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Abstract—Traditional gap acceptance functions have been estimated based on the first gap
observed. In this paper we show that the critical gap of drivers is decreasing on the average. as
they are waiting for an acceptable gap. Our gap aceeptance function is based on 2 probit model
which assumes a normal distribution of 2aps across gaps and drivers. ‘

The concept of gap acceptance is used in modeiling drivers’ behavior when crossing (or
merging with) a traffic stream of higher priority. Such models are used to study delays
and capacity at unsignalized intersections, pedestrian crossings, freeway merging and
lane changing maneuvers. To model such situations it is assumed that each driver (or
pedestrian) has some “critical gap.” A driver would accept (i.e. proceed with his intended
maneuver) a gap in the traffic stream if its duration is longer than his critical gap.

Clearly. the critical gap for a certain maneuver would vary across drivers (and gaps).
and is therefore modelled as a random variable. Several probability density functions
have been used to described the distribution of the critical gap. Drew ¢t al. (1967). Cohen
et al. (1955) and Solberg et al. (1966) used the lognormal distribution; Miller (1972) and
Daganzo (1979) used the normal distribution; Blunden et al. (1962) used the gamma
distribution; and Herman and Weiss (1961) used the exponential distribution.

Given a distribution of critical gaps in the population. one can define gap acceptance

functions. Such functions relate the probability that a randomly chosen driver would

accept a certain gap to the characteristics of this gap. Naturally the most important
characteristic of the gap is its length (duration). However. in this paper we estimate
additional gap acceptance parameters related to the whole string of gaps considered by a
driver up to the accepted one. We therefore explicitly address the functional form and the
estimation of model parameters for the situation recognized by Weiss and Maradudin
(1962} as that of the “impatient driver" for whom the critical gap decreases with each
passing gap.

As noted by Miller (1972) most estimators of gap acceptance suffer from either bias or
statistical inefficiency. The bias is due to the over-representation of cautious drivers who
reject many gaps before final acceptance. The standard solution for 'this problem is 1o
consider only the first gap. a procedure which is bound to introduce inefficiency since it
involves discarding data. Miller suggested a normal distribution based maximum likeli-
hood estimator using all the observed gaps. This was the basis for the estimation tech-
nique used in this paper. However, as noted by Miller. his estimates did not account for
the dependence of critical gaps on previously rejected gaps as well as for the duration of
each gap. (This phenomenon can be recognized by observing drivers who reject a gap
which is longer than the one eventually accepted).

Recently. Daganzo (1979) extended Miller's method by using a multinomiat probit
model to estimate the parameters of the multivariate normal distribution of eritical gaps.
This multivariate approach accounted for the variation among gaps for a given driver as
well as variation among drivers, Unfortunately. estimability problems prevented
Daganzo from actuaily distinguishing between the two above-mentioned components of
stochastic variation. even though they were assumed independent.
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In this paper. we propose a model of gap acceptance behavior that captures variations
in individual driver behavior among gaps and across drivers. It is a relatively straightfor-
ward extension of Miller's suggestions as the stochastic variation in the critical gap is not
explicitly decomposed into its “within” drivers and “across” driverst components. How-
ever. we try 1o explain some of the variability between gaps (i.e. “within drivers”) by
modeling it in the systematic component of our model, ie. by explicitly specifying the
dependence of the mean critical gap on the number of rejected gaps.

In the following sections we discuss the model and its specifications, compare the
estimation results for several models and conclude with a discussion of applications and
further research. Throughout the paper we refer to drivers at unsignalized intersections
but the content is applicable to other gap acceptance situations as well.

THE MODEL

In our model. the gap acceptance process is viewed as a series of binary decisions. The
first gap that is longer than the critical one is accepted. Our hypothesis is that the length
of the critical gap. for a given randomly chosen driver. is not constant but rather a
function of the number of gaps rejected up to the gap under consideration. Mathemat-
ically the model can be specified as follows:

TA) =T, +fli = 1) + €. 1)

where T,{i) is the critical gap of a driver randomly chosen from the population when
facing the i-th gap in a sequence: T, is the mean critical gap when facing the first gap, ie.
for i = 1. f(i = 1) is a function of the number of rejected gaps up to gap i (by definition
£(0) = 0);and ¢; is a disturbance term which varies across drivers and gaps (by assumption,
€, ~ N{0.o?% and the gaps' disturbance terms are assumed independent). In this study we
assume that the form of f(*}is f{i — 1) = (i — 1), where § and J are parameters to be
estimated. Note that this formulation cannot distinguish between the distribution across
drivers and across gaps. The unit of observation is the i-th gap of the j-th driver and all
the normal variates are assumed independent and identically distributed.

The gap acceptance function is given by the probability that a certain driver would
accept a given gap. The gaps are characterized by their sequential number, i, and their
duration, t,. Thus the gap acceptance function is given by the probit function:

Pr(acceptgapi| Ty B.8. 0 1)) = Pry, = T,(i)]
=Priz2 T, + Bli— 1 +¢)

g

where @ () denotes the standard cumulative normal curve. In order to construct a
proper likelihood function for this model let the superscript j refer to an observation (&
driver) from a simple random sample of size N. Let k; denote the sequential number of
the gap accepted by driver j; j = 1, 2,..., N. The probability that the j-th driver would
accept the k-th gap, p{, is given by: -

k)

P{ = Prsf = TLK [] Prid < TL(03. o
=]

since accepting the k-th gap means that all preceding ones were rejected. The likelihood
function of this model for a given sample is:

N
L(T". ﬁa 51 at‘:O k') = n P‘J
J=1

+ Empirical york by Botiom and Ashworth (1978) {see also Ashworth and Bottom (1977)) suggested that ovet
85%, of the variance in gap acceplance behavior may be due to variations among gaps for given drivers {"within
drivers™ variability). .
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and using eqn (2), the log-likelihood function is:

N i k-1 N
logL(-)= ¥ |:log ¢(-———-—d" T:'(k’)) + J}: log ¢(T—-———"(I) tl)] {4)
il o i=1 o

This model has been estimated using CHOMP (Choice Modelling Program), the pro-
bit estimation program developed by Daganzo and Schoenfeld (1978). However, the
functional form of the abovementioned dependence of the critical gap on the gap’s
sequential number, ie. f(i — 1) = (i — 1) is not the only one used in this study. A
second specification was tried by constraining é = 1. imposing linearity of T, in (i = 1).
This constraint has been motivated by the results of the first model where & was not
significantly different from 1, as we show in the next section. A third model assumes that
drivers’ critical gap is influenced by the length of the waiting time rather than the number
of gaps up to the one accepted. This assumption is consistent with the empirical findings
of Bottom and Ashworth (1978} who found that the proportion of gaps accepted
increased with the waiting time. In this case

i~1
fi-1=8 31
=]
where ¢, is the duration of the [-th gap. In addition, in order to compare this model to the
one suggested by Miller (1972). his model was estimated as well using the same data set.
Miller’s model can be specified, in our notation, as f(i — 1) =0, in other words
T, = T, + €. The estimation results are presented in the next section,

MODEL ESTIMATION

The data set used for the estimation process was the same one used and reported by
Daganzo {1979}, The data includes 203 observations (drivers) collected from roadside
observations at various intersections in Berkeley. including all rejected gaps and the
accepted one for each observation (406 records were thus used for the estimation).

Table 1 shows the estimation results for Miller’s model. where the mean critical gap is
assumed independent of the series of rejected gaps. The mean critical gap is estimated to
be 6.3 sec and the variance of the critical gap across the population-is estimated to be
76sec?, Table 2 depicts the estimates for the first model mentioned in the preceding
section, i.e. T, (i) = T,, + B(i — 1)® + €. In this case the mean critical time is estimated to
be 7.3 — 1.4(i — 1)°7 seconds with a variance of 5.2. Note that the sign of § is nega-
tive — —as expected, the critical gap decreases as more gaps are passing by.t However the
assumption that the power coefficient, 4, equals unity cannot-be rejected at any reason-
able confidence level {the value of the r-statistic for this test is 0.9). This leads us naturally
10 estimate a third model with the restriction 6 = 1.

The estimates for the restricted model are depicted in Table 3. Here E[T.()] =
12 — 0.94{i — 1) seconds and &* = 5.4 sec’. Note that even though this model involves
fewer parameters than the previous one, the likelihood ratio index, which is an index of
goodness of fit, is virtually unchanged. This comparison is particularly revealing when
the last model is compared with Miller's model. The definite improvement in the good-
ness of fit between the last (3 parameter} model and Milier's model seems to suggest that
the critical gaps do decrease as drivers are waiting. However a comparison with the
four-parameter model {Table 2) seems to suggest that the reduction in the critical gap is
approximately linear (over the estimated range} with the number of gaps already rejected.
It should be noted though that many drivers in the sample did not wait more than two
gaps. Thus all observations where the accepted gap was either the first or the second did
not contribute to the estimate of & which is thus based on a relatively small sample.

tThis result cannot be extrapolated beyond the range observed in the data (the expected critical time
becomes negative for long sequences of gaps). This. however. should not present a problem in practical
considerations in which the number of rejected gaps may be no more than 3 or 4. A formula applicable for a
wider range of gap sequences may be estimaled with a suitabie data set.

j3%
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Table }. Parameter estimates for Miller's model

Model: T, ~ N{T. ¢%}
Standard Error

Parameter Estimate of Estimate
T, 6.3 0.30
ol 1.6 1.35

Log likelihood at zero = 288
. Log likelihood at convergence = — 103
Likelihood Ratio Indext = 0.64

+ The log likelihood at zero is the vaiue of the
log likelihcod function for the model under con-
sideration when both choices are equally likely
{in this case. when T, = 0): the log likelihood at
convergence is the value of this function when
the arguments are the maximum likelihood esti-
mators {in this case, the T = 6.3 and & = 7.6k
the likelihood ratio index is the absolute differ-
ence between these quantities divided by the
likelihood at zero.

The parameter estimates for the last model specified are given in Table 4. In this model
the critical gap is specified as a function of the delay up to the accepted gap. As evident
from Table 4. this model does not fit the data as well as the model depicted in Table 3.

Note that all three specifications support our basic hypothesis that the critical gap is
decreasing as drivers wait for an acceptable gap. in other words the coefficient § i
always negative and the hypothesis that it is zero can be rejected at any reasonable

confidence level.

Tabie 2. Parameter estimates for model with
non linear influence of the number of rejected

gaps

Model: Tt ~ Ni[T. + Bti = 11). &%}
Standard Error

Parameter Estimate of Estimate
T, 73 0.35
B 14 118
é 0.7 084
a? 5.2 2.28

Log likelihood at zero = —288
Log likelihood at convergence = —89.6
Likelihood Ratio Index = 0.6%

Clearly, the model that best fits the data is the one depicted in Table 3, where
Toli)=Ter + Bli = 1) + €
and
€ ~ N(0.¢%).

It is interesting to compare this model to the one suggested by Miller. the estimation
results of which are depicied in Table 1. Since the specification for Miller's modei is:

T, = f,, + €
and
¢ ~ N(0.a*).

the latter model is a linear restriction on our model (B = 0) and since in both cases we .

used maximum likelihood to estimate the models, the likelihood ratio test applies. From
Tables 1 and 3. - 2(log L,, — log L) = 27.6 (where L, refers to the value of the likelihood
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Table 3. Parameter estimates for model with
linear influence of the number of rejecied gaps

Model: T i} ~ Ni[T. + Bl = 1)), 0%}
Standard Error

Parameter Estimate of Estimate
T 12 0.32
B —0.94 0.17
a? 54 1.0

Log likelihood at zero = — 288
Log likelihood at convergence = —B9.8
Likelihood Ratio Index = 0.69

function for Miller’s model and L refers to the value of the likelihood function for our
model). This value is substantially higher than the boundary of the rejection region
which. for a confidence level of 0.005 is z2.49s., = 7.9. indicating that the hypothesis
f = 0 implied by Miller's model can be rejected. Another way of reaching the same
conclusion is to note that the r-statistic for the parameter § in our model (for testing the
hypothesis f = 0)is —5.47, a value substantially larger than tg 995 = 2.58. again. indicat-
ing a rejection of the hypothesis that g = 0. ~

Table 4, Parameter estimates for model with
delay dependent critical gap

Model: T, (i) ~ N{[T:, + B 'f :,]. a’}

Standard Error

Parameter Estimate of Estimate
T 69 0.32
B -0.2 0.08
a? 6.1 1.14

Log likelihood at zero = — 288
Log likelihood at convergence = —96.9
Likelihood Ratio Index = 0.66

In comparing the estimates for our model with the estimates of Milter's model. it is
also interesting to note that the estimated variance of the distribution of the critical gaps
in our model is smaller (6% = 54 vs 62 = 7.6 for Miller's model). This seems to imply
that the introduction-of the dependence on the rejected gaps results in an estimate of a
tighter distribution of the critical gap. In other words the dispersion in the distribution of
the critical gap in Miller’s model may be attributed to the omission of the dependence on
the number of rejected gaps.

CLOSURE

One of the main uses of gap acceptance functions is in developing expressions for
delays in crossing or merging situations. Using the gap acceptance model estimated in
this paper, the delay problem may be solved (at least numerically) within the framework
laid out by Weiss and Maradudin (1962) (see also Blumenfeld and Weiss. 1970). However.
the difficuity of obtaining simple closed form analytical delay expressions should not
detract from the applicability of our model. given the increased use of micro level traffic
simulation models (e.g. NETSIM—see Peat. Marwick and Mitchell. 1973),

The integration of our gap acceptance function in existing traffic simulation models is
straightforward and in light of the results of this paper. seems warranted.

The probit-based model presented in this paper verified our hypothesis that the mean
duration of the critical gap is a decreasing function of the number of rejected gaps. Our
model can be viewed as a generalization of Miller’s (1972) model or as a particular case
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of a general multinomial probit model, Note however, that unlike the case with
Daganzo’s model ours is sequential in nature and therefore the number of gaps con-
sidered does not have to be defined a priori {(Daganzo restricted his model to seven £aps). F
Furthermore our approach is more amenable to integration in a traffic simulation mods|
for the same reason.
Further empirical research would be needed in order to establish values or a range of
values applicable for our model in various situations. Such values can be used as a
defauit option (or just as inpt_n) in the aforementioned traffic simulation programs.

Acknowledgements—The authors would like 1o thank Dr. George Weiss and an anonymous referee for
their valuable suggestions and comments.
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