
Auxiliar Laplace 1

1. Pregunta 1:

Seleccione el valor de C_E para que el circuito tenga un polo en s=-3000[rad/seg]. Use el equivalente de thevenin de la figura 1.b.

2. Pregunta 2:

Diseñe el circuito de la figura 2 para producir un par de polos complejos definidos por $\xi=0,5$ y $\omega_0=1000[rad/seg]$. Para simplificar el análisis considerar valores iguales de los elementos del circuito, $R_1=R_2=R$ y $C_1=C_2=C$. Escoja los valores de R, C y μ para que el circuito tenga los polos naturales deseados.

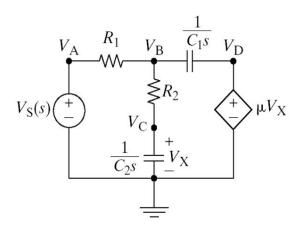


Fig. 2:

3. Pregunta 3:

- *a*) Escriba las ecuaciones de corriente de mallas.
- b) Encuentre las Respuestas de Entrada Cero para $I_A(s)$ e $I_B(s)$.
- c) Encuentre las respuestas de entrada cero de $i_A(t)$ e $i_B(t)$ para $R_1=200\Omega$, $R_2=300\Omega$, $L_1=50mH$ y $L_2=100mH$.

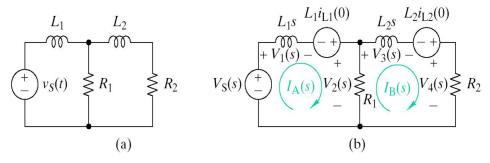


Fig. 3:

4. Pregunta 4:

Seleccione los valores de los elementos para que el circuito tenga un polo real en s=-20[krad/seg] y un par de polos complejos con $\xi=0,5$ y $\omega_0=20[krad/seg]$

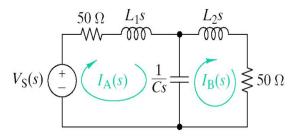


Fig. 4: