available) states with 

energies in the range E and E+dE ?
• Number of states in shell dn is equal to 

twice its volume:



Energy Distribution of e- in a Metal
• What is the number of (available) states with 

energies in the range E and E+dE ?
• Number of states in shell dn is equal to 

twice its volume:

• Density of (available) states, S(E):
S(E)dE gives the number of states with 
energies in the range E and E+dE

E⇔

Ed⇔



Energy Distribution of e- in a Metal
• What is the number of (available) states with 

energies in the range E and E+dE ?
N(E)dE =           S(E)dE × p(E)

number of e- =    number of available states     × probability of occupation

N(E)  =  S(E) p(E) number of e- per unit volume
and unit energy



Fermi Level in a Metal
• From N(E) the number of electrons in a metal is:

• At T = 0:

• Note that in a gas the energy of the particles is 0.
• In a metal the electrons have an energy up to EF0 (few eV’s).

• At T > 0:

• At usual temperatures kT ~ meV  EF depends slowly on T.



Conclusions
• We have introduced a simple model for electrons 

in a solid: free electron model.
• We simulated it using a 3D box potential.
• We have introduced the concept of Fermi energy: 

energy of the last occupied state.
• We have deduced the energy distribution of this 

electrons.



A 2D metal?
• Consider graphite:

• Single layers obtained from exfoliation:

http://www.sciencemag.org/cgi/reprint/306/5696/666.pdf
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