Physics of Electronics:

July – December 2009

Announcements

- Instructor: Patricio (pmena@ing.uchile.cl).
 - Ph.D. in Solid State Physics, University of Groningen, The Netherlands.
 - Group of Astronomical Instrumentation
 - Off. 509. Telf. 9784888
- Slides will be in English BUT lectures in Spanish.
- Assistants still to be determined.
- Unfortunately, the time of the lectures has to be changed for the second part of the course.

Announcements

• Some Thursday lectures will be changed to Monday, since I have to travel to the ALMA site.

ALMA = Atacama Large Millimeter Array (66 radio telescopes at 5000 m using the latest technology)

Announcements

- Grading:
 - -60% Tests (all tests will be taken into account)
 - 2/3 Normal Tests
 - 1/3 Final Exam
 - 40% Exercises

Literature

- Basic:
 - J.Allison, "Electronic Engineering: Semiconductors and Devices," London: Mc Graw Hill Int. Ed., 1990.
- Complementary books:
 - A. van der Ziel, *"Electrónica Física del Estado Sólido,"* New Jersey: Prentice/Hall International, 1972.
 - C. Kittel, "Introduction to Solid State Physics," New York: John Willey & Sons, 1996.
 - B. van Zeghbroeck, "Principles of Semiconductor Devices,"

http://ecee.colorado.edu/~bart/book/book/index.html

Overview of the Course

- Review of Quantum Mechanics.
- Electronic processes.
- Semiconductors.
- Semiconductor devices:
 - P-n junction.
 - Bipolar Transistors.
 - JFET's. MOSFET's. SCR's.
 - Fabrication technology.
- Introduction to superconductor devices.

1. Introduction to Quantum Mechanics

Contents overview

- Introduction
- Blackbody radiation
- Photoelectric effect
- Bohr atom
- Wavepackets
- Schrödinger equation
- Interpretation of wavefunction
- Uncertainty principle
- Beams of particles and potential barriers

Introduction

- What does explain the (electrical, magnetic, thermal) properties of solids?
 - Metals (conductors)
 - Semiconductors
 - Insulators
 - Superconductors
- It is explained by the behavior of the constituent electrons and their interactions inside the structure of the solid.
- To study them we need Quantum Mechanics (as opposed to Newtonian Mechanics).

Blackbody Radiation

• Radiation emitted by an incandescent radiator (example the Sun):

Blackbody Radiation

• One can model the radiation of a blackbody by assuming that it is formed by atomic oscillators emitting energy:

• Classical theory (Rayleigh-Jean's law): Oscillators emit energy in a continuos way

• Quantum theory (Planck's law): Oscillators emit energy in a discret way

E = 0, $\hbar \omega$, $2\hbar \omega$, $3\hbar \omega$, ..., $n\hbar \omega$

Blackbody Radiation

• One can model the radiation of a blackbody by assuming that it is formed by atomic oscillators emitting energy:

• Experimental setup

http://phet.colorado.edu/simulations/sims.php?sim=Photoelectric_Effect

• Experimental results

• Experimental results

• Experimental results

It is assumed that light energy is quantized:

 $\frac{1}{2}mv^2 = hf - e\phi$

• Minimum energy to emit an electron:

$$f = f_0 = \frac{e\phi}{h}$$

• When $I_{ph} = 0$:

$$eV_0 = hf_0 - e\phi$$

Bohr Atom

- Experimental fact:
 - An excited hydrogen atom emits radiation at a discrete energies.

Hydrogen Absorption Spectrum

Hydrogen Emission Spectrum

From: http://www.solarobserving.com/halpha.htm

Bohr Atom

- Simplest theoretical explanation:
 - 1. In the hydrogen atom, the electron can only exist in stable (non-radiating) orbits whose angular moment are quantized.

 $L = mvr = n\hbar$ where $n = 1, 2, 3, \ldots$

Which implies the existence of discrete orbits of radius:

$$r_n = \frac{4\pi n^2 \hbar^2 \varepsilon_0}{e^2 m} \cong 0.05 n^2 [\text{nm}]$$

With energies ($E = T + V$)

$$E_n = -\frac{e^2}{8\pi\epsilon_0} \frac{\pi e^2 m}{n^2 h^2 \epsilon_0} \simeq -\frac{13.6}{n^2} \,\mathrm{eV}$$

Bohr Atom

- Simplest theoretical explanation:
 - 2. Radiation occurs only when electron moves from one allowed orbit to another. Energy lost by the atom is converted in a single photon:

Particle-Wave Duality

- De Broglie hypothesis:
 - For a photon we have:

$$p = E/c$$
 \longrightarrow $p = h/\lambda$

- De Broglie hypothesized that $p = h/\lambda$ also holds for particles. This can be seen from the Bohr atom:

• Juxtaposition of waves, A $cos(\omega t - \beta x)$, of slightly different wavelength ($\delta\beta$) and frequency ($\delta\omega$):

• Juxtaposition of waves, A $cos(\omega t - \beta x)$, of slightly different wavelength ($\delta\beta$) and frequency ($\delta\omega$):

A wavepacket is formed when dw and db are small (or $n \rightarrow \infty$) Wavepacket = wave (superposition of waves) + particle (localization)

• Consider a wave: $A_o \cos(\omega t - \beta x) \Leftrightarrow A_o e^{[i(\omega t - \beta x)]}$ - Phase velocity: velocity of planes of constant phase

phase: $\phi = \omega t - \beta x$

• Consider superposition of two waves:

 $\begin{aligned} A_0 \cos(\omega t - \beta x) + A_0 \cos[(\omega + \delta \omega)t - (\beta + \delta \beta)t] \\ = 2A_0 \cos\{\frac{1}{2}[(2\omega + \delta \omega)t - (2\beta + \delta \beta)t]\} \cos[\frac{1}{2}(\delta \omega t - \delta \beta x)] \\ \simeq 2A_0 \cos[\frac{1}{2}(\delta \omega t - \delta \beta x)] \cos(\omega t - \beta x) \end{aligned}$

Associating a wavepacket to a particle:
From De Broglie and Bohr relations:

$$p = mv = h/\lambda \qquad \Longrightarrow \qquad \beta = \frac{2\pi}{\lambda} = \frac{2\pi p}{h} = \frac{p}{h}$$
$$T = \frac{1}{2}mv^2 = hf \qquad \Longrightarrow \qquad \omega = \frac{2\pi T}{h} = \frac{T}{h} \qquad \longleftrightarrow \qquad \psi = A_0 \exp[-j(Tt - px)/\hbar]$$

- Phase and group velocity are:

$$v_{ph} = \frac{\omega}{\beta} = \frac{T}{p} = \frac{\frac{1}{2}mv^2}{mv} = \frac{v}{2} \qquad \qquad v_g = \frac{\partial \omega}{\partial \beta} = v$$

– The wavepacket ψ is called **wavefunction**

Associating a wavepacket to a particle:
– From De Broglie and Bohr relations:

$$p = mv = h/\lambda \quad \Longrightarrow \quad \beta = \frac{2\pi}{\lambda} = \frac{2\pi p}{h} = \frac{p}{h}$$
$$T = \frac{1}{2}mv^2 = hf \quad \Longrightarrow \quad \omega = \frac{2\pi T}{h} = \frac{T}{h} \qquad \Longrightarrow \quad \psi = A_0 \exp[-j(Tt - px)/\hbar]$$

 In general a particle has also potential energy, therefore its wavefunction will be:

$$\psi = A_0 \exp[-j(Et - px)/\hbar]$$

where $E = T + V$

Conclusions

- We have seen the fundamentals of QM:
 - Some experiments demonstrating quantum world:
 - Blackbody radiation
 - Photoelectric effect
 - Spectrum of hydrogen atom
 - Two fundamental principles:
 - De Broglie's and Bohr's.
 - Wavefunction