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Contents overview
• Introduction
• Blackbody radiation
• Photoelectric effect
• Bohr atom
• Wavepackets
• Schrödinger equation
• Interpretation of wavefunction
• Uncertainty principle
• Beams of particles and potential barriers

The English translation of some of the original articles can be seen at: 
http://strangepaths.com/resources/fundamental-papers/en/



Blackbody Radiation
• Experiment

• Theory



• Experiment

• Theory

Photoelectric Effect
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Hydrogen and Bohr Atom
• Experiment

• Theory



Particle-Wave Duality & Wavepackets
• De Broglie hypothesis:

• Phase and group velocity:

2π r = n λ                 p = h / λ

vph = ω / β

vg = δω / δβ



Wavepackets
• Associating a wavepacket to a particle:

– From De Broglie and Bohr relations:

– In general a particle has also potential energy, therefore 
its wavefunction will be:

where E = T + V



Schrödinger Equation

• It is similar to Newton’s equation. It describes the 
behavior of the wavefunction of a particle (and in 
general of any quantum system).

• Since we are describing a wave, SE should have 
the form of the well known wave equation that 
describe, for example, the EM field:



• “Derivation” of time-dependant SE:

– Starting from

– By deriving once respect to time

– Deriving twice respect to the position

Schrödinger Equation
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• “Derivation” of time-dependant SE:

– Starting from

– By deriving once respect to time

– Deriving twice respect to the position

Schrödinger Equation
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• “Derivation” of time-dependant SE:

– Starting from

– Conservation of energy:

Schrödinger Equation
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• “Derivation” of time-dependant SE:

– Given a potential energy and the mass of the system, 
this equation can be solved.

– Generalization to 3D:

Schrödinger Equation
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Schrödinger Equation

• Time-independent SE:
– If V is time independent, we can assume the following 

form of the wavefunction (variable separation):

– Then replacing it in the time-dependent SE:
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Schrödinger Equation

• Time-independent SE:
– If V is time independent, we can assume the following 

form of the wavefunction (variable separation):

– Then replacing it in the time-dependent SE:
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• Time-independent SE:
– Solving the one in t:

Schrödinger Equation
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• Time-independent SE:
– The one in x reduces to:

Schrödinger Equation

( )
( ) ( ) ExV

x
x

xm
=+

∂
Ψ∂

Ψ
− 2

22 1
2


( ) ( ) ( ) ( )xExxV
x

x
m

Ψ=Ψ+
∂
Ψ∂

− 2

22

2




• Time-independent SE:
– The one in x reduces to:

Schrödinger Equation
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• Where is the particle?

• Born interpretation:
– The probability of finding the particle in the length 

interval [x, x+dx], at the time t, is given by:
|ψ(x, t)|2dx

– Therefore: ∫whole length |ψ(x, t)|2dx = 1 (normalization)

Interpretation of the Wave Function



• Since |ψ(x, t)|2 has physical meaning, the w.f. has 
to comply with various requirements:
– Continuous on x.
– Single valued on x.
– Idem with its spatial first derivatives.

• Examples of improper w.f.

Interpretation of the Wave Function



• Where is the particle?

Heisenberg Principle

but L and λ are not well defined, therefore:

DeBroglie

L

λhp =



• Where is the particle?

• A rigorous demonstration (no approximations) 
using matrix mechanics gives:

Heisenberg Principle

DeBroglie

but L and λ are not well defined, therefore:

λhp =



• Where is the particle?

• In QM there are pair of physical quantities (called 
conjugates) for which this relation holds, e.g.:

Heisenberg Principle

DeBroglie

For an experimental demo: Nature 371, 594 - 595 (13 October 2002) 

but L and λ are not well defined, therefore:

λhp =



Potential Barriers
• Finite potential barrier ( V1 < E < V2 ):

E
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Potential Barriers
• Finite potential barrier ( V1 < E < V2 ):
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Potential Barriers
• Finite potential barrier ( V1 < E < V2 ):

– A,B,C are found using continuity arguments and norm.
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Notice that | A | = | B |
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Potential Barriers
• Finite potential barrier ( V1 < E < V2 ):

– A,B,C are found using continuity arguments and norm.
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• Finite potential barrier ( V1 < V2 < E):

Potential Barriers
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From continuity arguments:



• Finite potential barrier ( V1 < V2 < E):

Potential Barriers
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• Finite potential barrier ( V1 < V2 < E):

Potential Barriers
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From continuity arguments:

Transmission coefficient:
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• Narrow potential barrier (V1 < E < V2 ):

Potential Barriers

α and β as before

As before, A,B,C,D,F to be obtained from continuity and normalization.
In particular:
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• Narrow potential barrier (V1 < E < V2 ):
– Transmission from I to III

Potential Barriers



Conclusions
• The Schrodinger equation  (SE) was studied.
• It was “deduced” from the particle wavefunction 

but it is applicable to any quantum system.
• The SE was applied to different potentials.
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