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VICTORIA

We hope she is amused

‘Perhaps a frail memorial, but sincere,

Not scorn’d in heav’n, though little notic’d here.’
William Cowper (1731-1800)
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Preface

A tremendous flurry of exciting progress in electronic engineering has
oceurred in the two decades since the first edition of this book appeared. We
have seen, for example, the development of rudimentary integrated circuits
tontaining a few components into today’s version containing a complete
tomputer, incorporating millions of active devices, on a single chip. The
iipparently daunting task for the undergraduate student and the electronic
ilevice engineer (or the prospective author!) of keeping abreast of such an
¢xponentially expanding technological development is somewhat ameliorated
only because the principles of operation of constituent semiconductor
tomponents have remained constant. In spite of dramatic changes in the
manner in which devices are constructed and interconnected, a flavour of
which can be obtained from a quick glance at the later chapters, the essential
evice science is consequently as relevant today as it was 20 years ago. So,
[ortunately, is the basic philosophy on which the earlier book was founded,
ninmely to concentrate essentially on timeless electronic fundamentals, such as
the description of charge transport in semiconductor junctions, using the
uperating principles of recent devices as engineering examples of the
Application of such quintessential electronic concepts.

In the carly days of electronic engineering, the essentials of vacuum
slectronic devices could be understood without too much difficulty and many
ol their characteristics could be derived theoretically by classical methods.
ludiy, not only is the physical nature of the transport of charge in modern
slectronic devices more complicated, but many of the more recent devices have
jroperties that cannot be explained satisfactorily without recourse to
Huantum electronics.

Muny texthooks are available that describe, for example, the theoretical
Phiysien of the solid state, often in great detail and not without some degree of
mnthematical complexity. Other, usually engineering, texts often merely
Provide i cursory description of device behaviour as a preliminary to

A detiiled discussion ol their circuit application. This book is an attempt to
lone the g between the two extremes. It provides a physical description of
e propertien of electionic materialy that is sufliciently detailed to allow
samplete characterizntion of the electrical performance of modern electronic
Hevioen e mnnes thit can be tully anderstood by the engineet



Xii PREFACE

The author is acutely aware of the rapid advances being made in electronic
engineering. There is nothing to suggest that the rate of technological
development observed over the last few decades will not continue; indeed the
pace will probably increase. New devices are continually being developed and
absorbed into the technology, causing some textbooks on the subject to
become obsolete almost as soon as they are published. It is hoped that, by
concentrating on fundamental processes occurring in electronic materials and
by discussing contemporary devices as specific examples of these processes,
this book will avoid such a fate. Although lack of space prevents complete
in-depth coverage of all devices, sufficient insight into the basic properties of
elementary devices is given to enable the reader to progress to the study of
whatever new or perhaps as yet undeveloped device may be his or her own
particular interest.

The text is based in the main on a series of lecture courses given to university
electronic and electrical engineering undergraduates in their first, second and
(part of) final years. For this reason a choice had to be made between
subdividing the subject matter so as to make the level of treatment
progressively more difficult or arranging the material in a more logically
acceptable way. The former method is usual primarily in teaching, where the
presentation has to be geared to the mathematical ability of the student, but it
suffers the disadvantage of lack of continuity, each device being described on
several occasions, each time with an increasing depth of treatment. In this
book the latter course has been adopted in an attempt to provide a text that
unifies much of the electronic materials and device teaching over the complete
subject range, so emphasizing the relevance of each topic. This arrangement
need not be a disadvantage, as few textbooks are read, in the first instance,
straight through from beginning to end. The main advantage is that, while the
students are able to cover the contents by any one of many routes, dictated by
their own ability or as directed by their tutors, they will at the same time
possess a book that amalgamates all the material into a coherent whole.

It might be supposed that this textbook is aimed solely at electronic and
electrical engineering students, but practicing engineers who feel the need for
retraining should also find it helpful, as well as students of associated
disciplines in applied technology, physics and chemistry.

I am most grateful to my colleagues at Sheffield for many enjoyable and
useful discussions, in particular Dr Clive Woods, whose meticulous reasoning,
based on sound engineering principles, has been a constant source ol
inspiration. I am also most appreciative of friends in industry and in-house [o1
providing additional information and illustrations and to the help ol
generations of students for their patient forbearance. I would also like (o
express my sincere thanks to Miss Margaret Eddell and her staff for thei
unstinting help in preparing the manuscript, especially Miss Flaine Jessop lor
her ability to read the author’s mind, as well as decipher hix hieroglyphics so
efficiently.

PREFACE xiii

Finally, my warmest thanks are extended to my wife, Judith, for her support
ind for providing endless coffee and a few cherished moments of silence, and
u].-?'o to V.ictoria, who was only a twinkle in her father’s eye at the bcginni;'lg of
this project but is now able to offer her assistance, without which this
manuscript might have been produced much earlier!

IMay l_\remure to hope that readers of this book will find it as interesting and
Informative as I have found it enjoyable and exciting to write.

John Allison
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Symbol Units
Permittivity of free space € 8.854x 10712 Fm™!
Permeability of free space Ko dnx 1077 Hm™!
Electronic charge e 1.602 x 101 c
Electronic rest mass m 9.108 x 1031 kg
Electronic charge/mass ratio e/m 1.759 x 10! Ckg!
Proton rest mass 1836m kg
Planck’s constant h 6.625 x 1034 Is
Boltzmann’s constant k 1.380 x 10~ 23 JK!
kT at room temperature 0.0259 eV
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Properties of some common

semiconductors at room

temperature
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Alumie weight 28.09 72.59 - -
Atomie density (m—3) 502x10%® 442 x10%® - -
Lultice constant, a(nm) 0.543 0.565 0.563 0.645
Wolutive permittivity, e, 11.8 16.0 13.5 1.5
Bieigy pap, E(eV) 1.08 0.66 1.58 0.23
Flgotion mobility, g (m? V=1s71) 0.13 0.38 0.85 7.0
Wale mobility, g, (m2 V=151 005 0.18 0.04 0.10
litilinic concentration, n,(m~3) 1.38 x 10'¢  2:5x10'* 9x 102 1.6 x 10?2
Flectron dilfusion constant,

Boimts ) 0.0031 0.0093 0.020 0.0093
Hule diffusion constant, Dy(m?s™')  0.0007 0.0044 - -
IWnity of states at conduction

bl edge, N (m~3) 2.8x10%* 1.0 x 10%% 47x10* -
LWty of states at valence band

wlye, N (m %) 1.0 x 1023 6.0 x 10%* 70x10%* -
Multhng point (°C) 1420 936 1250 523
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1 The quantum behaviour of
waves and particles

|1 Introduction

Ihroughout our discussion of the electronic properties of materials and the
ipplication of these properties to a physical understanding of the operation of
slevironic devices, we shall constantly be referring to the interaction of
piitticles of atomic size, for example electrons, with other particles or with
Wives, We shall discover that in some instances elementary mechanics is no
lnper adequate to describe the dynamics of microscopic particles and that
thin theory has to be supplemented by one that is more generally applicable,
the no-called quantum or wave mechanics.

Clussical mechanics is based on laws developed by Newton, for example

F=dp/dt . (1.1)

Mewton's laws, together with a classical electromagnetic theory as summar-
lsedd by Maxwell’s equations, proved adequate for the quantitative explana-
Hin ol most experiments done before the beginning of the twentieth century.
Fiuntion (1.1) was found to be quite satisfactory for predicting the dynamics of
hllul' senle systems. This is, of course, also true today. The term ‘large-scale
Ayatums’ in this context applies equally well to normal engineering laboratory
saperiments and to the more obviously large systems such as collections of
Planets

A netles of experiments conducted at the beginning of this century exposed
i basie limitation of classical Newtonian mechanics, which is its inability to
predict vorrectly events that take place on a microscopic or atomic scale. In the
seitionn that follow we shall discuss the experiments that led to this failure in

Hlisnlenl mechanies, while at the same time we will attempt to lay a general
Wundation for later discussions of a more general quantum-mechanical
ooy, 1t should be stressed that quantum mechanics does not entirely
supplnt Mewtonin mechanies but rather augments it in that it is more
Wilely applicable. We shall show that, within the limits of laboratory-sized

WIfectn however, the newer mechanios reduces to the classical theory, which,
BRSe  bn shimpler oo apply, st (o be preferred



2 VLECTIRONIC ENGINEERING SEMICONDUCTORS AND DEVICES

1.2 Black-body radiation

One of the earliest experiments to defy analysis by classical methods was.the
determination of the frequency spectrum of emitted radiation of an incandes-
cent radiator or ‘black body’. In this experiment the intensity of emitted
radiation is measured as a function of frequency or wavelength for a fixed
temperature, with typical results as indicated diagrammatically in Fig. 1.1.

relative intensity

i 1 s

0 1 2 3 4 5
wavelength (um)

V

Fig. 1.1  Relative intensity of radiation emitted from a black body as a function of wavelength.

The various earlier theories attempting to explain this experimental
evidence were based on classical mechanical ideas incorporated in thermo-
dynamic theory. These theories were never successful in agreeing with the
experiment, particularly in the short-wavelength limit. We know now thal
they broke down because of a fundamental misconception that atomic
oscillators are capable of emitting or absorbing energy in contipuously
variable amounts. It was not until 1901 that Max Planck discredited this [alsc
notion by correctly predicting the intensity of radiation at all frequencies. [ i
theory involved the hypothesis that energy could only be absorbed or emit (e
by the black body in discrete amounts. He assumed that the energy ol light
waves, for example, is transported in packets or bundles, called photons v
quanta. He further assumed the energy of a photon (o he given by

o hf joules (1.2)

L
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where [ is the frequency of the radiation. Planck’s constant, h, is a universal
vonstant, which is found for the black-body radiator and other experiments to
have a value h=6.626 x 1073* J s. Equation (1.2) is sometimes more con-
Voniently written as

E=hw (1.3)

where w is the angular frequency of the radiation, 2nf, and A equals h/27. Thus,
the total energy of the black-body radiator was envisaged to exist only in
ilwcrete allowed energy states:

0, hw, 2hw, 3ho, ..., nho

Itunsition between these states being brought about by absorption or emission
ul one or more photons of radiation, each of energy hw.

It I8 not surprising that such a theory, being completely opposed to the
Saluting continuously variable energy theories, was not readily accepted, even
though it explained the experimental findings most satisfactorily. However,
Plinck's quantum hypothesis, which forms the basis of modern quantum
mechanics, was further vindicated by later experimental evidence, as will be
tincunsed in subsequent sections.

| 1 The photoelectric effect

Il Hght of sufficiently short wavelength impinges on the surface of certain
Ml then itis possible for electrons to be emitted from the solid. This is called
the photoelectric effect. In the early twentieth century, Einstein reinforced
Planck's photon concept of light by providing a satisfactory quantitative
sapliunntion of the effect.

I'he experimental evidence for the effect may be obtained using apparatus
ul the (ype shown diagrammatically in Fig. 1.2. Light of frequency f illuminates

incident light
(Irequency ) electrons

" collector
< rric
phtovathode $( /1“ / anode ,vacuum envelope
h Y L
photocurrent

microammeter

Vg L1 A phatoeloctvle oxporiment
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a cold cathode situated inside a vacuum envelope. If electrons are emitted,
then, provided they have sufficient energy to overcome the retarding force field
set up by the voltage V, between grid and cathode, they will be swept to the
positive collecting anode and a current will be registered on the microammeter
in series with it.

The first thing that would be noticed when carrying out such an experiment
is that, unless the frequency of the incident light is greater than some critical
value, f,, which is dependent on the material of the cathode, no emission is
observed, no matter how intense the light. For constant light frequency, and
provided f is greater than f, the photocurrent can be measured as a function
of grid voltage V, and light intensity, keeping the anode voltage constant, to
give typical collector current data of the form shown in Fig. 1.3. The surprising

collector
photocurrent

high light intensity

low light intensity

grid voltage, V,

=V 0

retarding =<e—— " accelerating

Fig. 1.3 Variation of photocurrent with grid voltage in the photoelectric experiment.

result is that, no matter what the intensity of the light, there is some constan|
retarding voltage, in this case — V,, that entirely inhibits emission. This implicy
that the maximum kinetic energy of emitted electrons is constant and
independent of the intensity of the incident light. However, as the lipht
intensity is increased, the photocurrent increases in sympathy. Thus (h
number of emitted photoelectrons is a function of the intensity of the light bul
their maximum energy is constant.

Such experimental results cannot be explained by a classical wave theory o
light and a satisfactory explanation can only be obtained by considering the

light energy to be quantized, That i, the hight energy i transportod i diserete

1 s, PO YRR T

-
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Before discussing either theory we must digress a little to discuss briefly the
iensons for the emission of electrons from a metal surface. We shall see later
that a metal contains many highly mobile electrons, which can participate in
the electrical conduction process, but these are confined to the interior of the
tetal by a binding energy. Thus, no conduction electrons can leave the surface
0l i metal unless they are in some way provided with additional energy to
#hible them to overcome this binding energy. The minimum energy required
[ un electron to be just emitted from a metal surface is called the workfunction
ul the particular metal and is usually designated e¢, where ¢ is in volts.

In a classical theory of photoemission, conduction electrons in the cathode
i nceelerated by the electric field of the light wave and, if the light is bright
Sioligh, can gain sufficient energy to be emitted. Any surplus energy over and
uhove the workfunction appears as kinetic energy of the emitted electron.
Lhux the brighter the light, the more energy is left over after overcoming the
Biiding energy and the greater the kinetic energy of the emitted electron. This
Wult is clearly at variance with the experimental evidence that the emitted

lectrons have a constant maximum energy. Further, a classical wave theory
Wauld not predict a threshold frequency f,, which again is contrary to the
Asputimental results.

Il now we turn to a quantum theory based on Planck’s photon hypothesis,

WE Lun pive a simple explanation for the observed effects. We assume that the
Uident light is composed of discrete quanta or photons, each of energy hf.
lien the light impinges on the metal of the photocathode, each photon can
dinler energy hf to a conduction electron. Some of the energy is used to

Viicome the binding forces and the remainder is converted to kinetic energy
| {he emitted electron. Thus

kinetic encrgy of emitted electron = photon energy — workfunction

Ymv? =hf —e¢ (1.4)

# limiting case occurs when an electron is just emitted with no kinetic
By Then

/ _fln' "‘}’/h (1.5)

Llesuencies less than this critical value, the photon’s energy, hf, is not even
Meient (o overcome the workfunction and no emission occurs. Further, if
sty iwomcrensed, the number of incident photons is increased but their
By Teiing constund, provided the frequency remains constant. Thus the
HEHE enerpy of the emitted electrons, as given by Eq. (1.4), stays constant,
el e i borne out by experiment. Tncidentally, liq. (1.4) gives the
R kinetic enerpy at some pacticular frequency and in our experiment

EEERR At ealu cunsvuniriail biv sviniam ] wvaswinis shilioons 10 st ondiomd ocine wmmacd Lo v Boe oo
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to zero by a retarding voltage —V,,. Hence
eVo=hf —ed (1.6)

We see that V,, does not vary with light intensity, a fact that we have already
noted experimentally.

Thus, when considering the interaction of light with electrons, as in
discussing the photoelectric effect, the quantum theory of light must be used in
preference to the classical wave theory.

It will be useful to contrast this situation with the earlier experiments with
light displaying such phenomena as diffraction, refraction, and so on. These
effects could all be explained by a classical theory, which relied on a wave-like
description of the light radiation. As an example, let us remind ourselves of the
situation when light is diffracted by a mirror diffraction grating. A schematic
diagram of the essential elements of the experiment is shown in Fig. 1.4. A light

= b/ Mirror
incident wave ; grating
s
L
e
- 7
/
s
[, |d
%
photocell diffracted  §
delector wave

Fig. 1.4 Diffraction of light by a grating.

wave, wavelength 4, is incident normally on a reflecting diffraction grating ol
the type used in optical spectrographs, which has a grating spacing d. The light
wave is diffracted by the grating and the diffracted wave is detected at somc
angle 0 to the normal. The detector might, for example, be a photocell simili
to the one just described. Experimentally, what is observed is that, as 0/ 1
varied, the intensity at the detector varies cyclically from maximum (o
minimum values. These are the well known diffraction fringes. A typical result
might be as shown in Fig. 1.5. The appearance of the fringes can be explamned
quantitatively by invoking the wave description of light “The path lenpth
between light beams diffracted from adjacent valips beomdicated by Al on

& q =t & i i i i T i
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relative intensity

sin! (3A/2d) sin' GA/2d) 0
sin™' (A/d) sin! (24/d)
Fig. 1.5 Detected light intensity as a function of the angle of diffraction.

0 sin”' (1/2d)

mber of wavelengths, the diffracted waves interfere constructively and
hilght fringe is observed. Thus, when

Al=d sin §=nA

liete n is an integer, there is constructive interference. This occurs at angles
ol thit

0=sin"" (ni/d) (1.7)

wversely, when the path difference Al is equal to an odd number of
I wavelengths, which is equivalent to a 180° phase difference, there is
Irietive interference and a dark band is observed. This occurs at angles

0=sin"'{[(2m+ 1)/2] A/d} (1.8)

uth thewe results agree with the experimental evidence and a wave theory is
Hiely adequate to explain this phenomenon.

We nee, then, that light can in some circumstances be considered to possess
W like properties but on other occasions it must be treated in a quantized
el nenergy being transported by discrete photons, which are particle-like
W oeneh having enerpy hf. This wave-particle property of light radiation is
s telerred 1o as the ‘dual nature of light’.

I lght wiave can behave as a particle, can a particle (say, for example, an
o behive s wave? The answer to this question will become apparent
W e further the storical development of quantum theory.

The Bl atom

et Bydopen atom emits endintion at a discrete set of frequencies only.
P Boby preoduced o thearetionl model that very accurately accounted for

llllumu-nl shaes-Hoe raillwtloon snecteiim fvom nlomie hvdroven



8 ELECTRONIC ENGINEERING SEMICONDUCTORS AND DEVICES

Let us consider the hydrogen atom to consist of a central nucleus with an
electron travelling in a circular orbit round it, at some radius, r, as shown in
Fig. 1.6(a). We shall see later that this description of an orbit is not very precise,
neither is the orbit necessarily circular, but this simple model will suffice to

central orbiting
nucleus electron electron

P ~ %
/oy okl i \\\
’ LRI
I
! (N
| '. ) J I
\\ \\\ . ;’-‘
\\ ‘:-.._.’ ////
N e
(a) (b)

Fig. 1.6 (a) A possible model for a hydrogen atom and (b) spiral path due to radiated energy.

demonstrate the inadequacy of a classical theory. The Coulomb force on the
electron due to the electric field of the positive nucleus is just sufficient to
provide inward acceleration for circular motion at a constant radius, r.

It follows that

S R o (1.9)

Now, the total energy of the electron, E, is the sum of its potential energy, V,
and its kinetic energy, T. Further

V=—e*/(4neyr)
and from Eq.(1.9)
T=3mv* = e?/(8ne,r)
Thc;,refore, the total electron energy is
E= —e*/(8ne,r) (1.10)

Now, the electron in the circular orbit is constantly being accelerated and it
can be shown by electromagnetic theory that such an accelerated charpc
radiates electromagnetic energy, with a corresponding loss of energy. Classical
theory thus indicates that radiation can occur, its frequency corresponding, (o
the periodic frequency of the circular motion. This frequency can be shown (o
be plausible by observing the electron’s motion in the planc of the orbit. The
electron will be seen to oscillate sinusoidally about a central position where (he
nucleus is located. The resultant sinusoidally varying current cnn then he
likened to that occurring in an ordinary radio tranumitting necinl, which
radiates clectromagnetic waves

&
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The frequency of the radiated wave from the classical atom is thus
J=0v/(2nr)
which, using Eq.(1.9), gives

iy e
j f_ 4(1t3£0m?2)”2

Now, the conservation of energy indicates that, as the electron radiates

(1.11)

rease, as shown by Eq. (1.10). This would lead to a continual loss of energy
Wil spiralling of the electron towards the nucleus, as shown in Fig. 1.6(b). This,
i (urn, would indicate that the frequency of the emitted radiation is
Jontinuously varying according to the dependence of f on the radius r as set
{ in Eq. (1.11). This is clearly in complete disagreement with the experimen-
tully observed discrete frequency spectrum.
'I'o overcome this difficulty, Bohr postulated that the electron could only
alut in discrete energy levels, corresponding to certain allowed stable orbits,
L Mhout radiating any energy. He further argued that radiation from the atom
¢uits only when the electron makes a transition from one allowed energy
il to another, when the energy lost by the atom is converted into the energy
Wl i wingle photon. Thus, if the electron is transferred from one stable orbit,
wiesponding to a total energy E |, to another allowed orbit with lower energy
', i photon of radiation is emitted whose frequency, f;,, is given by

E,—E,=hf,, (1.12)

s, since only a discrete set of energy levels is postulated, only a discrete set
vhinraeteristic frequencies is present in the output spectrum.

i order to calculate the value of the discrete allowed energy levels, Bohr
Wih ubliged to postulate, in a rather intuitive way, that the angular
Wmentum, L, associated with a gyrating electron is quantized such that

where n=1,2,3,... (1.13)

U0 st now eliminate o from Eqs(1.9) and (1.13) to obtain an expression for
vl of nllowed orbits. From (1.9) and (1.13)

22 n*h?

m8mcar mir*

L=mvr=nh

p? =

] 21.2 21,2
tun*h*c, n*h ‘i)ﬂ_do.osnz — (1.14)

et netm

e, the et powsible orbit, when ne 1, has a radius of about 0.05nm
i e 10 ") Other posstble arbits, corresponding to the various integer
|||hn ol n, e O i (=), 045 nm (n— 1), nnd so on,
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_ l’-ia_ch discrete orbit has a corresponding allowed energy level associated
with it, which is evaluated by substituting the values of r, in Eq.(1.10) to give
e? me’m me* 13.6

E,=-— =— ~———¢eV
" 8mey n*h*e,  8eh*n? n?

(1.15)

Here the energy is expressed in electronvolts, a common practice in electronic
engineering. One electronvolt corresponds to the energy acquired by an
electron that has been accelerated through a potential difference of 1 V.
We see from Eq. (1.15) that the system energy is restricted to discrete levels
corresponding to the various values of n. The lowest energy level or ground
state for hydrogen is E,=—13.6eV. Further allowed energy values are
E,=—34eV,E;=—151¢V,and so on. The allowed energy levels are usually
represented in an energy level diagram, which for the hydrogen atom is shown
in Fig. 1.7 (Note that in this representation the horizontal scale has no physical

4
0 E
T E; =-13.6/16
_2F T : E; =-13.6/9
! '_m_“fu
1 i
_4f [ B, =-13.6/4
g |
wy i
. -6} |
? !
g :
_8 - I
I .
—10f :
|
I
-12f :
—14F E| =-13.6eV

Fig. 1.7 Energy level diagram for the hydrogen atom.

significance.) As explained previously, it is possible for an electron to undergo
a transition between any of the allowed energy levels as indicated by arrows on
the diagram. The corresponding frequency of the emitted or absorbed
radiation for such an occurrence is given by Eq.(1.12).

Although the characteristic emission frequencics predicted by the Bols
theory are very close to those observed for the hydrogen ntam, the theory i

cnan B el R el BT seetals Bl -
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imure than one orbiting electron. A further limitation is the ad hoc manner in
“Which the assumptions of quantized angular momentum and the relationship
hulween energy change and frequency are introduced. We shall see later that
there are further fundamental inadequacies in the theory. Meanwhile, it is well
I temember. that the Bohr theory, in a historical context, was a great step
,:!‘wurd‘ in that it not only accounted for the predicted hydrogen frequency
[Wutrum but, more important, it also clearly demonstrated a certain
discreteness in some of the physical properties of matter, which is quite at
Wirnnce with previous classical theory. A further advantage of the theory is
{hat it indicates the importance of Planck’s constant, k, for determining details

f nlomic structure.

1 b Particle-wave duality

| ux return to our discussion of the possible dual nature of matter, in which

Wives can sometimes behave as particles and conversely particles can in some
Itumstances be considered to have wave-like properties.

We will first consider a photon of light, frequency f and energy hf. The

hoton travels at the velocity of light, ¢, which is related to frequency and

bivelength, 4, by

e=f1 (1.16)

oW, Il enerpy E is transported with velocity ¢, the momentum of the photon is
jven by

p=E/c (1.17)

Thin expression could be derived by finding the radiation pressure on
Jlate caused by an incident electromagnetic light wave and equating to the
It tux, but this is clearly too difficult, at this stage. Instead, we offer the
Hiwing somewhat crude argument. Suppose that photons are subjected to
salernul foree I, which acts over some distance dx. The change in photon
Y In then

dE=Fdx
Mo, 11 1he photon momentum is p, then, by Newton’s law,
I'=dp/di

dpdx  dx

1 | :
0 T - dp=edp

lﬂulullnu, woe pol
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as before. Equations (1.16) and (1.17) can now be combined to give
_E E K

- T fh
or
p=h/A (1.18)

Now, in 1924 de Broglie argued that if photons of light with wavelength
A have momentum p=h/4, it might be possible for particles with momentum
p to have some associated wavelength A also and behave in a wave-like
manner, under some circumstances. He further suggested that Eq. (1.18) might
also be the correct relationship between p and 1 for a particle.

Let us assume for the moment that this hypothesis, which as we shall see
later can be substantiated by experimental evidence, is correct, and calculate
the wavelength associated with various bodies. First, consider a classical
Newtonian particle—an apple! If we let its mass be m=0.2 kg, and its velocity
v=10ms ! then its momentum

p=mv=02x10=2kgms™!
and its associated wavelength is

—-34
4_h_66x10 s,
P 2

Effects due to such a wavelength are much too small to be detected in ordinary
laboratory experiments!

As a further example, consider an electron, mass m, charge — e, accelerated
through a potential difference, V. Equating the gain in kinetic energy of the
electron to its loss in potential energy,

dmv?=eV
where v is its final velocity, gives
v=_2eV/m)'/?
The momentum of the electron is then
p=mv=(2eVm)'/?
and its associated wavelength is
h h 1.225
P QeVmy 2~ yiE "™

For example, if ¥V =50 volts, A= 1.7 x 10~ 7 mm, which again is small but, as we
shall see, can produce measurable effects.

Soon after de Broglie suggested that particles could oxhibit wive-like
characteristics, Davisson and Germer nrovided experimiantal confiimation of

A=

(1.19)
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I Ideas by diffracting electrons and producing interference between electron
ves. Their experiment is similar to the grating experiment with light, which

have already discussed, a beam of electrons rather than light being
lilltacted by a ‘grating’. We have seen that the wavelengths, 4, associated with
tirons are small and, for a reasonable angular spread of the diffracted wave,

periodicity of the grating, d, should be of the same order as 1. The regular

1y of atoms within a single crystal of a metal satisfies this condition and can
phive as a grating for electron diffraction. The apparatus for such an
riment is shown diagrammatically in Fig. 1.8(a). An electron gun acceler-
it beam of electrons through a potential ¥ and the beam then impinges

il
vacuum vessel
1 [ o
= etk
e g W

clectron gun —/ /
clectron detector

g
1 o
detected current
(a)

surface

/atoms

5

(b)

||

win (ALY sin (2A/d)
()

Vig, 00 Aw elevtvon diMactlon experlment.
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normally on a plane single-crystal metal target. The detector is biased to
provide a retarding field and only detects electrons that have been scattered
with negligible loss of energy. It can be moved in angular direction, so as to
measure the electron current diffracted by the target as a function of 6.

Let us now consider that electrons behave as waves, which are diffracted by
the regular array of atoms on the surface of the target, spaced distance d apart,
as illustrated in Fig. 1.8(b). By analogy with the mirror grating experiment, we
would expect a maximum detected electron current at an angle 6 such that the
path difference between adjacent waves is an integral number of wavelengths
and the first maximum detected signal to be given by

sin 6, = A/d

Now if de Broglie’s hypothesis is correct, the wavelength of the electron is
given by Eq.(1.19). Thus

0, =sin"! [h/(2emVd?)"2] *(1.20)

Clearly, our simple model is not complete since waves are also diffracted from
atomic planes within the.body of the crystal. Further, when these waves leave
the crystal they are refracted at the crystal-vacuum interface. When Eq.(1.20)
is modified to account for these additional factors, as was done by Davisson
and Germer, excellent agreement between theory and experiment is obtain-
able. In all their experiments, electrons were found to behave as waves with
wavelength given by Eq. (1.19). Incidentally, electron diffraction apparatus has
since become an important analytical tool to study such things as interatomic
spacing and the structure of molecules.

Suppose the experiment is now extended by replacing the detector with
a cathode-ray screen. In this way an average measurement of electron curren!
over a long time can be take by observing the intensity of illumination at the
screen versus 0. A typical result would be as shown in Fig. 1.8(c). We see thal
there is a strong tendency for electrons to come off at angles near -0,
sin~'(4/d), sin~*(2A/d), etc., and the probability of finding electrons al
6~sin~'(4/2d), sin™!(34/2d), etc., is very small. In this respect, the electrons
behave like light waves.

A further experiment might be to replace the detector by an electron
multiplier, connected via a high-gain amplifier to a loudspeaker. Each time
adiffracted electron is detected a sharp ‘click’ is heard on the loudspeaker, cacli
click being equally loud. Further, for a fixed value of 6, the number of electrons
arriving when averaged over some time is constant, although the individual
arrival times are erratic. Moving the detector alters the rate of clicks but theis
size, as measured by their loudness, remains constant, Lowering the cathods
temperature or making the grid voltage in the electron gun more negitive
reduces the number of emitted clectrons and hence nlter the ook riate but the
loudness of cach still stays the same. Thus, whitever i et detected neeives in
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Allierete amounts and in this respect the electrons are quantized and behave as
jaiticles.

We see, then, that the electrons are quantized but that they are in some way

'!.uhlud' by ‘matter’ waves (sometimes called probability waves, de Broglie
iives, or  waves). Loosely speaking, wherever the matter waves have a large
plitude the probability of finding electrons is high, the converse being also
1. Notice that we have had to abandon the absolute determinacy implicit in
Wwionian mechanics since there is uncertainty as to where a particular
ttron will go after diffraction by the crystal lattice. We are forced to revert to
tuming the probability of an electron being in a certain position at a given
¢,
The Davisson and Germer experiment, and a similar diffraction experiment
tied out independently and almost concurrently by G. P. Thomson, clearly
onstrated the dual nature of matter and provide conclusive proof of the de
plie wavelength relationship, A=h/p. Whether a wave behaves as a particle
vunversely, whether a particle behaves as a wave is not only dependent on
Iype of experiment performed but also on the magnitude of the energies
momenta involved. Tables 1.1 and 1.2 are included to indicate under what
ditions wave or particle properties become dominant.

1.1 The electromagnetic spectrum of waves.

tequency  Wavelength Typical wave

(Hz) (m) type Remarks
IO =12
J0%0 gamma rays photon energy (hw)
X-rays and momentum (f/A)
increases—particle
characteristics
become important
10~8
' ultraviolet
visible
1
o' infrared
millimetre waves wave characteristics
microwaves dominant
|
"
10’
o rindio winvens
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Table 1.2 Particle spectrum.

Mass Typical
(kg) particle Remarks
star
10%° 1 total energy increases—
planet particle behaviour
car predominates
football
dust grain
i molecule
atom wavelength (h/p) increases
electron as p decreases—wave
1= characteristics become
neutrino important

1.6 Wavepackets: group and phase velocities of particles

It may be helpful to consider a geometric representation of how an object may
simultaneously possess both wave and particle properties. We do this by
studying the addition of waves of differing wavelength to produce a construc-
tive interference pattern that has particle properties.

First, consider two waves of slightly different wavelength travelling in the
same direction. These add together and produce regions of constructive
interference that are periodically positioned in space, as in Fig. 1.9(a). This
phenomenon is analogous to the beating of two sound waves to producc
interference in the time domain. If, now, three waves, again slightly differing, in
frequency, are added, the interference maxima are not only larger but arc
spread at wider intervals, Fig. 1.9(b). The repetition in space of the regions ol
constructive interference is characteristic of the interference between finiic
numbers of waves. For an infinite number of waves, only one region ol
constructive interference exists; this is called a wavepacket, Fig. 1.9(c). I'he
wavepacket geometrically represents an object with wave and particle
properties. It obviously has wave properties since it is constructed from waves
and has a wave-like form but it also behaves as a particle because ol it
localization in space. This is similar to the bow-wave of a ship, which has wiv
properties but travels with the ship and is always located relative to it. Wi
have, so far, only considered waves travelling in the same direction but it i
straightforward to extend the idea by describing a particle i consisting of n
infinite number of waves travelling in all divections nind constructively
interfering at some point in space where the particle b posttioned
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Fig. 1.9 Formation of a two-dimensional wavepacket.

1 in the velocity of a wavepacket? In order to find this out, it will be
1y to digress slightly to summarize briefly the definitions and methods
Wliting the various velocities associated with waves. A wave travelling
mitive x dircction may be represented by an expression

A, cos(wt — fx) (1.21)

Ay n the amplitude of the wave, o is its angular frequency and B is the
sntant, which is related to the wavelength by

B=2n/A (1.22)

Willy more convenient, mathematically, to represent the wave by an
Hl exponentinl function:

Ay Re expl jlwr — fix)] (1.23)

LIRA I (he e inomitted but it is understood that only the real part of the
Wy subsoguent operation is valid.

Proprpntion of w wave i characterized by two velocities, the phase
gy Sk the group velocity, o, Phase veloeity is defined as the velocity
bl vonstant phase along the propagation direction of the wave. To
B exprearion for thiw veloolty we munt sxamine the maotion of 1 noint of
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constant phase, which is given from Eq.(1.21) or (1.23) by the condition
wt — fx=constant

We obtain the phase velocity by differentiating this equation with respect to
time:

w—fdx/dt=0
or
Uph=fD/ﬁ (124)

It is important to remember that this is the velocity at which some arbitrary
phase propagates. Nothing material propagates at this velocity; indeed, it is
possible for v,y to be greater than the speed of light without violating any
physical laws.

Now, let us investigate what happens when two waves of equal amplitude
but with slightly different wavelengths propagate simultaneously in the
x direction, as discussed qualitatively earlier. Let the small differences of
frequency and phase constant be dw and Jf. The resultant wave can then be
represented by the sum

A cos(wt — fx)+ A, cos[(w + dw)t — (B +p)t]
=24, cos{3[(2w + dw)t — (2 + )]} cos[3(bewt —Px)]
~2A, cos[3(dwt — 6px)] cos(wt — fx)

since dw<« 2w and dw<« 2f by our original assumption.

Thus, the resultant total wave consists of a high-frequency wave, varying as
cos(wt— Ppx), whose amplitude varies at a much slower frequency rafc
represented by the other cosine term in (1.25); it is modulated by destructive

~ and constructive interference effects, as shown in Fig. 1.10. The high-frequency
wave has phase velocity /B as before. The variation of wave amplitude 1
called the envelope of the wavegroup,; it varies sinusoidally with time and
distance and is a travelling wave with the relatively long wavelength, 2n/0/!
Group velocity is defined as the velocity of propagation of a plane of constant

(1.25)

envelope e cos (5o~ 86x)/2]

mQ

2/}

o< cos (@l [Iv)

Fig. L10 Taternction of two waves of slightly dilforent freqnoneien,
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Wi on the envelope. It corresponds to the velocity of the group or packet of
WO nlong the direction of propagation. A plane of constant phase on the
yelope is given by

dwt — dfix = constant

i, using the same procedure used to evaluate the phase velocity, we see that
ioup velocity is given by

v, =0w/0B (1.26)

lhermore, it can be shown that v, is the velocity at which energy is
Aitted along the direction of propagation.

‘0 cin now return to the discussion of the velocities of particle waves. The
thewes of de Broglie and Planck, corroborated by experiment, suggest

(he momentum and kinetic energy of a particle are given by
p=mv=h/1

1:27
T=3mv*=hf Sl

) wo know that an infinite plane wave travelling in the x direction has the
i, oxpl — j(wt — px)]. Equation (1.27) indicates that for a particle wave
HEht write the equivalent phase constant and frequency:

_2m 2mp p
A h h (1.28
_2nT_T 24
“ h h
gpests thit it might be possible to represent a particle by a function ¥,
wubefunction, where
= Ay expl (Tt —px)/h] (1.29)
1) and (1.28) the phase velocity of such a wave is
J w 'I'__-}mvz v
"y e 2
Ul § Hhin tenult in not valid for a single particle, however, since we have
J { U siat be represented by a discrete wavepacket and the concept of
Slaetty b npphicable only to mfinite wavetrains.
‘Il proup velocity for the particle can, however, be found. From
)l (1K)
o (mn/h)oe and Off = (m/h)dv

Wl By (0 20), piven

v Oi/Ofl = p (1.30)
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Thus, a single electron or bunch of electrons can be represepted by
a wavepacket travelling with the same velocity as thg electrop: This seems
physically reasonable when we remember the alternative definition of group
velocity as being the rate at which energy is trans.ported byl waves.

Our discussion so far on wave-particle duality is summarp.ed in Flg_. 1711,
where the behaviour of light waves and electrons is compared diagrammatically.

(a) infinite light beam

=T photons stream
25T with velocity ¢

instantaneous

l"’“""‘“'""""I/’\/\/\/\/'\/H
NN NN N

(b) infinite electron beam

A :
treaming
1 ST i-,lccuu::ls
gun
wave
function I\ /\ /.\ /\ — X
Y ONS NTNA

(c) finite light beam

(d) bunch of electrons

grid
=
= bunch of electrons
] e —=— 1
cd, ‘
electron
gun
wavepacket, v, = v
w O

“ -

Fig. L1101 Particle wave duality,
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I The Schrédinger wave equation

' '.I I, we have discussed experiments for which there exists no explanation
il on classical concepts. However, if a series of assumptions is made, for
lince the de Broglie hypothesis that p=h/4, a quantitative description of
echanism of each phenomenon can be provided. What is now required is
i sort of unifying theory that will enable us to predict and explain other
lifiences on the atomic scale. In 1926 Schrédinger provided a basis for such
Wty by discovering an equation for predicting i, the wavefunction of
ilicle, in any particular circumstance. The equation he discovered is
il after him; it replaces Newton’s laws when atomic-sized particles are
Il vonsidered. The theory based on Schrédinger’s equation is called wave
Wintum mechanics.
Y0 have seen that particles can possess wave-like properties and that the
bility waves associated with a beam of particles can be described in terms
Wivelunction, i, given by Eq.(1.29). This expression includes the kinetic
¥, I, nssociated with a particle. In general, however, a particle can also
potential energy. For instance, it might be an electron moving in
I, the electron not only has kinetic energy but it also moves in the field
he lattice and thus has a space-dependent potential energy. In general,
Wl energy, E, of a particle is therefore

peneral case then becomes
¥ = A, exp[ —j(Et— px)/h]
Sijuntion does this generalized wavefunction satisfy? We would

Ll 1o be some differential equation comparable to a one-dimensional
Hiation, sy

(1.32)

O*H 0*H
hln ol which
H = H, exp| —j(wt — fx)] (1.34)

iln fnstance the magnetic field of a plane wave propagating in

WL permittivity « and permeability T8 _
Y Lo find n wave equation similar to (1.33) but which has y given by
L wolution. Fiest, differentiate (1.32) with respect to ¢
il

’fn‘n{:—- j(l' - hmo W (1.35)
h h

O
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Also, let us differentiate y with respect to x, twice

az 2 mzvz
%= Ly=-"y (1.36)

Fora lar.ge class of ;_)roblems in which the total particle energy is constant,
lﬂhr{idmger equation can be simplified by separating out the time- and
tlon-dependent parts. Th-lS can be achieved by the standard separation-of-
[ | bley p_rooedure. Accordingly we consider the one-dimensional equation
lmplicity and assume solutions of the form

We may now compare the equations to give, from (1.35)

230
—imvy = —jﬁ%‘l- vy ¥ =¥(x)I() (1.39)
v And I are respectively functions of position and time only.
and from (1.36) ¥ Wubstitute this in Eq.(1.37) to obtain
1,,0% W? 1d*Y
_itilie o LR .hdIl
Y m o m¥ae V= ira (140
Rearranging the equations gives the left-hand side is a function of space coordinates only, provided V is
0% 2m 2mdy : - " l[lmndcnt,.and the right—hand expression is a function of time only.
@_FWI 2 v (1.37) A l':” equation must independently equal some constant, say C.
This equation is called the one-dimensional time-dependent Schrédinger wave dr
equation. It governs the behaviour in one dimension of all particles. Notice d_zjfc r
t

that we have not derived this equation rigorously, since for example the
relationships p=h/A and E=hf have been assumed in writing the wavefunc:
tions, which was our starting point. The above steps are only an argument (0
demonstrate the plausibility of Schrodinger’s equation. In fact, there is no
proof of the equation. This situation is directly comparable to the lack of prool
for Newton’s laws. Agreement with experiment is the only check as (o it
validity; it has been found to be correct when applied to a wide number ol
circumstances concerning microscopic particles, particularly in its relativisti
form. A further test is that, in the classical limit of laboratory-sizcd

I'(t)=exp(jCt/h)

Hinon Inl' 1 Ili_s expression with the time-dependent part of the one-dimen-
Wavelunction, given in (1.32), indicates that the constant in the

3 In uqm‘ll to — h‘: Thus, if the energy is constant, the time-dependent
e wavelunction is

experiments, Schrodinger’s equation must provide results that agree will ['(t)=exp(—]Et/h) (1.41)
those derivable from Newton’s laws. It can be shown that this is so and (hil
Eq.(1.37) is quite general and reduces to Newton’s laws of motion lui
large-sized objects. Schrodinger’s equation must always be used in preference V= "¥(x) exp(—jEt/h) (1.42)

to Newton’s laws, however, when considering the interaction of atomic sz« il

particles.

If three-dimensional motion is allowed, the wavefunction becomes a funciion
of three space coordinates and time, Y(x,y,zt), and is a solution ol 1l
three-dimensional time-dependent Schrédinger equation

oy oy Y 2m . 2mdY

il wide of 1. (1.40) is then equal to —E, to give

A’ 2m o
axt Hpr (B V¥=0 (1.43)

.. s limenstonal time-independent Schrodinger equation. It may
Ml 1he spacosdependent part of the wavefunction whenever the
Wy W vonntant, for example, when considering bound particles or
siient of particles. In-all other situations, for example, when
A VA cutrent of particles, the more general time-dependent
hie St st be employed. For most problems dealing with
ALt enerpy 0w vsoally suflicient 1o solve the three-dimen-

—_— L - (1 i)
ox? " 9y* 0z W Vi h ot

It should be noted that, although this equation or the simple one-dimensionl
version will be used predominantly to predict the wavefunction of elections 1l

is applicable to any particle, provided the approprinte mass and potential
* 1.. §...1
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position ¥(x,y,z), but if the complete wavefunction y(x,,z.t) is required then

lore solving Schrodinger’s equation in a i i
W¥(x, y,z) must be multiplied by I'(¢), as indicated by Eq. (1.42). | ¥ s e RO

L 18 first necessary to know what boundary conditions must be set on
nnswers to physical problems are obtainable from wavefunctions the);

y be well behaved in a mathematical sense. First, ¥ must be a contil;lious
| iingle-valued function of position. Supposing for the moment that this
\ .Iml 50, Yy* would be discontinuous also, as indicated for the
limensional case shown in Fig. 1.12(a). This would imply that the

1.8 Interpretation of the wavefunction ¥

We have shown that it is possible to describe the wave characteristics of
a particle in terms of a wavefunction , but we have not yet discussed precisely
what property of the particle is behaving in a wave-like manner. There is little
difficulty in this respect with other wave types; for example, it is the electric and
magnetic field vectors that are oscillating in a radio wave and for sound waves
the variable parameter is pressure. However, the physical significance of the
wavefunction is not so readily apparent. Since /(x,y,z,t) is a function of spacc
and time coordinates, we might expect that it represents the position of
a particle at some time t. However, we will see later that in general it is
impossible to locate a particle exactly in space without there being any

probability
density yy*

=Y

uncertainty as to its position. We can only consider the probability of 0
a particle being at a particular point in space. A further complication is that, @
since  is a solution of Schrddinger’s equation, it is usually a complex quantity )
Max Born, in 1926, overcame the difficulty of being unable to attach )
physical significance to y itself by showing that the square of its absolule % :
magnitude, ||, is proportional to the probability of a particle being in unil S .
volume of space, centred at the point where ¥ is evaluated, at time f. Thuy, !
although the exact position of a particle at a particular time cannot be ; b
predicted, it is possible to find its most probable location. It follows thil Xo 3
[W|>AV is proportional to the probability that a particle will be found in (he (b)

volume element AV, For example, the probability of finding a particle in (he
range x—x+dx, y—y+dy and z—z+dz is proportional to

[Y(x,y,2)* dx dy dz=yy* dx dy dz (1.44)

where y* is the complex conjugate of the wavefunction. Although the dired
physical significance of particle waves is not clear, if we solve Schrodimper's
equation in particular circumstances and obtain a wavefunction i, (he
probability density, |, can be used to predict accurately what the sputiul
distribution of particles will be at some time, ¢, provided that a suflicicn(ly
large number of experiments has been performed.

If a particle exists at all, it is certainly located somewhere in space, and i
the probability of its being in an elemental volume is proportionil (4
|2 dx dy dz, it is convenient to choose the constant of proportionality sl
that the integral of the probability density over all space equals unity of

+ o
J‘j“ Yt dx dydz | (1A%

A wavefunction that satishies this condition s sand (o be normalized. Whene e
B (L PRT R URNS | T (NI 10 1'% L7 W (1 S it tm—— ey | UL P T

{#) Dincontinnons and (b) multivalued probability densities, which are not allowed.

iy ol finding a particle is dependent on the direction from which the
I WY 10 |!]‘l|‘:‘mc|lt:(|. Coming to x, from the left the probability density
fiom (he right it is b, which in turn indicates that particles are
sty created or destroyed at Xo, Which is clearly not allowable
Wt be continuous, .
I How the possibility of ¢ and hence y* being multivalued, as
Pl 1 12(b), This would imply that, at some position, x thcre’are
Wb biliten of finding a particle, which is obviously 1’10t0,physically
AR et be single-valued, By similar reasoning, it is possible to

_ e wpintinl derivatives of i, Of/Ox, Oy/Oy and dY/dz must be
il singlosvalued across any boundary.

MRty principle

h was subse-

_ e e philinhedd (he Hncertimty prmaciple, whic
! S s g ol s e e o s o

B RN Blist Bl shiosiaromad bt 1 saes o0 8 aemcs sap. b
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precision with which the two variables can be specified simulfetneously
becomes apparent. Such pairs of variables are momentum ant'i position, and
energy and time. Suppose, for example, in a particular experiment, th'at the
energy of a particle can be measured to some accuracy AE and the time at
which the measurement is taken is known to some accuracy At; thena classical
theory would indicate that the precision to which these parameters can be
measured is limited only by the experimental apparatus and technique. The
uncertainty principle shows, however, that if the particle’s energy is dete'r-
mined very accurately, so that AE is small, there is a proportional increase in
the lack of precision in the time measurement and At increases. This can be
made to sound plausible by the following argument. We know that a snng_lc
particle can be represented in one dimension by a wa\r?pacl.(ct, as sl?own n
Fig. 1.13(a). There is evidently some lack of precision in locating the
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Fig. 1.13  Frequency spectra of wavepackets.

wavepacket and hence the particle, since it is spread over some distiance A1l
space. Since the particle can be assumed to be travelling at some velocity v Hhie
time of arrival of the wavepacket at some particular location can only T

measured to an accuracy A, related to Ax by
Ax o/t

i 1.1 R T [ L [T T AP T I T

REMY
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wives, each of different frequency. The amplitudes of the various
nent waves can be obtained by Fourier analysis to give the frequency
fum of the wavepacket as shown in Fig. 1.13(b). This indicates that the
Wil in frequency of the component waves is of order A f, and since E = hf , or
. lA/, there is necessarily a corresponding uncertainty in the particle

oW, the accuracy in the location of x is increased somewhat, Ax and
Al decrease and the wavepacket is shorter, as shown in Fig. 1.13(c). This
Whing can be achieved only by the addition of further frequency
iienty, with a corresponding increase in the width of the frequency
Him, s in Fig. 1.13(d). This leads, as we have seen, to an increased AE and
i1 lincertainty as to the precise value of the energy of the particle. Thus,
oreased, AE is increased and vice versa. If the frequency spectra are
il i n more quantitative way, it can be shown that the best that can be
Wi matter what the experimental apparatus, is that the product of the
fities 1o which each is known is equal to Planck’s constant, or

AEAt>h (1.46)

Ahat there is no fundamental restriction on the accuracy with which
jintity can be determined individually, only on their product.
(e energy of a free particle is E=hf =4mv?, from which we obtain

AE=hAf =mvAv=vAp

B iamentum spectrum for a wavepacket shows similar characteristics
Juency spectrum; for a short wavepacket, Ax is small but the width of
I wpectrum Ap is large, and if Ax is made bigger there is

Wil decrease in Ap. Again, it can be shown that the product of the
hlu i mimultancous measurement of momentum and position must
i h/2, or

ApAx=h/2 (1.47)

1 e exnmple, (ry to locate the exact position of a particle, thus
A% 0, but (his would be possible only if all knowledge of its
W shenhiced since to satisfy Eq.(1.47) Ap must become infinite.
Ly, (e uneertainties implicitin Heisenberg’s principle need not be
rhu normallnboratory-scale experiments since h is very small, of

& Hawever, the limitations (o accuracy, as given in expressions
BILAY), bevome critical for atomic-sized particles, when the
il the experimental variables can become minute,

Wl pmiticlon and potential barriors

I Conatder the fnternction of beams of particles with potential
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right but also serve as an introduction to discussions of the solution of
Schrodinger’s equation for particles confined in space, which begin in the next
chapter. Interactions in one dimension only will be considered, mostly for
mathematical convenience, but the solutions obtained are directly applicable
to the motion of particles in devices with large dimensions transverse to the
current flow.

First, consider a beam of particles travelling in the x direction with energy
E, impinging on a potential barrier at x=0, of height ¥, —V;, such that
V,<E<YV,, as shown in Fig. 1.14.

77777777777
incident beam ;
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——— B — B — g — — = — — s
reflected beam 2
/
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v ¥u
decaying wave
./
4
W
¥, ¥ ,/,
tandin ve
s g wa ;

V‘///////////

1]

=]

region II
E<V,

region I
E>V,

_—— -y

Fig. 1.14  An electron beam incident on a potential barrier.

Classically, we should expect particles in region I, where E >V, and none
in region II, where E<V,. We have deliberately chosen (o investigaie the
motion of a beam of particles since, as we have seen, this can be represcnted iy
the simple wavefunction.

Y= A, exp[ —j(Et—px)/h]

Strictly speaking, each particle in the beam should be representod Iy
a wavepacket. However, for a small spread in phasc constant, Afi, the reflechion

of a packet is similar to the reflection of an infinitc wave.

Let us apply Schrédinger’s stationary-state equation (o regions | a1

since E is constant. In region |

an
e |

Jm
K

T N

(1 Al
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A we let

ZmE v 5
F(E-V,)=8

(1.49)
dxy
g =0 (1.50)
1 0f this equation are of the form
¥, = A exp(jBx)+ B exp(—jpx) (1.51)

\plete wa’veft.mction for the region, including time dependence, is
hy multiplying ¥, by exp(—jEt/h), giving

| V= A tn”‘F'I: —j(%- ﬁx)] +B expli*.i(—Eh—r+ ﬁx)]

Al torm represents an incident probability wave travelling in the

dh‘octiup and the second term represents the wave reflected by the
velling in the negative x direction.

n Il (E - V,) is negative and we let

(1.52)

2m
?(E = Vz) =—o?

(1.53)
Ahin tegion, the stationary-state equation becomes
ey
aF w el (1.54)
l.lllmll solution
“IIZCC_WC“[‘DC“ (1_55)

lyuieal grounds, we would not expect Wy, to become infinite at
svldently must be zero, which gives

Wy = Ce ™o (1.56)
Wil rolad lonships between the magnitudes 4,B and C by applying
sonditions on e at the barrier, x=0. That ¢ and hence W are
_|. the boundary gives
_ ‘I'II\ =) ‘I'lll. “ 0
(lﬂtll CEATY andd (1 56), glves

4 1 N i 0 #m™my
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- Ii 16 used to find a reflection coefficient:
Also, for continuity of the derivative of ¥, cient:

densit i g 2
(OF /0 =0 =(O¥n/0)s=0 ensity of particles reflected _[¥,l* BB* B

density of particles incident |¥,..|> AA* A2
=(I—[(E—V2)/(E~V1)]”2 # L6
I+ [E—VE—Vy7) (169

Wi have substituted for the f’s from Eq.(1.60).
iating B from (1.62) gives the relative amplitude of the transmitted

or

iBA—jpB=—aC (1.58)
Equations (1.57) and (1.58) give
A=3C(1—a/ip)

B=3C(1+a/ip)
Notice that the amplitude of incident and reflected waves are identical, i.c.
|A|=|B|

but, because there is a phase difference between the forward- and backward:
travelling waves, the total ¥ wave or sum of incident and reflected waves i
a standing wave. A further point of interest is that the solution ¥y given i
Eq.(1.56), which applies to the right of the barrier, represents a wave whost
amplitude decays exponentially with increasing x. Both of these situations ar¢
illustrated diagrammatically in Fig. 1.14. It will be seen that there is a finit¢
probability that the incident beam penetrates some distance into (h¢
classically forbidden region, since [¥y|? is greater than zero there, However, |l

(1.59)

E: 2 _ 2
“A 1+B,/B, 1+[(E- VINE—V,)]'?

f_ﬂﬂtl the surprising result that the amplitude of the transmitted wave is
Wi that of the incident wave, or the probable density of particles in the
Wil electron beam is greater than that in the incident beam! This may
litdd by noting that the transmitted particles are moving more slowly
eident particles. Thus, although C> 4, the rate of flow of particles in
f Itted beam is less than that in the incident beam. Notice also that

(1.65)

a is large, i.e. V,>E, few particles are found very far inside the boundary __ _incidentbeam |77 7 / 777777V
Now let us turn our attention to the situation where the barrier is nul e / _mapsmited beam
sufficiently high to cause complete reflection of the incident beam. In (hou i s o o b,
circumstances, there is only partial reflection and part of the beam I #
transmitted through the barrier, as shown in Fig. 1.15. If, as before, we Il A %2 "
s
Bra= g (E— V) (1ol i LN
g wive ' ; transnuued
then the solutions of Schrodinger’s equation in the two regions arc b sV travelling wave
—

77777 77 2x=0

W, = A exp(iB; X)+ B exp(—jB, X)

W= Cexp(jf; x)

if it is assumed that there is no reflected wave in region 1. Matching I ol
0¥/0x at the boundary as before we have, from (1.61)

A+B=C (4
Bi(A—B)=p,C
C can be eliminated from these equations (o give

B 1 /B (M
AL, '

|
( fl' ] repion | ‘: region II
I

k> E>V

Wi 118 An electron beam incident on a potential step.

e wivelength of the transmitted W wave is greater than that for
_ WV, an shown in Fig, 1,15

R b i serien i the interaction of a constant-energy beam
WIIRIE o 0 olassicnlly impenetrable potential barrier of finite
MW I Pl e Applying Schrodinger’s equation to the three
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i 77777 in lhc. barrier region, and the hyperbolic functions in (1.68) can be
o e s s  — il (o give
4 ;—-—-———-—-——-0—- <
reflected beam / 4 |F| exp(—2ad)
—f— G- ——0— — —0— — — |/ i PI_“I=T4“521 1 = 3
5 / 141* 1+3(/B— /o)
s
:H\E . Now substitute values for « and f as defined in Eq.(1.67) to give
¥y m
b s, ) Pr-wexp{—2[2m(V, — E)]' d/h} (1.70)
v i Il . Fo y oy ,
! [, wave ; il Ahe barrier is sufficiently thin, i.e. d is small, there is a small but finite
s T 7 / ity that particles can penetrate the barrier, even though classically this
wave W 4 . __ | lmm_n possible. The particle is said to have tunnelled through the
(i 7 > o o £ o x=d1 TR T S L rg wa i effect has important physical applications, as will be discovered
region I : region 11 i region 111 . lor example, tunnel diodes and electron emission from a cathode
E>V, | E<VW, " E>V il

¢ that the probability of tunnelling falls off exponentially with

birrier height and thickness. As an example of the sort of figures
dulmider a1 A electron beam approaching a barrier 1 V high
165 101" J) and 2 nm wide. The probability of tunnelling, using
ol order ¢ ?° and a current of about 19~° A tunnels through the

Hiwover, il the barrier thickness is reduced to 0.1 nm, the tunnelling
Heremsed to about 0.3 Al

Fig. 1.16 Partial transmission of an electron beam through a narrow potential barrier.

regions gives wavefunctions of the form:
W, = A exp(jpx)+ B exp(—jpx)
¥, = C exp(—ax)+ D exp(ax) (1.00)
‘I’]u = F exp(jﬁx)
where
00 ian atom drops from an excited state to the ground state in
Ly Lasting about 10 ®s. If the energy emitted is 1 eV, find (a) the

SHlinty in the energy, (b) the relative uncertainty in the frequency

Wil tndintion and (¢) the number of wavelengths in and the length of
Chel ol enitted radiation,

2m
p=2UE-v)  and  ?=T3(V,-E) (10}

as before. Notice that, in order to satisfy the boundary conditions, a hiyhly
attenuated reflected wave, magnitude D, has been included in the bt
region; also, it has been assumed that no reflection occurs in region 11 We ci
now apply the usual boundary conditions at x=0and x=d and hcpu- Tl e
relative values of the wavefunctions at various positions, as shown in g |1
If, in particular, B,C and D are eliminated, the amplitudc‘ of “H:T Wowave i
region III in terms of the amplitude of the incident wave in region | oan 1
obtained, thus

F = A exp(—jpd)[cosh(ad) + 4 (o/B— /o) sinh(ad) | ! (1 Al

Now, the probability of a particle passing through the barricr, 'y |
proportional to the ratio of the absolute square of i regron T o il
absolute square of ¥ in the incident region, or

Py - “‘11/[*'”" (| A%

0" 4x10 ".2%x10%3m

e Inherent uncertainty in the velocity of an electron confined in
Sl of volume 10 mm cube?

M

e probnbility of reflection of a beam of electrons of energy

Ll nbapt potentinl energy step of height V, is determined by
Wt ¢ piven by

ety
T2 S L O
which can be evaluated using g (1.08)

I mosd prnctienl cases. wd is rge becnuse of high attenuntion ol ‘l_ e manitude ol the rellection coeMicient is indenendent ol
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whether the electrons are incident from the high or low potential energy side.
How is its phase affected?

4. Find the probability of transmission of a 1 MeV proton through a 4 MeV
high, 10~ '*m thick rectangular potential energy barrier {m,,/m= 1836).

Ans. 5x1074

The electronic structure
Of atoms

Huction

Vious chapter we showed that microscopic particles can be described
I wives and wavepackets and used such a description to discuss the
I 0l purticles with potential barriers of various shapes. In this section
i U ittention to particles that are constrained to remain localized
i1 ol space. We shall see that under these conditions the particle
W0 i continuous spectrum of possible energies and the system is such
% (he particle to have only discrete values of energy; nor can the
1ot ol n confined particle take up any arbitrary value, and only a set
Wuvelunctions is allowable.

It tien of particles confined to a finite region of space, or bound, can
By vonsidering them to be trapped in a potential well with very steep
e of such containers with which we are able to deal is artificial in
{0t tennons of mathematical simplicity and bears little resemblance
inulity. However, the results obtained have general characteristics
Al ielevint to the description of electrons bound to parent atoms
Hnis for the categorization of atoms in terms of their electronic

0 11 0 one-dimensional potential well

b albintion depicted in Fig. 2.1. A particle of mass m and total
S only in the v direction and is constrained to remain in a region
.’ potentinl barriers ot x 0 and x=d. The barriers are made
) mid high and are mfinite in extent so that there is no
A petcle surmaounting them and escaping. We assume that the
W ol he prrticle inside the well is zero and apply Schrodinger’s
L sguntion, g (043), sinee the total energy E remains

B o Os v ecd, Ve and

e
l. v 1| ."j'f'-"l' () (2 1)
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- 0 'V inside the well, given by (2.2), must become zero at x=0 and x=d.
A ) it these boundary conditions to Eq.(2.2) gives
/ allowed energy L’ A
/ D“lfevels § =—4
A 4
/ L
sAEzISE / . o
%&j “ 0= A(e#!—e P4
5 /] ¢
§§53=95| _____#__”f:."..;
-l # sin(fd)=0
Sj s
Aemser il
AE, ground state __a=1 fid = [(2mE)"?/h] d=nn where n=1,2,3,... (2.3)
AE pomd e _ -

//////////////////;:d
0 =

e
I

Wlitions can now be substituted into Eq.(2.2) to give a general
or the wavefunctions for the particle in the well:

o

¥ = C sin(nnx/d) (2.4)

A4 i newly defined constant. We see that the two travelling-wave
U6 0 'V, as represented by the two parts of Eq.(2.2), are of equal

: It move in opposite directions and combine to produce

Wave in the usual way.

Il €18 o normalizing constant whose value can be obtained by

i the probability that the particle is located somewhere in the well

Iy Nince the probability that it is located in length dx is ¥¥*dx,

wavefunction ‘¥,

d
J. WYW*dx=1
{

)

probability density |'¥

il
J 7 sin*(nnx/d) dx =1

L

Fig. 2.1 Particle trapped in an infinitely deep, one-dimensional potential well.

o Hnd that ('« (2/d)"* and the normalized solution for
We have seen that the general solution of this equation, which given i
wavefunction of the particle inside the well, is

W (/) win(naex/d) fi=12.8, ... _ (2.5)
¥ = Ae!?* + Be ™ (4 wavelunetion for the bound particle is one of a set of discrete
Hssponding (o a different value of the integer n. This general
drintined to this particular example but applies to all bound
Mllwed value of the wavelunction, for instance for each value
Ill;]_ll 8w ealled an elgenfunction, which can be loosely
e Clerman w partionlar function’

e I Ry e e maibadasss pbenid abas

where
B2 =(2m/h)E

Now, since there is no possibility of the particle penetrating the « ontiniil
i infini ——— [ \
walls and so gaining infinite potentinl energy, MAE* and honee 1t b 8

T EENL " PO PUPRY Y Y (NSRRI PR [g———" e T . | o g e e e " 4
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particle also has only a discrete set of allowed values given by
h*n*n*  n’h?
“ond "smd

Thus, the total energy of the particle in the well has particular allowed valucs,
corresponding to the various integers; the energy is quantized and ecacl
particular energy level is called an eigenvalue. A set of possible energy levels iy
shown in Fig. 2.1. Notice that energy levels intermediate to those shown ai¢
forbidden and also that a particle in the lowest energy state or ground state, I,
has a non-zero kinetic energy. Both of these general results are applicable to all
bound particles and are at variance with classical mechanical ideas.

This result might have been obtained in a simpler, more intuitive way, usinj
the de Broglie wavelength of the electron, A=h/p, directly. Assuming that a1
electronic wave is reflected at either extremity of the well, since an electron 1
not allowed to penetrate outside the infinitely high potential walls, a standinj
wave will be established, analogous to the behaviour of electromagnetic wives
in a cavity resonator or a vibrating string with fixed nodes. It follows that th¢
well must contain an integral multiple of half electronic wavelengths of simnili|
form to that shown in Fig. 2.1. Hence

=123 (2.0)

d=nA/2=(n/2) h/p
which can be substituted in the expression for electron energy
E=p*2m

to give
21 n*h?

“\2d) 2m 8md?
as before.

The probability per unit length that the particle is located ul
particular position in the well, x, can be found in the usual way by formg [V
from the value of W given in Eq.(2.5). The eigenfunctions, W, arc plotied Hie
Fig. 2.1 together with the corresponding probabilities of location per (il
length, |, |>. Notice that the wavelength, 4, of the standing wave of 1" 1§
quantized, only having discrete values given by A= 2mt/ff = 2d/n, and thil i I8
the number of loops in the pattern This result can be compured (o g
electrical resonances that occur in a transmission line short-circuted nt vk
end; such resonances occur when the wavelength is equal to twice (he 1
length divided by an integer. The analogy is valid and the results s i
Schrédinger’s equation is of the same form as (he electiomuppnetic Wis
equation and the boundary conditions are silar i cae h cie

The diagrams of N7 indicate that o particle o the ground state b
pherenerpy stiten, foreniniig

probably located il the centre of the well o
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il there is zero probability of the particle being located at certain other
I I'hese conclusions do not agree with the classical picture of the
wing reflected elastically from the walls of the well, which results in
Wil probability amplitude since the particle may be located anywhere
Wil with equal probability. However, at higher energy levels, for large
il 1, the agreement is better since the quantum probability oscillates
With position about a mean value, which is the classical probability,

Vetage value taken over a short length is equal to the classically
il one.

tpiiments for the infinitely deep well can be extended either
lly Or on a more intuitive basis, as we shall do here, to consider the
uiticle trapped in a one-dimensional potential well of finite depth.
\ thix problem is slightly more realistic in that it more closely
hn situation of an electron bound to an atom, it is still somewhat
he problem is illustrated in Fig. 2.2. Consider first the classically

continuum of states

ANAVAN \\\\\3’

e 0) ey
W)

//////////////a

&

0 BEvels wisd wavefunctlons for a particle in a finite one-dimensional potential well.

| Whone total energy, 1, s less than V. the depth of the potential
IR e enitier there will be asmall but finite probability that
_ Eun prnetiate vome way through the boundaries of the well
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have the characteristic exponentially decaying form, much the same as thal
depicted in Fig. 1.14. The wavefunction inside the well no longer fall to zero al ;
the walls since there has to be smooth matching of wavefunctions across cacli | radial distance, r
boundary. Thus, although the wavefunctions have a shape generally similar (0 ' R e :-_-_-i-_-: e
those for the infinite well, they are slightly modified in that they are no longci Ey
purely sinusoidal and their wavelength is increased. This leads to a set ol
eigenvalues slightly lower in value than the corresponding set for the infinite
well, as shown in Fig. 2.2.

When the energy of the particle is greater than the depth of the well, E> |,
then the particle is no longer classically bound and it can take up any level i
a continuum of possible energy levels, as shown in the figure.

4 electron energy

T potential energy
of electron

llwed
By levels

d+e

nucleus

2.3 The hydrogen atom (@)

We now turn our attention to a quantum-mechanical solution of the hydropei
atom. Not only is this a useful example of the application of Schrédingci’s
equation to a particle trapped in a more physically realistic potential well. hul
the results also explain much about the electronic structure of atoms, whicli
lays the foundations for a logical classification of the elements.

The Bohr theory of the hydrogen atom, given in Sec. 1.4, is unacceptable ol
several counts. First, it assumes that the electron moves in a given orbit, whicl
implies that its position is known precisely at any time, which violates (h
uncertainty principle. Secondly, the theory arbitrarily assumes (hat (I
angular momentum of the orbiting electron is quantized and has valucs pivel
by Eq.(1.13). Finally, the Bohr theory cannot be extended to treat aton witl
more than one outer electron. These limitations are not present in a quaniiing
mechanical treatment and solutions can be obtained, in principle at leaut,
more complex atoms and molecules.

We assume that the hydrogen atom consists of a central nuclcus of ¢huips
+e surrounded by an electron. The nucleus is assumed fixed becaune ol HE
relatively heavy mass, but to relax this condition would make only i «light
quantitative difference to the result. The potential energy ol an cleciing
located at a distance r from the nucleus was derived in Sec. 1.4 and i

V= —e*/(4ne,r) (11

Plllln through the potential well of 2 hydrogen atom; (b) spherical polar coordinates.

Wiy lunction given in Eq. (2.7) can be included at the same time to

I 0 (r_.ﬂ‘l‘)__l_ 1o/, 0¥\, 1 @o¥
or\ o )2 sin0og\" @ rZsin2 0 0¢?

) 2 (2.8)
’ m(m ¢ )‘PH——O

i
I A yr

sintion 1s solved completely by the separation-of-variables
L order to simplify the problem we shall look for solutions that
Wl ol the anpular coordinates 8 and ¢. The wavefunctions that
Wl 1y (2 %) under these particular conditions will have spherical
Wil depend on the variable r only. Therefore, we let 0/08 and
wid viiry out the differentiation implicit in the first term, to

1
AN 2aw 2m e
& b E4 ¥=0 (2.9)

This situation is shown diagrammatically in Fig. 2.3(a). The clectron vt G rdrh e gr of

in the potential well created by the field of attraction sct up by (he posiiiy
nucleus; it is bound to the nucleus. The problem is more diflicult thiv thi
encountered previously in that the contour of the well 1 not wo vl
mathematically and, also, the geometry is now three-dimenmionnl 1

convenient to define the problem in spherical polar coordinmtes, awshow
Fig. 2.3(b), because of a possible spherical symmetry in the solution H
three-dimensional time-inde |1Ll|l|l nil Sc |l|m|lnpl| couation given n g |

PN 1 WoTUUTYL W 1| ST || BUDNY W papeny, VS T SERGEara, o | [puaenn | ErwTY [

alapherivally symmetrical or radial wavefunctions that satisfy
Bt the wimplent i of the form

Wy o= Aexpl—r/ry) (2.10)

et wned A the nsunl normalizing constant. Once again, A is
i that the probability of locating the electron somewhere

Wiy Stnce the probnbility density is 'P'P* and the volume of
" ll' ER i n il thlabh e o tla A ur" i ko ansslan Infbldss dlhisad iz
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electron is located inside such a shell is W¥*4nr? dr. Hence, using (2.10), we
have

J. WW*4nr? dr=4nA? J. r2 exp(—2r/rg)dr=1
0 0
which can be integrated by parts to give
A =7 lfzra 3j2
and

W, =n~ V2,32 exp(—r/r,)

We can find the value of the constant r,, by substituting this wavefunction (i

Eq.(2.9), which gives
1 2 2m e’
e Bl =)
Y (E+4ncor)

rro

7

For this equation to be true for all values of r, the terms containing » muil

equate to zero, or
2 2me’
e Amhiegr
which gives
dnh’e,  he,

me*  me’m

r0=

Comparing this result with Eq.(1.14) we see that the constant r,, is numeri ill
equal to the radius of the lowest-energy orbit of the Bohr atom; we will 1e1ii
to a discussion of the physical significance of this result later.

Meanwhile, if we now consider Eq. (2.12) with the sum of the r-dependid

terms equal to zero, the total energy of the electron in the lowest encryy «lile

h? me*
Ey=—5 —=—332 (44
2mrg 8egh
where Eq.(2.13) has been used to evaluate the constant ry,
A more complete solution of the wave ecquation so as (o (el

higher-order radial wavefunctions '¥,, ‘¥, etc., leads (o the following ey

expression for the allowed energy levels:

-

LT n’ 8ih’

me

(1

Again we see that the result of confining the electron to some localized pu b

of space is (o quantize ity possible enerpgy levels, an shown i Fig 24 |
g e e Al o g e e o e RN ok S L latad Thial LS

2.11)

(2.14)
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i 0l several such numbers that are usually necessary to define the
| i purticular electron in an atom.

now use our knowledge of the wavefunction of the electron in the
le, 'I',, to discuss the geometry of the hydrogen atom. We have
Il il the probability that an electron is located in a spherical shell of
il thickness dr is dP,, then

dP,=|¥,|*4nr? dr=(4r?/r3) exp(—2r/r,) dr (2.16)

wububility per unit radius for an electron in the ground state to be
ddiug ris

dP, /dr=(4r*/r3) exp(—2r/ro) (2.17)

ubility is plotted in Fig. 2.4(a). It can be shown by differentiation that
i vilue of dP,/dr occurs when r=r, as shown.

{ Il we let p,(r) be the charge density due to the electron in the
then

pi(r) =W, |? (—e)= —(e/nr3) exp(—2r/r,)

Wi in Fig, 2.4(b). The charge contained in a spherical shell of
i thickness dr is then g, where

q,/dr = —(4er*/rd) exp(—2r/r,) (2.19)

Wln (n very similar to that in (2.17) and has a maximum value at
i shown in Fig, 2.3(c). Hence a quantum-mechanical interpreta-
lydiogen atom indicates that the electron can no longer be
A hiving i fixed orbit; it can be located at any distance from the
When (0 the ground state its most probable location is at-the Bohr
e ansociated with the electron is smeared out but there is
i (he probable charge distribution, again at the Bohr radius.
Wiacumied wo far only those solutions of the three-dimensional
Syntion that depend on radial distance from the nucleus.
Hen ol wivelunctions is possible if this assumption of spherical
danid When the wavefunction has angular dependence on § and
VI on O/0¢h 1 zero, 1q. (2.8) is usually solved by the method of
Evntinblen This technique assumes a solution

W 0= [(r) [ 0) S (eb) (2.20)

el /. /), /e only dependent on r, 0 and ¢, respectively.
EWRvelinotion i substituted into liq.(2.8), the three-dimensional
.'.' Wi b e subdivided into three separate differential equations,
R 0 oty and one i goonly.

g e difterontinl equation in ¢ gives only the radial wave
W0 peinetpal quantum namber, w123, ... which defines the
IT S elseteon i o paetiondae state, ny we have already discussed.
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Il In ¢ can be solved to give a third set of possible quantum numbers,
Vilty from m= —1, including m=0, to m = + 1. These magnetic orbital
mbers are associated with the fact that an electron in an orbital
I rotating charge and hence an electric current, which has
- mugnetic field and magnetic moment. The orientation of this
Wipgnetic moment with an externally applied magnetic field is
wnd the quantum number, m, arises because of the discrete number
| utlentations.
il in general there exists a set of three possible quantum numbers,
And that a particular combination of these is necessary to specify an
lantum state. In addition, a further quantum number is necessary
simpletely a particular quantum state, which is not apparent from
Wil 10 the three-dimensional Schrédinger equation. This was first
i an arbitrary manner to explain fine details of atomic spectra.
Hi v nssumed to spin about its axis in an either clockwise or
e direction. There are only two possible ways in which the
il momentum vector due to the spin can be oriented with
I npplicd magnetic field. A spin quantum number, s, which can have
uen, nccounts for this quantization. It has been shown more
U1 tho assumption of spin need not be introduced so arbitrarily since
Bully iw o solution of a more generalized form of the Schrodinger

probability
of location at r

é‘t b - ——

(a)

-

o

charge density

(b)

i

S |

charge

| luslon principle and the periodic table of elements

W thil the particular quantum state of an electronic orbital can be
et of quantum numbers, (n, I, m, s). Such numbers completely
slunctions for a given electron and are usually quoted instead of
llin becauge they are less cumbersome.

| sxvlusion principle provides a method of classifying atoms
W Wheli electronic structure. Tt states that in a multi-electronic
§ i genernl can be an atom, a molecule, or a complete crystal, no
slbctron can exist in any one quantum state. For the particular
Wi, Hhe principle implies that no two electrons can be described by
81 ol quantum numbers. Physically what this means is that no
4 elsctrons can have the same distribution in space and even then
W ipponite sping, There is no proof of the exclusion statement but
Mipported by an abundance of experimental evidence.
W the electronic structure of different atoms containing an
bt ol electrons. Flectrons will tend to fill the lowest available
Bint A consequence of the exclusion principle is that each
B st hinve o different set ol quantum numbers and possess
Hhin the preceding electron. The energy levels are thus filled

N B tlanal alactrang alwinus boinves o1 irmesdorene o1 evs bnossn 4 od

(d)

Fig. 24 (a)(c) Geometry and charge configuration of the hydrogen atom in the growmd sinis |
a two-dimensional representation of the smeared-out electronic churge,

A further set of quantum numbers, 1=0, 1, 2, ... (n 1), arven g
a solution of the separated differential equation in (. Such aimuthal quanis
numbers are associated with the angular momentum of an election, whivh §

~itself quantized.
Tt B s i bk - wavimt wmd Erankeca M Al wmanth asimainn b laae sanilatonls Lii catnansimalmet #is 12kl
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correspond to the lowest possible unoccupied energy state. A periodic table of
elements based on their electronic structure can thus be constructed using (his
procedure in conjunction with the relationships between the various quantufi
numbers discussed in the previous section. Thus, for n=1, [ and m must bo(lj
be zero and two electronic states exist, corresponding to the two spin quantuii
numbers. But for n=2, I can equal 0 or 1, and for /=1, m may have values |,
0, + 1; the various combinations of (1, [, m) are thus (2,0,0), (2,1, —1), (2, I, 0}
(2,1, 1) and each of these is associated with two possible states because of spilj,
making a total of eight possible states with principle quantum number n -~ 1
This process can be repeated for n=3, /=0, 1, 2, and so on, and the periodil
table shown in Table 2.1 results.

State or subshell

- As w

ele,

Table 2.1 Electronic structure of the lighter elements. it nomenclature arises from the early spectroscopic identification

ponding to various electronic transitions, namely, sharp,

Principal Azimuthal Magnetic e, fundamental, etc.) Thus, in the electronic classification of the

quantum quantum quantum Biils, glven in the last column of Table 2.1, the integers refer to the

number, number, number, Spectroscopli it number of each shell, the letters correspond to the value of

Element n 1=0,1,....,n—=1 m=—1..., +1 designation Wl guantum number, and the indices give the number of electrons
il
H 1 0 0 s B oted llhut the pcrio@ic table does not progress continuously in
i q 0 0 162 tonlly logical manner since for a group of the heavier elements the
i . 0 0 162% He elootrons in an outer shell is lower than that in an inner subshell
Be 2 0 0 15252 I8vuls are filled before the inner subshells are fully occupied.
B 2 1 -1 1s%2s*2p
C 2 1 —1 1s225%2p’
292740 R
N 2 ! 0 : q22st , ,'] A W e lowest energy levels for electrons trapped in a one-dimen-
O 2 1 0 Is°2s 2p -htiulh 0.1 nm
F 2 1 1 1s22s%2p" 3 ' '
Ne 2 1 1 1s22¢%2p" M 24%10°7, 54%x10°17 )
Na 3 0 0 18225%2p" W
Mg 3 0 0 18228 2p" ! Anvonhined in n one-dimensional potential energy well of length
Al 3 1 =1 12287 2p" W' A e kinetic energy of the electron when in the ground state and
Si 3 1 1 1227 2p" W' A Juency resulting from a transition from the next highest state
P 3 1 0 152267 2" W0 ul
etc.

Electrons that have the same principal quantum number, nare wid (i
the same shell. It is evident from the table that the muximim nhse
electrons per shell is 2n?. Within a shell, each state correnponding
a particular integer value of 1, the azimuthal quantum number, i given o el





