CI42A: ANALISIS ESTRUCTURAL

Prof.: Ricardo Herrera M.

Programa CI42A

NÚN	MERO NOMBRE DE LA UNIDAD		OBJETIVOS
4	Método de Rigidez	Calcular esfu	ierzos en una estructura
DUR	ACIÓN COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMP	hiperestática	usando el método de rigidez.
3 semanas			
	CONTENIDOS		BIBLIOGRAFÍA
4.1. 4.2.	indeformables, barras infinitamente rígidas, condensaciones estáticas y geométricas.		[Belluzi, Cáp. 20] [Hibbeler, Cáp. 10, 11, 14, 15] [Hidalgo, Cáp. 7] [Laible, Cáp. 8, 9] [Leet, Cáp. 11, 12, 15, 16, 17] [Luthe, Cáp. 3, 5, Apéndice]
4.3.	Método de Pendiente – Deformación		[Rosenberg, Cáp. 5]
4.4.	Método de rigidez directa: Determinacional la matriz de rigidez de una estructura, rigidez horizontal, sistemas de resortes paralelo.	matriz de	riz de

Capítulo 4: Método de rigidez

4.0. Introducción

Método de rigidez

 El método de rigidez (o de los desplazamientos) consiste en la determinación de los esfuerzos en la estructura utilizando como incógnitas los desplazamientos y giros en los nudos

0.5.1 Ecuaciones de Bresse

Desplazamiento longitudinal

$$u_B = u_A + \int_{x_A}^{x_B} \frac{N(x)}{EA(x)} dx + \int_{x_A}^{x_B} \mathbf{a} \Delta T dx$$

Giro

$$\boldsymbol{q}_{B} = \boldsymbol{q}_{A} + \int_{x_{A}}^{x_{B}} \frac{M(x)}{EI(x)} dx$$

Desplazamiento transversal

$$v_{B} = v_{A} + \mathbf{q}_{A}L + \int_{x_{A}}^{x_{B}} \frac{M(x)}{EI(x)} (x_{B} - x) dx - \int_{x_{A}}^{x_{B}} \frac{V(x) \aleph}{GA(x)} dx$$

$$\mathbf{fcfm}$$
Together the contraction of the cont

Método de rigidez

- Ventajas:
 - Util para resolver sistemas con muchos grados de hiperestaticidad
 - Fácil de programar
 - Sirve para estructuras hiperestáticas e isostáticas

Método de rigidez

 Para aplicar el método es necesario definir los desplazamientos y giros que permitan representar el comportamiento de la estructura en su totalidad

Discretización

- Pasamos de una estructura con infinitos grados de libertad de desplazamiento a otra con un número finito de grados de libertad.
- La discretización de la estructura se hace en base a
 - Nudos: puntos de singularidad de la estructura y/o acciones
 - Elementos: barras que unen nudos

Método de rigidez

Una vez definidos los elementos y nudos, las ecuaciones adicionales requeridas para resolver la estructura se obtienen del equilibrio en los nudos.

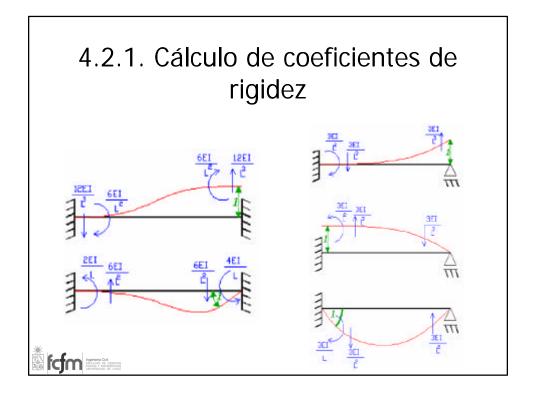
Capítulo 4: Método de rigidez

4.1. Indeterminación geométrica, barras axialmente indeformables, barras infinitamente rígidas, condensaciones estáticas y geométricas.

4.1.1. Grado de indeterminación cinemática (GIC)

 Es el mínimo número de desplazamientos y giros independientes que permite representar completamente el estado de la estructura

4.1.2. Condensaciones


- Disminución de la cantidad de grados de libertad independientes debido a características especiales de la estructura o de las acciones.
 - Condensación geométrica: características de la estructura
 - Condensación estática: características de las acciones

Capítulo 4: Método de rigidez

4.2. Ecuaciones de equilibrio en nudos, cálculo de los coeficientes de rigidez y fuerzas producto de acciones externas.

Equilibrio en nudos de la barra

$$\begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \\ q_6 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \\ F_6 \end{bmatrix}$$

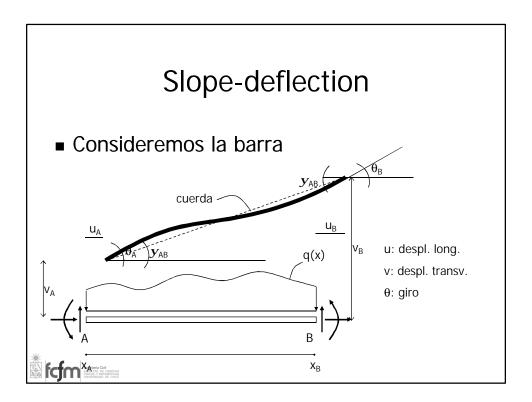
Método de rigidez

- Esquema 1 del método de rigidez
 - 1. Determinar GIC.
 - 2. Definir grados de libertad independientes.
 - 3. Construir la matriz de rigidez aplicando condensaciones geométricas.
 - Imponer condiciones de equilibrio en los g. de l. independientes => sistema de ecuaciones.
 - 5. Aplicar condensaciones estáticas.
 - 6. Resolver el sistema de ecuaciones para obtener los desplazamientos en los g. de l. independientes.
 - 7. Obtener diagramas por superposición.
 - 8. Encontrar desplazamientos en puntos de interés

4.2.2. Fuerzas producto de acciones externas

- Cargas en los nudos
- Cargas en los elementos
- Otras acciones:
 - Defectos de construcción
 - Asentamientos
 - Cambios de temperatura

4.2.2. Fuerzas producto de acciones externas


- Hasta ahora con el método de rigidez podemos resolver sólo estructuras donde las cargas están aplicadas directamente en los g. de l.
- Para resolver el problema con cargas en los elementos y otras acciones es necesario aplicar el principio de superposición

Capítulo 4: Método de rigidez

4.3. Método de pendientedeformación (slope-deflection)

Slope-deflection

■ Usando ecs. de Bresse

$$\mathbf{y}_{AB} = \frac{v_B - v_A}{L} = \mathbf{q}_A + \frac{1}{L} \int_0^L \frac{M(x)}{EI(x)} (L - x) dx$$

$$\int_0^L \frac{M(x)}{EI(x)} (L - x) dx = \mathbf{w}_0 b - M_{AB} \frac{L^2}{3} + M_{BA} \frac{L^2}{6}$$

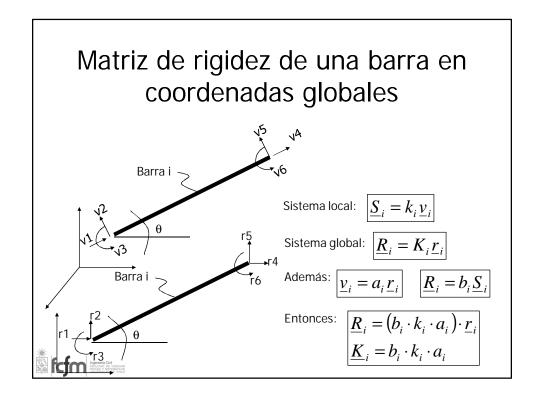
Slope-deflection

Ecuaciones

$$M_{AB} = \frac{2EI}{L} (2\boldsymbol{q}_A + \boldsymbol{q}_B - 3\boldsymbol{y}_{AB}) + M_A^q$$

$$M_{BA} = \frac{2EI}{L} (\boldsymbol{q}_A + 2\boldsymbol{q}_B - 3\boldsymbol{y}_{AB}) + M_B^q$$

Efecto del corte en la matriz de rigidez de una barra


$$K = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0\\ 0 & \frac{12EI}{L^{3}(1+2\mathbf{b})} & \frac{6EI}{L^{2}(1+2\mathbf{b})} & 0 & -\frac{12EI}{L^{3}(1+2\mathbf{b})} & \frac{6EI}{L^{2}(1+2\mathbf{b})} \\ 0 & \frac{6EI}{L^{2}(1+2\mathbf{b})} & \frac{4EI(2+\mathbf{b})}{L(1+2\mathbf{b})} & 0 & -\frac{6EI}{L^{2}(1+2\mathbf{b})} & \frac{2EI(1-\mathbf{b})}{L(1+2\mathbf{b})} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0\\ 0 & -\frac{12EI}{L^{3}(1+2\mathbf{b})} & -\frac{6EI}{L^{2}(1+2\mathbf{b})} & 0 & \frac{12EI}{L^{3}(1+2\mathbf{b})} & -\frac{6EI}{L^{2}(1+2\mathbf{b})} \\ 0 & \frac{6EI}{L^{2}(1+2\mathbf{b})} & \frac{2EI(1-\mathbf{b})}{L(1+2\mathbf{b})} & 0 & -\frac{6EI}{L^{2}(1+2\mathbf{b})} & \frac{4EI(2+\mathbf{b})}{L(1+2\mathbf{b})} \end{bmatrix}$$

Capítulo 4: Método de rigidez

4.4. Método de rigidez directa

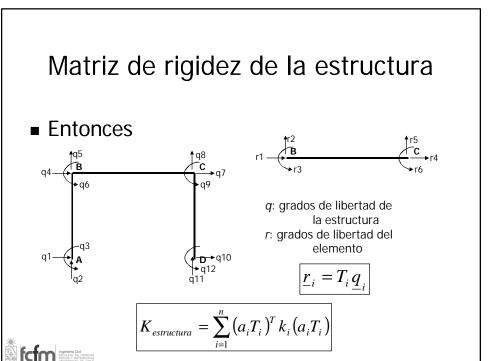
Matriz de rigidez de una barra en coordenadas locales
$$\begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix}$$

Matriz de rigidez de una barra en coordenadas globales

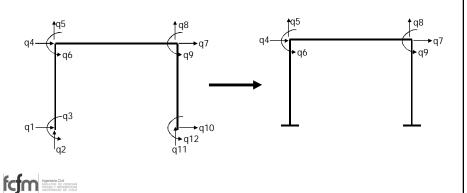
$$a_{i} = \begin{bmatrix} \cos \mathbf{q} & \sin \mathbf{q} & 0 & 0 & 0 & 0 \\ -\sin \mathbf{q} & \cos \mathbf{q} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos \mathbf{q} & \sin \mathbf{q} & 0 \\ 0 & 0 & 0 & -\sin \mathbf{q} & \cos \mathbf{q} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$b_{i} = a_{i}^{T}$$

Entonces:


$$\underline{K}_i = a_i^T \cdot k_i \cdot a_i$$

Matriz de rigidez de la estructura


 Para formar la matriz de rigidez de la estructura, usamos la relación entre los grados de libertad de la estructura y los grados de libertad del elemento en coordenadas globales

Matriz de rigidez de la estructura

■ La matriz obtenida es singular. Falta imponer las condiciones de borde.

■ Identificar desplazamientos nulos (<u>a</u>_s) y remover las columnas asociadas a esos desplazamientos. Dividir la matriz no cuadrada resultante en las filas asociadas a las reacciones (desplazamientos nulos) y el resto.

Condensación de la matriz de rigidez

■ Condensación estática

Condensación geométrica

- Esquema 2 del método de rigidez
 - 1. Determinar las matrices de rigidez de cada elemento en coordenadas globales usando las matrices de transformación (a).
 - 2. Generar las matrices de transferencia de los g.d.l. de cada elemento en coordenadas globales a los g.d.l. de la estructura (T).

Método de rigidez directa

3. Poblar la matriz de rigidez de la estructura sumando las contribuciones de la matriz de rigidez de cada elemento.

$$K = \sum_{i=1}^{n} (a_i T_i)^T k_i (a_i T_i)$$

4. Aplicar condensaciones

5. Imponer condiciones de apoyo: Identificar desplazamientos nulos y remover las columnas asociadas a esos desplazamientos. Dividir la matriz no cuadrada resultante en las filas asociadas a las reacciones (desplazamientos nulos) y el resto.

$$\begin{bmatrix}
\underline{Q} = \underline{K} \cdot \underline{q} \\
\underline{Q}_f \\
\underline{Q}_s
\end{bmatrix} = \begin{bmatrix}
\underline{K}_{ff} & \underline{K}_{fs} \\
\underline{K}_{sf} & \underline{K}_{ss}
\end{bmatrix} \begin{bmatrix}
\underline{q}_f \\
\underline{q}_s
\end{bmatrix}$$

Método de rigidez directa

6. Resolver para los g. de l. no nulos el sistema formado por la matriz cuadrada resultante de considerar las filas asociadas a las cargas externas.

$$\underline{Q}_f = \underline{K}_{ff} \cdot \underline{q}_f$$

 Calcular las reacciones con las filas no consideradas

$$\underline{Q}_s = \underline{K}_{sf} \cdot \underline{q}_f$$

8. Obtener las fuerzas en los elementos

$$\underline{S_i = \underline{k}_i \cdot \underline{a}_i \cdot \underline{T}_i \cdot \underline{q}}$$

