

Losas en 1 dirección

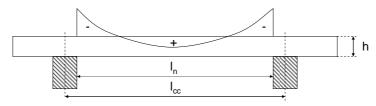
- Habitualmente para losas de relación largo/ancho ≥2
- Equivalente a viga (por unidad de ancho)
- Dominante en flexión

 A_s = área de armadura en 1m

 $A_b =$ área de 1 barra

n = número de barras

$$A_{\rm s} = \frac{1000}{\rm s} \, A_b \Rightarrow \rho = \frac{A_b}{{\rm s}d} = \frac{A_{\rm s}}{1000d} \, \, \acute{\rm o} \, \frac{\rho_{\rm cuantia}}{\rm nutnima} = \frac{A_b}{{\rm s}h} = \frac{A_{\rm s}}{1000h}$$


Losas en 1 dirección

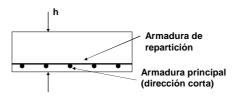
- Luz de cálculo (S.8.7)
 - Losa monolítica

Luz cálculo = l_n , si $l_n \le 3m$

• Elementos no monolítico

Luz cálculo = $l_n + h \le l_{cc}$

- Espesores mínimos de losa (S.9.5.2.1)


	Espesor mínimo de losa en	spesor mínimo de losa en 1 dirección	
	simplemente apoyadas	L/20	
	un extremo continuo	L/24	
	los dos extremos continuos	L/28	
Ci	en voladizo	L/10	

-Para hormigón de peso normal y f_y =420MPa -Para losas no conectadas a elementos que se dañen con grandes deformaciones

Losas en 1 dirección

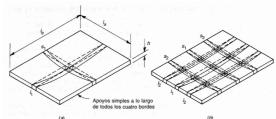
- Armadura principal
 - Diseño en flexión
 - Espaciamiento (S.7.6.5)

$$s \le \begin{cases} 3h, h = \text{espesor de losa} \\ 450 \text{ mm} \end{cases}$$

- Armadura de repartición (S.7.12)
 - · Para temperatura y retracción de fraguado

• Cuantía mínima
$$\rho_{\min} = \begin{cases} 0.0020, & \text{si } f_y = 280 \text{ o } 350 \text{ MPa} \\ 0.0018, & \text{si } f_y = 420 \text{ MPa} \end{cases}$$
 En términos del área bruta:
$$\rho = A_s/bh$$

• Espaciamiento
$$s \leq \begin{cases} 5h, \ h = \text{espesor de losa} \\ 450 \ mm \end{cases}$$

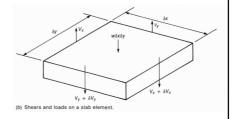

- Cuantía mínima de armadura en losa dada por la cuantía mínima de armadura de repartición (S.10.5.4)

Losas en 2 direcciones

- Habitualmente para losas de relación largo/ancho ≤ 2 (I_b lado largo, I_a lado corto)
- Ventajas por sobre vigas en 1 dirección
 - · Mayor capacidad en flexión
 - · Capacidad en torsión
- Requisito (Método de los coeficientes)
 - Vigas suficientemente rígidas $h \ge 3h_f$

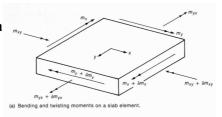
- Distribución de cargas

Losas en 2 direcciones


Equilibrio

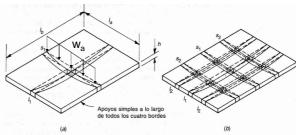
$$\sum F \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = -w$$

$$\sum M \frac{\partial m_y}{\partial y} + \frac{\partial m_{xy}}{\partial x} = V_y \frac{\partial m_x}{\partial x} + \frac{\partial m_{yx}}{\partial y} = V_y$$


$$m_{xy} = m_{yx} \quad \left(\sigma_{xy} = \sigma_{yx}\right)$$

$$\Rightarrow \frac{\partial^2 m_x}{\partial x^2} + 2\frac{\partial^2 m_{xy}}{\partial x^2} + \frac{\partial^2 m_y}{\partial x^2} = -w$$

- Compatibilidad + ley constitutiva
- **Otros Métodos:**
 - Líneas de fluencia Método de las franjas



Losas en 2 direcciones

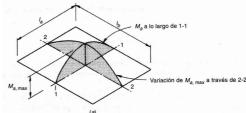
- Distribución de cargas

• Viga elástica
$$\delta = \frac{5wl^4}{384EI}$$

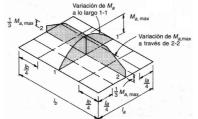
• Losa (aprox.) $\Rightarrow \frac{5w_a l_a^4}{384EI} = \frac{5w_b l_b^4}{384EI}$

$$\Rightarrow \frac{w_a}{w_b} = \left(\frac{l_b}{l_a}\right)^4, \text{ si } \frac{l_b}{l_a} = 2 \Rightarrow \frac{w_a}{w_b} = 16$$

• Losa (si $I_a = I_b$)

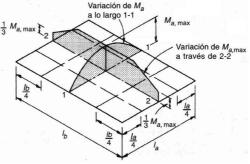

• Losa (si
$$I_a = I_b$$
)
$$\Rightarrow w_a = w_b = w/2 \Rightarrow M_{aprox} = \frac{(w/2)l^2}{8} = 0.0625wl^2$$

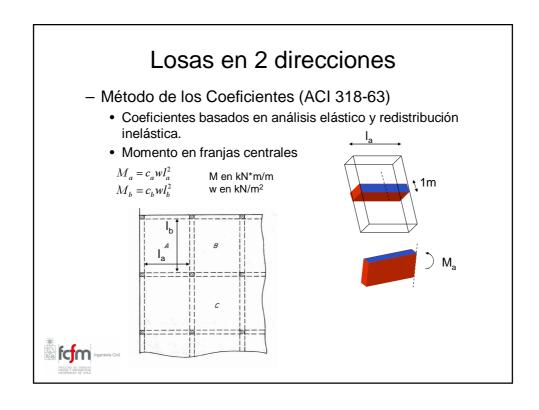
$$M_{losa\ elástica} = 0.048wl^2 \Rightarrow \text{reducido por momento de torsión}$$
(losa elástica en 2 direcciones)

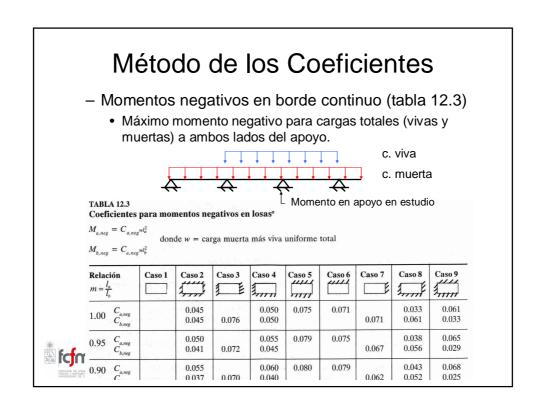


Losas en 2 direcciones

- Distribución de cargas
 - · Variación de cargas
 - M_a en 1-1 y 2-2
 - M_b en 1-1 y 2-2


- · Redistribución inelástica
 - Fluencia franja central no constituye falla
 - Aumento de momento en zonas aledañas luego de fluencia de franja central
 - Mayor capacidad por distribución inelástica de momentos


Losas en 2 direcciones


- Redistribución inelástica
 - Mayor capacidad por distribución inelástica de momentos
 - · Diseño por franjas
 - -Franja central (I/2) M_{a,max}
 - -Franja lateral (I/4+I/4) 2/3M_{a,max} (recom.)
 - -Análogo para M_b

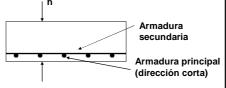
- Métodos de diseño
 - Método de diseño directo (S.13.6, ACI 318-05)
 - Método del marco equivalente (S.13.7, ACI 318-05)
 - Método de los coeficientes (ACI 318-63), común por su simplicidad y permitido por ACI 318-05 (S.13.5.1)



Método de los Coeficientes

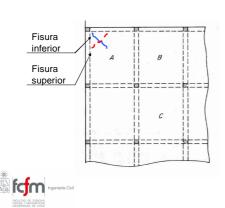
- Momentos negativos en borde discontinuo
 - Momento teórico es cero, pero la alta rigidez de las vigas de borde generan momentos negativos.

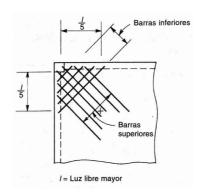
$$M_{a,neg} = \frac{1}{3} M_{a,pos} \qquad M_{b,neg} = \frac{1}{3} M_{b,pos}$$


- Momentos positivos
 - carga muerta → mínimas rotaciones en apoyos (tabla 12.4)
 - carga viva → rotaciones en apoyos (tabla 12.5)
 - · Momento combinado de ambas cargas

Método de los Coeficientes

- Esfuerzo de corte
 - Capacidad al corte del hormigón (\(\psi Vc \)).
 - Proporción de carga de corte dada por Tabla 12.6
- Espesor de losa
 - Espesor sugerido (h)
 - Corte y deflexiones deben chequearse
- $h = \frac{\text{perimetro de losa}}{180 \text{mm}} \ge 90 \text{mm}$
- Distribución de armadura
 - Principal vs. Secundaria
 - Franja Central vs. Laterales
 - Espaciamiento (S.13.3.2) $s \le 2h$


• Cuantía mínima (temperatura y retracción de fraguado) (S.13.3.1)

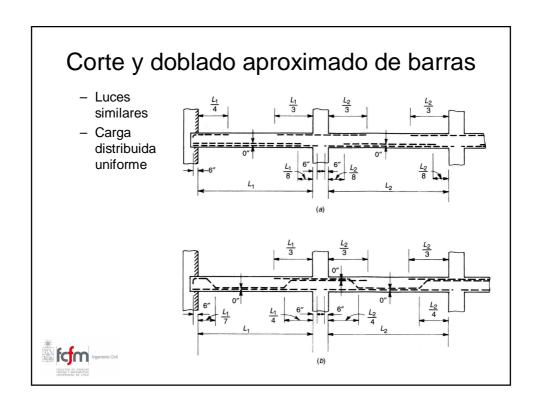


$$\rho_{\text{min}} = \begin{cases} 0.0020, \text{ si } f_{\text{y}} = 280 \text{ o } 350 \text{ MPa} \\ 0.0018, \text{ si } f_{\text{y}} = 420 \text{ MPa} \end{cases}$$
 En términos del área bruta: $\rho = A_{\text{s}} / \text{bh}$

- Armadura Especial de Esquinas Exteriores
 - · Refuerzo adicional para resistir esfuerzos torsionales
 - Refuerzo (ambas direcciones) con capacidad equivalente al momento máximo positivo (por unidad de ancho) en la losa

Método de los Coeficientes

- Cálculo aproximado de deflexiones
 - Deflexiones medias respecto del lado largo y corto basado en momento máximo positivo
 - Carga Viva (Tabla 12,5)



• Carga Muerta (Tabla 12.4)

• Inercia $I_{e} \sim I_{g}$. En general, $I_{e} = \left(\frac{M_{cr}}{M_{a}}\right)^{3} I_{g} + \left[1 - \left(\frac{M_{cr}}{M_{a}}\right)^{3}\right] I_{cr} \leq I_{g}$

Deformaciones por fluencia lenta ξ_{max} = 3.0 (ACI 318-95) = 2.0 (ACI 318-05)

