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Assemblies of Classical Particles

» Consider a gas of N neutral molecules

" 4V, The number of particles in dV,,, Is
o dv | s dN,,,=P(v*)dv, dv,do,

it d : and in a shell of thickness dv is
ol dN, = P(v?)4nv? dv

> Fon ey where P(v?) is the density of
op A A particles having a speed v (i.e.
WL, density of points in v-space).

Total number of particles is: deﬁj P(v*)4nv? do=N

0 0



Assemblies of Classical Particles

 The distribution function (distribution of speeds):

— To find P(v?) let’s consider collisions inside this gas

Collision and reversed collision:
P(v})P(v3) = P(v3) P(v3)

Energy conservation:

v24+vi=0v3+403

m=)  P(v?)=A exp(— fv?)
— Constants A and g are found from:

i & A =M/(2kT
Total number of particles: N=4nAj exp(— Bv3)v? d P RieTy
. 0 >
- e, . 0 - M 3/2
Definition of T: ‘ Yo (M V2) [A exp(-pvA)] 4v* dv=3NKT | A=N(2nkT)
0 -

——
Mean Kinetic energy



Maxwell-Boltzmann Distribution Function

 Relation between P(v?) and f (v):
— Number of particles in a shell of thickness dv:

dNU=P(U2)4ﬂ:U2 dv M 3/2 MUZ
. » 2
}‘ fo)=4z (2::1:1’) “p( 2k:r)”

dN,=Nf(v)dv

— f (v) gives the fraction of molecules (per unit volume)
In a given speed range (per unit range of speed).

Fraction of
molecules with

f(v) speed less than v’




Energy Distribution Function

* From speed to energy distribution:

— Considering only Kinetic energy:

Mv? dE _dE({M\'? dE
_ dv= L D T AR
E= 5 = d=3n=w\3E QEM)™?

— Replacing on dN,:

s M \? Mv?\
AN, = NF0) do= et 35 “p(ndv )

___________________

/(E)

Note that the density of the particles
Is independent of the position

Cry

E =kT}/2 kT



Boltzmann Distribution Function

low the energy is distributed in the ensemble

— We now consider that the particles in the ensemble not
only have KE but also PE (gravitational or electrical

field).
(1) o exp(— E /kT) oc exp[ —(KE+PE)/kT]

— If the PE depends on the position so does the density of
the ensemble: .

ny/n; =exp[—e(V,—V)/kT]

number density

g
potential energy



Fermi-Dirac Distribution

* Ensembles obeying exclusion principle

— Two quantum particles (E;, E,) interact and end up in
two states (E,, E,) previously empty:

Ey, 1- p(Ey) = P(E)
1 1 O\/O 3 P(Es P(E,)p(E)[1—p(E5)][1—p(E,)]
1
Ez, 1- p(Ez) O/\‘ E4’ p(E4)

P(E3)p(E ) [1—p(E)][1—p(E,)]
1 =N
= (i e
p(E,) p(E;) p(E;) P(E,) >m=> [1/p(E)]—1=A exp(BE)

E+E, =E+E, p(E)=1/[1+ A exp(BE)]

— When E—o It reduces to the Boltzmann distribution:
P(E)~A exp(—BE) =) B=1/kT



Fermi-Dirac Distribution

* Ensembles obeying exclusion principle

— The constant A Is redefined through E_ and can be
found via normalization

1
A=exp(-E; /KT) ‘ P = P [E—EJkT]

P(E)
1
Note that for T = 0, p(E) reduces to
a step function. It means that all the
states with energies E < E. are
occupied and those above, are
empty. When T > 0, some states
below E are emptied and some are
occupied due to thermal energy.

0.5}




A Simple Model of a Conductor

 From one atom to a collection of atoms:

Unbound states

_—
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A Simple Model of a Conductor

 From one atom to a collection of atoms:

Unbound states
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A Simple Model of a Conductor

 From one atom to a collection of atoms:

Unbound states

Bound states




A Simple Model of a Conductor

 From one atom to a collection of atoms:

~unperturbed potential

NaYaYaYd

The potential barrier confines the electrons inside the faces of the
conductor. Therefore we can model a conductor as unbound or
free electrons confined to a potential box.




Electrons in a 3D box

e Free electron model: v =0 inside box & V = « outside box
— Start from t-independent SE:

Z’ y
V=00
vy 1+ 2T (E v )y =0
h ”
" ‘ g
Z Ve = oo
S i i Y) s ¥
— EY¥Y =() /| ! fv___o /
0x* a}f 67 h V=00 yﬂJ-_i ________
= j f/ i
/
_ _ \ 5’.—’!7!!?#’ X *";
— Solving by variable separation: Vi
L1d%f, Ldf, 14, 2mE
Y=1.00/,0)/,) W FETtradtegs—
fq2r

o2 =Cifs  idemfory &z



Electrons in a 3D box

e Free electron model: v =0 inside box & V = « outside box
— Start from t-independent SE:

veg 2T E -V )¥ =0
h e
e Rl g
- = 00
L g S B LK 1
@x2 a}f2 az::: hE y o V=M4 yﬂ}-i_li:;y
/l 7
/ 7
'%ff?ffrx -
. - - - 0 Xp X
— Solving and using continuity el

(W = 0 at the walls)

fx=A sin(n x/x,) fy=B sin(n,my/y,) where

fz= C Siﬂ(anZ/ZO) nX’ ny1 nz — 1,2,3..



Electrons in a 3D box

e Free electron model: v =0 inside box & V = « outside box
— After normalization

) V2 ) V2 N ) V2
o 2
Y Xo X Yo Yo L, Zy

For every triplet (n, , n,, n,) there exists an allowed state.

— Back into SE we obtain the energy of every state

h2 where

2 — — —
8md2n d=Xx,=Y,=1,
n2:nx2+ny2+n22

FE =

— Note that results are similar to 1D well



Space of States

* \We can represent every state as a point in a 3D
space.

* In this representation, each point
corresponds to one available
Sstate.




Space of States

* \We can represent every state as a point in a 3D
space.

* In this representation, each point
corresponds to one available
Sstate.

e To each unit of volume
corresponds one available state.

* We will consider large number of
points (continuum limit).




Maximum Number of States

* Given a (maximum) number ng, how many
allowed states are there?

 How many triplets (n,, n,, n,) are
there such that:
Ng>n=(nz2+ns+nz)»=?

« The loccus of ng is a sphere.




Maximum Number of States

* Given a (maximum) number ng, how many
allowed states are there?

 How many triplets (n,, n,, n,) are
there such that:
Ng>n=(nz2+ns+nz)»=?

« The loccus of ng is a sphere.

 The number of states such that n

< ng corresponds to the volume
generated by ng:
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Maximum Number of States

* Given a (maximum) number ng, how many
allowed states are there?

 How many triplets (n,, n,, n,) are
there such that:
Ng>n=(nz2+ns+nz)»=?

« The loccus of ng is a sphere.

 The number of states such that n

< ng corresponds to the volume
generated by ng (spin) :

V. =27zn/6




Maximum Number of States

* Given a (maximum) number ng, how many
allowed states are there?

e At 0 K we have:

Number of electrons = Number states n < ng
Nd?®=mnni/3

e Therefore:
ne=(3N/n)'"?d

 The energy corresponding to n.:

h% (3N \2?
EFO:Sm( T )




Energy Distribution of e- in a Metal

* What is the number of (available) states with
energies In the range E and E+dE ?

* Number of states in shell dn is equal to
twice its volume:

2(4nn? dn)/8 =nn2dn




Energy Distribution of e- in a Metal

* What is the number of (available) states with
energies In the range E and E+dE ?

ny * Number of states in shell dn is equal to
twice its volume:

2(4nn? dn)/8 =nn2dn

» Density of (available) states, S(E):
S(E)dE gives the number of states with
energies in the range E and E+dE

Fi;

-
— -

mm) S(E)dEd®=nn?dn ) S{E}:ﬂnzdﬂ

d3 dE

h? 8 3/2
E = ﬂnz - S[H}z( ijﬁfm El/?




Energy Distribution of e- in a Metal

* What is the number of (available) states with
energies In the range E and E+dE ?

N(E)YJE = S(E)dE x  p(E)
number of e = number of available states x  probability of occupation

‘ N(E) — S(E) p(E) number of e~ per unit volume

and unit energy
E+ T i = T i

T increasing

]
iy
|

=




Fermi Level in a Metal

e From N(E) the number of electrons in a metal Is:

”ZJ N(E)dE =J.mS(E)p(E)dE:(B\/E)ﬂmme E'2dE

o 5 _ h? o l+exp[(E—Eg)/kT]
e At T =0:
8 2 ,ﬂ:ms,'z Exg 2 2/3
n:( v h)3 i J E'2dE mm) Em:h—(%) =3.65x10717n?B ey
| ; 8m\ &

* Note that in a gas the energy of the particles is 0.
* In a metal the electrons have an energy up to E., (few eV’s).

« At T >0: ’ "
w13, |

At usual temperatures KT ~ meV Ec depends slowly on T.




Conclusions
We have introduced a simple model for electrons
In a solid: free electron model.
We simulated it using a 3D box potential.

We have introduced the concept of Fermi energy:
energy of the last occupied state.

We have deduced the energy distribution of this
electrons.



A 2D metal?

e Consider graphit: |

http://www.sciencemag.org/cgi/reprint/306/5696/666.pdf
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